Advanced Configuration and
Power Interface Specification

Hewlett-Packard Corporation
Intel Corporation

Microsoft Corporation
Phoenix Technologies Ltd.
Toshiba Corporation

Revision 3.0
September 2, 2004

i

Copyright © 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Hewlett-Packard Corporation, Intel
Corporation, Microsoft Corporation, Phoenix Technologies Ltd., Toshiba Corporation
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DO
NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

iii

Affected

Revision Change Description Sections

3.0 Major specification revision. General configuration enhancements. Inter-

Sept. 2004 | Processor power, performance, and throttling state dependency support added.
Support for > 256 processors added. NUMA Distancing support added. PCI
Express support added. SATA support added. Ambient Light Sensor and User
Presence device support added. Thermal model extended beyond processor-
centric support.

2.0c Errata and clarifications added.

Aug.. 2003

2.0b Errata and clarifications added.

Oct. 2002

2.0a Errata and clarifications added. ACPI 2.0 Errata Document Revision 1.0

Mar. 2002 | through 1.5 integrated.

ACPI 2.0 Errata and clarifications added.

Errata Doc.

Rev. 1.5

ACPI 2.0 Errata and clarifications added.

Errata Doc.

Rev. 1.4

ACPI 2.0 Errata and clarifications added.

Errata Doc.

Rev. 1.3

ACPI 2.0 Errata and clarifications added.

Errata Doc.

Rev. 1.2

ACPI 2.0 Errata and clarifications added.

Errata Doc.

Rev. 1.1

ACPI 2.0 Errata and clarifications added.

Errata Doc.

Rev. 1.0

2.0 Major specification revision. 64-bit addressing support added. Processor and

Aug. 2000 device performance state support added. Numerous multiprocessor workstation
and server-related enhancements. Consistency and readability enhancements
throughout.

1.0b Errata and clarifications added. New interfaces added.

Feb. 1999

1.0a Errata and clarifications added. New interfaces added.

Jul. 1998

1.0 Original Release.

Dec. 1996

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

v

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Contents
L INTRODUCTION ...ttt e h e m s s e b e st e e R e e b e e e e she e sRe e areeneenreennesneenreenneas 9
LI PFINCIPAI GOGIS ...tttk bt h bbbt bt e e bt e b e e bt eb £ e b bt bt e e e st ettt bt 9
1.2 Power Management RALIONAIEcooi ittt sttt neeneeresne st s
1.3 Legacy SUpPpPOrt.......cccoeevvrvviennenn.
1.4 OEM Implementation Strategy
1.5 POWEF @Nd SIEEP BULLONS ...ttt b bttt b e bbbt b e sttt besb e e 9
1.6 ACPI Specification and the Structure Of ACPI ..o 9
1.7 OS and Platform COMPIIANCE.c.cciiiiiieici ettt eseebe s be st et e b e e eseeseetesbe e e 9
1.7.1 Platform Implementations of ACPI-defined Interfaces9
1.7.2 OSPM Implementationsc.ccceeeeeeeereenieneneeneeeseeeenne .9
1.7.3 OS REQUITEINENIESeuveeutentieiieteeitente ettt et ettt et e stt e bt eat e besetebeebee b e sbeenbees e et e eb e enteebeenbesseentesseenbeebeentesseenbesas 9
1.8 TAIQEL AUGIEICEottt bbbt bt bt h bt h e bt e b b e e st e b e e bt eb e e bt e bt e et e e e st ebeebesbe st s 9
1.9 DOCUMENT OFQANIZATION ... c.eitiiieitiiiesieite ettt sttt et tesbestesbe e et eseebeebesbeebesae s eseeseebeabeebeseenbeseeneeseaseebeneenes 9
1.9.1 ACPI Introduction and OVEIVIEWceeerueruierierteeientieiesteetesteetesteetesseessessesssesseessassesssessesseessesssenseseensesnes 9
1.9.2 Programming MOGCLSeecueruirieniieiertieeerieete e ett et etestesteeteseesseeseessesseessassaessesseensessaessesseensenssensesssensenses 9

1.9.3 Implementation Details...
1.9.4 Technical Reference ...

1.10 REIAEA DOCUMEINTS.......oiuiiviiirreieieieestec ettt r e r et r bt e e r e n et r b et er e et r e 9
2DEFINITION OF TERMS ... oottt ettt b e bttt sb et e s be e beebe e e e saes 9
2.1 General ACPI TerMINOIOQYc.oouiiiieieiiete ettt ettt ettt bt e e b e bt ebeebesbe st et e e eneeneeneeaesee s 9
2.2 Global System State DEfiNITIONSccciiiei ettt e st et e b e ste b e s e s eseereeae st e 9
2.3 Device POWET State DEfiNitiONS.o e 9
2.4 S1eepPing State DEFINITIONScuiiiiieieieeei ettt ettt be et e e e st e bt e beebesbe st e e eneeseeneebenee s 9
2.5 Processor Power State DefiNITIONS ..o e 9
2.6 Device and Processor Performance State Definitions...........cocooiiiieiiniiniene e 9
SACPI OVERVIEW.ottt et b ettt h et e st e be e beestesseesbeesbeesbeenbeenne e 9
3.1 SyStem POWET IMANAGEIMENTc..iiiiiiiiieiesiee ettt b bt e bbb e b e se e besbe e b e nb e e beeb e e b e s bt e besbeebennes 9
L2 POWET SEALES.......oiiiiiiii e e 9
3.2.1 Power Button.......cccccoevieneniineniccniccnenne, .9
3.2.2 Platform Power Management CharaCteriStiCS........euuirteruirieriieiieierieeie sttt sttt sttt sie e sbeebesieenaesnean 9
3.3 DEVICE POWET IMBNAGJEMEINT ..ottt ettt b ettt b et b b e et b e bt s b e b et e s e e bt e bt st e e b e nae e e seebeabenbeanen 9
3.3.1 Power Management Standards9
3.3.2 Device Power States..........c......... .9
3.3.3 Device POWeEr State DEfINITIONSecvirieriieieiesieeieettete sttt ettt ettt e st et e st e e sbeeneesseensesseensesseensensean 9
3.4 CONLIOIING DEVICE POWEK ...ttt sttt e et ae e bt b e b e e e me et e e beebesbeebesmeneeneaneaneaneneens 9
3.4.1 Getting Device POWET Capabilities.........ceouiruiriiiriiiiiiniieiesieeitete ettt ettt ettt et sttt sbe et e sbeeneesbean 9
3.4.2 Setting DEvVICe POWET STALESco.ivtiieiiiiiriiitirtentetet ettt ettt sttt sttt ettt ettt ebe b naen 9
3.4.3 Getting Device Power Status.... .9
3.4.4 Waking the COmMPULET.......c.ceceeruereerienieieniieienne .9
3.4.5 Example: Modem Device Power Managementccccceceiirinienieiiinieninenieeeeeceeniesteeeeeeeeieee e 9
3.5 Processor POWET MaNAgEMIENToiiiiiiieiiiteee ettt ettt et be e b sb e e b e be e bt s bt e neebeeneens 9
3.6 Device and Processor Performance STALEScccviiieeiiiniiiei et 9
3.7 Configuration and “PlUg @nd PIAYccoo ettt st be et neeneste e 9
3.7.1 Device Configuration Example: Configuring the Modem............cccooveiriiiiiiineieeeeee e 9
3.7 2 NUMA NOGES. ...ttt ettt ettt ettt ettt st et e et e e teeb e et e eb e eatesbeeateebeentesbeeate bt esteebeenbesbeenseabeanbesbeensensean 9
3.8 SYSTRIM EVENTS ...ttt bttt bttt h et e b e e R b e b e 2R e e b e e R b e e bt e s bt e b e e bt eh e e b e R e et e e bt e e e e reenenns 9
3.9 BAttery MANAQEMIENT......c.i it bttt b e b e btk e et e s bt et s bt e bt s bt e b b e e b bt et be et nnes 9
3.9.1 Battery Communications... .9
3.9.2 Battery Capacity9
3.9.3 Battery Gas Gauge...... 9

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

vi

3.9.4 LoW Battery LEVELScouiiiiieiiiiiiiieiiertc ettt sttt sttt a e 9
3.9.5 BAttery CaliDIAtIONeecuieiieieiiieiieieteetet et ete st etesteeaesseessesteesaesseesaesseessessesssenseessensesssensenseensesssensensesnsensen 9
3.10 Thermal IMANAGEMENT........ciiiiiiiiieeet ettt sttt et e et e te s b e b e b e st e seebesbe st e b e st e s s eseebesbesbesaesseseeseesensesbens 9
3.10.1 Active and Passive COOlNE MOGESccouruiriririiniiiiieinie ettt ettt sttt 9
3.10.2 Performance vs. ENergy COnSEIVALION.cc.ctiuiiiriirieieieiieteettetesteeeeeieete st steste st eseese st steebeseeneeseeneeneeseasenean 9
3.10.3 ACOUSHICS (INOISE) veeuvrreurieiuiieiieeiteestieeteesteeeteestteeteestsaasseessseessaasssaanseeassaesssaasseensseassaessseesseesseessseanseessseensenns 9
3.10.4 Multiple Thermal ZOMEScccceeereriirieitririiniententet ettt sttt ettt b ettt st be e s es e et eaeetenbeneen 9

4 ACPI HARDWARE SPECIFICATION. ...ttt 9
4.1 Fixed Hardware Programming MOGELcooeiiiiiiiiiiicec ettt sae 9
4.1.1 Functional Fixed HardWareccccoeriiiiiiiiireee ettt sttt 9
4.2 Generic Hardware Programming Model w9
4.3 DIAGIAM LEYENTS ...ttt ettt b etttk b e bbb e b ekt bbb et e s e eh e e b e e bt ebeeb e e b e nne st e b e ebeabenbenren 9
4.4 REQISTEE BIt NOTATION.c.iiiiiiiiie ettt ettt st et e e e s e s e e beebesbeebesae st eneeseanestenaens 9
4.5 The ACPI Hardware MOTELcccoiiiiiiiiiie e 9
4.5.1 Hardware RESEIVEA BitScuiuiiiiiiiiieieiiiteet ettt ettt ettt st et b et et et eseeneebe e nee 9
4.5.2 Hardware IZNOTEA BilS........ceiuieuieriiriiiiiiiee sttt ettt et b et b et bt et e st et e st etesaeenbeeaee 9
4.5.3 Hardware WIite-Only Bils..........coccoioiiiiiiiiininicietrner ettt sttt sttt 9
4.5.4 Cross Device DEPENAENICIESccuirieriieieieiiietietieitesieete et etesteeaestessesseestesseessessesseesseessessesssensesssesesssensenses 9
4.6 ACPT HArOWAIE FEALUIES.cueiiiteiiiietieet etttk b ettt b ekt b et b et s e bt nn et anenea 9
4.7 ACPI Register Model............ .9
4.7.1 ACPI Register Summary9
4.7.2 Fixed HardWare FEAtUIES........cccueviiiiriiiieieiteteetee ettt et ettt ettt e b e et st et eas 9
4.7.3 Fixed Hardware REZISTETSccceviiiiiriiiieieeiieieettete sttt ettt ettt ettt ettt et e st et e eat e beeseenbeenaensesneensennes 9
4.7.4 Generic Hardware REGISTEISccuivveriieieieeietieeeteseete st e ste st esaesteeaesteensesseesaessesssesseesaensesssensesssessesssensenses 9

5 ACPI SOFTWARE PROGRAMMING MODELcccooiiieiieieee e 9
5.1 Overview of the System Description Table ArchiteCtureccoooiiiiiiiicii e 9
5.1.1 Address Space Translationcccceveevenienieneenieneenienne .9
5.2 ACPI System Description Tables.. w9
5.2.1 Reserved Bits and Fields9
5.2.2 Compatibility..........cccueenee. .9
5.2.3 Address Formatccccoceveneiecncncnnnn w9
5.2.4 Universal Uniform Identifiers (UUID)...... .9
5.2.5 Root System Description Pointer (RSDP)9
5.2.6 System Description Table Header9
5.2.7 Root System Description Table (RSDT)ccccoviririiiiiiiiininicteetetnese ettt 9
5.2.8 Extended System Description Table (XSDT)ciiierieieieieierierieieeeeie sttt sbeeen 9
5.2.9 Fixed ACPI Description Table (FADT)ooiiiiiiiieieiee ettt sttt st 9
5.2.10 Firmware ACPI Control Structure (FACS)oouiiiiiieieeeeeetee ettt st e 9
5.2.11 Definition BIOCKS.coueieiiiiitiriineieeees sttt sttt ettt st sttt et b een 9
5.2.12 G1ODAl SYSLEIM INEEITUPESeuveueeuietietiititeeeiet ettt ettt ettt ettt ese e st eb e et et e ee e eseeseeseeteebesseneeseeneeneeseaseean 9
5.2.13 Smart Battery Table (SBST). ..o ittt ettt ettt et sbe et b e et e sbeentesbean 9
5.2.14 Embedded Controller Boot Resources Table (ECDT).....cccieieiiiiieiienieierieeieie ettt 9
5.2.15 System Resource Affinity Table (SRAT)ciiiiirieieeeeeeete ettt ettt 9
5.2.16 System Locality Distance Information Table (SLIT)cccceoeriiiiniiiiiiiieieeeeeeeeee e 9
5.3 ACPT NAIMESPECE ...t itteteeteet ettt b bbb et s bt e b e e s s b £ e R s b e e h b e e b e s e e b e e bt eb e bt b e e bt e b e et e be e b e 9
5.3.1 Predefined ROOt NAMESPACESccueruiriiieiieiieiietiiteeteieeei ettt ettt ettt bttt e st et seese s e ete b e seeneeseeneeneeseaneean 9
5.3, 2 ODJEOES ettt ettt ettt ettt ettt h bbbt e h e e a e bt e Rt e bt e a b e bt e a e e bt ea b e ekt en b e eh e et e eh e et e ebe e besheenteebean 9
5.4 Definition BIOCK BENCOGINGottt bbbttt b et b e n et e et eb et nne e 9
5.5 Using the ACPI Control Method Source Language w9
5.5.1 ASL Statements..........ccocueevueerieeneenieenneenieeneennnn w9
5.5.2 Control Method Execution ... 9
5.6 ACPI Event Programming Modelccccoeuenee. w9
5.6.1 ACPI Event Programming Model Components... .9
5.6.2 Types of ACPI Events......ccccoevveveecienieienieennnne, .9
5.6.3 Device ObJect NOtIFICATIONS ...c.veieiiiiiiiteieiei ettt ettt ettt ettt se st st ete b et e e eseeneeneeseanenean 9

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

vii

5.6.4 Device Class-SPeCific ODJECLS.eeruiriiriertieierieriterteettete st ettt ete st etesbe et estesatebeeseentesseensesseensesseansesseensensean 9

5.6.5 Defined Generic Objects and Control MethodS.........ccuevvirieriieieiiesieiere ettt sre s e sraeaeenees 9
LT A o T (=1 g T=To I @] o [-Tod £SO SRRSO

5.7.1_GL (Global Lock Mutex)...........c.........

5.7.2_OSI (Operating System Interfaces)

5.7.3_OS (OS Name Object).....c.cceceevuerueennene

5.7.4_REV (Revision Data ODJECL)cceeueieiririnieriiieieteiteiente sttt sttt ettt sttt
5.8 System Configuration OBDJECES........cc.oiiiiiiie ettt be st be e e e e seeneebesre e 9

S.8.1 PIC MELIOQ ...ttt b et h et b et b e e et e s bt e st e bt e mt e e bt e beeb e et e ebeenbesbeentennean 9

6 CONFIGURATION ...ttt ettt ettt st sbe e be e et st e ebe e sbeebe e s b e es b e st e e sbeesbeenbeaneeaneeanes 9

6.1 Device 1dentifiCation ODJECTSc.oiiiiiiiieree ettt b et e teebeste st e e eneeseeneene e s 9

6.1.1 ADR (AQAIESS) ...euvieuieniieiieiesiteitetiete sttt et et e st e et e et e s bt eate bt estebeestesbesatenseeseensesseensesseensesseensesseansesseensensean 9

6.1.2 _CID (ComPAatible ID)....ccueeieriieieitieieriesierteetesie st et e et ete st estesseestesteessessesssesseessenseassessaensesssensesssensenseessensen 9

6.1.3 _DDN (DOS Device Name).....

6.1.4 HID (Hardware ID)cccccceenuennene

6.1.5 MLS (Multiple Language String)
6.1.6 _PLD (Physical Device Location)

6.1.7 _STR (SIIANZ) c.eeveettititeieieiiete it ete et e st et et ete et e etestete st eseesees e et et ebenseseeseeseeseeb et enseneeneaseeseeseesebesenseneeneeneeseasennan 9
6.1.8 SUN (S10t USET NUIMDET)euvieuiiiieiiiiiieietieie ettt et e st ettete st e e s stebesteestesaeensesseentesseensesseensesseansesseensensean 9
6.1.9 UID (UNIQUE ID) .eitieiieiieiesieeieste ettt et te sttt eete et e steessesseeseesseassesseessesseessensessaesssensesssensesssensensesnsensenn 9

6.2 Device CONFIGUIAtioN ODJECTScciiviieiiiiie ettt ettt b e b s e e b e te et e beste st e s esseseeseenesre e 9
6.2.1 CRS (Current RESOUICE SETNES) ...cveeuvertieierieeientieiietesiteteettetesteetesseestesseestesesseesesseensesseessesseensesseesesses 9
6.2.2 DIS (DISADIE). ...ttt ettt ettt et h ekt b et a e h ekt b ettt a e et eh e bt et e b et et eneeneeneereabeean 9
6.2.3 DMA (DireCt MEIMOTY ACCESS) -.e.uvevirutetiriienteritetesttetesttetesteestesteestesbesttentesseetesseentesbeentesseensesseesesseensessean 9
6.2.4 FIX (Fixed Register Resource Provider)

6.2.5 GSB (Global System Interrupt Base)..........
6.2.6 _HPP (Hot Plug Parameters)
6.2.7 HPX (Hot Plug Parameter EXtENSIONS)cc.uerueriertiriieiertietieiteie sttt ettt sttt sbe et sbeebe b e e snean
6.2.8 _MAT (Multiple APIC Table ENtIY)ccccoveoiiiiiiiniiieeieceentiteseee ettt ettt ettt 9
6.2.9 OSC (Operating System Capabilities)ccuetrirererieieieiertesteret ettt ettt e e et eneeseabenean 9
6.2.10 _PRS (P0ssible RESOUICE SELHNZS)....ceuvirtiruiiiiriieiieiiete sttt ettt ettt ettt ettt sb et b et e sbeentesaean 9
6.2.11 PRT (PCI Routing Table)...............
6.2.12 PXM (ProxXimity).......cccceeerverrereeruenene
6.2.13 _SLI (System Locality Information).....
6.2.14 SRS (St RESOUICE SELHNZS).c..vieureuririieiiniieieiteeteett ettt ettt et ettt e e st et e s bt e besbeestesbeeabesbeeneesbeenbesbeensennean
6.3 Device Insertion, Removal, and Status ODJECTScoiiiiiiiiiiii e 9
6.3.1 EDL (EJECt DEVICE LISt) .ueeuieuieuieiiitiitiieieiei ettt ettt ettt ettt b e s b et et s st ete b e st e e eseeneeneeseabeean 9
6.3.2 EJD (Ejection Dependent DEVICE).........ccuiriiriiriiriiniieieiiteieit ettt ettt sttt sttt be et st sbe e snean 9
0.3.3 _EJTX (BJEOL) ettt 9
0.3.4 _LCK (LOCK) 1.ttt sttt ettt ettt ettt ekttt 9
6.3.5 OST (OSPM Status Indication)
6.3.6 _RMV (Remove)......c.cceceerureienncne
6.3.7 _STA (Status)cccceeevrueuennee
6.4 Resource Data Types for ACPI
6.4.1 ASL Macros for Resource Descriptors...
6.4.2 SMall RESOUICE DAta TYPEC ...vveuvieeieieieieiieiieiesieeie sttt sttt eteeteetesteesbesseestesseessesseessensessaensesssensesssensensaensensenn
6.4.3 Large Resource Data TYPEcc.coeeiiriiiiiiiiieeeteteett ettt ettt sttt sbe et sbe et sbe e e sneen 9
6.5 Other Objects and CONtrol IMETNOUScouiiiiiiie bbbt 9
0.5.1 _INT (TNIE) 1ottt stttk ne 9
0.5.2 DICK (DIOCK) .ervvimeetemirieiinteitstettteiet sttt ettt sttt bttt ettt ettt eb et bbbt et b et e bt st eb et bt sttt eb et ne 9
6.5.3 _BDN (BIOS DOCK NAIME)......ccuiiiiiiiiiiiiiiiiiiiiieeeecce ettt 9
6.5.4 REG (Region)......cccccveevervenene
6.5.5 BBN (Base Bus Number)
6.5.6 SEG (Segment)...................
6.5.7 GLK (GIODAL LOCK) ..ttt ettt ettt ettt ettt ettt sat et e st e beeseentesatenbesseensesseensasseensennean

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

viii

7 POWER AND PERFORMANCE MANAGEMENT ..ot 9

7.1 Declaring a POWer RESOUFCE OBDJECToiuiiiiiiiiieie ettt sttt ne e sae e s 9

7.1.1 Defined Child Objects for @ POWEr RESOUICEcoueueieieiiiiiiiiieieeees e 9

T1.2 OFF etttk etk h kst btk h ket h bt h b btk bt n et b e et ene 9

713 ON etttk ekt b bbbt 9

T 1A STA (STAUS) c.vtuiriiteteteieieirt ettt ettt ettt b ettt b bttt et b bttt b bt b bbbttt st bbb s 9

7.2 Device Power Management ODJECEScciiiiiiiiiiiit sttt b e et se e benre e 9
7.2.1 _DSW (Device Sleep Wake)............

7.2.2 PSO (Power State 0)................
7.2.3 PS1 (Power State 1).........
724 PS2 (POWEE SEALE 2)...cueuiiuieiiitiriintenieteiteteett st st ettt ettt et se et est bt ea et a ettt eatea e bt s bt st e b e na et eseeneeneetenbeneen
7.2.5 PS3 (POWET SEALE 3)..ecueiiiiiiriietietiet ettt ettt b ettt sb et s bt et e e bt e bt e sbt et e sbe et e sbeebesbeentenbeas
7.2.6 PSC (POWET State CUITENE) ..c..eeutieuieniirtietieteete st eitest et e bt ettet e et e tesbe e be st e esbesbeeatenbeeste bt eabesbeentesbeenbesbeensensean
7.2.7 _PRO (Power Resources for DO0).........cocoueiiiiiiirinicieiecne ettt sttt
7.2.8 PR1 (Power Resources for D1)......
7.2.9 PR2 (Power Resources for D2)............

7.2.10 _PRW (Power Resources for Wake).....

7.2.11 _PSW (POWET State WAKE)covirviieiiiiiiiiitirtintenteteiteie sttt ettt ettt ettt sttt ettt b e
7.2.12 TRC (I0 RUSH CUITENL) c..eutintiiieiieiieiesteete ettt ettt b st b e e et e s es e st et e b e s e e eseeneeneeseabenan 9
7.2.13 _STD (ST DEVICE SEALE) ...eeuveveeuiinrieitirteeienteete st eitenteette et stte bt steestesbeesbesbeentesbeeatesbeestesbeenbesbeensesbeenbesbeensensean 9
7.2.14 _S2D (S2 DEVICE STALE).....ecueruiriinriieiteiieienttrteet ettt ettt ettt ettt sb et ettt bt be s et st be e sseseeaeeneebesbeneen 9
7.2.15 S3D (S3 Device State)......
7.2.16 _S4D (S4 Device State).................
7.2.17 _SOW (SO Device Wake State)
7.2.18 _S1W (S1 Device Wake State)
7.2.19 S2W (S2 Device Wake State)
7.2.20 _S3W (S3 Device Wake State)
7.2.21 _S4W (S4 Device Wake State)

7.3 OEM-Supplied System-Level CoNtrol MEthOdSccoiiiiiiiiie e e 9
7.3.1_BFS (BaCK FTOM SIEEP).....eeiueeutiitieiiieeieteeteste ettt sttt ettt b et s b et s bt et sbeenbesbeenaesnean 9
7.3.2_PTS (Prepare To Sleep).....
7.3.3_GTS (Going To Sleep)....

7.3.4 System _SX states.........cccceeruenee.
7.3.5 SWS (SyStem WaKe SOUICE)ceoveriieiiiieiesieeiieste ettt ettt sttt et et e st e et ebeeteentesseenbesseensesseensesseensensean 9
7.3.6 _TTS (Transition TO SEALE).......ccceerrerrireeriirieiiereetesttetesseeseesseeseessesseessesseessesseessessesssesseensesssessesseessessasssesses 9
7.3 7\ WAK (SYSLEM WAKE)....cueiuiitiitiieieeee ettt ettt sttt et e st s e st et et et eneeseeneeneeseabeean 9
7.4 OSPM usage of _GTS, _PTS, _TTS, WAK, and BFSccccoiiiiiiiiiieees et 9
8 PROCESSOR POWER AND PERFORMANCE STATE CONFIGURATION AND CONTROL ..9

8.1 PrOCESSOE POWEE STATESuitiiiiieiiitieieite sttt bbbt bt b et h bbbt b e n et an et ane e 9
8.1.1 ProcesSOr POWET State CO......cc.eiiiiiiieeieeeiie ettt ettt ettt e st e et e saeeenteesneeaateenseesaneenneesneeenseens 9
8.1.2 ProCeSSOT POWET State Cl.....ociuiiiiieiiieiieeie ettt te ettt et e et et e e steesseeeaseessaeessaessseensaeenseesnseenseesnseensenns 9
8.1.3 ProCeSSOT POWET StAte C2.....ooiiieiiieiiieiieeiie ettt te et te et e et e et e e sbeesaeeesbeessaeessaessseesaeesseesaseenseessseenseans
8.1.4 Processor Power State C3................

8.1.5 Additional Processor Power States

8.2 FIUSNING CACNES ..ottt ettt sttt et bbb e e e b e e be e b e b e b e st e s e e st e s e ebeebesbesbesaesseseeneebestesbens

8.3 Power, Performance, and Throttling State DePenTENCIESc.coerriiirieiireie e 9

8.4 DECIATTNG PrOCESSOIS ... i ttitiiteiesies et e e st te st et e et e e sbesbestete st eseeteebesbesbesbesseseeseebeebesbeseensaseeseabenteebessenseneaneanenbensens 9
8.4.1 PDC (Processor Driver Capabilities)c.ceieiririerieiiiriinienienteieiteiteieste sttt ettt ettt ere e nees 9
8.4.2 Processor Power State Control
8.4.3 Processor Throttling Controls......

8.4.4 Processor Performance Control
9 ACPI-DEVICES AND DEVICE SPECIFIC OBJIECTS.......coii et 9

9.1 _SI System INAICATOIScocviiiiiiiieiceeci et
9.1.1 _SST (System Status)

9.1.2 IMISG (IMIESSAZE) ..cuveuveenreieententteitesteeiteste et st est et et et eb e e bt e bt et e sbe et s bt e et sbees b e ebeeatesbeemteebeeteebeenbeessetesmeenbenaee

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

X

9.1.3 BLT (Battery Level Threshold)c..coueoieiiiiiiiriiieicieceenteceete ettt 9
9.2 Control Method Ambient Light SENSOr DEVICE.ccuiiiiieeiieieiie ettt 9

0.2.1 OVETVIEW ..ottt ettt sttt ettt et sttt et e b e e e et eh e bt st b e e e e e sttt eb e e b e s b e e ss et eaeeueebesuesaene 9

9.2.2 _ALI (Ambient Light Illuminance)

9.2.3 ALT (Ambient Light Temperature)......

9.2.4 ALC (Ambient Light Color Chromacity)....

9.2.5 ALR (Ambient Light RESPONSE).....cc.eetiriiuiiiiiiiiriinieicieiteitritetestest ettt sttt st e e
9.2.6 _ALP (Ambient Light POIING)cccceiiieiieriiiieiieieie sttt ettt ettt eta e s e eseesbeesaessesnnensennns 9
9.2.7 Ambient Light Sensor EVENLS..........coiiriiiiiiiiiieee ettt sttt ne et ee 9
9.2.8 Relationship to Backlight Control MethOdscceruiiriiriiiiiiniiiiieee et 9
0.3 BALLEIY DBVICE. ... ettt ettt ettt ettt sttt et b e b et et e st e a e et e e Eeebeee et e e e Rt eE e eEe e b e ne et e e e meeb e e b e ebeeeeebe e eneeneeneeneere s 9
9.4 CONrol MEthOd LIt DEVICEccuiuiieiiicieisietste ettt 9
041 LLID otttk h et btk h Rtk bk b st et h et btk n et ne et st e 9
9.5 Control Method Power and Sleep BULLON DEVICES.........coiiueiiiierieieesie ettt 9
9.6 Embedded Controller DEVICEccccviiiiiiiiii s 9
0.7 AN DBVICE....uereeietieet ettt e e R et E R e R R R R R R 9
9.8 GeNeriC CONtAINET DEVICE.........cccuiiiiiiiiicci bbb 9
9.9 ATA CONTIOIEE DEVICES.c.evieiieiiiireirteesee ettt et r et n et eer et r et r e 9
9.9.1 Objects for Both ATA and SATA CONLrOLLETS.cveeeuieiieiiitirieieieieeeeete ettt nee 9
9.9.2 IDE COntroller DEVICE.......eeuiiuiriiiiiiieiieieiit sttt ettt ettt ettt ettt st sttt et ebe b ne 9
9.9.3 Serial ATA (SATA) CONtroller DEVICEc.vevvieiieiieieriieieeitete sttt ete sttt e e sreesaesseesaesseessesseesaessesnsensensns 9
9.10 FIoppy COoNtroller DEVICE ODJECTS.....c.viiiiiiiiieieieesie st st see ettt ettt sttt seebesbesteseesbe e eneeseenesaenee s 9
9.10.1 _FDE (Floppy Disk ENUMETAE)c..ccueuiiuiriiriiriiiiieiiiieiente ettt sttt e 9
9.10.2 _FDI (Floppy Disk INfOIMAtION)c.eecveriirieiieeieiesieiesieie sttt sie st eseesteseeessesseessessaesseesaessesnsensennns 9
9.10.3 _FDM (Floppy Disk DIive MOGE).....c.eeueiuiiiiiiiiiiieieieiieieete sttt sttt ee 9
9.11 GPE BIOCK DEVICEcviiiiiiiiiiii bbb 9
9.11.1 Matching Control Methods for General-Purpose Events in a GPE Block Device..........ccccoceveveiiincnennene. 9
9.12 MOTUIE DIBVICE ...tttk bbbt b bbbt bbbttt b bt n et e 9
0. 13 IMIBIMOIY DEBVICESeieetieteete ettt etttk bbb bbbt bt bbb et e b ek e bt ek e b e b e st e bt e bt e bt nb et et e st ebeebe b e e e 9
9.13.1 Address DECOINGcveuieuieiiitieieiteteet ettt ettt ettt ettt b et e b et et es e e st eb e et e ebesb et e st eneeseeneeaeeeenes 9
9.13.2 EXample: MEMOTY DEVICEcuiruiiiiitiiieitietettete ettt ettt st et b ettt et e bt it et e st e beeseentesaeenbeeae 9
9.14 _UPC (USB POrt Capabilities)cctiiiuiriiiiiiieieie sttt bbb et 9
9.14.1 USB 2.0 Host Controllers and UPC and PLDcc.ccoeiiiiiiiiieeeeeeee et 9
9.15 Device ObjJeCt NAME COllISIONc.vciiiiiiiiiieiee ettt s et et e b et et e e e s eseeneebe e e 9
9.15.1 _DSM (Device SPecific MEthOd)occverviiiiiieieieeteieeiese sttt sttt ettt b et se e e esaessesneenseens 9
9.16 PC/AT RTC/CIMOS DEVICES.cutvetiiiresirieiistete sttt ab ettt sb ettt b et na et bbbt bbbt b e bt n e e 9
9.16.1 PC/AT-compatible RTC/CMOS Devices (PNPOB00).........ccccoiiririiiiiiiiinenicecieeeeseseseereeee e 9
9.16.2 Intel PIIX4-compatible RTC/CMOS Devices (PNPOBOT)ccccieierierieiieieiecieeieeeiese e 9
9.16.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNPOB02)........cccooiririeieiriiiiiieeeeceee e 9
9.17 Control Method User Presence Detection DEVICEccccciiiiiiiiiiiiiicccs s 9
9.17.1 _UPD (USEr PreSEnce DELECL) ..c.vevvieiieiieieriieiietieiesieeiesteete st estestessse e sseesesssessesssessessaessesssessesssesesssensenses 9
9.17.2 _UPP (User Presence POING)c..ooueieieuiiietiieeeeee ettt ettt sttt eseene b see e 9
9.17.3 User Presence SeNSOT EVENLS.couiiiiiiiiiieiiiieierteete ettt ettt et sb ettt et st beeae 9
9.18 1/O APITC DEVICE ...ttt sttt et s et r bR et e Rt r et et e r et r et nn e 9
10 POWER SOURCE DEVICES. ...ttt sre e nnes 9
10.1 SMArt Battery SUDSYSTEMS.eiuiitiitiieeiieie ettt ettt st te et e ettt e bt sbe st e b e e ese et e abeebesbeebeee e e eneeneeneaneeaeseenes 9
10.1.1 ACPI Smart Battery Status Change Notification ReEqUIrementsccceeoeeeririerenieieeneneseseeeceeee e 9
10.1.2 Smart Battery ODJECLS.coueruirteieiieiiriirienteteteet ettt ettt sttt ettt et ebe st be sttt eaeebesaeneen 9
10.1.3 Smart Battery Subsystem Control Methods...........c.evieieriieiieniiiieiicieieeeeee e sre e s ees 9
10.2 CONrol MEthOd BattErIEScviveiiieeiiieiee et ettt nb et 9
10.2.1 BAttery EVENLScciiiiiiiiiiiiiiiciiitect ettt st 9
10.2.2 Battery Control METNOMASceviruieieriieieriieieste ettt ettt ettt s e e tesseesessaesesseensessaensesseensesssensesssensenses 9
10.3 AC Adapters and POWET SOUICE ODJECTS.ciiiiiiiieieiee ettt re st e s 9
10.3.1 PSR (POWET SOUICTE) ..c.euveuinieiiitiitintentet ettt sttt ettt ettt sttt ettt eae st bt be ettt be sttt eateaeebesneneen 9
10.3.2 PCL (POWET CONSUMET LAST) ..euviruieiieiieieitieiesteetesteeiesteetesteesaetesseesesseeseessessesssessessasssesseensenssensesseensenses 9

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10.4 Example: POWEEF SOUICE NAME SPACEc.viuiiieitiriiieieieii sttt sttt sb sttt ettt b e b b e bt b b e s 9

11 THERMAL MANAGEMENT
11.1 Thermal Control...........cccooviivniiiciniinceee
11.1.1 Active, Passive, and Critical Policies
11.1.2 Dynamically Changing Cooling Temperature Trip Points

11.1.3 Detecting Temperature CRANEES..........coovuirerieiiirinintetet ettt ettt ettt ie et st sae e et eae b saenees
T1.1.4 ACHIVE COOIIME ...oeieiieiieiieiieete ettt ettt ettt e et e st e et et e e st e b e esae b e esaensasseenseesaenseeseensessaessesssensensaensesssensenses 9
T1.1.5 PaSSIVE COOLINE ...ttt ettt ettt ettt s et b et et e st es e e st et e e b e e em s e st e st eseete b et et eneeneeneeseaneean 9
11.1.6 Critical SHUEAOWIL......oouiiiiiiieiieiiitiete ettt sttt ettt eae b neen 9

A o Yo [T aTo I o =) (=] =] (ot 9
11.2.1 Evaluating Thermal DeVIiCe LISTSccuerieieiiiitiiieieieiieteet ettt st st st ene e sbenean 9
11.2.2 Evaluating Device Thermal Relationship Informationccccoceveneiiiininininineiinceceececeese e 9

R R I o ToT g 0 = O o =0t (OSSOSO 9
11.3.1 ACX (Active Cooling)....

11.3.2 _ALX (Active List)ccccocevuenneee.
11.3.3 _CRT (Critical Temperature)
11.3.4 HOT (HOt TEMPETALULE)cveeieitieiietieitertieiteste sttt ettt sttt st et e sbe et st et sbeeaesbeeatesbe e st e sbeenbesbeeeesbeensenae
11.3.5 PSL (PASSIVE LISt) c.veuietiitieiieiietiitiet ettt ettt ettt b e et b et e bt et e s bt e st e s bt et e s bt et e et e entesseenbeene
11,306 _PSV (PASSIVE) ...eeveiititeieieeiteieete sttt ettt sttt et sttt et b e et b ettt ekt b e bt st be et aeeneebenbeneen
11.3.7 _RTV (Relative Temperature VAIUES)ccecverirrierieieriieienieeieieeeestesseessesseesesseessessesssessesssesssessesssensenses
11.3.8 _SCP (Set COOING POLIICY) ...eveeuiiiieieiieieittee sttt ettt et ettt s bbbt e b ebe et st e b eas
11.3.9 _TC1 (Thermal CONStANE 1) ...cc.cviuiiiriiriiiiieieiiiteeest ettt ettt sttt ettt sttt b st eaeeresaenees
11.3.10 _TC2 (Thermal Constant 2).....
11.3.11 TMP (Temperature)...............
11.3.12 _TPT (Trip Point Temperature).............
11.3.13 _TRT (Thermal Relationship Table)ccccuiiiiriniiiiiiiiinineceeeeseeeeee et
11.3.14 TSP (Thermal Sampling Period).........cccecierierirrienieieriieiesieeieie et eie st eae e eaesseessesseessesseessesssensesssensenses
11.3.15 TST (Temperature Sensor ThreShold)coeeriiiiiiiiriiieieeeee e
11.3.16 _TZD (Thermal Zone DEVICES)c.couerueieiruiriinierieteieiteitstesiestet ettt st st e ettt seeste et eseseeaeenessesaeneen
11.3.17 _TZM (Thermal Zone Member).....
11.3.18 TZP (Thermal Zone Polling)ccceucev..
11.4 Native OS Device Driver Thermal Interfaces
11.5 Thermal Zone INterface REQUITEMENTSoiiiiiiiieiec ettt ettt sesre e e s 9
11.6 Thermal Zone EXAMPIES........coviiiiiiii ittt et b e bt e s s e s e beebe st et et e e eneeneebeebesre s 9
11.6.1 Example: The Basic Thermal ZOmecc.ccveciiririenieieriieiesieeeie ettt ete e sseeaesseeseesaensesneenseens 9
11.6.2 Example: Multiple-Speed Fans.........ccccccecerinennnne
11.6.3 Example: Thermal Zone with Multiple Devices....

12 ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATIONccccoiiiiiiisieeecee 9

12.1 Embedded Controller Interface Description
12.2 Embedded Controller Register Descriptions

12.2.1 Embedded Controller Status, EC_SC (R)..........
12.2.2 Embedded Controller Command, EC_SC (W) .c..ooiiiiiiiiiiieiieteeeee et st 9
12.2.3 Embedded Controller Data, EC_ DATA (R/W) c.ueeiiiieieiieeeeeeeee ettt st st 9
12.3 Embedded Controller COMMANT SEL ..ot 9
12.3.1 Read Embedded Controller, RD_EC (0X80).....cc.eetiriiriiriirierieiienieeteieeteie ettt 9
12.3.2 Write Embedded Controller, WR_EC (0X81)....ceeviiiieiiriieieriieieriieieieeteie et esie e sieeae e esseesaensesseenseees 9
12.3.3 Burst Enable Embedded Controller, BE EC (0X82)......ccucouiieiiiiinieieieieeeiereee et 9
12.3.4 Burst Disable Embedded Controller, BD EC (0X83)cotiiiiiiiiiiiiiieriieiesieete ettt 9
12.3.5 Query Embedded Controller, QR_EC (0X84).....c.cociririiiiiiiiinenieeieeet ettt 9
12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVTccociiiiiiiiiiieeeeeee e 9
12.5 Embedded Controller FIFMWATIE..........cccoiiiiiiieciiiseee et 9
12.6 INTEITUPT IMIOAEL....... ettt et b e b e b e e et e s e e R e e bt e b e e b e se e e et e st eneeresbe e s 9
12.6.1 Event INeITuPt MOAE]ooviiiiiiiiieieite ettt ettt et sttt et st e bt ebeetesaee b eae 9
12.6.2 Command Interrupt MOGEL.......c.cooruiiiiniiiiiiiiiiie ettt sttt 9
12.7 Embedded Controller Interfacing AlgOrithmS...........c.ooi i 9

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

X1

12.8 Embedded Controller Description INFOrMAationcooiiiiiiiiiiic e 9
12.9 SMBus Host Controller Interface via Embedded Controller ... 9
12.9.1 REISIET DIESCTIPIION ...ttt ettt ettt ettt et e b e et et e st e b e ebe et e eb e et e eb e e bt ebe et e saeentesbeenbeeaeenbesseenbesne
12.9.2 Protocol DeSCIIPHIONc..ccveveureuerieriinteieeeieeeie ettt
12.9.3 SMBUS REGISter Set......ccoviviiiiniiiiiniieieniieiereeieeeee e
12.10 SMBUS DEVICEScvivviiiiiiiieieieiie ettt
12.10.1 SMBus Device Access ReStriCtions.ecverveeveriereerieseeieseeenennes
12.10.2 SMBus Device Command Access Restriction............ccceeeeerinennene
12.11 Defining an Embedded Controller Device in ACPI Namespace
12.11.1 Example: EC Definition ASL Code.......cccccvevveririereeienieeierieenenne.
12.12 Defining an EC SMBus Host Controller in ACPI NameSPACEoceveuiriiiiierieieeeiiee st
12.12.1 Example: EC SMBus Host Controller ASL-Code..........cccccuriririniinieiiininenicieieeeesese e
13 ACPI SYSTEM MANAGEMENT BUS INTERFACE SPECIFICATIONcccceiiiiene e 9
13.1 SIMIBUS OVEIVIBWoviuiiiiiiietei ettt bbbt bbbkt b bttt b et 9
13.1.1 SMBUS S1aVE AQUAIESSES ..c..euveuiiiititiieteieeeet ettt ettt ettt eb sttt et be bttt be sttt eeeeseebesbeneen 9
13.1.2 SMBUS PIOTOCOLS ...ttt ettt s et b ettt s st et ebe s e et et e st eseeteeb et e s eneeneeneeseabenean 9
13.1.3 SMBUS StAtUS COAESveuviruiitiriiiiieiieteeiterte ettt ettt ettt et e st et e b e bt et e eb e et e eb e e teebeenbesbtenbesbeenbeebeentesseenbesnes 9
13.1.4 SMBUS COMMANA VAIUECSeeiiiieiiiiieieitieieste ettt ettt ettt ettt sttt be et e tesaeenbesseentesseansesneensesneensesnes 9
13.2 Declaring SMBuUS HOSt CONEroller ODJECEScviiiiiiiieieesc e 9
13.3 DECIAring SMBUS DEVICESc.viuiiiiiiiiieiiieiett ettt ettt st et e e te e te st e st et e e e st eteebeebesbe st et e b eseeseeseeteebesee e 9
13.4 Declaring SMBUS OPeration REGIONSccuiiiiiiuiieieieii ettt sttt se et esbe et stesbe e ese e e eneesesresaesee s 9
13.5 DeClaring SMBUS FIEIAS.coiiiiiiiiicietct ettt s e te bt e s be st et e b e e eneeseeteebe e s 9
13.6 Declaring and Using an SMBUS Data BUFfEr ..o 9
13.7 Using the SMBuUS Protocolsc.cccccevvevrnenn.
13.7.1 Read/Write Quick (SMBQuick)
13.7.2 Send/Receive Byte (SMBSENARECEIVE)ciueuiiiieiiiiiieieieieeeie ettt 9
13.7.3 Read/Write Byte (SMBBYLE)......ccoutitieiiriietieiieite sttt ettt ettt b et sttt sbe st bt et eeeetesaeenbeeae 9
13.7.4 Read/Write Word (SMBWOIA).......c.coiiiimiiiiiiiiiiterectete sttt ettt 9
13.7.5 Read/Write BIOCK (SMBBILOCK).......ccuiiiiiiitieieiiieiesiteiesie ettt ettt esse e s e seensesssesesnsensesnes
13.7.6 Word Process Call (SMBProcessCall)................
13.7.7 Block Process Call (SMBBlockProcessCall).....
14 SYSTEM ADDRESS MAP INTERFACES.
14.1 INT 15H, E820H - Query System Address Map
14.2 E820 Assumptions and LIMITAIONSc.couiiiiiiiiieie ettt sttt ere b e 9
14.3 EFI GetMemoryMap() BOOt SErVICeS FUNCLIONcoviiiieiiiiiise e 9
14.4 EF1 Assumptions and LIMITAtIONScc.oiiiiiiiiiieieieese ettt 9
Rl e 1a] o] I ANe (o [=T 1V - T o OO TSSOSO 9
14.6 Example: Operating SYSTEM USAJE.........ccuciiiiiiiiterieieieie ettt sttt sb bbbttt b e e et e bt b b e e 9
15 WAKING AND SLEEPINGottt 9
15.1 SIEEPING STALESeviiteieieieeti ettt bbbt b bbbt bt h bt e bt e bt b e e st e bt eh £ e b e e bt eb e e b e e b e b e b et e st ebeebe b e s 9

15.1.1 S1 Sleeping State
15.1.2 S2 Sleeping State
15.1.3 S3 Sleeping State
15.1.4 S4 Sleeping State
15.1.5 S5 Soft Off State....c.covevereeriririiirieireeieeereeese et
15.1.6 Transitioning from the Working to the Sleeping State
15.1.7 Transitioning from the Working to the Soft Off State
15.2 FIUSNING CACRES.iitiieieee ettt sttt ettt e b et et et e st et e e s e e bt e be e b e e et e neeneerenneebenee s
15.3 Initialization............c.ccccoeeviiiiiiiiiinne,
15.3.1 Placing the System in ACPI Mode ...
15.3.2 BIOS Initialization Of MEIMOTYcccuirtiiiiriieienteeitesteeite ettt ettt ettt et s b et s bttt ebesaeentesbeenbesae
15.3.3 OS LOAAING. ...c.veuenieiiitietesteetet ettt ettt sttt et h et ettt st be ettt ebe st be et eateueebenneneen 9
15.3.4 EXItING ACPI IMOGEcoitieiieiieiieieeieie ettt et ete sttt este et e s seesbesseessesseessesseessesseansessaensesssenseassensesssensenses 9

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Xii

16 NON-UNIFORM MEMORY ACCESS (NUMA) ARCHITECTURE PLATFORMS.cccccvvue. 9
L6. 1 NUMA NOGE ...ttt e bRt e e bR e Rt R Rt e b s bt e bt e r et ne et r e e 9
16.2 SYSTEM LOCAIITY.....etiitiieieiei ettt sttt et s et sttt et e st e st e st e s e e b e e bt e beebe st et e seeneetenneebenee s 9

16.2.1 System Resource Affinity Table DefInition.ccccviriiriiiiiiiniininieieiet et 9
16.3 System Locality Distance INFOrMALIONc.coiiiiiiiiieee et 9

17 ACPI SOURCE LANGUAGE (ASL) REFERENCEccooiiiiititteeeee e e 9

17.1 ASL LanNQUAGE GFAMIMAcc.eiiiitiiieitieiesteeteattestesteesesbeaseesbesseesbesseesbeste e besbeesbesbeeabeabbebesbeeabeeseesbeassesbeeneenbeans 9
17.1.1 ASL Grammar NOTALIONeeueeuirtieientietentteteste et e st eite bt eitesteestesbesttebeestebesbeetesbeenbesbeestesseenbesseentesseensennes 9
17.1.2 ASL Name and Pathname TeIMS.coeruiieiririienieteieicei ettt sttt 9
17.1.3 ASL R0t and SecoNdary TEITSc.ccuerieieieiiitieterterteieecete ettt e ettt sbe st e e st st etesbesseeeseeneeneaseesenean 9
17.1.4 ASL Data and Constant Terms......

17.1.5 ASL Opcode Terms...........cceeenee.

17.1.6 ASL Primary (Terminal) Terms

17.1.7 ASL Parameter KeyWord TEIMNS.c.couiiiiieieiiiiiiterieeei ettt sttt b nean
17.1.8 ASL Resource Template TETINS.ccueruirierieieiteeitesie ettt ettt ettt ettt sttt sbe et bt et eeeetesseenbesae 9

17.2 ASL CONCEPES ...ttt ettt ettt ettt btk etk e bt b e e bt e h e sb e e b e e R b e eh £ et e ek e e AR e e R e e Rb e eE £ e R b £ eR b e ke ek e e Rt e RrenReenneeneenrenre e 9
I7.2.1 ASL NGAINIES ..ottt ettt ettt h et b et s he et s bt et e s bt e st e s bt et e sb e e st e sbe et e sbe et e e bt et e sbeenaesbeenbesae 9
17.2.2 ASL LIteral COMSIANLSccueviuieiieiiitirtintetct ettt ettt sttt sttt sttt es et sae bttt et e bt et eae b st e st et eneebesaeneen 9
17.2.3 ASL ReSOUICE TOMPLALESvevvieerenrieiieiieiieieeiesteeteesieetteteeteetesseesseeseessesseesseeseessesseensessesssesseensenssensesssensenses 9
17.2.4 ASL Macrosc.ceceevuenee.

17.3 ASL Operator Summary

17.2.5 ASL Data Types...............

17.4 ASL Operator SUMMATNY BY TYPE ..ottt bbbttt e bt st e sbeebnesbeenrenbe e 9
17.5 ASL OpPErator RETEIEICEoueiiiititeiee ettt bttt b ettt b e bbbt b b e e 9

17.5.1 AcqUIre (ACQUITE @ IMULEX)....eueeueeuieeieterteteietcete ettt et e es et ebe st et e eseese et e ebese et eneeseeseeteabestenseneeneeneeseasenean 9
17.5.2 Add (Integer Add)
17.5.3 Alias (Declare Name Alias)....
17.5.4 And (Integer Bitwise And)ccccvevuveennnene

17.5.5 Argx (Method Argument Data ODBJECTS)eeeuiruiierieieieiietieieete ettt sttt ettt e e ese s e ebesbenean
17.5.6 BankField (Declare Bank/Data FIield)cccoeoiiiiiiiiieiiecie ettt e sve b sae s
17.5.7 Break (Break from WRIIE)cceiieiiiiieieriieiesieetesit ettt sttt st e e e sseeteeseesseesaensesssensennes
17.5.8 BreakPoint (Execution Break POINt)........c.coiiieiiiiieriiiieiicteiestee ettt et aestaeae e essesesesseessenseees
17.5.9 Buffer (Declare Buffer Object)........cccoerueenenee.
17.5.10 Case (Expression for Conditional Execution)
17.5.11 Concatenate (Concatenate Data).........ccecveeverreeeeriereenieneesieseeenennes

17.5.12 ConcatenateResTemplate (Concatenate Resource Templates)ccceoveirereriinienieiieieiieseeeceeceee e 9
17.5.13 CondRefOf (Create Object Reference Conditionally)cceeeevierieniinieiinienienieiceeeeseee e 9
17.5.14 Continue (Continue Innermost Enclosing While)..........ccevueiieiiininiienieieecieseces e s 9
17.5.15 CopyObject (Copy and StOre ODJECL)eveeeuiriietiitiieieiieieeieete ettt ettt sttt ese et sbeseeeeseeseeneeeeebenean 9
17.5.16 CreateBitField (Create 1-Bit Buffer Field)ccccooiiiiiiiiiniiieeeee e 9
17.5.17 CreateByteField (Create 8-Bit Buffer Field)c.ccoeoiiiiiinininiiiiiinecccrcseeeeeeee s 9
17.5.18 CreateDWordField (Create 32-Bit Buffer Field)
17.5.19 CreateField (Create Arbitrary Length Buffer Field)
17.5.20 CreateQWordField (Create 64-Bit Buffer Field)

17.5.21 CreateWordField (Create 16-Bit Buffer Field)........ccccoieiriiiieieiieieieceeeeee e
17.5.22 DataTableRegion (Create Data Table Operation ReZIiOn)ccceeerieieiriiinieieieieceeseseecee e 9
17.5.23 Debug (DebUZZET OULPUL)eoveeutiiieiieteeteettete et ettt et ettt ettt et e sbe et e ebeestesbeeabesbeesbesbeenbesseetesseenbesas 9
17.5.24 Decrement (Integer DECTEMEIL)c.couiviiiiiiiiiinienietciete ettt ettt

17.5.25 Default (Default Execution Path in Switch)
17.5.26 DefinitionBlock (Declare Definition Block)....
17.5.27 DerefOf (Dereference an Object Reference) ...

