Advanced Configuration and Power
Interface Specification

Version 5.1 Errata A
[April, 2015]

Advanced Configuration and Power Interface Specification

Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fithess for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined.” The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2014- 2015 Unified EFI, Inc. All Rights Reserved.

ii April, 2015 Version 5.1 Errata A

Revision History

Revision Change Description Affected
Sections
Unless otherwise noted the initial numbers in this column are Mantis
ticket numbers
5.1 Errata A | 1343 Comments against v6.0 Final Draft Section 18.6.2;
Section 18.6.4
5.1 Errata A | 1280 ASL Helper Macro for _PLD (Physical Location of Device) - Section 19.2.6;Se
ToPLD() ction 19.3.4;Secti
on 19.3.5.2;Sectio
n 19.4;Section 19.
5;Section 19.6.13
4
5.1 Errata A | 1265 Missing word in figure 1-1 Figure 1-1
5.1 Errata A | 1252 Incorrect Indentation in first page of Section 3 Section 3
5.1 Errata A | 1243 Clarify whether or not the FACS is optional or not Section 5.2.9;
Table 5-34
5.1 Errata A | 1233 Fix broken Link and Example for _CLS Section 6.1.3
5.1 Errata A | 1228 Present GIC version in MADT table Table 5-63
5.1 Errata A | 1196 Table reference in Section 9.8.3.2 is Incorrect Section 9.8.3.2
5.1 Errata A | 1193 Parking protocol field link is incorrect Section 5.2.12.14;
Table 5-61
5.1 Errata A | 1190 Table references in Section 18 - ACPI Platform Error Interfaces Table 18-298;
(APEI) are incorrect Table 18-300
5.1 Errata A | 1189 _CCA attribute default value description does not work for ARM Section 6.2.17
systems
5.1 1181 MADT GICC table definition is wrong Table 5-61;
5.2.12.14
5.1 1180 FADT minor version byte length is wrong 5-34
5.1 1179 Errors in GTDT Section of 5.1 draft 5.2.24,
5.2.24.1;Tables 5-
115,5-118,5-121,
5-122
5.1 1175 Bad section reference in ACPI 5.1 19.2.3
51 1164 Modifications to UEFI Forum ownership of PNP ID and ACPI ID 6.1.5

Registry

Version 5.1 Errata A

Advanced Configuration and Power Interface Specification

Revision

Change Description

Affected
Sections

51

1161 Misc typos in draft documents

5.2.1.6;
5.2.16.4;5.2.24;5.
2.12.14;
5.2.24.1.1; Table
5-74;Table 5-115-
116;Table 5-118-
119; Table 5-121;
Table 5-61; 5-61
8.45.1,
8.4.5.1.2.3 Table
6-162, Table 8-
229; RM
duplicates from
1123/
1130:8.4.5.1.31.1

51

1160 ACPI 5.1 draft corrections related to _DSD (SEE 1126 BELOW)

6.2.5;Was Table
5-133 & 6-142
now-->5-148 & 6-
157

51

1157 Reserve ACPI Low Power Idle Table Signature "LPIT"

Table 5-31

51

1155 Updates to M1133 MADT

Table 5-63, 5-64

51

1151 Bug in ASL example code

PRT3 code
example following
Figure 9-49

51

1149 GTDT changes for new GT Configurations

5.2.24,5.24.1x

51

1136 Add a Notification Type for System Resource Affinity Change
Event

Table 5-119
Device Object
Notifications,
new 17.2.2

51

1134 FADT changes for PSCI Support on ARM platforms

Table 5-34, 5-36,
New table 5-37

51

1135 PCC Doorbell Protocol for HW-Reduced Platforms

14.1.1, 14.1.2-4,
14.2.1-2, 14.3-4

51

1133 MADT Updates for new GICs

5.2.12.15-17,
Table 5-43,5.2.12
table 5-45, 5-60,
5-61, 5-63, 5-66

51

1131 Per-device Cache-coherency Attribute

6.2, 6.2.16; Was
Table 6-142--
>Table 6-153

51

1126 Add _DSD Predefined Object-- “DeviceSpecific Data” properties

Was Table 5-133
& 6-142 now-->5-
148 & 6-157

April, 2015

Version 5.1 Errata A

Revision Change Description Affected
Sections
51 1123 CPPC Performance Feedback Counter Change Tables 5-126,
1130 CPPC2 8.4.5, 8.4.5.1x
[overlapping/duplicate tickets] 8.4.5.1,
8.4.5.1.3.1-4;Was
Table 8-218-->8-
229
5.1 1116 Add x2APIC and GIC structure for _MAT method 6.2.10
50B 1145 Support GICs in proximity domain 5.2.16 5.2. new
section 16.4 new
tables, 6.2.13
Table 5-65
5.0B 1144 Fix the gap for Notify value description 5.6.6, new tables:
Table 5-132, 5-
133
50B 1142 Error Source Notifications 18.3.2.6.2, 18.4,
Table 18-290
50B 1117 Move http://acpi.info/links.htm content to UEFI Forum Website 1.10, 5.2.4,
5.2.22.3,5.2.24,
5.6.7,9.8.3.2, 13,
13.2.2A.2.4,
A.2.5; Tables 5-
31, 5-60, 5-133
5.0B 1113 Typos in ACPI 5.0a Table 6-184
5.0B 1148 Inconsistent BIX object description/example Was Table 10-
234-->10-250
5.0B 1143 Typos in ACPI 5.0a 6.1.8,84.1
508B 1102 Clarify Use of GPE Block Devices in Hardware-Reduced ACPI 3.11.1, 4.1, 9.10
50B Mantis 1114 Lack of description on Bit 4 of _STA 6.3.7
50A Jira 51 incorrect type information Table 19-322
50A Jira 50 Misspelling of “management” 3.10
50A Jira 49 Updated description of DerefOf to specify behavior when attempt | 19.5.29
is made to de-reference a reference (via Index) to a NULL (empty)
package element.
50A Jira 48 Text changes to change PM Timer from required to optional 48.1.4,48.2.1,
4.8.3.3,5.2.9
50A Jira 46 Figure 5-29 is a printer killer Fig 5-29
50A Jira 45 Typos in Figure 5-30 Fig 5-30
50A Jira 44 Link issues in table 5-133 Table 5-133
50A Jira 43 Invalid AddressSpaced keywords in example ASL code, orphan | 6.5.4
_REG
50A Jira 42 Serious bug in ASL example code for _OSC 6.2.10.4
50A Jira 41 Fix problems with PCC address space description 145

Version 5.1 Errata A

Advanced Configuration and Power Interface Specification

vi

Revision Change Description Affected
Sections
50A Jira 40 Issues with _GRT and _SRT Buffer description 9.18.3,9.184
50A Jira 39 Clarification needed for _CST Table 8-206
50A Jira 38 Incorrect field name in "Generic Register Descriptor". 6.4.3.7
50A Jira 37 Clarifications for _CPC method 8.45.1.2.1-2
50A Jira 36 Restore legality of module-level executable AML code. 19.1.3
50A Jira 35 ASL grammar: "UserTerm" is confusing 19.1
50A Jira 34 Description of _GTM has a bad line with very large font 9.8.2.1.1
50A Jira 33 Missing information in _CPC description 8.451
50A Jira3 2 Error in description of _REG method 6.5.4
50A Jira 31 Clarify length field for Serial resource descriptor 6.4.3.8.2
Table 6-190
50A Jira 30 Argument descriptions in incorrect order for resource descriptors | 19.5.41,19.5.101
50A Jira 29 Issues with memory descriptors (grammar and macros) 19.1, 195
50A Jira 28 Problems with ASL grammar entry for DWordMemory 19.1.8
50A Jira 27 Problems with Unicode description for _MLS method 6.1.7
50A Jira 26 Incorrect grammar for "32-bits" and "64-bits" throughout
50A Jira 25 Incorrect table reference in 19.2.5.4 19.2.54
50A Jira 24 Resource Descriptor tables -- formatting issues 6.4
50A Jira 23 Interrupt Descriptors: Wake bit should be split from Share bit 6.4
50A Jira 22 ASL grammar for ObjectType operator is incorrect 19.1.6
50A Jira 21 ASL grammar is missing description of type 6 opcodes 19.1.5
50A Jira 20 Problems with table 5-31 (reserved ACPI table signatures) Table 5-31
50A Jira 19 Clarify description of _BQC method B.5.4
50A Jira 18 Fix for EC OpRegion availability example 5.2.15
50A Jira 17 Clarify meaning of BGRT status field Table 5-97
50A Jira 16 Correction to _DSM example 9.14.1
50A Jira 15 Clarify _DSM backward compatibility requirement and example 9.15.1
50A Jira 14 Description of _CPC is missing definition of unsupported optional | 8.4.5.1
registers
50A Jira 13 Incorrect _PLD name expansion Table 5-133, 6.1.8
50A Jira 12 PLD description needs clarification 6.1.8
50A Jira 11 Errata forwarded from HP 5.2.24,5.6.5.3
50A Jira 10 More issues with ACPI table 5-133 Table 5-133
50A Jira 7 Error in QWordlO, ExtendedlO descriptions 19.5.41,19.5.101
50A Jira 6 Appendix A is now misnamed in ACPI 5.0 Appendix A
50A Jira5 PARTIAL--Need group agreement--Method _GTS and _BFS are 7.3,7.3.3,16.1,
unused, should be removed from ACPI spec. 16.1.6-7, fig. 7-
204
50A Jira 4 Table 5-133 - issues with _Sx methods Table 5-133

April, 2015

Version 5.1 Errata A

Revision Change Description Affected
Sections

50A Jira 3 Issues with predefined names table (table 5-133) Table 5-133

50A Jira 2 Description of new sleep control register incorrect Table 4-24

50A Jira 1 SystemCMOS keyword inconsistencies Table 5-114,
5.5.2.4.1,6.5.4
19.,5.96,9.15.1 -
2,19.5.96,
20.2.5.2

5.0 Ptec-002 5.2.6

Dec. 2, 2011

5.0 MSFT-020 Enumeration Power Controls 7.2.7,7.2.12,

5.0 MSFT-019 GTDT table 5.2.24

5.0 MSFT_0018 Locking Targets from AML 5.75

5.0 MSFT-0017 PLD clarification for handhelf form factors 5.1.8

5.0 MSFT-0016 Extended GPIO-signaled Event Numbers 5.6.5.3

5.0 MSFT-0015 (0.1) D3 Cold Errata 7.2.1,7.2.18
through 7.2.22

5.0 MSFT-0014 5.2.23

5.0 MSFT-0013_ADR for SIO 6.2

5.0 MSFT-0012 ROM (Get ROM Data) 5.6.6,9.16

MSFT-010 Reserved Table Signatures 5.2.6

5.0 MSFT-0009 (0.4)TimeAndAlarmDevice Modification 9.18

5.0 MSFT-0008 Collaborative Processor Performance Control 8.45

5.0 MSFT-0007 Platform Communications Channel added (new ch. 14) Ch 14 (new)

5.0 MSFT-0007-0008 - (new) 14

Platform_Communication_Channel_and_CPPC_changes

5.0 MSFT-0006 SPB Abstraction 3.11.3,
5.5.2.4.5.x,
6.4.3.8.2,
6.5.8,18.1.3,
18.1.6, 18.1.7,
18.5.44,
18.5x,19.2.5.2

5.0 MSFT-0005 GPIO Abstraction 5.5.2.4.x,5.6,
5.6.5.x, 6.4.3,
6.3.8.x, 18.5.51,
18.5.52,18.5.89

5.0 MSFT-0004 (0.2) Fixed DMA Descriptor 6.4.2.9, 18.5.50

5.0 MSFT-0003 Device identification 6.1,6.1.3,6.1.5,
6.1.6,6.1.9

5.0 MSFT-0002 Interrupt Descriptors for Generic Interrupt Controller 5.2.11, 5.2.14-15

Version 5.1 Errata A

vii

Advanced Configuration and Power Interface Specification

Revision Change Description Affected
Sections

5.0 MSFT-0001 HW-reduced ACPI 3.11.x, 4,4.1.x,
43.7,5.2.9,
5.2.9.1,6.4.2.1,
6.4.3.6, 7.2.11,
7.3.4,9.6, 12,
12.1,12.6,12.11,
12.11.1, 15,
15.1.x, 15.3,
15.3.1.x, 18.5.55,
18.5.57

5.0 INTC-0014 Remove a line (reference) not needed A.2.3

5.0 INTC-0013

5.0 INTC-0012 fix AML opcode table 19.3

5.0 INTC-0011 fix table offsets 18.6.x (tables)

5.0 INTC-0010 Update Constant Descriptions 18.5.88,
18.5.89,18.5.104,
18.5.136

5.0 INTCO0009 RASF 5.2.20.x

5.0 INTC-008 5.2.6

5.0 INTC-006 Fixed Example 6.2.10.4

5.0 INTC-005 Update Package Description 18.5.92

5.0 INTC-004 Table Definition Language 20, 21.x

5.0 INTC-003 MPST 6.1,6.1.3,
6.1.5,6.1.6,6.1.9

5.0 INTC-002 EINJ 17.6.1,17.6.3,
17.6.5

5.0 INTC-001 (0.8) Firmware Performance Data Table (FPDT) 5.2.20.4,5.2.20.6

5.0 INTC-001 Firmware Performance Data Table (FPDT) (0.4) 5.2.19- 5.2.20.6

5.0 HP-0002 Additional Hardware Error Notification Types 18.3.2.7

5.0 HP-0001 (0.2) BMC Requested Graceful Shutdown 5.6.5,6.3.5

5.0 ACPI4.0 _DSM function O clarification 9.14.1

5.0 AMD-002 0.3 ROM (Get ROM Data) B.3.3

viii

April, 2015

Version 5.1 Errata A

Revision Change Description Affected
Sections
4.0a Errata corrected and clarifications added.

Apr. 2010 Removed text concerning government requirement of mechanical off 2.2
Clarified URL update document, Corrected section references for APIC, | 5.2.6
SLIT, SRAT in Table 5-5, Update URLs and reformated Table 5-6
Corrected reference to Interrupt Source Override Structure 5.2.12.4
Corrected name for CPEP table 5.2.18
Corrected reference to SMBus, should be IPMI 55.243.1
Clarified BusCheck and DeviceCheck natifications in Table 5-53 5.6.5
Added link to non-ACPI Plug and Play ID reference document 5.6.6
Added missing _ATT and _GAI names, Corrected page/section 5.6.7
references in Table 5-67
Corrected EndTag name value. Was 0x78, correct value is 0x79 Table 6- | 6.4.2.8
33 6.4.3.5.1,2,3
Consumer/Producer bit is ignored (Restored 2.0C change that had been | 6.5.7
lost) 8.4.34
Clarified use of _GLK (Global Lock) object 8.4.45
Corrected definition of _TSD object 8.4.5
Corrected definition of _PSD object 9.25
Corrected table name (CPEP)

Corrected “maximum positive adjustment” value. Was 500%, correct

value is 50%, Updated description of example — 300 to 400 lux,

Eliminated hardcoded package lengths in examples, Changed 9.8.2.1.1
“brightness” to “highest ambient light value” 9.10
Corrected reference to _IDE, should be _GTM. Corrected table 9.13
reference 10.1.3.1
Clarified GPE Block Device Description 10.2.2
Corrected _PLD object examples 10.2.1.1-2
Repaired diagram that would not display properly Figure 10-2

Added missing _BCT method to Table 10-3 10.2.2.8
Clarified that OEM Information field should contain NULL string if not 10.2.2.9
supported in Table 10-4 &Table 10-5 10.3
Corrected description of _BTM arguments and return value

Clarified description of _BCT return value 10.3.3
Corrected HID for Power Source device. Was ACPIO003, correct value is

ACPI0004

Corrected _PIF example. First package element was a Buffer, should be | 10.4
Integer, Clarified that OEM Information field should contain NULL string if | 10.3.4
not supported Table 10-10 10.4.1

Corrected description of _SHL method Table 10-11

Clarified _PRL return value, a list of References

Corrected _PMC example. First package element was a Buffer, should
be Integer

Clarified that OEM Information field should contain NULL string if not
supported Table 10-12

Version 5.1 Errata A

Advanced Configuration and Power Interface Specification

Revision Change Description Affected
Sections
Removed “TODO” note. Updated example 10.4.1
Repaired diagram that would not display properly Figure 15-1
Corrected error conditions from “fatal” to “corrected 10.5
Corrected several incorrect section references, Clarified number of 15.1
Generic Error Data Entry structures is >=1 (not Zero) 17.1
Clarified number of Generic Error Data Entry structures is >=1 (not Zero) | 17.3.1
Added new section clarifying SCI notification for generic error sources
Added new section describing Firmware First error handling 17.3.26.1
Clarified purpose of the codes Table 17-17 17.3.2.6.2
Added reference to table of COMMAND_STATUS codes Table 17-23 17.4
Clarified purpose of the command status codes in Table 17-27 and the 175.1.1
error type definitions in Table 17-28 17.6.1
Added _ATT resource descriptor field name 17.6.3
Clarified rules for Buffer vs. Integer return types from a field unit
Corrected section/page reference 18.1.8
18.5.44,89
18.5.101
4.0 Major specification revision. Clock Domains, x2APIC Support, Logical
June 2009 Processor Idling, Corrected Platform Error Polling Table, Maximum
System Characteristics Table, Power Metering and Budgeting, IPMI
Operation Region, USB3 Support in _PLD, Re-evaluation of _PPC
acknowledgement via _OST, Thermal Model Enhancements, _OSC at
_SB, Wake Alarm Device, Battery Related Extensions, Memory
Bandwidth Monitoring and Reporting, ACPI Hardware Error Interfaces,
D3hot.
3.0b Errata corrected and clarifications added.
Oct. 2006
3.0a Errata corrected and clarifications added.
Dec. 2005
3.0 Major specification revision. General configuration enhancements. Inter-
Sept. 2004 Processor power, performance, and throttling state dependency support
added. Support for > 256 processors added. NUMA Distancing support
added. PCI Express support added. SATA support added. Ambient Light
Sensor and User Presence device support added. Thermal model
extended beyond processor-centric support.
2.0c Errata corrected and clarifications added.
Aug. 2003
2.0b Errata corrected and clarifications added.
Oct. 2002
2.0a Errata corrected and clarifications added. ACPI 2.0 Errata Document
Mar. 2002 Revision 1.0 through 1.5 integrated.
ACPI 2.0 Errata corrected and clarifications added.
Errata Doc.
Rev. 1.5

April, 2015

Version 5.1 Errata A

Revision Change Description Affected
Sections

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.4

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.3

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.2

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.1

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.0

2.0 Major specification revision. 64-bit addressing support added. Processor

Aug. 2000 and device performance state support added. Numerous multiprocessor
workstation and server-related enhancements. Consistency and
readability enhancements throughout.

1.0b Errata corrected and clarifications added. New interfaces added.

Feb. 1999

1.0a Errata corrected and clarifications added. New interfaces added.