17.5.28 Device (Declare Bus/Device PACKAZE)c.cecviviiiiriieiiiieiesiieiesieete ettt te s esseeeaenseeneenseenes
17.5.29 Divide (INtEEET DIVIAL)euviuienieiieiieiiitieeee ettt ettt st et b et e e st eneebeebenean
17.5.30 DMA (DMA Resource DeSCriptor MACTO)cc.eerueruieieriieieniieienieetesieete sttt eite st sstestesieebesaeeneesneenvesas 9
17.5.31 DWordIO (DWord IO Resource Descriptor MacrO).........cc.ceeeeruerieieirinienenieieeeieeeesiesieseeseeneeeeenesresnenees 9
17.5.32 DWordMemory (DWord Memory Resource Descriptor Macro).........cecveeeereereeienieeienieneenieeeenseseeensennes 9

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.5.33 DWordSpace (DWord Space Resource Descriptor Macro)c..ccueveeeuirenerienieieieinenenieeeeeeeeeceresnenees 9
17.5.34 EISAID (EISA ID String To Integer Conversion MacCT0).........ceeververeerreneeiiesieeieneeeeesieseessessensesseessennns 9
17.5.35 Else (AIterNate EXECULION) ... cccuiiiuiiiiieiieeiieeteeeteesteesteeteestveeteessaeetaessseesseessseesseassseessseenseessseenseessseensenns 9
17.5.36 Elself (Alternate/Conditional EXECULION)ccceiririiiiiiininienieicteteit sttt 9
17.5.37 EndDependentFn (End Dependent Function Resource Descriptor Macro)ecveeveveereeecvenreevenieseennennes 9
17.5.38 Event (Declare Event Synchronization ODJECt)c.eoveiiiriririeieieieiceiesie et 9
17.5.39 ExtendedIO (Extended 10 Resource Descriptor MaCTO)ceveruerieriieieniiniienienienie ettt 9
17.5.40 ExtendedMemory (Extended Memory Resource Descriptor Macro)........c.ccccveeverveieirencnenienieeecnennennes 9
17.5.41 ExtendedSpace (Extended Address Space Resource Descriptor Macro)..........c.ceeevveeeeeenienienieeeceenneees 9
17.5.42 External (Declare External Objects)cccoviriererienienienenieieneeiesceeeee 9
17.5.43 Fatal (Fatal Error Check)......... 9
17.5.44 Field (Declare Field Objects)................. .9
17.5.45 FindSetLeftBit (Find First Set Left Bit)........... .9
17.5.46 FindSetRightBit (Find First Set Right Bit) 9
17.5.47 FixedIO (Fixed IO Resource Descriptor Macro) 9
17.5.48 FromBCD (Convert BCD To Integer)........cc.......... ...9
17.5.49 Function (Declare Control Method)cccuiiiiiiiieiiieiiecie ettt eveesaaeeve e s veebeessaeenaeas 9
17.5.50 If (Conditional EXECULION)......c.coiriirtiriiieiiieitintintet ettt ettt ettt sttt eb e 9
17.5.51 Include (Include Additional ASL File).....ceccieviirieriieieiieiesieeiete ettt ettt b e seeseeseeees 9
17.5.52 Increment (INtEGET INCTEMENL)eeuviriiiiiriieiirtieiterieete ettt ettt et st sb et b e sae e sbe e b eae 9
17.5.53 Index (Indexed Reference To Member ODJECL)cc.eeveruirieriirieniiniieieeiieieeit ettt 9
17.5.54 IndexField (Declare Index/Data FIeldS)........cceevuerierieriirieiesiieiesieeiesieeresie et seete s eseeeaensesneenseees 9
17.5.55 Interrupt (Interrupt Resource Descriptor MACIO)cveeeueeuiriieieiieieieicett ettt et 9
17.5.56 IO (IO Resource DesCTiptor IMACTO)cc.eerueeuierteritenieeiieiteeitesie sttt sttt ettt sttt sbe et sbeentesbeebeeeeentesseenbesae 9
17.5.57 IRQ (Interrupt Resource Descriptor MaCTO)c.couerieieuiiiriinienieieieienit ettt sttt 9
17.5.58 IRQNoFlags (Interrupt Resource Descriptor MACTO)........ccverueeieriieierieeienieeresieeeesieeeessesseesesssensesseensennes 9
17.5.59 LANA (LOZICAL ANA) ..ottt ettt ettt b e ettt b et et e eneeneeneeneenan 9
17.5.60 LEqual (LoICal EQUAL)ooutiiiitieieiieietteeste ettt ettt et ettt sb et st e b sbe et st e b eae 9
17.5.61 LGreater (LOZICal GIEALET)c.eiierieriieieriieierteetesteetesteeetestesseesteeseessesseessesseessesseessessesssesseessenssensesssensenses 9
17.5.62 LGreaterEqual (Logical Greater Than Or EQUAl)coveiiiiiiiiiiieeeeeeee s 9
17.5.63 LLESS (LOZICAL LESS) .eeuveuietieiietieiieteeiteste ettt ettt ettt sttt ettt sht et st e b bt et bt et e s bt et e s bt et e ebeeeesaeebeens 9
17.5.64 LLessEqual (Logical Less Than Or EQUAL).........ccccociriiriiiiiiinininiicieiesenecceeeieseseseeeee e 9
17.5.65 LNot (Logical Not).....ccccvevvievverierierieeieienne 9
17.5.66 LNotEqual (Logical Not Equal))...... 9
17.5.67 Load (Load Definition Block)cccccvevuereeieniennnns w9
17.5.68 LoadTable (Load Definition Block From XSDT)9
17.5.69 Localx (Method Local Data Objects).........cccceceruenee. 9
17.5.70 LOr (Logical Or)coceeveevveninieiencnnn. 9
17.5.71 Match (Find Object Match)cceceeveverienienieiennenne w9
17.5.72 Memory24 (Memory Resource Descriptor MACTO)cveveriieieniieierieeiesieeitesieseeeieseeeeeseeessesseensesseensenns 9
17.5.73 Memory32 (Memory Resource Descriptor MACIO)cceuieeruerierieieiieiieiesienieieceie ettt see e 9
17.5.74 Memory32Fixed (Memory Resource Descriptor Macro)coeeveveuerirenenieieieieenenieseeeeeeeeeeere e 9
17.5.75 Method (Declare Control Method)cc.eciecuiiieieniieieeieiesieeiete ettt s eete e eeeaenseeseeseens 9
17.5.76 Mid (Extract Portion of Buffer or String)cocoiiieieieiiiieee e 9
17.5.77 MOd (INtEEZET MOAULO) ...ttt ettt s b et b ettt e s bt et e bt et e ebeetesaeebesae 9
17.5.78 Multiply (Integer MULLIPLY) «...c.eeuiriiriiniiieieieieeet ettt st sttt 9
17.5.79 Mutex (Declare Synchronization/MuteX ODJECL).......ccuirveriirieriirieierieieeeeteseeiesresee e eeesseeesensesseensenens 9
17.5.80 Name (Declare Named ODJECE).....c.ceueruiriiriirieieiieiiitesieste ettt ettt ese st e st et e e eneebeebenean 9
17.5.81 NAnd (Integer Bitwise Nand).........cccevuiriiiiiiiiiiinecieesesere ettt ettt 9
17.5.82 NOOP COde (INO OPETALION)......virvieeierieeierieeiesteetesteateseeseessessaessesseessesseessessesssessesssessessessssessenssessesssensesses 9
17.5.83 NOT (INte@Er BItWiSE INOT).....eeuiitiititiieieiet ettt ettt sttt es et e be st et e b e s s et e e eneeneesesnenean 9
17.5.84 NOt (INteZET BItWISE INOL) ...uviiiiniiiiieiieitetee ettt ettt b et s b e et s bt et st e b sbeetesaeebeeae 9
17.5.85 Notify (Notify Object Of EVENL)......cccouiiiiiiiiiiiiinitcteeisesee ettt sttt 9
17.5.86 ODJECtTYPE (GEt ODJECE TYPEC) weevvivrenriereeriieiesieeiesieetesteetesseeteseeseesesseessesssessesssassessaessesseessenssensesssensenses 9
17.5.87 One (Constant One ODJECL)ceruirieriirieriiiieiteetiente ettt et stte e st ete st e b e st e etesbeenbesbeestesseenbeseeentesseenbesnes 9
17.5.88 Ones (Constant Ones Object)ccceeveereeennee.

17.5.89 OperationRegion (Declare Operation Region)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

X1v

17.5.90 OF (INtEEET BIEWISE OF)...cueetieiieiieiieiieieerteeiie et ettt et et ete st e e bt set et e eatebesseentesseenseensesseenseeseensesneensennes 9
17.5.91 Package (Declare Package ODJECL)cccveruieierieeieriieieieeeeiestei et ete st esesteeaesseensesseeseesseessessaensesssensennes 9
17.5.92 PowerResource (Declare POWEr RESOUICTE)ccuivuieiiriiiiiiiiiieiieiteie et 9
17.5.93 Processor (DEClare PIOCESSOT)c.coeruiriiietriiriintenienteteitetteteete sttt ettt st st sttt eae st b sttt eae et saeneen 9
17.5.94 QWordIO (QWord 10 Resource Descriptor MACTO)........cecverueeieriieieniieienieeeesieeetesiesseessesseesesssensesssensensns 9
17.5.95 QWordMemory (QWord Memory Resource Descriptor Macro)...........eveeeeueruerierieieerienienieieceeeeeeieseeneas 9
17.5.96 QWordSpace (QWord Space Resource Descriptor MaCTO)ccuereerierieriinienienienieeiienie et 9
17.5.97 RefOf (Create Object REfEIENCE)cc.ivieriieieiieiiesiieiertt ettt ettt sttt st ete st ebeenes 9
17.5.98 Register (Generic Register Resource Descriptor MaCT0)........cc.eiuerierieieieiieienieiesieceieeie st 9
17.5.99 Release (Release a Mutex Synchronization Object).............

17.5.100 Reset (Reset an Event Synchronization Object)c.c.c......
17.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)...
17.5.102 Return (Return from Method Execution)...
17.5.103 Revision (Constant Revision Object).........

17.5.104 Scope (Open Named Scope)................
17.5.105 ShiftLeft (Integer Shift Left)......... .
17.5.106 ShiftRight (Integer Shift RIGNE)cciiiiiiiiieiei et 9
17.5.107 Signal (Signal a Synchronization EVENt)ccccoiviriiiiiiiininiiiiinseceeeenic e 9
17.5.108 SizeOf (Get Data ObJECt SIZE)....ecuvervirierieeierieeierieeierteetestesteteeeetesseesseeseesesseensessaessesseessesssesesseensenses 9
17.5.109 Sleep (MIlliSECONAS SICEP)eeuvrviriiiiieieietieieete ettt ettt ae et b et e st eseeteebeste s e e eneeneeseenenean 9
17.5.110 Stall (Stall fOr @ SKOTE TIME)eecvieeiiiiieeii e cieeeee ettt e et e st e teeeteesbeessbeesseessseessseessaessseesseessseenseens 9
17.5.111 StartDependentFn (Start Dependent Function Resource Descriptor Macro)ccceveveeeveeeecvenieneennenne 9
17.5.112 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro)..........coceeeveveceiennenne. 9
17.5.113 StOre (StOT€ an ODJECL)veuvireientiriietieiterteetie bttt ettt ettt et st ettt et e sb et e sb e e tesbeeaeesbe et e sbeenbeebeetesaeebesns 9
17.5.114 Subtract (INteZEr SUDLIACT).c.eeiiiriiriiieiiiiteteret ettt ettt sttt eb e nees 9
17.5.115 Switch (Select Code To Execute Based On EXPression)cc.eciecverieeienieeienesienieeeenieseessessensesseensennns 9
17.5.116 ThermalZone (Declare Thermal ZOme)c.cccvevvieieriieieiiiieiesieetesteeresieesaesaeesessesssessesseessesssessesssessenses 9
17.5.117 Timer (Get 64-Bit TIMET VAIUC).......cccoiiiiiieiieiie ettt ettt ettt esveesteessveeseeessaesssaeseessseenseens 9
17.5.118 ToBCD (Convert Integer t0 BCD)......ccueiiecieriieieriieiesieeiesieeeeie ettt ete et esreesae e essesssensesssensesnes 9
17.5.119 ToBuffer (Convert Data to BUTEr)ccveciiiiiiiiieieceeeecee ettt 9
17.5.120 ToDecimalString (Convert Data to Decimal String).........cccceevueriirierienieninieneeieseeterieseee e 9
17.5.121 ToHexString (Convert Data to Hexadecimal String)..........cccoccvevueieiiinenieniieieincnenenereeeese e 9
17.5.122 Tolnteger (Convert Data to Integer)c.ccccvevevveennenne. .9
17.5.123 ToString (Convert Buffer To String)............. .9
17.5.124 ToUUID (Convert String to UUID Macro) w9
17.5.125 Unicode (String To Unicode Conversion Macro).... .9
17.5.126 Unload (Unload Definition Block)ccccceecveruenenne .9
17.5.127 VendorLong (Long Vendor Resource Descriptor)...... .9
17.5.128 VendorShort (Short Vendor Resource Descriptor)..... w9
17.5.129 Wait (Wait for a Synchronization EVENL)cceccieeuiririienieiieiieiesieeee et 9
17.5.130 While (Conditional LoOD).......ceueruirterieieieieeii ettt ettt sttt be et e e st et eebeste e e e eneeneeseenenean 9
17.5.131 WordBusNumber (Word Bus Number Resource Descriptor Macro)ccueveeeerieeienieneenieeeenieseeeenes 9
17.5.132 WordIO (Word 10 Resource Descriptor MACTO)ccveierieeieriieierieeienieeeesieseeesesseesesseessesseessesssensensns 9
17.5.133 WordSpace (Word Space Resource Descriptor Macro))co.eeveevereeeeuirienerieieieceeceiesieseeeeeeeeeeeeie e 9
17.5.134 XOT (INtEZET BIEWISE XOT)...eeuteutieuietiriieiteeiieite sttt ettt et sttt sbe et et e e bt st esteeaeesbesbbeeseenbesaeeeesneebesas 9
17.5.135 Zero (Constant Zero ODBJECT)......ceueviruirieieiririietenierteteitett ettt sttt ettt st st sttt eae st b e et eeeeneebesaeneen 9
18 ACPI MACHINE LANGUAGE (AML) SPECIFICATIONccoioiiiieceeieseee s 9
18.1 NOTATION CONVENTIONS.......cveviiiiiiiieiieite ettt r et nn et 9

18.2 AML Grammar Definition

18.2.1 Table and Table Header Encoding....

18.2.2 Name Objects Encoding

18.2.3 Data Objects Encoding........ .

18.2.4 Package Length ENCOINGcoouiiuiiiiiiiiiiiieeteetet ettt ettt sttt et sbe et st e b eae 9

18.2.5 Term ODbjects ENCOING ...c..coveoiiuieiiiiriiiiteeteete ettt ettt sttt eb e 9

18.2.6 Miscellaneous ObJects ENCOAINEZ........ccveiirierieriieierieierte ettt ete st e aesteeaesseesaesseesaesseesseesaensesssensennes 9
18.3 AML Byte STream BYLE VAIUESccueiiieiiiiee sttt ettt ettt ettt see b neeneeneene st s 9

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

XV

18.4 AML Encoding of Names in the NAMESPACEc.ciiiiiiieiiiierie et 9
A DEVICE CLASS PM SPECIFICATIONSttt ste e ste et enaesnaesnaesneesneeee s 9
ALL OVEIVIBW .ot h e b bR h e R bR R Rt s 9
A2 DEVICE POWEE STALES.ecuiieiiiiteiiteest ettt bt b bbbt b bbbt b et e bbbttt r e nn s 9
A.2.1 Bus Power Management........ .9
A.2.2 Display Power Management.........c.oceecvereervenreenennenns .9
A.2.3 PCMCIA/PCCARD/CardBus Power Management9
A.2.4 PCI Power Management...........ccceceevvereeneneenieneennens .9
A.2.5 USB Power Managementcc.cocueeuiiiiiiiiniiieniiiieiieieste ettt sttt et sa ettt e sbe e e b eane b e saeens 9
AL2.0 DIEVICE CIASSES....veuvemenieiieiiitestietetet ettt ettt ettt eb et b ettt a bbbttt e st eat e bt e bt e bttt b et et e st eneebe e bt b e nee 9
A.3 Default Device Class...........ccoveevrcrennnn w9
A.3.1 Default Power State Definitions9
A.3.2 Default Power Management Policy 9
A.3.3 Default Wake Events.........c.ccccoeennenee. .9
A3.4 Minimum POWer Capabilitiesc.ccoiviriiiiiiiiiniiicietet ettt ettt ettt 9
A4 AUIO DEVICE CIASSveviiieiireeiei ettt r et r et r et e et r b bt n e nn s 9
A.4.1 Power State Definitions..... .9
A.42 Power Management Policy ... w9
A.4.3 Wake Events.......ccccevuenen. .9
A.4.4 Minimum Power Capabilities ... w9
A.5 COM Port Device Class........ .9
A.5.1 Power State Definitions......... .9
A.5.2 Power Management Policy9
A.53 Wake Events.......ccoceveenenienene .9
A.5.4 Minimum Power Capabilitiescocevvirieriiiiiiinininiecete et w9
A6 DiSPIAY DEVICE ClIASS.....cueiuiiirieieetieieatiitesieieeetiaeste et e ettt stesbe st beeeseesesbesbesaesseseaseeteasesbeseenes w9
A.6.1 Power State Definitions .9
A.6.2 Power Management Policy for the Display Class.... w9
A.6.3 Wake EVents......cooceoeieiiiiiiiieeeecceeee .9
A.6.4 Minimum Power Capabilitiesc.cccoereenuennenne .9
A.6.5 Performance States for Display Class Devices..... .9
A7 INpuUt DeVICe Class.......ccooeiiieierieeieese e w9
A.7.1 Power State Definitions..... .9
A.7.2 Power Management Policy w9
A.7.3 Wake Events......ccccecevenenennen. .9
A7.4 Minimum POWer Capabilitiesccueoueieuiiiitiiietee ettt ettt ettt sttt eseene b e nee 9
A8 MOUEIM DEVICE CIASSoviiviiiiiiiite ettt 9
A.8.1 Technology Overview9
A.8.2 Power State Definitions..... .9
A.8.3 Power Management Policy.... w9
A.8.4 Wake Events......cccecevenenennen. .9
A.8.5 Minimum Power Capabilities ... w9
A.9 Network Device Class........... .9
A.9.1 Power State Definitions......... .9
A.9.2 Power Management Policy9
A.9.3 Wake Events.......ccccevceeveniennenne .9
A.9.4 Minimum Power Capabilities ... w9
A.10 PC Card Controller Device Class.... w9
A.10.1 Power State Definitions........ .9
A.10.2 Power Management Policy .. .9
A.10.3 Wake Events......ccoceeveereeucnnenne .9
A.10.4 Minimum POWEr Capabilitiesccereeriiriiiiiirieiieitieie ettt ettt ettt et et e st estesbeeatenaeene 9
ALLL SEOFrage DEVICE CIASSiviiiuieieiiieieitiite sttt ettt b et b et st b e bt bt s b b et s b et e h e e bt et e b e b et e e e st ebenbeabennan
A.11.1 Power State Definitions.......

A.11.2 Power Management Policy

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

XVi

ALTL3 WaAKE EVEILS ...cuiiiiiiiiiitiiectc sttt sttt et ettt et be sttt ettt sa e 9
A.11.4 Minimum POWETr Capabilitiescc.eeveruirirriieieiiesieetesiesteseete e eae e seeesteeseesesseesseesaessesseesseessessesssensenses 9
B ACPI EXTENSIONS FOR DISPLAY ADAPTERSttt 9
B.1 Introduction
B2 DEFINITIONS ..ottt bbb bbb
B.3 ACPI NAIMESPACEceeiitieiteiti ettt etttk ettt ettt e ab et e sbe b e e bt ehe e sbeeb e e bt ehe e ke eb e e bt eb b e ek e es s e bt eseenbeasneabeaneenneans 9
B.4 Display-SPeCific METNOUS..........ciiiiiieie ettt sttt reere b e s 9
B.4.1 _DOS (Enable/Disable Output SWItCHINE)......cccoverueiiiriririinieieieiecrentenereee ettt 9
B.4.2 DOD (Enumerate All Devices Attached to the Display Adapter).......ccoceeveviereerieniieiienieeeie e 9

B.4.3 ROM (Get ROM Data)
B.4.4 _GPD (Get POST Device)
B.4.5 _SPD (Set POST Device)

B.4.6 VPO (Vide0o POST OPLIONS) ..cuiiuiieuieuieuiitietirteieietiettetestesteseeeeseeseetessesseeeseeseeseesessesseneeneenseneeneeseenessensenes 9
B.5 Notifications fOr DiSPIAY DEVICES........ciiiiiiieiieiiieite ettt st seebesbe st e b et e e esseseetesbe e s 9
B.6 Output Device-SpPecific METNOUS.o.oii e et 9

B.6.1 _ADR (Return the Unique ID for thiS DEVICE)evueeiiriiriieriiiieniieiesie ettt st 9

B.6.2 _BCL (Query List of Brightness Control Levels Supported)..........ccccoueoveverienininieiiinineneceeeeeeeseneenne 9

B.6.3 BCM (Set the Brightness LEeVEL)ccveieiuirieiesieieriieiesie sttt sttt steesae e esaesseeseesseesaessesnnensennns 9

B.6.4 BQC (Brightness Query Current I8VEL)cociiiiiriiiieieieieiesieeee ettt

B.6.5 DDC (Return the EDID for this Device).........

B.6.6 _DCS (Return the Status of Output Device)

B.6.7 DGS (Query Graphics State)..........ccccereeerenene

B.6.8 DSS — DEVICE SEE STALEeitieiirteeiiitieite sttt ettt ettt et ettt et e at et sh e et e she et e s bt e st e eb e et e es b e beeatebeeneenbeeaee
B.7 Notifications SPecifiC t0 OULPUL DEVICES........ccciiiiiiiieiieieieitse ettt bbb 9

B.8 Notes on State Changes

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 1

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration and
power management of both devices and entire systems. ACPI is the key element in Operating System-
directed configuration and Power Management (OSPM).

ACPI evolves the existing collection of power management BIOS code, Advanced Power Management
(APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor Specification (MPS)
tables and so on into a well-defined power management and configuration interface specification. ACPI
provides the means for an orderly transition from existing (legacy) hardware to ACPI hardware, and it
allows for both ACPI and legacy mechanisms to exist in a single machine and to be used as needed.

Further, new system architectures are being built that stretch the limits of current Plug and Play interfaces.
ACPI evolves the existing motherboard configuration interfaces to support these advanced architectures in
a more robust, and potentially more efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of computers
including (but not limited to) desktop, mobile, workstation, and server machines. From a power
management perspective, OSPM/ACPI promotes the concept that systems should conserve energy by
transitioning unused devices into lower power states including placing the entire system in a low-power
state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPI and OSPM are to:
1. Enable all computer systems to implement motherboard configuration and power management
functions, using appropriate cost/function tradeoffs.

e Computer systems include (but are not limited to) desktop, mobile, workstation, and server
machines.

e Machine implementers have the freedom to implement a wide range of solutions, from the very
simple to the very aggressive, while still maintaining full OS support.

e Wide implementation of power management will make it practical and compelling for applications
to support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.

e Power management policies too complicated to implement in a ROM BIOS can be implemented
and supported in the OS, allowing inexpensive power managed hardware to support very elaborate
power management policies.

e Gathering power management information from users, applications, and the hardware together
into the OS will enable better power management decisions and execution.

e Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

3. Facilitate and accelerate industry-wide implementation of power management.

e OSPM and ACPI will reduce the amount of redundant investment in power management
throughout the industry, as this investment and function will be gathered into the OS. This will
allow industry participants to focus their efforts and investments on innovation rather than simple
parity.

e The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to
gain the benefits of OS improvements and innovations.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2 Advanced Configuration and Power Interface Specification

4. Create a robust interface for configuring motherboard devices.
e Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the
OS and the hardware to achieve the principal goals set forth above.
e Minimal support for power management inhibits application vendors from supporting or
exploiting it.

(0]

(0]

Moving power management functionality into the OS makes it available on every
machine on which the OS is installed. The level of functionality (power savings, and so
on) varies from machine to machine, but users and applications will see the same power
interfaces and semantics on all OSPM machines.

This will enable application vendors to invest in adding power management functionality
to their products.

e Legacy power management algorithms were restricted by the information available to the BIOS
that implemented them. This limited the functionality that could be implemented.

(0]

Centralizing power management information and directives from the user, applications,
and hardware in the OS allows the implementation of more powerful functionality. For
example, an OS can have a policy of dividing I/O operations into normal and lazy. Lazy
1/0O operations (such as a word processor saving files in the background) would be
gathered up into clumps and done only when the required I/O device is powered up for
some other reason. A non-lazy I/O request made when the required device was powered
down would cause the device to be powered up immediately, the non-lazy I/O request to
be carried out, and any pending lazy 1/O operations to be done. Such a policy requires
knowing when I/O devices are powered up, knowing which application I/O requests are
lazy, and being able to assure that such lazy I/O operations do not starve.

Appliance functions, such as answering machines, require globally coherent power
decisions. For example, a telephone-answering application could call the OS and assert,
“I am waiting for incoming phone calls; any sleep state the system enters must allow me
to wake and answer the telephone in 1 second.” Then, when the user presses the “off”
button, the system would pick the deepest sleep state consistent with the needs of the
phone answering service.

e BIOS code has become very complex to deal with power management. It is difficult to make work
with an OS and is limited to static configurations of the hardware.

(0]

(0]

(0]

(0]

There is much less state information for the BIOS to retain and manage (because the OS
manages it).

Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

Because the BIOS has fewer functions and they are simpler, it is much easier (and
therefore cheaper) to implement and support.

e The existing structure of the PC platform constrains OS and hardware designs.

e Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the
hardware from the OS.

e ACPI is by nature more portable across operating systems and processors. ACPI control methods
allow for very flexible implementations of particular features.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

1.3 Legacy Support

Introduction

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

3

Hardware\OS

Legacy OS

ACPI OS with OSPM

Legacy hardware

A legacy OS on legacy hardware
does what it always did.

If the OS lacks legacy support, legacy
support is completely contained within
the hardware functions.

Legacy and ACPI
hardware support in
machine

It works just like a legacy OS on
legacy hardware.

During boot, the OS tells the hardware
to switch from legacy to OSPM/ACPI

mode and from then on, the system has
full OSPM/ACPI support.

ACPI-only hardware

There is no power management.

There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI

specification, two general implementation strategies are possible:

e An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM software
and implement the hardware part of the ACPI specification (for a given platform) in one of many

possible ways.

e An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens up

even more hardware implementation possibilities. However, OEMs who implement hardware that is
OSPM-compatible but not ACPI-compatible will bear the cost of developing, testing, and distributing

drivers for their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a

“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep

and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4 Advanced Configuration and Power Interface Specification

1.6 ACPI Specification and the Structure Of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate to
each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both software
and hardware and how they must behave. ACPI is, instead, an interface specification comprised of both
software and hardware elements.

o oS
Applications Dependent
Application
APIs

OSPM System Code

OS Specific

ACPI Driver/ technologies,
AML Interpreter interfaces, and code.

(O]
ACPI ACPI Table Independent
. Register Interface technologies,
Interface interfaces,
ACPI BIOS code, and
o . Interface hardware.
Existing
industry
standard
register . ACPI BIOS ACPI Tables
interfaces to:
CMOS, PIC,
PITs, ...

- ACPI Spec Covers this area.
- OS specific technology, not part of ACPI.
- Hardware/Platform specific technology, not part of ACPI.

Figure 1-1 OSPM/ACPI Global System

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 5

There are three run-time components to ACPI:

o ACPI System Description Tables. Describe the interfaces to the hardware. Some descriptions limit
what can be built (for example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be built in
arbitrary ways and can describe arbitrary operation sequences needed to make the hardware function.
ACPI Tables containing “Definition Blocks” can make use of a pseudo-code type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter that
executes procedures encoded in the pseudo-code language and stored in the ACPI tables containing
“Definition Blocks.” The pseudo-code language, known as ACPI Machine Language (AML), is a
compact, tokenized, abstract type of machine language.

o ACPI Registers. The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.

o ACPI System Firmware. Refers to the portion of the firmware that is compatible with the ACPI
specifications. Typically, this is the code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely, compared to a
legacy BIOS. The ACPI Description Tables are also provided by the ACPI System Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design
Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces specified
below are generally spread throughout the ACPI specification. The ACPI specification defines:

System address map reporting interfaces (Section 14)
ACPI System Description Tables (Section 5.2):

Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6 Advanced Configuration and Power Interface Specification

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)

Differentiated System Description Table (DSDT)

Secondary System Description Table (SSDT)

Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)

Embedded Controller Boot Resources Table

System Resource Affinity Table (SRAT)

System Locality Information Table (SLIT)
ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):
Power management timer control/status
Power or sleep button with S5 override (also possible in generic space)
Real time clock wakeup alarm control/status
SCI /SMI routing control/status for Power Management and General-purpose events
System power state controls (sleeping/wake control) (Section 10)
Processor power state control (c states) (Section 8)
Processor throttling control/status (Section 8)
Processor performance state control/status (Section 8)
General-purpose event control/status
Global Lock control/status
System Reset control (Section 4.7.3.6)
Embedded Controller control/status (Section 12)
SMBus Host Controller (HC) control/status (Section 13)
Smart Battery Subsystem (Section 10.1)

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace (Section 4.2,
Section 5.6.5):
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 11)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 9.1)
Devices and device controls (Section 9):
Processor (Section 8)
Control Method Battery (Section 10)
Smart Battery Subsystem (Section 10)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 12)
Fan
Generic Bus Bridge
ATA Controller
Floppy Controller
GPE Block
Module
Memory
Global Lock related interfaces

ACPI Event programming model (Section 5.6)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 7

ACPI-defined System BIOS Responsibilities (Section 15)

ACPI-defined State Definitions (Section 2):
Global system power states (G-states, SO, S5)
System sleeping states (S-states S1-S4) (Section 15)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following provides an example of how a client platform design guide, whose goal is to require robust
configuration and power management for the system class, could use the recommended terminology to
define ACPI requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features, concepts, and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)
Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

e ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
Devices and device controls:
Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register space)
Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments
e ACPI Event programming model (Section 5.6)
e ACPI-defined System BIOS Responsibilities (Section 15)
e ACPI-defined State Definitions:
System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
Device power states (D-states must be implemented in accordance with device class
specifications)
Processor power states (All processors must support the C1 Power State)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8 Advanced Configuration and Power Interface Specification

The following provides an example of how a design guide for systems that execute multiple OS instances,
whose goal is to require robust configuration and continuous availability for the system class, could use the
recommended terminology to define ACPI related requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

e ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
System indicators
Devices and device controls:
Processor

Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

e ACPI Event programming model (Section 5.6)

e ACPI-defined System BIOS Responsibilities (Section 15)

e ACPI-defined State Definitions:
Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with their
associated event models appropriate to the system platform class upon which the OS executes. This is the
implementation of OSPM. The following outlines the OS enhancements and elements necessary to support
all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs to be
modified to:

e Use system address map reporting interfaces.

¢ Find and consume the ACPI System Description Tables.

e Interpret ACPI machine language (AML).
Enumerate and configure motherboard devices described in the ACPI Namespace.
Interface with the power management timer.
Interface with the real-time clock wake alarm.
Enter ACPI mode (on legacy hardware systems).
Implement device power management policy.
Implement power resource management.
Implement processor power states in the scheduler idle handlers.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 9

e Control processor and device performance states.

e Implement the ACPI thermal model.

e Support the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.

e Support acquisition and release of the Global Lock.

Use the reset register to reset the system.

Provide APIs to influence power management policy.

Implement driver support for ACPI-defined devices.

Implement APIs supporting the system indicators.

Support all system states S1-S5.

1.7.3 OS Requirements

The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:

Use system address map reporting interfaces to get the system address map on Intel Architecture (IA)

platforms:

e INT 15H, E820H - Query System Address Map interface (see section 14, “System Address Map
Interfaces”)

e EFI GetMemoryMap() Boot Services Function (see section 14, “System Address Map Interfaces”)

Find and consume the ACPI System Description Tables (see section 5, “ACPI Software Programming

Model”).

Implementation of an AML interpreter supporting all defined AML grammar elements (see section 18,

ACPI Machine Language Specification”).

Support for the ACPI Event programming model including handling SCI interrupts, managing fixed

events, general-purpose events, embedded controller interrupts, and dynamic device support.

Enumerate and configure motherboard devices described in the ACPI Namespace.

Implement support for the following ACPI devices defined within this specification:

e Embedded Controller Device (see section 12, “ACPI Embedded Controller Interface
Specification™)

e GPE Block Device (see section 9.11, “GPE Block Device”)

e Module Device (see section 9.12, “Module Device”)

Implementation of the ACPI thermal model (see section 11, “Thermal Management”).

Support acquisition and release of the Global Lock.

OS-directed power management support (device drivers are responsible for maintaining device context

as described by the Device Power Management Class Specifications described in Appendix A).

1.8 Target Audience

This specification is intended for the following users:

OEMs building hardware containing ACPI-compatible interfaces
Operating system and device driver developers

BIOS and ACPI system firmware developers

CPU and chip set vendors

Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

The first part of the specification (sections 1 through 3) introduces ACPI and provides an executive
overview.

The second part (sections 4 and 5) defines the ACPI hardware and software programming models.
The third part (sections 6 through 16) specifies the ACPI implementation details; this part of the
specification is primarily for developers.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10 Advanced Configuration and Power Interface Specification

e The fourth part (sections 17 and 18) is technical reference material; section 17 is the ACPI Source
Language (ASL) reference, parts of which are referred to by most of the other sections in the
document.

e Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

1.9.1 ACPI Introduction and Overview

The first three sections of the specification provide an executive overview of ACPI.

Section 1: Introduction. Discusses the purpose and goals of the specification, presents an overview of the
ACPI-compatible system architecture, specifies the minimum requirements for an ACPI-compatible
system, and provides references to related specifications.

Section 2: Definition of Terms. Defines the key terminology used in this specification. In particular, the
global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in
this section, along with the device power state definitions: Off (D3), D2, D1, and Fully-On (DO0). Device
and processor performance states (PO, P1, ...Pn) are also discussed.

Section 3: ACPI Overview. Gives an overview of the ACPI specification in terms of the functional areas
covered by the specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and 5.
These sections are the heart of the ACPI specification. There are extensive cross-references between the
two sections.

Section 4: ACPI Hardware Specification. Defines a set of hardware interfaces that meet the goals of this
specification.

Section 5: ACPI Software Programming Model. Defines a set of software interfaces that meet the goals
of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily for
developers.

Section 6: Configuration. Defines the reserved Plug and Play objects used to configure and assign
resources to devices, and share resources and the reserved objects used to track device insertion and
removal. Also defines the format of ACPI-compatible resource descriptors.

Section 7: Power and Performance Management. Defines the reserved device power-management
objects and the reserved-system power-management objects.

Section 8: Processor Control. Defines how the OS manages the processors’ power consumption and other
controls while the system is in the working state.

Section 9: ACPI-Specific Device Objects. Lists the integrated devices that need support for some device-
specific ACPI controls, along with the device-specific ACPI controls that can be provided. Most device
objects are controlled through generic objects and control methods and have generic device IDs; this
section discusses the exceptions.

Section 10: Power Source Devices. Defines the reserved battery device and AC adapter objects.

Section 11: Thermal Management. Defines the reserved thermal management objects.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 11

Section 12: ACPI Embedded Controller Interface Specification. Defines the interfaces between an
ACPI-compatible OS and an embedded controller.

Section 13: ACPI System Management Bus Interface Specification. Defines the interfaces between an
ACPI-compatible OS and a System Management Bus (SMBus) host controller.

Section 14: System Address Map Interfaces. Explains the special INT 15 call for use in ISA/EISA/PCI
bus-based systems. This call supplies the OS with a clean memory map indicating address ranges that are
reserved and ranges that are available on the motherboard. EFI-based memory address map reporting
interfaces are also described. Also describes memory devices.

Section 15: Waking and Sleeping. Defines in detail the transitions between system working and sleeping
states and their relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and 8.

Section 16: Non-Uniform Memory Access (NUMA) Architecture Platforms. Discusses in detail how
ACPI define interfaces can be used to describe a NUMA architecture platform. Refers to the reserved
objects defined in sections 5, 6, 8, and 9.

1.9.4 Technical Reference
The fourth part of the specification contains reference material for developers.

Section 17: ACPI Source Language Reference. Defines the syntax of all the ASL statements that can be
used to write ACPI control methods, along with example syntax usage.

Section 18: ACPI Machine Language Specification. Defines the grammar of the language of the ACPI
virtual machine language. An ASL translator (compiler) outputs AML.

Appendix A: Device class specifications. Describes device-specific power management behavior on a per
device-class basis.

Appendix B: Video Extensions. Contains video device class-specific ACPI interfaces.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from http://www.microsoft.com/whdc/resources/respec/specs/default.mspx:

e Advanced Power Management (APM) BIOS Specification, Revision 1.2.

¢ Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

Intel® Itanium™ Architecture Software Developer’s Manual, Volumes 1-4, Revision 2.1, Intel Corporation,
October 2002.

Itanium™ Processor Family System Abstraction Layer Specification, Intel Corporation, December 2003
(June 2004 Update).

Extensible Firmware Interface Specification, Version 1.10, December 2002(November 2003 Update).

Documentation and specifications for the Smart Battery System components and the SMBus are available

from http://www.sbs-forum.org:

e Smart Battery Charger Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

e Smart Battery Data Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

e Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

e Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12 Advanced Configuration and Power Interface Specification

e System Management Bus Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 13

2 Definition of Terms
This specification uses a particular set of terminology, defined in this section. This section has three parts:
General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI)
As defined in this document, ACPI is a method for describing hardware interfaces in terms abstract
enough to allow flexible and innovative hardware implementations and concrete enough to allow
shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware
Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace
A hierarchical tree structure in OS-controlled memory that contains named objects. These objects may
be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading and/or unloading definition blocks from
the ACPI Tables that reside in the ACPI BIOS. All the information in the ACPI Namespace comes
from the Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)
Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which ACPI control
methods and objects are written. The AML encoding definition is provided in section 18, “ACPI
Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)
An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC systems.
The APIC architecture supports multiprocessor interrupt management (with symmetric interrupt
distribution across all processors), multiple I/O subsystem support, 8259A compatibility, and inter-
processor interrupt support. The architecture consists of local APICs commonly attached directly to
processors and I/0 APICs commonly in chip sets.

ACPI Source Language (ASL)
The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 17, “ACPI Source Language (ASL) Reference.”

Control Method
A control method is a definition of how the OS can perform a simple hardware task. For example, the
OS invokes control methods to read the temperature of a thermal zone. Control methods are written in
an encoded language called AML that can be interpreted and executed by the ACPI-compatible OS.
An ACPI-compatible system must provide a minimal set of control methods in the ACPI tables. The
OS provides a set of well-defined control methods that ACPI table developers can reference in their
control methods. OEMs can support different revisions of chip sets with one BIOS by either including
control methods in the BIOS that test configurations and respond as needed or including a different set
of control methods for each chip set revision.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

14 Advanced Configuration and Power Interface Specification

Central Processing Unit (CPU) or Processor
The part of a platform that executes the instructions that do the work. An ACPI-compatible OS can
balance processor performance against power consumption and thermal states by manipulating the
processor performance controls. The ACPI specification defines a working state, labeled GO (S0), in
which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the sleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. The ACPI specification also defines processor
performance states, where the processor (while in C0) executes instructions, but with lower
performance and (potentially) lower power consumption and operating temperature. For more
information, see section 8, “Processor Power and Performance State Configuration and Control.”

Definition Block
A definition block contains information about hardware implementation and configuration details in
the form of data and control methods, encoded in AML. An OEM can provide one or more definition
blocks in the ACPI Tables. One definition block must be provided: the Differentiated Definition Block,
which describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the
contents of the Differentiated Definition Block into the ACPI Namespace. Other definition blocks,
which the OS can dynamically insert and remove from the active ACPI Namespace, can contain
references to the Differentiated Definition Block. For more information, see section 5.2.11, “Definition
Blocks.”

Device
Hardware component outside the core chip set of a platform. Examples of devices are liquid crystal
display (LCD) panels, video adapters, Integrated Drive Electronics (IDE) CD-ROM and hard disk
controllers, COM ports, and so on. In the ACPI scheme of power management, buses are devices. For
more information, see section 3.3.2, “Device Power States.”

Device Context
The variable data held by the device; it is usually volatile. The device might forget this information
when entering or leaving certain states (for more information, see section 2.3, “Device Power State
Definitions.”), in which case the OS software is responsible for saving and restoring the information.
Device Context refers to small amounts of information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)
An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the base
system. The OS always inserts the DSDT information into the ACPI Namespace at system boot time
and never removes it.

Extensible Firmware Interface (EFI)
An interface between the OS and the platform firmware. The interface is in the form of data tables that
contain platform related information, and boot and run-time service calls that are available to the OS
and loader. Together, these provide a standard environment for booting an OS.

Embedded Controller
The general class of microcontrollers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform design,
as long as the microcontroller conforms to one of the models described in this section. The embedded
controller performs complex low-level functions through a simple interface to the host
microprocessor(s).

Embedded Controller Interface
A standard hardware and software communications interface between an OS driver and an embedded
controller. This allows any OS to provide a standard driver that can directly communicate with an
embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code).
This in turn enables the OEM to provide platform features that the OS and applications can use.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 15

Firmware ACPI Control Structure (FACS)
A structure in read/write memory that the BIOS uses for handshaking between the firmware and the
OS. The FACS is passed to an ACPI-compatible OS via the Fixed ACPI Description Table (FADT).
The FACS contains the system’s hardware signature at last boot, the firmware waking vector, and the
Global Lock.

Fixed ACPI Description Table (FADT)
A table that contains the ACPI Hardware Register Block implementation and configuration details that
the OS needs to directly manage the ACPI Hardware Register Blocks, as well as the physical address
of the DSDT, which contains other platform implementation and configuration details. An OEM must
provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removes it.

Fixed Features
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events
A set of events that occur at the ACPI interface when a paired set of status and event bits in the fixed
feature registers are set at the same time. When a fixed feature event occurs, a system control interrupt
(SClI is raised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver) acts as the event
handler.

Fixed Feature Registers
A set of hardware registers in fixed feature register space at specific address locations in system I/O
address space. ACPI defines register blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers
The general-purpose event registers contain the event programming model for generic features. All
general-purpose events generate SCls.

Generic Feature
A generic feature of a platform is value-added hardware implemented through control methods and
general-purpose events.

Global System States
Global system states apply to the entire system, and are visible to the user. The various global system
states are labeled GO through G3 in the ACPI specification. For more information, see section 2.2,
“Global System State Definitions.”

Ignored Bits
Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return
zero). Software ignores ignored bits in ACPI hardware registers on reads and preserves ignored bits on
writes.

Intel Architecture-Personal Computer (1A-PC)
A general descriptive term for computers built with processors conforming to the architecture defined
by the Intel processor family based on the Intel Architecture instruction set and having an industry-
standard PC architecture.

1/0 APIC
An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to the
processor’s local APIC.

1/0 SAPIC
An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from
devices to the processor’s local APIC.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

16 Advanced Configuration and Power Interface Specification

Legacy
A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in today’s
systems are used to support power management in a system that uses a legacy OS that does not support
the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPI or OSPM power management support.

Legacy OS
An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the /O APIC.

Local SAPIC
A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/O
SAPIC.

Multiple APIC Description Table (MADT)
The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Object
The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in
the system definition tables. These objects can be data objects, package objects, control method
objects, and so on. Package objects refer to other objects. Objects also have type, size, and relative
name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM)
A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Package
An array of objects.

Power Button
A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working
state.

Power Management
Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power consumption.
Power management is required for some system functions, such as appliance (for example, answering
machine, furnace control) operations.

Power Resources
Resources (for example, power planes and clock sources) that a device requires to operate in a given
power state.

Power Sources
The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to a platform.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 17

Register Grouping
Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows the
bits within a register grouping to be split between two chips.

Reserved Bits
Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them
have no side effects. OSPM implementations must write zeros to all reserved bits in enable and status
registers and preserve bits in control registers.

Root System Description Pointer (RSDP)
An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)
A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Secondary System Description Table (SSDT)
SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform description.
After the DSDT is loaded into the ACPI Namespace, each secondary description table listed in the
RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide the base
support in one table, while adding smaller system options in other tables.
Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button
A user push button that switches the system from the sleeping/soft off state to the working state, and
signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem
A battery subsystem that conforms to the following specifications: Smart Battery and either Smart
Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Smart Battery Table
An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the energy-
level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

System Management Bus (SMBus)
A two-wire interface based upon the I2C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface
A standard hardware and software communications interface between an OS bus driver and an SMBus
controller.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)
An advanced APIC commonly found on Intel Itanium Processor Family-based 64-bit systems.

System Context
The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)
A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an active, low,
shareable, level interrupt.

System Management Interrupt (SMI)
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will
not work). Hardware platforms that want to support both legacy operating systems and ACPI systems

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18 Advanced Configuration and Power Interface Specification

must support a way of re-mapping the interrupt events between SMIs and SCIs when switching
between ACPI and legacy models.

Thermal States
Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space
around a particular temperature-sensing device. The transitions from one thermal state to another are
marked by trip points, which are implemented to generate an SCI when the temperature in a thermal
zone moves above or below the trip point temperature.

Extended Root System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERS that are larger than 32-bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms

2.2 Global System State Definitions
Global system states (GX states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:
1. Does application software run?
What is the latency from external events to application response?
What is the power consumption?
Is an OS reboot required to return to a working state?
Is it safe to disassemble the computer?
6. Can the state be entered and exited electronically?

nkhwe

Following is a list of the system states:

G3 Mechanical Off

19

A computer state that is entered and left by a mechanical means (for example, turning off the system’s
power through the movement of a large red switch). Various government agencies and countries
require this operating mode. It is implied by the entry of this off state through a mechanical means that
no electrical current is running through the circuitry and that it can be worked on without damaging the

hardware or endangering service personnel. The OS must be restarted to return to the Working state.
No hardware context is retained. Except for the real-time clock, power consumption is zero.

G2/S5 Soft Off

A computer state where the computer consumes a minimal amount of power. No user mode or system

mode code is run. This state requires a large latency in order to return to the Working state. The
system’s context will not be preserved by the hardware. The system must be restarted to return to the
Working state. It is not safe to disassemble the machine in this state.

G1 Sleeping
A computer state where the computer consumes a small amount of power, user mode threads are not

being executed, and the system “appears” to be off (from an end user’s perspective, the display is off,

and so on). Latency for returning to the Working state varies on the wake environment selected prior

to

entry of this state (for example, whether the system should answer phone calls). Work can be resumed
without rebooting the OS because large elements of system context are saved by the hardware and the

rest by system software. It is not safe to disassemble the machine in this state.

GO Working

A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can
select, through some Ul, various performance/power characteristics of the system to have the software

optimize for performance or battery life. The system responds to external events in real time. It is not
safe to disassemble the machine in this state.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

20 Advanced Configuration and Power Interface Specification

S4 Non-Volatile Sleep
A special global system state that allows system context to be saved and restored (relatively slowly)
when power is lost to the motherboard. If the system has been commanded to enter S4, the OS will
write all system context to a file on non-volatile storage media and leave appropriate context markers.
The machine will then enter the S4 state. When the system leaves the Soft Off or Mechanical Off state,
transitioning to Working (G0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid non-volatile sleep data set is found, certain aspects of the configuration of the
machine have not changed, and the user has not manually aborted the restore. If all these conditions are
met, as part of the OS restarting, it will reload the system context and activate it. The net effect for the
user is what looks like a resume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and memory size. It
might be possible for the user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or BIOS can save the system context takes too long from the user’s point of view. The
transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Safe to

Global Software Power OS restart | disassemble | Exit state
system state | runs Latency consumption | required computer electronically
GO0 Working | Yes 0 Large No No Yes
Gl1 Sleeping | No >0, varies with | Smaller No No Yes

sleep state
G2/S5 Soft No Long Very near 0 Yes No Yes
Off
G3 No Long RTC battery | Yes Yes No
Mechanical
Off

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This implies
that a platform designed to give the user the appearance of “instant-on,” similar to a home appliance device,
will use the GO and G1 states almost exclusively (the G3 state may be used for moving the machine or
repairing it).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 21

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:

e Power consumption. How much power the device uses.

o Device context. How much of the context of the device is retained by the hardware. The OS is
responsible for restoring any lost device context (this may be done by resetting the device).

o Device driver. What the device driver must do to restore the device to full on.

o Restore time. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference between the modes, only the lowest power mode will be used. The Device Class
Power Management Specifications, included in Appendix A of this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of each power state
for that device class. For a list of the available Device Class Power Management Specifications, see
“Appendix A: Device Class Specifications.”

D3 Off
Power has been fully removed from the device. The device context is lost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
are lost, devices in this state do not decode their address lines. Devices in this state have the longest
restore times. All classes of devices define this state.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
DO. Buses in D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

DO Fully-On
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

Table 2-2 Summary of Device Power States

Device State Power Consumption | Device Context Retained | Driver Restoration
DO - Fully-On As needed for All None
operation
D1 D0>D1>D2>D3 >D2 <D2
D2 D0>D1>D2>D3 <D1 >Dl1
D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rules for the current DX state the device is in. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

22 Advanced Configuration and Power Interface Specification

2.4 Sleeping State Definitions

Sleeping states (SX states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section
7.3.4, “System \ Sx States.” For a detailed definition of the transitions between each of the SX states, see
section 15.1, “Sleeping States.”

S1 Sleeping State
The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping state
except that the CPU and system cache context is lost (the OS is responsible for maintaining the caches
and CPU context). Control starts from the processor’s reset vector after the wake event.

S3 Sleeping State
The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory
context and restores some CPU and L2 configuration context. Control starts from the processor’s reset
vector after the wake event.

S4 Sleeping State
The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Platform context is maintained.

S5 Soft Off State
The S5 state is similar to the S4 state except that the OS does not save any context. The system is in
the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the S4 state to allow for initial boot operations within the BIOS to
distinguish whether or not the boot is going to wake from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (CX states) are processor power consumption and thermal management states within
the global working state, GO. The Cx states possess specific entry and exit semantics and are briefly defined
below. For a more detailed definition of each CX state, see section 8.1, “Processor Power States.”

CO Processor Power State
While the processor is in this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency. The hardware latency in this state must be low
enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no
other software-visible effects.

C2 Processor Power State
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for
this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting
the processor in a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State
The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. While in the C3
state, the processor’s caches maintain state but ignore any snoops. The operating software is
responsible for ensuring that the caches maintain coherency.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 23

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (PX states) are power consumption and capability states within the
active/executing states, CO for processors and DO for devices. The Px states are briefly defined below. For a
more detailed definition of each Px state from a processor perspective, see section 8.4.4, “Processor
Performance Control.” For a more detailed definition of each Px state from a device perspective see section
3.6, “Device and Processor Performance States,” and the device class specifications in Appendix A.

PO Performance State
While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.

P1 Performance State
In this performance power state, the performance capability of a device or processor is limited below
its maximum and consumes less than maximum power.