Jul. 1998

1.0 Original Release.

Dec. 1996

Version 5.1 Errata A

Xi

Advanced Configuration and Power Interface Specification

Xii April, 2015 Version 5.1 Errata A

Contents

TN Yo LU o3 1 o 1 o P 1
1.1 PriNCIPAl GOAIScuuiuiii e aaeaaaes 1
1.2 Power Management RatiONale............oovvviiiiiiiiiii e 2
1.3 LEQACY SUPPOIT....ceeiiieiiieiiee ettt 3
1.4 OEM Implementation STrAt@QYeueeeeeiiiiiiiieiieeee et e e s e e e e e e e e e e anes 3
1.5 Power and SIEep BULLONScovvvviiiiiiiiieeec e 4
1.6 ACPI Specification and the Structure Of ACPI ..o 4
1.7 OS and Platform COomMPIANCEcooiiiiiiiiii e e e e eeaenes 6
1.7.1 Platform Implementations of ACPI-defined Interfacescccccccvveiiiiii. 6
1.7.2 OSPM IMPIEMENTALIONSeeviiiiiiiiiiiiiiie et e e e e e 10
1.7.3 OS REQUITEIMENTS ..ottt ee ettt e e e e e e et e e e e e s st reeeeeeeaanes 11
1.8 Target AUGIENCE......cco e 11
1.9 DocuMENt OrganiZationuuuieieeeeieieeiiiies e s e e e e e e eeete e s e e e eeeeesaeasa s s eeeeeeeeeasnnnaeeeaeaeennes 12
1.9.1 ACPI INtroduction and OVEIVIEWcceeiiiiiiiiiiiiieiiieeieeeeeee e e e e e aaaaaaaaaaaaaaaeens 12
1.9.2 Programming MOUEISuuuuiuiiiiiiiiiiiiieeieieeeeie ettt ee e e e e et et e e e e e e e e e e e e eeeaeeaaaaeaeees 13
1.9.3 Implementation DELalS.ccooiiiiiiiiiiee e 13
1.9.4 TechniCal REFEIENCEuuiiiiiiiiiiie e 14
1.10 Related DOCUMENLSoiiiiiiiiiiiiiiiie e e e ettt s st e e e e s s e e e e e e s et aeeeeeeeesaane 15
Definition Of TEIMIS ..o s 17
2.1 General ACPI TermMiNOIOQY ...ccocvviiiiiiiiiiiiiiieiieeeeet ettt 17
2.2 Global System State DefiNItiONSueeviiiiiiiiiiiiiieieeeeeeeeeeeeeee e 24
2.3 Device Power State DefinitioNS.............eiiiiiiiiiiiiiiiiiiiieeieeeeeeeee et 26
2.4 Sleeping State DEefiNItIONSccoiiiiiiiiiii e e e 27
2.5 Processor Power State DefiNitiONSeeiiiieiiiiiiiiiiiieiiieeeeiee et 28
2.6 Device and Processor Performance State Definitionsccccccvvvvieeiie 29
ACPT OVEIVIBW ..ttt e e e et e e e e e e e e e e e e e e et e e e eenaans 31
3.1 System POWer MaNaGEMENTceiiiiiiiiieiiiiiieie ettt e e 33
T e oA S == TP SURPPPUPRRTTRRIN 33
3.2.1 POWET BULION....ceiiiitiie ettt e e et e e e e e nes 34
3.2.2 Platform Power Management CharacteristiCS...........c.ccoeeeeeeeii e, 35
3.3 Device POWEr ManNageMENT.ciiiieeiiieeitiiis e s e e e e e e et s e e e e e e e ettt e s s e e e e e e eaeaaean e eeeeeeeennes 36
3.3.1 Power Management Standards...........coooooer oo 36
3.3.2 DEVICE POWET STAES ... 36
3.3.3 Device Power State Definitions...........cooooeeeeii 37
3.4 CONLrOllING DEVICE POWEeeiiiiiieeiieeiieeeeeeeeeee ettt ettt ettt et e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaas 37
3.4.1 Getting Device Power Capabilities.............ooooee i 38
3.4.2 Setting Device POWET StateS.......cccvviviiiiiiiiiiii et 38
3.4.3 Getting Device POWEr STAtUSoooeiieeeiieeeee e 38

Version 5.1 Errata A \%

Advanced Configuration and Power Interface Specification

vi

3.4.4 Waking the COMPULETccooeiiiieeeeeeee e, 39
3.4.5 Example: Modem Device Power Management..........ccceeevveeeeeeeeeiiiiinieeeeeeeeeennnnnn 40
3.5 Processor POWer ManagemeENt..........uuuiiiieiiieeeeeis e e ee et s e e et e e s et e e e e et e e e eeann s e eeeennaeaee 43
3.6 Device and Processor Performance StatesScovvvvivviiiiiiiiiiiiiieeeeeeeeeee e 43
3.7 Configuration and “Plug @and PIAY”ccoouiiiiiiiiiie e 43
3.7.1 Device Configuration Example: Configuring the Modemccccccoevviiiiiiinnnnen. 44
.72 NUMA NOUES ...ttt ettt et e e e et e e e e e s s s eeaaee s 44
G IR YA (=T 0 YT 1 44
IR BN Y= 11 = V1Y =V = T 1< 0 =T | 45
3.9.1 Battery COMMUNICALIONSceiiiiiee e 45
R = - 1] VA OF- T 1= Tod | YT PP PPPPPPPP 46
3.9.3 Battery Gas GaAUGEcooeeiieiiieieeee e 46
3.9.4 Low Battery LEVEIS.......cooo i, 47
3.9.5 Battery Calibration..........oooeuuiiiiiii e 48
3.10 Thermal ManagemENL..........uuuiiii i i ieeieie s e e e e e e e et e e e e e e e e e et e s s e e e e e eeeesata e s eeeaeeeennes 49
3.10.1 Active and Passive Cooling MOES.........ccooeiiiiiiiie e 50
3.10.2 Performance vs. Energy CONSEIVALIONccoiiiiuiiriieeeeeeiiiiiiee e e 51
3.10.3 ACOUSTHICS (NOISE) ...veeeieeiiiiiiiieii it e ettt e e e e e e e e s eeeeeas 51
3.10.4 Multiple Thermal ZONEsS..........ccooooi i, 51
3.11 Flexible Platform ArchiteCture SUPPOIcoviiiiiiieeie e e e e 51
3.11.1 Hardware-reduced ACPI ... 52
3112 LOW-POWET IAIE ... 52
3.11.3 CONNECLION RESOUICESccceeeeee e 53
ACPI Hardware SPecCifiCatioNcoouvviiiiiiiiieieeieeeiiiis et e e 55
4.1 Hardware-RedUCEA ACPI ittt ee e e e e e eeeeeeeeeeeeeeeeaeeaeees 55
4.1.1 Hardware-Reduced EVENTS ..o 56
4.2 Fixed Hardware Programming MOEIueviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e ee e 56
4.3 Generic Hardware Programming MOGE!uuvvuiiiiiiiiiiiiiiiieiiieiiereeeseeseeeeeeeeeeeesreereeeee. 57
L B T TV | =Yg I =To 1= Lo U 59
R S =To 1S3 =] =T N L] = o o OSSO 59
4.6 The ACPI Hardware MOGEIuuuuueiiiiiiiiiiieiiiiiiiieieeeeeeeiee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 60
4.6.1 Hardware Reserved BitS ..., 65
4.6.2 Hardware Ignored BitScooooiiiiiiiii e, 65
4.6.3 Hardware Write-Only BitS...........cooooi e 65
4.6.4 Cross DeviCe DePenUENCIES........uiiiiiie i e e e e e e e e ee et e e e e e e eenenns 65
4.7 ACPI HardWare FEAIUINESuuuuuuueuieeueeiiiieiieeieeteeeeeeeeeeeeeaesseeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeees 66
I O o I L= To 1S3 =T gl 1Y o To 1= P 67
4.8.1 ACPI REQISEI SUMIMAIYuiiiiiiiiieeeeiiiiiie et e e e e st e e e e st e e e e e e s eeeaeeens 70
4.8.2 Fixed Hardware FEALUIES..........uuiiiiiiiiiiiiiiiee ettt e e e e 73
4.8.3 Fixed Hardware RegIStErS........ccocoii i, 83
4.8.4 Generic Hardware REQISIEISu.ci it e e e e e e e e e e e eenanaas 91
ACPI Software Programming Modelccoooviiiiiiiii e, 99
5.1 Overview of the System Description Table Architectureccccccoevvii . 99
5.1.1 Address Space Translationc..uuiiiiiiii i e e 102

April, 2015 Version 5.1 Errata A

5.2 ACPI System Description TablesS........c..oovvvvviiiiiiii 102

5.2.1 Reserved Bits and Fieldsuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieiieeeieee e ee e e 103
5.2.2 Compatabilitycoooemiiiiii e 104
B5.2.3 AddresSs FOMMAL......ccoooiiiiiiieee e 104
5.2.4 Universal Uniform ldentifiers (UUID)cooiiiiiiiiiiiiieeeeiiieeeee e 106
5.2.5 Root System Description Pointer (RSDP).........coocuiiiiiiiiiiiiiiiieeee e 107
5.2.6 System Description Table HEAUEruuvvviiiiiiiiiiiiiiiiiiiiiieiieeiresieeereerseeeeeeeee 108
5.2.7 Root System Description Table (RSDT)covuviiiiiiiieeereeecin e 112
5.2.8 Extended System Description Table (XSDT)cciiiiirriiiieiiiiiiiieeeeeeeeeeen e 113
5.2.9 Fixed ACPI Description Table (FADT) ...ccooiiiiieiieee e 114
5.2.10 Firmware ACPI Control Structure (FACS).......ooocuiiiiiieieiieiiiieeeee e 128
5.2.11 Definition BIOCKS......ccco i 133
5.2.12 Multiple APIC Description Table (MADT)uuuiiiiiriiierieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeees 136
5.2.13 Global System INtErrUPLS........oeeuiiiie e 151
5.2.14 Smart Battery Table (SBST) ..uuuuiiiii i 152
5.2.15 Embedded Controller Boot Resources Table (ECDT)cccccceeeiiimeenniiniiinnnes 153
5.2.16 System Resource Affinity Table (SRAT) ...oovoiiiiiiieeeeeeeee e 155
5.2.17 System Locality Distance Information Table (SLIT)coccviieiiieiiiiiiiiieeeeenn, 159
5.2.18 Corrected Platform Error Polling Table (CPEP)uuvviiiviiiiieeiieeeeeeieeeeeeeee 160
5.2.19 Maximum System Characteristics Table (MSCT)cccviieiiiiiireirieeceeeee, 162
5.2.20 ACPI RAS FeatureTable (RASF) ...t 163
5.2.21 Memory Power StateTable (MPST)oooiiiiiii e 168
5.2.22 Boot Graphics Resource Table (BGRT)......ccoviiiiiiiiiiieiiiiiieeeee e 184
5.2.23 Firmware Performance Data Table (FPDT)ccuvviviiieiiiiiieeieeeeieeeeeeeeeeeeee e 187
5.2.24 Generic Timer Description Table (GTDT)uuuiviviiiiiiiiieiirieieeieeeeeeeeeeeeeeeeeeeeees 192
5.3 ACPI NAMESPACE ...cuuiiiiiiiiiieieie ettt e e e e e e e e e e e e e e et e e e e eaa e e e eet e e e earanaaees 197
5.3.1 Predefined ROOt NaMESPACEScooiieieieee e 199
LI T ©] o 1= od £ 200
5.4 Definition BIOCK ENCOGINGevviiiiiiiiiiiiii ettt 200
5.5 Using the ACPI Control Method Source Languageccccoeeeeeieeieiieeeeeeeeeee, 202
5.5.1 ASL StAEIMENTS ...ttt e ettt b e e e e e e e e 203
5.5.2 Control Method EXECULION..........uuuuuiiuiiiiiiiiiiiiiieiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 204
5.6 ACPI Event Programming MOeloooviiiiiiiiiiii 226
5.6.1 ACPI Event Programming Model COMPONENtS.......ccccoiiiiiiieiieiieiieiens 226
5.6.2 TYPeS Of ACPI EVENIS ..ottt 227
5.6.3 Fixed EVent HANAIINGuuuuiiiiiiiiiiiiiiiiiiitiiae b sesveesseessseeeeeeeees 228
5.6.4 General-Purpose Event HandliNgeuvvuiiiiiiiiiiiiiiiiiiiiirieeeeeesreeeeeeeeeeeeeeeees 228
5.6.5 GPIO-signaled ACPI EVENLSuuuiiiii et 233
5.6.6 Device Object NOtIfiCAtioNSooeiiiiiiiii e 235
5.6.7 Device Class-Specific ODJECESccooeiieiiiiii e 240
5.6.8 Predefined ACPI Names for Objects, Methods, and Resources...............c....... 242
5.7 Predefin@d ODJECLSovviiiiiiiiiieieeeeeeeeeet ettt 253
5.7.1_GL (Global LOCK MULEX)uuuuuuuiiiuiiiniunniiniiniinnrernserresssesssresssssssssreeereeeereeeee 254
5.7.2 _OSI (Operating System INterfaces)covuuiiiiiiiiii e 254
5.7.3_OS (OS NAME ODBJECL) ..ottt 257
5.7.4_REV (Revision Data ODbJECT).........coooeieiiii e 257
5.7.5 _DLM (DeVICELOCK MULEX)uvveeiieeeiiiiiiiitiee e et 258

Version 5.1 Errata A vii

Advanced Configuration and Power Interface Specification

5.8 System Configuration ODJECLScovvviiiiiiiiiiiiieceeee e 259
ST S B0 R = (O Y/ 1= 1 o o SRR 259
6
Device ConfigUurationuuuiiiii e e e e e e eaaaan 261
6.1 Device Identification ODJECES.......cccovvviiiiiiiiii 261
0t O R N] B (o [[{7 262
6.1.2 CID (Compatible ID)cii e 263
6.1.3 _CLS (ClaSS COUL)ceeiiiiiiiiiiieee ettt e e eas 264
6.1.4 _DDN (DOS DEVICE NAIME).....ceiiiiiiiiiiiiiiiiieeeeaaeiiiiee e e s e e e e e s e ee e 265
6.1.5 _HID (HArdWare ID)ccooiuuiiiiieeeeeeieiie ettt 265
6.1.6 _HRV (Hardware REVISION)cuuuuuuiiuiiiiiiiiiiiiiiinsininrsnersresserssrssreeeseeree. 266
6.1.7 _MLS (Multiple Language String).....cccoeveeeiiieeiiiiiii e e e e e 266
6.1.8 PLD (Physical Location Of DEVICE)........ccovveiiiiiiiiiii et 267
TR T U 1 PRSP 275
6.1.20 _STR (STINQ) 1uuetteeeiieeeeeiiitite ettt e e e e e e e e e e e e e s s enb e e eeeas 276
6.1.11 _SUN (SI0t USEr NUMDET).....ceiiiiiiiiiiiiiieee et 276
6.1.12 _UID (UNIQUE ID)...eeeiiiieiiiiiiiiiiee ettt ettt e e e e e s s nnnan e eaeas 277
6.2 Device Configuration ODJECLScoiiiiiiiiii e e e e e e e aene 277
6.2.1 _CDM (CIOCK DOM@IN) ...ttt eees e e seeesseeeeeeeees 278
6.2.2 _CRS (Current ReSOUICe SettiNgS)uuuuuuuuuumuuenreriienieenieeeeeeeeeeeneeeeeeeeeeeeeeeens 279
6.2.3 _DIS (DISADIE) ...ttt 279
6.2.4 DMA (DireCt MEMOIY ACCESS) ...uuuuuuuuuruuurunnrurriunneunnisrersrernresrerssrssreeeree———————. 279
6.2.5 DSD (Device SPeCific DA@)uuuuuururriiuiiiiiiiiiiiiiiiiiriinririreeesreesreeeeeereeeeeee 282
6.2.6 _FIX (Fixed Register Resource ProVIider)ccceeiiieeeerrieiiiiiiieeeeee e 285
6.2.7 _GSB (Global System INterrupt BaS€)uuuueeriirumeeiiieiieieeieeeeeiieeeeeeeeeeeeeeeeees 286
6.2.8 _HPP (HOt Plug Parameters)uuuueuuuiueiiiiieiiiiiiiiiieeieeeieeeeeeeeeeseeeeeeeeeeeeeeeeees 288
6.2.9 _HPX (Hot Plug Parameter EXENSIONS)ccoviuvriiiiieeeiiiiiiiieee e 291
6.2.10 _MAT (Multiple APIC Table ENtry)uuuveiiiiiiiiiiiiieiiieeirieeeeeeeeeeeeeeeeeeeeeeeseens 295
6.2.11 OSC (Operating System CapabilitieS)............uuururrrerrreeriririeeiieeeieeereeeeeeeeeeeee 296
6.2.12 PRS (Possible Resource Settings)ccuuiiiiiiiiieiiceeeiiin e e 305
6.2.13 _PRT (PCl RoUtING TADIE)eeeeeeiiiiiiiiiieee e 305
6.2.14 PXM (PrOXIMITY) ..eeeiieeeiiiiiiiiieeee e e eeiieeieeee e e e s s ssteeeaeeeeesssssssaeeeeeeessannnnnseeeeaens 307
6.2.15 _SLI (System Locality INfOrmation)ccooiiiiumiiiiieieiiiiiiieeeee e 308
6.2.16 _SRS (Set RESOUICE SEtHNYS) uruueiiiuiiiiiiiiiiniiiierraerrrierersrresreesreerrrereeee—.. 311
6.2.17 CCA (Cache Coherency AtrHDULE)uuvuriiiiiiiiiiiiiieeiiieieeeeeeeeeeeeeeeeeeeeeeeeees 311
6.3 Device Insertion, Removal, and Status ODJecCtS........cccovveviiiiiiiiiii e, 313
6.3.1 EDL (EJECt DEVICE LISL) ...ttt eseeeeeeeeees 315
6.3.2 _EJD (Ejection Dependent DEVICE)...........uuuuuuuuuuurmurieiineieeiiieeeeneeneneeeeeeeeeeeeeeeeees 316
6.3.3 _EJIX (EJECT) ittt e s 317
6.3.4 _LCK (LOCK) .ttt ettt et e et e e e as 318
6.3.5 _OST (OSPM Status INdiCAtiON)ccccuuuuueiriiiniiiiniiiiriieeieierienerereeeeerre—————— 318
oG ST 1Y AV (3T 1017 324
R I A SR I AN () = LU RS 324
6.4 Resource Data Types fOr ACPI......ooo i 325
6.4.1 ASL Macros for RESOUICE DESCIIPLOIScviiiiiiiiiiiiiieee e 325
6.4.2 Small RESOUICE Data TYPEuuuuurruuuiinniiriiieiiiieriiirruerrresresssrassessreesreeererrerrreereee 325

viii April, 2015 Version 5.1 Errata A

v

6.4.3 Large ReSOUICE Data TYPE ..uuuiiiiiiiiiiiieiie ettt e e e e ees 332

6.5 Other Objects and Control Methodsccovve i e 364
B.5.1 _INT (INE) 1.eeteeeeeeeee ettt e e e e 364
6.5.2 _DCK (DOCK) ..ttt ettt e e e 365
6.5.3 _BDN (BIOS DOCK NAME)euiiiiiiiiiiiiiiiiiii et 365
6.5.4 _REG (REOION)....uiiiiiiieiiiiiiitie ettt e e e e e e et r e e e e e e e s reee s 366
6.5.5 BBN (Base BUS NUMDEL)uuuuuiiiuiiiiiiiiiiiiiiiieiiisreeessessssnsssesssssreeereereeeeeree 368
RN IS T =GR (ST | 01= 1 368
6.5.7 _GLK (GIODAI LOCK)......ceiiiiiiiiieiiiiit ettt 369
6.5.8 _DEP (Operation Region DependenCies)uueueeeeeeeeieieeeiieeiiieeeeeeeeeeeeeeeeens 370

Power and Performance Managementooouuiiiiiieeiiieeiiiiiee e 373

7.1 Declaring a Power Resource ODJECE.........coii i 373
7.1.1 Defined Child Objects for a Power RESOUICE............uuuvuieiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 374
A S © | R PR PPPRPTTIRIN 374
45 T T © | R PR PPPRPTOTIRIN 375
714 _STA (STATUS)....eeeeieeiiitie ettt e e e s re e 375

7.2 Device Power Management ODJECES........iii i e e e e e 375
7.2.1 _DSW (DeViCe SIEEP WEKE)ccciiiiiiiiiiiiiiee et 377
7.2.2 _PSO (POWET SEAE 0) .cceiiiiiieieee e ettt e e 378
7.2.3 _PS1 (POWET STAE 1) .oeiiiiiiiiiiiee ettt e e 378
7.2.4 PS2 (POWEE STALE 2) ...uuuiiiiiiiiiit et b et aeassessssssssessssssseeseneeees 378
7.2.5 PS3 (POWET STAE 3) ..uuuuiiiiiiiiiia et e b s sssessseeesssssseeeeeeeees 378
7.2.6 _PSC (Power State CUIENT)ccuuieiiiiii et e e e e e e 379
7.2.7 _PSE (Power State for ENUMEration)cooccuiiiiiieeiniiiiiiiieeee e 379
7.2.8 _PRO (Power Resources for DO).........ccuuuuuuuuueeiiiiiiiieiennienneeeeeeeeeeeneeeeeeeeeeeeeeeees 379
7.2.9 _PR1 (Power ReSOUICES fOr D1)......cccuuiiiiiiiiiiiiiiiiiee e 380
7.2.10 _PR2 (Power ReSOUICES fOr D2)........uuuiiuuiiiiiiiiiiiiiiiierresrssseeerereeereeereereeereeseee 380
7.2.11 PR3 (Power Resources for D3NOt)..........uuuiuiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeees 381
7.2.12 PRE (Power Resources for Enumeration)cccceevviiiiiiiieevcccceviiccc e, 381
7.2.13 _PRW (Power Resources for Wake).............uuuueeuueeuiermieriiieieeeeieeieeeeeeeeeeeeeeeeee 382
7.2.14 PSW (Power State Wake)uuuuuuiiiiiiiiiiiiiiiiiiiiiiieiiieeieieeeeeeeeeeeeeeeeeeeeeeeeeeees 383
7.2.15 _IRC (IN RUSN CUIMENT) ..ttt 384
7.2.16 _S1D (S1 DEVICE STALE) ...uuuuuuuuuuiiiiiiniiiiiiiueiitietteeaattrresseesssessesssssssessssesssereereeees 384
7.2.17 _S2D (S2 DEVICE STALE) ...uuuuuuiuuriiiiiiiiiiniiitiiititateeaattrresseesssessessssssseessssssrereeeeeees 385
7.2.18 _S3D (S3 DEVICE STALE)eeieeiiiiiieeiiiiiee ettt 385
7.2.19 _SAD (S4 DEVICE STALE)eeiiiiiuiiiieeeiiiie ettt e e ainee e 386
7.2.20 _SOW (SO Device WakKe STate)uuuuuuuemiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeees 387
7.2.21 _S1IW (S1 Device WaKe STALE)ccuvvriiiiieeiiiiiiiiiie et 387
7.2.22 _S2W (S2 DeVvice WaKe STate)uvuuriiuriiiiiiiiiiiiiiiiniienisisseessessreeeseereeeeeeeeee. 387
7.2.23 _S3W (S3 DeVvice WaKe State)uuuriuuriiiiiiiiiiiiiiiiriinriiirseesrsssreeereereeereeeeee 388
7.2.24 SAW (S4 Device WaKe State)ccoooeevviieviiiiiiii et 388

7.3 OEM-Supplied System-Level Control Methods ... 388
7.3.1_PTS (Prepare TO SIEEP)....uuu ittt 389
7.3.2 SYSTEM _SX STALES ..eiiiieiiiiiiieie et e e 389
7.3.3 _SWS (SysStem WaKe SOUICE)uuuuuruurimuriniiiiiiiiinriinrrrssssnsseessessreeererereereereen 395

Version 5.1 Errata A ix

Advanced Configuration and Power Interface Specification

7.3.4_TTS (TransSition TO STAL)........uuuuuuuuurrrriiiiiiriiriiiiiirrrrerirrrrrerrererrere————————————. 396
7.3.5\ WAK (SYSIEM WAKE) ... it e e 396
7.4 OSPM usage of _PTS, _TTS, and _WAK ... 397
8
Processor Configuration and Control ..o, 399
8.1 ProCeSSOr POWET STAESuuiiiiieiiieiiiii ettt e e e e e e e et e e e e e e eeeeneens 399
8.1.1 Processor POWET STAte CO......uuuuuiieeeiiiieiiiiiee e ettt e e et e e e e e e eeeeees 401
8.1.2 Processor POWET STAte Cl.......uuuii ittt ee e e e eeeeaeens 403
8.1.3 Processor POWET STAtE C2......uuuuiiieiiiiieeiiiiiei ettt e e e eaeeaeees 403
8.1.4 Processor POWET STAte C3.....uuuiiiiii ettt ee e e e e e eaeeanens 403
8.1.5 Additional Processor POWEr SEatesS............eeiieiiiiiiiiiiiiieeee i 404
8.2 FIUSNING CACNES ... e e e e e e e e e e e e e e e ae et aeeeeeeeeenenes 405
8.3 Power, Performance, and Throttling State Dependencies.........ccccovveveivvviiiiiiinieeeeeeeenns 406
8.4 DeCIariNg PrOCESSOISccciiiiiiiiiiiieieeeee ettt e e e e e e e e e e 407
8.4.1 _PDC (Processor Driver Capabilities)ccouuiiiiiiiiiiieiiiiiiiiieeeee e 407
8.4.2 Processor Power State Control..........cooooeiiiii i 409
8.4.3 Processor Throttling Controls..............oooooiiiii s 414
8.4.4 Processor Performance Control..............oooo e 421
8.4.5 Collaborative Processor Performance COoNntrol...........ccccccoeeouemmmmimeiinniiniiinennns 428
8.4.6 _PPE (Polling for Platform EITOrS)ccooiiiie i 445
8.5 Processor AQQregator DEVICEuuuiiiiiieeiiiiiiiie ettt 445
8.5.1 Logical Processor IdliNG ... 446
8.5.2 OSPM _OST EVAlUALIONcccoeeiieii et 447
9
ACPI-Defined Devices and Device-Specific Objects.......ccccccceevviiiiinnnnns 449
9.1\ S| SYSEM INQICALOIS ...vvvviiiiiiiiiieieeeeeeee ettt e e e e e e e e e e e e e e e e e aaaaaaa s 449
9.1.1 SST (SYSEM SEALUS)ccieeeeieii e eebeeserssseesssssseeeeeeeeees 449
S I I Y Y R (Y [T ST= Vo [I 449
9.1.3 _BLT (Battery Level Threshold)cccccuuieiiiiiiiiiiiiiiiiiiiiiiiieeieieeieeeeeeeeeeeeeeeee 450
9.2 Ambient Light SENSOr DEVICE......co.eiiiiiiiiiiiieeeeeieeee e, 450
D.2.1 OVEIVIEW ovutueiieeeeeeeeetee et e e ettt e e e e e e e e e e e ettt e e e e e eeeeset bt e e eeeeeeesasbtaanaaeaaeaeens 451
9.2.2 ALl (Ambient Light [TUMINANCE)uuuuririiiiiiiiiiiiiiiiieriierieeeeeeereerreeereereeeeeeeeees 451
9.2.3 _ALT (Ambient Light TEMPEIAtUIE).........uuuuurrrerirriiiririerreerrreeeeeeeeeererererrerereereee 452
9.2.4 ALC (Ambient Light Color ChromatiCity)ccccoveeeeiiiiiiiiiiiii e 452
9.2.5 ALR (Ambient Light RESPONSE).......uuuuuuuiuiieriiiiiiiiinieieeiaeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeees 453
9.2.6 _ALP (Ambient Light POHlING)uuuuumiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeieeeeeee e 457
9.2.7 Ambient Light SENSOr EVENTSooouiiiiiiiiie ettt 457
9.2.8 Relationship to Backlight Control Methodsuvveeiieviiiiieeiiieeiieeieeeeeeeeeee 458
LSRRG S T= 1 (=] Y L C L Tt PP 458
9.4 Control Method Lid DEVICE..........ouiiiiiiiiiiiiiiiiiieeeee e, 458
S I 1 PRSPPI 458
9.5 Control Method Power and Sleep Button DeViCes ..., 459
9.6 Embedded CONtrOllEr DEVICEc.covviiiiiiiiieeeeeee ettt 459
9.7 GeNEriC CONLAINET DBVICEcciiiiiiiiiiiiiiiee ettt e e e e e e s eeeaees 459
9.8 ATA CONLIOIEIr DEVICES......eeiiiiie ettt ettt e et e e e e e s eea s 460
9.8.1 Objects for Both ATA and SATA Controllers...........oovvvvviiiiieeeececen e, 460

X April, 2015 Version 5.1 Errata A

10

O.8.2 IDE CONIOIET DEVICE. .. ieeeeeeeeeeeee ettt ettt e e e et e e e e e e e e e e e e e e e aanns 461

9.8.3 Serial ATA (SATA) Controller DEVICE.........ccuvuiiiiiiieeeeeeeiein e 464
9.9 Floppy Controller Device ODJECLSuuuiiiiii e e e e e e e eeeeens 466
9.9.1 FDE (Floppy DisSk ENUMEIALE)uuuuuiuuuiniiiiiiiiiiiiiieiieeneieneeneeeseeeeeeeneeeeeeeeeees 466
9.9.2 _FDI (Floppy Disk INfOrmMation)cccuvvreeiieiiiiiiiiiieee e 467
9.9.3 _FDM (Floppy Disk Drive MOE)c.cuuriiiiieiiiiiiiiiieeee e 468
O.10 GPE BIOCK DBVICE........uiiiiiiiiie ettt e ettt e e e e e s s eeaeeas 468
9.10.1 Matching Control Methods for Events in a GPE Block Device.............cccc....... 469
.11 MOAUIE DBVICE ...ttt 470
9.12 MEMOIY DEBVICES ...ceeieeiiieeiieeeeeeeee ettt ettt ettt ettt ettt e et ettt e et e e e e e e e e et e e e e e e e aaaaaaaaaaaaaaaaaaaaens 473
9.12.1 AJAIeSS DECOAINGcceeiiiiiiiiiiieee e ettt e e e e e e e e e e eeeeas 473
9.12.2 Memory Bandwidth Monitoring and RepPOrtingccooovevverieieeeiiiiiiiiieeeeennn 473
9.12.3 _OSC Definition for MemMOry DEVICEuuuvuiriiiiiiiiiriieiiinereeereerreeereeeeeeeeereees 475
9.12.4 Example: MemOrY DEVICEccuuuiuiiiiii et e e e e e ee st s s e e e e e e e e e e 476
9.13 UPC (USB Port Capabilities)ccuuuuiiiiiieeiiieiiiiiiss e e eeee s e e e e ee s e e e eeeeneens 476
9.13.1 USB 2.0 Host Controllers and _UPC and _PLDccccccccieiiiiiiieiveeceee e, 480
9.14 Device Object Name ColliSIONuuiiiiiiiiiiiiii s 482
9.14.1 _DSM (Device Specific Method)oovviiiiiiiiiiiiiiee e 482
9.15 PC/AT RTC/CMOS DEVICEScooiuviiiiiieiae ettt sttt a e e et e e e e e e s s snnaseeeeens 485
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNPOBO00).........cccccceveeriiiiiiiiieenennn. 485
9.15.3 Dallas Semiconductor-compatible RTC/CMQOS Devices (PNPOB02) 487
9.16 User Presence Detection DEVICEcouvevviiiiiiiiiiiiiiee e, 487
9.16.1 _UPD (User Presence DEeteCt)ccuuvriiiiieiiiiiiiiiieeee et 488
9.16.2 _UPP (User Presence PolliNG)uuuuriuurimiiiiiiiiiiriiiriirriiirseesseesreeereeeeeeeeereeen 488
9.16.3 User Presence SENSOr EVENESuuuuuiuuiiiiiiiiiiiiiiiiiiiiiiiiieieesseesseeeseesseeeeeeeees 489
.17 1/O APIC DBVICE ...cceeeeeiitieieee ettt e ettt e e e e e e et a e e e e e s e nnb e e eeeeeeaannnsnaeeeeaeas 489
9.18 TimMe and AlGIM DEVICEeiiiiiiiiiiiiiiieee ettt 489
0.18.2 _GCP (Get Capability)c.uveeieeeeeeiiiiiiiiiieee e e e e 493
9.18.3 _GRT (Get REAI TIME)eeeiiiiiiee ettt 494
9.18.4 SRT (Set REAI TIME)uuuuuiuiiuiiiiiiiiiiiitiiiiiierietreerarrreesresrrrereeesreesreeereerere—eee 494
9.18.5 GWS (Get Wake alarm Status)........ccccccuueruuuummiiiiiiiiiiiiiininieeneeesreeereeesreree.. 496
9.18.6 _CWS (Clear Wake alarm Status)cccuuiiiiiiiiiieeercceiiiiie e ee e 496
9.18.7 _STP (Set Expired Timer Wake POlICY)uuuuuiiiiiiiiiiiiiiiiiiiiieeeiieeeeeeeeeeeeee e 496
9.18.8 _STV (St TIMEIr VAIUE)uuiiiiiiiiiiiiiiiiiiiitieiite ettt eeeeseeeeeeeeeeeeees 497
9.18.9 _TIP (Expired Timer Wake POIICY)cuuuiiiiiiiiiiiiieee e 497
9.18.10 _TIV (TimMEI VAIUES)uuuuuriiiiiiiiiniiiniiittiititutestteesaeseesssessssassssssssssesssssssseeeeseeees 498
9.18.11 ACPI Wakeup Alarm EVENTSuuuuuiiiiiiiiiiiiiiiiniiierisesisnsseesssssseeereerreeeeereeen 498
9.18.12 Relationship to Real Time Clock Alarmcccoooeeeiiiiiiiiiiiin e, 498
9.18.13 Time and Alarm device as a replacementtothe RTCcccccvvvviivviiviinnnenn. 498
9.18.14 Relationship t0 UEFI tiMe SOUICE...........uuuuiiiiiiiiiiiiiiiieeiieieeeeeeeeeeeeeeeeeeeeeeeaeeeas 498
9.18.15 EXAmMPIE ASL COUE ...ttt 499
Power Source and Power Meter DEVICESuuuuuuuiiiiiiiiiiiiiiianae e 505
10.1 Smart Battery SUDSYSIEMSoooviiiiiiieeeeeee 505
10.1.1 ACPI Smart Battery Status Change Notification Requirements...................... 508
10.1.2 Smart Battery ODJECISuuuiiiiiiiiiiiiiiiiiieiiieiiieeeee ettt e e e e e e e e e e e 509

Version 5.1 Errata A Xi

Advanced Configuration and Power Interface Specification

11

Xii

10.1.3 _SBS (Smart Battery SUDSYSLEM)uvviiiiiiiiiieiiieiiieeieeeeeeeeeeeeee e 510
10.2 Control Method Batteriescouiiiiiiiiiie e 512
10.2.1 BaAttery EVENTIScoiiiiiei et 513
10.2.2 Battery Control MethOUSuuuuiuiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeees 513
10.3 AC Adapters and Power SOUICe ODJECESciiiiiiiiiiiiiiiiiee e 526
10.3.1 _PSR (POWET SOUICE)uueeiiieeiiiiiiiiiieeee e e e ettt e e e e e e e e e e e e sibbnneeeeeeeeaanns 526
10.3.2 _PCL (Power CONSUMET LISt) ...uuvuviiiieiiiiriierieeiieeeiereeeeeeeeeeereeeseeesseeeeereeeseeeseees 527
10.3.3 _PIF (Power Source INformation).........cccooieeiriieieiiiiies e e ee e 527
10.3.4 _PRL (Power Source Redundancy List)ccccccceeieiiiieiiiceeiiee e, 528
F0.4 POWET IMIBLEIS ..ottt ettt oottt e e e et ettt e e e e e e e e e e et bb e e e e e e e eeeaanb e e e eeaaas 528
10.4.1 _PMC (Power Meter Capabiliti©S)couuiiuiiiiiiiiiiiiiiicee e 529
10.4.2 _PTP (POWEr Trip POINIS) ..oeeiiiiiiiiiiiiiieee ettt e 530
10.4.3 _PMM (Power Meter MeasUrE€mMENL)uuuuurrrerrrreeerreeerreeeeeeeeeereeereerrreeeereenes 531
10.4.4 PAI (Power Averaging INterval)........cccoooooiiiiiiiiiiiiiii e 531
10.4.5 GAI (Get Averaging Interval)...........uciieiiiiiiiieccie e 532
10.4.6 _SHL (Set Hardware LiMIt)ueeeeeeeeemeeeeeiieiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 532
10.4.7 _GHL (Get Hardware LIMit)ccuuuriiiieeriiiiiiiieieee e 533
10.4.8 _PMD (Power Metered DEVICES)......uuuieiiiiiiiiiieieieeeaaaiiiiee e e e e e 533
10.5 Example: Power Source and Power Meter NameSpace............uuveveeeeeviiiiiiiieeeeeninnnns 533
Thermal Management.........coooiiiiiiii e 535
11.2 Thermal CONTIOL ...t e e e e e eeaeeeeas 535
11.1.1 Active, Passive, and Critical POIICIESccuuviiiiiiiiiiiieeeiieeeee e 536
11.1.2 Dynamically Changing Cooling Temperature Trip Pointsccoeeevvvvvvnnnen. 537
11.1.3 Detecting Temperature ChanQgesSuuuueeeeeeieeiiiieieeeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeees 538
I o4 1V @ 0T [o PP 540
11.2.5 PASSIVE COONING ...eeeiiiiiiiiiiiii ettt e et e e e e e e 541
11.2.6 Critical SNUIAOWN ...t e e e 542
11.2 Co0liNg PreferENCeSoovviviiieiieeeee L 543
11.2.1 Evaluating Thermal DevVice LiStS........cccoiiiiiiiiiiiiiiciin et 544
11.2.2 Evaluating Device Thermal Relationship Informationccccccccvvviinninnnnn.. 545
L1.3 FAN DBVICE ..o eeieeeeeeeeeeeee e, 545
N T = 14 1 @]] [T o £ PP PP T PUPPPPPPPPPP 546
11.4 Thermal ODJECES.....ccvviiiiiiiieee e 549
11.4.1 ACX (ACHVE COONNG) ..uvuvvuriiiiiiiiiiiiiiiiirriisiirrseerrrsrrrrrersrrrsreeree——————————————————. 550
11.4.2 ALX (ACHVE LIST) tieeeiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e e eanns 550
11.4.3 _ART (Active Cooling Relationship Table) ..., 551
11.4.4 CRT (Critical TEMPEIAtUI)uuueeueeerieeieeeeeiieeeieeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeees 554
11.4.5 _DTI (Device Temperature INiCAtION)uuvvriiieeiiiiiiiiieieeee e e e 554
11.4.6 _HOT (HOt TEMPEIALUIE)vvuvrveiiiiiiierriierieereesrsessesssessesesseeeeeereeereeererrererrereeee 554
11.4.7 _NTT (Notification Temperature Threshold)cccccevvvieiieiiiiiieeeiieriieeeeeeee, 555
11.4.8 PSL (PASSIVE LiSL) ..cceuiiiiiiii it e e e 555
11.4.9 PSSV (PASSIVE) .eeieeeieiiiiiiiiee e e e et ettt et e e e e s ettt e e e e e e e e snataraeaaaeeessnnsnaaeeeaeeeeannnes 555
11.4.10 _RTV (Relative Temperature ValUESs)uuuueeeieeieeeiiieieieeeeeieeeeeeeeeeeeeeeeens 556
11.4.11 _SCP (Set Co0liNG POLICY) ...coiiiiiiiiiiieee et 556
11.4.12 TC1 (Thermal CONSANt 1)uuuviervriiiiirieeiiieriireeeereeerrereeeereeereeererrreee. 559

April, 2015 Version 5.1 Errata A

11.4.13 _TC2 (Thermal CONSLANT 2)vuuiieeiiiiiiiiieeiieeeirieeeerreerrereeeereerreeerrrrr. 559