Pn Performance State
In this performance state, the performance capability of a device or processor is at its minimum level
and consumes minimal power while remaining in an active state. State n is a maximum number and is
processor or device dependent. Processors and devices may define support for an arbitrary number of
performance states not to exceed 16.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

24 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 25

3 ACPI Overview

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the
power management and motherboard device configuration functions of a computer. During OS
initialization, OSPM takes over these functions from legacy implementations such as the APM BIOS,
SMM-based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM is responsible for
handling motherboard device configuration events as well as for controlling the power, performance, and
thermal status of the system based on user preference, application requests and OS imposed Quality of
Service (QOS) / usability goals. ACPI provides low-level interfaces that allow OSPM to perform these
functions. The functional areas covered by the ACPI specification are:

e System power management. ACPI defines mechanisms for putting the computer as a whole in and
out of system sleeping states. It also provides a general mechanism for any device to wake the
computer.

o Device power management. ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

e Processor power management. While the OS is idle but not sleeping, it will use commands described
by ACPI to put processors in low-power states.

e Device and processor performance management. While the system is active, OSPM will transition
devices and processors into different performance states, defined by ACPI, to achieve a desirable
balance between performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).

e Configuration / Plug and Play. ACPI specifies information used to enumerate and configure
motherboard devices. This information is arranged hierarchically so when events such as docking and
undocking take place, the OS has precise, a priori knowledge of which devices are affected by the
event.

e System Events. ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the core logic
chip set.

e Battery management. Battery management policy moves from the APM BIOS to the ACPI OS. An
ACPI-compatible battery device needs either a Smart Battery subsystem interface, which is controlled
by the OS directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an OEM to
choose any type of the battery and any kind of communication interface supported by ACPI. The
battery must comply with the requirements of its interface, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by adjusting
the Low Battery or Battery Warning trip point. When there are multiple batteries present, the battery
subsystem is not required to perform any synthesis of a “composite battery” from the data of the
separate batteries. In cases where the battery subsystem does not synthesize a “composite battery”
from the separate battery’s data, the OS must provide that synthesis.

e Thermal management. Since the OS controls the power and performance states of devices and
processors, ACPI also addresses system thermal management. It provides a simple, scaleable model
that allows OEMs to define thermal zones, thermal indicators, and methods for cooling thermal zones.

e Embedded Controller. ACPI defines a standard hardware and software communications interface
between an OS bus enumerator and an embedded controller. This allows any OS to provide a standard
bus enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. This in turn enables the OEM to provide platform features that the OS and
applications can use.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

26 Advanced Configuration and Power Interface Specification

e SMBus Controller. ACPI defines a standard hardware and software communications interface
between an OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus devices in the system. This in turn enables the OEM
to provide platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s power,
performance, and thermal status given the user’s preferences and while supporting OS imposed Quality of
Service (QOS) / usability goals. To achieve these goals, ACPI requires that once an ACPI compliant
platform is in ACPI mode, the platform’s hardware, firmware, or other non-OS software must not
manipulate the platform’s configuration, power, performance, and thermal control interfaces independently
of OSPM. OSPM alone is responsible for coordinating the configuration, power management, performance
management, and thermal control policy of the system. Manipulation of these interfaces independently of
OSPM undermines the purpose of OSPM/ACPI and may adversely impact the system’s configuration,
power, performance, and thermal policy goals. There are two exceptions to this requirement. The first is in
the case of the possibility of damage to a system from an excessive thermal conditions where an ACPI
compatible OS is present and OSPM latency is insufficient to remedy an adverse thermal condition. In this
case, the platform may exercise a failsafe thermal control mechanism that reduces the performance of a
system component to avoid damage. If this occurs, the platform must notify OSPM of the performance
reduction if the reduction is of significant duration (in other words, if the duration of reduced performance
could adversely impact OSPM’s power or performance control policy - operating system vendors can
provide guidance in this area). The second exception is the case where the platform contains Active cooling
devices but does not contain Passive cooling temperature trip points or controls,. In this case, a hardware
based Active cooling mechanism may be implemented without impacting OSPM’s goals. Any platform that
requires both active and passive cooling must allow OSPM to manage the platform thermals via ACPI
defined active and passive cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences and
knowledge of how devices are being used by applications, the OS puts devices in and out of low-power
states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into a low- power state. The OS uses ACPI to
control power state transitions in hardware.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 27

3.2 Power States
From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:

Power
Failure/
Power Off

G3 -Mech
Off

BIOS
Routine

GO (S0) - —

Working s2
S1

G1-
Sleeping

Performance
State Px

Co

G2 (S5) -

Soft Off

Figure 3-1 Global System Power States and Transitions
See section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual devices
can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not being used.
Any device the system turns off because it is not actively in use can be turned on with short latency. (What
“short” means depends on the device. An LCD display needs to come on in sub-second times, while it is
generally acceptable to wait a few seconds for a printer to wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into one
of the sleeping (SX) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states
differ in what events can arouse the system to a Working state, and how long this takes. When the machine
must awaken to all possible events or do so very quickly, it can enter only the sub-states that achieve a
partial reduction of system power consumption. However, if the only event of interest is a user pushing on
a switch and a latency of minutes is allowed, the OS could save all system context into an NVS file and
transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero power and
retains system context for an arbitrary period of time (years or decades if needed).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

28 Advanced Configuration and Power Interface Specification

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Users typically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off or,
on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user wants
the machine to “come on” in less than 1 second with all context as it was when the user turned the machine
“off”), system alert functions (such as the system being used as an answering machine or fax machine), or
application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This is in some obvious place (for example,
beside the keyboard on a laptop). Unlike legacy on/off buttons, all it does is send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see section
11, “Thermal Management™) and the embedded controller interface (see section 12, “ACPI Embedded
Controller Interface Specification”).

3.2.2.2 Desktop PCs
Power-managed desktops will be of two types, though the first type will migrate to the second over time.

e Ordinary “Green PC.” Here, new appliance functions are not the issue. The machine is really only
used for productivity computations. At least initially, such machines can get by with very minimal
function. In particular, they need the normal ACPI timers and controls, but don’t need to support
elaborate sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as possible (to
allow for maximum compute speed with minimum power wasted on unused devices). Such PCs will
also need to support wake from the sleeping state by means of a timer, because this allows
administrators to force them to turn on just before people are to show up for work.

e Home PC. Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking
and lid events (and need not have any legacy power management). Note that there is also a thermal
management aspect to a home PC, as a home PC user wants the system to run as quietly as possible,
often in a thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 29

o Day Mode. In day mode, servers are power-managed much like a corporate ordinary green PC, staying
in the Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power management can
result in large savings. OSPM allows careful tuning of when to do this, thus making it workable.

¢ Night Mode. In night mode, servers look like home PCs. They sleep as deeply as they can and are still
able to wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a print job
at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and then goes back to
sleep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state is
described, and an example of ACPI-compatible device management using a modem is given.

3.3.1 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending commands
to a device. These standards define the operations used to manage power of devices on a particular I/O
interconnect and the power states that devices can be put into. Defining these standards for each I/O
interconnect creates a baseline level of power management support the OS can utilize. Independent
Hardware Vendors (IHVs) do not have to spend extra time writing software to manage power of their
hardware, because simply adhering to the standard gains them direct OS support. For OS vendors, the I/O
interconnect standards allow the power management code to be centralized in the driver for each I/O
interconnect. Finally, I/O interconnect-driven power management allows the OS to track the states of all
devices on a given I/O interconnect. When all the devices are in a given state (or example, D3 - off), the OS
can put the entire I/O interconnect into the power supply mode appropriate for that state (for example, D3 -

off).

I/O interconnect-level power management specifications are written for a number of buses including:
e PCI
e PCI Express

e CardBus
e USB
e IEEE 1394

3.3.2 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generally, these states are defined in terms of the following criteria:

e Power consumption. How much power the device uses.

e Device context How much of the context of the device is retained by the hardware.
e Device driver. What the device driver must do to restore the device to fully on.

e Restore latency. How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See section 2.3, “Device Power State Definitions,” for the detailed description of the four general
device power states (D0-D3).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

30 Advanced Configuration and Power Interface Specification

3.3.3 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support

some consistent set of power-related characteristics. For example, when the bus-specific mechanism to set

the device power state to a given level is invoked, the actions a device might take and the specific sorts of
behaviors the OS can assume while the device is in that state will vary from device type to device type. For

a fully integrated device power management system, these class-specific power characteristics must also be

standardized:

o Device Power State Characteristics. Each class of device has a standard definition of target power
consumption levels, state-change latencies, and context loss.

e Minimum Device Power Capabilities. Each class of device has a minimum standard set of power
capabilities.

e Device Functional Characteristics. Each class of device has a standard definition of what subset of
device functionality or features is available in each power state (for example, the net card can receive,
but cannot transmit; the sound card is fully functional except that the power amps are off, and so on).

e Device Wakeup Characteristics. Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state characteristics for
each class of device.

3.4 Controlling Device Power

ACPI interfaces provides control and information needed to perform device power management. ACPI
interfaces describe to OSPM the capabilities of all the devices it controls. It also gives the OS the control
methods used to set the power state or get the power status for each device. Finally, it has a general scheme
for devices to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. Power management of these devices is handled
through their own bus specification (in this case, PCI). All other devices on the main board are handled
through ACPI Specifically, the ACPI table lists legacy devices that cannot be reported through their own
bus specification, the root of each bus in the system, and devices that have additional power management or
configuration options not covered by their own bus specification.

For more detailed information see section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management features that
the device supports. The Differentiated Definition Block given to the OS by the BIOS describes every
device handled by ACPI. This description contains the following information:

e A description of what power resources (power planes and clock sources) the device needs in each
power state that the device supports. For example, a device might need a high power bus and a clock in
the DO state but only a low-power bus and no clock in the D2 state.

e A description of what power resources a device needs in order to wake the machine (or none to
indicate that the device does not support wake). The OS can use this information to infer what device
and system power states from which the device can support wake.

e The optional control method the OS can use to set the power state of the device and to get and set
resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States

OSPM uses the Set Power State operation to put a device into one of the four power states.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 31

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state based
on the current device requirements on that bus. For example, if all devices on a bus are in the D3 state, the
OS will send a command to the bus control chip set to remove power from the bus (thus putting the bus in
the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus in that state if all
devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be able to issue a Set
Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device before
it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in section 7, “Power and Performance Management.”).

When a device is to be set in a particular power state using the ACPI interface, the OS first decides which
power resources will be used and which can be turned off. The OS tracks all the devices on a given power
resource. When all the devices on a resource have been turned off, the OS turns off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needs to
be turned on, the OS first turns on the power resource using a control method and then signals the device to
turn on. The time that the OS must wait for the power resource to stabilize after turning it on or off is
described in the description table. The OS uses the time base provided by the Power Management Timer to
measure these time intervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the
device in that power state. Notice that this might not mean that power is removed from the device. If other
active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS via the SCI interrupt. An SCI interrupt status bit is set to
indicate the event to the OS. The OS runs the control method associated with the event. This control
method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining capacity),
the OS uses control methods from the battery’s description table to read this information. To read status
information for Smart Batteries, the OS can use a standard Smart Battery driver that directly interfaces to
Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer

The wake operation enables devices to wake the computer from a sleeping power state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the machine, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake
the machine based on application requests, and then enables wake on those devices in a device and bus
specific manner.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

32 Advanced Configuration and Power Interface Specification

The OS enables the wake feature on devices by setting that device’s SCI Enable bit. The location of this bit
is listed in the device’s entry in the description table. Only devices that have their wake feature enabled can
wake the machine. The OS keeps track of the power states that the wake devices support, and keeps the
machine in a power state in which the wake can still wake the machine' (based on capabilities reported in
the description table).

When the computer is in the Sleeping state and a wake device decides to wake the machine, it signals to the
ACPI chip set. The SCI status bit corresponding to the device waking the machine is set, and the ACPI chip
set resumes the machine. After the OS is running again, it clears the bit and handles the event that caused
the wake. The control method for this event then uses the Notify command to tell the OS which device
caused the wake.

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from certain
states (such as the S4 state), it may start out in non-ACPI mode. In this case, the SCI status bit may be
cleared when ACPI mode is re-entered. However the platform must still attempt to record the wake source
for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device can
also be put into a low power state during the SO system state, and that this device may generate a wake
signal in the SO state as the following example illustrates.

' Some OS policies may require the OS to put the machine into a global system state for which the device
can no longer wake the system. Such as when a system has very low battery power.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 33

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem.
(This example is greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

DO Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer

D1 Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook

D2 Same as D3

D3 Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem is defined as follows:

D3 0O DO COM port opened

DO, D1 0 D3 COM port closed

DO 0O D1 Modem put in answer mode

D10 DO Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

34 Advanced Configuration and Power Interface Specification

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware
as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is not
intended to describe how OEMs should build hardware.

PWR1 PWR2
5= o
£ g8
'UE) g % 8
PWR1_EN |
PWR2_EN | ﬁ
MDM_D3
MDM D1
COM_D3
. | r v \ 2 /
1/0
ACPI core
chip set o COM port /o Modem [Phone Phone
(UART) controller Control interface li
- » ine
RI
WAKE «

Figure 3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s
entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports DO, D1, and D3:

DO requires PWR1 and PWR2 as power resources
D1 requires PWRI1 as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine from DO,
D1, and D3)

Control methods for setting power state and resources

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 35

3.4.5.2 Setting the Modem Power State

While the OS is running (GO state), it switches the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state. Then if
the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In
this case, PWR?2 is not needed. Then it checks to make sure no other device in the system requires the use
of the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop asserting the
PWR2 EN line. Then, OSPM runs a control method (_PS1) provided in the modem’s entry to put the
device in the D1 state. This control method asserts the MDM_D1 signal that tells the modem controller to
go into a low-power mode.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM checks to see which power resources are no longer
needed. Because the LPT port is still active, PWRI1 is in use. OSPM does not turn off the PWR1 resource.
It continues the state transition process by running the modem’s control method to switch the device to the
D3 power state. The control method causes the MDM_D3 line to be asserted. The modem controller now
turns off all its major functions so that it draws little power, if any, from the PWRI1 line. Because the COM
port is closed, the same sequence of events will take place to put it in the D3 state. Notice that these
registers might not be in the device itself. For example, the control method could read the register that
controls MDM_D3.

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power state of
the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control method (_ PSC)
supplied in the modem’s entry in the Differentiated Definition Block. This control method reads from the
necessary registers to determine the modem’s power state.

3.4.5.4 Waking the Computer

As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the computer in a sleep state, the OS enables wake on any devices that applications have
requested to be able to wake the machine. Then, it chooses the lowest sleeping state that can still provide
the power resources necessary to allow all enabled wake devices to wake the machine. Next, the OS puts
each of those devices in the appropriate power state, and puts all other devices in the D3 state. In this case,
the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS saves a
resume vector and puts the machine into a sleep state through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core chip set to generate a wake
event. The chip set then wakes the system and the hardware will eventually passes control back to the OS
(the wake mechanism differs depending on the sleeping state). After the OS is running, it puts the device in
the DO state and begins handling interrupts from the modem to process the event.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

36 Advanced Configuration and Power Interface Specification

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when an
interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in section 8, “Processor Power and Performance State Configuration
and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, CO for processors and DO for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest impact
when the states invoke different device and processor efficiency levels as opposed to a linear scaling of
performance and energy consumption. Since performance state transitions occur in the active/executing
device states, care must be taken to ensure that performance state transitions do not adversely impact the
system.

Examples of device performance states include:

e A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.

e An LCD panel that supports multiple brightness levels that correspond to levels of power consumption.

e A graphics component that scales performance between 2D and 3D drawing modes that corresponds to
levels of power consumption.

e An audio subsystem that provides multiple levels of maximum volume that correspond to levels of
maximum power consumption.

e A Direct-RDRAM™ controller that provides multiple levels of memory throughput performance,
corresponding to multiple levels of power consumption, by adjusting the maximum bandwidth
throttles.

Processor performance states are described in Section 8, “Processor Power and Performance State
Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM to
configure the required resources of motherboard devices along with their dynamic insertion and removal.
ACPI Definition Blocks, including the Differentiated System Description Table (DSDT) and Secondary
System Description Tables (SSDTs), describe motherboard devices in a hierarchical format called the
ACPI namespace. The OS enumerates motherboard devices simply by reading through the ACPI
Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report the
hardware resources that the device could occupy, an object that reports the resources that are currently
used by the device, and objects for configuring those resources. The information is used by the Plug and
Play OS (OSPM) to configure the devices.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 37

ACPI is used primarily to enumerate and configure motherboard devices that do not have other hardware
standards for enumeration and configuration. For example, PCI devices on the motherboard need not be
enumerated by ACPI; Plug and Play information for these devices need not be included in the APCI
Namespace. However, power management information and insertion/removal control for these devices can
still appear in the namespace if the devices’ power management and/or insertion/removal is to be controlled
by OSPM via ACPI-defined interfaces.

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes
boot devices described in the ACPI system description tables as well as devices that are controlled through
other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OS finds it in the DSDT. This table will have control methods that give the OS the following
information:

e The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, I/0 2E8-2EF

e The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the device
for those resources by running a control method supplied in the modem’s section of the Differentiated
Definition Block. This control method will write to any 1/O ports or memory addresses necessary to
configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and I/O buses, that comprise what is commonly known as a
“NUMA node”. Processor accesses to memory or 1/O resources within the local NUMA node is generally
faster than processor accesses to memory or 1/0O resources outside of the local NUMA node. ACPI defines
interfaces that allow the platform to convey NUMA node topology information to OSPM both statically at
boot time and dynamically at run time as resources are added or removed from the system.

3.8 System Events

ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives this interrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one bit each: the bit corresponding to the event pin.

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the
status bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

38 Advanced Configuration and Power Interface Specification

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three status
bits (and three enable bits). Yet another design might have every individual event wired to its own pin and
status bit. This design, at the opposite extreme from the single pin design, allows very complex hardware,
yet very simple control methods. Countless variations in wiring up events are possible. However, note that
care must be taken to ensure that if events share a signal that the event that generated the signal can be
determined in the corresponding event handling control method allowing the proper device notification to
be sent.

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem is
not required to perform any synthesis of a “composite battery” from the data of the separate batteries. In
cases where the battery subsystem does not synthesize a “composite battery” from the separate battery's
data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method
Battery interface.

e Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see section 12.9, “SMBus Host
Controller Interface via Embedded Controller.” For additional information about the Smart Battery
subsystem interface, see section 10.1, “Smart Battery Subsystems.”

e Control Method Battery is completely accessed by AML code control methods, allowing the OEM to
choose any type of battery and any kind of communication interface supported by ACPI. For more
information about the Control Method Battery Interface, see section 10.2, “Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’s condition. All battery system
types must provide notification to the OS when there is a change such as inserting or removing a battery, or
when a battery starts or stops discharging. Smart Batteries and some Control Method Batteries are also able
to give notifications based on changes in capacity. Smart batteries provide extra information such as
estimated run-time, information about how much power the battery is able to provide, and what the run-
time would be at a predetermined rate of consumption.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 39

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining capacity.
Remaining capacity decreases during usage, and it also changes depending on the environment. Therefore,
the OS must use latest full-charged capacity to calculate the battery percentage. In addition the battery
system must report warning and low battery levels at which the user must be notified and the system
transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

- Designed capacity
L) AR ERREERER Last full charged capacity

—»

""" 44— Present remaining capacity

| e OEM designed initial capacity for warning
- _ - e OEM designed initial capacity for low

Figure 3-3 Reporting Battery Capacity
3.9.3 Battery Gas Gauge
At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

- Battery Remaining Capacity [mAh/mWh]
Remaining Battery Percentage[%] = * 100

Last Full Charged Capacity [mAh/mWh]

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Battery Remaining Capacity [mnAh/mWh]
Battery Present Drain Rate [mA/mW]

Remaining Battery Life [h]=

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed by
the system to take certain actions. The critical battery level or flag is used to indicate when the batteries in
the system are completely drained. OSPM can determine independent warning and low battery capacity
values based on the OEM-designed levels, but cannot set these values lower than the OEM-designed
values, as shown in the figure below

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

40 Advanced Configuration and Power Interface Specification

Full — :
A Last full charged capacity

F
< OSPM-selected low battery warning capacity
... Warning . OEM-designed initial capacity for warning (minimum)
- OSPM-selected low battery
*~Low OEM-designed initial capacity for low (minimum)
Critical [N OEM-defined Battery Critical flag

Figure 3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well as a flag to report when that battery has reached or is below its critical
energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one particular
machine type, so the OEM-designed warning, low, and critical levels are reported separately in a Smart
Battery Table described in section 5.2.13.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 41

The table below describes how these values should be set by the OEM and interpreted by the OS.
Table 3-1 Low Battery Levels

Level Description

Warning | When the total available energy (mWh) or capacity (mAh) in the batteries falls below this
level, the OS will notify the user through the UI. This value should allow for a few minutes
of run-time before the “Low” level is encountered so the user has time to wrap up any
important work, change the battery, or find a power outlet to plug the system in.

Low This value is an estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity is less than this value, it will transition the system to a user
defined system state (S1-S5). In most situations this should be S4 so that system state is not
lost if the battery eventually becomes completely empty. The design of the OS should
consider that users of a multiple battery system may remove one or more of the batteries in
an attempt replace or charge it. This might result in the remaining capacity falling below
the “Low” level not leaving sufficient battery capacity for the OS to safely transition the
system into the sleeping state. Therefore, if the batteries are discharging simultaneously,
the action might need to be initiated at the point when both batteries reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the OS
must attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of
0, but an OEM may choose to put a larger value in the Smart Battery Table to provide an
extra margin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per
battery. If any battery in the system is in a critically low state and is still providing power
to the system (in other words, the battery is discharging), the system is considered to be in
a critical energy state. The BST control method is required to return the Critical flag on a
discharging battery only when all batteries have reached a critical state; the ACPI BIOS is
otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteries in a system are critical is not a situation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this does
occur, the OS should take steps to minimize any damage to system integrity. The emergency shutdown
procedure should be designed to minimize bad effects based on the assumption that power may be lost at
any time. For example, if a hard disk is spun down, the OS should not try to spin it up to write any data,
since spinning up the disk and attempting to write data could potentially corrupt files if the write were not
completed. Even if a disk is spun up, the decision to attempt to save even system settings data before
shutting down would have to be evaluated since reverting to previous settings might be less harmful than
having the potential to corrupt the settings if power was lost halfway through the write operation.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

42 Advanced Configuration and Power Interface Specification

3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the user.
However, it is possible with many battery systems to provide more useable runtime on an old battery if a
calibration or conditioning cycle is run occasionally. The user has typically been able to perform a
calibration cycle either by going into the BIOS setup menu, or by running a custom driver and calibration
application provided by the OEM. The calibration process typically takes several hours, and the laptop
must be plugged in during this time. Ideally the application that controls this should make this as good of a
user experience as possible, for example allowing the user to schedule the system to wake up and perform
the calibration at some time when the system will not be in use. Since the calibration user experience does
not need to be different from system to system it makes sense for this service to be provided by the OSPM.
.In this way OSPM can provide a common experience for end users and eliminate the need for OEMs to
develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in section 10.2.2.5 and 10.2.2.6. First, there
is a means to detect when it would be beneficial to calibrate the battery. Second there is a means to
perform that calibration cycle. Both of those functions may be implemented by dedicated hardware such as
a battery controller chip, by firmware in the embedded controller, by the BIOS, or by OSPM. From here on
any function implemented through AML, whether or not the AML code relies on hardware, will be referred
to as “AML controlled” since the interface is the same whether the AML passes control to the hardware or
not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be reported
through the BMD method. Alternately, the BMD method may simply report the number of cycles before
calibration should be performed and let the OS attempt to count the cycles. A counter implemented by the
hardware or the BIOS will generally be more accurate since the batteries can be used without the OS
running, but in some cases, a system designer may opt to simplify the hardware or BIOS implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle can
be AML controlled or OSPM controlled. OSPM can only implement a very simple algorithm since it
doesn’t have knowledge of the specifics of the battery system. It will simply discharge the battery until it
quits discharging, then charge it until it quits charging. In the case where the AC adapter cannot be
controlled through the BMC, it will prompt the user to unplug the AC adapter and reattach it after the
system powers off. If the calibration cycle is controlled by AML, the OS will initiate the calibration cycle
by calling BMC. That method will either give control to the hardware, or will control the calibration
cycle itself. If the control of the calibration cycle is implemented entirely in AML code, the BIOS may
avoid continuously running AML code by having the initial call to BMC start the cycle, set some state
flags, and then exit. Control of later parts of the cycle can be accomplished by putting code that checks
these state flags in the battery event handler (_ Qxx, Lxx, or Exx).

Details of the control methods for this interface are defined in section 10.2.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 43

3.10 Thermal Management

ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5 is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal-coupled device. In this example, the whole notebook is covered as one large thermal zone. This
notebook uses one fan for active cooling and the CPU for passive cooling.

Thermal « o 5 CPU

(Passive Cooling) [Memory/
PCI Bridge

Zone CPU g
2 A

M
PCI/PCI
Bridge
Graphics

E] USB
‘ Port 1 Docking

Fumenlary |
vV V 4.>| Keyboard

A

v
(@)

A

v

Fan
P

.| (Active Cooling)
L

A

—
0
lw)

(@]

Py

S

FO: PIC, PITs, F2: Embedded

DMA, RTC, EIO, ..| USB Controller PSs/2
PO pors
H@ Mouse

F1: BM A

IDE

DPRO I’ <
A4 S|0: ~ FDD

EPROM COMs, DPR1
[eprou } | cov ¥ J+—— cou

FDC, «———— () LPT

ACPI

Figure 3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer.
For some thermal implementation examples on an ACPI platform, see section 11.5, “Thermal Zone

Interface Requirements.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

44 Advanced Configuration and Power Interface Specification

3.10.1 Active and Passive Cooling Modes
ACPI defines two cooling modes, Active and Passive:

e Passive cooling. OS reduces the power consumption of devices at the cost of system performance to
reduce the temperature of the machine.

e Active cooling. OS increases the power consumption of the system (for example, by turning on a fan)
to reduce the temperature of the machine.

These two cooling modes are inversely related to each other. Active cooling requires increased power to
reduce the heat within the system while Passive cooling requires reduced power to decrease the
temperature. The effect of this relationship is that Active cooling allows maximum system performance,
but it may create undesirable fan noise, while Passive cooling reduces system performance, but is
inherently quiet.

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or a
level of preference) for either performance or energy conservation. Allowing the end user to choose this
preference is most critical to mobile system users where maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s preference for
energy conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey the
cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal policy
intervention. For example, the platform indicates through thermal zone parameters that crossing a thermal
trip point requires a fan to be turned on. Passive cooling requires OSPM thermal policy to manipulate
device interfaces that reduce performance to reduce thermal zone temperature.

3.10.3 Acoustics (Noise)

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient noise
environment. In this case, the end user’s physical requirement for fan silence may override the preference
for either performance or energy conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire for fan
silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive
cooling, see section 11, “Thermal Management.”

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended thermal
control in a complex system, ACPI specifies a multiple thermal zone implementation. Under a multiple
thermal zone model, OSPM will independently manage several thermal-coupled devices and a designated
thermal zone for each thermal-coupled device, using Active and/or Passive cooling methods available to
each thermal zone. Each thermal zone can have more than one Passive and Active cooling device.
Furthermore, each zone might have unique or shared cooling resources. In a multiple thermal zone
configuration, if one zone reaches a critical state then OSPM must shut down the entire system.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 45

4 ACPI Hardware Specification

ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. This section describes the hardware aspects of
ACPL

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the
existing legacy programming model the same; however, to meet certain feature goals, designated features
conform to a specific addressing and programming scheme. Hardware that falls within this category is
referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to
understand the changes needed to convert a legacy-only hardware model to an ACPI/Legacy hardware
model or an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within the
generic category has a wide degree of flexibility in its implementation.

4.1 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:
e Performance sensitive features

e Features that drivers require during wake

e Features that enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management
timer are defined as fixed hardware to reduce the performance impact of accessing this hardware, which
will result in more quickly reducing a thermal condition or extending battery life. If this logic were allowed
to reside in PCI configuration space, for example, several layers of drivers would be called to access this
address space. This takes a long time and will either adversely affect the power of the system (when trying
to enter a low-power state) or the accuracy of the event (when trying to get a time stamp value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to load the
entire OS. For example, if PCI configuration space access is needed, the bus enumerator is loaded with all
drivers used by the enumerator. Defining these interfaces in fixed hardware at addresses with which OSPM
can communicate without any other driver’s assistance, allows OSPM to gather information prior to
making a decision as to whether it continues loading the entire OS or puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition the
system to the G2 state. In the case where OSPM event handler is no longer able to respond to power button
events, the power button override feature provides a back-up mechanism to unconditionally transition the
system to the soft-off state.

4.1.1 Functional Fixed Hardware

ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined in
this specification, conveys to OS Vendors (OSVs) developing ACPI-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

46 Advanced Configuration and Power Interface Specification

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer through
an equivalent combination of both hardware and software and is defined by ACPI as Functional Fixed
Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by
using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based
code makes this type of OS independent implementation difficult if not impossible to debug. As such, this
implementation approach is Not recommended. In some cases, Functional Fixed Hardware implementations
may require coordination with other OS components. As such, an OS independent implementation may not
be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical information
supplied by the CPU manufacturer. The downside of this approach is that functional fixed hardware
support must be developed for each OS. In some cases, the CPU manufacturer may provide a software
component providing this support. In other cases support for the functional fixed hardware may be
developed directly by the OS vendor.

The hardware register definition was expanded, in ACPI 2.0, to allow registers to exist in address spaces
other than the System 1/O address space. This is accomplished through the specification of an address space
ID in the register definition (see section 5.2.3.1, “Generic Address Structure,” for more information).
When specifically directed by the CPU manufacturer, the system firmware may define an interface as
functional fixed hardware by supplying a special address space identifier, FfixedHW (0x7F), in the address
space ID field for register definitions. It is emphasized that functional fixed hardware definitions may be
declared in the ACPI system firmware only as indicated by the CPU Manufacturer for specific interfaces
as the use of functional fixed hardware requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs are
cautioned not to anticipate that functional fixed hardware support will be provided by OSPM differently on
a system-by-system basis. The use of functional fixed hardware carries with it a reliance on OS specific
software that must be considered. OEMs should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

4.2 Generic Hardware Programming Model

Although the fixed hardware programming model requires hardware registers to be defined at specific
address locations, the generic hardware programming model allows hardware registers to reside in most
address spaces and provides system OEMs with a wide degree of flexibility in the implementation of
specific functions in hardware. OSPM directly accesses the fixed hardware registers, but relies on OEM-
provided ACPI Machine Language (AML) code to access generic hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s control
and event logic.

The section entitled “ACPI Source Language Reference” describes the ACPI Source Language (ASL)—a
programming language that OEMs use to create AML. The ASL language provides many of the operators
found in common object-oriented programming languages, but it has been optimized to enable the
description of platform power management and configuration hardware. An ASL compiler converts ASL
source code to AML, which is a very compact machine language that the ACPI AML code interpreter
executes.

AML does two things:
e Abstracts the hardware from OSPM
e Buffers OEM code from the different OS implementations

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 47

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware is that it is all implemented differently. To enable
OSPM to execute properly on different types of value added hardware, ACPI defines higher level “control
methods” that it calls to perform an action. The OEM provides AML code, which is associated with control
methods, to be executed by OSPM. By providing AML code, generic hardware can take on almost any
form.

Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has to
execute the same under any ACPI-compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues specific to
each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic feature
is described to OSPM through AML code. This description takes the form of an object that sits in the ACPI
Namespace associated with the hardware to which it is adding value.

ACPI Driver

and AML-
Interpreter

ontrol
vents

GP Event Status
- - Generic
GEenerlc Child Control
vent Status Logic

Generic Event
Logic

Figure 4-1 Generic Hardware Feature Model

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would then
have a reference to the AML PowerResource object (which controls the value added power plane) in its
namespace, and associated with that object would be control methods that OSPM invokes to control the D3
state of the drive:

e _PSO0. A control method to sequence the IDE drive to the DO state.

e PS3. A control method to sequence the IDE drive to the D3 state.

e PSC. A control method that returns the status of the IDE drive (on or off).
The control methods under this object provide an abstraction layer between OSPM and the hardware.
OSPM understands how to control power planes (turn them on or off or to get their status) through its
defined PowerResource object, while the hardware has platform-specific AML code (contained in the
appropriate control methods) to perform the desired function. In this example, the platform would describe

its hardware to the ACPI OS by writing and placing the AML code to turn the hardware off within the
_PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the
drive into the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate PS3 control method to control the value-added “generic” hardware to
place the HDD into an even lower power state.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

48 Advanced Configuration and Power Interface Specification

As an example of a generic event feature, a platform might have a docking capability. In this case, it will
want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any
shareable system interrupt. In the case of docking, the event is generated when a docking has been detected
or when the user requests to undock the system. This enables the following sequence:

OSPM responds to the SCI and calls the AML code event handler associated with that generic event. The
ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable
a reader to understand the following:
e Which hardware registers are required or optional when an ACPI feature, concept or interface is
required by a design guide for a platform class
e How to design fixed hardware features
e How to design generic hardware features
e The ACPI Event Model

4.3 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are
implemented. The following symbols are used in the logic diagrams to represent programming bits.

@ Write-only control bit
® Enable, control or status bit
X Sticky status bit

Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the behavior
that it generates its control function when it is set. Reads to write-only bits are treated as ignore by software
(the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software setting
or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As a status bit it
directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a “1”’ to its bit
position.

The rectangular symbol represents a query value from the embedded controller. This is the value the
embedded controller returns to the system software upon a query command in response to an SCI event.
The query value is associated with the event control method that is scheduled to execute upon an embedded
controller event.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 49

4.4 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a
notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit
Registername contains the name of the register as it appears in this specification
Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PM1x_CNT.13

45 The ACPI Hardware Model

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (G0-G3) as illustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” This state is
defined as one where power consumption is very close to zero—the power plug has been removed;
however, the real-time clock device still runs off a battery. The G3 state is entered by any power failure,
defined as accidental or user-initiated power loss.

The G3 state transitions into either the GO working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the GO
working state by always returning the status bit SCI_EN set (1) (for more information, see section 4.7.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(which is necessary for supporting a non-ACPI OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, a transition out of the G3 state requires a total
boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “Soft Off,” or the GO “Working” states only if the hardware
supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is disabled (no SCIs are
generated) and the hardware uses legacy power management and configuration mechanisms. While in the
Legacy state, an ACPI-compliant OS can request a transition into the GO working state by performing an
ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE value to the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPI mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. While in the
GO “working state,” OSPM can request a transition to Legacy mode by writing the ACPI_DISABLE value
to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the SCI_EN
bit LOW (for more information, see section 4.7.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The GO “Working” state is the normal operating environment of an ACPI machine. In this state different
devices are dynamically transitioning between their respective power states (D0, D1, D2 or D3) and
processors are dynamically transitioning between their respective power states (C0, C1, C2 or C3). In this
state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state. The
platform can only enter a single sleeping state at a time (referred to as the global G1 state); however, the
hardware can provide up to four system sleeping states that have different power and exit latencies
represented by the S1, S2, S3, or S4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled wake
events and what sleeping states these support). OSPM initiates the sleeping transition by enabling the
appropriate wake events and then programming the SLP_TYPx field with the desired sleeping state and
then setting the SLP_ENXx bit. The system will then enter a sleeping state; when one of the enabled wake
events occurs, it will transition the system back to the working state (for more information, see section 15,
“Waking and Sleeping”).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

50 Advanced Configuration and Power Interface Specification

Another global state transition option while in the GO “working” state is to enter the G2 “soft off” or the G3
“mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring the
system down in an orderly fashion (unloading applications, closing files, and so on). The policy for these
types of transitions can be associated with the ACPI power button, which when pressed generates an event
to the power button driver. When OSPM is finished preparing the operating environment for a power loss,
it will either generate a pop-up message to indicate to the user to remove power, in order to enter the G3
“Mechanical Off” state, or it will initiate a G2 “soft-oft” transition by writing the value of the S5 “soft off”
system state to the SLP_TYPx register and setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The sleeping state differs from the
working state in that the user’s operating environment is frozen in a low-power state until awakened by an
enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context and
wake sequences (for more information, see section 15, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping
state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the sequence).
Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI-only machine will re-enter
the GO state directly (hardware returns the SCI_EN bit set), while an ACPI/Legacy machine transitions to
the Legacy state (SCI_EN bit is clear).

Power

Failure/
Power Off

Legacy
Boot
(SCI_EN=0)

ACPI
Boot
(SCI_EN=1)

S4BIOS F g BIOS

S4BIOS REQ Routine

ACPI_ENABLE

(SCI_EN=1) \

GO (S0) -
Working
ACPI_DISABLE___——m—""

(SCI_EN=0)

ACPI

Boot

Legacy (SCI_EN=1)

Boot

(SCI_EN=0) SLP_TYPx=S5

and
SLP_EN

or

PWRBTN_OR

Performance
State Px

Cco

Figure 4-2 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement
this behavior model. Events are used to notify OSPM that some action is needed, and control logic is used
by OSPM to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events. A
hardware event is one that causes the hardware to unconditionally perform some operation. For example,
any wake event will sequence the system from a sleeping state (S1, S2, S3, and S4 in the global G1 state) to
the GO working state (see Figure 15-1).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 51

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or
an ACPI-aware driver acts as the event handler. For generic logic events OSPM will schedule the execution
of an OEM-supplied AML control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible
interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want to support
both legacy operating systems and ACPI systems support a way of re-mapping the interrupt events between
SMIs and SCIs when switching between ACPI and legacy models. This is illustrated in the following block
diagram.

Legacy Only Event Logic

Device Idle ACPl/Legacy Event Logic
fimers ACPI Only Event Logic
Device | ACPI/Legacy Generic Control Features
Traps ACPI/Legacy Fixed Control Features

GLB.L ST SCI_EN SMI Arbiter SMI#
Timer
PWRBTN User
LID Interface SCI Arbiter

SCI#

SIEE JAVELE]
Logic

Power Plane

DOCK
STS_CHG Hardware — SMI Events

Events SCI/SMI Events

— Wake-up Events CPU Clock
Control

Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model

Control
Generic Space

RI

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI
event models. This example platform supports a number of external events that are power-related (power
button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The logic
represents the three different types of events:

e OS Transparent Events. These events represent OEM-specific functions that have no OS support and
use software that can be operated in an OS-transparent fashion (that is, SMIs).

o Interrupt Events. These events represent features supported by ACPI-compatible operating systems,
but are not supported by legacy operating systems. When a legacy OS is loaded, these events are
mapped to the transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped
to an OS-visible shareable interrupt (SCI#). This logic is represented by routing the event logic through
the decoder that routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI#
arbiter when the SCI_EN bit is set.

e Hardware events. These events are used to trigger the hardware to initiate some hardware sequence
such as waking, resetting, or putting the machine to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power management
models use the idle timers to determine when a device should be placed in a low-power state because it is
idle—that is, the device has not been accessed for the programmed amount of time. The device traps are
used to indicate when a device in a low-power state is being accessed by OSPM. The global standby timer
is used to determine when the system should be allowed to go into a sleeping state because it is idle—that
is, the user interface has not been used for the programmed amount of time.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

52 Advanced Configuration and Power Interface Specification

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI mode.
This work is handled by different software structures in an ACPI-compatible OS. For example, the driver
model of an ACPI-compatible OS is responsible for placing its device into a low-power state (D1, D2, or
D3) and transitioning it back to the On state (D0) when needed. And OSPM is responsible for determining
when the system is idle by profiling the system (using the PM Timer) and other knowledge it gains through
its operating structure environment (which will vary from OS to OS). When the system is placed into the
ACPI mode, these events no longer generate SMIs, as OSPM handles this function. These events are
disabled through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models (docking,
the power button, and so on) and this type of interrupt event changes to an SCI event when enabled for
ACPI. The ACPI OS will generate a request to the platform’s hardware (BIOS) to enter into the ACPI
mode. The BIOS sets the SCI_EN bit to indicate that the system has successfully entered into the ACPI
mode, so this is a convenient mechanism to map the desired interrupt (SMI or SCI) for these events (as
shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the
power management timer (PM Timer). This is a free running timer that the ACPI OS uses to profile system
activity. The frequency of this timer is explicitly defined in this specification and must be implemented as
described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on where and
how the programming model is generated. If used, all fixed hardware features are implemented as
described in this specification so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace.
These interfaces can be very flexible; however, their use is limited by the defined ACPI control methods
(for more information, see section 9, “ACPI Devices and Device Specific Objects”). Generic hardware
usually controls power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt
status bits can be accessed via generic hardware interfaces; however, they have a “parent” interrupt status
bit in the GP_STS register. ACPI defines seven address spaces that may be accessed by generic hardware
implementations. These include:

e System I/O space

System memory space

PCI configuration space

Embedded controller space

System Management Bus (SMBus) space
CMOS

PCI BAR Target

Generic hardware power management features can be implemented accessing spare 1/O ports residing in
any of these address spaces. The ACPI specification defines an optional embedded controller and SMBus
interfaces needed to communicate with these associated address spaces.

4.5.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them
have no side affects. OSPM implementations must write zeros to reserved bits in enable and status registers
and preserve bits in control registers, and they will treat these bits as ignored.

4.5.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks off
ignored bits prior to operating on the result. When software writes to a register with ignored bit fields, it
preserves the ignored bit fields.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 53

4.5.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a 1
to their bit position. Reads to write-only bit positions generate undefined results. Upon reads to registers
with write-only bits, software masks out all write-only bits.

4.5.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the operation of
other unrelated devices, or allows other unrelated devices to interfere with its behavior. This condition is
not supportable and can cause platform failures. ACPI provides no support for cross device dependencies
and suggests that devices be designed to not exhibit this behavior. The following two examples describe
cross device dependencies:

45.4.1 Example 1: Related Device Interference

This example illustrates a cross device dependency where a device interferes with the proper operation of
other unrelated devices. Device A has a dependency that when it is being configured it blocks all accesses
that would normally be targeted for Device B. Thus, the device driver for Device B cannot access Device B
while Device A is being configured; therefore, it would need to synchronize access with the driver for
Device A. High performance, multithreaded operating systems cannot perform this kind of synchronization
without seriously impacting performance.

To further illustrate the point, assume that Device A is a serial port and Device B is a hard drive controller.
If these devices demonstrate this behavior, then when a software driver configures the serial port, accesses
to the hard drive need to block. This can only be done if the hard disk driver synchronizes access to the disk
controller with the serial driver. Without this synchronization, hard drive data will be lost when the serial
port is being configured.

4.5.4.2 Example 2: Unrelated Device Interference

This example illustrates a cross-device dependency where a device demonstrates a behavior that allows
other unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior
that requires atomic back-to-back write accesses to successfully write to its registers; if any other platform
access is able to break between the back-to-back accesses, then the write to Device A is unsuccessful. If the
Device A driver is unable to generate atomic back-to-back accesses to its device, then it relies on software
to synchronize accesses to its device with every other driver in the system; then a device cross dependency
is created and the platform is prone to Device A failure.

4.6 ACPI Hardware Features

This section describes the different hardware features defined by the ACPI interface. These features are
categorized as the following:

e Fixed Hardware Features

e Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations described
by the ACPI programming model. Generic hardware features reside in one of four address spaces (system
/O, system memory, PCI configuration, embedded controller, or serial device 1/O space) and are described
by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware
features are optional, if implemented they must be implemented as described since OSPM manipulates the
registers of fixed hardware devices and expects the defined behavior. Functional fixed hardware provides
functional equivalents of the fixed hardware feature interfaces as described in section 4.1.1, “Functional
Fixed Hardware.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

54 Advanced Configuration and Power Interface Specification

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied AML code
(for more information, see section 5, “ACPI Software Programming Model”), which can be written to
support a wide variety of hardware. Also, ACPI provides specialized control methods that provide
capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A good
understanding of this section and section 5 of this specification will give designers a good understanding of
how to design hardware to take full advantage of an ACPI-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many

types of hardware not listed.

Table 4-1 Feature/Programming Model Summary

Feature Name

Description

Programming Model

Power Management Timer

24-bit or 32-bit free running timer.

Fixed Hardware Feature Control
Logic

Power Button

User pushes button to switch the
system between the working and
sleeping states.

Fixed Hardware Event and
Control Logic or Generic
Hardware Event and Logic

Sleep Button

User pushes button to switch the
system between the working and
sleeping state.

Fixed Hardware Event and
Control Logic or Generic
Hardware Event and Logic

Power Button Override

User sequence (press the power
button for 4 seconds) to turn off a
hung system.

Real Time Clock Alarm

Programmed time to wake the
system.

Optional Fixed Hardware Event”

Sleep/Wake Control Logic

Logic used to transition the system
between the sleeping and working
states.

Fixed Hardware Control and
Event Logic

system’s lid is open or closed
(mobile systems only).

Embedded Controller ACPI Embedded Controller protocol | Generic Hardware Event Logic,
Interface and interface, as described in section | must reside in the general-
12, “ACPI Embedded Controller purpose register block
Interface Specification.”
Legacy/ACPI Select Status bit that indicates the system is | Fixed Hardware Control Logic
using the legacy or ACPI power
management model (SCI_EN).
Lid switch Button used to indicate whether the Generic Hardware Event Feature

C1 Power State

Processor instruction to place the
processor into a low-power state.

Processor ISA

C2 Power Control

Logic to place the processor into a
C2 power state.

Fixed Hardware Control Logic

C3 Power Control

Logic to place the processor into a

Fixed Hardware Control Logic

? RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 55

Feature Name Description Programming Model

C3 power state.

Thermal Control Logic to generate thermal events at Generic Hardware Event and
specified trip points. Control Logic (See description
of thermal logic in section 3.10,
“Thermal Management.”)

Device Power Management | Control logic for switching between | Generic Hardware control logic
different device power states.

AC Adapter Logic to detect the insertion and Generic Hardware event logic
removal of the AC adapter.

Docking/device insertion Logic to detect device insertion and Generic Hardware event logic

and removal removal events.

4.7 ACPI Register Model

ACPI hardware resides in one of six address spaces:
e System I/O

System memory

PCI configuration

SMBus

Embedded controller

Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The
ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed hardware
registers are required to implement ACPI-defined interfaces. The generic hardware registers are needed for
any events generated by value-added hardware.

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in
memory at boot-up) that contains a list of pointers to the different fixed hardware register blocks used by
OSPM. The bits within these registers have attributes defined for the given register block. The types of
registers that ACPI defines are:

e Status/Enable Registers (for events)

e Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation definition
that needs to be followed (unless otherwise noted), which is illustrated by the following diagram:

Status Bit

Event Input >—|X|—D—> Event Output

Enable Bit é

Figure 4-4 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be
cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or
resetting of the status bit; it only determines if the SET status bit will generate an “Event Output,” which
generates an SCI when set if its enable bit is set.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

56 Advanced Configuration and Power Interface Specification

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each bit location within a register grouping is fixed and cannot
be changed. The bits within a register grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within a register grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chips to the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved bits, or
unused bits within a register block always return zero for reads and have no side effects for writes (which is
a requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object \ Sx
contains a SLP_TYPa and a SLP_TYPD field. That is, the object returns a package with two integer values
of 0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed by the

SLP TYPb value within the field to the “B” register block. All other bit locations will be written with the
same value. Also, OSPM does not read the SLP_TYPx value but throws it away.

& ¢ @

Register Block A %.% %

Figure 4-5 Example Fixed Hardware Feature Register Grouping

*°

Register
Grouping

As an example, the above diagram represents a register grouping consisting of register block A and register
block b. Bits “a” and “d” are implemented in register block B and register block A returns a zero for these
bit positions. Bits “b”, “c” and “e” are implemented in register block A and register block B returns a zero
for these bit positions. All reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer from
the FADT. These addresses are set by the OEM as static resources, so they are never changed—OSPM
cannot re-map ACPI resources. The following register blocks are defined:

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 57

Registers Register Blocks Register Groupings
PQAQESEE) PMla_EVT_BLK
PM1b STS :>— PM1 EVT Grouping
PM1b_EN ~ }——PM1b_EVT_BLK
PMla_CNT PMla_CNT_BLK
:>— PM1 CNT Grouping
PM1b_CNT PM1b_CNT_BLK
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT
P_LVL2 37 P_BLK Processor Block
P_LVL3
Gggl%sgz F——— GPEO_BLK General Purpose Event 0
= Block
GPE1_STS j
GPE1_EN GPE1_BLK General Purpose Event 1
Block

Figure 4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a EVT and PM1b_EVT register blocks, which contain the
fixed hardware feature event bits. Each event register block (if implemented) contains two registers: a
status register and an enable register. Each register grouping has a defined bit position that cannot be
changed; however, the bit can be implemented in either register block (A or B). The A and B register
blocks for the events allow chipsets to vary the partitioning of events into two or more chips. For read
operations, OSPM will generate a read to the associated A and B registers, OR the two values together, and
then operate on this result. For write operations, OSPM will write the value to the associated register in
both register blocks. Therefore, there are two rules to follow when implementing event registers:

e Reserved or unimplemented bits always return zero (control or enable).

e Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PMla CNT BLK and PM1b_CNT BLK register blocks. Each register block is associated with a single
control register. Each register grouping has a defined bit position that cannot be changed; however, the bit
can be implemented in either register block (A or B). There are two rules to follow when implementing
CNT registers:

e Reserved or unimplemented bits always return zero (control or enable).

e Writes to reserved or unimplemented bits have no affect.

The PM2 CNT BLK register block currently contains a single bit for the arbiter disable function. The
general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere; however, the top-
level generic event resides in one of the general-purpose register blocks. Any generic feature event status
not in the general-purpose register space is considered a child or sibling status bit, whose parent status bit is
in the general-purpose event register space. Notice that it is possible to have N levels of general-purpose
events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPEO_BLK or the GPE1_BLK.
Each register block is pointed to separately from within the FADT. Each register block is further broken
into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the general-purpose event
registers follow the event model for the fixed hardware event registers.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

58 Advanced Configuration and Power Interface Specification

4.7.1 ACPI Register Summary
The following tables summarize the ACPI registers:

Table 4-2 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)
PMla STS | PM1_EVT LEN/2 <PMla_EVT BLK >
PMla EN | PM1_EVT LEN/2 <PMla_EVT BLK >+PM1_EVT LEN/2
PMI1b STS | PM1 _EVT LEN/2 <PMI1b_EVT BLK >
PM1b EN | PM1_EVT LEN/2 <PM1b_EVT BLK >+PM1 _EVT LEN/2
Table 4-3 PM1 Control Registers
Register Size (Bytes) Address (relative to register block)
PM1_CNTa | PM1_CNT_LEN <PMla_CNT BLK >
PM1_CNTb | PMI_CNT _LEN <PMI1b_CNT BLK >
Table 4-4 PM2 Control Register
Register Size (Bytes) Address (relative to register block)
PM2_CNT | PM2 _CNT_LEN <PM2_CNT BLK >
Table 4-5 PM Timer Register
Register Size (Bytes) Address (relative to register block)
PM TMR | PM TMR LEN <PM_TMR BLK >
Table 4-6 Processor Control Registers

Register | Size (Bytes) | Address (relative to register block)
P_CNT 4 Either <P_BLK> or specified by the PTC object (See section 8.3.1, “PTC

[Processor Throttling Control].”)
PLVL2 |1 <P BLK>+4h
P LVL3 |1 <P BLK>+5h

Table 4-7 General-Purpose Event Registers
Register Size (Bytes) Address (relative to register block)
GPEO_STS | GPEO_LEN/2 <GPE0 BLK>
GPEO_EN GPEO_LEN/2 <GPEO_BLK>+GPEO LEN/2
GPE1_STS GPE1_LEN/2 <GPE1_BLK>
GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1 LEN/2

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 59

4.7.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: the PM1la EVT BLK is a required register
block when the following ACPI interface categories are required by a class specific platform design guide:
e Power management timer control/status

Processor power state control/status

Global Lock related interfaces

Power or Sleep button (fixed register interfaces)

System power state controls (sleeping/wake control)

The PM1b_EVT BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b EVT BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same size:
the PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is variable and is
described by the PM1_EVT LEN field in the FADT, which indicates the total length of the register block
in bytes. Hence if a length of ““4” is given, this indicates that each register contains two bytes of I/O space.
The PM1 event register block has a minimum size of 4 bytes.

4.7.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PMla CNT BLK is a required
register block when the following ACPI interface categories are required by a class specific platform design
guide:

e SCI/SMI routing control/status for power management and general-purpose events

e Processor power state control/status

e Global Lock related interfaces

e System power state controls (sleeping/wake control)

The PM1b_CNT BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b CNT BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The length of
the register is variable and is described by the PM1 CNT_LEN field in the FADT, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register

The PM2 control register is contained in the PM2_ CNT BLK register block. The FADT contains a length
variable for this register block (PM2 CNT LEN) that is equal to the size in bytes of the PM2 CNT register
(the only register in this register block). This register block is optional, if not supported its block pointer
and length contain a value of zero.

4.7.1.4 PM Timer Register

The PM timer register is contained in the PM_TMR_BLK register block, which is a required register block
when the power management timer control/status ACPI interface category is required by a class specific
platform design guide.

This register block contains the register that returns the running value of the power management timer. The
FADT also contains a length variable for this register block (PM_TMR_LEN) that is equal to the size in
bytes of the PM_TMR register (the only register in this register block).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

60 Advanced Configuration and Power Interface Specification

4.7.1.5 Processor Control Block (P_BLK)

There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains the
processor control register (P_CNT-a 32-bit performance control configuration register), and the P LVL2
and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls the behavior of the
processor clock logic for that processor, the P LVL2 register is used to place the CPU into the C2 state,
and the P_LVL3 register is used to place the processor into the C3 state.

4.7.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPEO BLK and GPE1_BLK. These are separate register blocks and are not a register grouping, because
there is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own
length variable in the FADT, where GPEO_LEN and GPE1_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx EN (where x is 0 or 1).
The length of the GPEO_STS and GPEO_EN registers is equal to half the GPEO_LEN. The length of the
GPE1 STS and GPE1_EN registers is equal to half the GPE1 LEN. If a generic register block is not
supported then its respective block pointer and block length values in the FADT table contain zeros. The
GPEO_LEN and GPE1_LEN do not need to be the same size.

4.7.2 Fixed Hardware Features
This section describes the fixed hardware features defined by ACPIL.

4.7.2.1 Power Management Timer

The ACPI specification requires a power management timer that provides an accurate time value used by
system software to measure and profile system idleness (along with other tasks). The power management
timer provides an accurate time function while the system is in the working (GO) state. To allow software to
extend the number of bits in the timer, the power management timer generates an interrupt when the last bit
of the timer changes (from 0 to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management
timer. The PM Timer is accessed directly by OSPM, and its programming model is contained in fixed
register space. The programming model can be partitioned in up to three different register blocks. The
event bits are contained in the PM1_EVT register grouping, which has two register blocks, and the timer
value can be accessed through the PM_TMR_BLK register block. A block diagram of the power
management timer is illustrated in the following figure:

TMR_STS
L PM1x_STS.0
_Counter PMTMR_PME
3.579545 MHH»—P15(23/31-0)
- 24/32 TMR_EN
PM1x_EN.0
TMR_VAL

PM_TMR.0-23/0-31

Figure 4-7 Power Management Timer

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 61

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-bit or
24-bit timer. The programming model for the PM Timer consists of event logic, and a read port to the
counter value. The event logic consists of an event status and enable bit. The status bit is set any time the
last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the TMR_EN bit is set, then the
setting of the TMR_STS will generate an ACPI event in the PM1_EVT register grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate a larger timer.