I A 3 \V | Q=T 0 0] 0 1= = LU (=) 560
11.4.15 TPT (Trip POINt TEMPEIALUIE)cevviiiiei e e eeeeeeiicee e e e e e e e 560
11.4.16 _TRT (Thermal Relationship Table)uuuueiiimiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 560
11.4.17 _TSP (Thermal Sampling Period)coocuiiiiiiiiiiiiiiiceee e 561
11.4.18 _TST (Temperature Sensor Threshold)cccccviiiiiiiiiiiieeee s 561
11.4.19 TZD (Thermal ZONe DEVICES).......uuuuuuuriririeeiieeriereeeereersrereeeseeeereeererrrreerereee 562
11.4.20 _TZM (Thermal Zone Member)ceeiiiiieiiiieiien e e e 562
11.4.21 TZP (Thermal Zone PolliNg)uuuiiiiiiiiiieiiee e 562
11.5 Native OS Device Driver Thermal Interfaces ..., 563
11.6 Thermal Zone Interface REQUIFEMENTSoiiiiiiiiiiiiiiieie e 564
11.7 Thermal Zone EXAMPIEScoo ittt e e 564
11.7.1 Example: The Basic Thermal ZONE...........uuuuuuiriiiiiriieeiieeiiiereeeeresreeeeeeereereeeeen. 564
11.7.2 Example: Multiple-Speed FanSccoiiii i e e 566
11.7.3 Example: Thermal Zone with Multiple DeViCeSccevvvmeerivieiiiie e, 568
12
ACPI Embedded Controller Interface Specificationc..cccccevvveveeennnn. 575
12.1 Embedded Controller Interface DeSCrPLioNoovvuviiiiiii e 575
12.2 Embedded Controller Register DeSCriptionS ..o, 579
12.2.1 Embedded Controller Status, EC_SC (R)uuvverriieiiiiiiiiiieee et 579
12.2.2 Embedded Controller Command, EC_SC (W)cooiiiiiiiiiiiiiiiiiiiiiiieeeee e 580
12.2.3 Embedded Controller Data, EC_DATA (R/W)....ovvviiieiiieiieeeeeeeeeeeeeeeeeeeeeeeea e 580
12.3 Embedded Controller Command Set............cooiiiiiiiiiiiiiiiieeeiiiiiee e 580
12.3.1 Read Embedded Controller, RD_EC (0X80)cuuuieiiiieeeiireeiiiiiei e eeee e 581
12.3.2 Write Embedded Controller, WR_EC (0OX81)........cuueeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 581
12.3.3 Burst Enable Embedded Controller, BE_EC (0X82).........cuviiiiiiiiiiiiieeiiieieeneeen. 581
12.3.4 Burst Disable Embedded Controller, BD_EC (0X83)........ccceeeiiiiiiiiiirieeeeniiins 582
12.3.5 Query Embedded Controller, QR_EC (0X84).......uuvveviieeiieiiieiiieiiieeieeieeeeeeeaee 582
12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVTccccuu.. 582
12.5 Embedded Controller FIrmware ..., 582
12.6 INterrupt MOlcoovieeiee 583
12.6.1 Event INterrupt MOGEI.........u ittt eeeeeeeeeees 583
12.6.2 Command INterrupt MOAEluviiiiiiiiiiiie e 584
12.7 Embedded Controller Interfacing Algorithms ..., 584
12.8 Embedded Controller Description Information................ccccooo . 585
12.9 SMBus Host Controller Interface via Embedded Controller..............ccccooeeiiiiin. 585
D2 B = To Y (=T gl DTS ol] 1 [o PSP 586
12.9.2 ProtOCOI DESCHIPUIONuutiieiiiiiiitiiitieieeteieeeeeeeeeeeeeteeeeeeeeeeeseeeeeeseseseeeseeesseeeeeeeens 590
12.10 SMBUS DBVICES.....ciiieiiiiiiieeeeee ettt a e aaaaeaaeens 595
12.10.1 SMBuUSs Device ACCESS RESIICLONSccoiiiiiiiiiiiieeieiiiiieee e 596
12.10.2 SMBus Device Command Access ReSIIHCHONccuvvveviieeiiiiiiiiiiieeeeees 596
12.11 Defining an Embedded Controller Device in ACPI Namespacecccccevvvvveennnnn. 596
12.11.1 Example: EC Definition ASL COdEoevuiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee e 597
12.12 Defining an EC SMBus Host Controller in ACPI Namespace...........cccceeeeeveeeeeeeeen. 598
12.12.1 Example: EC SMBus Host Controller ASL-Code............ccccceeviiiiiiiiiiieeennnns 598

Version 5.1 Errata A Xiii

Advanced Configuration and Power Interface Specification

13
ACPI System Management Bus Interface Specificationccc.uuueee. 601
13.1 SMBUS OVEIVIEW ..cceviiiiiiiiiiei ettt ettt e e et e aeeaaaaaaeaaaaaaeens 601
13.1.1 SMBUS SIaVe AQUrESSES. . ..uuuvuurrriiiiriieiiietieereeerreererrrererrerrrereeerrrre————————. 601
13.1.2 SMBUS PrOtOCOIS. ..ottt et e e e e e 602
13.1.3 SMBUS StAtUS COUESuveiiiiiiiiiiiiiiieiieee ettt ettt et et e et e e e e e e e e e e e e e e aeaas 603
13.1.4 SMBUS COMMANT VAIUESuuiiiiiiiiiiiiiiiiiiiiieiiieeiieeeeeeeeeseeeeeeeeeeeseeeeeeeeeeeeeeeeees 603
13.2 Accessing the SMBUS from ASL COOEoooiiiiiiiiiiee e, 603
13.2.1 Declaring SMBus Host Controller ODJECEScoveeiiiiiiiiiiiiieeeiieeeeee e 603
13.2.2 Declaring SMBUS DEVICES..........coiuiiiiiiiieee ettt 604
13.2.3 Declaring SMBUS Operation REJIONSuuuiriiiiiiiieeiieeieeeeeeeeeeeeeeeeereeeereeeeens 604
13.2.4 Declaring SMBUS FIeldS........ccooiiiiiiiiiiii e e e 606
13.2.5 Declaring and Using an SMBus Data Buffer..............ccccvvvvviiiiniievveeeeviinnn, 608
13.3 Using the SMBUS ProtOCOIScooiiiiiiiiieee e 609
13.3.1 Read/Write QUICK (SMBQUICK)........uuuiiiiiiiiiiiiiiiiieee e 609
13.3.2 Send/Receive Byte (SMBSENARECEIVE)uviiiiiiiiiiiiiiiiiiieeee e 610
13.3.3 Read/Write Byte (SMBBYLE).......uuuuuuriiriiiiiiirieeeiiesisneeessssssresesesssesreeereeerreeeereee 611
13.3.4 Read/Write Word (SMBWOI)c.cuuuiiiiiieiiieieeiiiis et e e ee e 612
13.3.5 Read/Write BIOCK (SMBBIOCK)ccuuiiiiiiiiiiiiiiiieiee e 612
13.3.6 Word Process Call (SMBProcessCall)ccooeeiiiiiiiiiiiiiiiiiiiiiieeiieieeeeeeeeeeee 613
13.3.7 Block Process Call (SMBBIOCKProcessCall)coooviiviiiiiieiiiiiiiiiiieeeees 614

14
Platform Communications Channel (PCC).......ccccooiviiiiiiiiiiiiiiieeeeeeeiiiinn, 615
14.1 Platform Communications Channel Table ... 615
14.1.1 Platform Communications Channel Global FIagsccccccviiiiiiiiiiiiinnnnee. 616
14.1.2 Platform Communications Channel Subspace Structuresccccccccvvveeenn. 616
14.1.3 Generic Communications Subspace Structure (type 0)cocevvvvvvevvviviiieeeennnnn.. 616
14.1.4 HW-Reduced Communications Subspace Structure (type 1)ccevvvvvrvennnn. 617
14.2 Generic Communications Channel Shared Memory Regionccccco oo, 618
14.2.1 Generic Communications Channel Command Fieldccccccvvieviiininnnn. 619
14.2.2 Generic Communications Channel Status Fieldccccccocvvvvvviiviiiiiiinninnnnn, 619
14.3 DOOIDEII PrOtOCOIcvviiiiiiiiii ittt e e e e e e e e aan 619
14.4 Platform NOTFICATIONceiiieiiiiiiiiiiie et e e s st eea e e e 620
14.5 Referencing the PCC addreSs SPACE..........ciiiiiieiiiieeiiiiiii e eeeeeeatin s e e e e e e e annan e e e 620

15
System Address Map INterfacescoooeveveiiiiiiiii e 623
15.1 INT 15H, E820H - Query System Address Mapcccovvviveiieeiiiiieeeeeeeee, 624
15.2 E820 Assumptions and LIMItatiONSuuoiiiii i e 626
15.3 UEFI GetMemoryMap() Boot Services FUNCHON............couviiiiiiiiiiiiiicee e 626
15.4 UEFI Assumptions and LimitationsSccooviiiiiiiiiiiieeee e, 628
15.5 EXAMPIE AQAIESS MAP ...cciiiiiiiiiiiiiiie ettt e e e e s eeaeeeans 628
15.6 Example: Operating System USage.........coooviviiiiiiiiiieee e, 629

16
Waking and SIEEPING .ooooeeiieeeeee e 631
16.1 SIEEPING STALES ...t e ettt e e e e r e e e e e e e bbb e e e e e e e s b b e e n e e e e e e e aas 633

Xiv April, 2015 Version 5.1 Errata A

16.1.1 S1 SIEEPING STALEuvvvivuiiiriiiiiiiiiiiiirieeerirrrreearerrrearrererrrrrer——————rrrr—————————————————. 635

16.1.2 S2 SIEEPING STALEccevviiiiii i 636
16.1.3 S3 SIEEPING STALEcceviiiiiii i 636
16.1.4 S4 SIEEPING STALE ...ttt e e 637
16.1.5 S5 SOft Off STALEveiiiiiiiiiie e 638
16.1.6 Transitioning from the Working to the Sleeping State............cccoocvvivveeeeernnnnns 639
16.1.7 Transitioning from the Working to the Soft Off State.........cccccccvvvvvvieviinnnnn. 640
A o [T o] T =Tl 1 640
16.3 INIHAIZALION oeeeeeeeieieeeeeee e, 640
16.3.1 Placing the System in ACPI MOUEuuuiiieiiiiiiiiiiieieeieeeieee et 643
16.3.2 BIOS Initialization Of MEMIOIYuuuiiiiiieiiiiiiiiiee et 643
16.3.3 OS LOAAING ...ettveiiiieeeeeiiiiiee ettt e e e e e e e e 645
16.3.4 EXItiNg ACPIMOGEccoiiiiiiiiiiiiie et 647

17
Non-Uniform Memory Access (NUMA) Architecture Platforms 649
I N[1Y N AN T To = TR RP 649
17.2 SysStem LOCAIILYccoveieieiieeieee e 649
17.2.1 System Resource Affinity Table Definitionccccoooviiiiiiiiiici e, 650
17.2.2 System Resource Affinity UPdateeeeeeeiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee e 650
17.3 System Locality Distance Information..............oooooiii 650
17.3.20NINE HOL PIUQ ..ceoieiiiiie ettt 651
17.3.2 Impact to EXiSting LOCAITIESuuuuviiiiiiiiiiiiiiiiiiiiiieiessvessreeeeeeeeesseeeseeeeeeeeeeeeees 651

18
ACPI Platform Error Interfaces (APEI) ..o 653
18.2 Relationship between OSPM and System FirMWAareccccvvviiieeeeniiiiiiiiieeeee s 654
18.3 EXrOr SOUICE DISCOVEIY ...cceeeeiieiiiiiiieiiee ettt 654
18.3.1 BOOL EITOI SOUICEuuuiiiiiiiiiiiiiiiiiiiitiittbeeibeeeeeebeesbeteseeseeesseeeeeeeeeeeeeeeeeeeeeeeeeeeees 654
18.3.2 ACPI EITON SOUITE ..ottt ettt e et et a e e e e e eeeeeneaa s 656
18.4 Firmware First Error Handlingooooooviiiiiii 669
18.4.1 Example: Firmware First Handling Using NMI Notificationccccccccoooe.. 670
18.5 EXrOr SErAliZAtiONccvviiiiiiiiiiiiiiieec et 670
18.5.1 Serialization ACtON TabIe..........oooiiiiiiiiii e 671
SRS TZ A @] =] = 11 o] o 1P 677
ST =t o [T 1 o 681
18.6.1 Error Injection Table (EINJ)..........uuuuuuieeiiiiiiiieeiiieeiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 681
18.6.2 Injection INStruCtion ENTFESeuueiiieiiiiiiiiiiieiieeiieee e ee e 684
18.6.3 INJECLION INSTIUCTIONSvviiiiiieeiiiiiii et e et e e e e e e 685
18.6.4 Trigger ACHON TabIE........uuuuiiiiiiiiiiiiiiiiiiiiitiieraeereeereeeeesseeesraeseessresreeesaeerreeeeeeeee. 687

19
ACPI Source Language (ASL)Reference........cccccvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiens 691
19.1 ASL LanNQUAGE GramMIMAcceiiiiiiiiiiieeee et e e e e e e e e 691
19.1.1 ASL Grammar NOTATIONccouiiiiiiiiiieee e ettt e e e e ee e e e e e anes 692
19.1.2 ASL Name and Pathname TEerIMSccoouiiiuiiiiiiiieee it eee e 693
19.1.3 ASL Root and Secondary TEIMISuuciiiiieiriieiiiiiiiee e e e e e e ee et e e e e e eeaneeanaa 693
19.1.4 ASL Data and CONSLANT TEIMMSuuueueriiiiiiieeiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 695

Version 5.1 Errata A XV

Advanced Configuration and Power Interface Specification

XVi

19.1.5 ASL OPCOUE TEIMNS. . .uuuuuuuuriinurnrntrurernerrrenrnesrrreserrsrrersrserrsrreeee————————————————.. 697
19.1.6 ASL Primary (Terminal) TEIMISc.ouuuiiiiiieeiieieiiiiiiie e e e e e eeeeii e e e e e e eeeannennnas 698
19.1.7 ASL Parameter KeyWord TEIMISuuuuieiiieeerieieiiiiine e e e e e eeeeeti s e e e e e eeeenanneanns 709
19.1.8 ASL Resource Template TEeIMISouiiiiiiiiiiiiiieieee e 711
19.2 ASL CONCEPLS .ceiiiiiiieiieee ettt 718
19.2.0 ASL NAIMES ..euiiiee ettt e e e e e e et s e e e e e e e e eeabban e as 718
19.2.2 ASL Literal CONSLANTScuiiiiiiiiiiiiiiieee e ettt e e e e e e e e e e 718
19.2.3 ASL Res0oUrce TEMPIALESccoiiieiiiii e e e e 720
19.2.4 ASL IMBCIOS. ...ttt ettt ettt e e e e ettt e e e e e e e e e e e renb s 722
19.2.5 ASL DAta TYPES ... eiiieeiiiiie ettt ettt e e e e et ettt e e e e e e e e aene s 722
19.3 ASL OpPerator SUMMEANYccoiieeieiiiieeeee e 734
19.4 ASL Operator SUMmary BY TYPE oo 738
19.5 ASL Operator Referencecccccvvviiiiiiiii 742
19.5.1 AccessAs (Change Field Unit ACCESS)......ccuviiiiiiiiiiiiie e e e e 742
19.5.2 Acquire (ACUITE @ MULEX)......cceirieeiiiiiiie e e eeeeeeettss s s e e e e e e e e e e e e e e e e e e eenarnn s 743
LSRR I [0 I (1 1=To =T g N o | PSPPI 743
19.5.4 Alias (Declare Name AlIBS)ccuuuurriieieiiiiiiiiieee e 744
19.5.5 And (Integer BitWiSE ANG)coiiiiiiiiiiieee ettt e e 744
19.5.6 Argx (Method Argument Data ObJECES)eeveveeiieriieiiieeiieeeeeeeeeereeeeeeeeeeeeeeeeee 744
19.5.7 BankField (Declare Bank/Data Field)...........ccccuvuiiiiiiiiiiiiceee e, 745
19.5.8 Break (Break from WHIlE)............uuuuuimiiiiiiiiiiiiiiiiiiiiieiieiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeees 746
19.5.9 BreakPoint (Execution Break POINt)..............eeuueiiiiiiiiiiiiiiiieiiiiiieiieeeeeeeeeeeeeeeeee 746
19.5.10 Buffer (Declare Buffer ODJECE)uuviiiiiiiiiiiiiiieiee e 746
19.5.11 Case (Expression for Conditional EXeCUtioN)..........c.ccevveevieiiiiiiiiiiieiiieeieeeee, 747
19.5.12 Concatenate (Concatenate Data)eeeeereervereieeiieriiereeeeeeeereeeeeeeeeeeeeeeees 747
19.5.13 ConcatenateResTemplate (Concatenate Resource Templates) 748
19.5.14 CondRefOf (Create Object Reference Conditionally)ccccceeieein. 748
19.5.15 Connection (Declare Field Connection Attributes)cccccvvevieviiviiieninnnn. 748
19.5.16 Continue (Continue Innermost Enclosing While)ccccciiiiiiiiiiiienins 749
19.5.17 CopyObiject (Copy and Store ODJECE)........uuvevrieiiiiiieiiieeiiieeeeeeeeeeeeeeee e 749
19.5.18 CreateBitField (Create 1-Bit Buffer Field)cccccvvvveiviiiiiiiieiiieeiieeiieeeeeee 750
19.5.19 CreateByteField (Create 8-Bit Buffer Field)cccooevviiiiiiiici e, 750
19.5.20 CreateDWordField (Create 32-Bit Buffer Field)cccovvvieviiiiiiniin. 750
19.5.21 CreateField (Create Arbitrary Length Buffer Field)cccccccvvivvirniin. 751
19.5.22 CreateQWordField (Create 64-Bit Buffer Field)cccccceeiiiiiiiiiiins 751
19.5.23 CreateWordField (Create 16-Bit Buffer Field)ccccccovevvvviiiiiiiiiiiii, 751
19.5.24 DataTableRegion (Create Data Table Operation Region)cccceeeee. 751
19.5.25 Debug (Debugger QULPUL).......ccoviiiiiiiir e e e e e e e eeearans 752
19.5.26 Decrement (INteger DECIEMENT)uuuuuuueeieeiiieeiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 752
19.5.27 Default (Default Execution Path in Switch)cccccoiiiiii, 753
19.5.28 DefinitionBlock (Declare Definition BIOCK)ccooiiiiiiiiiiiiiiiiiiiiieeceees 753
19.5.29 DerefOf (Dereference an Object Reference)ccccvvvvveeveevvieviiviiviiiieiiennen, 754
19.5.30 Device (Declare Bus/Device Package)uvuvereeerreeriieeeeeeieeeieeeeeeeeeeeeeseees 754
19.5.31 Divide (INteger DIVIAE)ciieeeeiieeeiiie e e e e e e e e e 755
19.5.32 DMA (DMA Resource DesCriptor MaCIO)ueuueeeieiiieiiiiiieeeeeeeeeeeeeeeeeeeeaeeeeas 756
19.5.33 DWordIO (DWord IO Resource Descriptor Macro)cceeevveeeveeeeeeeeeeeeeeeeenn. 756
19.5.34 DWordMemory (DWord Memory Resource Descriptor Macro)..................... 758

April, 2015 Version 5.1 Errata A

19.5.35 DWordSpace (DWord Space Resource Descriptor Macro)ccccceeeveeeene.. 760

19.5.36 EISAID (EISA ID String To Integer Conversion Macro)cccooeeeeevvevvvnnnnnnn. 761
19.5.37 Else (Alternate EXeCULION)..........couuuuiiiiiii e e e 762
19.5.38 Elself (Alternate/Conditional EXECULION)..........ccvviiiiiiiiiiiiiiieeeiiiiiieeeeeeee s 762
19.5.39 EndDependentFn (End Dependent Function Resource Descriptor Macro) .. 763
19.5.40 Event (Declare Event Synchronization ODbJect)ccccveeeeiiiiiiiiiieiieeniis 764
19.5.41 ExtendedlO (Extended IO Resource Descriptor Macro)eevvevveeeveeneenn. 764
19.5.42 ExtendedMemory (Extended Memory Resource Descriptor Macro) 766
19.5.43 ExtendedSpace (Extended Address Space Resource Descriptor Macro).... 767
19.5.44 External (Declare External ODJECES)uuuueeiiiiiiiiiiiiiieeeieieeeeeeeeeee e 769
19.5.45 Fatal (Fatal Error CheCK)........oocuuiiiiiiieeeiiiiiiiee et 770
19.5.46 Field (Declare Field ODJECTS).......uuuriiiiiiiiiiiiiiieee e 770
19.5.47 FindSetLeftBit (Find First Set Left Bit)............uuvvieriieiieeiiiiiieeeieeeieeeeeeeeeeeeee e 773
19.5.48 FindSetRightBit (Find First Set Right Bit)coeiiiiiiiiiieiee e, 773
19.5.49 FixedDMA (DMA Resource DescCriptor Macro)ccovvvvevviniiiiieeeneeeeninnnnnnn 773
19.5.50 FixedlO (Fixed 10 Resource Descriptor Macro).........c..ceeveeeeeeveeeeeeeeeeeeeenneenn. 774
19.5.51 FromBCD (Convert BCD TO INTEYEN)oooieiiiiieiee ettt 774
19.5.52 Function (Declare Control Method)ccuuiiiiiiiiiiiiceeeieeeeee s 774
19.5.53 Gpiolnt (GPIO Interrupt Connection Resource Descriptor Macro)................ 776
19.5.54 Gpiolo (GPIO Connection IO Resource Descriptor Macro)cccceevvvvvnnnn. 777
19.5.55 I2CSerialBus (12C Serial Bus Connection Resource Descriptor Macro)....... 778
19.5.56 If (Conditional EXECULION)uuuuueeieeeiieiieeieeiieeeieaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 779
19.5.57 Include (Include Additional ASL Fil€)ccuuiiiiiiiiiiiiieceee e 779
19.5.58 Increment (INteger INCrEMENL)uuuueeeeeiiiiiieeerieeiereeeeeeeeeeereeeeeeeereeeeeereeeeeereeees 779
19.5.59 Index (Indexed Reference To Member ObJjecCt).......covvvvveevieiiiiiiiiiiiiiiieeieenee, 780
19.5.60 IndexField (Declare Index/Data Fields).........ccccccceeeiiiiiiiieeeciieii e, 782
19.5.61 Interrupt (Interrupt Resource Descriptor Macro)cceeeeveevveeiieiiieeiieeeeennnen. 783
19.5.62 10 (I0 Resource DesCriptor MACKO)uveueeereeeiieeieeeieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeees 784
19.5.63 IRQ (Interrupt Resource DesSCriptor MACI0O)coovuuuvririieeeeeiiiiiiieeeeeee e 785
19.5.64 IRQNoFlags (Interrupt Resource Descriptor Macro)ccceevvevvveeveeeeenneenn. 786
19.5.65 LANA (LOGICAI ANA).....uuiiiiiiiiiiiiiiiiiiiiieiiestieeeeeesessssreseesssessesseeesessreeereerrreererreee 786
19.5.66 LEqual (Logical EQUAI)ccoeeiiiieiiiie e 786
19.5.67 LGreater (LOQIiCal GIrEALEI) ueeeeeeeeeieieees 787
19.5.68 LGreaterEqual (Logical Greater Than Or Equal)ccoovvvvviiiiiiiiiiiiiiiiiinnnnn. 787
19.5.69 LLESS (LOGICAI LESS) ...viiiiieeiiiiiiieiie ettt e e e 787
19.5.70 LLessEqual (Logical Less Than Or Equal).........cceveevieevieeiiiiiiiiiieiiieeiieeeeeeee, 788
LS T A I N o 0T o= | I A Lo PP 788
19.5.72 LNotEqual (Logical Not EQUal))....cuuvuuieiiiiieiiiieccen e 788
19.5.73 Load (Load Definition BIOCK)uuuuuuuueeiieiiiiiiiiiiieiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 789
19.5.74 LoadTable (Load Definition Block From XSDT)ccuviiiiiiiiiiiiiiiieiieeieeeeeeeeene. 789
19.5.75 Localx (Method Local Data OBJECTS)ccuuvreeeiieeiiiiiiiiec e 790
19.5.76 LOT (LOGICAI OF) ..uuuiiuuiiiiiiriiiiiiiiiiitisseessesssessesssssssssessssesssrasssssssssreeesaeeree.. 791
19.5.77 Match (Find ODbject MatCh)............uuuiiiiiiiiiiiiiiiiiiiiieieeeieeseieseeeseeereeeeeeeeeeeeeeeees 791
19.5.78 Memory24 (Memory Resource Descriptor Macro)ceevvveeeeiieeeeeeevinnnnnnn. 792
19.5.79 Memory32 (Memory Resource Descriptor Macro)cccceveeeeeeeveeeeeeeeenneenn. 793
19.5.80 Memory32Fixed (Memory Resource Descriptor Macro)cccccvvevveveveennnen.. 794
19.5.81 Method (Declare Control Method)..........oociiiiiiiiiiiiiiiieee e 794

Version 5.1 Errata A XVii

Advanced Configuration and Power Interface Specification

xviii

19.5.82 Mid (Extract Portion of Buffer or String)c.ueeveevieeviievieiiieeiieeieeeieeeeeeeee 796
19.5.83 Mod (Integer MOAUIO)uiii e e e e e 796
19.5.84 Multiply (Integer MUIIPIY)oooerreeeee e 797
19.5.85 Mutex (Declare Synchronization/Mutex ODJECE)...........uuvvveeeriiiiiiiiiieeeeeiies 797
19.5.86 Name (Declare Named ODJECL)uiiiiiiiiiiiiiiiiiieeeeeieee e 798
19.5.87 NANd (Integer BitwiSe NaNd)..........eueiiiiiiiiiiiiiiiiiee e 798
19.5.88 NOOP Code (NO OPEIatiON)uevevrrreeererrrrreeerreerrereeeeseeesreeeeeesserreeerrerrrerreree 798
19.5.89 NOT (Integer BitWiSE NOI)ccoiiiiiiiii i e e e e e e e 799
19.5.90 Not (Integer BitWiS€ NOL)ccoiieiiiiiiiii e e e e e e e 799
19.5.91 Notify (Notify Object Of EVENT)ueeiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e 799
19.5.92 Offset (Change Current Field Unit OffSet)cooviiiiiiiiiiiiiiiiiiiiiiecee e 799
19.5.93 ObjectType (Get ODJECE TYPE) ...uuvrrrriieeeiiiiiiiiiieee et e e 800
19.5.94 One (Constant ONe INtEOEN)uuuuurreiieiieiereeeieeeeeereeeeeeeeeeereeeerrereerererereereeeeees 801
19.5.95 Ones (Constant ONeS INTEJET)uuuuiiii i e e e e 801
19.5.96 OperationRegion (Declare Operation Region)cccoeeevvveevvieiiiieeeeeeeeennnnnnn, 801
19.5.97 Or (INteger BIitWISE OF)uuuuuuiiiiiiiiiiiiieiiiiiieieeeieeeieeeeeeeaeesseeeeeeeeeeseeeeeeeeeeeeeeeeees 803
19.5.98 Package (Declare Package ODJECT)ccuviiiiiiiiiiiiieceee e 803
19.5.99 PowerResource (Declare POWEr RESOUICE)ccooiiiuriiiieeeiiiiiiiiiieeeeen s 804
19.5.100 Processor (Declare ProCESSON)uuuuuiiiiiieeeieeiiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 805
19.5.101 QWordIO (QWord IO Resource Descriptor Macro).........ccccceeeveveeeeeveevennnnnnn. 805
19.5.102 QWordMemory (QWord Memory Resource Descriptor Macro) 807
19.5.103 QWordSpace (QWord Space Resource Descriptor Macro)..........ccccceeee.... 809
19.5.104 RAWDAtABUFTEIuveiiiiiieiiiiiiieiiiiitieeeieeiteeeeeee e eeeeeeeseeeeeeeeeeeseeeeeeeeeeeeeeeeees 811
19.5.105 RefOf (Create Object REfEreNCEe)......uuvvviiieiiiiiiieieeeeieeeeeeeeeeeeeeeeee e 811
19.5.106 Register (Generic Register Resource Descriptor Macro).........cccccvvvvvveeenn.. 811
19.5.107 Release (Release a Mutex Synchronization Object).........cccccceevvveeviiinninnnnn. 812
19.5.108 Reset (Reset an Event Synchronization Object)...........ccccvvvvvveviiiiiiinninnnnn.. 813
19.5.109 ResourceTemplate (Resource To Buffer Conversion Macro)..................... 813
19.5.110 Return (Return from Method EXECULION)cccooiiiiiiiiiiiieiiiiiiiieeceee e 813
19.5.111 Revision (Constant Revision INtEQEN)...........cuvvvviiiiiiiiiiiiiiiiiieeeeeeeeeeee e 814
19.5.112 Scope (Open NamMeEd SCOPE)cuvuireriiiieiieiieeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeees 814
19.5.113 ShiftLeft (Integer Shift Left)covviiiiiiiir e, 815
19.5.114 ShiftRight (Integer Shift Right)oooeiiiiiiiiieeeeeeeeeeeeeeeeee e 815
19.5.115 Signal (Signal a Synchronization Event)cccccvviiiiiiiiiiiiiiiieiiieeieeeee, 816
19.5.116 SizeOf (Get Data ODJECT SIZE)uvvviieiiiiiiiiiiiiiee e 816
19.5.117 Sleep (MilliSECONAS SIEEP)uvrrrerirerieiiiiereeeeeeeeeereeeeeereeeereeeeeerererrrerreeeeeeeeeees 816
19.5.118 SPISerialBus (SPI Serial Bus Connection Resource Descriptor Macro) 817
19.5.119 Stall (Stall for @ SNOrt TIME) ...ccevvviiiiie e e 818

19.5.120 StartDependentFn (Start Dependent Function Resource Descriptor Macro)....
818
19.5.121 StartDependentFnNoPri (Start Dependent Function Resource Descriptor

MACTO) e ———— 819
19.5.122 Store (Store an ODJECL)uuuuiiiiiiiiiiiiiiiiiiieeeeireeeiere e eeee e e eeeeere e e eerereereeeeees 819
19.5.123 Subtract (Integer Subtract)...........cccceeiii i 820
19.5.124 Switch (Select Code To Execute Based On EXpression)........ccccccvveeveeeeenn.. 820
19.5.125 ThermalZone (Declare Thermal ZONE)............uueeiieiiiiiiiiiiieiieiiieeeeeeeeeeeeee e 822
19.5.126 Timer (Get 64-Bit TIMEr VAlUE)ccccoiiiiiiiiiiiiiieeieiiieee e 822

April, 2015 Version 5.1 Errata A

20

21

19.5.127 ToBCD (Convert Integer t0 BCD).......vvvvviiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 823

19.5.128 ToBuffer (Convert Data to BUffer)ccccvvviiiiiiii e, 823
19.5.129 ToDecimalString (Convert Data to Decimal String)..........ccceeeevvvievvvvevininnnnn. 824
19.5.130 ToHexString (Convert Data to Hexadecimal String)cccoocvvvvvveeeennnnnnns 824
19.5.131 Tolnteger (Convert Data to INtEGEN)ccvveiiiiiieeieiiiiiiee e 824
19.5.132 ToString (Convert Buffer TO String)cccvvvevieiieeiiiiiieeceeee i 825
19.5.133 ToUUID (Convert String to UUID MACI0)uvvvevrveeririiieeieeeeieeeeeeeeeeeeeeeeen 825

19.5.134 UARTSerialBus (UART Serial Bus Connection Resource Descriptor Macro) ..
826

19.5.135 Unicode (String To Unicode Conversion Macro)..........ccuvvvveeeeeeeeeeeeeeeeeeeeenn. 827
19.5.136 Unload (Unload Definition BIOCK)cccuviiiiiiieiiiiiiiiieceeee e 828
19.5.137 VendorLong (Long Vendor Resource DescCriptor)........ccccceeeeeeeeeeeeeeeeeeeeen. 828
19.5.138 VendorShort (Short Vendor Resource DesCriptor)........ccccvvvvvvevvieeiieeiienneen.. 828
19.5.139 Wait (Wait for a Synchronization Event)ccccceoiiiiiiiiiiiiiii e, 829
19.5.140 While (Conditional LOOP)ccovveiiiiiiie e e et e e e e e 829
19.5.141 WordBusNumber (Word Bus Number Resource Descriptor Macro)........... 830
19.5.142 WordIO (Word IO Resource Descriptor Macro)eceeeeeriiiiiveeeeeeennnnnnns 831
19.5.143 WordSpace (Word Space Resource Descriptor Macro))ccceevveeeeennnnnnns 833
19.5.144 XOr (Integer BitWISE XOI) ...uuuuuuuiurrieeirerirreeeesreerrsreeessserssesseeereerreeerererreereren 834
19.5.145 Zero (Constant Zero INTEQET) ...couuuuieiiei i e e e 834
ACPI Machine Language (AML) Specificationccccooeeeevvvviiiiiiiineeeeee, 837
20.1 NOtatioN CONVENTIONS......uuiiiiiiieei ittt e e e e e s e e e e e e st e e e e e e e s s annbbeeeeaeas 837
20.2 AML Grammar DefiNitioNcouiiiiiiiiiiiiiiii 838
20.2.1 Table and Table Header ENCOAINGuuuuuuiiiiiiiiiiiiiiiieiieieieeeeeeeeee e ee e 838
20.2.2 Name ODjJeCtS ENCOAINGuuiiiiiiiiiiiiiiiiiiieiibeeeeee et eeeeeeeeeeeeees 839
20.2.3 Data ObjJeCtS ENCOUINGuuvviiiieeiiiiiiiiiiee et 840
20.2.4 Package Length ENCOTINGuuuiuuuiiiiiiiiiiiiiiiiiiiiiiiiesieesisesseessessseeereesseereeeee. 840
20.2.5 Term ODbjectS ENCOTING........uuuuiiiuiiiiiiiiiiiiiiiiriiirraereeerraesrresseeseesrreeereerereerereee 841
20.2.6 Miscellaneous Objects ENCOAINGooiviieiiiiiiiiiiiin e 848
20.3 AML Byte Stream Byte ValUES.........coovviiiiiiiiiiie e 849
20.4 AML Encoding of Names in the Namespacecccoovveiiieiiiiieieeeeeeee 854
ACPI Data Tables and Table Definition Languageccccvvviiiiieiienennns 857
21.1 Types of ACPI Data TabIescoovviiiiiiiiiii 857
21.2 ACPI Table Definition Language Specification ... 858
21.2.1 Overview of the Table Definition Language (TDL)ooocvivrieeeeeiiiiiiiiiieeeeennn 858
21.2.2 TDL Grammar SPeCIfiCatiON.............uuvuuriuiiiiiiiiiiiiiniiieseeerireeseeeeeerrerereerrreree. 859
A R B B L = N Y/ 0 L<3 S SO UPPPTPPIN 861
21.2.4 Fields Set Automatically by the Compiler.............ooooririiiiii e, 863
21.2.5 SpecCial Fields ... ettt e e e e e e e eees 864
21.2.6 TDL GENEIC DALA TYPES ...vuuuuuurrnunnnnunnenineneneenteeenneneeneeesensneseeeeessseeeseeeeeeeeeeeeees 864
21.2.7 Defining a KNnown ACPI Table in TDLcoviiiiiiiiiiiiieeee e 865
21.2.8 Defining an Unknown or New ACPI table in TDL.........cvvvvivieiiieeiieeeieeieeeeeeeee, 865
21.2.9 Table Definition Language EXamplesuuuviiiiiiiiiiiiiiiieieieeiieeeieeeeeeeeeeeeeeeees 866
21.2.10 Minimal ECDT DefiNItIONuuuuiiiiiiiiiiiiiiiiiiiiiiieiieeeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 868

Version 5.1 Errata A Xix

Advanced Configuration and Power Interface Specification

Appendix A

XX

Device Class SPeCIfiCatiONScooiiiiiiiiiiiiiiiiiiiiieieieii i 871
ALL OVBIVIBW .ottt et e e e e e e e ettt e e e e e eeeese s bt eseeeeeeeessbbaan e eaeeeeeeesssssnnrens 871
A.2 DEVICE POWET SEALES ... 871
A.2.1 BUS POWer Management.........coceuuiiiiiiiiieeeiiis ettt s e e e e 872
A.2.2 Display Power Management.........ccoeieeeeiiieeiiiiiiin e eee e e e e e e e eevannenas 872
A.2.3 PCMCIA/PCCARD/CardBus Power Management...........cccccoeeeeeeeeeennnnnnn. 872
A.2.4 PCIl Power Managementuuuiiiiiiiiiieiiiiaa et 872
A.2.5 USB Power Managementcoooovioiiiiiiee e 873
A.2.6 DEVICE ClaSSES ...cooeiiiii i i ettt 873
A.3 DefaUIt DEVICE ClASSceiiiiiiiiiiiiiiiee ettt e e e e e e eaaeees 874
A.3.1 Default Power Management POIIiCY.........ccccccccieiiiieiiiieeie e, 874
A.3.2 Default Wake EVENIScoooiiiiiiiiii e 874
A.3.3 Minimum Power Capabilities.........ccooiiiiiiii e 874
A4 AUAIO DEVICE CIASS ..coiieieeeee e 874
A.4.1 Power State DefinitionS.........ooooiee oot 875
A.4.2 Power Management POlICYccooeiiiiiiiiiieii e 875
A4.3 WaKE EVENLS ... 876
A.4.4 Minimum Power Capabilities........ccoooiiiiie e 876
F N O 1Y 0T D= o I O = T 876
A.5.1 Power State DefinitionS.........coooiee oo 877
A.5.2 Power Management POlICYccoooiiiiiiiii e 877
AD.3WAKE EVENTSottt et e e e e e e 877
A.5.4 Minimum Power CapabilitieS........ccooieeiiiieiiiiiiiie e 877
A.6 Display DeVICE CIaSSccoooeiiieieeii e 877
A.6.1 Power State DefinitionS.........cooviii oo 878
A.6.2 Power Management Policy for the Display Classccccvvviiieeinnnnnee. 882
ALB.3 WAKE EVENTS......uiiiiiiiiiii ittt e e e e e e 882
A.6.4 Minimum Power Capabilities.............ooooeeiiiii i 882
A.6.5 Performance States for Display Class DevViCesccccceeeeviiieeeveeeiinnnnnnn. 883
A7 INPUEDEVICE ClaSS. .. oo e 884
A.7.1 Power State DefinitionS.........ooooiiii oo 884
A.7.2 Power Management POLICYcoooiiiiiiiiiiieeiiiieeee e 885
A T.3WAKE EVENTS ...ttt ee e e e e e 885
A.7.4 Minimum Power Capabilities..........cooiiiiieiiiiiiicicccc s 886
A.8 MOAEM DEVICE ClaSS.....ccoi i i 886
A.8.1 TechnOology OVEIVIEWccoeiiiieeiiieieee e 886
A.8.2 Power State DefinitioNS.........ooooiiii oo 887
A.8.3 Power Management POLICYcoouiiiiiiiiiiieeiiiiiiiiee e 888
A8.4 WaAKE EVENTS......ouiiiiiiiiii ittt et e e e e e 888
A.8.5 Minimum Power Capabilities.........ccooiiiiieiiiiiiieccc e 888
A9 NetWOrk DEVICE CIaSScooiiiii e e 888
A.9.1 Power State DefinitionNS........coooeiii oo 888
A.9.2 Power Management POlICYoooooioiiieieeee e 889
AL9.3WAKE EVENLS.....coiiiieeii et 889
A.9.4 Minimum Power Capabilities.............coooeeiiiii e 890
A.10 PC Card Controller DEVICE CIASSuuuuiiiiieiiiiiiiiiieee ettt 890