OSPM uses the read-only TMR VAL field (in the PM TMR register grouping) to read the current value of
the timer. OSPM never assumes an initial value of the TMR_ VAL field; instead, it reads an initial
TMR_VAL upon loading OSPM and assumes that the timer is counting. It is allowable to stop the Timer
when the system transitions out of the working (G0/S0) state. The only timer reset requirement is that the
timer functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the accuracy
of reading the timer.

4.7.2.2 Console Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the GO working
state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a recommended
mechanism to unconditionally transition the platform from a hung GO working state to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such, these
ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:

e A single-button model that generates an event for both sleeping and entering the soft-off state. The
function of the button can be configured using OSPM UL

e A dual-button model where the power button generates a soft-off transition request and a sleeping
button generates a sleeping transition request. The type of button implies the function of the button.

Control of these button events is either through the fixed hardware programming model or the generic
hardware programming model (control method based). The fixed hardware programming model has the
advantage that OSPM can access the button at any time, including when the system is crashed. In a crashed
system with a fixed hardware power button, OSPM can make a “best” effort to determine whether the
power button has been pressed to transition to the system to the soft-off state, because it doesn’t require the
AML interpreter to access the event bits.

4.7.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-button
model, the user button acts as both a power button for transitioning the system between the GO and G2
states and a sleeping button for transitioning the system between the GO and G1 states. The action of the
user pressing the button is determined by software policy or user settings. In the dual-button model, there
are separate buttons for sleeping and power control. Although the buttons still generate events that cause
software to take an action, the function of the button is now dedicated: the sleeping button generates a
sleeping request to OSPM and the power button generates a waking request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Table 4-8 Power Button Support

Indicated Support PWR_BUTTON Flag | Power Button Device Object
Fixed hardware power button | Clear Absent
Control method power button | Set Present

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

62 Advanced Configuration and Power Interface Specification

The power button can also have an additional capability to unconditionally transition the system from a
hung working state to the G2 soft-off state. In the case where OSPM event handler is no longer able to
respond to power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state. This feature can be used when the platform
doesn’t have a mechanical off button, which can also provide this function. ACPI defines that holding the
power button active for four seconds or longer will generate a power button override event.

4.7.2.2.1.1 Fixed Power Button

Seb o PWRBTN
PWRBTN# EL;’;ECE —{>o—‘ StPtWRBTh'.“ P Over-ride
atemachine PWRBTN Event
PWRBTN_STS
PMix_STS.8

PWRBTN_EN
PM1x_EN.8

Figure 4-8 Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x EVT BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the power button, the power
button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is
set and the power button status bit is set (PWRBTN_STS) due to a button press while the system is in the
GO state, then an SCI is generated. OSPM responds to the event by clearing the PWRBTN_STS bit. The
power button logic provides debounce logic that sets the PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power button
press after the button press that transitioned the system into the sleeping state unconditionally sets the
power button status bit and wakes the system, regardless of the value of the power button enable bit. OSPM
responds by clearing the power button status bit and waking the system.

4.7.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This allows
the power button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the power button is implemented using generic hardware, then the
OEM needs to define the power button as a device with an _HID object value of “PNPOCOC,” which then
identifies this device as the power button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a power button event was generated. While the system is in the working
state, a power button press is a user request to transition the system into either the sleeping (G1) or soft-off
state (G2). In these cases, the power button event handler issues the Notify command with the device
specific code of 0x80. This indicates to OSPM to pass control to the power button driver (PNPOCOC) with
the knowledge that a transition out of the GO state is being requested. Upon waking from a G1 sleeping
state, the AML event handler generates a notify command with the code of 0x2 to indicate it was
responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform and
only requires an _HID. An example definition follows.

This example ASL code performs the following:

e Creates a device named “PWRB” and associates the Plug and Play identifier (through the HID
object) of “PNPOCOC.”

e The Plug and Play identifier associates this device object with the power button driver.

e Creates an operational region for the control method power button’s programming model: System
I/O space at 0x200.

o Fields that are not accessed are written as zeros. These status bits clear upon writing a 1 to their bit
position, therefore preserved would fail in this case.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 63

o Creates a field within the operational region for the power button status bit (called PBP). In this
case the power button status bit is a child of the general-purpose event status bit 0. When this bit is
set, it is the responsibility of the ASL-code to clear it (OSPM clears the general-purpose status
bits). The address of the status bit is 0x200.0 (bit 0 at address 0x200).

e Creates an additional status bit called PBW for the power button wake event. This is the next bit
and its physical address would be 0x200.1 (bit 1 at address 0x200).

e Generates an event handler for the power button that is connected to bit 0 of the general-purpose
event status register 0. The event handler does the following:

e Clears the power button status bit in hardware (writes a one to it).

e Notifies OSPM of the event by calling the Notify command passing the power button object and
the device specific event indicator 0x80.

// Define a control method power button
Device(_SB.PWRB){
Name(_HID, EISAID(“PNPOCOC™))
Name(_PRW, Package(){0, 0x4})

OperationRegion(\PHO, SystemlO, 0x200, Ox1)

Field(\PHO, ByteAcc, NoLock, WriteAsZeros){
PBP, 1, // sleep/off request
PBW, 1 // wakeup request

}
} 7/ end of power button device object

Scope(_GPE){ // Root level event handlers
Method(_L00){ // uses bit 0 of GPO_STS register
1TFQ\PBP){
Store(One, \PBP) // clear power button status

Notify(_SB.PWRB, 0x80) // Notify OS of event

}

ITQ\PBW){
Store(One, \PBW)
Notify(_SB.PWRB, 0x2)

T
} 7/ end of _LOO handler
} 7/ end of _GPE scope

47.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four seconds
while the system is in the working state, a hardware event is generated and the system will transition to the
soft-off state. This hardware event is called a power button override. In reaction to the power button
override event, the hardware clears the power button status bit (PWRBTN_STS).

4.7.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request OSPM to
transition the platform between the GO working and G1 sleeping states. Support for a sleep button is
indicated by a combination of the SLEEP_BUTTON flag and the sleep button device object:

Table 4-9 Sleep Button Support

Indicated Support SLEEP_BUTTON Flag | Sleep Button Device Object
No sleep button Set Absent
Fixed hardware sleep button Clear Absent
Control method sleep button Set Present

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

64 Advanced Configuration and Power Interface Specification

4.7.2.2.2.1 Fixed Hardware Sleeping Button

SLPBTN_STS
PM1x_STS.9

SLPBTN# Def:;?e > O Sta?eL ;izﬁine
SLPBTN Event
SLPBTN_EN
PM1x_EN.9

Figure 4-9 Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model in the PM1x_EVT BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the sleep button, the sleep button
status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button enable bit (SLPBTN_EN)
is set, and the sleep button status bit is set (SLPBTN_STS, due to a button press) while the system is in the
GO state, then an SCI is generated. OSPM responds to the event by clearing the SLPBTN_STS bit. The
sleep button logic provides debounce logic that sets the SLPBTN_STS bit on the button press “edge.”

While the system is sleeping (in either the SO, S1, S2, S3 or S4 states), any further sleep button press (after
the button press that caused the system transition into the sleeping state) sets the sleep button status bit
(SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by clearing the sleep
button status bit and waking the system.

4.7.2.2.2.2 Control Method Sleeping Button

The sleep button programming model can also use the generic hardware programming model. This allows
the sleep button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the sleep button is implemented via generic hardware, then the OEM
needs to define the sleep button as a device with an HID object value of “PNPOCOE”, which then
identifies this device as the sleep button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a sleep button event was generated. While in the working state, a sleep
button press is a user request to transition the system into the sleeping (G1) state. In these cases the sleep
button event handler issues the Notify command with the device specific code of 0x80. This will indicate to
OSPM to pass control to the sleep button driver (PNPOCOE) with the knowledge that the user is requesting
a transition out of the GO state. Upon waking-up from a G1 sleeping state, the AML event handler
generates a Notify command with the code of 0x2 to indicate it was responsible for waking the system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform and
only requires an HID. An example definition is shown below.

The AML code below does the following:

e Creates a device named “SLPB” and associates the Plug and Play identifier (through the HID
object) of “PNPOCOE.”

e The Plug and Play identifier associates this device object with the sleep button driver.

e Creates an operational region for the control method sleep button’s programming model: System
I/O space at 0x201.

o Fields that are not accessed are written as “1s” (these status bits clear upon writing a “1” to their
bit position, hence preserved would fail in this case).

e Creates a field within the operational region for the sleep button status bit (called PBP). In this
case the sleep button status bit is a child of the general-purpose status bit 0. When this bit is set it
is the responsibility of the AML code to clear it (OSPM clears the general-purpose status bits).
The address of the status bit is 0x201.0 (bit 0 at address 0x201).

e Creates an additional status bit called PBW for the sleep button wake event. This is the next bit
and its physical address would be 0x201.1 (bit 1 at address 0x201).

e Generates an event handler for the sleep button that is connected to bit 0 of the general-purpose
status register 0. The event handler does the following:

o C(Clears the sleep button status bit in hardware (writes a “1” to it).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 65

e Notifies OSPM of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

// Define a control method sleep button
Device(_SB.SLPB){
Name(_HID, EISAID(“PNPOCOE™))
Name(_PRW, Package(){0x01, 0x04})
OperationRegion(\Boo, SystemlO, 0x201, O0x1)
Field(\Boo, ByteAcc, NoLock, WriteAsZeros){

SBP, 1, // sleep request
SBW, 1 // wakeup request
} 7/ end of field definition
T
Scope(_GPE){ // Root level event handlers
Method(_ LO1){ // uses bit 1 of GPO_STS register
1TQ\SBP){
Store(One, \SBP) // clear sleep button status
Notify(_SB.SLPB, 0x80) // Notify OS of event
3
ITQASBW){

Store(One, \SBW)
Notify(_SB.SLPB, 0x2)

}
} 7/ end of _LO1 handler
} 7/ end of _GPE scope

4.7.2.3 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working state
upon a wake event. Notice that the S4BIOS state is entered in a different manner (for more information, see
section 15.1.4.2, “The S4BIOS Transition”).

SLP_EN SLP_TYP:3
PMix CNT.S4.13 PMIx CNT.S4.[10-12]
Lo WAK_STS

PM1x_STS.S0.15

Sleeping 3—&

"OR" or all
Wake H — Wakeup/
Events
Sleep
Logic
PWRBTN_OR

Figure 4-10 Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type
of sleep state desired is programmed into the SLP_TYPx field and upon assertion of the SLP_EN the
hardware will sequence the system into the defined sleeping state. OSPM gets values for the SLP TYPx
field from the \ Sx objects defined in the static definition block. If the object is missing OSPM assumes the
hardware does not support that sleeping state. Prior to entering the desired sleeping state, OSPM will read
the designated _Sx object and place this value in the SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows the
user to initiate an Off sequence in the case where the system software is no longer able to recover the
system (the system has hung). ACPI defines that this sequence be initiated by the user pressing the power
button for over 4 seconds, at which point the hardware unconditionally sequences the system to the Off
state. This logic is represented by the PWRBTN_OR signal coming into the sleep logic.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

66 Advanced Configuration and Power Interface Specification

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (GO). The “Wake Status” bit (WAK_STS) is provided for OSPM to “spin-
on” after setting the SLP_ EN/SLP TYP bit fields. When waking from the S1 sleeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-S5 states execution
control is passed to the BIOS software (execution begins at the CPU’s reset vector). The WAK STS bit
provides a mechanism to separate OSPM’s sleeping and waking code during an S1 sequence. When the
hardware has sequenced the system into the sleeping state (defined here as the processor is no longer able
to execute instructions), any enabled wake event is allowed to set the WAK_ STS bit and sequence the
system back on (to the GO state). If the system does not support the S1 sleeping state, the WAK_STS bit
can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. This is accomplished by waking the system;
OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit—placing the
system again in the sleeping state.

4.7.2.4 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate a wake event when the system is in a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STS and RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a possible
wake source; however, it might miss certain wake events. If implemented, the RTC wake feature is
required to work in the following sleeping states: S1-S3. S4 wake is optional and supported through the
RTC_S4 flag within the FADT (if set, then the platform supports RTC wake in the S4 state)’.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

RTC_STS
PM1x_STS.10

Real Time Clock
(RTO) X RTC Wake-up
Event
RTC_EN
PM1x_EN.10

Figure 4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIX RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status and
enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. This also gives the platform the capability of indicating an RTC
wake source without consuming a GPE bit, as would be required if RTC wake was not implemented using
the fixed hardware RTC feature. If the fixed hardware feature event bits are not supported, then OSPM will
attempt to determine this by reading the RTC’s status field. If the platform implements the RTC fixed
hardware feature, and this hardware consumes resources, the FIX method can be used to correlate these
resources with the fixed hardware. See section 6.2.4, “ FIX (Fixed Register Resource Provide”, for details.

3 Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will
disable the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 67

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-
hour alarm). Optional extensions are provided for the following features:

o Day Alarm. The DAY ALRM field points to an optional CMOS RAM location that selects the
day within the month to generate an RTC alarm.

e Month Alarm. The MON_ALRM field points to an optional CMOS RAM location that selects
the month within the year to generate an RTC alarm.

e Centenary Value. The CENT field points to an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQS8 in IA-PC architecture systems). OSPM will
insure that the periodic and update interrupt sources are disabled prior to sleeping. This allows the RTC’s
interrupt pin to serve as the source for the RTC_STS bit generation. Note however that if the RTC interrupt
pin is used for RTC_STS generation, the RTC_STS bit value may not be accurate when waking from S4.
If this value is accurate when waking from S4, the platform should set the S4 RTC STS VALID flag, so
that OSPM can utilize the RTC_STS information.

Table 4-10 Alarm Field Decodings within the FADT

Address (Location) in RTC CMOS

Field Value RAM (Must be Bank 0)

DAY _ALRM | Eight bit value that can represent 0x01-0x31 | The DAY ALRM field in the FADT
days in BCD or 0x01-0x1F days in binary. will contain a non-zero value that
Bits 6 and 7 of this field are treated as represents an offset into the RTC’s
Ignored by software. The RTC is initialized CMOS RAM area that contains the day
such that this field contains a “don’t care” alarm value. A value of zero in the
value when the BIOS switches from legacy DAY _ALRM field indicates that the day
to ACPI mode. A don’t care value can be any | alarm feature is not supported.
unused value (not 0x1-0x31 BCD or 0x01-
0x1F hex) that the RTC reverts back to a 24
hour alarm.

MON_ALRM | Eight bit value that can represent 01-12 The MON_ALRM field in the FADT
months in BCD or 0x01-0xC months in will contain a non-zero value that
binary. The RTC is initialized such that this represents an offset into the RTC’s
field contains a don’t care value when the CMOS RAM area that contains the
BIOS switches from legacy to ACPI mode. A | month alarm value. A value of zero in
“don’t care” value can be any unused value the MON_ALRM field indicates that the
(not 1-12 BCD or x01-xC hex) that the RTC | month alarm feature is not supported. If
reverts back to a 24 hour alarm and/or 31 day | the month alarm is supported, the day
alarm). alarm function must also be supported.

CENTURY 8-bit BCD or binary value. This value The CENTURY field in the FADT will

indicates the thousand year and hundred year
(Centenary) variables of the date in BCD (19
for this century, 20 for the next) or binary
(x13 for this century, x14 for the next).

contain a non-zero value that represents
an offset into the RTC’s CMOS RAM
area that contains the Centenary value
for the date. A value of zero in the
CENTURY field indicates that the
Centenary value is not supported by this
RTC.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

68 Advanced Configuration and Power Interface Specification

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware
sequence. ACPI operating systems use the SCI interrupt handler to respond to events, while legacy systems
use some type of transparent interrupt handler to respond to these events (that is, an SMI interrupt handler).
ACPI-compatible hardware can choose to support both legacy and ACPI modes or just an ACPI mode.
Legacy hardware is needed to support these features for non-ACPI-compatible operating systems. When
the ACPI OS loads, it scans the BIOS tables to determine that the hardware supports ACPI, and then if the
it finds the SCI_EN bit reset (indicating that ACPI is not enabled), issues an ACPI activate command to the
SMI handler through the SMI command port. The BIOS acknowledges the switching to the ACPI model of
power management by setting the SCI_EN bit (this bit can also be used to switch over the event mechanism
as illustrated below):

SCI_EN
PM1x_CNT.O
Power —— » SMI_EVNT
Management —————— bec
i —>

Event Logic . SCI_EVNT
Shareable

Interrupt

Figure 4-12 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt events to
the SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt
logic. This bit always returns set for ACPI-compatible hardware that does not support a legacy power
management mode (in other words, the bit is wired to read as “1”” and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses
a shareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt is mapped to
(see section 5.2.6, “System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a hardware
event (for example, SMI for IA-PC processors). OSPM uses this register to make the hardware switch in
and out of ACPI mode. Within the FADT are three values that signify the address (SMI_CMD) of this port
and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state
(ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would
occur:
e ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.

e OSPM does an OUT to the SMI_CMD port with the data in the ACPI_ENABLE field of the
FADT.

e OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would
occur:

e ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.

e OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the
FADT.

e OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the
Legacy to ACPI transition stated above.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 69

4.7.2.6 Processor Control

The ACPI specification defines several processor controls including power state control, throttling control,
and performance state control. See Section 8, “Processor Power and Performance State Configuration and
Control,” for a complete description of the processor controls.

4.7.3 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.7.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or all placed in a single chip. Although the
bits can be split between the two register blocks (each register block has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 PM1 Status Registers

Register Location: <PMla EVT_BLK / PM1b_EVT_BLK> System 1/0 or Memory Space
Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT LEN / 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between two
registers: PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PMla EVT BLK or PM1b_EVT BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state this register is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the GO working state this register is cleared prior to entering the GO working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits

Bit Name Description

0 TMR_STS This is the timer carry status bit. This bit gets set any time the 23"/31*
bit of a 24/32-bit counter changes (whenever the MSB changes from
clear to set or set to clear. While TMR_EN and TMR_STS are set, an
interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS This is the bus master status bit. This bit is set any time a system bus
master requests the system bus, and can only be cleared by writing a “1”’
to this bit position. Notice that this bit reflects bus master activity, not
CPU activity (this bit monitors any bus master that can cause an
incoherent cache for a processor in the C3 state when the bus master
performs a memory transaction).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

70 Advanced Configuration and Power Interface Specification

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits (continued)

Bit

Name

Description

GBL_STS

This bit is set when an SCI is generated due to the BIOS wanting the
attention of the SCI handler. BIOS will have a control bit (somewhere
within its address space) that will raise an SCI and set this bit. This bit is
set in response to the BIOS releasing control of the Global Lock and
having seen the pending bit set.

Reserved

Reserved. These bits always return a value of zero.

PWRBTN_STS

This optional bit is set when the Power Button is pressed. In the system
working state, while PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off state, a wake event is
generated when the power button is pressed (regardless of the
PWRBTN_EN bit setting). This bit is only set by hardware and can only
be reset by software writing a “1” to this bit position.

ACPI defines an optional mechanism for unconditional transitioning a
system that has stopped working from the GO working state into the G2
soft-off state called the power button override. If the Power Button is
held active for more than four seconds, this bit is cleared by hardware
and the system transitions into the G2/S5 Soft Off state
(unconditionally).

Support for the power button is indicated by the PWR_BUTTON flag in
the FADT being reset (zero). If the PWR_BUTTON flag is set or a
power button device object is present in the ACPI Namespace, then this
bit field is ignored by OSPM.

If the power button was the cause of the wake (from an S1-S4 state),
then this bit is set prior to returning control to OSPM.

SLPBTN_STS

This optional bit is set when the sleep button is pressed. In the system
working state, while SLPBTN_EN and SLPBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off states a wake event is
generated when the sleeping button is pressed and the SLPBTN_EN bit
is set. This bit is only set by hardware and can only be reset by software
writing a “1” to this bit position.

Support for the sleep button is indicated by the SLP. BUTTON flag in
the FADT being reset (zero). If the SLP. BUTTON flag is set or a sleep
button device object is present in the ACPI Namespace, then this bit
field is ignored by OSPM.

If the sleep button was the cause of the wake (from an S1-S4 state), then
this bit is set prior to returning control to OSPM.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 71

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits (continued)

Bit Name Description

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts the
RTC IRQ signal). Additionally, if the RTC_EN bit is set then the setting
of the RTC_STS bit will generate a power management event (an SCI,
SMI, or resume event). This bit is only set by hardware and can only be
reset by software writing a “1” to this bit position.

If the RTC was the cause of the wake (from an S1-S3 state), then this bit
is set prior to returning control to OSPM. If the RTC _S4 flag within the
FADT is set, and the RTC was the cause of the wake from the S4 state),
then this bit is set prior to returning control to OSPM.

11 Ignore This bit field is ignored by software.
12-13 | Reserved Reserved. These bits always return a value of zero.
14 PCIEXP_WAKE_STS | This bit is required for chipsets that implement PCI Express. This bit is

set by hardware to indicate that the system woke due to a PCI Express
wakeup event. A PCI Express wakeup event is defined as the PCI
Express WAKE# pin being active , one or more of the PCI Express ports
being in the beacon state, or receipt of a PCI Express PME message at a
root port. This bit should only be set when one of these events causes the
system to transition from a non-S0 system power state to the SO system
power state. This bit is set independent of the state of the
PCIEXP_WAKE DIS bit.

Software writes a 1 to clear this bit. If the WAKE# pin is still active
during the write, one or more PCI Express ports is in the beacon state or
the PME message received indication has not been cleared in the root
port, then the bit will remain active (i.e. all inputs to this bit are level-
sensitive).

Note: This bit does not itself cause a wake event or prevent entry to a

sleeping state. Thus if the bit is 1 and the system is put into a sleeping
state, the system will not automatically wake.

15 WAK STS This bit is set when the system is in the sleeping state and an enabled
wake event occurs. Upon setting this bit system will transition to the
working state. This bit is set by hardware and can only be cleared by
software writing a “1” to this bit position.

4.7.3.1.2 PM1 Enable Registers

Register Location: <PMla EVT_BLK / PMl1b_EVT BLK> + PM1_EVT_LEN / 2 System 1/0 or
Memory Space

Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT_LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between two
registers: PM1la_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PMla_ EVT BLK or PM1b_EVT BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 Enable registers are done through byte or word
accesses.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

72 Advanced Configuration and Power Interface Specification

For ACPI/legacy systems, when transitioning from the legacy to the GO working state the enables are
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the GO working state this register is cleared prior to entering the GO working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats the enable bits as write as zero.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 73

Table 4-12 PM1 Enable Registers Fixed Hardware Feature Enable Bits

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an
SCI event is generated anytime the TMR_STS bit is set. When this bit
is reset then no interrupt is generated when the TMR _STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS
bit are set, an SCI is raised.

6-7 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit
to generate a power management event (SCI or wake). The
PWRBTN_STS bit is set anytime the power button is asserted. The
enable bit does not have to be set to enable the setting of the
PWRBTN_STS bit by the assertion of the power button (see
description of the power button hardware).

Support for the power button is indicated by the PWR_BUTTON flag
in the FADT being reset (zero). If the PWR_BUTTON flag is set or a
power button device object is present in the ACPI Namespace, then
this bit field is ignored by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit
to generate a power management event (SCI or wake). The
SLPBTN_STS bit is set anytime the sleep button is asserted. The
enable bit does not have to be set to enable the setting of the
SLPBTN_STS bit by the active assertion of the sleep button (see
description of the sleep button hardware).

Support for the sleep button is indicated by the SLP. BUTTON flag in
the FADT being reset (zero). If the SLP. BUTTON flag is set or a
sleep button device object is present in the ACPI Namespace, then this
bit field is ignored by OSPM.

10 RTC _EN This optional bit is used to enable the setting of the RTC_STS bit to
generate a wake event. The RTC_STS bit is set any time the RTC
generates an alarm.

11-13 | Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE DIS | This bit is required for chipsets that implement PCI Express. This bit
disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no
impact on the value of the PCIEXP WAKE STS bit.

15 Reserved Reserved. These bits always return a value of zero.

4.7.3.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT), the
bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

74 Advanced Configuration and Power Interface Specification

4.7.3.2.1 PM1 Control Registers

Register Location: <PMla_CNT_BLK / PM1b_CNT_BLK> System 1/0 or Memory Space
Default Value: 00h

Attribute: Read/Write

Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split between
two registers: PMla CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PMla CNT BLK or PM1b_CNT_ BLK. The values for these pointers to
the register space are found in the FADT. Accesses to PM1 control registers are accessed through byte and
word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-13 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SMI interrupt for
the following events. When this bit is set, then power management events will
generate an SCI interrupt. When this bit is reset power management events
will generate an SMI interrupt. It is the responsibility of the hardware to set or
reset this bit. OSPM always preserves this bit position.

1 BM RLD When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the CO state. When this bit is reset,
the generation of a bus master request does not affect any processor in the C3
state.

2 GBL RLS This write-only bit is used by the ACPI software to raise an event to the BIOS
software, that is, generates an SMI to pass execution control to the BIOS for
IA-PC platforms. BIOS software has a corresponding enable and status bit to
control its ability to receive ACPI events (for example, BIOS_EN and
BIOS_STS). The GBL RLS bit is set by OSPM to indicate a release of the
Global Lock and the setting of the pending bit in the FACS memory structure.

3-8 Reserved Reserved. These bits are reserved by OSPM.
9 Ignore Software ignores this bit field.
10-12 | SLP TYPx Defines the type of sleeping state the system enters when the SLP_EN bit is

set to one. This 3-bit field defines the type of hardware sleep state the system
enters when the SLP_EN bit is set. The \ Sx object contains 3-bit binary
values associated with the respective sleeping state (as described by the
object). OSPM takes the two values from the \ SX object and programs each
value into the respective SLP TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero. Setting this bit
causes the system to sequence into the sleeping state associated with the
SLP TYPx fields programmed with the values from the \ SX object.

14-15 | Reserved Reserved. This field always returns zero.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 75

4.7.3.3 Power Management Timer (PM_TMR)

Register Location: <PM_TMR_BLK> System 1/0 or Memory Space

Default Value: 00h
Attribute: Read-Only
Size: 32 bits

This read-only register returns the current value of the power management timer (PM timer). The FADT
has a flag called TMR VAL _ EXT that an OEM sets to indicate a 32-bit PM timer or reset to indicate a 24-
bit PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This register is accessed as 32
bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-14 PM Timer Bits

Bit Name Description

0-23 TMR VAL This read-only field returns the running count of the power management
timer. This is a 24-bit counter that runs off a 3.579545-MHz clock and counts
while in the SO working system state. The starting value of the timer is
undefined, thus allowing the timer to be reset (or not) by any transition to the
SO state from any other state. The timer is reset (to any initial value), and then
continues counting until the system’s 14.31818 MHz clock is stopped upon
entering its SX state. If the clock is restarted without a reset, then the counter
will continue counting from where it stopped.

24-31 | E TMR VAL | This read-only field returns the upper eight bits of a 32-bit power
management timer. If the hardware supports a 32-bit timer, then this field will
return the upper eight bits; if the hardware supports a 24-bit timer then this
field returns all zeros.

4.7.3.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte
aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-15 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit is
CLEAR the system arbiter is enabled and the arbiter can grant the bus to other
bus masters. When this bit is SET the system arbiter is disabled and the default
CPU has ownership of the system.

OSPM clears this bit when using the C0, C1 and C2 power states.

>0 Reserved Reserved

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

76 Advanced Configuration and Power Interface Specification

4.7.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and control
methods that can be used to control processors, see section 8, “Processor Power and Performance State
Configuration and Control.” This register block is DWORD aligned and the context of this register block is
not maintained across S3 or S4 sleeping states, or the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32

Register Location: Either <P_BLK>: System 1/0 Space
or specified by _PTC Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read/Write
Size: 32 bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling
hardware is programmed as described by the DUTY_ WIDTH and DUTY_ OFFSET values in the FADT.
Software treats all other CLK VAL bits as ignored (those not used by the duty setting value).

Table 4-16 Processor Control Register Bits

Bit Name Description

0-3 CLK VAL | Possible locations for the clock throttling value.

4 THT _EN This bit enables clock throttling of the clock as set in the CLK VAL field.
THT EN bit must be reset LOW when changing the CLK VAL field (changing
the duty setting).

5-31 CLK VAL | Possible locations for the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8

Register Location: Either <P_BLK> + 4: System 1/0 Space
or specified by _CST Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-17 Processor LVL2 Register Bits

Bit Name Description

0-7 P LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C2 power state” to the clock control
logic.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 77

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK> + 5: System 1/0 Space
or specified by _CST Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-18 Processor LVL3 Register Bits

Bit Name Description

0-7 P LVL3 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C3 power state” to the clock control
logic.

4.7.3.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system reset.
When implemented, this mechanism must reset the entire system. This includes processors, core logic, all
buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism is the logical
equivalent to power cycling the machine. Upon gaining control after a reset, OSPM will perform actions in
like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET REG in the FADT (always
accessed via the natural alignment and size described in RESET REG). To reset the machine, software will
write a value (indicated in RESET VALUE in FADT) to the reset register. The RESET REG field in the
FADT indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a function
in bus 0. Therefore, the Address_Space ID value in RESET_REG must be set to I/O space, Memory space,
or PCI Configuration space (with a bus number of 0). As the register is only 8 bits, Register Bit Width
must be 8 and Register Bit Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following a write to this register.

4.7.4 Generic Hardware Registers

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system 1/O, system
memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained in
the general-purpose event registers. The general-purpose event registers are pointed to by the GPEO_ BLK
and GPE1_BLK register blocks, and the generic hardware registers can be in any of the defined ACPI
address spaces. A device’s generic hardware programming model is described through an associated object
in the ACPI Namespace, which specifies the bit’s function, location, address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipulating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bits reside in either the GPEO_STS or GPE1_STS registers, and “child”
event status bits can reside in generic address space.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

78 Advanced Configuration and Power Interface Specification

The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned
into two chips: a chipset and an embedded controller.

e The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

e The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions using
an OS-transparent interrupt in the embedded controller (represented by the EXTSMI# signal).

@
Momentary % P s _
k=2 »
Q
Power = EC CS# aci
Button PWRBTN# 5 Embedded |+——
= EXTSMI#
S Controller
H c
ACPI-Compatlb S |e EXTPME#
Chip Set 2 pocks | Docking
§ Chip
Momentary o
e
w
LID L
Switch LiD# Ri
—
EXTSMI# SMi-only
SMI Onl 1 I
GPx_REG Events EXTSMI# | | EXTSMI¥, sources
AC_STS
Block ac.
EC_STS
(ZGPSET]—KSD EXTPME# DOCK_STS
} —
EXTPME# | Dock_
EC_EN
sCi# -
Shareable GP_EN.0
Interrupt RI_STS

GP_STS.1
RI_EN
GP_EN.1

LID_STS
GP_STS.2
Debounce

LID_POL
ELID_EN ® sa32
GP_EN.2

Other SCI
sources

Figure 4-13 Example of General-Purpose vs. Generic Hardware Events

At the top level, the generic events in the GPEX_STS register are the:
e Embedded controller interrupt, which contains two query events: one for AC detection and one for
docking (the docking query event has a child interrupt status bit in the docking chip).
e Ring indicate status (used for waking the system).
e Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events is
active.
e A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this event;
OSPM will then schedule for execution the control method associated with query value 34.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 79

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. OSPM will then schedule the control method associated with the query
value of 35 to be executed, which services the docking event.

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEX EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is set
and LID is set) or closed (LID_POL is clear and LID is clear). This control bit resides in generic I/O space
(in this case, bit 2 of system 1/O space 33h) and would be manipulated with a control method associated
with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEX register blocks. However,
AML code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACPI specification also
provides specific control methods for notifying OSPM of certain power management and Plug and Play
events. Section 5, “ACPI Software Programming Model,” provides information on the types of hardware
functionality that support the different types of subsystems. The following is a list of features supported by
ACPI. The list is not intended to be complete or comprehensive.

e Device insertion/ejection (for example, docking, device bay, A/C adapter)
Batteries®
Platform thermal subsystem
Turning on/off power resources
Mobile lid Interface
Embedded controller
System indicators
OEM-specific wake events
Plug and Play configuration

4.7.4.1 General-Purpose Event Register Blocks

ACPI supports up to two general-purpose register blocks as described in the FADT (see section 5, “ACPI
Software Programming Model”) and an arbitrary number of additional GPE blocks described as devices
within the ACPI namespace. Each register block contains two registers: an enable and a status register.
Each register block is 32-bit aligned. Each register in the block is accessed as a byte. It is up to the specific
design to determine if these bits retain their context across sleeping or soft-off states. If they lose their
context across a sleeping or soft-off state, then BIOS resets the respective enable bit prior to passing control
to the OS upon waking.

4.7.4.1.1 General-Purpose Event 0 Register Block

This register block consists of two registers: The GPEO_STS and the GPEO_EN registers. Each register’s
length is defined to be half the length of the GPEO register block, and is described in the ACPI FADT’s
GPEO BLK and GPEO BLK LEN operators. OSPM owns the general-purpose event resources and these
bits are only manipulated by OSPM; AML code cannot access the general-purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various
events.

* ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined
standard for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control
methods for use by OEMs that use a proprietary “control method” battery interface.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

80 Advanced Configuration and Power Interface Specification

The platform designer would then wire the GPEs to the various value-added event hardware and the AML
code would describe to OSPM how to utilize these events. As such, there will be the case where a platform
has GPE events that are not wired to anything (they are present in the chip set), but are not utilized by the
platform and have no associated AML code. In such, cases these event pins are to be tied inactive such that
the corresponding SCI status bit in the GPE register is not set by a floating input pin.

4.7.4.1.1.1 General-Purpose Event 0 Status Register

Register Location: <GPEQO_STS> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPEO_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero of
the general-purpose registers. Each available status bit in this register corresponds to the bit with the same
bit position in the GPEO_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a “1” to its respective bit position. For the general-
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.1.2 General-Purpose Event 0 Enable Register

Register Location: <GPEO_EN> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPEO_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPEO_STS register. The
enable bits work similarly to how the enable bits in the fixed-event registers are defined: When the enable
bit is set, then a set status bit in the corresponding status bit will generate an SCI bit. OSPM accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block

This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each register’s
length is defined to be half the length of the GPEI register block, and is described in the ACPI FADT’s
GPE1 BLK and GPE1_BLK LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register

Register Location: <GPE1l_STS> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available
status bit in this register corresponds to the bit with the same bit position in the GPE1_EN register. Each
available status bit in this register is set when the event is active, and can only be cleared by software
writing a “1” to its respective bit position. For the general-purpose event registers, unimplemented bits are
ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 81

4.7.4.1.2.2 General-Purpose Event 1 Enable Register

Register Location: <GPE1_EN> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE1_STS register. The
enable bits work similarly to how the enable bits in the fixed-event registers are defined: When the enable
bit is set, a set status bit in the corresponding status bit will generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

4.7.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used by
the OS as policy input for sleeping the system, or for waking the system from a sleeping state. If used, then
the OEM needs to define the lid switch as a device with an _HID object value of “ PNPOCOD”, which
identifies this device as the lid switch to OSPM. The Lid device needs to contain a control method that
returns its status. The Lid event handler AML code reconfigures the lid hardware (if it needs to) to generate
an event in the other direction, clear the status, and then notify OSPM of the event.

Example hardware and ASL code is shown below for such a design.

e <

O O é 8ms 5

Debounce
Momentary Normally LID_STS

Open push button

LID_POL

Figure 4-14 Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID POL
bit).

The ASL code below defines the following:
e An operational region where the lid polarity resides in address space System address space in registers
0x201.
e A field operator to allow AML code to access this bit: Polarity control bit (LID POL) is called LPOL
and is accessed at 0x201.0.
e A device named \ SB.LID with the following:
e A Plug and Play identifier “PNPOCOD” that associates OSPM with this object.
e Defines an object that specifies a change in the lid’s status bit can wake the system from the S4
sleep state and from all higher sleep states (S1, S2, or S3).
e The lid switch event handler that does the following:
e Defines the lid status bit (LID_STS) as a child of the general-purpose event 0 register bit 1.
e Defines the event handler for the lid (only event handler on this status bit) that does the following:
e Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite
condition).
e Generates a notify to the OS that does the following:
e Passes the\ SB.LID object.
e Indicates a device specific event (notify value 0x80).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

82 Advanced Configuration and Power Interface Specification

// Define a Lid switch
OperationRegion(\PHO, SystemlO, 0x201, Ox1)
Field(\PHO, ByteAcc, NoLock, Preserve) {

LPOL, 1 // Lid polarity control bit
¥

Device(_SB.LID){
Name(_HID, EISAID(*“PNPOCOD™))
Method(_ LID){Return(LPOL)}
Name(_PRW, Package(2){

1, // bit 1 of GPE to enable Lid wakeup
0x04} // can wakeup from S4 state
)
}
Scope(_GPE){ // Root level event handlers
Method(_L01){ // uses bit 1 of GPO_STS register

Not(LPOL, LPOL) // Flip the lid polarity bit
Notify(LID, Ox80) // Notify OS of event

}

47.4.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value added
hardware is contained within the embedded controller while allowing the AML code to access this
hardware in an abstracted fashion.

The embedded controller is defined as a device and must contain a set number of control methods:

e HID with a value of PNPOCO09 to associate this device with the ACPI’s embedded controller’s driver.
e CRS to return the resources being consumed by the embedded controller.

e GPE that returns the general-purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s device
as control methods. An example of defining an embedded controller device is shown below:

Device(ECO) {

// PnP 1D

Name(_HID, EISAID(*“PNPOC097))

// Returns the “Current Resources” of EC

Name (_CRS,

ResourceTemplate(){

10(Decodel6, 0x62, 0x62, 0, 1)
10(Decodel6, 0x66, 0x66, 0, 1)

)
// Define that the EC SCI is bit 0 of the GP_STS register
Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

OperationRegion(\ECO, EmbeddedControl, 0, OxFF)
Field(ECO, ByteAcc, Lock, Preserve) {
// Field definitions

h

Method(Q00){. .}

Method (QFF){. .}
b

For more information on the embedded controller, see section 12, “ACPI Embedded Controller Interface
Specification.”

47.4.2.3 Fan

ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a device
with the Plug and Play ID of “PNPOCOB.” It should then contain a list power resources used to control the
fan.

For more information, see section 9, “ACPI Devices and Device Specific Objects.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 83

5 ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in section 4, “ACPI Hardware Specification.” ACPI also
provides an abstract interface for controlling the power management and configuration of an ACPI system.
Finally, ACPI defines an interface between an ACPI-compatible OS and the system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system
information, features, and methods for controlling those features. These tables list devices on the system
board or devices that cannot be detected or power managed using some other hardware standard, plus their
capabilities as described in section 3, “Overview.” They also list system capabilities such as the sleeping
power states supported, a description of the power planes and clock sources available in the system,
batteries, system indicator lights, and so on. This enables OSPM to control system devices without needing
to know how the system controls are implemented.

Topics covered in this section are:
e The ACPI system description table architecture is defined, and the role of OEM-provided
definition blocks in that architecture is discussed.
e The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the platform firmware. This structure contains the address of the Extended System
Description Table (RSDT), which references other description tables that provide data to OSPM, supplying
it with knowledge of the base system’s implementation and configuration (see Figure 5-1).

Located in system's memory address space
A

(1
Root System Extended System
Description Pointer Description Table

RSD PTR
Pointer
Pointer Entry
Entry contents contents
Entry

Figure 5-1 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tables is to define for OSPM various industry-standard implementation details. Such definitions enable
various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needs to control hardware directly.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

84 Advanced Configuration and Power Interface Specification

The Extended System Description Table (RSDT) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tables is shown in Figure 5-2.

Fixed ACPI Differentiated System Firmware ACPI
Description Table Description Table Control Structure

FACS

Wake Vector
Shared Lock

Static info
FIRM Differer.lt.iated
DSDT — Definition

BLKS Block

Software

Hardware

GPx_BLK

PM1x_BLK

Located in
port space

Device 1/0
Device Memory
PCI configuration
Embedded Controller space

Figure 5-2 Description Table Structures

e OSPM finds the RSDP structure as described in section 5.2.5.1 (“Finding the RSDP on IA-PC
Systems”) or section 5.2.5.2 (“Finding the RSDP on EFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description Table or
the Extended System Description Table. The Root System Description Table starts with the signature
“RSDT”, while the Extended System Description Table starts with the signature “XSDT”. These tables
contain one or more physical pointers to other system description tables that provide various information
about the system. As shown in Figure 5-1, there is always a physical address in the Root System
Description Table for the Fixed ACPI Description table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for a known signature.
Based on the signature, OSPM can then interpret the implementation-specific data within the description
table.

The purpose of the FADT is to define various static system information related to configuration and power
management. The Fixed ACPI Description Table starts with the “FACP” signature. The FADT describes
the implementation and configuration details of the ACPI hardware registers on the platform.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 85

For a specification of the ACPI Hardware Register Blocks (PM1a EVT BLK, PM1b EVT BLK,
PMla_CNT BLK,PMIb CNT BLK, PM2 _CNT BLK, PM_TMR_BLK, GP0 BLK, GP1_BLK, and one
or more P BLKs), see section 4.7, “ACPI Register Model.” The PM1a EVT BLK, PM1b EVT BLK,
PMla CNT BLK, PM1b CNT BLK, PM2 CNT BLK, and PM TMR BLK blocks are for controlling
low-level ACPI system functions.

The GPEO_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to the Differentiated System Description Table (DSDT). The DSDT contains a Definition Block named the
Differentiated Definition Block for the DSDT that contains implementation and configuration information
OSPM can use to perform power management, thermal management, or Plug and Play functionality that
goes beyond the information described by the ACPI hardware registers.

A Definition Block contains information about hardware implementation details in the form of a
hierarchical namespace, data, and control methods encoded in AML. OSPM “loads” or “unloads” an entire
definition block as a logical unit. The Differentiated Definition Block is always loaded by OSPM at boot
time and cannot be unloaded.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block is to
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from I/O space, but that is not the goal of the Definition Block specification. Such a space is
usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to OSPM. The operators present are intended to allow many useful hardware designs
to be ACPI-expressed, not to allow all hardware designs to be expressed.

5.1.1 Address Space Translation

Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass through
the bridges. This translation can take the form of the addition or subtraction of an offset. Or it can take the
form of a conversion from I/O cycles into Memory cycles and back again. When translation takes place, the
addresses placed on the processor bus by the processor during a read or write cycle are not the same
addresses that are placed on the I/O bus by the I/O bus bridge. The address the processor places on the
processor bus will be known here as the processor-relative address. And the address that the bridge places
on the I/0 bus will be known as the bus-relative address. Unless otherwise noted, all addresses used within
this section are processor-relative addresses.

For example, consider a platform with two root PCI buses. The platform designer has several choices. One
solution would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCI bus
and one part to the second root PCI bus. Another solution would be to make both root PCI buses decode the
entire 16-bit I/O space, mapping the second root PCI bus’s I/O space into memory space. In this second
scenario, when the processor needs to read from an I/O register of a device underneath the second root PCI
bus, it would need to perform a memory read within the range that the root PCI bus bridge is using to map
the 1/O space.

Note: Industry standard PCs do not provide address space translations because of historical compatibility
issues.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

86 Advanced Configuration and Power Interface Specification

5.2 ACPI System Description Tables

This section specifies the structure of the system description tables:
e Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)

Differentiated System Description Table (DSDT)

Secondary System Description Table (SSDT)

Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)

Embedded Controller Boot Resources Table (ECDT)

System Locality Distance Information Table (SLIT)

e System Resource Affinity Table (SRAT)

All numeric values from the above tables, blocks, and structures are always encoded in little endian format.
Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all data items marked as reserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Notice that the list contains terms such as ACPI
tables and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components

e OEM implementations of software and AML code return the bit value of 0 for all reserved bits in
ACPI tables or in other software values, such as resource descriptors.

e For all reserved bits in ACPI tables and registers, OSPM implementations must:

e Ignore all reserved bits that are read.

e Preserve reserved bit values of read/write data items (for example, OSPM writes back reserved bit
values it reads).

e Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components

e OEM implementations of software and AML code return only defined values and do not return
reserved values.

e OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components

e Software ignores all reserved bits read from hardware enable or status registers.

e Software writes zero to all reserved bits in hardware enable registers.

e Software ignores all reserved bits read from hardware control and status registers.

e Software preserves the value of all reserved bits in hardware control registers by writing back read
values.

5.2.1.4 Ignored Hardware Bits and Software Components

e Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits in
these same types of registers.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 87

5.2.2 Compatibility

All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previously reserved fields and values plus appending data to the 1.0
tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of the table.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or I/O
space. This was targeted at the IA-32 environment. Newer architectures require addressing mechanisms
beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and it
must allow the placement of control registers in address spaces other than System 1/O.

5.2.3.1 Generic Address Structure

The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-1), is used to express register addresses within tables
defined by ACPI .

Table 5-1 Generic Address Structure (GAS)

Byte Byte
Field Length | Offset | Description

Address_Space ID 1 0 The address space where the data structure or register exists.
Defined values are:

0 System Memory

1 System 1/O

2 PCI Configuration Space

3 Embedded Controller

4 SMBus

5 to 0x7E — Reserved

0x7F Functional Fixed Hardware
0x80 to 0xBF — Reserved

0xCO0 to 0XxFF — OEM Defined

Register Bit Width | 1 1 The size in bits of the given register. When addressing a data
structure, this field must be zero.

Register Bit Offset | 1 2 The bit offset of the given register at the given address. When
addressing a data structure, this field must be zero.

Access_Size 1 3 Specifies access size.

Undefined (legacy reasons)
Byte access

Word access

Dword access

AW O = O

Qword access

Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for
specific formats.)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

88 Advanced Configuration and Power Interface Specification

Table 5-2 Address Space Format

Address Space Format

0—System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-
bit platforms must have the high DWORD set to 0.

1-System 1/O The 64-bit I/0 address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to 0.

2—-PCI Configuration | PCI Configuration space addresses must be confined to devices on PCI Segment
Space Group 0, bus 0. This restriction exists to accommodate access to fixed hardware
prior to PCI bus enumeration. The format of addresses are defined as follows:

WORD Location Description

Highest WORD Reserved (must be 0)

PCI Device number on bus 0

PCI Function number

Lowest WORD Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

0x7F—Functional Use of GAS fields other than Address_Space_ID is specified by the CPU

Fixed Hardware manufacturer. The use of functional fixed hardware carries with it a reliance on
OS specific software that must be considered. OEMs should consult OS vendors
to ensure that specific functional fixed hardware interfaces are supported by
specific operating systems.

5.2.4 Universal Uniform Identifiers (UUID)

UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally Unique IDentifiers) are 128 bit
long values that extremely likely to be different from all other UUIDs generated until 3400 A.D. UUIDs are
used to distinguish between callers of ASL methods, such as DSM and _OSC.

The format of both the binary and string representations of UUIDs along with an algorithm to generate
them is specified in ISO/IEC 11578:1996 and can be found as part of the Distributed Computing
Environment 1.1: Remote Procedure Call specification, which can be downloaded from here:
http://www.opengroup.org/publications/catalog/c706.htm.

5.2.5 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from
the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it then locates
the Root System Description Table (RSDT) or the Extended Root System Description Table (XSDT) using
the physical system address supplied in the RSDP.

5.2.5.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges

on 16-byte boundaries for a valid Root System Description Pointer structure signature and checksum match

as follows:

e The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can
be found in the two-byte location 40:0Eh on the BIOS data area.

e The BIOS read-only memory space between 0E0000h and OFFFFFh.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 89

5.2.5.2 Finding the RSDP on EFI Enabled Systems

In Extensible Firmware Interface (EFI) enabled systems (for example, Itanium™-based platforms) a pointer
to the RSDP structure exists within the EFI System Table. The OS loader’s EFI image is provided a pointer
to the EFI System Table at invocation. The OS loader must retrieve the pointer to the RSDP structure from
the EFI System table and convey the pointer to OSPM, using an OS dependent data structure, as part of the
hand off of control from the OS loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI configuration table within
the EFI system table. EFI configuration table entries consist of Globally Unique Identifier (GUID)/table
pointer pairs. The EFI 1.0 specification defines a GUID for ACPI. An EFI configuration table entry that
matches this GUID points to an ACPI 1.0-compatible RSDP structure (ACPI 1.0 GUID).

The EFI GUID for a pointer to the current revision RSDP structure is: 8868E871-E4F1-11d3-BC22-
0080C73C8881.

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer using the current
revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the GUID is
not found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 version GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before assuming
platform control via the EFI ExitBootServices interface. See the EFI specification for more information.

5.2.5.3 RSDP Structure

The revision number contained within the structure indicates the size of the table structure.

Table 5-3 Root System Description Pointer Structure

Byte Byte

Field Length | Offset | Description

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing
blank character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table,
bytes 0 to 19, including the checksum field. These bytes must sum
to zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 The revision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI
version 1.0 revision number of this table is zero. The current value
for this field is 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended 1 32 This is a checksum of the entire table, including both checksum

Checksum fields.

Reserved 3 33 Reserved field

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

90 Advanced Configuration and Power Interface Specification

5.2.6 System Description Table Header

All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
are listed in Table 5-5.

Table 5-4 DESCRIPTION_HEADER Fields

Byte Byte
Field Length | Offset | Description

Signature 4 0 The ASCII string representation of the table identifier. Notice that
if OSPM finds a signature in a table that is not listed in Table 5-5,
OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the values in
the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed
to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fields in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

Tables 5-5 and 5-6 contain the system description table signatures defined by this specification. These
system description tables may be defined by ACPI (Table 5-5) or reserved by ACPI and declared by other
industry specifications (Table 5-6). This allows OS and platform specific tables to be defined and pointed
to by the RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI
specification acts as gatekeeper to avoid collisions in table signatures. To help avoid signature collisions,
table signatures will be reserved by the ACPI promoters and posted independently of this specification in
ACPI errata and clarification documents on the ACPI Web site. Requests to reserve a 4-byte alphanumeric
table signature should be sent to the email address info@acpi.info and should include the purpose of the
table and reference url to a document that describes the table format.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 91

Table 5-5 DESCRIPTION_HEADER Signatures for tables defined by ACPI

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.11.4, “Multiple APIC Description
Table”

“DSDT” Differentiated System Description Table Section 5.2.11.1, “Differentiated System
Description Table”

“ECDT” Embedded Controller Boot Resources Table | Section 5.2.14, “Embedded Controller Boot
Resources Table”

"FACP” Fixed ACPI Description Table (FADT) Section 5.2.9, “Fixed ACPI Description
Table”

“FACS” Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control
Structure”

“OEMx” OEM Specific Information Tables OEM Specific tables. All table signatures
starting with “OEM” are reserved for OEM
use.

“PSDT” Persistent System Description Table Section 5.2.11.3, “Persistent System
Description Table”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description
Table”

“SBST” Smart Battery Specification Table Section 5.2 13, “Smart Battery Table”

“SLIT” System Locality Distance Information Table | Section 5.2.16, “System Locality Distance
Information Table”

“SRAT” System Resource Affinity Table Section 5.2.15, “System Resource Affinity
Table”

“SSDT” Secondary System Description Table Section 5.2.11.2, “Secondary System
Description Table”

“XSDT” Extended System Description Table Section 5.2.8, “Extended System Description

Table”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

92 Advanced Configuration and Power Interface Specification

Table 5-6 DESCRIPTION_HEADER Signatures for tables reserved by ACPI

Signature

Description

Reference

“BOOT”

Simple Boot Flag Table

Microsoft Simple Boot Flag Specification
http://www.microsoft.com/HWDEV/
desinit/simp_bios.htm

“CPEP”

Corrected Platform Error Polling Table

DIG64 Corrected Platform Error Polling
Specification
http://www.dig64.org/specifications

“DBGP”

Debug Port Table

Microsoft Debug Port Specification
http://www.microsoft.com/HWDEV/PLATFO
RM/pcdesign/LR/debugspec.asp

“ETDT”

Event Timer Description Table

IA-PC Multimedia Timers Specification. This
signature has been superseded by “HPET” and
is now obsolete.