April, 2015 Version 5.1 Errata A

A.10.1 POWET State DefiNitiONS. .. .ccviiiei ettt r et e e e e eeenaeees 891

A.10.2 Power Management POIICYcooviiiiiiiiiicien e 891
A.L10.3 WaKE EVENLS.. .o 892
A.10.4 Minimum Power CapabilitieS.........ccoooiiiiieiee i 892
A.11 StOrage DEVICE ClASSuuviiiiiieeiiiiiie ettt e e e e 892
A.11.1 Power State DefinitionNS........ccooieeieeiiie e 893
A.11.2 Power Management POLICYccoooeiiiiieie e 894
A.L1.3 WaKE EVENLS .. .o 894
A.11.4 Minimum Power CapabilitieS........ccooeevviiieiiiiiie e 894
Appendix B
VIAEO EXTENSIONS ..ot 897
B.1 ACPI Extensions for Display Adapters: Introductionccoovvvieiiiiin e, 897
B.2 DefiNItIONS ... e 898
B.3 ACPI NABMESPACE ...ttt e ettt e e e e e et eettba e e e e e e eeeeebenaa s 898
B.3.1 _DOS (Enable/Disable Output SWItChiNg)cccuvimiiieeeiiiiiiiiiiieeee e 900
B.3.2 _DOD (Enumerate All Devices Attached to the Display Adapter)........... 901
B.3.3 _ROM (Get ROM DaAta)cueeeieeeiiiiiiiiiiiieeeesiaiiiineeae e e ssiiieneeee e e e 904
B.3.4 _GPD (GEt POST DEVICE) ...uvvreiieeeeeiiiiiiiiiiieeeeaaaeiiiiieeaaaeeessnnssneeeeeeeeaans 904
B.3.5 _SPD (Set POST DEVICE) ...uuutiiiieeeeeiiiiiiiiiieieeeassiiteeaa e e e e e ssssenneeeeeeaeannns 905
B.3.6 _VPO (Video POST OPLIONS)....cccieiiieiieieee e 905
B.4 Notifications for DiSPIay DEVICESccuuuiiiiiieeiiiiiiee et 906
B.5 Output Device-specific Methods ... 906
B.5.1 ADR (Return the Unique ID for this DevVice)ccccccuvrvrrimrrnnrinnniinnnnnnns 907
B.5.2 BCL (Query List of Brightness Control Levels Supported)..................... 907
B.5.3 _BCM (Set the Brightness Level).......ccooooiiioiiiieeeeees 908
B.5.4 _BQC (Brightness Query Current level)..........cooooiiiiiiiiiiiiiiiies 908
B.5.5 _DDC (Return the EDID for thiS DeVICE).........cccccuuiiiiiieeiiiiiiiiiieeee e 909
B.5.6 _DCS (Return the Status of Qutput DeVICE)cccceeeuuurrnriniiiiiiiiiiinniinnns 909
B.5.7 _DGS (Query Graphics State)ccoooeieiiieiiiecccccccce s 910
B.5.8 DSS (DevVvice Set State)ccvuvuiuiiiiiie i 910
B.6 Notifications Specific t0 OUIPUL DEVICESccoiiiieieieieeeeee e 911
B.7 Notes on State Changescooooiiiiiiiii e 912

Version 5.1 Errata A XXi

Advanced Configuration and Power Interface Specification

XXi April, 2015 Version 5.1 Errata A

Tables

Table 1-1 Hardware Type vS. OS TypPe INTEracCtioN..........cccouiiiiiiiiiieeeeeeiiiiiiiiee e 3
Table 2-2 Summary of Global POWEr States...........cocuiiiiiiiiiiii e 25
Table 2-3 Summary of DeVvice POWET StAtESueviviiiiiiiiiiiiiiiieeeeeeeeeeeee et 27
Table 3-4 LOW Battery LEVEISccoooiieeii et e e e e 48
Table 3-5 Implementable Platform TYPEScii i e e e e 53
Table 4-6 Feature/Programming Model SUMMANYccooiiiiiiiiiiiiiiiieeeiee e 66
Table 4-7 PML EVENE REQISTEISeiiiiiiiiiiiiiee ettt e e 70
Table 4-8 PM1 CONIOl REGISTEIS.....ccoiiiiiiiiieeee ettt e 70
Table 4-9 PM2 CONLrOl REQISIENuuuuuiiiiiiiiiiiiiiiiiiiiitiierieesreeseesssessressrsresssrrrsrreeer————————. 71
Table 4-10 PM TImMer REQISIENttt e e e e e e e s e e e e e e e eeneennnes 71
Table 4-11 Processor CONtrOl REQISTEISii i eieeeeiiiii s e e e e e e e e eeaaees 71
Table 4-12 General-Purpose EVeNnt REQISIEISuuuuuuiiiiiiiiiiiiiiiieiiietiieiieeeeeeeeeeeeeeeeeeeeeeeeeeees 71
Table 4-13 POWEr BUTION SUPPOIT.coiiiiiiiiiiiee et 74
Table 4-14 Sleep BUION SUPPOIT.......coiiiiiiiiie et e e 77
Table 4-15 Alarm Field Decodings within the FADTuuviiiiiiiiiiieiiiiiieeiiieieeeeeeeseesreeeeeeee 81
Table 4-16 PM1 Status Registers Fixed Hardware Feature Status Bits..........cccccoeeeeverrennne. 84
Table 4-17 PM1 Enable Registers Fixed Hardware Feature Enable BitS..........cccccceevveeee.e. 86
Table 4-18 PM1 Control Registers Fixed Hardware Feature Control BitSccoeeveee.... 87
BIE= Lol L= I Y T Vo = 88
Table 4-20 PM2 Control REQISLEr BitSuuvviiuiieiiiiiiiieieiiiiieiieeeeerreesreeeseerrereeeeeeeeerree. 88
Table 4-21 Processor Control REQISIEN BIlS............uuuuuuriuriiiiiiiiiiiiiiiiriiierieriiresrerreesnee——.. 89
Table 4-22 Processor LVL2 ReQISter BilS.........cciiviiiiiiiiiii e e e e e e e e 89
Table 4-23 Processor LVL3 ReQISLEr BitS..........uuuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee et eeee e e e e 90
Table 4-24 Sleep CoNtrol REQISIENuuueiiiiiiiiiiiiiiiiiieiieieieeieeeeeeeeeeeeeeeeeeseeeeeeeeeeeseeeseeeeeeeeees 91
Table 4-25 Sleep StatuS REGISTETccoiiiiiiiiiiee e 91
Table 5-26 Generic Address StruCtUre (GAS)uuuuvururiiriiriiieeiirereeeeeerireeeeerrerreeereer—. 105
Table 5-27 ADdress SPace FOIMAL............uuuiiiiiiiiiiiiiiiiieiieeireeeirrereereeerrerereereerreee e 106
Table 5-28 Root System Description Pointer StruCtureeevviieie e eeveeeiicis e 108
Table 5-29 DESCRIPTION_HEADER FieldS........cccccuiiiiiiiee e 108
Table 5-30 DESCRIPTION_HEADER Signatures for tables defined by ACPI 109
Table 5-31 DESCRIPTION_HEADER Signatures for tables reserved by ACPI 110
Table 5-32 Root System Description Table Fields (RSDT)uuviieiiieeiiiiieeieeeeieeeeeeeeeeeeee e 112
Table 5-33 Extended System Description Table Fields (XSDT)cccvvvviveeeiiieiiiiiieeiieeieeeee, 113
Table 5-34 Fixed ACPI Description Table (FADT) Formatccccccoevieieeiiieiiiiiinieeeeeeeeeenns 114
Table 5-35 Fixed ACPI Description Table Fixed Feature FIags......ccccccovvvviieiiiiiiiiiiinniennnnn. 122
Table 5-36 Fixed ACPI Description Table Boot IA-PC Boot Architecture Flags 127
Table 5-37 Fixed ACPI Description Table ARM Boot Architecture Flagsccccoeivvneee. 127
Table 5-38 Firmware ACPI Control Structure (FACS)uvuviiiiiiiieeiieeiieeeeeeeeeeeee e eee e 128
Table 5-39 Firmware Control Structure Feature FIagsccccvveeeviveiiiiieeiiieeieeeeeeeeeeeeeeee, 131
Table 5-40 OSPM Enabled Firmware Control Structure Feature Flags...........ccccooeeeeeinnens 131
Table 5-41 Global Lock Structure within the FACS ... 132
Table 5-42 Differentiated System Description Table Fields (DSDT).......ccvvveveeeiiievieeiiennnnn.. 134
Table 5-43 Secondary System Description Table Fields (SSDT)cuvvvveevieeeiieiiieiiiniieeeenn, 135

Version 5.1 Errata A XXi

Advanced Configuration and Power Interface Specification

XXii

Table 5-44 Multiple APIC Description Table (MADT) FOrmat..........ccvvvvveeeveeeieeeieeieieeeeeeeen, 136
Table 5-45 MUltiple APIC FIagQScoocoeiieeeeies ettt s e e e e e ee e e e e e e eeeeneees 137
Table 5-46 Interrupt Controller StruCtUre TYPEScvvvvvviiiiii e e e e e e 137
Table 5-47 Processor Local APIC SEIUCLUIEeuuiuuiieiieiiiiiiiiieeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeees 138
Table 5-48 LOCAl APIC FIAUSuuteiiiiieeiiiiee ettt e e 138
Table 5-49 1/O APIC STIUCIUIEuuuiiiiiiiiiiiiiiieiieeteeeteeereeeraeseeesseesseeseresreeeeeesrerreeeree 139
Table 5-50 Interrupt Source OVErride StFUCIUIEuuuvuriviiiiirireeiireiieeeeeereeeeeeeereeeereeeeeee 140
Table 5-51 MPS INTI FIAUSuvvieiiiiieeeiiiiiiieee et e e e e e e e e e e ennnenes 140
Table 5-52 Non-maskable Source StruCtureeeeeeiiiiiiiiiiiiiiiieiieeeeeeeeeee e 141
Table 5-53 Local APIC NMI STFUCTUIEuueeiiiiiiiieiiieiiiiiieiieeeieees 141
Table 5-54 Local APIC Address Override SIrUCIUIEuevvieeieeieeeiiiiieeeiieeeieeeeeeeeeeeeeaeees 142
Table 5-55 1/O SAPIC STTUCIUIEuuuiiiiiiiiiiiiiiiiiiieeiiieeeeeraeeereeseesseseesesreeeeeeeeeerereeeereerrere 142
Table 5-56 Processor Local SAPIC StrUCIUMEcc.uuviiiieeiiiiiiiiiieeeee e 143
Table 5-57 Platform Interrupt SOUrces SITUCIUIEvvveiii i i e e 144
Table 5-58 Platform Interrupt SOUrce FlagsS........cooovuiiiiiii e 145
Table 5-59 Processor Local X2APIC SIIUCIUIEuueerueiuimiiieiieeiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeens 145
Table 5-60 Local X2APIC NMI STIUCLUIEuuuiiurriiiieiiriieireeerereeeeeeeesreeeeeereeeeeeeeeereeeeeereee 146
Table 5-61 GICC StrUCIUIE FOIMIAL.......uuuuuuueriiriuiiiueieeerrerraeereeerererereeeerreeeeeerere 147
Table 5-62 GICC CPU INterface FIAQSuuuuuiriiiiiiiiiiiiiiieiiieiiireeseeesesseeeeeeseeeseeeeeeeeeeeeeesee 149
Table 5-63 GIC DiStriDULOr STIUCLUIEuuueeiiiiiiiieiiieiiiiiieiieeeieees 150
Table 5-64 GIC MSI STIUCLUIuuiiiieiiieiieiitiiiiieetieeteeeeaeeeeeeaeeeeeeeeeesseeeeeeseeeseeeeeeeeeeeeeeeeees 150
Table 5-65 GIC MSI Frame FIAgS.........uuuuuuuuuiiiiiiiiiiiiiiiiiiiieiiieeieeeeeeeeeeeseeeeeeseeeseeeeeeeeeeeeeeeeees 151
Table 5-66 GIC RediStriDULOr STIUCLUIEuevuieieiiiiiiiieeeieeeeieee 151
Table 5-67 Smart Battery Description Table (SBST) Format.........cccccccvvvvvvivviiiiiiiiiiiiiennnnn, 153
Table 5-68 Embedded Controller Boot Resources Table Format............cccvvvvviieeinniiiinnnee. 153
Table 5-69 Static Resource Affinity Table Formatcooooovriviiiiiiiiee e 155
Table 5-70 Processor Local APIC/SAPIC Affinity StruCturecccccooiiiiiviieeeeee e, 156
Table 5-71 Flags — Processor Local APIC/SAPIC Affinity Structure............ccccceeeeeeniiinnnnne. 156
Table 5-72 Memory Affinity SIIUCLUIEouiiiiiii e 157
Table 5-73 Flags — Memory Affinity StrUCIUIE...........evviiiiiiiiiiiiieeieeeeeeeeeeeeeeee e 157
Table 5-74 Processor Local x2APIC Affinity StrUCLUIEvvvivieiiiiiiieieeivieeieeeeeeeeeeeeee e 158
Table 5-75 GICC Affinity SIrUCLUIe.ot e e e e e 159
Table 5-76 Flags — GICC Affinity Structure. i i 159
TaDIE 5-77 SLIT FOIMIAL......uuuiiiiiiiiiiiiiiiitiieteteeteieereeereeeeeeeeaeeeees e eeeeeeesseeeeseseeeaeeseeeeeeeeeeeeeees 160
Table 5-78 Corrected Platform Error Polling Table Formatcoovvvvivieiiieiiiiiiiiiiieiieeee, 161
Table 5-79 Corrected Platform Error Polling Processor StruCturecevvevvevvveeveeeeeeeeeen.. 161
Table 5-80 Maximum System Characteristics Table (MSCT) Format..........ccccccceeeeeeeeennenns 162
Table 5-81 Maximum Proximity Domain Information Structurecccccccvvvvviiiiiiniinnnnn.. 163
Table 5-82 RASF Table fOrMAL............uuuiiiiiiiiiiiiiiiiiiiii e eee e e e e e e eeeeeeeeeees 163
Table 5-83 RASF Platform Communication Channel Shared Memory Region 164
Table 5-84 PCC Command Codes used by RASF Platform Communication Channel 165
Table 5-85 Platform RAS capabilitieS DIitMapuuviiiiiiiiiiiiiiiiiiiiriiiieeeeeeeeeeeeeeeeeeeeeeeeeee 166
Table 5-86 Parameter Block Structure for PATROL_SCRUBcccoooeviviiiiiiiiiie e 166
Table 5-87 MPST Table SITUCIUIEueeiieiieiiiiiiiieiieiieieie ettt e e e e e e e e e e e e e eeeeeeeeeeas 170
Table 5-88 PCC Command Codes used by MPST Platform Communication Channel 171
Table 5-89 MPST Platform Communication Channel Shared Memory Region.................. 171
Table 5-90 POWET StAlE VAIUESccoiiiiiiiiiiiiiiieee ettt 173

April, 2015 Version 5.1 Errata A

Table 5-91 COMMANT STATUS ...vevuiiieeiiieteieet e et e et e et e tea e eeaaeeaarseasereerenreearerenareens 174

Table 5-92 Memory Power Node Structure definitioncccccevviiiiiii e, 175
Table 5-93 Flag fOrmMat..........ouuiiii e e e e e e e e e e e eennees 176
Table 5-94 Memory Power State Structure definitioncccoiviviiiiiiiiii e 177
Table 5-95 Memory Power State Characteristics StruCtureeevvvvvveeveeevieveieeeeeeeeeneen, 177
Table 5-96 Flag format of Memory Power State Characteristics Structurecc..c....... 178
Table 5-97 Platform Memory Topology Table...........ceuieiiiiiiiiiiiiiiieeiieeiieeeeeeeeeeee e 181
Table 5-98 Common Memory Aggregator Device StrUCIUreuceviieeeevviceiii e, 181
Table 5-99 SOCKET SIIUCTUIEuuuuiiiiiitiiiiiiiiititieieeieeetbeeeeeeteeeeeeeeeeeeeesseeeeeeseeeseeeeeeeeeeeeeeeeees 182
Table 5-100 Memory Controller StrUCTUI..........u.veeeieiiieeiieeeeeeeeeeeee e e e e 183
Table 5-101 Physical Components Identifier StruCtureeevveeeeeeeiieiiieeeieiiieeieeeeeeneen, 184
Table 5-102 Boot Graphics Resource Table FieldSoeuviiiiiiiiiiiiiiiiiieiiieeieieeeveeeveeeeee 185
Table 5-103 Status DesCription Field............uuuuiiiiiiiiiiiiiiiiieiiieeiireieeeeeesree e 185
Table 5-104 Image Type Description Fieldoooeuiiiiiiii e 186
Table 5-105 Firmware Performance Data Table (FPDT) Formatccccevviiiinieenneeenn, 187
Table 5-106 Performance RecOrd StIUCLUIEeuuuuuiueieeiiiiiiiiieieeiiieeeeeeeeeeeeeeeeeeeeeeeeeeens 188
Table 5-107 Performance RECOI TYPESuiiiiieiiiiiiiiiie e e ettt 188
Table 5-108 Runtime Performance ReCOrd TYPESccuiiiiiiiiiiiiiiiiieeeesiiiiiiee e 189
Table 5-109 S3 Performance Table Pointer RECOrdooviiiiiiiiiiiiiiiiiiiiiee e 189
Table 5-110 S4 Performance Table Pointer RECOrdcooviiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeee 190
Table 5-111 S3 Performance Table Headeroouiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 190
Table 5-112 Basic S3 Resume Performance ReCOrdeeeiiiiiiiiiiiiieiiiiiiieiieeeeeeeeeeeee. 190
Table 5-113 Basic S3 Suspend Performance ReCOrduvvevvveevrieieeeiiieeieeeeeeeeeeeeeeeeen, 191
Table 5-114 Firmware Basic Boot Performance Table Headerccccovviviiiiinniiiinnnn. 191
Table 5-115 Firmware Basic Boot Performance Data Record Structureccccuveeeeen. 192
Table 5-116 GTDT Table STIUCLUIEuuiiiiiiiiiiiiiiiiiiiieiieiiieeiees 193
Table 5-117 Flag Definitions: Virtual Timer, EL2 timers, and Secure & Non-Secure EL1
1110 LT PR 194
Table 5-118 Platform Timer TYPE SrUCIUIESccuuuviiiiieeeee ettt 194
Table 5-119 GT BIOCK Structure FOrMALcoueeiiiiiiiiiiiieee i 195
Table 5-120 GT Block Timer Structure FOrmat.............ueeviieiiiiiiiiiiieeee e 195
Table 5-121 Flag Definitions: GT Block Physical Timers and Virtual timers....................... 196
Table 5-122 Flag Definitions: Common FlagsS............uuieiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee e 196
Table 5-123 SBSA Generic Watchdog Structure FOrmatcevveeeviviieiiiiiiiiiiiiiiiieeeeee, 197
Table 5-124 Flag Definitions: SBSA Generic Watchdog TIMerccooiiiiiiiieeeeinniiiiieee. 197
Table 5-125 Namespaces Defined Under the Namespace ROOt...........cccevvvvvveviiieiieeniennnnnn, 200
Table 5-126 Operation Region Address Space ldentifiers.........cccccvvvvveeieeiiieviiiiiieiiieiieeee, 206
Table 5-127 IPMI StatuUS COOES.......uuuuuuuiiuuiiiiiiiiiiiittiietieeeeeeeeeeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeeeeeeeeeees 212
Table 5-128 ACCSESSOr TYPE VAIUESuuiiiiiiiiiiiiiiiiiiiiieiieieeens 215
Table 5-129 ACPI Event Programming Model COmMpPOoNentscceeveveeviieeiiiiieeeeeeeeeeeeen. 227
Table 5-130 FiXed ACPI EVENES........uuuuuiiiuiiiiiiiiiiiiietieerieerarerenerereeeerereeeeee———————.. 228
Table 5-131 Device Object Notification ValUES.............uuvvueiiiiiiiiiiieiieiiiieeeeeseeereeeeeeeeeeeeeeeee 235
Table 5-132 Control Method Battery Device Notification Values............ccccccccvvvvviiiiiinnnn, 237
Table 5-133 Power Source Object Notification Valuescoooeviiiiiiiiiiiiiciiiei e, 237
Table 5-134 Thermal Zone Object Notification Values ..., 237
Table 5-135 Control Method Power Button Notification Values...........cccccvvevvevviiiiiieninnnenn. 237
Table 5-136 Control Method Sleep Button Notification Values........ccccccccvvvevviviiiviiieninnnnnnn. 238