“HPET”

IA-PC High Precision Event Timer Table

IA-PC High Precision Event Timer
Specification.
http://www.intel.com/labs/platcomp/hpet/hpet

spec.htm

“MCFG”

PCI Express memory mapped configuration
space base address Description Table

PCI Firmware Specification, Revision 3.0
http://pcisig.com

“SPCR”

Serial Port Console Redirection Table

Microsoft Serial Port Console Redirection
Table
http://www.microsoft.com/HWDEV/PLATFO
RM/server/headless/SPCR.asp

“SPMI”

Server Platform Management Interface Table

ftp://download.intel.com/design/servers/ipmi/I
PMIv2 Orevl 0.pdf

“TCPA”

Trusted Computing Platform Alliance
Capabilities Table

http://www.trustedpc.org TCPA PC Specific
Implementation Specification

“WDRT”

Watchdog Resource Table

Requirements for Hardware Watchdog Timers
Supported by Windows - Design Specification
http://www.microsoft.com/whdc/system/CEC/
hw-wdt.mspx

5.2.7 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shown in Table 5-7, starts with the signature ‘RSDT’ followed by an array of physical pointers to
other system description tables that provide various information on other standards defined on the current
system. OSPM examines each table for a known signature. Based on the signature, OSPM can then
interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT,

described in the next section, supersedes RSDT functionality.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 93

Table 5-7 Root System Description Table Fields (RSDT)
Byte Byte
Field Length [Offset | Description
Header
Signature 4 0 ‘RSDT.’ Signature for the Root System Description Table.
Length 4 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Entry 4*n 36 An array of 32-bit physical addresses that point to other
DESCRIPTION HEADERs. OSPM assumes at least the
DESCRIPTION HEADER is addressable, and then can
further address the table based upon its Length field.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

94 Advanced Configuration and Power Interface Specification

5.2.8 Extended System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERS that are larger than 32-bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPI-compatible OS must use the XSDT if present.

Table 5-8 Extended System Description Table Fields (XSDT)

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘XSDT’. Signature for the Extended System Description
Table.
Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Entry 8*n 36 An array of 64-bit physical addresses that point to other

DESCRIPTION HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 95

5.2.9 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:

PMla EVT BLK, PM1b EVT BLK, PMla CNT BLK, PMIb CNT BLK, PM2 CNT BLK,
PM_TMR BLK, GPEO BLK, and GPE1 BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Table 5-9 Fixed ACPI Description Table (FADT) Format

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table.
Length 4 4 Length, in bytes, of the entire FADT.
Revision 1 8 4
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID. This field
must match the OEM Table ID in the RSDT.
OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

FIRMWARE CTRL 4 36 Physical memory address (0-4 GB) of the FACS, where OSPM and
Firmware exchange control information. See section 5.2.6, “Root
System Description Table,” for a description of the FACS.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as a field named INT_MODEL, which
was eliminated in ACPI 2.0. Platforms should set this field to zero
but field values of one are also allowed to maintain compatibility
with ACPI 1.0.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

96 Advanced Configuration and Power Interface Specification

Field

Byte
Length

Byte
Offset

Description

Preferred PM_Profile

1

45

This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.

Field Values:

Unspecified
Desktop

Mobile
Workstation
Enterprise Server
SOHO Server
Appliance PC
Performance Server
Reserved

NN DN bW~ O

V
-

SCI_INT

46

System vector the SCI interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the Global
System interrupt number of the SCI interrupt. OSPM is required to
treat the ACPI SCI interrupt as a sharable, level, active low
interrupt.

SMI_CMD

48

System port address of the SMI Command Port. During ACPI OS
initialization, OSPM can determine that the ACPI hardware
registers are owned by SMI (by way of the SCI_EN bit), in which
case the ACPI OS issues the ACPI_ ENABLE command to the
SMI_CMD port. The SCI_EN bit effectively tracks the ownership
of the ACPI hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor. This field
is reserved and must be zero on system that does not support
System Management mode.

ACPI ENABLE

52

The value to write to SMI_CMD to disable SMI ownership of the
ACPI hardware registers. The last action SMI does to relinquish
ownership is to set the SCI_EN bit. During the OS initialization
process, OSPM will synchronously wait for the transfer of SMI
ownership to complete, so the ACPI system releases SMI
ownership as quickly as possible. This field is reserved and must
be zero on systems that do not support Legacy Mode.

ACPI DISABLE

53

The value to write to SMI_CMD to re-enable SMI ownership of
the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off all
SCI interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the boot processor.
This field is reserved and must be zero on systems that do not
support Legacy Mode.

S4BIOS_REQ

54

The value to write to SMI_CMD to enter the S4BIOS state. The
S4BIOS state provides an alternate way to enter the S4 state where
the firmware saves and restores the memory context. A value of
zero in S4BIOS_F indicates S4BIOS_REQ is not supported. (See
Table 5-12.)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 97

Field

Byte
Length

Byte
Offset

Description

PSTATE_CNT

55

If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to assume processor performance state control
responsibility.

PMla EVT BLK

56

System port address of the PM1a Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware description
layout of this register block. This is a required field. This field is
superseded by the X PMla EVT BLK field.

PM1b EVT BLK

60

System port address of the PM1b Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware description
layout of this register block. This field is optional; if this register
block is not supported, this field contains zero. This field is
superseded by the X PM1b EVT BLK field.

PMla_CNT BLK

64

System port address of the PM1a Control Register Block. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required field.
This field is superseded by the X PM1la CNT_ BLK field.

PM1b_CNT_BLK

68

System port address of the PM1b Control Register Block. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. This
field is superseded by the X PM1b_CNT BLK field.

PM2_CNT BLK

72

System port address of the PM2 Control Register Block. See
section 4.7.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. This
field is superseded by the X PM2 CNT BLK field.

PM_TMR_BLK

76

System port address of the Power Management Timer Control
Register Block. See section 4.7.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this register
block. This is a required field. This field is superseded by the

X PM_TMR BILK field.

GPEO_BLK

80

System port address of General-Purpose Event 0 Register Block.
See section 4.7.4.1, “General-Purpose Event Register Blocks,” for
a hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains zero.
This field is superseded by the X GPEO BLK field.

GPEl_BLK

84

System port address of General-Purpose Event 1 Register Block.
See section 4.7.4.1, “General-Purpose Event Register Blocks,” for
a hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains zero.
This field is superseded by the X GPE1 BLK field.

PM1_EVT LEN

88

Number of bytes decoded by PM1a EVT_ BLK and, if supported,
PM1b_EVT BLK. This value is > 4.

PMI1_CNT_LEN

89

Number of bytes decoded by PM1a_ CNT BLK and, if supported,
PM1b_CNT BLK. This value is > 2.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

98 Advanced Configuration and Power Interface Specification

Byte Byte

Field Length | Offset | Description

PM2 _CNT_LEN 1 90 Number of bytes decoded by PM2_ CNT_BLK. Support for the
PM2 register block is optional. If supported, this value is > 1. If not
supported, this field contains zero.

PM_TMR LEN 1 91 Number of bytes decoded by PM_TMR_BLK. This field’s value
must be 4.

GPEO_BLK LEN 1 92 Number of bytes decoded by GPEO_BLK. The value is a non-
negative multiple of 2.

GPEl BLK LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is a non-
negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where GPE1
based events start.

CST CNT 1 95 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to indicate OS support for the CST object and
C States Changed notification.

P LVL2 LAT 2 96 The worst-case hardware latency, in microseconds, to enter and
exit a C2 state. A value > 100 indicates the system does not
support a C2 state.

P LVL3 LAT 2 98 The worst-case hardware latency, in microseconds, to enter and
exit a C3 state. A value > 1000 indicates the system does not
support a C3 state.

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush strides

that need to be read (using cacheable addresses) to completely
flush dirty lines from any processor’s memory caches. Notice that
the value in FLUSH_STRIDE is typically the smallest cache line
width on any of the processor’s caches (for more information, see
the FLUSH_STRIDE field definition). If the system does not
support a method for flushing the processor’s caches, then
FLUSH_SIZE and WBINVD are set to zero. Notice that this
method of flushing the processor caches has limitations, and
WBINVD=1 is the preferred way to flush the processors caches.
This value is typically at least 2 times the cache size. The
maximum allowed value for FLUSH_SIZE multiplied by
FLUSH_STRIDE is 2 MB for a typical maximum supported cache
size of 1 MB. Larger cache sizes are supported using WBINVD=1.

This value is ignored if WBINVD=1.
This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are

required to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 99

Field

Byte
Length

Byte
Offset

Description

FLUSH_STRIDE

102

If WBINVD=0, the value of this field is the cache line width, in
bytes, of the processor’s memory caches. This value is typically
the smallest cache line width on any of the processor’s caches. For
more information, see the description of the FLUSH_SIZE field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

DUTY_ OFFSET

104

The zero-based index of where the processor’s duty cycle setting is
within the processor’s P_CNT register.

DUTY WIDTH

105

The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows the
software to select a nominal processor frequency below its absolute
frequency as defined by:
THTL EN=1
BF * DC /(2DUTY_WIDTH)

Where:
BF-Base frequency
DC-Duty cycle setting
When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle is

not supported and the processor continuously runs at its base
frequency.

DAY ALRM

106

The RTC CMOS RAM index to the day-of-month alarm value. If
this field contains a zero, then the RTC day of the month alarm
feature is not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the day of the month alarm. See section 4.7.2.4, “Real
Time Clock Alarm,” for a description of how the hardware works.

MON_ALRM

107

The RTC CMOS RAM index to the month of year alarm value. If
this field contains a zero, then the RTC month of the year alarm
feature is not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the month of the year alarm. If this feature is supported,
then the DAY ALRM feature must be supported also.

CENTURY

108

The RTC CMOS RAM index to the century of data value (hundred
and thousand year decimals). If this field contains a zero, then the
RTC centenary feature is not supported. If this field has a non-zero
value, then this field contains an index into RTC RAM space that
OSPM can use to program the centenary field.

JAPC_BOOT _ARCH

109

IA-PC Boot Architecture Flags. See Table 5-11 for a description of
this field.

Reserved

111

Must be 0.

Flags

112

Fixed feature flags. See Table 5-10 for a description of this field.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

100 Advanced Configuration and Power Interface Specification

Field

Byte
Length

Byte
Offset

Description

RESET REG

12

116

The address of the reset register represented in Generic Address
Structure format (See section 4.7.3.6, “Reset Register,” for a
description of the reset mechanism.)

Note: Only System I/O space, System Memory space and PCI
Configuration space (bus #0) are valid for values for
Address_Space ID. Also, Register Bit Width must be 8 and
Register Bit Offset must be 0.

RESET VALUE

128

Indicates the value to write to the RESET REG port to reset the
system. (See section 4.7.3.6, “Reset Register,” for a description of
the reset mechanism.)

Reserved

129

Must be 0.

X_FIRMWARE_CTRL

132

64bit physical address of the FACS.

X_DSDT

140

64bit physical address of the DSDT.

X _PMla EVT BLK

12

148

Extended address of the PM1a Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. This is a required field.

X_PM1b_EVT BLK

12

160

Extended address of the PM1b Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. This field is optional; if this register block is not supported,
this field contains zero.

X_PMla CNT BLK

12

172

Extended address of the PM1a Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. This is a required field.

X_PM1b_CNT_BLK

12

184

Extended address of the PM1b Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. This field is optional; if this register block is not
supported, this field contains zero.

X_PM2_CNT_BLK

12

196

Extended address of the Power Management 2 Control Register
Block, represented in Generic Address Structure format. See
section 4.7.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.

X_PM_TMR_BLK

12

208

Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure format.
See section 4.7.3.3, “Power Management Timer (PM_TMR),” for a
hardware description layout of this register block. This is a
required field.

X_GPE0_BLK

12

220

Extended address of the General-Purpose Event 0 Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. This is an optional field; if this register block is not
supported, this field contains zero.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 101

Field

Byte
Length

Byte
Offset

Description

X_GPE1_BLK

12

232

Extended address of the General-Purpose Event 1 Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. This is an optional field; if this register block is not
supported, this field contains zero.

Table 5-10

Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag

Bit
Length

Bit
Offset

Description

WBINVD

1

0

Processor properly implements a functional equivalent to the
WBINVD IA-32 instruction.

If set, signifies that the WBINVD instruction correctly flushes the
processor caches, maintains memory coherency, and upon
completion of the instruction, all caches for the current processor
contain no cached data other than what OSPM references and
allows to be cached. If this flag is not set, the ACPI OS is
responsible for disabling all ACPI features that need this function.
This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support this function and indicate this to OSPM by
setting this field.

WBINVD FLUSH

If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but does
not guarantee the caches are invalidated. This provides the
complete semantics of the WBINVD instruction, and provides
enough to support the system sleeping states. If neither of the
WBINVD flags is set, the system will require FLUSH_SIZE and
FLUSH_STRIDE to support sleeping states. If the FLUSH
parameters are also not supported, the machine cannot support
sleeping states S1, S2, or S3.

PROC_Cl

A one indicates that the C1 power state is supported on all
processors.

P LVL2 UP

A zero indicates that the C2 power state is configured to only work
on a uniprocessor (UP) system. A one indicates that the C2 power
state is configured to work on a UP or multiprocessor (MP)
system.

PWR_BUTTON

A zero indicates the power button is handled as a fixed feature
programming model; a one indicates the power button is handled
as a control method device. If the system does not have a power
button, this value would be “1” and no sleep button device would
be present.

Independent of the value of this field, the presence of a power
button device in the namespace indicates to OSPM that the power
button is handled as a control method device.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

102 Advanced Configuration and Power Interface Specification

FACP - Flag

Bit Bit
Length | Offset

Description

SLP BUTTON

A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is handled as
a control method device.

If the system does not have a sleep button, this value would be “1”
and no sleep button device would be present.

Independent of the value of this field, the presence of a sleep
button device in the namespace indicates to OSPM that the sleep
button is handled as a control method device.

FIX_RTC

A zero indicates the RTC wake status is supported in fixed register
space; a one indicates the RTC wake status is not supported in
fixed register space.

RTC_S4

Indicates whether the RTC alarm function can wake the system
from the S4 state. The RTC must be able to wake the system from
an S1, S2, or S3 sleep state. The RTC alarm can optionally support
waking the system from the S4 state, as indicated by this value.

TMR_VAL EXT

A zero indicates TMR VAL is implemented as a 24-bit value. A
one indicates TMR_ VAL is implemented as a 32-bit value. The
TMR_STS bit is set when the most significant bit of the
TMR_VAL toggles.

DCK_CAP

A zero indicates that the system cannot support docking. A one
indicates that the system can support docking. Notice that this flag
does not indicate whether or not a docking station is currently
present; it only indicates that the system is capable of docking.

RESET REG_SUP

If set, indicates the system supports system reset via the FADT
RESET REG as described in section 4.7. 3.6, “Reset Register.”

SEALED CASE

System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the case is sealed.

HEADLESS

System Type Attribute. If set indicates the system cannot detect the
monitor or keyboard / mouse devices.

CPU_SW_SLP

If set, indicates to OSPM that a processor native instruction must
be executed after writing the SLP_TYPx register.

PCI_EXP_WAK

If set, indicates the platform supports the PCIEXP WAKE STS
bit in the PM1 Status register and the PCIEXP WAKE EN bit in
the PM1 Enable register.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 103

FACP - Flag

Bit
Length

Bit
Offset

Description

USE_PLATFORM_CL
OCK

15

A value of one indicates that OSPM should use a platform
provided timer to drive any monotonically non-decreasing
counters, such as OSPM performance counter services. Which
particular platform timer will be used is OSPM specific, however,
it is recommended that the timer used is based on the following
algorithm: If the HPET is exposed to OSPM, OSPM should use
the HPET. Otherwise, OSPM will use the ACPI power
management timer. A value of one indicates that the platform is
known to have a correctly implemented ACPI power management
timer.

A platform may choose to set this flag if a internal processor clock
(or clocks in a multi-processor configuration) cannot provide
consistent monotonically non-decreasing counters.

Note: If a value of zero is present, OSPM may arbitrarily choose to
use an internal processor clock or a platform timer clock for these
operations. That is, a zero does not imply that OSPM will
necessarily use the internal processor clock to generate a
monotonically non-decreasing counter to the system.

S4 RTC_STS VALID

16

A one indicates that the contents of the RTC_STS flag is valid
when waking the system from S4.

See Table 4-11 — PM1 Status Registers Fixed Hardware Feature
Status Bits for more information. Some existing systems do not
reliably set this input today, and this bit allows OSPM to
differentiate correctly functioning platforms from platforms with
this errata.

REMOTE_POWER_O
N_CAPABLE

17

A one indicates that the platform is compatible with remote power
on.

That is, the platform supports OSPM leaving GPE wake events
armed prior to an S5 transition. Some existing platforms do not
reliably transition to S5 with wake events enabled (for example,
the platform may immediately generate a spurious wake event after
completing the S5 transition). This flag allows OSPM to
differentiate correctly functioning platforms from platforms with
this type of errata.

FORCE _
APIC_CLUSTER_MO
DEL

18

A one indicates that all local APICs must be configured for the
cluster destination model when delivering interrupts in logical
mode.

If this bit is set, then logical mode interrupt delivery operation may
be undefined until OSPM has moved all local APICs to the cluster
model.

Note that the cluster destination model doesn’t apply to Itanium
processor local SAPICs. This bit is intended for xAPIC based
machines that require the cluster destination model even when 8§ or
fewer local APICs are present in the machine.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

104 Advanced Configuration and Power Interface Specification

Bit Bit
FACP - Flag Length | Offset | Description
FORCE_APIC PHYSI | 1 19 A one indicates that all local xAPICs must be configured for
CAL_DESTINATION physical destination mode. If this bit is set, interrupt delivery
_MODE operation in logical destination mode is undefined. On machines
that contain fewer than 8 local xAPICs or that do not use the
xAPIC architecture, this bit is ignored.
Reserved 12 20

5.2.9.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as a guide
for setting the Preferred PM_Profile field in the FADT. OSPM can use this field to set default power
management policy parameters during OS installation.

Desktop. A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. This device is
used to perform work that is considered mainstream corporate or home computing (for example, word
processing, Internet browsing, spreadsheets, and so on).

Mobile. A single-user, full-featured, portable computing device that is capable of running on batteries or
other power storage devices to perform its normal functions. Most often contains one processor. This
device performs the same task set as a desktop. However it may have limitations dues to its size, thermal
requirements, and/or power source life.

Workstation. A single-user, full-featured, stationary computing device that resides on or near an
individual’s work area. Often contains more than one processor. Must be connected to AC power to
function. This device is used to perform large quantities of computations in support of such work as
CAD/CAM and other graphics-intensive applications.

Enterprise Server. A multi-user, stationary computing device that frequently resides in a separate, often
specially designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This device is used to support large-scale networking, database, communications, or
financial operations within a corporation or government.

SOHO Server. A multi-user, stationary computing device that frequently resides in a separate area or room
in a small or home office. May contain more than one processor. Must be connected to AC power to
function. This device is generally used to support all of the networking, database, communications, and
financial operations of a small office or home office.

Appliance PC. A device specifically designed to operate in a low-noise, high-availability environment
such as a consumer’s living rooms or family room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI. Must be
connected to AC power to function. Normally they are sealed case style and may only perform a subset of
the tasks normally associated with today’s personal computers.

Performance Server. A multi-user stationary computing device that frequently resides in a separate, often
specially designed room. Will often contain more than one processor. Must be connected to AC power to
function. This device is used in an environment where power savings features are willing to be sacrificed
for better performance and quicker responsiveness.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 105

5.2.9.2 System Type Attributes

This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power management
and device settings. For example, a system that has the SEALED CASE bit set may take a very aggressive
low noise policy toward thermal management. In another example an OS might not load video, keyboard or
mouse drivers on a HEADLESS system.

5.2.9.3 IA-PC Boot Architecture Flags

This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In
IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none are
present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,
“Configuration.” These flags pertain only to IA-PC platforms. On other system architectures, the entire
field should be set to 0.

Table 5-11 Fixed ACPI Description Table Boot Architecture Flags

Bit Bit
BOOT_ARCH length | offset | Description

LEGACY _DEVICES | 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are
devices that have end-user accessible connectors (for example,
LPT port), or devices for which the OS must load a device
driver so that an end-user application can use a device. If clear,
the OS may assume there are no such devices and that all
devices in the system can be detected exclusively via industry
standard device enumeration mechanisms (including the ACPI
namespace).

8042 1 1 If set, indicates that the motherboard contains support for a port
60 and 64 based keyboard controller, usually implemented as an
8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the
VGA hardware (that responds to MMIO addresses A0O00Oh-
BFFFFh and IO ports 3BOh-3BBh and 3C0Oh-3DFh) that may
cause machine check on this system. If clear, indicates to
OSPM that it is safe to probe the VGA hardware..

Reserved 13 3 Must be 0.

5.2.10 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.9, “Fixed ACPI Description Table (FADT).”

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s memory address space.
The memory where the FACS structure resides must not be reported as system AddressRangeMemory in
the system address map. For example, the E820 address map reporting interface would report the region as
AddressRangeReserved. For more information about system address map reporting interfaces, see

section 14, “System Address Map Interfaces.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

106 Advanced Configuration and Power Interface Specification

Table 5-12 Firmware ACPI Control Structure (FACS)

Byte Byte
Field Length | Offset | Description

Signature 4 0 ‘FACS’

Length 4 4 Length, in bytes, of the entire Firmware ACPI Control
Structure. This value is 64 bytes or larger.

Hardware Signature | 4 8 The value of the system’s “hardware signature” at last boot.
This value is calculated by the BIOS on a best effort basis to
indicate the base hardware configuration of the system such
that different base hardware configurations can have different
hardware signature values. OSPM uses this information in
waking from an S4 state, by comparing the current hardware
signature to the signature values saved in the non-volatile
sleep image. If the values are not the same, OSPM assumes
that the saved non-volatile image is from a different hardware
configuration and cannot be restored.

Firmware Waking | 4 12 This field is superseded by the X Firmware Waking Vector
Vector field.

The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory address of
an OS-specific wake function. During POST, the platform
firmware first checks if the value of the

X Firmware Waking Vector field is non-zero and if so
transfers control to OSPM as outlined in the

X Firmware Waking_vector field description below. If the
X Firmware Waking Vector field is zero then the platform
firmware checks the value of this field and if it is non-zero,
transfers control to the specified address.

On PCs, the wake function address is in memory below 1 MB
and the control is transferred while in real mode. OSPM’s
wake function restores the processors’ context.

For IA-PC platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps to.
If, for example, the physical address is 0x12345, then the
BIOS must jump to real mode address 0x1234:0x0005. In
general this relationship is

Real-mode address =
Physical address>>4 : Physical address and 0x000F

Notice that on IA-PC platforms, A20 must be enabled when
the BIOS jumps to the real mode address derived from the
physical address stored in the Firmware Waking Vector.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 107

Table 5-12 Firmware ACPI Control Structure (FACS) (continued)

Field

Byte
Length

Byte
Offset

Description

Global Lock

4

16

This field contains the Global Lock used to synchronize access
to shared hardware resources between the OSPM environment
and an external controller environment (for example, the SMI
environment). This lock is owned exclusively by either OSPM
or the firmware at any one time. When ownership of the lock
is attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has
been released. For example, the Global Lock can be used to
protect an embedded controller interface such that only OSPM
or the firmware will access the embedded controller interface
at any one time. See section 5.2.10.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags

20

Firmware control structure flags. See Table 5-13 for a
description of this field.

X Firmware Wakin
g Vector

24

64-bit physical address of OSPM’s Waking Vector.

Before transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory address of
an OS-specific wake function. During POST, the platform
firmware checks if the value of this field is non-zero and if so
transfers control to OSPM by jumping to this address. Prior to
transferring control, the execution environment must be
configured as follows:

Memory address translation / paging and interrupts must be
disabled.

For IA 32-bit platforms, a 4GB flat address space for all
segment registers and EFLAGS.IF set to 0.

For 64-bit Itanium™-based platforms, the processor must have
pst.i, psr.it, psr.dt, and psr.rt set to 0. See the Intel® Itanium™
Architecture Software Developer’s Manual for more
information.

If this field is zero then OSPM checks the

Firmware Waking_ Vector field as outlined above.

Version

1

32

1-Version of this table

Reserved

31

33

This value is zero.

Table 5-13 Firmware Control Structure Feature Flags

FACS - Flag

Bit
Length

Bit
Offset

Description

S4BIOS_F

1

0

Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the S4 state.

Reserved

31

The value is zero.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

108 Advanced Configuration and Power Interface Specification

5.2.10.1 Global Lock

The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the ROM
BIOS. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the FACS and is
accessed and updated by both the OS environment and the SMI environment in a defined manner to
provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the actual memory location
of the lock. The FACS and Global Lock may be located anywhere in physical memory.

By convention, this lock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its attempt to
acquire the lock, and waits for the owning environment to signal that the lock has been released before
attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set after the
lock is released, a signal is sent via an interrupt mechanism to the other environment to inform it that the
lock has been released. During interrupt handling for the “lock released” event within the corresponding
environment, if the lock ownership were still desired an attempt to acquire the lock would be made. If
ownership is not acquired, then the environment must again set “pending” and wait for another “lock
release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.
Table 5-14 Global Lock Structure within the FACS

Bit Bit
Field Length | Offset | Description
Pending 1 0 Non-zero indicates that a request for ownership of the
Global Lock is pending.
Owned 1 1 Non-zero indicates that the Global Lock is Owned.
Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero is returned by the function, the caller has been granted ownership of the Global Lock and
can proceed. If zero is returned by the function, the caller has not been granted ownership of the Global
Lock, the “pending” bit has been set, and the caller must wait until it is signaled by an interrupt event that
the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-bit Global Lock location within the FACS.

AcquireGlobalLock:
mov ecx, GloballLock ; ecx = Address of Global Lock in FACS
acqlo: mov eax, [ecx] ; Get current value of Global Lock
mov edx, eax
and edx, not 1 ; Clear pending bit
bts edx, 1 ; Check and set owner bit
adc edx, O ; 1T owned, set pending bit
lock cmpxchg dword ptr[ecx], edx ; Attempt to set new value
jnz short acqlO ; 1T not set, try again
cmp dl, 3 ; Was it acquired or marked pending?
sbb eax, eax ; acquired = -1, pending = 0
ret

The following code sequence is used by OSPM and the firmware to release ownership of the
Global Lock. If non-zero is returned, the caller must raise the appropriate event to the
other environment to signal that the Global Lock is now free. Depending on the

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 109

environment, this signaling is done by setting the either the GBL_RLS or BIOS_RLS within
their respective hardware register spaces. This signal only occurs when the other
environment attempted to acquire ownership while the lock was owned.

ReleaseGloballLock:
mov ecx, GloballLock ; ecx = Address of Global Lock in FACS
rel10: mov eax, [ecx] ; Get current value of Global Lock
mov edx, eax
and edx, not 03h ; Clear owner and pending field

lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
jnz short rell0 ; 1T not set, try again

and eax, 1 ; Was pending set?

IT one is returned (we were pending) the caller must signal that the
; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

ret

Although using the Global Lock allows various hardware resources to be shared, it is important to notice
that its usage when there is ownership contention could entail a significant amount of system overhead as
well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason,
implementations should try to design the hardware to keep the required usage of the Global Lock to a
minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if bit 0 is
used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to be
protected under the Global Lock, ensuring that the register’s contents do not change from underneath one
environment while the other is making changes to it. Similarly if the entire register is shared, as the case
might be for the embedded controller interface, access to the register needs to be protected under the Global
Lock.

5.2.11 Definition Blocks

A Definition Block consists of data in AML format (see section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain data,
AML code, or other AML objects. The top-level organization of this information after a definition block is
loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permits implementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for I/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a space is usually defined as
a “built in” operator.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

110 Advanced Configuration and Power Interface Specification

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI 2.0,
see section 17.2.5, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM uses
the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL DefinitionBlock’s ComplianceRevision field. See section
17.5.26, “DefinitionBlock (Declare Definition Block)”, for more information. It is the responsibility of the
ASL writer to ensure the Definition Block’s compatibility with the corresponding integer width when
setting the ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. This
Definition Block is like all other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.11, “Definition Blocks,” for a description of Definition Blocks.

Table 5-15 Differentiated System Description Table Fields (DSDT)

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘DSDT.’ Signature for the Differentiated System Description
Table.
Length 4 4 Length, in bytes, of the entire DSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision | 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see section 5.4, “Definition Block
Encoding”)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 111

5.2.11.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of
a system description table header followed by data in Definition Block format. There can be multiple
SSDTs present. OSPM first loads the DSDT and then loads each SSDT. This allows the OEM to provide
the base support in one table and add smaller system options in other tables. For example, the OEM might
put dynamic object definitions into a secondary table such that the firmware can construct the dynamic
information at boot without needing to edit the static DSDT. A SSDT can only rely on the DSDT being
loaded prior to it.

Table 5-16 Secondary System Description Table Fields (SSDT)

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘SSDT.’ Signature for the Secondary System Description Table.
Length 4 4 Length, in bytes, of the entire SSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision | 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see section 5.4 , “Definition Block
Encoding”)

5.2.11.3 Persistent System Description Table (PSDT)

The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
this version of the ACPI specification. OSPM will evaluate a table with the “PSDT” signature in like
manner to the evaluation of an SSDT as described in section 5.2.11.2, “Secondary System Description
Table.”

5.2.11.4 Multiple APIC Description Table (MADT)

The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT—compatible dual 8259 interrupt controller
and, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller (APIC) and
Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC). The choice of the interrupt
model(s) to support is up to the platform designer. The interrupt model cannot be dynamically changed by
the system firmware; OSPM will choose which model to use and install support for that model at the time
of installation. If a platform supports both models, an OS will install support for one model or the other; it
will not mix models. Multi-boot capability is a feature in many modern operating systems. This means that
a system may have multiple operating systems or multiple instances of an OS installed at any one time.
Platform designers must allow for this.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

112 Advanced Configuration and Power Interface Specification

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC or SAPIC implementations.

ACPI represents all interrupts as “flat” values known as global system interrupts. Therefore to support
APICs or SAPICs on an ACPI-enabled system, each used APIC or SAPIC interrupt input must be mapped
to the global system interrupt value used by ACPI. See Section 5.2.12. Global System Interrupts,” for a
description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that APIC or SAPIC
implementations might support (for example, identifying each processor’s local APIC ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-17 Multiple APIC Description Table (MADT) Format

Byte Byte
Field Length [Offset | Description
Header
Signature 4 0 ‘APIC.’ Signature for the Multiple APIC Description Table.
Length 4 4 Length, in bytes, of the entire MADT.
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.
OEM Revision | 4 24 OEM revision of MADT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Local APIC 4 36 The 32-bit physical address at which each processor can access
Address its local APIC.
Flags 4 40 Multiple APIC flags. See Table 5-18 for a description of this
field.
APIC Structure[n] | — 44 A list of APIC structures for this implementation. This list will
contain all of the /O APIC, I/O SAPIC, Local APIC, Local
SAPIC, Interrupt Source Override, Non-maskable Interrupt
Source, Local APIC NMI Source, Local APIC Address Override,
and Platform Interrupt Sources structures needed to support this
platform. These structures are described in the following
sections.
Table 5-18 Multiple APIC Flags
Multiple APIC Bit Bit
Flags Length | Offset | Description
PCAT COMPAT | 1 0 A one indicates that the system also has a PC-AT-compatible
dual-8259 setup. The 8259 vectors must be disabled (that is,
masked) when enabling the ACPI APIC operation.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 113

Multiple APIC Bit Bit
Flags Length | Offset | Description
Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADT is a list of APIC structures that declare the APIC features
of the machine. The first byte of each structure declares the type of that structure and the second byte
declares the length of that structure.

Table 5-19 APIC Structure Types

Value Description
0 Processor Local APIC
1 I/O APIC
2 Interrupt Source Override
3 Non-maskable Interrupt Source (NMI)
4 Local APIC NMI Structure
5 Local APIC Address Override Structure
6 I/0 SAPIC
7 Local SAPIC
8 Platform Interrupt Sources
9-127 Reserved. OSPM skips structures of the reserved type.
128-255 Reserved for OEM use

5.2.11.5 Processor Local APIC

When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in this table
to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table 5-20 Processor Local APIC Structure

Byte Byte
Field Length [Offset | Description
Type 1 0 0 Processor Local APIC structure
Length 1 1 8
ACPI Processor 1 2 The Processorld for which this processor is listed in the ACPI
ID Processor declaration operator. For a definition of the Processor
operator, see section 17.5.93, “Processor (Declare Processor).”
APIC ID 1 3 The processor’s local APIC ID.
Flags 4 4 Local APIC flags. See Table 5-21 for a description of this field.

Table 5-21 Local APIC Flags

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

114 Advanced Configuration and Power Interface Specification

LocalAPIC Bit Bit

Flags Length | Offset | Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Reserved 31 1 Must be zero.

5.2.11.6 /O APIC

In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of interrupt
inputs, referred to as INTINn, where the value of n is from 0 to the number of the last interrupt input on the
I/O APIC. The I/O APIC structure declares which global system interrupts are uniquely associated with the
I/O APIC interrupt inputs. There is one I/O APIC structure for each I/O APIC in the system. For more
information on global system interrupts see Section 5.2.12, “Global System Interrupts.”

Table 5-22 1/0 APIC Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 1 I/O APIC structure
Length 1 1 12
I/O APIC ID 1 2 The I/0 APIC’s ID.
Reserved 1 3 0
I/0 APIC 4 4 The 32-bit physical address to access this I/O APIC. Each 1/O
Address APIC resides at a unique address.
Global System 4 8 The global system interrupt number where this [/O APIC’s
Interrupt Base interrupt inputs start. The number of interrupt inputs is
determined by the I/O APIC’s Max Redir Entry register.

5.2.11.7 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15 to
the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see section 5.2.10.8, “Interrupt
Source Overrides”). This means that /O APIC interrupt inputs 0-15 must be mapped to global system
interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless overrides are used. This allows a
platform to support OSPM implementations that use the APIC model as well as OSPM implementations
that use the 8259 model (OSPM will only use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global system
interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater than 15 are
ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the I/O APIC structures. For more information on hardware resource configuration see
section 6, “Configuration.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 115

5.2.11.8 Interrupt Source Overrides

Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual 8259
interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first /O APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is not necessary to provide an
Interrupt Source Override for every ISA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0,
but in APIC mode, it is connected to /O APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.’

Table 5-23 Interrupt Source Override Structure

Byte Byte
Field Length [Offset | Description
Type 1 0 2 Interrupt Source Override
Length 1 1 10
Bus 1 2 0 Constant, meaning ISA
Source 1 3 Bus-relative interrupt source (IRQ)
Global System 4 4 The Global System Interrupt that this bus-relative interrupt source
Interrupt will signal.
Flags 2 8 MPS INTI flags. See Table 5-24 for a description of this field.

The MPS INTI flags listed in Table 5-24 are identical to the flags used in Table 4-10 of the MPS version
1.4 specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

Table 5-24 MPS INTI Flags

Local APIC - Bit Bit
Flags Length | Offset | Description
Polarity 2 0 Polarity of the APIC I/O input signals:
00 Conforms to the specifications of the bus
(For example, EISA is active-low for level-triggered interrupts)
01 Active high
10 Reserved
11 Active low
Trigger Mode 2 2 Trigger mode of the APIC 1/O Input signals:
00 Conforms to specifications of the bus
(For example, ISA is edge-triggered)
01 Edge-triggered
10 Reserved
11 Level-triggered
Reserved 12 4 Must be zero.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

116 Advanced Configuration and Power Interface Specification

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-standard
polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this IRQ
is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if SCI is
connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should have 9 in
SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to INTIN11.

5.2.11.9 Non-Maskable Interrupt Sources (NMils)

This structure allows a platform designer to specify which I/O (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table 5-25 Non-maskable Source Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 3 NMI
Length 1 1 8
Flags 2 2 Same as MPS INTI flags
Global System 4 4 The Global System Interrupt that this NMI will signal.
Interrupt

5.2.11.10 Local APIC NMI

This structure describes the Local APIC interrupt input (LINTn) that NMI is connected to for each of the
processors in the system where such a connection exists. This information is needed by OSPM to enable
the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the
platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two Local APIC
NMI entries would be needed in the MADT.

Table 5-26 Local APIC NMI Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 4 Local APIC NMI Structure
Length 1 1 6
ACPI Processor 1 2 Processor ID corresponding to the ID listed in the processor
ID object. A value of OxFF signifies that this applies to all processors
in the machine.
Flags 2 3 MPS INTI flags. See Table 5-24 for a description of this field.
Local APIC 1 5 Local APIC interrupt input LINTn to which NMI is connected.
LINT#

5.2.11.11 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an override of the physical address of the local
APIC in the MADT’stable header, which is defined as a 32-bit field.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 117

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs),
rather than the address contained in the MADT’s table header. Only one Local APIC Address Override
Structure may be defined.

Table 5-27 Local APIC Address Override Structure

Byte Byte

Field Length | Offset | Description

Type 1 0 5 Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC 8 4 Physical address of Local APIC. For Itanium"-based systems, this

Address field contains the starting address of the Processor Interrupt Block.
See the Intel® Itanium™ Architecture Software Developer’s
Manual for more information.

5.2.11.12 1/O SAPIC Structure

The I/O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/O SAPIC structure uses the I/O_APIC_ID field as defined in the I/O APIC table. The Vector Base
field remains unchanged but has been moved. The I/O APIC address has been deleted. A new address and
reserved field have been added.

Table 5-28 1/0 SAPIC Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 6 /0O SAPIC Structure
Length 1 1 16
1/0 APIC ID 1 2 1/0 SAPIC ID
Reserved 1 3 Reserved (must be zero)
Global System 4 4 The global system interrupt number where this [/O SAPIC’s
Interrupt Base interrupt inputs start. The number of interrupt inputs is determined
by the I/O SAPIC’s Max Redir Entry register.
I/0 SAPIC 8 8 The 64-bit physical address to access this /O SAPIC. Each I/O
Address SAPIC resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the information
from the I/O APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must prevent
“mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as many 1/0O
SAPIC structures as 1/0 APIC structures and that every I/O APIC structure has a corresponding 1/0 SAPIC
structure (same APIC ID).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

118 Advanced Configuration and Power Interface Specification

5.2.11.13 Local SAPIC Structure

The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in this table to be updated
if the processor information changes during the lifespan of an OS boot. While in the sleeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table 5-29 Processor Local SAPIC Structure

Byte Byte

Field Length | Offset | Description

Type 1 0 7 Processor Local SAPIC structure

Length 1 1 Length of the Local SAPIC Structure in bytes.

ACPI Processor | 1 2 OSPM associates the Local SAPIC Structure with a processor

ID object declared in the namespace using the Processor statement by
matching the processor object’s ProcessorlD value with this field.
For a definition of the Processor object, see section 17.5.93,
“Processor (Declare Processor).”

Local SAPICID |1 3 The processor’s local SAPIC ID

Local SAPIC 1 4 The processor’s local SAPIC EID

EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-21 for a description of this field.

ACPI Processor | 4 12 OSPM associates the Local SAPIC Structure with a processor

UID Value object declared in the namespace using the Device statement,
when the UID child object of the processor device evaluates to a
numeric value, by matching the numeric value with this field.

ACPI Processor | >=1 16 OSPM associates the Local SAPIC Structure with a processor

UID String object declared in the namespace using the Device statement,
when the UID child object of the processor device evaluates to a
string, by matching the string with this field. This value is stored
as a null-terminated ASCII string.

5.2.11.14 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events
(similar to SMI in IA-32). The Intel® Itanium™ architecture permits the /O SAPIC to send a vector value
in the interrupt message of the PMI type. This value is specified in the I/O SAPIC Vector field of the
Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 119

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error correction), the
interrupt input line used to signal such corrected errors is specified by the Global System Interrupt field in
the following table. Some systems may restrict the retrieval of corrected platform error information to a
specific processor. In such cases, the firmware indicates the processor that can retrieve the corrected
platform error information through the Processor ID and EID fields in the structure below. OSPM is
required to program the I/O SAPIC redirection table entries with the Processor ID, EID values specified by
the ACPI system firmware. On platforms where the retrieval of corrected platform error information can be
performed on any processor, the firmware indicates this capability by setting the CPEI Processor Override
flag in the Platform Interrupt Source Flags field of the structure below. If the CPEI Processor Override Flag
is set, OSPM uses the processor specified by Processor ID, and EID fields of the structure below only as a
target processor hint and the error retrieval can be performed on any processor in the system. However,
firmware is required to specify valid values in Processor ID, EID fields to ensure backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor that is
targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set, OSPM can
retarget the corrected platform error interrupt to a different processor when the target processor is ejected.

Note that the MAT object can return a buffer containing Platform Interrupt Source Structure entries. It is
allowed for such an entry to refer to a Global System Interrupt that is already specified by a Platform
Interrupt Source Structure provided through the static MADT table, provided the value of platform

interrupt source flags are identical.
Refer to the Itanium™ Processor Family System Abstraction Layer (SAL) Specification for details on

handling the Corrected Platform Error Interrupt.

Table 5-30 Platform Interrupt Sources Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 8 Platform Interrupt Source structure
Length 1 1 16
Flags 2 2 MPS INTI flags. See Table 5-24 for a description of this field.
Interrupt Type 1 4 1 PMI
2 INIT
3 Corrected Platform Error Interrupt
All other values are reserved.
Processor ID 1 5 Processor ID of destination.
Processor EID 1 6 Processor EID of destination.
I/0 SAPIC 1 7 Value that OSPM must use to program the vector field of the I/O
Vector SAPIC redirection table entry for entries with the PMI interrupt
type.
Global System 4 8 The Global System Interrupt that this platform interrupt will
Interrupt signal.
Platform 4 12 Platform Interrupt Source Flags. See Table 5-31 for a description
Interrupt Source of this field
Flags

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

120 Advanced Configuration and Power Interface Specification

Table 5-31 Platform Interrupt Source Flags

Platform

Interrupt Source | Bit Bit

Flags Length | Offset | Description

CPEI Processor 1 0 When set, indicates that retrieval of error information is allowed

Override from any processor and OSPM is to use the information provided
by the processor ID, EID fields of the Platform Interrupt Source
Structure (Table 5-30) as a target processor hint.

Reserved 31 1 Must be zero.

Global System Interrupt Vector

(ie ACPI PnP IRQ#)

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

Interrupt Input Lines ‘System Vector Base’

on IOAPIC reported in [OAPIC Struc
0 [|INTI O 0
23 [|INTI 23
24 [JINTI 0 24
39 [{INTI 15
40 [{INTI 0 40
51 [JINTI 11
55 PINTI 23

Figure 5-3 APIC-Global System Interrupts

5.2.12 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to

virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do not
confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259 interrupts they
correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 121

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by each
I/0 APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how
many interrupt inputs each I/O APIC supports and by determining the global system interrupt base for each
I/O APIC as specified by the [/O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the I/O APIC. The global system interrupts mapped to that I/O
APIC begin at the global system interrupt base and extending through the number of interrupts specified in
the Max Redirection register. This mapping is depicted in Figure 5-3.

There is exactly one I/O APIC structure per I/O APIC in the system.

Global System Interrupt Vector 8259 ISA IRQs

(ie ACPI PnP IRQ#) ¢ ¢
0 IRQO
M aster iRQ3
8259
7 IRQ7
3 IR8
Slave .
8259 IRQ11
15 IRQI15

Figure 5-4 8259-Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA TRQs. The ISA IRQs and their

mappings to the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in
Figure 5-4.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

122 Advanced Configuration and Power Interface Specification

5.2.13 Smart Battery Table (SBST)

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. This table indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the user
to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in current
(mA/mAh) or in energy (mW/mWh), OSPM must set them to operate in energy (mW/mWh) mode so that
the energy levels specified in the SBST can be used. OSPM uses these tables with the capabilities of the
batteries to determine the different trip points. For more precise definitions of these levels, see section
3.9.3, “Battery Gas Gauge.”

Table 5-32 Smart Battery Description Table (SBST) Format

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘SBST.’ Signature for the Smart Battery Description Table.
Length 4 4 Length, in bytes, of the entire SBST
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.
OEM Revision | 4 24 OEM revision of SBST for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Warning Energy 4 36 OEM suggested energy level in milliWatt-hours (mWh) at which
Level OSPM warns the user.
Low Energy Level | 4 40 OEM suggested platform energy level in mWh at which OSPM
will transition the system to a sleeping state.
Critical Energy 4 44 OEM suggested platform energy level in mWh at which OSPM
Level performs an emergency shutdown.

5.2.14 Embedded Controller Boot Resources Table (ECDT)

This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of this table allows OSPM to provide Embedded Controller operation region space access before
the namespace has been evaluated. If this table is not provided, the Embedded Controller region space will
not be available until the Embedded Controller device in the AML namespace has been discovered and
enumerated. The availability of the region space can be detected by providing a REG method object
underneath the Embedded Controller device.

Table 5-33 Embedded Controller Boot Resources Table Format

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 123

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘ECDT.” Signature for the Embedded Controller Table.
Length 4 4 Length, in bytes, of the entire Embedded Controller Table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 10 OEM ID
OEM Table ID 16 For the Embedded Controller Table, the table ID is the
manufacturer model ID.
OEM Revision | 4 24 OEM revision of Embedded Controller Table for supplied OEM
Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC _CONTROL 12 36 Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller
Command/Status register.

Note: Only System I/O space and System Memory space are
valid for values for Address Space ID.

EC DATA 12 48 Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.

Note: Only System I/O space and System Memory space are
valid for values for Address_Space ID.

UID 4 60 Unique ID—Same as the value returned by the UID under the
device in the namespace that represents this embedded
controller.

GPE BIT 1 64 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described in the FADT that the
embedded controller triggers.

EC ID Variable | 65 ASCII, null terminated, string that contains a fully qualified

reference to the name space object that is this embedded
controller device (for example, “\\ SB.PCI0.ISA.EC”). Quotes
are omitted in the data field.

ACPI OSPM implementations supporting Embedded Controller devices must also support the ECDT.
ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The following example
code shows how to detect whether the Embedded Controller operation regions are available in a manner
that is backward compatible with prior versions of ACPI/OSPM.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

124 Advanced Configuration and Power Interface Specification

Device(ECO) {
Name (REGC,Ones)
Method(_REG,2) {
If(Lequal (Argo, 3)) {
Store(Argl, REGC)
}

}

¥
Method(ECAV,0) {
I1T(Lequal (REGC,0Ones)) {
If(LgreaterEqual (_REV,2)) {
Return(One)

}
Else {
Return(Zero)

}
Return(REGC)

}
}

To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCI0.ECO.ECAVQ) {
...regions are available...

else {
...regions are not available...
}

5.2.15 System Resource Affinity Table (SRAT)

This optional table provides information that allows OSPM to associate processors and memory ranges,
including ranges of memory provided by hot-added memory devices, with system localities / proximity
domains. On NUMA platforms, SRAT information enables OSPM to optimally configure the operating
system during a point in OS initialization when evaluation of objects in the ACPI Namespace is not yet
possible. OSPM evaluates the SRAT only during OS initialization.

Table 5-34 Static Resource Affinity Table Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SRAT’. Signature for the System Resource Affinity Table.
Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM TableID | 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.
OEM Revision | 4 24 OEM revision of System Resource Affinity Table for supplied
OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision | 4 32 Revision of utility that created the table.
Reserved 4 36 Reserved to be 1 for backward compatibility

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 125

Field Byte Byte Description
Length | Offset
Reserved 8 40 Reserved
Static Resource - 48 A list of static resource allocation structures for the platform. See

Allocation
Structure[n]

section 5.2.15.1,”Processor Local APIC/SAPIC Affinity
Structure” and section 5.2.15.2 Memory Affinity Structure”.

5.2.15.1 Processor Local APIC/SAPIC Affinity Structure

The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID or
SAPIC ID/EID of a processor and the proximity domain to which the processor belongs. Table 5-35
provides the details of the Processor Local APIC/SAPIC Affinity structure.

Table 5-35 Processor Local APIC/SAPIC Affinity Structure

Field Byte Byte Description
Length | Offset

Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure

Length 1 1 16

Proximity Domain | 1 2 Bit[7:0] of the proximity domain to which the processor belongs.

[7:0]

APIC ID 1 3 The processor local APIC ID.

Flags 4 4 Flags — Processor Local APIC/SAPIC Affinity Structure. See
Table 5-36 for a description of this field.

Local SAPICEID | 1 8 The processor local SAPIC EID.

Proximity Domain | 3 9 Bit[31:8] of the proximity domain to which the processor

[31:8] belongs.

Reserved 4 12 Reserved

Table 5-36 Flags — Processor Local APIC/SAPIC Affinity Structure
Field Bit Bit Description
Length | Offset

Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only
enable them as necessary.

Reserved 31 1 Must be zero.

5.2.15.2 Memory Affinity Structure
The Memory Affinity structure provides the following topology information statically to the operating

system:

e The association between a range of memory and the proximity domain to which it belongs

e Information about whether the range of memory can be hot-plugged.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

126 Advanced Configuration and Power Interface Specification

Table 5-37 provides the details of the Memory Affinity structure.
Table 5-37 Memory Affinity Structure

Field Byte Byte Description
Length | Offset

Type 1 0 1 Memory Affinity Structure

Length 1 1 40

Proximity Domain | 4 2 Integer that represents the proximity domain to which the
processor belongs

Reserved 2 6 Reserved

Base Address Low | 4 8 Low 32 Bits of the Base Address of the memory range

Base Address High | 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved.

Flags 4 28 Flags — Memory Affinity Structure. Indicates whether the region
of memory is enabled and can be hot plugged. Details in See
Table 5-38.

Reserved 8 32 Reserved.

Table 5-38 Flags — Memory Affinity Structure

Field Bit Bit Description
Length | Offset
Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity

Structure. This allows system firmware to populate the SRAT
with a static number of structures but only enable then as
necessary.

Hot Pluggable’ 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set and the Hot Pluggable bit is also set. The
system hardware supports hot-add and hot-remove of this
memory region

If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.

If the Enabled bit is clear, the OSPM will ignore the contents of
the Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

> On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift into
PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 127

Field Bit Bit Description
Length | Offset
Reserved 29 3 Must be zero.

5.2.16 System Locality Distance Information Table (SLIT)

This optional table provides a matrix that describes the relative distance (memory latency) between all
System Localities, which are also referred to as Proximity Domains. Systems employing a Non Uniform
Memory Access (NUMA) architecture contain collections of hardware resources including for example,
processors, memory, and I/O buses, that comprise what is known as a “NUMA node”. Processor accesses
to memory or I/O resources within the local NUMA node is generally faster than processor accesses to
memory or I/O resources outside of the local NUMA node.

The value of each Entry([i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the PXM object in the ACPI namespace.
See section 6.2.12, “ PXM (Proximity)” for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to System
Locality j is the i*N + j entry in the matrix, where N is the number of System Localities. Except for the
relative distance from a System Locality to itself, each relative distance is stored twice in the matrix. This
provides the capability to describe the scenario where the relative distances for the two directions between
System Localities is different.

The diagonal elements of the matrix, the relative distances from a System Locality to itself are normalized
to a value of 10. The relative distances for the non-diagonal elements are scaled to be relative to 10. For
example, if the relative distance from System Locality i to System Locality j is 2.4, a value of 24 is stored
in table entry i*N+ j and in j*N+ i, where N is the number of System Localities.

If one locality is unreachable from another, a value of 255 (0xFF) is stored in that table entry. Distance
values of 0-9 are reserved and have no meaning.

Table 5-39 SLIT Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SLIT’. Signature for the System Locality Distance
Information Table.
Length 4 4 Length, in bytes, of the entire System Locality Distance
Information Table.
Revision 1 8 1
Checksum | 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table ID 8 16 For the System Locality Information Table, the table ID is
the manufacturer model ID.
OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

128 Advanced Configuration and Power Interface Specification

Field Byte Byte Description
Length | Offset
Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.
Number of System 8 36 Indicates the number of System Localities in the system.
Localities
Entry[0][0] | 44 Matrix entry (0,0), contains a value of 10.
Entry[0][Number of 1 Matrix entry (0, Number of System Localities-1)
System Localities-1]
Entry[1][0] 1 Matrix entry (1,0)
Entry[Number of 1 Matrix entry (Number of System Localities-1, Number of
System Localities- System Localities-1), contains a value of 10
1][Number of System

Localities-1]

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 129

5.3 ACPI Namespace

For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to refer to
objects. All Definition Blocks load into the same namespace. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take care
to avoid any naming collisions’. Only an unload operation of a Definition Block can remove names from
the namespace, so a name collision in an attempt to load a Definition Block is considered fatal. The
contents of the namespace changes only on a load or unload operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:
e All names are a fixed 32 bits.
e The first byte of a name is inclusive of: ‘A’—‘Z’, * ’, (0x41-0x5A, 0x5F).
e The remaining three bytes of a name are inclusive of: ‘A’—Z’, ‘0°—9’, * ’, (0x41-0x5A, 0x30—
0x39, 0x5F).
e By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with
trailing underscores (°_"). See the language definition for AML NameSeg in Section 16, “ACPI
Source Language Reference.”
e Names beginning with *_’ are reserved by this specification. Definition Blocks can only use names
beginning with °_’ as defined by this specification.
e A name proceeded with °\’ causes the name to refer to the root of the namespace (°\” is not part of
the 32-bit fixed-length name).
e A name proceeded with ‘*’ causes the name to refer to the parent of the current namespace (‘“*’ is
not part of the 32-bit fixed-length name).

Except for names preceded with a °\’, the current namespace determines where in the namespace hierarchy
a name being created goes and where a name being referenced is found. A name is located by finding the
matching name in the current namespace, and then in the parent namespace. If the parent namespace does
not contain the name, the search continues recursively upwards until either the name is found or the
namespace does not have a parent (the root of the namespace). This indicates that the name is not found’.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that starts with a \’
prefix), and a relative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, which is a relative
namespace path. For those relative name paths that contain multiple NameSegs or Parent Prefixes, ‘", the
search rules do not apply. If the search rules do not apply to a relative namespace path, the namespace
object is looked up relative to the current namespace. For example:

ABCD //search rules apply

~ABCD //search rules do not apply
XYZ .ABCD //search rules do not apply
\XYZ.ABCD //search rules do not apply

® For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. The root of the name space and certain locations where
interaction is being designed are the areas in which extra care must be taken.

7 Unless the operation being performed is explicitly prepared for failure in name resolution, this is
considered an error and may cause the system to stop working.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

130 Advanced Configuration and Power Interface Specification

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple
32-bit fixed-length name components together. This is useful for referring to the name of an object, such as
a control method, that is not in the scope of the current namespace.

The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has been
loaded.

[_‘:j Root

_PR — Processor Tree
4?@ CPUO — Processor 0 object
—{R] \PIDO — Power resource for IDEQ
] _STA — Method to return status of power resourse
] _ON — Method to turn on power resourse
™ _OFF — Method to turn off power resourse
{3 \ SB — System bus tree
PCIo — PCl bus
_HID — Device ID
_CRS — Current resources (PCI bus number)
IDEO — IDEO device Key
_ADR — PCI device #, function # b Package
_PRO — Power resource requirements for DO E Processor Object
_GPE — General purpose events (GP_STS) E g%ﬁi; Resource
_Lo1 — Method to handle level GP_STS.1 @ Bus/Device Object
_EO02 — Method to handle edge GP_STS.2 D Data Object
LE _Lo3 — Method to handle level GP_STS.3 i Control Method (AML code)

Figure 5-5 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of the
namespace search rules. An attempt to access a relative object recurses toward the root until the object is
found or the root is encountered. This can cause unintentional results. For example, using the namespace
described in Figure 5.5, attempting to access a _CRS named object from within the \ SB_.PCI0.IDEO will
have different results depending on if an absolute or relative path name is used. If an absolute pathname is
specified (_SB_.PCI0.IDEO._CRS) an error will result since the object does not exist. Access using a
single segment name (_CRS) will actually access the \ SB_.PCI0._ CRS object. Notice that the access will
occur successfully with no errors.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 131

5.3.1 Predefined Root Namespaces
The following namespaces are defined under the namespace root.

Table 5-40 Namespaces Defined Under the Namespace Root

Name Description
\ GPE General events in GPE register block.
_ PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined

under this namespace. ACPI allows Processor object definitions under the \ SB
namespace. Platforms may maintain the \ PR namespace for compatibility with ACPI 1.0
operating systems. An ACPI-compatible namespace may define Processor objects in
either the \ SB or \ PR scope but not both.

For more information about defining Processor objects, see section 8, “Processor Power
and Performance State Configuration and Control.”

\ SB All Device/Bus Objects are defined under this namespace.

\ SI System indicator objects are defined under this namespace. For more information about
defining system indicators, see section 9.1, \ S1 System Indicators.”

\ TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects to be
defined under this namespace. Thermal Zone object definitions may now be defined under
the \ SB namespace. ACPI-compatible systems may maintain the \ TZ namespace for
compatibility with ACPI 1.0 operating systems. An ACPI-compatible namespace may
define Thermal Zone objects in either the \ SB or \ TZ scope but not both.

For more information about defining Thermal Zone objects, see section 11, “Thermal
Management.”

5.3.2 Objects

All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages. The Definition Block is encoded as a stream from beginning to end. The lead byte in the
stream comes from the AML encoding tables shown in section 17, “ACPI Source Language (ASL)
Reference,” and signifies how to interpret some number of following bytes, where each following byte can
in turn signify how to interpret some number of following bytes. For a full specification of the AML
encoding, see section 17, “ACPI Source Language (ASL) Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object declarations
(load time), and the other is an object reference (package contents/run-time).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

132 Advanced Configuration and Power Interface Specification

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take
the form shown below, where PkgLength is the length of the inclusive length of the data for the operation.

LeadByte PkgLength data... LeadByte ...
\—b PkgLength —T

Figure 5-6 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that,
at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used
in one-byte encodings, which allows for one-byte encodings on a length up to 0x3F. Longer encodings,
which do not use these two bits, have a maximum length of the following: two-byte encodings of 0xOFFF,
three-byte encodings of 0XOFFFFF, and four-byte length encodings of OxOFFFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly for
a datum of implicit length.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and populates the ACPI namespace and initializes objects
accordingly. The namespace for which population occurs is either from the current namespace location, as
defined by all nested packages or from the root if the name is preceded with \’.

The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in
the “root.” Unnamed objects can be used as arguments in control methods.

Control method execution may generate errors when creating objects. This can occur if a Method that
creates named objects blocks and is reentered while blocked. This will happen because all named objects
have an absolute path. This is true even if the object name specified is relative. For example, the following
ASL code segments are functionally identical.

(1)
Method (DEAD,) {
Scope (_SB_.F00) {
Name (BAR,) // Run time definition
b

}
2

Scope (_SB) {
Name (_SB_. FO0.BAR,) // Load time definition
3

Notice that in the above example the execution of the DEAD method will always fail because the object
\ SB .FOO.BAR is created at load time.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 133

5.5 Using the ACPI Control Method Source Language

OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use a translator to produce the byte stream encoding described in section 5.4, “Definition Block
Encoding”. For example, the ASL statements that produce the example byte stream shown in that earlier
section are shown in the following ASL example. For a full specification of the ASL statements, see section
17, “ACPI Source Language (ASL) Reference.”

// ASL Example
DefinitionBlock (

"forbook.aml", // Output Filename

"“DSDT", // Signature

0x02, // DSDT Compliance Revision
"OEM", // OEMID

"forbook", // TABLE ID

0x1000 // OEM Revision

// start of definition block
OperationRegion(\GI0O, SystemlO, 0x125, 0x1)
Field(\G10, ByteAcc, NoLock, Preserve) {

N\

cTo1l, 1,
b
Scope(_SB){ // start of scope
Device(PCIO) { // start of device
PowerResource(FETO, 0, 0) { // start of pwr
Method (_ON) {
Store (Ones, CTO1l) // assert power
Sleep (30) // wait 30ms

}
Method (_OFF) {
Store (Zero, CTO1l) // assert reset#

¥
Method (_STA) {
Return (CTO1)

3
} 7/ end of power
} 7/ end of device
} 7/ end of scope
} 7/ end of definition block

5.5.1 ASL Statements

ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

Object := ObjectType FixedList VariablelList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType must
have. It is written as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, that is (a, b, (q, 1, s, t), d). Arguments to a FixedList can have default
values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as {X,y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have a null variable list.

For a detailed specification of the ASL language, see section 17, “ACPI Source Language (ASL)
Reference.” For a detailed specification of the ACPI Control Method Machine Language (AML), upon
which the output of the ASL translator is based, see section 18, “ACPI Machine Language (AML)
Specification.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

134 Advanced Configuration and Power Interface Specification

5.5.2 Control Method Execution

The operating software will initiate well-defined control methods as necessary to either interrogate or
adjust system-level hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand,
which can include defined control methods provided by the operating software. Interpretation of a Control
Method is not preemptive, but it can block. When a control method does block, the operating software can
initiate or continue the execution of a different control method. A control method can only assume that
access to global objects is exclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Access to Objects and Operation Regions

Control Methods can reference any objects anywhere in the Namespace as well as address spaces defined
in operation regions. Control methods must have exclusive access to the any address accessed via
OpRegions. Control methods do not directly access any other hardware registers, including the ACPI-
defined register blocks. Some of the ACPI registers, in the defined ACPI registers blocks, are maintained
on behalf of control method execution. For example, the GPEx BLK is not directly accessed by a control
method but is used to provide an extensible interrupt handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of the embedded controller, an embedded controller OpRegion field access may
block.

5.5.2.2 Arguments

Up to seven arguments can be passed to a control method. Each argument is an object which in turn could
be a “package” style object that refers to other objects. Access to the argument objects is provided via the
ASL ArgTerm (ArgX) language elements. The number of arguments passed to any control method is fixed
and is defined when the control method package is created.

Method arguments can take one of the following forms:

1) An ACPI name or namepath that refers to a named object. This includes the LocalX and ArgX names.
In this case, the object associated with the name is passed as the argument.

2) An ACPI name or namepath that refers to another control method. In this case, the method is invoked
and the return value of the method is passed as the argument. A fatal error occurs if no object is
returned from the method. If the object is not used after the method invocation it is automatically
deleted.

3) A valid ASL expression. In the case, the expression is evaluated and the object that results from this
evaluation is passed as the argument. If this object is not used after the method invocation it is
automatically deleted.

5.5.2.3 Method Calling Convention

The calling convention for control methods can best be described as call-by-reference-constant. In this
convention, objects passed as arguments are passed by “reference”, meaning that they are not copied to
new objects as they are passed to the called control method (A calling convention that copies objects or
object wrappers during a call is known as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objects to be shared across each method
invocation, therefore reducing the number of object copies that must be performed as well as the number of
buffers that must be copied. This calling convention is appropriate to the low-level nature of the ACPI
subsystem within the kernel of the host operating system where non-paged dynamic memory is typically at
a premium. The ASL programmer must be aware of the calling convention and the related side effects.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 135

However, unlike a pure call-by-reference convention, the ability of the called control method to modify
arguments is extremely limited. This reduces aliasing issues such as when a called method unexpectedly
modifies a object or variable that has been passed as an argument by the caller. In effect, the arguments that
are passed to control methods are passed as constants that cannot be modified except under specific
controlled circumstances.

Generally, the objects passed to a control method via the ArgX terms cannot be directly written or modified
by the called method. In other words, when an ArgX term is used as a target operand in an ASL statement,
the existing ArgX object is not modified. Instead, the new object replaces the existing object and the ArgX
term effectively becomes a LocalX term.

The only exception to the read-only argument rule is if an ArgX term contains an Object Reference created
via the RefOf ASL operator. In this case, the use of the ArgX term as a target operand will cause any
existing object stored at the ACPI name referred to by the RefOf operation to be overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to change the
value of an ArgX object. These cases are limited to Buffer and Package objects where the “value” of the
object is represented indirectly. For Buffers, a writable Index or Field can be created that refers to the
original buffer data and will allow the called method to read or modify the data. For Packages, a writable
Index can be created to allow the called method to modify the contents of individual elements of the
Package.

5.5.2.4 Local Variables and Locally Created Data Objects

Control methods can access up to eight local data objects. Access to the local data objects have shorthand
encodings. On initial control method execution, the local data objects are NULL. Access to local objects is
via the ASL LocalTerm language elements.

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or save it to a different object if it wants to
preserve it. See the description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method
may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objects will still be destroyed on method exit. Objects created at load time
outside of the scope of the method are static. For example:

Scope (\XY2) {

Name (BAR, 5) // Creates \XYZ_BAR

Method (FOO, 1) {
Store (BAR, CREG) // same effect as Store (\XYZ.BAR, CREG)
Name (BAR, 7) // Creates \XYZ.F0O0.BAR
Store (BAR, DREG) // same effect as Store (\XYZ.FOO.BAR, DREG

Name (\XYZ.FOOB, 3) // Creates \XYZ_.FOOB
} 7/ end method
} 7/ end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL is loaded. The
object \XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XYZ.FOOB is a dynamic object created by the \XYZ.FOO method when
the Name (\XYZ.FOOB, 3) statement is executed. Notice that the \XYZ.FOOB object is destroyed after the
\XYZ.FOO method exits.

5.6 ACPI Event Programming Model

The ACPI event programming model is based on the SCI interrupt and General-Purpose Event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this
section.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

136 Advanced Configuration and Power Interface Specification

5.6.1 ACPI Event Programming Model Components

The components of the ACPI event programming model are the following:

e OSPM

e FADT

[]

[]

[]

e SCl interrupt
[]

[]

[]

PMla_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks
GPEO BLK and GPE1 BLK register blocks
GPE register blocks defined in GPE block devices

ACPI AML code general-purpose event model
ACPI device-specific model events
ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.

Table 5-41 ACPI Event Programming Model Components

Component Description

OSPM Receives all SCI interrupts raised (receives all SCI events). Either handles the
event or masks the event off and later invokes an OEM-provided control method
to handle the event. Events handled directly by OSPM are fixed ACPI events;
interrupts handled by control methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks on an ACPI-

compatible platform: PM1x_STS and PM1x_EN fixed registers and the
GPEx_STS and GPEx_EN fixed registers.

PM1x_STS and
PM1x_EN fixed
registers

PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit is set, if the
matching PM1x_EN bit is set, the ACPI SCI event is raised.

GPEXx_STS and
GPEX_EN fixed
registers

GPEx_STS bits that raise general-purpose events. For every event bit
implemented in GPEx_STS, there must be a comparable bit in GPEx_EN. Up to
256 GPEx_STS bits and matching GPEx_EN bits can be implemented. While a
GPEx_STS bit is set, if the matching GPEx_EN bit is set, then the general-
purpose SCI event is raised.

SCI interrupt

A level-sensitive, shareable interrupt mapped to a declared interrupt vector. The
SCI interrupt vector can be shared with other low-priority interrupts that have a
low frequency of occurrence.

ACPI AML code
general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events. This includes
using GPEx_STS events as “wake” sources as well as other general service events
defined by the OEM (“button pressed,” “thermal event,” “device present/not
present changed,” and so on).

ACPI device-specific
model events

Devices in the ACPI namespace that have ACPI-specific device IDs can provide
additional event model functionality. In particular, the ACPI embedded controller
device provides a generic event model.

ACPI Embedded
Controller event model

A model that allows OEM AML code to use the response from the Embedded
Controller Query command to provide general-service event defined by the OEM.

5.6.2 Types of ACPI Events
At the direct ACPI hardware level, two types of events can be signaled by an SCI interrupt:

e Fixed ACPI events

e General-purpose events

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 137

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as in
the case of the embedded controller, a well-defined second-level event dispatching is defined to make a
third type of typical ACPI event. For the flexibility common in today’s designs, two first-level general-
purpose event blocks are defined, and the embedded controller construct allows a large number of
embedded controller second-level event-dispatching tables to be supported. Then if needed, the OEM can
also build additional levels of event dispatching by using AML code on a general-purpose event to sub-
dispatch in an OEM defined manner.

5.6.2.1 Fixed ACPI Event Handling

When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see section 4, “ACPI
Hardware Specification.”

Table 5-42 Fixed ACPI Events

Event Comment
Power For more information, see the description of the TMR_STS and TMR_EN bits of the
management PM1x fixed register block in section 4.7.3.1, “PM1 Event Grouping,” as well as the
timer carry bit TMR_VAL register in the PM_TMR_BLK in section 4.7.3.3, “Power Management
set. Timer.”
Power button A power button can be supplied in two ways. One way is to simply use the fixed status
signal bit, and the other uses the declaration of an ACPI power device and AML code to
determine the event. For more information about the alternate-device based power
button, see section 4.7.2.2.1.2, Control Method Power Button.”
Notice that during the SO state, both the power and sleep buttons merely notify OSPM
that they were pressed.
If the system does not have a sleep button, it is recommended that OSPM use the
power button to initiate sleep operations as requested by the user.
Sleep button A sleep button can be supplied in one of two ways. One way is to simply use the fixed
signal status button. The other way requires the declaration of an ACPI sleep button device
and AML code to determine the event.
RTC alarm ACPI-defines an RTC wake alarm function with a minimum of one-month granularity.

The ACPI status bit for the device is optional. If the ACPI status bit is not present, the
RTC status can be used to determine when an alarm has occurred. For more
information, see the description of the RTC_STS and RTC_EN bits of the PM1x fixed
register block in section 4.7.3.1, “PM1 Event Grouping.”

Wake status

The wake status bit is used to determine when the sleeping state has been completed.
For more information, see the description of the WAK STS and WAK_EN bits of the
PM1x fixed register block in section 4.7.3.1, “PM1 Event Grouping.”

Table 5-42 Fixed ACPI Events (continued)

Event

Comment

System bus
master request

The bus-master status bit provides feedback from the hardware as to when a bus master
cycle has occurred. This is necessary for supporting the processor C3 power savings
state. For more information, see the description of the BM_STS bit of the PM1x fixed
register block in section 4.7.3.1, “PM1 Event Grouping.”

Global release
status

This status is raised as a result of the Global Lock protocol, and is handled by OSPM as
part of Global Lock synchronization. For more information, see the description of the
GBL_STS bit of the PM1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.” For more information on Global Lock, see section 5.2.10.1, “Global Lock.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

138 Advanced Configuration and Power Interface Specification

5.6.2.2 General-Purpose Event Handling

When OSPM receives a general-purpose event, it either passes control to an ACPI-aware driver, or uses an
OEM-supplied control method to handle the event. An OEM can implement up to 128 general-purpose
event inputs in hardware per GPE block, each as either a level or edge event. It is also possible to
implement a single 256-pin block as long as it’s the only block defined in the system.

An example of a general-purpose event is specified in section 4, “ACPI Hardware Specification,” where
EC _STS and EC_EN bits are defined to enable OSPM to communicate with an ACPI-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a platform
uses an embedded controller in the ACPI environment, then the embedded controller’s SCI output must be
directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bits in Operational Regions (I/O space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx BLK) in
section 4.7.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose event
(the event is from a GPEx_ BLK STS bit), OSPM does the following:
1. Disables the interrupt source (GPEx BLK EN bit).
2. If an edge event, clears the status bit.
3. Performs one of the following:
e Dispatches to an ACPI-aware device driver.
e Queues the matching control method for execution.
e Manages a wake event using device PRW objects.
4. Ifalevel event, clears the status bit.
5. Enables the interrupt source.

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will execute
the control method of the name \ GPE. TXX where XX is the hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’ for a level
event). The event values for status bits in GPEQ_BLK start at zero (_T00) and end at the

(GPEO_BLK LEN/2)- 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1 BASE + (GPE1 BLK LEN/2)-1.GPEO BLK LEN, GPE1 BASE, and GPE1 BLK LEN are all
defined in the FADT.

For OSPM to manage the bits in the GPEx BLK blocks directly:
e Enable bits must be read/write.
e Status bits must be latching.
e Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.6.2.2.1 Wake Events

An important use of the general-purpose events is to implement device wake events. The components of the
ACPI event programming model interact in the following way:

e When a device asserts its wake signal, the general-purpose status event bit used to track that
device is set.

e While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

o If the system is sleeping, this will cause the hardware, if possible, to transition the system into the
S0 state.

e Once the system is running, OSPM will dispatch the corresponding GPE handler.

e The handler needs to determine which device object has signaled wake and performs a wake
Notify command on the corresponding device object(s) that have asserted wake.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 139

e Inturn OSPM will notify OSPM native driver(s) for each device that will wake its device to
service it.

Events that wake may not be intermixed with non-wake (runtime) events on the same GPE input. The only
exception to this rule is made for the special devices below. Only the following devices are allowed to
utilize a single GPE for both wake and runtime events:

1) Button Devices
e PNPOCOC — Power Button Device
e PNPOCOD — Lid Device
e PNPOCOE — Sleep Button Device
2) PCI Bus Wakeup Event Reporting (PME)
e PNPOAO3 — PCI Host Bridge

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for multiple
wake events) must have individual enable and status bits in order to properly handle the semantics used by
the system.

5.6.2.2.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPE:s are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, an OS-native, ACPI-aware driver is given the GPE event for its
device. This driver services the embedded controller device and determines when events are to be reported
by the embedded controller by using the Query command. When an embedded controller event occurs, the
ACPI-aware driver dispatches the requests to other ACPI-aware drivers that have registered to handle the
embedded controller queries or queues control methods to handle each event. If there is no device driver to
handle specific queries, OEM AML code can perform OEM-specific functions that are customized to each
event on the particular platform by including specific control methods in the namespace to handle these
events. For an embedded controller event, OSPM will queue the control method of the name _QXX, where
XX is the hex format of the query code. Notice that each embedded controller device can have query event
control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will queue
control methods to handle these. Methods must be placed under the SMBus device with the name QXX
where XX is the hex format of the SMBus address of the device sending the alarm.

5.6.2.2.3 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, OSPM uses a naming convention to determine which control
method to queue for execution and how the GPE EOI is to be handled. The GPEx_STS bits in the
GPEx_BLK are indexed with a number from 0 through FF. The name of the control method to queue for an
event raised from an enable status bit is always of the form \ GPE. Txx where xX is the event value and T
indicates the event EOI protocol to use (either edge or level). The event values for status bits in
GPEO_BLK start at zero (_T00), end at the (GPEO_ BLK LEN/2) - 1, and correspond to each status bit
index within GPEO_BLK. The event values for status bits in GPE1_BLK are offset by GPE_BASE and
therefore start at GPE1_BASE and end at GPE1 _BASE + (GPE1_BLK LEN/2)- 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPEO_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name \ GPE. 104 or \GPE. E04 to handle the event. An example of a
control method declaration using such a name is the following:

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

140 Advanced Configuration and Power Interface Specification

Method (_GPE. L04) { // GPE 4 level wake handler
Notify (_SB.PCI0.COMO, 2)

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to some
other hardware register and signal a change notify request of the appropriate device object. Or, the cause of
the general-purpose event can result from more then one source, in which case the control method for that
event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01 through
FF. (A query response of 0 from the embedded controller is reserved for “no outstanding events.”) The
name of the control method to queue is always of the form _Qxx where xx is the number of the query
acknowledged by the embedded controller. An example declaration for a control method that handles an
embedded controller query is the following:

Method(_Q34) { // embedded controller event for thermal
Notify (_SB.TZO.THM1, 0x80)
3

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution. When
an alarm is received by the SMBus host controller, it generally receives the SMBus address of the device
issuing the alarm and one word of data. On implementations that use SMBALERT# for notifications, only
the device address will be received. The name of the control method to queue is always of the form _Qxx
where xx is the SMBus address of the device that issued the alarm. The SMBus address is 7 bits long
corresponding to hex values 0 through 7F, although some addresses are reserved and will not be used. The
control method will always be queued with one argument that contains the word of data received with the
alarm. An exception is the case of an SMBus using SMBALERT# for notifications, in this case the
argument will be 0. An example declaration for a control method that handles a SMBus alarm follows:

Method(_Q18, 1) { // Thermal sensor device at address 0011 000

// Arg0 contains notification value (if any)
// Arg0 = O if device supports only SMBALERT#

Notify (_SB.TZO.THM1, 0x80)

5.6.2.2.4 Managing a Wake Event Using Device PRW Objects

A device’s PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general-purpose status bit from either GPEO_BLK or GPE1 BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the system
can have multiple devices using the same general-purpose event bit by using OEM-specific hardware to
provide second-level status and enable bits. In this case, the OEM AML code is responsible for the second-
level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its PSW control method (which is used to take care of the second-level enables). When the GPE
is asserted, OSPM still executes the corresponding GPE control method that determines which device
wakes are asserted and notifies the corresponding device objects. The native OS driver is then notified that
its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the
system into the SO state, if possible.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 141

5.6.2.2.5 Determining the System Wake Source Using _Wxx Control
Methods

After a transition to the SO state, OSPM may evaluate the SWS object in the \ GPE scope to determine the
index of the GPE that was the source of the transition event. When a single GPEs is shared among multiple
devices, the platform provides a _Wxx control method, where xx is GPE index as described in Section
5.6.2.2.3, that allows the source device of the transition to be determined . If implemented, the Wxx
control method must exist in the \ GPE scope or in the scope of a GPE block device.

If Wxx is implemented, either hardware or firmware must detect and save the source device as described
in Section 7.3.5, “ SWS (System Wake Source)”. During invocation, the Wxx control method determines
the source device and issues a Notify(<device>,0x2) on the device that caused the system to transition to
the SO state. If the device uses a bus-specific method of arming for wakeup, then the Notify must be issued
on the parent of the device that hasa PRW method. The Wxx method must issue a
Notify(<device>,0x2) only to devices that contain a PRW method within their device scope. OSPM’s
evaluation of the SWS and Wxx objects is indeterminate. As such, the platform must not rely on _SWS
or _Wxx evaluation to clear any hardware state, including GPEx_STS bits, or to perform any wakeup-
related actions.

If the GPE index returned by the SWS object is only referenced by a single PRW object in the system, it
is implied that the device containing that PRW is the wake source. In this case, it is not necessary for the
platform to provide a _Wxx method.

5.6.3 Device Object Notifications

During normal operation, the platform needs to notify OSPM of various device-related events. These
notifications are accomplished using the Notify operator, which indicates a target device, thermal zone, or
processor object and a notification value that signifies the purpose of the notification. Notification values
from 0 through 0x7F are common across all device object types. Notification values of 0xCO and above are
reserved for definition by hardware vendors for hardware specific notifications. Notification values from
0x80 to OxBF are device-specific and defined by each such device. For more information on the Notify
operator, see section 17.5.85, “Notify (Notify).”

Table 5-43 Device Object Notification Values

Value Description

0 Bus Check. This notification is performed on a device object to indicate to OSPM that it
needs to perform the Plug and Play re-enumeration operation on the device tree starting
from the point where it has been notified. OSPM will only perform this operation at boot,
and when notified. It is the responsibility of the ACPI AML code to notify OSPM at any
other times that this operation is required. The more accurately and closer to the actual
device tree change the notification can be done, the more efficient the operating system’s
response will be; however, it can also be an issue when a device change cannot be
confirmed. For example, if the hardware cannot notice a device change for a particular
location during a system sleeping state, it issues a Bus Check notification on wake to
inform OSPM that it needs to check the configuration for a device change.

1 Device Check. Used to notify OSPM that the device either appeared or disappeared. If
the device has appeared, OSPM will re-enumerate from the parent. If the device has
disappeared, OSPM will invalidate the state of the device. OSPM may optimize out re-
enumeration. If DCK is present, then Notify(object,1) is assumed to indicate an undock
request.

2 Device Wake. Used to notify OSPM that the device has signaled its wake event, and that
OSPM needs to notify OSPM native device driver for the device. This is only used for
devices that support PRW.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

142 Advanced Configuration and Power Interface Specification

Value

Description

3

Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM
needs to perform the Plug and Play ejection operation. OSPM will run the EJx method.

Device Check Light. Used to notify OSPM that the device either appeared or
disappeared. If the device has appeared, OSPM will re-enumerate from the device itself,
not the parent. If the device has disappeared, OSPM will invalidate the state of the
device.

Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be
attached to the bus because the device cannot be operated at the current frequency of the
bus. For example, this would be used if a user tried to hot-plug a 33 MHz PCI device
into a slot that was on a bus running at greater than 33 MHz.

Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or
bay that cannot support the device in its current mode of operation. For example, this
would be used if a user tried to hot-plug a PCI device into a slot that was on a bus
running in PCI-X mode.

Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state
because of a power fault.

Capabilities Check. This notification is performed on a device object to indicate to
OSPM that it needs to re-evaluate the _OSC control method associated with the device.

Device _PLD Check. Used to notify OSPM to reevaluate the PLD object, as the
Device’s connection point has changed.

0xA

Reserved.

0xB

System Locality Information Update. Dynamic reconfiguration of the system may
cause existing relative distance information to change. The platform sends the System
Locality Information Update notification to a point on a device tree to indicate to OSPM
that it needs to invoke the SLI objects associated with the System Localities on the
device tree starting from the point notified.

0xC-0x7F

Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table 5-44 Control Method Battery Device Notification Values

Hex value Description

0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.

0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery
device information has changed. This only occurs when a battery is replaced.

0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control
Method Battery device battery maintenance data status flags should be checked.

0x83-0xBF | Reserved.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 143

Table 5-45 Power Source Object Notification Values

Hex value Description

0x80 Power Source Status Changed. Used to notify OSPM that the power source status has
changed.

0x81-0xBF | Reserved.

Table 5-46 Thermal Zone Object Notification Values

Hex value Description

0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone
temperature has changed.

0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip
points have changed.

0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ ALX,
_PSL, TZD) have changed.

0x83 Thermal Relationship Table Changed. Used to notify OSPM that values in the thermal
relationship table have changed.

0x84-0xBF | Reserved.

Table 5-47 Control Method Power Button Notification Values

Hex value Description

0x80 SO Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system is in the SO state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF | Reserved.

Table 5-48 Control Method Sleep Button Notification Values

Hex value Description

0x80 SO Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed
while the system is in the SO state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF | Reserved.

Table 5-49 Control Method Lid Notification Values

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has
changed.

0x81-0xBF | Reserved.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

144 Advanced Configuration and Power Interface Specification

Table 5-50 Processor Device Notification Values

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to
re-evaluate the PPC object. See section 8, “Processor Power and Performance State
Configuration and Control,” for more information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor
C States has changed. This notification causes OSPM to re-evaluate the CST object.
See section 8, “Processor Power and Performance State Configuration and Control,” for
more information.

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of
supported processor throttling states has changed. This notification causes OSPM to re-
evaluate the TPC object. See section 8, “Processor Power and Performance State
Configuration and Control,” for more information.

0x83-0xBF | Reserved.

Table 5-51 User Presence Device Notification Values

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user
presence has occurred, causing OSPM to re-evaluate the UPD object.

0x81-0xBF | Reserved.

Table 5-52 Ambient Light Sensor Device Notification Values

Hex value Description

0x80 ALS Illuminance Changed. Used to notify OSPM that a meaningful change in ambient
light illuminance has occurred, causing OSPM to re-evaluate the ALI object.

0x81 ALS Color Temperature Changed. Used to notify OSPM that a meaningful change in
ambient light color temperature or chromacity has occurred, causing OSPM to re-
evaluate the ALT and/or ALC objects.

0x82 ALS Response Changed. Used to notify OSPM that the set of points used to convey the
ambient light response has changed, causing OSPM to re-evaluate the ALR object.

0x83-0xBF | Reserved.

5.6.4 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in sections 6, 7, 8, 9, 10,
and 11. Section 5.6.5, “Defined Generic Objects and Control Methods,” lists all the generic objects and
control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these
devices. The following table lists the Plug and Play IDs defined by the ACPI specification.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 145

Table 5-53 ACPI Device IDs

Plug and Description

Play ID

PNPOCO8 ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the hardware
resources consumed by the ACPI fixed register spaces, and the operation regions used by
AML code. It represents the core ACPI hardware itself.

PNPOAO5 Generic Container Device. A device whose settings are totally controlled by its ACPI
resource information, and otherwise needs no device or bus-specific driver support. This
was originally known as Generic ISA Bus Device. This ID should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNPOAOS device’s CRS object must be consumed by the
container itself.

PNPOA06 Generic Container Device. This device behaves exactly the same as the PNPOA0OS
device. This was originally known as Extended I/O Bus. This ID should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNPOAO6 device’s CRS object must be consumed by the
container itself.

PNPOC09 Embedded Controller Device. A host embedded controller controlled through an ACPI-
aware driver.

PNPOCOA Control Method Battery. A device that solely implements the ACPI Control Method
Battery functions. A device that has some other primary function would use its normal
device ID. This ID is used when the devices primary function is that of a battery.

PNPOCOB Fan. A device that causes cooling when “on” (DO device state).

Table 5-53 ACPI Device IDs (continued)

Plug and Description

Play ID

PNPOCOC Power Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This device is only needed if the power button is not
supported using the fixed register space.

PNPOCOD Lid Device. A device controlled through an ACPI-aware driver that provides lid status
functionality. This device is only needed if the lid state is not supported using the fixed
register space.

PNPOCOE Sleep Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This device is optional.

PNPOCOF PCI Interrupt Link Device. A device that allocates an interrupt connected to a PCI
interrupt pin. See section 6., “Configuration,” for more details.

PNPOCS80 Memory Device. This device is a memory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 1.0
Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 10,
“Power Source Devices.”

ACPI0003 AC Device. The AC adapter specified in section 10, “Power Source Devices.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

146 Advanced Configuration and Power Interface Specification

Plug and
Play ID

Description

ACPI0004

Module Device. This device is a container object that acts as a bus node in a namespace.
A Module Device without any of the CRS, PRS and SRS methods behaves the same
way as the Generic Container Devices (PNPOAOS or PNPOAO06). If the Module Device
contains a _CRS method, only these resources described in the CRS are available for
consumption by its child devices. Also, the Module Device can support PRS and SRS
methods if CRS is supported.

ACPI0005

SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 2.0
Specification.

ACPI0006

GPE Block Device. This device allows a system designer to describe GPE blocks
beyond the two that are described in the FADT.

ACPI0007

Processor Device. This device provides an alternative to declaring processors using the
Processor ASL statement. See section 8.4, “Declaring Processors”, for more details.

ACPI0008

Ambient Light Sensor Device. This device is an ambient light sensor. See section 9.2,
“Control Method Ambient Light Sensor Device”.

ACPI0009

I/OXAPIC Device. This device is an I/O unit that complies with both the APIC and
SAPIC interrupt models.

ACPIO00A

1/0 APIC Device. This device is an I/O unit that complies with the APIC interrupt
model.

ACPIO00B

1/0 SAPIC Device. This device is an I/O unit that complies with the SAPIC interrupt
model.

5.6.5 Defined Generic Objects and Control Methods

The following table lists all of the ACPI namespace objects defined in this specification and provides a
reference to the defining section of the specification. Object names reserved by ACPI but defined by other
specifications are also listed along with their corresponding specification reference.

Table 5-54 Defined Generic Object and Control Methods

Object Description Reference

_ACx Thermal Zone object that returns active cooling policy threshold values | 11.3.1

in tenths of degrees Kelvin.

ADR Device object that evaluates to a device’s address on its parent bus. For | 6.1.1
the display output device, this object returns a unique ID. (B.5.1,
“ ADR - Return the Unique ID for this Device.”)

_ALC Object evaluates to current Ambient Light Color Chromacity 9.2.4
_ALI The current ambient light brightness in lux (lumen per square meter). 9.2.2
_ALN Resource data type reserved field name 17.1.8
_ALP Ambient light sensor polling frequency in tenths of seconds. 9.2.6

_ALR Returns a set of ambient light brightness to display brightness mappings | 9.2.5

that can be used by an OS to calibrate its ambient light policy.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model

Table 5-54 Defined Generic Object and Control Methods

147

Object Description Reference
_ALT The current ambient light color temperature in degrees Kelvin. 923
_ALx Thermal zone object containing a list of cooling device objects. 11.3.2
_ASI Resource data type reserved field name 17.1.8
_BAS Resource data type reserved field name 17.1.8
_BBN PCI bus number setup by the BIOS 6.5.5
_BCL Returns a buffer of bytes indicating list of brightness control levels B.6.2
supported.
_BCM Sets the brightness level of the built-in display output device. B.6.3
_BDN Correlates a docking station between ACPI and legacy interfaces. 6.5.3
_BFS Control method executed immediately following a wake event. 7.3.1
_BIF Control Method Battery information object 10.2.2.1
_BLT Object that conveys user’s battery level threshold preferences to 9.1.3
platform.
_BM Resource data type reserved field name 17.1.8
_BMC Powers source object used to initiate battery calibration cycles or to 10.2.2.7
control the charger and whether or not a battery is powering the system.
_BMD Power source object that returns information about the battery’s 10.2.2.6
capabilities and current state in relation to battery calibration and
charger control features.
~BQC Object that returns current display brightness level. B.6.4
_BST Control Method Battery status object 10.2.2.3
_BTM Returns estimated runtime at the present average rate of drain, or the 10.2.2.5
runtime at a specified rate.
_BTP Sets Control Method Battery trip point 10.2.2.4
_CBA Provides the Configuration Base Address for a PCI Express host bridge | PCI Firmware
Specification,
Revision 3.0
http://pcisig.com
_CID Device identification object that evaluates to a device’s Plug and Play 6.1.2
Compatible ID list.
_CRS Device configuration object that specifies a device’s current resource 6.2.1
settings, or a control method that generates such an object.
_CRT Thermal zone object that returns critical trip point in tenths of degrees 11.3.3
Kelvin.
_CSD Object that conveys C-State dependencies 8.422
_CST Processor power state declaration object 8.4.2.1
~DCK Indicates that the device is a docking station. 6.5.2
_DCS Returns the status of the display output device. B.6.6
_DDC Returns the EDID for the display output device B.6.5

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

148 Advanced Configuration and Power Interface Specification

Table 5-54 Defined Generic Object and Control Methods

Object Description Reference
_DDN Object that associates a logical software name (for example, COM1) 6.1.3

with a device.
_DEC Resource data type reserved field name 17.1.8
_DGS Control method used to query the state of the output device. B.6.7
_DIS Device configuration control method that disables a device. 6.2.2

_DMA Object that specifies a device’s current resources for DMA transactions. | 6.2.3

~DOD Control method used to enumerate devices attached to the display B.4.2
adapter.

_DOS Control method used to enable/disable display output switching. B4.1

_DSM Generic device control method object 9.15.1

_DSS Control method used to set display device state. B.6.8

_DSW Set up a device for device-only wake 7.2.1

_Exx Control method executed as a result of a general-purpose event. 5.6.2.2,

5.6.2.23

_EC Control Method used to define the offset address and Query value ofan | 12.12
SMB-HC defined within an embedded controller device.

_EDL Device removal object that returns a packaged list of devices that are 6.3.1
dependent on a device.

_Elx Device insertion/removal control method that ejects a device. 6.3.3

EJD Device removal object that evaluates to the name of a device object 6.3.2

upon which a device is dependent. Whenever the named device is
ejected, the dependent device must receive an ejection notification.

_FDE Object that indicates the presence or absence of floppy disks. 9.10.1
_FDI Object that returns floppy drive information. 9.10.2
_FDM Control method that changes the mode of floppy drives. 9.10.3
_FIX Object used to provide correlation between the fixed hardware register 6.2.4

blocks defined in the FADT and the devices that implement these fixed
hardware registers.

_GL OS-defined Global Lock mutex object 5.7.1

~ GLK Indicates the need to acquire the Global Lock, must be acquired when 6.5.7
accessing the device.

_GPD Control method that returns which VGA device will be posted at boot B.4.4

_GPE 1. General-Purpose Events root name space 53.1

2. Object that returns the SCI interrupt within the GPx_STS register 12.11
that is connected to the EC.

_GRA Resource data type reserved field name. 17.1.8
_GTF IDE device control method to get the Advanced Technology 9.9.1.1
Attachment (ATA) task file needed to re-initialize the drive to boot up

defaults.

_GT™ IDE device control method to get the IDE controller timing information. | 9.9.2.1.1

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 149

Table 5-54 Defined Generic Object and Control Methods

Object Description Reference
_GSB Object that provides the Global System Interrupt Base for a hot-plugged | 6.2.5
I/0O APIC device.
_GTS Control method executed just prior to setting the sleep enable 7.3.3
(SLP_EN) bit.
_HE Resource data type reserved field name 17.1.8
_HID Device identification object that evaluates to a device’s Plug and Play 6.1.4
Hardware ID.
_HOT Object returns critical temperature when OSPM enters S4 11.3.4
_HPP An object that specifies the Cache-line size, Latency timer, SERR 6.2.6
enable, and PERR enable values to be used when configuring a PCI
device inserted into a hot-plug slot or initial configuration of a PCI
device at system boot.
_HPX Object that provides device parameters when configuring a PCI device 6.2.7
inserted into a hot-plug slot or initial configuration of a PCI device at
system boot. Supersedes HPP.
_IFT IPMI Interface Type Intelligent Platform
Management
Interface
Specification.
http://www.intel.co
m/design/servers/ip
mi/index.htm
_INI Device initialization method that performs device specific initialization. | 6.5.1
_INT Resource data type reserved field name 17.1.8
_IRC Power management object that signifies the device has a significant 7.2.12
inrush current draw.
_Lxx Control method executed as a result of a general-purpose event. 5.6.2.2,
5.6.2.23
_LCK Device insertion/removal control method that locks or unlocks a device. | 6.3.4
_LEN Resource data type reserved field name 17.1.8
_LID Object that returns the status of the Lid on a mobile system. 9.4.1
_LL Resource data type reserved field name 17.1.8
_MAF Resource data type reserved field name 17.1.8
_MAT Object evaluates to a buffer of MADT APIC Structure entries. 6.2.8
~MAX Resource data type reserved field name 17.1.8
_MEM Resource data type reserved field name 17.1.8
_MIF Resource data type reserved field name 17.1.8
~MIN Resource data type reserved field name 17.1.8
_MSG System indicator control that indicates messages are waiting. 9.1.2
MLS Object that provides a human readable description of a device in 6.1.5

multiple languages.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

150 Advanced Configuration and Power Interface Specification

Table 5-54 Defined Generic Object and Control Methods

device state.

Object Description Reference
_OFF Power resource object that sets the resource off. 7.1.2
~ON Power resource object that sets the resource on. 7.13
_0OS Object that evaluates to a string that identifies the operating system. 5.7.2
_0OSC Convey specific software support / capabilities to the platform allowing | 6.2.9
the platform to configure itself appropriately.
_OST OSPM Status Indication 6.3.5
_PCL Power source object that contains a list of devices powered by a power 10.3.2
source.
_PCT Processor performance control object 8.44.1
_PDC Processor Driver Capabilities 8.4.1
_PIC Control method that conveys interrupt model in use to the system 5.8.1
firmware.
_PLD Object that provides physical location description information. 6.1.6
_PPC Control method used to determine number of performance states 8.4.4.3
currently supported by the platform.
_PPE Object provides polling interval to retrieve Corrected Platform Error DIG64 Corrected
information Platform Error
Polling
Specification.
http://www.dig64.or
g/specifications
PR ACPI 1.0 Processor Namespace 5.3.1
_PRO Power management object that evaluates to the device’s power 7.2.7
requirements in the DO device state (device fully on).
_PR1 Power management object that evaluates to the device’s power 7.2.8
requirements in the D1 device state. Only devices that can achieve the
defined D1 device state according to its given device class would supply
this level.
_PR2 Power management object that evaluates to the device’s power 7.2.9
requirements in the D2 device state. Only devices that can achieve the
defined D2 device state according to its given device class would supply
this level.
_PRS Device configuration object that specifies a device’s possible resource 6.2.10
settings, or a control method that generates such an object.
_PRT An object that specifies the PCI interrupt Routing Table. 6.2.11
_PRW Power management object that evaluates to the device’s power 7.2.10
requirements in order to wake the system from a system sleeping state.
_PSO Power management control method that puts the device in the DO 7.2.2
device state. (device fully on).
_PSI1 Power management control method that puts the device in the D1 7.2.3
device state.
_PS2 Power management control method that puts the device in the D2 7.2.4

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 151

Table 5-54 Defined Generic Object and Control Methods

Object Description Reference
_PS3 Power management control method that puts the device in the D3 7.2.5
device state (device off).
_PSC Power management object that evaluates to the device’s current power 7.2.6
state.
_PSD Object that conveys P-State dependencies 8.4.4.5
_PSL Thermal zone object that returns list of passive cooling device objects. 11.3.5
PSR Power source object that returns present power source device. 10.3.1
_PSS Object indicates the number of supported processor performance states. | 8.4.4.2
_PSV Thermal zone object that returns Passive trip point in tenths of degrees 11.3.6
Kelvin.
_PSW Power management control method that enables or disables the device’s | 7.2.11
wake function.
_PTC Object used to define a processor throttling control register. 8.4.3.1
_PTS Control method used to notify the platform of impending sleep 7.3.2
transition.
_PXM Object used to describe proximity domains within a machine. 6.2.12
_Qxx Embedded Controller Query and SMBus Alarm control method 56223
_RBO Resource data type reserved field name 17.1.8
_RBW Resource data type reserved field name 17.1.8
_REG Notifies AML code of a change in the availability of an operation 6.5.4
region.
_REV Revision of the ACPI specification that OSPM implements. 574
_RMV Device insertion/removal object that indicates that the given device is 6.3.6
removable.
_RNG Resource data type reserved field name 17.1.8
_ROM Control method used to get a copy of the display devices’ ROM data. B43
_RT Resource Type field of the QWordSpace, DWordSpace or WordSpace 17.1.8
address descriptors
_RTV Object indicates whether temperature values are relative or absolute. 11.3.7
_RW Resource data type reserved field name 17.1.8
S0 Power management package that defines system \ SO0 state mode. 7.34.1
Sl Power management package that defines system \ S1 state mode. 7.34.2
S2 Power management package that defines system \ S2 state mode. 7.3.4.3
_S3 Power management package that defines system \ S3 state mode. 7344
5S4 Power management package that defines system \ S4 state mode. 7.34.5
S5 Power management package that defines system \ S5 state mode. 7.3.4.6
_SID Highest D-state supported by the device in the S1 state. 7.2.13
_S2D Highest D-state supported by the device in the S2 state. 7.2.14
_S3D Highest D-state supported by the device in the S3 state. 7.2.15

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

152 Advanced Configuration and Power Interface Specification

Table 5-54 Defined Generic Object and Control Methods

Object Description Reference
_S4D Highest D-state supported by the device in the S4 state. 7.2.16
_SOW Lowest D-state supported by the device in the SO state which can wake | 7.2.17
the device
_SIW Lowest D-state supported by the device in the S1 state which can wake | 7.2.18
the system
_S2w Lowest D-state supported by the device in the S2 state which can wake | 7.2.19
the system
_S3W Lowest D-state supported by the device in the S3 state which can wake | 7.2.20
the system
_S4w Lowest D-state supported by the device in the S4 state which can wake | 7.2.21
the system
_SB System bus scope 53.1
_SBS Smart Battery object that returns Smart Battery configuration. 10.1.2
_SCP Thermal zone object that sets user cooling policy (Active or Passive). 11.3.8
_SDD Control method that informs the platform of the type of device attached | 9.9.3.3.1
to a SATA port.
_SEG Evaluates to the PCI Segment Group number. 6.5.6
_SHR Resource data type reserved field name 17.1.8
_SI System indicators scope 9.1
_SIZ Resource data type reserved field name 17.1.8
_SLI Object that provides updated distance information for a system locality. | 6.2.13
_SPD Control method used to update which video device will be posted at B4.5
boot.
_SRS Device configuration control method that sets a device’s settings. 6.2.14
SRV IPMI Spec Revision Intelligent Platform
Management
Interface
Specification.
http://www.intel.co
m/design/servers/ip
mi/index.htm
_SST System indicator control method that indicates the system status. 9.1.1
_STA 1. Device insertion/removal control method that returns a device’s 6.3.7
status. 7.1.4
2. Power resource object that evaluates to the current on or off state of
the Power Resource.
_ST™M IDE device control method used to set the IDE controller transfer 99212
timings.
_STR Object evaluates to a Unicode string to describe a device. 6.1.7
_SUN Object that evaluates to the slot unique ID number for a slot. 6.1.8
_SWS Object that returns the source event that caused the system to wake. 7.3.5

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 153

Table 5-54 Defined Generic Object and Control Methods

Object Description Reference

T x Reserved for use by the ASL compiler. 17.2.1.1

_TC1 Thermal zone object that contains thermal constant for Passive cooling. | 11.3.9

_TC2 Thermal zone object that contains thermal constant for Passive cooling. | 11.3.10

_TMP Thermal zone object that returns current temperature in tenths of 11.3.11
degrees Kelvin.

_TPC Object evaluates to the current number of supported throttling states. 8433

_TPT Control method invoked when a devices’ embedded temperature sensor | 11.3.12
crosses a temperature trip point.

_TRA Resource data type reserved field name 17.1.8

_TRS Resource data type reserved field name 17.1.8

_TRT Object provides thermal relationship information between platform 11.3.13
devices.

_TSD Object that conveys Throttling State dependencies 8.4.34

_TSF Type-Specific Flags fields in a Word, DWord or QWord address space 17.1.8
descriptor

_TSP Thermal zone object that contains thermal sampling period for Passive 11.3.14
cooling.

_TST Object returns minimum temperature separation for device’s 11.3.15
programmable temperature trip points.

_TSS Object evaluates to a table of support throttling states. 8.4.3.2

_TTP Resource data type reserved field name 17.1.8

\ TTS Control method used to prepare to sleep and run once awakened 7.3.6

_TYP Resource data type reserved field name 17.1.8

Tz ACPI 1.0 thermal zone scope 53.1

_TZD Object evaluates to a package of device names associated with a 11.3.16
Thermal Zone.

_TZM Object indicates the thermal zone of which a device is a member. 11.3.17

_TZP Thermal zone polling frequency in tenths of seconds. 11.3.18

_UID Device identification object that specifies a device’s unique persistent 6.1.9
ID, or a control method that generates it.

_UPC Object provides USB port capabilities information.. 9.14

_UPD Object that returns user presence information. 9.17.1

_UPP Object evaluates to user presence polling interval. 9.17.2

_VPO Returns 32-bit integer indicating the video post options. B.4.6

\ WAK Power management control method run once system is awakened. 7.3.7

5.7 Predefined Objects

The AML interpreter of an ACPI compatible operating system supports the evaluation of a number of
predefined objects. The objects are considered “built in” to the AML interpreter on the target operating
system.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

154 Advanced Configuration and Power Interface Specification

A list of predefined object names are shown in the following table.

Table 5-55 Predefined Object Names

Name Description
\ GL Global Lock

\ OS Name of the operating system

\ OSI Operating System Interface support

\ REV | Revision of the ACPI specification that OSPM implements.

5.7.1 \ GL (Global Lock Mutex)

This predefined object is a Mutex object that behaves like a Mutex as defined in section 17.5.79, “Mutex
(Declare Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also acquires
the shared environment Global Lock defined in section 5.2.10.1, “Global Lock.” This allows Control
Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 \ _OSI (Operating System Interfaces)

This object provides the platform with the ability to query OSPM to determine the set of ACPI related
interfaces, behaviors, or features that the operating system supports.

The OSI method has one argument and one return value. The argument is an OS vendor defined string
representing a set of OS interfaces and behaviors or an ACPI defined string representing an operating
system and an ACPI feature group of the form, “OSVendorString-FeatureGroupString”.

Syntax

_0S1 (Interface)=> BooleanResult

Arguments

Interface: String | String “-“ String
Specifies the OS interface / behavior compatibility string or the Feature Group String, as defined
in Table 5-57, or the OS Vendor String Prefix-OS Vendor Specific String. OS Vendor String
Prefixes are defined in Table 5-56.

Return Value

BooleanResult: DWordConst
A return value of 0x00000000 indicates that interface, behavior, feature, is not supported.
A return value of OxXFFFFFFFF indicates that interface, behavior, feature, is supported.

OSPM may indicate support for multiple OS interface / behavior strings if the operating system supports
the behaviors. For example, a newer version of an operating system may indicate support for strings from
all or some of the prior versions of that operating system.

_OSI provides the platform with the ability to support new operating system versions and their associated
features when they become available. OSPM can choose to expose new functionality based on the OSI
argument string. That is, OSPM can use the strings passed into _OSI to ensure compatibility between older
platforms and newer operating systems by maintaining known compatible behavior for a platform. As such,
it is recommended that _OSI be evaluated by the \ SB.INI control method so that platform compatible
behavior or features are available early in operating system initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required that OS
vendor-defined strings be checked before feature group strings.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 155

Platform developers should consult OS vendor specific information for OS vendor defined strings
representing a set of OS interfaces and behaviors. ACPI defined strings representing an operating system
and an ACPI feature group are listed in the following tables.

Table 5-56 Operating System Vendor Strings

Operating System Vendor String Prefix Description

“FreeBSD” Free BSD

“HP-UX” HP Unix Operating Environment
“Linux” GNU/Linux Operating system
“OpenVMS” HP OpenVMS Operating Environment
“Windows” Microsoft Windows

Table 5-57 Feature Group Strings

Feature Group String Description

“Module Device” OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.

“Processor Device” OSPM supports the declaration of processors in the namespace using the
ACPI0007 processor device HID.

“3.0 Thermal Model” OSPM supports the extensions to the ACPI thermal model in Revision
3.0.

“Extended Address Space OSPM supports the Extended Address Space Descriptor
Descriptor”

“3.0 _SCP Extensions” OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

156 Advanced Configuration and Power Interface Specification

_OSI Example ASL using OS vendor defined string:
Scope (_SB) //Scope
Name (TOOS, 0) // Global variable for type of O0S.

// This methods sets the "TOOS" variable depending on the type of OS
// installed on the system.

// TOOS =1 // Windows 98 & SE

// TOOS = 2 // Windows Me.

// TOOS = 3 // Windows 2000 OS or above version.
// TO0S = 4 // Windows XP OS or above version.