Version 5.1 Errata A XXiii

Advanced Configuration and Power Interface Specification

Table 5-137 Control Method Lid Notification ValUes...........ccooiiiiiiiiiiiiiiiiiiiccee e 238
Table 5-138 Processor Device Notification Values..............uueviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee 238
Table 5-139 User Presence Device Notification Valueseeeveeeiiiiiiiiiiiiiiiiieeiieeieeeeen. 238
Table 5-140 Ambient Light Sensor Device Notification Values...........ccccccvvvviiiiiieiiinninnnnn.. 238
Table 5-141 Power Meter Object Notification Valueseuvveeeeiieiiiiiieiiieeiieeeeeeeeeeeeeeeeen 239
Table 5-142 Processor Aggregator Device Notification Valueseeevvvevvveviievieeeeennennn. 239
Table 5-143 Error Device Notification ValUESccuuvviiiiiiiiiiiiiiieeee e 239
Table 5-144 Fan Device Notification ValUES..............uuuuuiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 239
Table 5-145 Memory Device Notification Valuesccoooveviiiiiiiiiiii i, 240
Table 5-146 Processor Aggregator Device Notification Value...............eeeevviiiiiiiiiiiieniennnnn. 240
Table 5-147 Error Device Notification ValUESuuuiviiiiiiiiiiiiiiiiiiiiiieiieeeeeeieeeeeeeeeeeeeeeees 240
Table 5-148 ACPI DEVICE IDSuiieiieiiieiiee e sseesneesnssneeennennsennrennnes 241
Table 5-149 Predefined ACPI NAMES.uuiiiiiiiiiiiiiiiie et 242
Table 5-150 Predefined OBJeCt NAMES..........ciii i e e e aeees 253
Table 5-151 Operating System Vendor StriNgSc.cuuueiiiiieerieieiiicin e e e e e eeeeens 254
Table 5-152 Feature GrouUp STINQGSu i i uueeeuiiiiieeiiieieeeeeeiees 255
Table 5-153 DeviceLockinfo Package Valuesooooeiiiiiiiiiiii e 258
Table 6-154 Device Identification ODJECESccooiiiiiiiiiiieee e 261
Table 6-155 ADR Object ADdress ENCOAINGSuuuuuiuriiriiriiiiiiiriieeeiresieeseeesrerreeereeeeeneeeee. 262
Table 6-156 Additional Language ID Alias StHNQSuuieiiiieeiiieeiiiiiiie e e e eeeeens 267
Table 6-157 PLD Back Panel Example SettingS............uuuueuieiiiiiiieiiiiiiiieeeeeiieiieeeeeeeeeeeeeeeeee 273
Table 6-158 Device Configuration ODJECESuueiieiiiiiiiiiiiiiiiieiieeeieeeeee e eeeee 278
Table 6-159 HPP Package CONTENTSc.uuiiiiiiieiiiiiiiiii et e e 288
Table 6-160 PCI Setting ReCOrd CONLENLuuuviiiiiiiriieiiieiiirereereeeerreeeeereerreeerereeerreeeeeen 292
Table 6-161 PCI-X Setting RECOrd CONENL.........uuuuiiiiiiiiiiiiiiiiiiriereeirsrireeeeereerreeeeeereeeeeeereen 292
Table 6-162 PCI Express Setting Record COoNtentcccoooevviiveeiiiiiiiee e eeeeeeenns 294
Table 6-163 Platform-Wide _OSC Capabilities DWORD 2.........coovviiiiiiiiiiiiiiiieeieeeeeeeeeeeeee 300
Table 6-164 Interpretation of _OSC Support Field ... 301
Table 6-165 Interpretation of _OSC Control Field, Passed in via Arg3ccccccoevviivnnnnn. 302
Table 6-166 Interpretation of _OSC Control Field, Returned Valueccccccccevvvvvvveveennnnn. 303
Table 6-167 MapPing FIEIUSuuuuuuiiiiiiiiiiiiiiiiiiiiii e eeessessseesreessaseeeerees 305
Table 6-168 Example Relative Distances Between Proximity Domainscccceeeenee. 309
Table 6-169 Example System Locality Information Table............ccccoviiiiiiiiiiiiiiiiiiiiiiiieeee, 309
Table 6-170 Example Relative Distances Between Proximity Domains - 5 Node 310
Table 6-171 Device Insertion, Removal, and Status ODJECESccevviiiiiiiiiiieeeeeeiiiieee, 315
Table 6-172 OST Source EVENt COUESuiiiiiiiiiiiiiiiieee ettt 319
Table 6-173 General Processing StatuUs COUES.uuuviriierieiiiiieieeeeeeeeeeeeeeeeeeveeeeeeeeeereeeeeees 319
Table 6-174 Operating System Shutdown Processing (Source Events : 0x100) Status Codes

320
Table 6-175 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status

0T [PRSPPI 320
Table 6-176 Insertion Processing (Source Event: 0x200) Status Codes.........cccccvvvveeeeenn.. 320
Table 6-177 Small Resource Data Type Tag Bit Definitions...........ccovvvvveeviiiiiiiiiiiiiiiiienne, 326
Table 6-178 Small RESOUICE ITEMIS.......uuiiiiiiiiiiiiiiiiiiiitiieiieeeieeeieeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeees 326
Table 6-179 IRQ Descriptor Definitioneeeueeueieiiiiiieiiiiiieiiieeeieeeieeeeeeeeeeee e eeeeeeeeeeeeeees 326
Table 6-180 DMA Descriptor Definitioneeeuuieeuiiiiiiiiiiiiiiiieiiieeiieeieeeeeeeeeeeeeeeeeeeeeeeees 327
Table 6-181 Start Dependent Functions Descriptor Definition............ccoocvviiiieeeeennniiiiene, 328

XXV April, 2015 Version 5.1 Errata A

Table 6-182 Start Dependent Function Priority Byte Definitioncvvvvvvviviiiviiiniinnnnn.. 329

Table 6-183 End Dependent Functions Descriptor Definition............ccccooevvvviiiiiiiiineeeeeeenns 329
Table 6-184 1/0O Port Descriptor Definitioncoeuuiiiiiii e e 330
Table 6-185 Fixed-Location I/O Port Descriptor Definitioncccccceeviiiiiiiiiiiieeeee e 330
Table 6-186 Fixed DMA ReS0OUIrce DESCIIPIONccciuuiiiiiiieeeee ittt 331
Table 6-187 Vendor-Defined Resource Descriptor Definitionccccooviiviiiiieeiinniiiiieee, 331
Table 6-188 ENd Tag DefiNitioNuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiirieriireresseeeeseesesesserreeeee———————. 332
Table 6-189 Large Resource Data Type Tag Bit Definitionsccccooevviiiiiiiiiiiiiieeeeeeeens 332
Table 6-190 Large RESOUICE ITEBIMScoeuiiiiiii it e e e s e e e e e e e e e e e e eenaennnas 332
Table 6-191 24-bit Memory Range Descriptor Definition.eeeeuiiiiiiiiiiiiiiiiiniiiiieinnens 333
Table 6-192 Large Vendor-Defined Resource Descriptor Definition.............ccccceeevviiiinnnee. 334
Table 6-193 32-Bit Memory Range Descriptor Definitionccceevvveeiiiiiiiiiiiieeeeeeiie 335
Table 6-194 32-bit Fixed-Location Memory Range Descriptor Definition 336
Table 6-195 Valid combination of Address Space Descriptors fieldsccccccceeevieiiinnnnnnn, 337
Table 6-196 QWORD Address Space Descriptor Definition...........ccccoooeevvviiiiiiinin e, 337
Table 6-197 DWORD Address Space Descriptor Definition ..., 341
Table 6-198 WORD Address Space Descriptor Definition.............ccceevveiiiiiiiiiiiieeeeeiiee, 343
Table 6-199 Extended Address Space Descriptor Definitionccccovviiiiiiiieeeeniiiiiieee, 344
Table 6-200 Memory Resource Flag (Resource Type = 0) Definitions........cccccccovvvevveennnn. 349
Table 6-201 1/0O Resource Flag (Resource Type = 1) DefinitionS.........cccovvvvvviiieinieeeeeeeennn, 349
Table 6-202 Bus Number Range Resource Flag (Resource Type = 2) Definitions 350
Table 6-203 Extended Interrupt Descriptor Definitioncevviiiiiiiiiiiiiiiiiiieeeeeeeeeee e 350
Table 6-204 Generic Register Descriptor Definitioncoooiiiiiiiiieeiiiiieeeee e 352
Table 6-205 GPIO Connection Descriptor Definitionuvvveeeveeiiiiieieiieeeieeceeeeeeeeeee e 353
Table 6-206 Serial Bus CoNNECtiON DESCIIPLONuvvivivriiiriiiiiiirieeeeeeeereeeeeereereereeerrrerreereee 356
Table 6-207 12C Serial Bus Connection DeSCIIPLOrccvviieiiiiieeiiiiie e e e e e eeans 358
Table 6-208 SPI Serial Bus Connection DESCHPLOreeeieieiiieiiieeieeeeeeeeeeeeeeeee e 360
Table 6-209 UART Serial Bus Connection DeSCIPLOrvueiieeeiiiiieeieieieeeeeeeieeeeeeeeeeeeee e 361
Table 6-210 Other Objects and MethodsS...........cooiiiiiiiiiiie e 364
Table 6-211 OSPM _INI ODbJECt ACHONSuuviiiiiiiiiiiiiiiriieeiseeeiereeeeseeerrerreeerreeeerreeeeeererereeen 364
Table 7-212 Power Resource Child ODJECES.........uuuuuiuriiiiiiiiiiiiiriieeiieeeieeeeeereereeeeeeeeeeeeeeeeees 374
Table 7-213 Device Power Management Child ObjJectscceuiiiiiiiiiii i, 376
Table 7-214 PSC DeViCe State COUES.uuuuuuuiieuinieiiiieeieeeuieeieeeeaeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeees 379
Table 7-215 Power Resource Requirements Packageueeeeeeiieiiiiiieiiiieiieeiieeeeeeeeee e 380
Table 7-216 S1 Action / RESUIt TADIEuuiiiiiiiiiiiiiiiiiiiiiiieeiiee e e eeeeeeeeees 384
Table 7-217 S2 Action / ReSUlt TabIleoovviiiiiei e 385
Table 7-218 S3 Action / ReSUlt TabIleveiiiiii e 386
Table 7-219 S4 Action / ReSUIt TaDIEuuuiiiiiiiiiiiiiiiiiei e 386
Table 7-220 BIOS-Supplied Control Methods for System-Level Functions......................... 388
Table 7-221 System State PACKAGEuuuuuuuuiiuiiiiiiiiiiiiiiiiieiieeieeeieeneeeeeeeeeeneeeeeeeeeeeeeeeeees 390
Table 8-222 Cstate Package ValUESooiiiiiiiiiiiiiicee et 410
Table 8-223 CStateDependency Package ValUEs............ceevvviieviiviiiiiiiieeeeiieeeieeeeeeeeeeeeeeeeen 412
Table 8-224 PTC PacCKage ValUES...........uuuuuiiiiiiiiiiiiiiiiiiiiissisesisssssssssessseseseseeseeeseeeeseeen 414
Table 8-225 TState Package ValUESiiii oot e e e e eeaeens 416
Table 8-226 TStateDependency Package Valuesceveiiiiiiiiiiiiiiiiiiiiiieeeeieeeeee e 418
Table 8-227 PCT Package ValUES...........uuuuuiuuiiiiiiiiiiiiiiiiiieiieiiieees 422
Table 8-228 PState Package ValUESuiiiiiiiiiiiiiiiicceee e 423

Version 5.1 Errata A XXV

Advanced Configuration and Power Interface Specification

Table 8-229 PStateDependency Package ValUuesS............eeevvviviiiiiieieeiiiiieeiieeeieeeeeeeeeeeeeeeeen 426
Table 8-230 Continuous Performance Control Package Valuescccvvvviiciiiiieeeneenns 430
Table 8-231 Performance Limited Register Status BitS..........coovvviiiiiiiiiciiiiciin e, 440
Table 8-232 PCC Commands Codes used by Collaborative Processor Performance Control
442

Table 8-233 Processor Aggregator Device ODJECTS.........ccoouviiiiiiiiiiiieiiiieee e 446
Table 9-234 System Indicator Control MethodsS.............uvvvviiiiiiiiiiiiiieeiieeeeeeeeeee e 449
Table 9-235 Control Method Ambient Light SENSOr DeVICE.............veeeieiieiiiieiiiiiie e eeeeeeeans 450
Table 9-236 Control Method Lid DEVICEuuuuiuiiiiiiiiiiiieiiieiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 458
Table 9-237 ATA SPeCifiC ODJECISuuuiiiiiiiiiiiiiieiie et e e e eeeeeeeeas 460
Table 9-238 GTM Method ReSUIt COUESuuuiiiiiiiiiiiiiiiiiiiiiiieiieeeieeereeeeeeeeeeee e eeeeeeeeeeeeeees 463
Table 9-239 TAPE PrESEICEueiiiiieiiiiiie ettt e s e e e e e e aaaneees 467
Table 9-240 ACPI Floppy Drive INfOrmationuuviviieiieiiiiiiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeee e e 467
Table 9-241 MBM Package DetallSuuuiiiiiiiiiiiieiie e 474
Table 9-242 MSM ReSUIt ENCOTINGccvviuiiiiiieeeeeeeeess s e e e e et s s e e e e e e e ee e e s e e e e e eeeennees 475
Table 9-243 Memory Device _OSC Capabilities DWORD number 2cccccvvvvveveiennnnn.. 475
Table 9-244 UPC Return Package ValUEScoooiuiiiiiiiiiiiiiiiieieeee e 476
Table 9-245 User Presence DeteCtion DEVICEuuuuiruiiriiieiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 488
Table 9-246 Time and Alarm DEVICEc..uviiiiiiieiiiiiiieee et 490
Table 10-247 Example SMBus Device Slave AddreSSesocevviiiiiiiiieiveviiiiiis e eeeeeeeenns 507
Table 10-248 Smart Battery ODJECTS.uuuuuiiiiiiiiiiiiiiiiiiiiiieiiieeiees 509
Table 10-249 Battery Control MethodSuuuiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeee e 514
Table 10-250 BIF Return Package ValUESococuiiiiiiiiiiiiiiiieeeeeee e 515
Table 10-251 BIX Return Package ValUESuuvivieiiiiiieiiieiiieiieeeeeesseeeeeereeeseeeseeeseeeeeeseess 517
Table 10-252 Control Method Battery _OSC Capabilities DWORD?2 Bit Definitions 519
Table 10-253 BST Return Package ValUESooouuiiiiiiii i e e e e 521
Table 10-254 BMD Return Package ValUesueuuieiiieiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e eeeeeee e 524
Table 10-255 Power SOUICE ODJECESuuuuiiiiiiiiiiiiiiiiiiiieiieiieeeieeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeees 526
Table 10-256 PIF Method ReSUIt COUES.uuuuiiiiiiiiiiiiiiiiieiiieeiiees 527
Table 10-257 POWEr Meter ODJECESuuuuuiiiiiiiiiiiiiiiiiieiiieteeeereeeseeeeeeeesereerereerrereerrrrrrrrrreereee 528
Table 10-258 PMC Method ReESUIt COUEScoiiiiiiiiiiiiiiieee ettt 529
Table 11-259 Fan SPeCific ODJECEScvuuiiiiii i e e e e e e e e eenes 545
Table 11-260 FIF Package DetailSuuueuuuieiiiieiiiiiiiiiiiiiieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 546
Table 11-261 FPS FanPstate Package Detailsouuiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 547
Table 11-262 FST Package DetailScc.uuuiiiiiiiiiiiiiiiie et 549
Table 11-263 Thermal ODJECLSuuuuiiiiiiiiiiiiiiiiiieiiieiirrreeereer e 549
Table 11-264 Thermal Relationship Package Values.............ouevvevvveiviiiiieiiieeiieiiieeieeeeeeeee, 552
Table 11-265 Thermal Relationship Package Values............ccccvviiiiiiicciiceiiie e, 561
Table 12-266 Read only register tableueuiiiiiiiiiiiiiiiiiieiiiieeeeeieeeee e 579
Table 12-267 RegiSter deLailSuuuuiieiiiiiiiiiiiiiiiiiiiiiiieee ettt eeeeeeeeeeeeeeeeeeseeeeeeeeees 579
Table 12-268 Embedded Controller COmMmaNndsuueeiveiiiieiiiiiieiiierieeeeeeeieeeeeeeeeeeeeeeees 580
Table 12-269 Events for Which Embedded Controller Must Generate SCIs....................... 584
Table 12-270 Read Command (3 BYLES)uuuuviiiiiiiiiiiiiiiiieiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaeees 584
Table 12-271 Write Command (3 BYLES) ...uuuueiiiieiiiiiiiiiiiis e e e e et e e e e e e e e e e e e e eeanens 584
Table 12-272 Query Command (2 BYLESuuuuuiiiiiiiiiiiiiieiiieiieeieeeeeeeeeeeeeeeeeee e e e eeeeeeeeeeeeees 584
Table 12-273 Burst Enable Command (2 BYLES)euuieeiiiiiiiiiiiiiiieiieeieeeeeeeeeeeee e 584
Table 12-274 Burst Disable Command (1 BYLE)uviviiiiieiiiiiiiiieeeeee e 584

XXVI April, 2015 Version 5.1 Errata A

Table 12-275 SMBUS STAtUS COUBS........uiiieeiieiiee ettt ettt e et e et e et re e reestare st reeenaeens 586