Method (INI)
{
IT (CondRefOf (_OSI,Local0))
IT (_OSI ("Windows 2001'))

Store(4, TOOS)

3
}
Else
{
Store (_OS, local0)
IT (LEqual (localO, "Microsoft Windows NT'))
Store (3, TOOS)
}
Elself (LEqual (Local0O, "Microsoft Windows'™))
Store (1, TOOS)
}
Elself (LEqual (LocalO, "Microsoft WindowsME:Millennium Edition™))
Store (2, TOOS)
3
3

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 157

_OSI Example ASL using an ACPI defined string:
Scope (SB) {
Method (_INI) {
If (CondRefOFf (_OSI,Local0)) {
IT (_OSI (“"Module Device™)) {
//Expose PCI Root Bridge under Module Device
LoadTable(“*OEM1', “OEMID™, “Tablel™,,,)}
Else {
// Expose PCI Root Bridge under _SB — 0OS does not support Module Device
LoadTable(“OEM1", “OEMID™, “Table2",,,)}
}
Else {
// Default Behavior
LoadTable(*“OEM1", “OEMID™, “Table2",,,)}
} /7/_INI Method
} //_SB scope

DefinitionBlock (“*“MD1SSDT.aml*,*“OEM1",0x02,
“OEMID™, "Tablel™, 0) {
Scope(_SB) {
Device (_SB.NODO) {
Name (_HID, "ACP10004') // Module device
Name (_UID, 0)

Name (_PRS, ResourceTemplate() { --- })
Method (SRS, 1) { ... }
Method (_CRS, 0) { ... }

Device (PCI0) { // PCI Root Bridge
Name (_HID, EISAID('PNPOAO3™))
Name (UID, 0)
Name (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {---})
} 7/ end of PCI Root Bridge
} 7/ end of Module device
} 7/ end of _SB Scope
} 7/ end of Definition Block

DefinitionBlock (“MD1SSDT.aml",“OEM1",0x02,
“OEMID™, "Table2", 0) {
Scope(_SB) {
Device (PCI0) { // PCl Root Bridge
Name (_HID, EISAID('PNPOAO3™))
Name (UID, 0)
Name (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {--.-})
} 7/ end of PCI Root Bridge
} 7/ end of _SB Scope
} 7/ end of Definition Block

5.7.3 _OS (OS Name Object)

This predefined object evaluates to a string that identifies the operating system. In robust OSPM
implementations, \ OS evaluates differently for each OS release. This may allow AML code to
accommodate differences in OSPM implementations. This value does not change with different revisions
of the AML interpreter.

5.7.4 \ REV (Revision Data Object)

This predefined object evaluates to the revision of the ACPI Specification that the specified \ OS
implements as a DWORD. Larger values are newer revisions of the ACPI specification.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

158 Advanced Configuration and Power Interface Specification

5.8 System Configuration Objects

5.8.1 _PIC Method

The \ PIC optional method is to report to the BIOS the current interrupt model used by the OS. This
control method returns nothing. The argument passed into the method signifies the interrupt model OSPM
has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is optional for OSPM.
If the method is never called, the BIOS must assume PIC mode. It is important that the BIOS save the value
passed in by OSPM for later use during wake operations.

PIC(x):
_PIC(0) => PIC Mode
_PIC(1) => APIC Mode
_PIC(2) => SAPIC Mode
_PIC(3-n) => Reserved

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 159

6 Configuration

This section specifies the objects OSPM uses to configure devices. There are three types of configuration

objects:

e Device identification objects associate platform devices with Plug and Play IDs.

e Device configuration objects declare and configure hardware resources and characteristics for devices
enumerated via ACPL.

e Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal
of devices.

This section also defines the ACPI device—resource descriptor formats. Device—resource descriptors are
used as parameters by some of the device configuration objects.

6.1 Device Identification Objects

Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed Table 6-1:

Table 6-1 Device Identification Objects

Object Description

_ADR Object that evaluates to a device’s address on its parent bus.

_CID Object that evaluates to a device’s Plug and Play-compatible ID list.

_DDN Object that associates a logical software name (for example, COM1) with a device.

_HID Object that evaluates to a device’s Plug and Play hardware ID.

_MLS Object that provides a human readable description of a device in multiple languages.
_PLD Object that provides physical location description information.

_SUN Object that evaluates to the slot-unique ID number for a slot.

_STR Object that contains a Unicode identifier for a device.

_UID Object that specifies a device’s unique persistent ID, or a control method that generates it.

For any device that is not on an enumerable type of bus (for example, an ISA bus), OSPM enumerates the
devices’ Plug and Play ID(s) and the ACPI BIOS must supply an HID object (plus an optional _CID
object) for each device to enable OSPM to do that. For devices on an enumerable type of bus, such as a PCI
bus, the ACPI system must identify which device on the enumerable bus is identified by a particular Plug
and Play ID; the ACPI BIOS must supply an _ ADR object for each device to enable this. A device object
must contain either an HID object or an _ADR object, but can contain both.

If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be evaluated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region provider.
(_REG methods notify the BIOS of the presence of operation region providers.) When a control method
cannot determine the current state of the hardware due to a lack of operation region provider, it is
recommended that the control method should return the condition that was true at the time that control
passed from the BIOS to the OS. (The control method should return a default, boot value).

6.1.1 _ADR (Address)

This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object must
be used when specifying the address of any device on a bus that has a standard enumeration algorithm (see
3.7, “Configuration and Plug and Play”, for the situations when these devices do appear in the ACPI name
space).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

160 Advanced Configuration and Power Interface Specification

An _ADR object can be used to provide capabilities to the specified address even if a device is not present.
This allows the system to provide capabilities to a slot on the parent bus.

OSPM infers the parent bus from the location of the ADR object’s device package in the ACPI
namespace. For more information about the positioning of device packages in the ACPI namespace, see
section 17.5.28, “Device—Declare Bus/Device Package.”

_ADR object information must be static and can be defined for the following bus types listed in Table 6-2.

Table 6-2 _ADR Object Bus Types

BUS Address encoding

EISA EISA slot number 0—F

Floppy Bus Drive select values used for programming the floppy controller to access the specified
INT13 unit number. The ADR Objects should be sorted based on drive select
encoding from 0-3.

IDE Controller 0—Primary Channel, 1-Secondary Channel

IDE Channel 0—Master drive, 1-Slave drive

Intel® High High word — SDI (Serial Data In) ID of the codec that contains the function group.

Definition Audio | 1 ow word — Node ID of the function group.

PCI High word—Device #, Low word—Function #. (for example, device 3, function 2 is
0x00030002). To refer to all the functions on a device #, use a function number of
FFFF).

PCMCIA Socket #; 0—First Socket

PC CARD Socket #; 0—First Socket

Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port
multiplier, or OXFFFF if no port multiplier attached. (For example, root port 2 would be
0x0002FFFF. If instead a port multiplier had been attached to root port 2, the ports
connected to the multiplier would be encoded 0x00020000, 0x00020001, etc.) The
value OxFFFFFFFF is reserved.

SMBus Lowest Slave Address

USB Root HUB | Only one child of the host controller. It must have an ADR of 0. No other children or
values of ADR are allowed.

USB Ports Port number

6.1.2 _CID (Compatible ID)

This optional object is used to supply OSPM with a device’s Plug and Play-Compatible Device ID. Use
_CID objects when a device has no other defined hardware standard method to report its compatible IDs.

A _CID object evaluates to either:

e A single Compatible Device ID

e A package of Compatible Device IDs for the device — in the order of preference, highest preference

first.

Each Compatible Device ID must be either:

e A valid HID value (a 32-bit compressed EISA type ID or a string such as “ACPI10004”).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 161

e A string that uses a bus-specific nomenclature. For example, CID can be used to specify the PCI ID.
The format of a PCI ID string is one of the following:

“PCI\CC_ccss”

“PCI\CC_ccsspp”

“PCI\VEN_vvvVv&DEV_ dddd&SUBSYS sssSSSSSS&REV_rr”’
“PCI\VEN_vvvVv&DEV_dddd&SUBSYS_ssssssss™
“PCI\VEN_vvvv&DEV_dddd&REV_rr”’
“PCI\VEN_vvvVv&DEV_dddd”

Where:
cc — hexadecimal representation of the Class Code byte
ss — hexadecimal representation of the Subclass Code byte
PP — hexadecimal representation of the Programming Interface byte
vvvv — hexadecimal representation of the Vendor ID
dddd — hexadecimal representation of the Device ID
ssssssss — hexadecimal representation of the Subsystem 1D
T — hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object is only meaningful if it is a non-NULL value.
Example ASL:

Device (XYZ) {
Name (_HID, EISAID ("'PNP0303')) // PC Keyboard Controller
Name (_CID, EISAID ("'PNPO30B™))

}

6.1.3 _DDN (DOS Device Name)

This object is used to associate a logical name (for example, COM1) with a device. This name can be used
by applications to connect to the device.

6.1.4 _HID (Hardware ID)

This object is used to supply OSPM with the device’s Plug and Play hardware ID.* When describing a
platform, use of any HID objects is optional. However, a HID object must be used to describe any device
that will be enumerated by OSPM. OSPM only enumerates a device when no bus enumerator can detect the
device ID. For example, devices on an ISA bus are enumerated by OSPM. Use the _ADR object to describe
devices enumerated by bus enumerators other than OSPM.

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a string, the
format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading characters.

A valid PNP ID must be of the form “AAA####”” where A is an uppercase letter and # is a hex digit. A
valid ACPI ID must be of the form ““ACP I####”” where # is a hex digit.

Example ASL:

¥A Plug and Play (EISA) ID can be obtained by sending e-mail to pnpid@microsoft.com.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

162 Advanced Configuration and Power Interface Specification

Name (_HID, EISAID (**PNPOCOC'™)) // Control-Method Power Button
Name (_HID, EISAID ("INT0800')) // Firmware Hub
Name (_HID, "ACPI10003™") // AC adapter device

6.1.5 _MLS (Multiple Language String)

The MLS object provides OSPM a human readable description of a device in multiple languages. This
information may be provided to the end user when the OSPM is unable to get any other information about
this device. Although this functionality is also provided by the STR object, MLS expands that
functionality and provides vendors with the capability to provide multiple strings in multiple languages.
The MLS object evaluates to a package of packages. Each sub-package consists of a Language identifier
and corresponding unicode string for a given locale. Specifying a language identifier allows OSPM to
easily determine if support for displaying the Unicode string is available. OSPM can use this information
to determine whether or not to display the device string, or which string is appropriate for a user’s preferred
locale.

It is assumed that OSPM will always support the primary English locale to accommodate English
embedded in a non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID for
displaying device text.

The package is of the following format:

Package() { Package() {Language ID, Unicode device description string},
Package() {Language ID, Unicode device description string},

}

Language ID := string := a string identifying the language. This string follows the format specified in
RFC 3066. Additionally, the following strings are supported:

Unicode device description string := Unicode (UTF-16) string . The Unicode device description string
contains the language-specific description of the device corresponding to the LanguagelD.

Example ASL:
Device (XYZ) {
Name (_ADR, 0x00020001)

Name (_MLS, Package(){ Package(2){“en”, Unicode("'ACME super DVD
controller)}})
}

In addition to supporting the existing strings in RFC 3066, Table 6-3 lists aliases that are also supported.
Table 6-3 Additional Alias Strings

RFC String Supported Alias String
zh-Hans zh-chs
zh-Hant zh-cht

6.1.6 _PLD (Physical Device Location)

This optional object is a method that conveys to OSPM a general description of the physical location of a
device’s external connection point. The PLD may be child object for any ACPI Namespace object the
system wants to describe. This information can be used by system software to describe to the user which
specific connector or device input mechanism may be used for a given task or may need user intervention
for correct operation. The PLD should only be evaluated when its parent device is present as indicated by
the device’s presence mechanism (i.e. STA or other)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 163

An externally expose device connection point can reside on any surface of a system’s housing. The PLD
method returns data to describe the general location of where the device’s connection point resides. One
physical device may have several connection points. A PLD describes a single device connection point.

All data bits are interpreted as though the user is facing the front of the system. The data bits also assume
that if the system is capable of opening up like a laptop that the device may exist on the base of the laptop
system or on the lid. In the case of the latter, the “Lid” bit (described below) should be set indicating the
device connection point is on the lid. If the device is on the lid, the description describes the device’s
connection point location when the system is opened with the lid up. If the device connection point is not
on the lid, then the description describes the device’s connection point location when the system with the
lid closed.

The location of a device connection point may change as a result of the system connecting or disconnecting
to a docking station or a port replicator. As such, Notify event of type 0x8 will cause OSPM to re-evaluate
the PLD object residing under the particular device notified. If a platform is unable to detect the change
of connecting or disconnecting to a docking station or port replicator, a _PLD object should not be used to
describe the device connection points that will change location after such an event.

This method returns a package containing, a single or multiple buffer entries. At least one buffer entry
must be returned using the bit definitions below.

Arguments:
None

Buffer 0 Result Code:

Bit 6:0 — Revision. The current revision is 0x1; all other values are reserved.

Bit 7 — Ignore Color. If this bit is set, the Color field is ignored, as the color is unknown.

Bit 31:8 — Color — 24bit RGB value for the color of the device connection point.

Bit 47:32 — Width: Describes, in millimeters, the width (widest point) of the device connection point.
Bit 63:48 — Height: Describes, in millimeters, the height of the device connection.

Bit 64 — User Visible: Set if the device connection point can be seen by the user.
Bit 65 — Dock: Set if the device connection point resides in a docking station or port replicator.

Bit 66 — Lid: Set if this device connection point resides on the lid of laptop system.

Bit 69:67 — Panel: Describes which panel surface of the system’s housing the device connection point

resides on.
0 —Top
1 — Bottom
2 — Left
3 — Right
4 — Front
5 — Back

6 — Unknown (Vertical Position and Horizontal Position will be ignored)

Bit 71:70 — Vertical Position on the panel where the device connection point resides.

0 — Upper
1 — Center
2 — Lower

Bit 73:72 — Horizontal Position on the panel where the device connection point resides.
0 — Left
1 — Center

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

164 Advanced Configuration and Power Interface Specification

2 —Right
Bit 77:74 — Shape: Describes the shape of the device connection point.
0 — Round
1 —Oval
2 — Square

3 — Vertical Rectangle

4 — Horizontal Rectangle
5 — Vertical Trapezoid

6 — Horizontal Trapezoid
7 — Unknown

Bit 78 — Group Orientation: if Set, indicates vertical grouping, otherwise horizontal is assumed.

Bit 86:79 — Group Token: Unique numerical value identifying a group.

Bit 94:87 — Group Position: Identifies this device connection point’s position in the group (i.e. 1%, 2%
Bit 95 — Bay: Set if describing a device in a bay or if device connection point is a bay.

Bit 96 — Ejectable: Set if the device is ejectable. Indicates ejectability in the absence of EJx objects.
Bit 97 — OSPM Ejection required: Set if OSPM needs to be involved with ejection process. User-
operated physical hardware ejection is not possible. Bit 105:98 — Cabinet Number. For single cabinet
system, this field is always 0.

Bit 113:106 — Card cage Number. For single card cage system, this field is always 0.

Bit 127:114 — Reserved, must contain a value of 0.

All additional buffer entries returned, may contain OEM specific data, but must begin in a {GUID, data}
pair. These additional data may provide complimentary physical location information specific to certain
systems or class of machines.

Buffers 1 — N Result Code (Optional):

Buffer 1 Bit 127:0 - GUID 1
Buffer 2 Bit 127:0 — Data 1
Buffer 3 Bit 127:0 — GUID 2
Buffer 4 Bit 127:0 — Data 2

6.1.7 _STR (String)

The STR object evaluates to a Unicode string that may be used by an OS to provide information to an end
user describing the device. This information is particularly valuable when no other information is available.

Example ASL:

Device (XYZ) {
Name (_ADR, 0x00020001)
Name (_STR, Unicode (“'ACME super DVD controller™))

}

Then, when all else fails, an OS can use the info included in the STR object to describe the hardware to
the user.

6.1.8 _SUN (Slot User Number)

_SUN is an object that evaluates to the slot-unique ID number for a slot. SUN is used by OSPM UI to
identify slots for the user. For example, this can be used for battery slots, PCI slots, PCMCIA slots, or
swappable bay slots to inform the user of what devices are in each slot. SUN evaluates to an integer that is
the number to be used in the user interface. This number is required to be unique among the slots of the
same type. It is also recommended that this number match the slot number printed on the physical slot
whenever possible.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 165

6.1.9 _UID (Unique ID)

This object provides OSPM with a logical device ID that does not change across reboots. This object is
optional, but is required when the device has no other way to report a persistent unique device ID. The
_UID must be unique across all devices with either a common HID or _CID. This is because a device
needs to be uniquely identified to the OSPM, which may match on eithera HID or a _CID to identify the
device. The uniqueness match must be true regardless of whether the OSPM uses the HID or the _CID.
OSPM typically uses the unique device ID to ensure that the device-specific information, such as network
protocol binding information, is remembered for the device even if its relative location changes. For most
integrated devices, this object contains a unique identifier.

A _UID object evaluates to either a numeric value or a string.

6.2 Device Configuration Objects

This section describes objects that provide OSPM with device specific information and allow OSPM to
configure device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated via
ACPI. Device configuration objects provide information about current and possible resource requirements,
the relationship between shared resources, and methods for configuring hardware resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates a device, it calls PRS to determine the resource requirements of the device. It
may also call CRS to find the current resource settings for the device. Using this information, the Plug and
Play system determines what resources the device should consume and sets those resources by calling the
device’s SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
a proprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be
taken from the nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section
6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource producer)
that claims the shared resource in its PRS. This allows OSPM to clearly understand the resource
dependencies in the system and move all related devices together if it needs to change resources.
Furthermore, it allows OSPM to allocate resources only to resource producers when devices that consume
that resource appear.

The device configuration objects are listed in Table 6-4.

Table 6-4 Device Configuration Objects

Object Description

_CRS Object that specifies a device’s current resource settings, or a control method that generates
such an object.

_DIS Control method that disables a device.
_DMA Object that specifies a device’s current resources for DMA transactions.
_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the

FADT and the devices that implement these fixed-hardware registers.

GSB Object that provides the Global System Interrupt Base for a hot-plugged I/O APIC device.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

166 Advanced Configuration and Power Interface Specification

Object Description

HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or initial configuration
of a PCI device at system boot.

_HPX Object that provides device parameters when configuring a PCI device inserted into a hot-plug
slot or initial configuration of a PCI device at system boot. Supersedes HPP.

_MAT Object that evaluates to a buffer of MADT APIC Structure entries.

OSC An object OSPM evaluates to convey specific software support / capabilities to the platform
allowing the platform to configure itself appropriately.

PRS An object that specifies a device’s possible resource settings, or a control method that
generates such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SLI Object that provides updated distance information for a system locality.
_SRS Control method that sets a device’s settings.

6.2.1 _CRS (Current Resource Settings)

This required object evaluates to a byte stream that describes the system resources currently allocated to a
device. Additionally, a bus device must supply the resources that it decodes and can assign to its children
devices. If a device is disabled, then CRS returns a valid resource template for the device, but the actual
resource assignments in the return byte stream are ignored. If the device is disabled when CRS is called, it
must remain disabled.

The format of the data contained in a CRS object follows the formats defined in section 6.4, “Resource
Data Types for ACPL,” a compatible extension of the formats specified in the PNPBIOS specification.” The
resource data is provided as a series of data structures, with each of the resource data structures having a
unique tag or identifier. The resource descriptor data structures specify the standard PC system resources,
such as memory address ranges, I/O ports, interrupts, and DMA channels.

Arguments:
None

Result Code:
Byte stream

6.2.2 _DIS (Disable)

This control method disables a device. When the device is disabled, it must not be decoding any hardware
resources. Prior to running this control method, OSPM will have already put the device in the D3 state.

When a device is disabled via the DIS, the STA control method for this device must return with the
Disabled bit set.

Arguments:
None

? Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp.,
Phoenix Technologies Ltd.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 167

Result Code:
None

6.2.3 _DMA (Direct Memory Access)

This optional object returns a byte stream in the same format as a CRS object. DMA is only defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the child-
side of its interface. (This is analogous to the CRS object, which describes the resources that the bus
controller decodes on the parent-side of its interface.) Any ranges described in the resources of a DMA
object can be used by child devices for DMA or bus master transactions.

The DMA object is only valid ifa CRS object is also defined. OSPM must re-evaluate the DMA object
after an SRS object has been executed because the DMA ranges resources may change depending on
how the bridge has been configured.

Ifthe DMA object is not present for a bus device, the OS assumes that any address placed on a bus by a
child device will be decoded either by a device on the bus or by the bus itself, (in other words, all address
ranges can be used for DMA).

For example, if a platform implements a PCI bus that cannot access all of physical memory, it hasa DMA
object under that PCI bus that describes the ranges of physical memory that can be accessed by devices on
that bus.

A DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the SRS method.

Arguments:
None

Result Code:
Byte stream

_DMA Example ASL:

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

168 Advanced Configuration and Power Interface Specification

Device(BUSO)

The _DMA method returns a resource template describing the
addresses that are decoded on the child side of this
bridge. The contained resource descriptors thus indicate
the address ranges that bus masters living below this
bridge can use to send accesses through the bridge toward a
destination elsewhere in the system (e.g. main memory).

In our case, any bus master addresses need to fall between
0 and 0x80000000 and will have 0x200000000 added as they
cross the bridge. Furthermore, any child-side accesses
falling into the range claimed in our _CRS will be
interpreted as a peer-to-peer traffic and will not be
forwarded upstream by the bridge.

Our upstream address decoder will only claim one range from
0x20000000 to OX5FFFFFFF in the _CRS. Therefore _DMA
should return two QWORDMemory descriptors, one describing
the range below and one describing the range above this
"peer-to-peer" address range.

Method(_DMA, ResourceTemplate()
{

QWORDMemory (
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
o, // _GRA
o, // _MIN
OX1FFFffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN

)

QWORDMemory (
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // RW
o, // _GRA
0x60000000, // _MIN
OX7TFFFffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN

)

D

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 169

6.2.4 _FIX (Fixed Register Resource Provider)

This optional object is used to provide a correlation between the fixed-hardware register blocks defined in
the FADT and the devices in the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
plays a role in the implementation of the fixed-hardware (for example, implements the hardware or decodes
the hardware’s address). FIX conveys to OSPM whether a given device can be disabled, powered off, or
should be treated specially by conveying its role in the implementation of the ACPI fixed-hardware register
interfaces. This object takes no arguments.

The CRS object describes a device’s resources. That CRS object may contain a superset of the resources
in the FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore,
in a machine that performs translation of resources within I/O bridges, the processor-relative resources in
the FADT may not be the same as the bus-relative resources in the CRS.

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:
PNPOC20 - SMI_CMD

PNPOC21 - PMla EVT BLK/X PMla EVT BLK
PNPOC22 - PM1b EVT BLK /X PMlb EVT BLK
PNPOC23 - PMla CNT BLK/X PMla CNT BLK
PNP0OC24 - PM1b CNT BLK /X PMIlb CNT BLK
PNPOC25 - PM2 CNT BLK /X PM2 CNT BLK
PNPOC26 - PM_TMR BLK/X PM TMR BLK
PNPOC27 - GPEO_ BLK /X GPEO BLK

PNPOC28 - GPE1 BLK /X GPE1 BLK

PNPOBO00 — FIXED RTC

PNPOBO1 — FIXED RTC

e PNPOB02 - FIXED RTC

Example ASL for FIX usage:

Scope(_SB) {

Device(PCI0) { // Root PCI Bus
Name(_HID, EISAID("'PNPOA03')) // Need _HID for root device
Name (_ADR,0) // Device 0 on this bus
Method (_CRS,0){ // Need current resources for root device

// Return current resources for root bridge 0

3
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
// Package with PCI IRQ routing table information

D
Name(_FIX, Package(1) {

E1SAID('PNPOC25™)} // PM2 control ID
)
Device (PX40) { // ISA
Name (_ADR,0x00070000)
Name(_FIX, Package(1l) {
EISAID('PNPOC20')} // SMI command port
)
Device (NS17) { // NS17 (Nat. Semi 317, an ACPI part)

Name(_HID, EISAID("PNPOC02"))

Name(_FIX, Package(3) {
EISAID('PNPOC22™), // PM1lb event ID
EISAID("'PNPOC24™), // PM1lb control 1D
EISAID("PNPOC28™")} // GPE1 ID

ks
} /7 end PX40

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

170 Advanced Configuration and Power Interface Specification

Device (PX43) { // PM Control
Name (_ADR,0x00070003)
Name(_FIX, Package(4) {

EISAID("'PNPOC21"), // PMla event ID
EISAID('PNPOC23™), // PMla control ID
EISAID('PNPOC26™), // PM Timer 1D
EISAID('PNPOC27'")} // GPEO ID

)
} /7 end PX43
} /7 end PCIO
} // end scope SB

6.2.5 _GSB (Global System Interrupt Base)

_GSB is an optional object that evaluates to an integer that corresponds to the Global System Interrupt Base
for the corresponding I/O APIC device. The I/O APIC device may either be bus enumerated (e.g. as a PCI
device) or enumerated in the name space as described in Section 9.18,”I/O APIC Device”. Any I/O APIC
device that either supports hot-plug or is not described in the MADT must contain a _GSB object.

If the I/O APIC device also contains a _MAT object, OSPM evaluates the _GSB object first before
evaluating the MAT object. By providing the Global System Interrupt Base of the /O APIC, this object
enables OSPM to process only the MAT entries that correspond to the I/O APIC device. See section 6.2.8,
“ MAT (Multiple APIC Table Entry)”. Since MAT is allowed to potentially return all the MADT entries
for the entire platform, GSB is needed in the /O APIC device scope to enable OSPM to identify the
entries that correspond to that device.

If an I/O APIC device is activated by a device-specific driver, the physical address used to access the /O
APIC will be exposed by the driver and cannot be determined from the MAT object. In this case, OSPM
cannot use the MAT object to determine the Global System Interrupt Base corresponding to the I/O APIC
device and hence requires the GSB object.
Arguments:

None
Results:

64-bit value representing the Global System Interrupt Base for the corresponding I/OAPIC device
as defined in Section 5.2.12, “Global System Interrupts”.

Example ASL for GSB usage for a non-PCI based I/0 APIC Device:

Scope(_SB) {

Device(APIC) { // 1/0 APIC Device
Name(_HID, “ACP10009”") // ACPI1 ID for 1/0 APIC
Name(_CRS, ResourceTemplate()

{.D // only one resource pointing to 1/0 APIC register base
Method (_GSB){
Return (0x10) // Global System Interrupt Base for 1/0 APIC starts at 16

3
} 7/ end APIC
} // end scope SB

Example ASL for GSB usage for a PCI-based I/O APIC Device:

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 171

Scope(_SB) {
Device(PCI0) // Host bridge
Name(_HID, EISAID("'PNPOA03™)) // Need _HID for root device
Name(_ADR, 0)
Device(PCI1) { // 1/0 APIC PCI Device
Name (_ADR,0x00070000)
Method(_GSB){
Return (0x18) // Global System Interrupt Base for 1/0 APIC starts at 24
3

} 7/ end PCI1
} 7/ end PCIO
} /7 end scope SB

6.2.6 _HPP (Hot Plug Parameters)

This optional object evaluates to the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or for performing configuration of a
PCI devices not configured by the BIOS at system boot. The object is placed under a PCI bus where this
behavior is desired, such as a bus with hot-plug slots. HPP provided settings apply to all child buses, until
another HPP object is encountered.

Arguments:
None
Result Code:

Method (_HPP, 0) {
Return (Package(4){
8

0x08, // CacheLineSize in DWORDS
0x40, // LatencyTimer in PCl clocks
0x01, // Enable SERR (Boolean)

0x00 // Enable PERR (Boolean)

D
b
Table 6-5 HPP
Field Format Definition

Cache-line size INTEGER Cache-line size reported in number of DWORD:s.

Latency timer INTEGER Latency timer value reported in number of PCI clock cycles.

Enable SERR INTEGER When set to 1, indicates that action must be performed to enable SERR
in the command register.

Enable PERR INTEGER When set to 1, indicates that action must be performed to enable PERR
in the command register.

6.2.6.1 Example: Using HPP
Scope(_SB) {

Device(PCI0) { // Root PCl Bus
Name(_HID, EISAID("'PNPOA03™)) // _HID for root device
Name (_ADR,0) // Device 0 on this bus
Method (_CRS,0){ // Need current resources for root dev

// Return current resources for root bridge O

T

Name(_PRT, Package(D{ // Need PCl IRQ routing for PCI bridge
// Package with PCI IRQ routing table information

b

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

172 Advanced Configuration and Power Interface Specification

Device (P2P1) { // First PCI-to-PCl bridge (No Hot Plug slots)
Name (_ADR,0x000C0000) // Device#Ch, Func#0 on bus PCIO
Name(_PRT, Package({ // Need PCI IRQ routing for PCI bridge

// Package with PCI IRQ routing table information

D
} 7/ end P2P1

Device (P2P2) { // Second PCI-to-PCl bridge (Bus contains Hot plug slots)
Name (_ADR, 0x000E0000) // Device#Eh, Func#0 on bus PCIO
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

// Package with PCl IRQ routing table information
b
Name (_HPP, Package(){0x08,0x40, 0x01, 0x00})

// Device definitions for Slot 1- HOT PLUG SLOT

Device (S1F0) { // Slot 1, Func#0 on bus P2P2
Name (_ADR,0x00020000)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F1) { // Slot 1, Func#l on bus P2P2
Name (_ADR,0x00020001)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F2) { // Slot 1, Func#2 on bus P2P2
Name (_ADR,0x000200 02)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F3) { // Slot 1, Func#3 on bus P2P2
Name (_ADR,0x00020003)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F4) { // Slot 1, Func#4 on bus P2P2
Name (_ADR,0x00020004)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F5) { // Slot 1, Func#5 on bus P2P2
Name (_ADR,0x00020005)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F6) { // Slot 1, Func#6 on bus P2P2
Name (_ADR,0x00020006)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S1F7) { // Slot 1, Func#7 on bus P2P2
Name (_ADR,0x00020007)
Method(_EJO, 1) { // Remove all power to device}
3
// Device definitions for Slot 2- HOT PLUG SLOT
Device (S2F0) { // Slot 2, Func#0 on bus P2P2
Name (_ADR,0x00030000)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S2F1) { // Slot 2, Func#l on bus P2P2
Name (_ADR,0x00030001)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S2F2) { // Slot 2, Func#2 on bus P2P2
Name (_ADR,0x00030002)
Method(_EJO, 1) { // Remove all power to device}
3

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 173

Device (S2F3) { // Slot 2, Func#3 on bus P2P2
Name (_ADR,0x00030003)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S2F4) { // Slot 2, Func#4 on bus P2P2
Name (_ADR,0x00030004)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S2F5) { // Slot 2, Func#5 on bus P2P2
Name (_ADR,0x00030005)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S2F6) { // Slot 2, Func#6 on bus P2P2
Name (_ADR,0x00030006)
Method(_EJO, 1) { // Remove all power to device}
}
Device (S2F7) { // Slot 2, Func#7 on bus P2P2
Name (_ADR,0x00030007)
Method(_EJO, 1) { // Remove all power to device}

T
} /7 end P2P2
} 7/ end PCIO
} /7 end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size of 32
(Notice this field is in DWORDs), latency timer of 64, enable SERR, but leave PERR alone.

6.2.7 _HPX (Hot Plug Parameter Extensions)

This optional object provides settings that apply to all child buses until another such object is encountered.
These settings are used when configuring a device inserted into a hot-plug slot or for performing
configuration of devices not configured by the BIOS at system boot. The object is placed under a bus where
this behavior is desired, such as a bus with hot-plug slots. It returns a package that contains one or more
setting records. Each setting record contains a setting type (INTEGER), a revision number (INTEGER) and
type/revision specific contents.

The HPX method is extensible. The setting type and revision number determine the format of the setting
record. If OSPM does not understand the setting type of a setting record, it shall ignore the setting record.
A setting record with higher revision number supersedes that with lower revision number, however, the
_HPX method can return both together, OSPM shall use the one with highest revision number that it
understands.

Arguments:

None
Result Code:

A package of one or more PCI(-X) Settings packages defined below.
The HPX method supersedes the HPP method.

6.2.7.1 PCI Setting Record (Type 0)

The PCI setting record contains the setting type 0, the current revision 1 and the type/revision specific
content: cache-line size, latency timer, SERR enable, and PERR enable values.

Table 6-6 PCI Setting Record Content

Field Format Definition

Cache-line size |INTEGER Cache-line size reported in number of DWORD:s.

Latency timer [INTEGER Latency timer value reported in number of PCI clock cycles.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

174 Advanced Configuration and Power Interface Specification

Field Format Definition

Enable SERR |INTEGER When set to 1, indicates that action must be performed to enable SERR in
the command register.

Enable PERR |INTEGER When set to 1, indicates that action must be performed to enable PERR in
the command register.

6.2.7.2 PCI-X Setting Record (Type 1)

The PCI-X setting record contains the setting type 1, the current revision 1 and the type/revision specific
content: the maximum memory read byte count setting, the average maximum outstanding split
transactions setting and the total maximum outstanding split transactions to be used when configuring PCI-
X command registers for PCI-X buses and/or devices.

Table 6-7 PCI-X Setting Record Content

Field Format Definition
Maximum memory read INTEGER |maximum memory read byte count reported:
byte count Value 0: Maximum byte count 512,

Value 1: Maximum byte count 1024,
Value 2: Maximum byte count 2048,
Value 3: Maximum byte count 4096

Average maximum INTEGER |The following values are defined,
outstanding split Value 0: Maximum outstanding split transaction 1,
transactions

Value 1: Maximum outstanding split transaction 2,
Value 2: Maximum outstanding split transaction 3,
Value 3: Maximum outstanding split transaction 4,
Value 4: Maximum outstanding split transaction 8,
Value 5: Maximum outstanding split transaction 12,
Value 6: Maximum outstanding split transaction 16,
Value 7: Maximum outstanding split transaction 32,

Total maximum outstanding |INTEGER |See the definition for the average maximum outstanding split
split transactions transactions.

For simplicity, OSPM could use the Average Maximum Outstanding Split Transactions value as the
Maximum Outstanding Split Transactions register value in the PCI-X command register for each PCI-X
device. Another alternative is to use a more sophisticated policy and the Total Maximum Outstanding Split
Transactions Value to gain even more performance. In this case, the OS would examined each PCI-X
device that is directly attached to the host bridge, determine the number of outstanding split transactions
supported by each device, and configure each device accordingly. The goal is to ensure that the aggregate
number of concurrent outstanding split transactions does not exceed the Total Maximum Outstanding Split
Transactions Value: an integer denoting the number of concurrent outstanding split transactions the host
bridge can support (the minimum value is 1).

This does not address providing additional information that would be used to configure registers in bridge
devices, be they standard registers or device specific registers. It is believed that a driver for a bridge would
be the best way to address both of those issues. However, such a bridge driver should have access to the
_HPX method information to use in optimizing its decisions on how to configure the bridge. Configuration
of a bridge is dependent on both system specific information such as these provided by the HPX method,
as well as bridge specific information.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 175

6.2.7.3 PCI Express Setting Record (Type 2)

The PCI Express setting record contains the setting type 2, the current revision 1 and the type/revision
specific content: Uncorrectable Error Mask Register setting, Uncorrectable Error Severity Register setting
and the Correctable Error Mask Register setting to be used when configuring PCI Express registers in the
Advanced Error Reporting Extended Capability Structure for the PCI Express devices. OSPM will only
evaluate HPX with Setting Record — Type 2 if OSPM is not controlling the PCI Express Advanced Error
Reporting capability.

Table 6-8 PCI Express Setting Record Content

Field Format Definition

Uncorrectable |INTEGER Bit 0 to 31 contains the setting that the OSPM uses to set the Uncorrectable

error mask Error Mask Register in the Advanced Error Reporting Extended Capability
register setting Structure for the PCI Express devices.

Uncorrectable |INTEGER Bit 0 to 31 contains the setting that the OSPM uses to set the Uncorrectable
error severity Error Severity Register in the Advanced Error Reporting Extended

register setting Capability Structure for the PCI Express devices.

Correctable error | INTEGER Bit 0 to 31 contains the setting that the OSPM uses to set the Correctable
mask register Error Mask Register in the Advanced Error Reporting Extended Capability
setting Structure for the PCI Express devices.

6.2.7.4 _HPX Example

Method (_HPX, 0) {
Return (Package(2){

Package(6){ // PCIl Setting Record
0x00, // Type 0
0x01, // Revision 1
0x08, // CachelLineSize in DWORDS
0x40, // LatencyTimer in PCl clocks
0x01, // Enable SERR (Boolean)
0x00 // Enable PERR (Boolean)
1
Package(5){ // PCI-X Setting Record
0x01, // Type 1
0x01, // Revision 1
0x03, // Maximum Memory Read Byte Count
0x04, // Average Maximum Outstanding Split Transactions
0x07 // Total Maximum Outstanding Split Transactions
3

b
}

6.2.8 _MAT (Multiple APIC Table Entry)

This optional object evaluates to a buffer returning data in the format of a series of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an I/O APIC or processor
object definition as processors may contain Local APICs. Specific types of MADT entries are meaningful
to (in other words, is processed by) OSPM when returned via the evaluation of this object as described
below. Other entry types returned by the evaluation of MAT are ignored by OSPM.

When MAT appears under a Processor object, OSPM processes Local APIC (section 5.2.11.5, “Processor
Local APIC”), Local SAPIC (section 5.2.11.13, “Local SAPIC Structure”), and local APIC NMI (section
5.2.11.10, “Local APIC NMI”) entries returned from the object’s evaluation. Other entry types are ignored
by OSPM. OSPM uses the ACPI processor ID in the entries returned from the object’s evaluation to
identify the entries corresponding to either the ACPI processor ID of the Processor object or the value
returned by the UID object under a Processor device.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

176 Advanced Configuration and Power Interface Specification

When MAT appears under an I/O APIC, OSPM processes 1/0 APIC (section 5.2.11.6, “I/O APIC”), I/O
SAPIC (section 5.2.11.12, “I/O SAPIC Structure”), non-maskable interrupt sources (section 5.2.11.9,
“Non-Maskable Interrupt Sources (NMlIs)”), interrupt source overrides (section 5.2.11.8, “Interrupt Source
Overrides”), and platform interrupt source structure (section 5.2.11.14, “Platform Interrupt Source
Structure”) entries returned from the object’s evaluation. Other entry types are ignored by OSPM.

Arguments:

None

Result Code:

A buffer

Example ASL for MAT usage:

Scope(_SB) {

Device(PCI0) { // Root PCl Bus

Name(_HID, EISAID("'PNPOA03')) // Need _HID for root device

Name (_ADR,0) // Device 0 on this bus

Method (_CRS,0){ // Need current resources for root device
// Return current resources for root bridge 0

T

Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge
// Package with PCI IRQ routing table information

D

Device (P64A) { // P64A ACPI

Name (_ADR,0)

OperationRegion(TABD, SystemMemory, //Physical address of first
// data byte of multiple ACPI table, Length of tables)

Field (TABD, ByteAcc, NoLock, Preserve){
MATD, Length of tables x 8

T
Method(_MAT, 0){
Return (MATD)

}
} 7/ end P64A
} 7/ end PCIO
} 7/ end scope SB

6.2.9 _OSC (Operating System Capabilities)

This optional object is a control method that is used by OSPM to communicate to the platform the feature
support or capabilities provided by a device’s driver. This object is a child object of a device and may also
exist in the _SB scope, where it can be used to convey platform wide OSPM capabilities. When supported,
_OSC is invoked by OSPM immediately after placing the device in the DO power state. Device specific
objects are evaluated after _OSC invocation. This allows the values returned from other objects to be
predicated on the OSPM feature support / capability information conveyed by OSC. OSPM may evaluate
_OSC multiple times to indicate changes in OSPM capability to the device but this may be precluded by
specific device requirements. As such, OSC usage descriptions in section 9, “ACPI-Specific Device
Objects”, or other governing specifications describe superseding device specific OSC capabilities and / or
preclusions.

_OSC enables the platform to configure its ACPI namespace representation and object evaluations to match
the capabilities of OSPM. This enables legacy operating system support for platforms with new features
that make use of new namespace objects that if exposed would not be evaluated when running a legacy OS.
_OSC provides the capability to transition the platform to native operating system support of new features
and capabilities when available through dynamic namespace reconfiguration. _OSC also allows devices
with Compatible IDs to provide superset functionality when controlled by their native (For example, HID
matched) driver as appropriate objects can be exposed accordingly as a result of OSPM’s evaluation of
OSC.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 177

Arguments:
Arg0 (Buffer): UUID

Argl (Integer): Revision ID
Arg2 (Integer): Count
Arg3 (Buffer): Capabilities Buffer,

UUID - Universal Unique Identifier (16 Byte Buffer) used by the platform in conjunction with Revision ID
to ascertain the format of the Capabilities buffer.

Revision ID — The revision of the Capabilities Buffer format. The revision level is specific to the UUID.
Count - Number of DWORDs in the Capabilities Buffer in Arg3

Capabilities Buffer — Buffer containing the number of DWORDs indicated by Count. The first DWORD of
this buffer contains standard bit definitions as described below. Subsequent DWORDs contain UUID-
specific bits that convey to the platform the capabilities and features supported by OSPM. Successive
revisions of the Capabilities Buffer must be backwards compatible with earlier revisions. Bit ordering
cannot be changed.

Capabilities Buffers are device-specific and as such are described under specific device definitions. See
section 9, “ACPI Devices and Device Specific Objects” for any OSC definitions for ACPI devices. The
format of the Capabilities Buffer and behavior rules may also be specified by OEMs and IHVs for custom
devices and other interface or device governing bodies for example, the PCI SIG.

The first DWORD in the capabilities buffer is used to return errors defined by OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing OSC.
e Bit 0- Query Support Flag. the OSC invocation is a query by OSPM to determine which
capabilities OSPM may take control of. In this case, OSC sets bits for those capabilities of which
OSPM may take control and clears bits for those capabilities of which OSPM may not take
control. If zero, OSPM is attempting to take control of the capabilities corresponding to the bits
set.
e Bit 1- Always clear(0).
e Bit 2- Always clear(0).
e Bit 3- Always clear(0).
e All others- reserved.

Result Code:

Capabilities Buffer (Buffer) — The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORD:s of the same length. Set bits indicate acknowledgement and cleared bits indicate that the
platform does not support the capability.

The first DWORD in the capabilities buffer is used to return errors defined by OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing OSC.

e Bit 0- Reserved (not used)

e Bit 1- OSC failure. Platform Firmware was unable to process the request or query. Capabilities
bits may have been masked.

e Bit 2- Unrecognized UUID. This bit is set to indicate that the platform firmware does not
recognize the UUID passed in via Arg0. Capabilities bits are preserved.

e Bit 3- Unrecognized Revision. This bit is set to indicate that the platform firmware does not
recognize the Revision ID passed in via Argl. Capabilities bits beyond those comprehended by the
firmware will be masked.

e Bit 4- Capabilities Masked. This bit is set to indicate that capabilities bits set by driver software
have been cleared by platform firmware.

e All others- reserved.

At this time, platform-wide Capabilities Buffer DWORD bit definitions are not defined. As such, OSPM
implementations are not expected to evaluate \ SB. OSC until a future revision of the ACPI specification
specifies platform-wide Capabilities Buffer DWORD bit definitions.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

178 Advanced Configuration and Power Interface Specification

Note: OSPM must not use the results of OSC evaluation to choose a compatible device driver. OSPM
must use HID, CID, or native enumerable bus device identification mechanisms to select an appropriate
driver for a device.

The platform may issue a Notify(device, 0x08) to inform OSPM to re-evaluate OSC when the availability
of feature control changes. Platforms must not rely, however, on OSPM to evaluate OSC after issuing a
Notify for proper operation as OSPM cannot guarantee the presence of a target entity to receive and
process the Notify for the device. For example, a device driver for the device may not be loaded at the time
the Notify is signaled. Further, the issuance and processing rules for notification of changes in the
Capabilities Buffer is device specific. As such, the allowable behavior is governed by device specifications
either in section 9, “ ACPI-Specific Device Objects”, for ACPI-define devices, or other OEM, IHV, or
device governing body’s’ device specifications.

It is permitted for OSC to return all bits in the Capabilities Buffer cleared. An example of this is when
significant time is required to disable platform-based feature support. The platform may then later issue a
Notify to tell OSPM to re-evaluate OSC to take over native control. This behavior is also device specific
but may also rely on specific OS capability.

In general, platforms should support both OSPM taking and relinquishing control of specific feature
support via multiple invocations of _OSC but the required behavior may vary on a per device basis.

Since platform context is lost when the platform enters the S4 sleeping state, OSPM must re-evaluate OSC
upon wake from S4 to restore the previous platform state. This requirement will vary depending on the
device specific _OSC functionality.

6.2.9.1 _OSC Implementation Example for PCI Host Bridge Devices

The following section is an excerpt from the PCI Firmware Specification Revision 3.0 and is reproduced
with the permission of the PCI SIG. Note: The PCI SIG owns the definition of _OSC behavior and
parameter bit definitions for PCI devices. In the event of a discrepancy between the following
example and the PCI Firmware Specification, the latter has precedence.

The OSC interface defined in this section applies only to “Host Bridge” ACPI devices that originate PCI,
PCI-X or PCI Express hierarchies. These ACPI devices must have a HID of (or _CID including) either
EISAID(“PNP0OA03”) or EISAID(“PNPOA08”). For a host bridge device that originates a PCI Express
hierarchy, the OSC interface defined in this section is required. For a host bridge device that originates a
PCI/PCI-X bus hierarchy, inclusion of an _OSC object is optional.

The OSC interface for a PCI/PCI-X/PCI Express hierarchy is identified by the Universal Uniform
Identifier (UUID) 33db4d5b-1ff7-401c-9657-7441c03dd766. A revision ID of 1 encompasses fields
defined in this section of this revision of this specification, comprised of 3 DWORDs, including the first
DWORD described by the generic ACPI definition of OSC.

The first DWORD in the _OSC Capabilities Buffer contain bits are generic to _OSC and include status and
error information.

The second DWORD in the _OSC capabilities buffer is the Support Field. Bits defined in the Support Field
provide information regarding OS supported features. Contents in the Support Field are passed one-way;
the OS will disregard any changes to this field when returned. See Table 6-8 for descriptions of capabilities
bits in this field passed as a parameter into the OSC control method.

The third DWORD in the OSC Capabilities Buffer is the Control Field. Bits defined in the Control Field
are used to submit request by the OS for control/handling of the associated feature, typically (but not
excluded to) those features that utilize native interrupts or events handled by an OS-level driver. See Table
6-10 for descriptions of capabilities bits in this field passed as a parameter into the OSC control

method. If any bits in the Control Field are returned cleared (masked to zero) by the OSC control method,
the respective feature is designated unsupported by the platform and must not be enabled by the OS. Some
of these features may be controlled by platform firmware prior to OS boot or during runtime for a legacy
OS, while others may be disabled/inoperative until native OS support is available. See Table 6-11 for
descriptions of capabilities bits in this returned field.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 179

If the OSC control method is absent from the scope of a host bridge device, then the OS must not enable
or attempt to use any features defined in this section for the hierarchy originated by the host bridge. Doing
so could contend with platform firmware operations, or produce undesired results. It is recommended that a
machine with multiple host bridge devices should report the same capabilities for all host bridges, and also
negotiate control of the features described in the Control Field in the same way for all host bridges.

Table 6-9 Interpretation of _OSC Support Field

Support Field | Interpretation

bit offset

0 Extended PCI Config operation regions supported
The OS sets this bit to 1 if it supports ASL accesses through PCI Config operation
regions to extended configuration space (offsets greater than OxFF). Otherwise, the
OS sets this bit to 0.

1 Active State Power Management supported
The OS sets this bit to 1 if it natively supports configuration of Active State Power
Management registers in PCI Express devices. Otherwise, the OS sets this bit to 0.

2 Clock Power Management Capability supported
The OS sets this bit to 1 if it supports the Clock Power Management Capability, and
will enable this feature during a native hot plug insertion event if supported by the
newly added device. Otherwise, the OS sets this bit to 0.
Note: The Clock Power Management Capability is defined in an errata to the PCI
Express Base Specification, 1.0.

3 PCI Segment Groups supported
The OS sets this bit to 1 if it supports PCI Segment Groups as defined by the SEG
object, and access to the configuration space of devices in PCI Segment Groups as
described by this specification. Otherwise, the OS sets this bit to 0.

4 MSI supported
The OS sets this bit to 1 if it supports configuration of devices to generate message-
signaled interrupts, either through the MSI Capability or the MSI-X Capability.
Otherwise, the OS sets this bit to 0.

5-31 Reserved

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

180 Advanced Configuration and Power Interface Specification

Table 6-10 Interpretation of _OSC Control Field, Passed in via Arg3

Control Field
bit offset

Interpretation

0

PCI Express Native Hot Plug control

The OS sets this bit to 1 to request control over PCI Express native hot plug. If the
OS successfully receives control of this feature, it must track and update the status of
hot plug slots and handle hot plug events as described in the PCI Express Base
Specification.

SHPC Native Hot Plug control

The OS sets this bit to 1 to request control over PCI/PCI-X Standard Hot-Plug
Controller (SHPC) hot plug. If the OS successfully receives control of this feature, it
must track and update the status of hot plug slots and handle hot plug events as
described in the SHPC Specification.

PCI Express Native Power Management Events control

The OS sets this bit to 1 to request control over PCI Express native power
management event interrupts (PMEs). If the OS successfully receives control of this
feature, it must handle power management events as described in the PCI Express
Base Specification.

PCI Express Advanced Error Reporting control

The OS sets this bit to 1 to request control over PCI Express Advanced Error
Reporting. If the OS successfully receives control of this feature, it must handle error
reporting through the Advanced Error Reporting Capability as described in the PCI
Express Base Specification.

PCI Express Capability Structure control

The OS sets this bit to 1 to request control over the PCI Express Capability
Structures (standard and extended) defined in the PCI Express Base Specification
version 1.1. These capability structures are the PCI Express Capability, the virtual
channel extended capability, the power budgeting extended capability, the advanced
error reporting extended capability, and the serial number extended capability. If the
OS successfully receives control of this feature, it is responsible for configuring the
registers in all PCI Express Capabilities in a manner that complies with the PCI
Express Base Specification. Additionally, the OS is responsible for saving and
restoring all PCI Express Capability register settings across power transitions when
register context may have been lost.

5-31

Reserved

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 181

Table 6-11 Interpretation of _OSC Control Field, Returned Value

Control Field | Interpretation
bit offset

0 PCI Express Native Hot Plug control

The firmware sets this bit to 1 to grant control over PCI Express native hot plug
interrupts. If firmware allows the OS control of this feature, then in the context of the
_OSC method it must ensure that all hot plug events are routed to device interrupts as
described in the PCI Express Base Specification. Additionally, after control is
transferred to the OS, firmware must not update the state of hot plug slots, including
the state of the indicators and power controller. If control of this feature was
requested and denied or was not requested, firmware returns this bit set to 0.

1 SHPC Native Hot Plug control

The firmware sets this bit to 1 to grant control over control over PCI/PCI-X Standard
Hot-Plug Controller (SHPC)hot plug. If firmware allows the OS control of this
feature, then in the context of the OSC method it must ensure that all hot plug
events are routed to device interrupts as described in the SHPC Specification.
Additionally, after control is transferred to the OS, firmware must not update the
state of hot plug slots, including the state of the indicators and power controller. If
control of this feature was requested and denied or was not requested, firmware
returns this bit set to 0.

2 PCI Express Native Power Management Events control

The firmware sets this bit to 1 to grant control over control over PCI Express native
power management event interrupts (PMESs). If firmware allows the OS control of
this feature, then in the context of the OSC method it must ensure that all PMEs are
routed to root port interrupts as described in the PCI Express Base Specification.
Additionally, after control is transferred to the OS, firmware must not update the
PME Status field in the Root Status register or the PME Interrupt Enable field in the
Root Control register. If control of this feature was requested and denied or was not
requested, firmware returns this bit set to 0.

3 PCI Express Advanced Error Reporting control

The firmware sets this bit to 1 to grant control over PCI Express Advanced Error
Reporting. If firmware allows the OS control of this feature, then in the context of
the OSC method it must ensure that error messages are routed to device interrupts
as described in the PCI Express Base Specification. Additionally, after control is
transferred to the OS, firmware must not modify the Advanced Error Reporting
Capability. If control of this feature was requested and denied or was not requested,
firmware returns this bit set to 0.

4 PCI Express Capability Structure control

The firmware sets this bit to 1 to grant control over the PCI Express Capability. If the
firmware does not grant control of this feature, firmware must handle configuration of
the PCI Express Capability Structure.

If firmware grants the OS control of this feature, any firmware configuration of the
PCI Express Capability may be overwritten by an OS configuration, depending on
OS policy.

5-31 Reserved

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

182 Advanced Configuration and Power Interface Specification

6.2.9.1.1 Rules for Evaluating _OSC

This section defines when and how the OS must evaluate OSC, as well as restrictions on firmware
implementation.

6.2.9.1.1.1 Query Flag

If the Query Support Flag (Capabilities DWORD 1, bit 0) is set by the OS when evaluating OSC, no
hardware settings are permitted to be changed by firmware in the context of the OSC call. It is strongly
recommended that the OS evaluate OSC with the Query Support Flag set until OSC returns the
Capabilities Masked bit clear, to negotiate the set of features to be granted to the OS for native support; a
platform may require a specific combination of features to be supported natively by an OS before granting
native control of a given feature.

6.2.9.1.1.2 Evaluation Conditions

The OS must evaluate OSC under the following conditions:

During initialization of any driver that provides native support for features described in the section above.
These features may be supported by one or many drivers, but should only be evaluated by the main bus
driver for that hierarchy. Secondary drivers must coordinate with the bus driver to install support for these
features. Drivers may not relinquish control of features previously obtained. I.e. bits set in Capabilities
DWORD?3 after the negotiation process must be set on all subsequent negotiation attempts.

When a Notify(<device>, 8) is delivered to the PCI Host Bridge device.

Upon resume from S4. Platform firmware will handle context restoration when resuming from S1-S3.

6.2.9.1.1.3 Sequence of _OSC calls

The following rules govern sequences of calls to _OSC that are issued to the same host bridge and occur
within the same boot.

e The OS is permitted to evaluate OSC an arbitrary number of times.

e If'the OS declares support of a feature in the Status Field in one call to _OSC, then it must
preserve the set state of that bit (declaring support for that feature) in all subsequent calls.

e If'the OS is granted control of a feature in the Control Field in one call to _OSC, then it must
preserve the set state of that bit (requesting that feature) in all subsequent calls.

e Firmware may not reject control of any feature it has previously granted control to.

e There is no mechanism for the OS to relinquish control of a feature previously requested and
granted..

6.2.9.1.2 ASL Example

A sample _OSC implementation for a mobile system incorporating a PCI Express hierarchy is shown
below:

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 183

Device(PCIO) // Root PCIl bus

Name(_HID,EISAID("'PNPOA08')) // PCl Express Root Bridge
Name(_CID,EISAID("'PNPOA03')) // Compatible PCl Root Bridge
Name (SUPP,0) // PCI _OSC Support Field value

Name (CTRL,0) // PCl _0SC Control Field value

Method(_0SC,4)

{ 7/ Check for proper UUID
I f(LEqual (Arg0, ToUUID(''33DB4D5B-1FF7-401C-9657-7441C03DD766'")))
{

// Create DWord-adressable fields from the Capabilities Buffer
CreateDWordField(Arg3,0,CDW1)
CreateDWordField(Arg3,4,CDW2)
CreateDWordField(Arg3,8,CDW3)

// Save Capabilities DWord2 & 3
Store(CDW2,SUPP)
Store(CDW3,CTRL)

// Only allow native hot plug control if OS supports:
// * ASPM

// * Clock PM

// * MSI/MSI-X

IT(LNotEqual (And(SUPP, 0x16), 0x16))

And(CTRL,0x1E) // Mask bit O (and undefined bits)
3

// Always allow native PME, AER (no dependencies)

// Never allow SHPC (no SHPC controller in this system)
And(CTRL,0x1D,CTRL)

IT(Not(And(CDW1,1))) // Query flag clear?

{ // Disable GPEs for features granted native control.
I1T(And(CTRL,0x01)) // Hot plug control granted?
{

Store(0,HPCE) // clear the hot plug SCI enable bit
Store(1,HPCS) // clear the hot plug SCI status bit

}
I1T(And(CTRL,0x04)) // PME control granted?
{

Store(0,PMCE) // clear the PME SCI enable bit
Store(1,PMCS) // clear the PME SCI status bit

3
IT(And(CTRL,0x10)) // OS restoring PCle cap structure?
{ // Set status to not restore PCle cap structure
// upon resume from S3
Store(1,S3CR)
¥
b

IT(LNotEqual (Argl,0ne))
{ 7/ Unknown revision

Or(CDbw1,0x08,CDW1)
}

IT(LNotEqual (CDW3,CTRL))
{ // Capabilities bits were masked
Or(CDW1,0x10,CDW1)

3
// Update DWORD3 in the buffer
Store(CTRL,CDW3)
Return(Arg3)

} Else {
Or(CDw1,4,CDW1) // Unrecognized UUID
Return(Arg3)

ks
} // End _0SC
} // End PCIO

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

184 Advanced Configuration and Power Interface Specification

6.2.10 _PRS (Possible Resource Settings)

This optional object evaluates to a byte stream that describes the possible resource settings for the device.
When describing a platform, specify a_PRS for all the configurable devices. Static (non-configurable)
devices do not specify a _PRS object. The information in this package is used by OSPM to select a
conflict-free resource allocation without user intervention. This method must not reference any operation
regions that have not been declared available by a REG method.

The format of the data in a _PRS object follows the same format as the CRS object (for more information,
see the CRS object definition in section 6.2.1, “ CRS (Current Resource Settings)”).

If the device is disabled when PRS is called, it must remain disabled.
Arguments:

None

Result Code:

Byte stream

6.2.11 _PRT (PCI Routing Table)

PCI interrupts are inherently non-hierarchical. PCI interrupt pins are wired to interrupt inputs of the
interrupt controllers. The PRT object provides a mapping from PCI interrupt pins to the interrupt inputs of
the interrupt controllers. The PRT object is required under all PCI root bridges. PRT evaluates to a
package that contains a list of packages, each of which describes the mapping of a PCI interrupt pin.

Note: The PCI function number in the Address field of the PRT packages must be OxFFFF, indicating
“any” function number or “all functions”.

The PRT mapping packages have the fields listed in Table 6-12.
Table 6-12 Mapping Fields

Field Type Description

Address | DWORD | The address of the device (uses the same format as _ ADR).

Pin BYTE The PCI pin number of the device (0-INTA, 1-INTB, 2-INTC, 3—-INTD).

Source NamePath | Name of the device that allocates the interrupt to which the above pin is

Or connected. The name can be a fully qualified path, a relative path, or a simple
BYTE name segment that utilizes the namespace search rules. Note: This field is a
NamePath and not a String literal, meaning that it should not be surrounded by
quotes. If this field is the integer constant Zero (or a BYTE value of 0), then the
interrupt is allocated from the global interrupt pool.

Source DWORD | Index that indicates which resource descriptor in the resource template of the
Index device pointed to in the Source field this interrupt is allocated from. If the
Source field is the BYTE value zero, then this field is the global system
interrupt number to which the pin is connected.

There are two ways that PRT can be used. Typically, the interrupt input that a given PCI interrupt is on is
configurable. For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a PCI Interrupt
Link Device.

These objects have PRS, CRS, SRS, and DIS control methods to allocate the interrupt. Then, OSPM
handles the interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt pins. The driver
looks up the device’s pins in the PRT to determine which device objects allocate the interrupts. To move
the PCI interrupt to a different interrupt input on the interrupt controller, OSPM uses PRS, CRS, SRS,
and DIS control methods for the PCI Interrupt Link Device.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 185

In the second model, the PCI interrupts are hardwired to specific interrupt inputs on the interrupt controller
and are not configurable. In this case, the Source field in PRT does not reference a device, but instead
contains the value zero, and the Source Index field contains the global system interrupt to which the PCI

interrupt is hardwired.

6.2.11.1 Example: Using PRT to Describe PCI IRQ Routing

The following example describes two PCI slots and a PCI video chip. Notice that the interrupts on the two

PCI slots are wired differently (barber-poled).

Scope(_SB) {
Device(LNKA){
Name(_HID, EISAID("PNPOCOF'))
Name(_UID, 1)
Name(_PRS, ResourceTemplate(){
Interrupt(ResourceProducer,..) {10,11}

»

Method(DIS) {.}
Method(CRS) {.}
Method(SRS, 1) {.}

}
Device(LNKB){
Name(_HID, EISAID(''PNPOCOF™))
Name(_UID, 2)
Name(_PRS, ResourceTemplate(){
Interrupt(ResourceProducer,..) {11,12}

»

Method(DIS) {.}
Method(_CRS) {.}
Method(SRS, 1) {.}

¥
Device(LNKC){
Name(_HID, EISAID("PNPOCOF™))
Name(_UID, 3)
Name(_PRS, ResourceTemplate(){
Interrupt(ResourceProducer,..) {12,14}
b

Method(_DIS) {.}
Method(_CRS) {.}
Method(_SRS, 1) {.}

}
Device(LNKD){
Name(_HID, EISAID('PNPOCOF™))
Name(_UID, 4)
Name(_PRS, ResourceTemplate(){
Interrupt(ResourceProducer,..) {10,15}

D
Method(_DIS) {.}
Method(_CRS) {.}
Method(_SRS, 1) {.}
b
Device(PCI0){

Name(_PRT, Package{

Package{Ox0004FFFF, 0, _SB_ _LNKA, 0},
Package{Ox0004FFFF, 1, _SB_.LNKB, 0},
Package{0Ox0004FFFF, 2, _SB_ .LNKC, 0},
Package{Ox0004FFFF, 3, _SB_.LNKD, 0},
Package{Ox0005FFFF, 0, LNKB, O},
Package{Ox0005FFFF, 1, LNKC, O},
Package{Ox0005FFFF, 2, LNKD, O},
Package{Ox0005FFFF, 3, LNKA, 0},
Package{Ox0006FFFF, 0, LNKC, O}

b

// PCI interrupt link

// IRQs 10,11

// PCI interrupt link

// 1RQs 11,12

// PCI interrupt link

// 1RQs 12,14

// PCI interrupt link

// 1RQs 10,15

Slot 1, INTA // A fully

Slot 1, INTB // qualified
Slot 1, INTC // pathname
Slot 1, INTD // can be used,
Slot 2, INTA // or a simple
Slot 2, INTB // name segment
Slot 2, INTC // utilizing the

Slot 2, INTD // search rules
Video, INTA

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

186 Advanced Configuration and Power Interface Specification

6.2.12 PXM (Proximity)

This optional object is used to describe proximity domains within a machine. PXM evaluates to an integer
that identifies the device as belonging to a specific proximity domain. OSPM assumes that two devices in
the same proximity domain are tightly coupled. OSPM could choose to optimize its behavior based on this.
For example, in a system with four processors and six memory devices, there might be two separate
proximity domains (0 and 1), each with two processors and three memory devices. In this case, the OS may
decide to run some software threads on the processors in proximity domain 0 and others on the processors
in proximity domain 1. Furthermore, for performance reasons, it could choose to allocate memory for those
threads from the memory devices inside the proximity domain common to the processor and the memory
device rather than from a memory device outside of the processor’s proximity domain. PXM can be used
to identify any device belonging to a proximity domain. Children of a device belong to the same proximity
domain as their parent unless they contain an overriding PXM. Proximity domains do not imply any
ejection relationships.

An OS makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance between
the proximity domains (in other words, proximity domain 1 is not assumed to be closer to proximity
domain 0 than proximity domain 6).

Arguments:
None
Result Code:

An integer

6.2.13 _SLI (System Locality Information)

The System Locality Information Table (SLIT) table defined in Section 5.2.16, “System Locality Distance
Information Table (SLIT)”, provides relative distance information between all System Localities for use
during OS initialization.

The value of each Entry([i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the PXM object in the ACPI namespace.
See section 6.2.12, “ PXM (Proximity)” for more information.

Dynamic runtime reconfiguration of the system may cause the distance between System Localities to
change.

_SLIis an optional object that enables the platform to provide the OS with updated relative System
Locality distance information at runtime. _SLI provide OSPM with an update of the relative distance from
System Locality i to all other System Localities in the system.

Arguments:
None.
Return Code:

If System Locality i > N, where N is the number of System Localities, the SLI method returns a buffer
that contains the relative distances [(i, 0), (i, 1), ..., (i, i-1), (i, 1), (0, 1), (1, 1), ...(i-1, 1), (i, 1)]; if System
Locality i <N, the SLI method returns a buffer that contains the relative distances [(i, 0), (i, 1), ..., (i, 1),
...,(1, N-1), (0, 1), (1,),...(3, 1), ..., (N-1, 1)]. Note: (i, 1) is always a value of 10.

Example

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 187

Node 0 Node 1 Node 2 o000 Node n

¥ ¥

The figure above diagrams a 4-node system where the nodes are numbered 0 through 3 (Node n = Node 3)
and the granularity is at the node level for the NUMA distance information. In this example we assign
System Localities / Proximity Domain numbers equal to the node numbers (0-3). The NUMA relative
distances between proximity domains as implemented in this system are described in the matrix represented
in Table 6-13. Proximity Domains are represented by the numbers in the top row and left column.
Distances are represented by the values in cells internal in the table from the domains.

Table 6-13 Example Relative Distances Between Proximity Domains

Proximity 0 1 2 3
Domain

0 10 15 20 18
1 15 10 16 24
2 20 16 10 12
3 18 24 12 10

An example of these distances between proximity domains encoded in a System Locality Information
Table for consumption by OSPM at boot time is described in Table 6-14.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

188 Advanced Configuration and Power Interface Specification

Table 6-14 Example System Locality Information Table
Field Byte Byte Description
Length Offset
Header
Signature 4 0 ‘SLIT".

Length 4 4 60

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the System Locality Information Table, the table ID
is the manufacturer model ID.

OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For the
DSDT, RSDT, SSDT, and PSDT tables, this is the ID
for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for
the ASL Compiler.

Number of System 8 36 4
Localities

Entry[0][0] 1 44 10
Entry[0][1] 1 45 15
Entry[0][2] 1 46 20
Entry[0][3] 1 47 18
Entry[1][0] 1 48 15
Entry[1][1] 1 49 10
Entry[1][2] 1 50 16
Entry[1][3] 1 51 24
Entry[2][0] 1 52 20
Entry[2][1] 1 53 16
Entry[2][2] 1 54 10
Entry[2][3] 1 55 12
Entry[3][0] 1 56 18
Entry[3][1] 1 57 24
Entry[3][2] 1 58 12
Entry[3][3] 1 59 10

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 189

If a new node, “Node 4”, is added, then Table 6-15 represents the updated system’s NUMA relative
distances of proximity domains.

Table 6-15 Example Relative Distances Between Proximity Domains - 5 Node

Proximity 0 1 2 3 4
Domain

0 10 15 20 18 17
1 15 10 16 24 21
2 20 16 10 12 14
3 18 24 12 10 23
4 17 21 14 23 10

The new node’s _SLI object would evaluate to a buffer containing [17,21,14,23,10,17,21,14,23,10].

Note: some systems support interleave memory across the nodes. SLIT representation of these systems is
implementation specific.

6.2.14 SRS (Set Resource Settings)

This optional control method takes one byte stream argument that specifies a new resource allocation for a
device. The resource descriptors in the byte stream argument must be specified in the same order as listed
in the CRS byte stream (for more information, see the CRS object definition). A _CRS object can be
used as a template to ensure that the descriptors are in the correct format.

The settings must take effect before the SRS control method returns.

This method must not reference any operation regions that have not been declared available by a REG
method.

If the device is disabled, SRS enables the device at the specified resources. SRS is not used to disable a
device; use the DIS control method instead.

Arguments:
Byte stream
Result Code:

None

6.3 Device Insertion, Removal, and Status Objects

The objects defined in this section provide mechanisms for handling dynamic insertion and removal of
devices and for determining device and notification processing status.

Device insertion and removal objects are also used for docking and undocking mobile platforms to and
from a peripheral expansion dock. These objects give information about whether or not devices are present,
which devices are physically in the same device (independent of which bus the devices live on), and
methods for controlling ejection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style ejection
mechanism instead of a “surprise-style” ejection mechanism. In this system, the eject button for a device
does not immediately remove the device, but simply signals the operating system. OSPM then shuts down
the device, closes open files, unloads the driver, and sends a command to the hardware to eject the device.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

190 Advanced Configuration and Power Interface Specification

In ACPI, the sequence of events for dynamically inserting a device follows the process below. Notice that
this process supports hot, warm, and cold insertion of devices.

1. If the device is physically inserted while the computer is in the working state (in other words, hot
insertion), the hardware generates a general-purpose event.

2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of the bus
that the new device is on or the device object for the new device. If the Notify command points to the
device object for the new device, the control method must have changed the device’s status returned by
_STA to indicate that the device is now present. The performance of this process can be optimized by
having the object of the Notify as close as possible, in the namespace hierarchy, to where the new
device resides. The Notify command can also be used from the WAK control method (for more
information about WAK, see section 7.3.7 “__ WAK (System Wake)”) to indicate device changes that
may have occurred while the computer was sleeping. For more information about the Notify command,
see section 5.6.3 “Device Object Notification.”.”

3. OSPM uses the identification and configuration objects to identify, configure, and load a device driver
for the new device and any devices found below the device in the hierarchy.

4. Ifthe device has a LCK control method, OSPM may later run this control method to lock the device.

The new device referred to in step 2 need not be a single device, but could be a whole tree of devices. For
example, it could point to the PCI-PCI bridge docking connector. OSPM will then load and configure all
devices it found below that bridge. The control method can also point to several different devices in the
hierarchy if the new devices do not all live under the same bus. (in other words, more than one bus goes
through the connector).

For removing devices, ACPI supports both hot removal (system is in the SO state), and warm removal
(system is in a sleep state: S1-S4). This is done using the EJX control methods. Devices that can be ejected
include an _EJX control method for each sleeping state the device supports (a maximum of 2 _EJX objects
can be listed). For example, hot removal devices would supply an _EJ0O; warm removal devices would use
one of EJ1-EJ4. These control methods are used to signal the hardware when an eject is to occur.

The sequence of events for dynamically removing a device goes as follows:

1. The eject button is pressed and generates a general-purpose event. (If the system was in a sleeping
state, it should wake the computer).

2. The control method for the event uses the Notify(device, 3) command to inform OSPM which specific
device the user has requested to eject. Notify does not need to be called for every device that may be
ejected, but for the top-level device. Any child devices in the hierarchy or any ejection-dependent
devices on this device (as described by EJD, below) are automatically removed.

3. The OS shuts down and unloads devices that will be removed.

4. Ifthe device has a LCK control method, OSPM runs this control method to unlock the device.

5. The OS looks to see what _EJX control methods are present for the device. If the removal event will
cause the system to switch to battery power (in other words, an undock) and the battery is low, dead, or
not present, OSPM uses the lowest supported sleep state EJX listed; otherwise it uses the highest state
_EJx. Having made this decision, OSPM runs the appropriate EJx control method to prepare the
hardware for eject.

6. Warm removal requires that the system be put in a sleep state. If the removal will be a warm removal,
OSPM puts the system in the appropriate Sx state. If the removal will be a hot removal, OSPM skips to
step 8, below.

7. For warm removal, the system is put in a sleep state. Hardware then uses any motors, and so on, to
eject the device. Immediately after ejection, the hardware transitions the computer to S0. If the system
was sleeping when the eject notification came in, the OS returns the computer to a sleeping state
consistent with the user’s wake settings.

8. OSPM calls STA to determine if the eject successfully occurred. (In this case, control methods do not
need to use the Notify(device,3) command to tell OSPM of the change in _STA) If there were any
mechanical failures, STA returns 3: device present and not functioning, and OSPM informs the user
of the problem.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 191

Note: This mechanism is the same for removing a single device and for removing several devices, as in an
undock.

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not
recommended because system and data integrity cannot be guaranteed when a surprise-style removal
occurs. Because the OS is not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device is removed. To handle surprise-style removal, a general-purpose
event must be raised. Its associated control method must use the Notify command to indicate which bus the
device was removed from.

The device insertion and removal objects are listed in Table 6-16.

Table 6-16 Device Insertion, Removal, and Status Objects

Object Description

EDL Object that evaluates to a package of namespace references of device objects that depend on
the device containing EDL. Whenever the named device is ejected, OSPM ejects all
dependent devices.

_EID Object that evaluates to the name of a device object on which a device depends. Whenever the
named device is ejected, the dependent device must receive an ejection notification.

_EJx Control method that ejects a device.
_LCK Control method that locks or unlocks a device.
_OST Control method invoked by OSPM to convey processing status to the platform..

_RMV Object that indicates that the given device is removable.

STA Control method that returns a device’s status.

6.3.1 _EDL (Eject Device List)

This object evaluates to a package of namespace references containing the names of device objects that
depend on the device under which the EDL object is declared. This is primarily used to support docking
stations. Before the device under which the EDL object is declared may be ejected, OSPM prepares the
devices listed in the EDL object for physical removal.

Before OSPM e¢jects a device via the device’s EJx methods, all dependent devices listed in the package
returned by EDL are prepared for removal. Notice that EJx methods under the dependent devices are not
executed.

When describing a platform that includes a docking station, an EDL object is declared under the docking
station device. For example, if a mobile system can attach to two different types of docking stations, EDL
is declared under both docking station devices and evaluates to the packaged list of devices that must be
ejected when the system is ejected from the docking station.

An ACPI-compliant OS evaluates the EDL method just prior to ejecting the device.

6.3.2 _EJD (Ejection Dependent Device)

This object is used to specify the name of a device on which the device, under which this object is declared,
is dependent. This object is primarily used to support docking stations. Before the device indicated by
_EJD is ejected, OSPM will prepare the dependent device (in other words, the device under which this
object is declared) for removal.

_EJD is evaluated once when the ACPI table loads. The EJx methods of the device indicated by EJD will
be used to eject all the dependent devices. A device’s dependents will be ejected when the device itself is
ejected.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

192 Advanced Configuration and Power Interface Specification

Note: OSPM will not execute a dependent device’s EJx methods when the device indicated by EJD is
ejected.

When describing a platform that includes a docking station, usually more than one EJD object will be
needed. For example, if a dock attaches both a PCI device and an ACPI-configured device to a mobile
system, then both the PCI device description package and the ACPI-configured device description package
must include an _EJD object that evaluates to the name of the docking station (the name specified in an
_ADR or HID object in the docking station’s description package). Thus, when the docking connector
signals an eject request, OSPM first attempts to disable and unload the drivers for both the PCI and ACPI
configured devices.

Note: An ACPI 1.0 OS evaluates the EJD methods only once during the table load process. This greatly
restricts a table designer’s freedom to describe dynamic dependencies such as those created in scenarios
with multiple docking stations. This restriction is illustrated in the example below; the EJD information
supplied via and ACPI 1.0-compatible namespace omits the IDE2 device from DOCK2’s list of ejection
dependencies. Starting in ACPI 2.0, OSPM is presented with a more in-depth view of the ejection
dependencies in a system by use of the EDL methods.

Example

An example use of EJD and EDL is as follows:
Scope(_SB.PCI10) {

Device(DOCK1) { // Pass through dock — DOCK1
Name(_ADR, ..)
Method(_EJO, 0) {.}
Method(_DCK, 1) {.}
Name(_BDN, ..)
Method(_STA, 0) {OxF}
Name(_EDL, Package() { // DOCK1l has two dependent devices — IDE2 and CB2
_SB.PCIO.IDE2,
_SB.PCI10.CB2})

}
Device(DOCK2) { // Pass through dock — DOCK2
Name(_ADR, ..)
Method(_EJO, 0) {.}
Method(_DCK, 1) {.}
Name(_BDN, ..)
Method(_STA, 0) {OxO}
Name(_EDL, Package() { // DOCK2 has one dependent device — IDE2
_SB.PCIO.1DE2})

}

Device(IDE1l) { // 1DE Drivel not dependent on the dock
Name(_ADR, ..)

}

Device(IDE2) { // 1DE Drive2
Name(_ADR, ..)
Name(_EJD,”_SB.PC10.DOCK1”") // Dependent on DOCK1

}

Device(CB2) { // CardBus Controller
Name(_ADR, ..)
Name(_EJD,”_SB.PC10.DOCK1") // Dependent on DOCK1l

}
} 7/ end _SB.PCIO

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 193

6.3.3 _EJx (Eject)

These control methods are optional and are supplied for devices that support a software-controlled VCR-
style ejection mechanism or that require an action be performed such as isolation of power/data lines before
the device can be removed from the system. To support warm (system is in a sleep state) and hot (system is
in SO) removal, an _EJX control method is listed for each sleep state from which the device supports
removal, where X is the sleeping state supported. For example, EJO indicates the device supports hot
removal; EJ1-EJ4 indicate the device supports warm removal.

For hot removal, the device must be immediately ejected when OSPM calls the EJO control method. The
_EJO control method does not return until ejection is complete. After calling EJO, OSPM verifies the
device no longer exists to determine if the eject succeeded. For HID devices, OSPM evaluates the STA
method. For ADR devices, OSPM checks with the bus driver for that device.

For warm removal, the EJ1— EJ4 control methods do not cause the device to be immediately ejected.

Instead, they set proprietary registers to prepare the hardware to eject when the system goes into the given
sleep state. The hardware ejects the device only after OSPM has put the system in a sleep state by writing
to the SLP_EN register. After the system resumes, OSPM calls STA to determine if the eject succeeded.

The EJx control methods take one parameter to indicate whether eject should be enabled or disabled:

1-Hot eject or mark for ejection
0—Cancel mark for ejection (EJO will never be called with this value)

A device object may have multiple EJX control methods. First, it lists an EJx control method for the
preferred sleeping state to eject the device. Optionally, the device may list an EJ4 control method to be
used when the system has no power (for example, no battery) after the eject. For example, a hot-docking
notebook might list EJO and EJ4.

6.3.4 _LCK (Lock)

This control method is optional and is required only for a device that supports a software-controlled locking
mechanism. When the OS invokes this control method, the associated device is to be locked or unlocked
based upon the value of the argument that is passed. On a lock request, the control method must not
complete until the device is completely locked.

The LCK control method takes one parameter that indicates whether or not the device should be locked:

1 —Lock the device.
0—Unlock the device.

When describing a platform, devices use either a LCK control method or an _EJx control method for a
device.

6.3.5 _OST (OSPM Status Indication)

This object is an optional control method that is invoked by OSPM to indicate processing status to the
platform. During device ejection, device hot add, or other event processing, OSPM may need to perform
specific handshaking with the platform. OSPM may also need to indicate to the platform its inability to
complete a requested operation; for example, when a user presses an ejection button for a device that is
currently in use or is otherwise currently incapable of being ejected. In this case, the processing of the
ACPI Eject Request notification by OSPM fails. OSPM may indicate this failure to the platform through
the invocation of the OST control method. As a result of the status notification indicating ejection failure,
the platform may take certain action including reissuing the notification or perhaps turning on an
appropriate indicator light to signal the failure to the user.

Arguments:
Arg0 — source_event: DWordConst

If the value of source_event is <= OxFF, this argument is the ACPI notification value whose processing
generated the status indication. This is the value that was passed into the Notify operator.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

194 Advanced Configuration and Power Interface Specification

If the value of source_event is 0x100 or greater then the OSPM status indication is a result of an OSPM
action as indicated in Table 6-17. For example, a value of 0x103 will be passed into _OST for this
argument upon the failure of a user interface invoked device ejection.

If OSPM is unable to identify the originating notification value, OSPM invokes OST with a value that
contains all bits set (ones) for this parameter.

Argl — Status Code: DWordConst. OSPM indicates a notification value specific status. See Tables 6-18
and 6-19 for status code descriptions.

Arg2 — A buffer containing detailed OSPM-specific information about the status indication. This argument

may be the null string.
Results:

None

Table 6-17 _OST Source Event Codes

Source Event Code

Description

0-0xFF Reserved for Notification Values
0x100-0x102 Reserved

0x103 Ejection Processing
0x104-0x1FF Reserved

0x200 Insertion Processing

0x201-0xFFFFFFFF

Reserved

Table 6-18 General Processing Status Codes

Status Code Description

0 Success

1 Non-specific failure

2 Unrecognized Notify Code
3-0x7F Reserved

0x80-0xFFFFFFFF

Notification value specific status codes

Table 6-19 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status Codes

Status Code

Description

0x80 Device ejection not supported by OSPM

0x81 Device in use by application

0x82 Device Busy

0x83 Ejection dependency is busy or not supported for ejection by OSPM
0x84 Ejection is in progress (pending)

0x85-0xFFFFFFFF

Reserved

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 195

Table 6-20 Insertion Processing (Source Event: 0x200) Status Codes

Status Code Description
0x80 Device insertion in progress (pending)
0x81 Device driver load failure
0x82-0x8F Reserved
0x90-0x9F Insertion failure — Resources Unavailable as described by the following bit
encodings:
Bit[3] Bus Numbers
Bit[2] Interrupts
Bit[1] 1/0
Bit[0] Memory
0xAO0-OxFFFFFFFF | Reserved

It is possible for the platform to issue multiple notifications to OSPM and for OSPM to process the
notifications asynchronously. As such, OSPM may invoke OST for notifications independent of the order
the notification are conveyed by the platform or by software to OSPM..

The figure below provides and example event flow of device ejection on a platform employing the OST
object.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

196 Advanced Configuration and Power Interface Specification

User interacts with User Presses
OSPM to request Hardware Eject
device ejection Button

Platform generates GPE/SCI

Platform blinks OSPM evaluation of GPE
OSPM evaluates - P
OST(0x103,84,™) Ejection Progress Status method generates
- Y Light Notify(device,3 (eject))

OSPM Processes
Ejection Request

Application connections to device closed.

OSPM evaluates Platform turns off

Ejection Progress
No——p| _OST(O):)1r03,81,) t——» Lightand turns on
_OST(0x03,81,™) Ejection Failure

OS Ejection
Successful?

Light
Yes
Evaluate _EJx
Y
OSPM places -
x=0in_EJx? N system into sleep N Platform ejection Platform wakeup
. occurs occurs

Platform turns off
Ejection Progress Done
Light

Figure 6-1 Device Ejection Flow Example Using _OST

NOTE: To maintain compatibility with OSPM implementations of previous revisions of the ACPI
specification, the platform must not rely on OSPM’s evaluation of the _OST object for proper platform
operation.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration

Example ASL for OST usage:

Scope(_SB.PCI14) {
OperationRegion(LED1, SystemlO, 0x10CO, 0x20)
Field(LED1, AnyAcc, NoLock, Preserve)
{ 7/ LED controls

SOLE, 1, // Slot 0 Ejection Progress LED
SOLF, 1, // Slot 0 Ejection Failure LED
S1LE, 1, // Slot 1 Ejection Progress LED
S1LF, 1, // Slot 1 Ejection Failure LED
S2LE, 1, // Slot 2 Ejection Progress LED
S2LF, 1, // Slot 2 Ejection Failure LED
S3LE, 1, // Slot 3 Ejection Progress LED
S3LF, 1 // Slot 3 Ejection Failure LED

b

Device(SLT3) { // hot plug device

Name(_ADR, 0x000C0003)

Method(_OST, 3, Serialized) { // 0S calls _OST with notify code 3 or 0x103
// and status codes 0x80-0x83
// to indicate a hot remove request failure.
// Status code 0x84 indicates an ejection
// request pending.

IT(LEqual (Arg0,0nes)) // Unspecified event
// Perform generic event processing here
3
Switch(And(Arg0,0xFF)) // Mask to retain low byte
Case(0x03) // Ejection request
Switch(Argl)

Case(Package(){0x80, 0x81, 0x82, 0x83})
// Ejection Failure for some reason
Store(Zero, ™S3LE) // Turn off Ejection Progress LED

Store(One, ™S3LF) // Turn on Ejection Failure LED
b
Case(0x84) // Eject request pending
Store(One, ™S3LE) // Turn on Ejection Request LED
Store(Zero, "S3LF) // Turn off Ejection Failure LED
3
3
3
¥
} 7/ end _OST
Method(_EJO, 1) // Successful ejection sequence
Store(Zero, ~S3LE) // Turn off Ejection Progress LED

}
} /77 end SLT3
} 7/ end scope _SB.PCl4

Scope (_GPE)
{

_E13
{
Store(One, _SB.PCI14_.S3LE) // Turn on ejection request LED
Notify(SLT3, 3) // Ejection request driven from GPE13
¥

}

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

197

198 Advanced Configuration and Power Interface Specification

6.3.6 _RMV (Remove)

The optional RMV object indicates to OSPM whether the device can be removed while the system is in
the working state and does not require any ACPI system firmware actions to be performed for the device to
be safely removed from the system (in other words, any device that only supports surprise-style removal).
Any such removable device that does not have LCK or EJx control methods must have an RMYV object.
This allows OSPM to indicate to the user that the device can be removed and to provide a way for shutting
down the device before removing it. OSPM will transition the device into D3 before telling the user it is
safe to remove the device.

This method is reevaluated after a device-check notification.
Arguments:
None

Result Code:
0 — The device cannot be removed.
1 — The device can be removed.

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the
device is removable.
6.3.7 _STA (Status)

This object returns the status of a device, which can be one of the following: enabled, disabled, or removed.

Arguments:
None

Result Code (bitmap):

Bit 0 Set if the device is present.

Bit 1 Set if the device is enabled and decoding its resources.

Bit 2 Set if the device should be shown in the UL

Bit3 Set if the device is functioning properly (cleared if the device failed its diagnostics).
Bit4 Set if the battery is present.

Bits 5-31 Reserved (must be cleared).

If bit 0 is cleared, then bit 1 must also be cleared (in other words, a device that is not present cannot be
enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit
0 cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

If a device is present in the machine, but should not be displayed in OSPM user interface, bit 2 is cleared.

For example, a notebook could have joystick hardware (thus it is present and decoding its resources), but

the connector for plugging in the joystick requires a port replicator. If the port replicator is not plugged in,
the joystick should not appear in the UI, so bit 2 is cleared.

_STA may return bit 0 clear (not present) with bit 3 set (device is functional). This case is used to indicate
a valid device for which no device driver should be loaded (for example, a bridge device.) Children of this
device may be present and valid. OSPM should continue enumeration below a device whose _STA returns
this bit combination.

If a device object (including the processor object) does not have an _STA object, then OSPM assumes that
all of the above bits are set (in other words, the device is present, enabled, shown in the UI, and
functioning).

This method must not reference any operation regions that have not been declared available by a REG
method.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4 Resource Data Types for ACPI

Configuration 199

The CRS, PRS, and SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.

6.4.1 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is defined
in section 17.5, “ASL Operator Reference”, along with the other ASL operators.

6.4.2 Small Resource Data Type

A small resource data type may be 2 to 8 bytes in size and adheres to the following format:

Table 6-21 Small Resource Data Type Tag Bit Definitions

Offset Field

Byte 0 Tag Bit[7] Tag Bits[6:3] Tag Bits [2:0]
Type-0 Small item name Length—n bytes

Bytes 1 ton Data bytes

The following small information items are currently defined for Plug and Play devices:

6.4.2.1

Table 6-22 Small Resource Items

Small Item Name Value
Reserved 0x01
Reserved 0x02
Reserved 0x03
IRQ format 0x04
DMA format 0x05
Start dependent Function 0x06
End dependent Function 0x07
1/O port descriptor 0x08
Fixed location I/O port descriptor 0x09
Reserved 0x0A—-0x0D
Vendor defined 0x0E
End tag 0xOF

IRQ Descriptor

Type 0, Small Item Name 0x4, Length =2 or 3

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levels implemented in this device. For standard PC-AT implementation there are 15 possible
interrupts so a two-byte field is used. This structure is repeated for each separate interrupt required.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

200 Advanced Configuration and Power Interface Specification

Table 6-23 IRQ Descriptor Definition

Offset | Field Name

Byte 0 | Value =0010001nB (Type = 0, small item name = 0x4, length = (2 or 3))

Byte 1 | IRQ mask bits[7:0], INT
Bit[0] represents IRQO, bit[1] is IRQ1, and so on.

Byte 2 | IRQ mask bits[15:8], INT
Bit[0] represents IRQS, bit[1] is IRQ9, and so on.

Byte 3 | IRQ Information. Each bit, when set, indicates this device is capable of driving a certain type of
interrupt. (Optional—if not included then assume edge sensitive, high true interrupts.) These bits
can be used both for reporting and setting IRQ resources.

Note: This descriptor is meant for describing interrupts that are connected to PIC-compatible
interrupt controllers, which can only be programmed for Active-High-Edge-Triggered or Active-
Low-Level-Triggered interrupts. Any other combination is illegal. The Extended Interrupt
Descriptor can be used to describe other combinations.

Bit[7:5] Reserved (must be 0)
Bit[4] Interrupt is sharable, SHR
Bit[3] Interrupt Polarity, LL
0 Active-High — This interrupt is sampled when the signal is high, or true
1 Active-Low — This interrupt is sampled when the signal is low, or false.
Bit[2:1] Ignored
Bit[0] Interrupt Mode, HE
0 Level-Triggered — Interrupt is triggered in response to signal in a low state.
1 Edge-Triggered — Interrupt is triggered in response to a change in signal state
from low to high.

Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might
work is beyond the scope of this specification.

Note: If byte 3 is not included, High true, edge sensitive, non-shareable is assumed.

See section 17.5.55, “Interrupt (Interrupt Resource Descriptor Macro,” for a description of the ASL macro
that creates an IRQ descriptor.

6.4.2.2 DMA Descriptor

Type 0, Small Item Name 0x5, Length = 2

The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device. This structure is repeated for each separate
channel required.

Table 6-24 DMA Descriptor Definition

Offset Field Name

Byte 0 Value =00101010B (Type = 0, small item name = 0x5, length = 2)

Byte 1 DMA channel mask bits[7:0], DMA
Bit[0] is channel 0

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 201

Offset Field Name

Byte 2 Bit[7] Reserved (must be 0)
Bits[6:5] DMA channel speed supported, TYP
00 Indicates compatibility mode
01 Indicates Type A DMA as described in the EISA
10 Indicates Type B DMA
11 Indicates Type F
Bits[4:3] Ignored
Bit[2] Logical device bus master status, BM
0 Logical device is not a bus master
1 Logical device is a bus master
Bits[1:0] DMA transfer type preference, SIZ
00 8-bit only
01 8- and 16-bit
10 16-bit only
11 Reserved

See section 17.5.30, “DMA (DMA Resource Descriptor Macro),” for a description of the ASL macro that
creates a DMA descriptor.

6.4.2.3 Start Dependent Functions Descriptor
Type 0, Small Item Name 0x6, Length =0 or 1

Each logical device requires a set of resources. This set of resources may have interdependencies that need
to be expressed to allow arbitration software to make resource allocation decisions about the logical device.
Dependent functions are used to express these interdependencies. The data structure definitions for
dependent functions are shown here. For a detailed description of the use of dependent functions refer to
the next section.

Table 6-25 Start Dependent Functions

Offset | Field Name

Byte 0 | Value=0 0110 00nB (Type = 0, small item name = 0x6, length =(0 or 1))

Start Dependent Function fields may be of length 0 or 1 bytes. The extra byte is optionally used to denote
the compatibility or performance/robustness priority for the resource group following the Start DF tag. The
compatibility priority is a ranking of configurations for compatibility with legacy operating systems. This is
the same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM1 is IRQ4, I/O 3F8-3FF. The performance/robustness performance is a
ranking of configurations for performance and robustness reasons. For example, a device may have a high-
performance, bus mastering configuration that may not be supported by legacy operating systems. The bus-
mastering configuration would have the highest performance/robustness priority while its polled I/O mode
might have the highest compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This byte is
defined as:

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

202 Advanced Configuration and Power Interface Specification

Table 6-26 Start Dependent Function Priority Byte Definition

Bits Definition

1:0 Compatibility priority. Acceptable values are:

0 Good configuration: Highest Priority and preferred configuration

1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal

3 Reserved

32 Performance/robustness. Acceptable values are:

0 Good configuration: Highest Priority and preferred configuration

1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal

3 Reserved

7:4 Reserved (must be 0)

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by the order
in which they appear in the resource data structure. The Dependent Function that appears earliest (nearest
the beginning) in the structure has the highest priority, and so on.

See section 17.5.111, “StartDependentFn (Start Dependent Function Resource Descriptor Macro),” for a
description of the ASL macro that creates a Start Dependent Function descriptor.

6.4.2.4 End Dependent Functions Descriptor
Type 0, Small Item Name 0x7, Length =0

Only one End Dependent Function item is allowed per logical device. This enforces the fact that Dependent
Functions cannot be nested.

Table 6-27 End Dependent Functions

Offset | Field Name

Byte 0 | Value=0 0111 000B (Type = 0, small item name = 0x7 length =0)

See section 17.5.37, “EndDependentFn (End Dependent Function Resource Descriptor Macro,” for a
description of the ASL macro that creates an End Dependent Functions descriptor.

6.4.2.5 1/O Port Descriptor
Type 0, Small Item Name 0x8, Length =7

There are two types of descriptors for I/O ranges. The first descriptor is a full function descriptor for
programmable devices. The second descriptor is a minimal descriptor for old ISA cards with fixed I/O
requirements that use a 10-bit ISA address decode. The first type descriptor can also be used to describe
fixed I/O requirements for ISA cards that require a 16-bit address decode. This is accomplished by setting
the range minimum base address and range maximum base address to the same fixed I/O value.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 203

Table 6-28 1/0O Port Descriptor Definition

Offset [Field Name Definition
Byte 0 |I/O port descriptor Value = 01000111B (Type = 0, Small item name = 0x8, Length = 7)
Byte 1 Inforrnation Blts[7 1] Reserved and must be 0
Bit[0] (_DEC)
1 The logical device decodes 16-bit addresses
0 The logical device only decodes address bits[9:0]
Byte 2 |Range minimum base Address bits[7:0] of the minimum base I/O address that the card may
address, MIN bits[7:0] be configured for.
Byte 3 |Range minimum base Address bits[15:8] of the minimum base I/O address that the card may
address, MIN bits[15:8] |be configured for.
Byte 4 |Range maximum base Address bits[7:0] of the maximum base I/O address that the card may
address, MAX bits[7:0] be configured for.
Byte 5 |Range maximum base Address bits[15:8] of the maximum base I/O address that the card may
address, MAX bits[15:8] |be configured for.
Byte 6 |Base alignment, ALN Alignment for minimum base address, increment in 1-byte blocks.
Byte 7 |Range length, LEN The number of contiguous I/O ports requested.

See section 17.5.56, “IO (IO Resource Descriptor Macro,” for a description of the ASL macro that creates
an /0O Port descriptor.

6.4.2.6 Fixed Location I/O Port Descriptor
Type 0, Small Item Name 0x9, Length =3

This descriptor is used to describe 10-bit I/O locations.

Table 6-29 Fixed-Location 1/O Port Descriptor Definition

Offset |Field Name Definition

Byte 0 |[Fixed Location I/O port |Value =01001011B (Type = 0, Small item name = 0x9, Length = 3)
descriptor

Byte 1 |Range base address, Address bits[7:0] of the base I/O address that the card may be configured
_BAS bits[7:0] for. This descriptor assumes a 10-bit ISA address decode.

Byte 2 [Range base address, Address bits[9:8] of the base I/O address that the card may be configured
_BAS bits[9:8] for. This descriptor assumes a 10-bit ISA address decode.

Byte 3 |Range length, LEN The number of contiguous I/O ports requested.

See section 17.5.47, “FixedIO (Fixed I/O Resource Descriptor Macro,” for a description of the ASL macro
that creates a Fixed I/O Port descriptor.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

204 Advanced Configuration and Power Interface Specification

6.4.2.7 Vendor-Defined Descriptor
Type 0, Small Item Name OxE, Length=1to 7
The vendor defined resource data type is for vendor use.

Table 6-30 Vendor-Defined Resource Descriptor Definition

Offset Field Name

Byte 0 Value = 01110nnnB (Type = 0, small item name = 0xE, length = (1-7))

Byte 1to 7 Vendor defined

See VendorShort (page 9) for a description of the ASL macro that creates a short vendor-defined resource
descriptor.

6.4.2.8 End Tag
Type 0, Small Item Name OxF, Length =1

The End tag identifies an end of resource data.

Note: If the checksum field is zero, the resource data is treated as if the checksum operation succeeded.
Configuration proceeds normally.

Table 6-31 End Tag Definition

Offset Field Name

Byte 0 Value =01111001B (Type = 0, small item name = 0xF, length = 1)

Byte 1 Checksum covering all resource data after the serial identifier. This checksum is
generated such that adding it to the sum of all the data bytes will produce a zero sum.

The End Tag is automatically generated by the ASL compiler at the end of the ResourceTemplate
statement.

6.4.3 Large Resource Data Type

To allow for larger amounts of data to be included in the configuration data structure the large format is
shown below. This includes a 16-bit length field allowing up to 64 KB of data.

Table 6-32 Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte 0 Value = IxxxxxxxB (Type = 1, Large item name = XXXXXXX)
Byte 1 Length of data items bits[7:0]

Byte 2 Length of data items bits[15:8]

Bytes 3 to Actual data items

(Length + 2)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 205

The following large information items are currently defined for Plug and Play ISA devices:

Table 6-33 Large Resource Items

Large Item Name Value
24-bit memory range descriptor 0x01
Generic register descriptor 0x02
Reserved 0x03
Vendor defined 0x04
32-bit memory range descriptor 0x05
32-bit fixed location memory range descriptor 0x06
DWORD address space descriptor 0x07
WORD address space descriptor 0x08
Extended IRQ descriptor 0x09
QWORD address space descriptor 0x0A
Extended address space descriptor 0x0B
Reserved 0x0C -- 0x7F

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

206 Advanced Configuration and Power Interface Specification

6.4.3.1 24-Bit Memory Range Descriptor

Type 1, Large Item Name Ox1

The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit address

space.
Table 6-34 Large Memory Range Descriptor Definition
Offset | Field Name, ASL Field Definition
Name
Byte 0 | Memory range descriptor Value = 10000001B (Type = 1, Large item name = 0x1)
Byte 1 | Length, bits[7:0] Value = 00001001B (9)
Byte 2 | Length, bits[15:8] Value = 00000000B (0)
Byte 3 | Information This field provides extra information about this memory.
Bit[7:1] Ignored
Bit[0] Write status, RW
1 writeable (read/write)
0 non-writeable (read-only)
Byte 4 | Range minimum base Address bits[15:8] of the minimum base memory address for
address, MIN, bits[7:0] which the card may be configured.
Byte 5 | Range minimum base Address bits[23:16] of the minimum base memory address for
address, MIN, bits[15:8] which the card may be configured
Byte 6 | Range maximum base Address bits[15:8] of the maximum base memory address for
address, MAX, bits[7:0] which the card may be configured.
Byte 7 | Range maximum base Address bits[23:16] of the maximum base memory address for
address, MAX, bits[15:8] | which the card may be configured
Byte 8 | Base alignment, ALN, This field contains the lower eight bits of the base alignment.
bits[7:0] The base alignment provides the increment for the minimum
base address. (0x0000 = 64 KB)
Byte 9 | Base alignment, ALN, This field contains the upper eight bits of the base alignment.
bits[15:8] The base alignment provides the increment for the minimum
base address. (0x0000 = 64 KB)
Byte 10 | Range length, LEN, This field contains the lower eight bits of the memory range
bits[7:0] length. The range length provides the length of the memory
range in 256 byte blocks.
Byte 11 | Range length, LEN, This field contains the upper eight bits of the memory range
bits[15:8] length. The range length field provides the length of the memory
range in 256 byte blocks.
Notes:

Address bits [7:0] of memory base addresses are assumed to be 0.

A Memory range descriptor can be used to describe a fixed memory address by setting the range
minimum base address and the range maximum base address to the same value.

24-bit Memory Range descriptors are used for legacy devices.

Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 17.5.72, “Memory24 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 24-bit Memory descriptor.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 207

6.4.3.2 Vendor-Defined Descriptor
Type 1, Large Item Name Ox4

The vendor defined resource data type is for vendor use.

Table 6-35 Large Vendor-Defined Resource Descriptor Definition

Offset Field Name Definition

Byte 0 Vendor defined Value = 10000100B (Type = 1, Large item name = 0x4)

Byte 1 Length, bits[7:0] Lower eight bits of data length (UUIID & vendor defined
data)

Byte 2 Length, bits[15:8] Upper eight bits of data length (UUID & vendor defined
data)

Byte 3 UUID specific descriptor sub type |[UUID specific descriptor sub type value

Byte 4-19 |UUID

UUID Value

Byte 20-
(Length+2)

Vendor Defined Data

Vendor defined data bytes

ACPI 3.0 defines the UUID specific descriptor subtype field and the UUID field to address potential
collision of the use of this descriptor. It is strongly recommended that all newly defined vendor descriptors
use these fields prior to Vendor Defined Data.

See VendorLong (page 9) for a description of the ASL macro that creates a long vendor-defined resource
descriptor.

6.4.3.3 32-Bit Memory Range Descriptor

Type 1, Large Item Name 0x5

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-36 Large 32-Bit Memory Range Descriptor Definition

Offset |Field Name Definition
Byte 0 |Memory range descriptor Value = 10000101B (Type = 1, Large item name = 0x5)
Byte 1 |Length, bits[7:0] Value = 00010001B (17)
Byte 2 |Length, bits[15:8] Value = 00000000B (0)
Byte 3 |Information This field provides extra information about this memory.
Bit[7:1] Ignored
Bit[0] Write status, RW
1 writeable (read/write)
0 non-writeable (read-only)
Byte 4 |Range minimum base address, Address bits[7:0] of the minimum base memory address for
_MIN, bits[7:0] which the card may be configured.
Byte 5 |Range minimum base address, Address bits[15:8] of the minimum base memory address for
_MIN, bits[15:8] which the card may be configured.
Byte 6 |Range minimum base address, Address bits[23:16] of the minimum base memory address for
_MIN, bits[23:16] which the card may be configured.
Byte 7 |Range minimum base address, Address bits[31:24] of the minimum base memory address for

MIN, bits[31:24]

which the card may be configured.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

208 Advanced Configuration and Power Interface Specification

Offset [Field Name Definition
Byte 8 |Range maximum base address, Address bits[7:0] of the maximum base memory address for
_MAX, bits[7:0] which the card may be configured.
Byte 9 |Range maximum base address, Address bits[15:8] of the maximum base memory address for
_MAX, bits[15:8] which the card may be configured.
Byte 10 |Range maximum base address, Address bits[23:16] of the maximum base memory address for
_MAX, bits[23:16] which the card may be configured.
Byte 11 |Range maximum base address, Address bits[31:24] of the maximum base memory address for
_MAX, bits[31:24] which the card may be configured.
This field contains Bits[7:0] of the base alignment. The base
Byte 12 |Base alignment, ALN bits[7:0] |alignment provides the increment for the minimum base
address.
This field contains Bits[15:8] of the base alignment. The base
Byte 13 |Base alignment, ALN bits[15:8] |alignment provides the increment for the minimum base
address.
This field contains Bits[23:16] of the base alignment. The
Byte 14 |Base alignment, ALN bits[23:16] |base alignment provides the increment for the minimum base
address.
This field contains Bits[31:24] of the base alignment. The
Byte 15 |Base alignment, ALN bits[31:24] |base alignment provides the increment for the minimum base
address.
This field contains Bits[7:0] of the memory range length. The
Byte 16 |Range length, LEN bits[7:0] range length provides the length of the memory range in 1-
byte blocks.
This field contains Bits[15:8] of the memory range length.
Byte 17 |Range length, LEN bits[15:8] The range length provides the length of the memory range in
1-byte blocks.
This field contains Bits[23:16] of the memory range length.
Byte 18 |Range length, LEN bits[23:16] |The range length provides the length of the memory range in
1-byte blocks.
This field contains Bits[31:24] of the memory range length.
Byte 19 |Range length, LEN bits[31:24] |The range length provides the length of the memory range in

1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 17.5.73, “Memory32 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 32-bit Memory descriptor.

6.4.3.4 32-Bit Fixed Memory Range Descriptor

Type 1, Large Item Name 0x6

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-37 Large Fixed-Location Memory Range Descriptor Definition

Offset |Field Name Definition
Byte 0 |Memory range descriptor |Value = 10000110B (Type = 1, Large item name = 6)
Byte 1 |Length, bits[7:0] Value = 00001001B (9)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Configuration 209

Offset |Field Name Definition

Byte 2 |Length, bits[15:8] Value = 00000000B (0)

Byte 3 |Information This field provides extra information about this memory.

Bit[7:1] Ignored
Bit[0] Write status, RW
1 writeable (read/write)
0 non-writeable (read-only))

Byte 4 |Range base address, Address bits[7:0] of the base memory address for which the card may
_BAS bits[7:0] be configured.

Byte 5 |Range base address, Address bits[15:8] of the base memory address for which the card may
_BAS bits[15:8] be configured.

Byte 6 |Range base address, Address bits[23:16] of the base memory address for which the card
_BAS bits[23:16] may be configured.

Byte 7 |Range base address, Address bits[31:24] of the base memory address for which the card
_BAS bits[31:24] may be configured.

Byte 8 |Range length, LEN This field contains Bits[7:0] of the memory range length. The range
bits[7:0] length provides the length of the memory range in 1-byte blocks.

Byte 9 |Range length, LEN This field contains Bits[15:8] of the memory range length. The range
bits[15:8] length provides the length of the memory range in 1-byte blocks.

Byte 10 |Range length, LEN This field contains Bits[23:16] of the memory range length. The range
bits[23:16] length provides the length of the memory range in 1-byte blocks.

Byte 11 |Range length, LEN This field contains Bits[31:24] of the memory range length. The range

bits[31:24]

length provides the length of the memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 17.5.74, “Memory32Fixed (Memory Resource Descriptor),” for a description of the ASL macro
that creates a 32-bit Fixed Memory descriptor.

6.4.3.5 Address Space Resource Descriptors

The QWORD, DWORD, WORD, and Extended Address Space Descriptors are general-purpose structures
for describing a variety of types of resources. These resources also include support for advanced server
architectures (such as multiple root buses), and resource types found on some RISC processors. These
descriptors can describe various kinds of resources. The following table defines the valid combination of
each field and how they should be interpreted.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

210 Advanced Configuration and Power Interface Specification

Table 6-38 Valid combination of Address Space Descriptors fields

LEN MIF | MAF | Definition

0 Variable size, variable location resource descriptor for PRS.
1 If MIF is set, MIN must be a multiple of (GRA+1). If MAF is set, MAX
must be (a multiple of (GRA+1))-1.
OS can pick the resource range that satisfies following conditions:
e If MIF is not set, start address is a multiple of (GRA+1) and greater
or equal to MIN. Otherwise, start address is _ MIN.

o If MAF is not set, end address is (a multiple of (GRA+1))-1 and less
or equal to MAX. Otherwise, end address is MAX.

1 1 (Illegal combination)

>0 0 0 Fixed size, variable location resource descriptor for PRS.

_ LEN must be a multiple of (GRA+