Table 12-276 SMB EC INTEITACEuuuuuiiiiiiiiiiiiiiiiiiiiiiiiebieeeieeieeebeeebeeebeeeeeeseeeseeeeeeeseeeeeeeees 594
Table 12-277 Embedded Controller Device Object Control Methods.............ccccoovieeiiinnnnnn. 597
Table 12-278 EC SMBUS HC DeViCe ODJECES.......uuuuuiriiiiiieiiiiiiieiieeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeens 598
Table 13-279 SMBUS ProtoCOl TYPES ...ttt 602
Table 14-280 Platform Communications Channel Table (PCCT)ccoovviiiiiiiiiieeiiiiiiiiee, 615
Table 14-281 Platform Communications Channel Global Flagsc..cccccccvvvviviiiiiiiniinnnnn. 616
Table 14-282 Generic PCC SubSPace StrUCIUIeuuiiiiieeeiiieeiiiee e ee e eeee e 616
Table 14-283 PCC Subspace Structure type 0 (Generic Communications Subspace)...... 616
Table 14-284 PCC Subspace Structure type 1 (HW-Reduced Communications Subspace) ...
617
Table 14-285 Generic Communications Channel Shared Memory Region 618
Table 14-286 Generic Communications Channel Command Field...............cccccccoeviiiinnnen. 619
Table 14-287 Generic Communications Channel Status Fieldcccccccvi. 619
Table 15-288 AdAress RANGE TYPES ...cvvvuuiiiiiiieeieeeeitiiies e e e e e e eeeatte s e e e e e e s e e eaanaan s e e e e eeeeeenes 623
Table 15-289 Input to the INT 15h E820h Callovvviieeeeeiiiiiieeeeeee e 624
Table 15-290 Output from the INT 15h E820N Callcccooiiiiiiiiiiiiiiiieiieeeee e 625
Table 15-291 Address Range DeSCrptor STIUCIUIEccoovriiiiiiieieee e 625
Table 15-292 Extended Attributes for Address Range Descriptor Structure 625
Table 15-293 UEFI Memory Types and mapping to ACPI address range types................ 627
Table 15-294 Sample MEMOIY MaPuuuuuuuueiuiiiiiieiiieiieeiaeeieees 628
Table 18-295 Boot Error Record Table (BERT) Table..........uuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 655
Table 18-296 BOOt ErfOr REGIONcciii ittt e e 655
Table 18-297 Hardware Error Source Table (HEST)uuviiiiiiiiiiiiiieeiieieeeeeeeeeeeeeeeeeeeeeee e 656
Table 18-298 1A-32 Architecture Machine Check Exception Structure........cc.cccccevvvvveenenn. 657
Table 18-299 1A-32 Architecture Machine Check Error Bank Structureccccccevveeneenn. 658
Table 18-300 1A-32 Architecture Corrected Machine Check Structure...........cccccvvvvveenne.. 659
Table 18-301 1A-32 Architecture NMI Error StruCtUreeeevieeiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 659
Table 18-302 PCI Express RoOt Port AER StrUCIUIE..........cooviiiiiiiiiiee e 660
Table 18-303 PCI Express Device AER SIIUCIUIEuuuvuvivieiiiiiieieireiireeeeereeeeeeeeeeeeeeeeeeeees 661
Table 18-304 PCI Express Bridge AER StrUCLUIEuvvviveiiiiiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeaeees 662
Table 18-305 Generic Hardware Error SoUrce StrUCTUIe..........ueeeveieeeiiiiieieiieeeeeeeeeeeeeeeeeeee 664
Table 18-306 Generic Error Status BIOCKeeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 665
Table 18-307 Generic Error Data ENLIYeuuiueeieieiiiiiieiiieiiieeieeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeees 666
Table 18-308 Hardware Error Notification StruCtUre.............eevvvvviviveriiiiiieiieeeeieeeeeeeeeeeeee e 668
Table 18-309 Error Record Serialization Table (ERST) ... 671
Table 18-310 Error Record Serialization ACHONScuiiiiiiiiiiiiiiiieee e 672
Table 18-311 Command Status Definitionuueeuiuiiieiiiiiiiiiiieiiieiiieeeeee e 673
Table 18-312 Serialization INSrUCHION ENTIYueieiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeee e 673
Table 18-313 Serialization INSIIUCHIONSuuuuuiiiiiiiiiiiiiiiiieiieeeieeeeeeeeeeeeee e eee e e e eeeeeeeeeeeeees 674
Table 18-314 INSIIUCION FIAGSveviiiiiiiiiiiiiieee et 675
Table 18-315 Error Record Serialization INfO..........c.uvvviiiiiiiiiiiieeee e 677
Table 18-316 Error Injection Table (EINJ)uuiuiiiiiiiiiiiiiiiiiiiiriieeiiseeieeeeeeseeeseeeeeeeeeeeeeeeee 681
Table 18-317 Error INJECHION ACHONS........uuuuiiii i eeeeeeeiices s e e e e s e e e e e e e e e e e e e eeeeanens 682
Table 18-318 Injection INStrUCtION ENLFYuuiiiiiiiiiiiiiiiiieiiieiiieeeeeeeeeeeee e e e e e 684
Table 18-319 INSLrUCLION FIAGSuuvrerreieiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeaeees 685
Table 18-320 INJECtiON INSITUCTIONS ...t e e 685

Version 5.1 Errata A XXVii

Advanced Configuration and Power Interface Specification

Table 18-321 Command Status Definitioncooiiuiiiiiiiiieiiieee e 685
Table 18-322 Error Type DefinitioNuuiiiii i e e e e eeaeees 685
Table 18-323 SET_ERROR_TYPE_WITH_ADDRESS Data Structure..........cc..ccceevuvvveeen. 686
Table 18-324 Vendor Error Type EXtension StrUCIUIeeeveeeeiiiiiiiiiiiieieieeieeeeeeeeeeeeee e 687
Table 18-325 Trigger Error ACHONoociiiiiiiiiee et 688
Table 19-326 ASL Grammar NOTALIONuuuuuuuuunuiiriiiriineiineiereeereeeeereeeeeereeeeeeeee 692
Table 19-327 Named Object Reference ENCOAINGSevvvvviiiiiiieiiieiiiieieeeeeeeeeeeeeeeeeeeeeeeeen 718
Table 19-328 Definition Block Name Modifier ENCodings...........ccceiiiiieeiiieeiiiiiiiieeeeeeeeeeens 718
Table 19-329 ASL ESCAPE SEUUENCESuuuuuiiiieeiieeeeiiiiiiseeeeeeeeeeataiassseeeeseeeeannnnseeeeeeeenenes 720
Table 19-330 Example ASL BUilt-iN MACIOSuuuuuuuueiieiiiiiiieiiiiieeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeees 722
Table 19-331 Summary Of ASL Dat@ TYPES ...occeeiiiiiiiiiiieeee ettt 722
Table 19-332 Data Types and TYPe CONVEISIONSccuieeeiriiiirrrieeieeeeaaiiiireeeeeeesssnsieeees 726
Table 19-333 Object CONVEISION RUIESuuuiiiiiiiiiiiiiiiiiiiisiiiseieseeessesssseeeeeereeeeeeeeeeeeererereeess 728
Table 19-334 Object Storing and Copying RUIES...........coiiiiiiiiiiiiciee e 731
Table 19-335 Reading from ArgX ODJECESiiiiiiiiiiiiiiie e e e e e eeeenes 731
Table 19-336 Writing t0 ArgX ODJECLSuuuuueiuiiiiiiiiiiiiiiiiieiieeeiees 732
Table 19-337 Reading from LOCalX ODJECEScooviiiiiiiiiiiiee e 732
Table 19-338 Writing t0 LOCAIX ODJECESvviiiiiiiiiiiiiiiiie et 733
Table 19-339 Reading from Named ODJECLSuuviiiiiiiiiiiiiiiieieeeeeeeeeee e 733
Table 19-340 Writing to Named ObJECISciii i e e ee e 733
Table 19-341 Concatenate Data TYPESuuuueeurueeiieeieiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeees 747
Table 19-342 Debug Object Display FOrMAtS.............uuuueiueiiiiiiiiiiiiiieeiieeieeeeieeieeeeeeeeeeeeeeeeees 752
Table 19-343 Field UNit liSt @NLIFESuuuuiiiieiiiiiiiiiiiieiieieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeereees 771
Table 19-344 OperationRegion Region Types and ACCESS TYPESvvvvvvvveeveerieereeerieeeeeen, 771
Table 19-345 Match Term Operator MEaANINGSuvuururrireiierierieerreerrrrreeeereerrerrerrrerreeereeen 791
Table 19-346 TValues Returned By the ObjectType Operator........ccccoovvevvvvviiiiiiiiiieeeeeeennns 800
Table 19-347 Predefined Operation REgIiON tYPES........uuuuueiureiiieiieeiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeees 802
Table 19-348 UUID BUFfer FOIMAL...........uuuiiiiiiiiiiiiiiiiiiiiiiieiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 825
Table 20-349 AML Grammar Notation CONVENTIONSuuuueiiiriieeiieeiiieeeeereeeeeeeeeeeeeeeeeeeeees 837
Table 20-350 AML Byte Stream Byte VAlUESuvvuiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeseees 849
Table A-351 Default Power State DefinitioNS...........ccuvviiiiiieiiiiiiiice e 874
Table B-352 Video Extension Object REQUINEMENTS.........coiveeeiiieeiiiiiieeeeeeeeeeiiiin e e e e e eeeeens 897
Table B-353 Video Output Device ARrDULESooeiiiiiiieeeeeeeeeeeeeee e 902
Table B-354 EXamMpPIe DEVICE IUS........uuuuuuiiiiiiiiiiiiiiniiieiietiaeiiieeteeeeeeeeeeeseeeeeesseeseeeeeeesseneeeeees 903
Table B-355 Notifications for Display DEVICES.ccuuiiiiieeeiiiiiiiiiiieeee e 906
Table B-356 DEVICE STAIUSuuuiiiiieeiiiiiiiiiiiie et e e e e e s e e e e e e e anneeees 909
Table B-357 Device State fOr _DGSuuuiiiiiiiiiiiiiiiiiiiiiiiiriiseeierseeseesesseeeeeeereerereeeereeeeeeeeee 910
Table B-358 Device State for _DSS ..o e e 910
Table B-359 Notification Values for QUtpUt DEVICESuuuuruiriiieeiiiiiieieeeiieeieeeeeeeeeeeeeeeeee 911

XXViii April, 2015 Version 5.1 Errata A

Figures

Figure 1-1 OSPM/ACPI Global SYSTEMuuiiiiiiiieiii e 5
Figure 3-2 Global System Power States and TranSitioNScooovvrirriieeeenniniiiiiieeee e 34
Figure 3-3 Example Modem and COM Port Hardwareuuvvvvviiiiniieeeiieeeeeereeeseeeeeeene. 41
Figure 3-4 Reporting Battery CapaCity........cccovviiiiiiiiiiicccee it e e 46
Figure 3-5 Remaining Battery Percent FOrmulaccoovviiiiiiini e 46
Figure 3-6 Re;maining Battery Life Formula ..o 47
Figure 3-7 Low Battery and Warningooouuuieiiiieeeeiiie e e e e 47
Figure 3-8 TNeIMAl ZONEoooi ittt e e e e e e e 50
Figure 4-9 Generic Hardware Feature Modelcccoooiiiiiiiiiiiii e 58
Figure 4-10 Global States and Their TranSIitioNSccceoiviiiiiiiiiiin e e 62
Figure 4-11 Example Event Structure for a Legacy/ACPI Compatible Event Model 63
Figure 4-12 Block Diagram of a Status/Enable Cell.............cccooiiiiiiiiee e 68
Figure 4-13 Example Fixed Hardware Feature Register Grouping.......cccccuueevvveeeeeeeennnnnne 69
Figure 4-14 Register Blocks versus Register GroUpPiNgSoocuverrireeeeeiniiiiieieeeee e 69
Figure 4-15 Power Management TiMercccoiiiiiiiiiiiiatinniieaearennreeeeeeeeeeseeseesesesssssssesseeseees 73
Figure 4-16 Fixed Power BUttON LOGIC........ccciiiiiiiiiiii e eee et ee ettt e e e e e 75
Figure 4-17 Fixed Hardware Sleep BULtON LOQICuuuuuuuiiiiiiiiiiiiiiiiiiiiieeieenieneeeeeeeeneneeeeeeee 77
Figure 4-18 SIeeping/WakKe LOGICcuiiiiiiiiiiiiiiieee et e e e e 79
FIGUIE 4-19 RTC AIGITN ...ttt e e e e s e e e e e e e et e e e e e e e aannne 80
Figure 4-20 Power Management Events to SMI/SCI Control LOgiC............uvvvvvivvivvvvveeeeennnee. 82
Figure 4-21 Example of General-Purpose vs. Generic Hardware Eventscccvveeeeeeeee. 93
Figure 4-22 Example Generic Address Space Lid Switch LogiC...........cccvvviiiiiiiieiiiciiniinnnnn. 96
Figure 5-23 Root System Description Pointer and Table............cccooiiiiiiiiiiiiiis 100
Figure 5-24 Description Table SIrUCIUIEScoooiiii e 100
Figure 5-25 APIC—GIlobal SyStem INTEITUPLS.......ceviiiiiiiiiiiiiiie e 147
Figure 5-26 8259—Global System INTErrUPLSccooeeiiee i 152
Figure 5-27 MPST ACPI Table OVEIVIEWccooiiiiiiii e 169
Figure 5-28 Memory Power State TranSitioNSccovveeeiiieiiiiiiiiii e e 173
Figure 5-29 Image OffSel ... 186
Figure 5-30 Example ACPI NameESPACEccooiiiiiieieiee e 199
FIgure 5-31 AML ENCOGING ..oeiiiiiiiiiiiiiiee ettt e e e e e e et e e e e e e e aann 201
Figure 6-32 System Panel and Panel Origin POSItIONSccoooiiiiiiiiiiiiiineinns 268
Figure 6-33 Laptop Panel and Panel Origin POSItIONSccooeiiimiiiiiniinvnienniinnes 268
Figure 6-34 Default Shape DefinitioNSccooviiiiiiiiii e e 273
Figure 6-35 PLD Back Panel Renderingcooooiioiiiiiiiiii oo 275
Figure 6-36 System Locality information Table............coooiiis 309
Figure 6-37 Device Ejection Flow Example USiNg _OSTccooiiiiiiiiiiiieiiiiiiiieeeee e 322
Figure 7-38 Working / Sleeping State object evaluation flow............cccccocviiiiiiiiiiiiiiiiinnnn, 398
Figure 8-39 ProCessor POWEr StAteScccooiiiiei it 400
Figure 8-40 Throtthing EXampPle.........oouveiiii i e 401
Figure 8-41 Equation 1 Duty Cycle EQUAatiONcoooiiiiiiiiii e 401
Figure 8-42 Example Control for the STPCLK# ... 402
Figure 8-43 ACPI Clock LOgIC (ONE PEr PrOCESSON)uvuviiiiiieeiiiiiiiiieeeeeeeesiiiieeeeeee e 402

Version 5.1 Errata A XXVii

Advanced Configuration and Power Interface Specification

Figure 8-44 Platform performance thresholdsccoooiiiiiiiii i 433
Figure 8-45 OSPM performance CONLIOISuuuuiiiiii e e e 435
Figure 9-46 A five-point ALS RESPONSE CUINVEuuuiiiii i ee et e e e e ee e 454
Figure 9-47 A two-point ALS ReSPONSE CUIVEoooiiiii i 455
Figure 9-48 Example Response Curve for a Transflective DisSplaycccccocvvviieeeeeninnns 456
FIGUIE 9-49 USB POITStiiiiiiieeeiiiiite ettt e e e s s e e e e e e e s nnnbb e e e e e e e e e aann 478
Figure 9-50 Persistence of expired timer @VENLScccoociiiiiiiiiii e 491
Figure 9-51 System transitions with WakeAlarm -- TIMer........ccccoeevvviiiiiiiin e, 492
Figure 9-52 System transitions with WakeAlarm -- POIICYcccoooveviiiiiiiiiiii e, 493
Figure 10-53 Typical Smart Battery Subsystem (SBS)ccccoiiiiiiiiiiiiees 507
Figure 10-54 Single Smart Battery SUDSYSIEMccoiiiiiiiiiiiiieee e 511
Figure 10-55 Smart Battery SUDSYSIEM ..o 512
Figure 10-56 Remaining Battery Percent Formulaccooooiiiiiiiiiiiiiciiiiees 522
Figure 10-57 Remaining Battery Life FOrmula...........ccooovviiiiiiiiiii e, 522
Figure 10-58 Power Meter and Power Source/Docking Namespace Example 534
Figure 11-59 ACPI Thermal ZONecooooeiiiiii e 536
Figure 11-60 Thermal EVENTSccc.uuiiiiiiieiiiiie et e e e e e e e 539
Figure 11-61 Temperature and CPU Performance Versus TiMe........cccccoovvvuiriieieeeenninnne. 541
Figure 11-62 Active and Passive Threshold Valuescccoooeiiiiiiiiiiiciiiiiiiiaes 543
Figure 11-63 CoO0liNg PreferENCeSvvuiii i e e e e 544
Figure 12-64 Shared INterface ... 576
Figure 12-65 Private INterface ..o 577
Figure 12-66 INterrupt MOGEI ... ee e 583
Figure 13-67 Bit Encoding EXample ... 602
Figure 13-68 Smart Battery Subsystem DeVICEScoooviiiiiiii i 605
Figure 13-69 Smart Battery Device Virtual RegIStersc.cuceieiiiieiivieiiice e, 607
Figure 16-70 Example Sleeping Statescoooiiiiiiiiiiie e 633
Figure 16-71 BIOS INt@lizationoooriiii i 641
Figure 16-72 Example Physical MEmMOrY Mapcooiiiiiiiiiiiiieeeiiiiiiie e 644
Figure 16-73 Memory as Configured after BOOt............coooeeiiiiiieiccccecece s 645
Figure 16-74 OS Initialization............coooo i 646
Figure B-1 Example Display ArChiteCtureueiii i 903

XXViii April, 2015 Version 5.1 Errata A

Introduction

1
Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish
industry common interfaces enabling robust operating system (OS)-directed motherboard device
configuration and power management of both devices and entire systems. ACPI is the key element
in Operating System-directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration
interface specification. ACPI provides the means for an orderly transition from existing (legacy)
hardware to ACPI hardware, and it allows for both ACPI and legacy mechanisms to exist in a single
machine and to be used as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more
efficient manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of
computers including (but not limited to) desktop, mobile, workstation, and server machines. From a
power management perspective, OSPM/ACPI promotes the concept that systems should conserve
energy by transitioning unused devices into lower power states including placing the entire system in
a low-power state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data
structures that, when implemented, enable support for robust OS-directed configuration and power
management (OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide
adoption to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-
compatible) implementations.

The principal goals of ACPI and OSPM are to:

1. Enable all computer systems to implement motherboard configuration and power management
functions, using appropriate cost/function tradeoffs.

* Computer systems include (but are not limited to) desktop, mobile, workstation, and server
machines.

* Machine implementers have the freedom to implement a wide range of solutions, from the
very simple to the very aggressive, while still maintaining full OS support.

* Wide implementation of power management will make it practical and compelling for
applications to support and exploit it. It will make new uses of PCs practical and existing
uses of PCs more economical.

Version 5.1 Errata A 1

Advanced Configuration and Power Interface Specification

2. Enhance power management functionality and robustness.

Power management policies too complicated to implement in a ROM BIOS can be
implemented and supported in the OS, allowing inexpensive power managed hardware to
support very elaborate power management policies.

Gathering power management information from users, applications, and the hardware
together into the OS will enable better power management decisions and execution.

Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

3. Facilitate and accelerate industry-wide implementation of power management.

OSPM and ACPI reduces the amount of redundant investment in power management
throughout the industry, as this investment and function will be gathered into the OS. This
will allow industry participants to focus their efforts and investments on innovation rather
than simple parity.

The OS can evolve independently of the hardware, allowing all ACPI-compatible machines
to gain the benefits of OS improvements and innovations.

4. Create a robust interface for configuring motherboard devices.

Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI)
between the OS and the hardware to achieve the principal goals set forth above.

Minimal support for power management inhibits application vendors from supporting or
exploiting it.

L]

Moving power management functionality into the OS makes it available on every machine
on which the OS is installed. The level of functionality (power savings, and so on) varies
from machine to machine, but users and applications will see the same power interfaces and
semantics on all OSPM machines.

This will enable application vendors to invest in adding power management functionality to
their products.

Legacy power management algorithms were restricted by the information available to the BIOS
that implemented them. This limited the functionality that could be implemented.

Centralizing power management information and directives from the user, applications, and
hardware in the OS allows the implementation of more powerful functionality. For example,
an OS can have a policy of dividing I/O operations into normal and lazy. Lazy 1/O
operations (such as a word processor saving files in the background) would be gathered up
into clumps and done only when the required I/O device is powered up for some other
reason. A non-lazy 1I/0 request made when the required device was powered down would
cause the device to be powered up immediately, the non-lazy I/O request to be carried out,
and any pending lazy I/O operations to be done. Such a policy requires knowing when I/O
devices are powered up, knowing which application I/O requests are lazy, and being able to
assure that such lazy I/0 operations do not starve.

Appliance functions, such as answering machines, require globally coherent power
decisions. For example, a telephone-answering application could call the OS and assert, “I
am waiting for incoming phone calls; any sleep state the system enters must allow me to

April, 2015 Version 5.1 Errata A

Introduction

wake and answer the telephone in 1 second.” Then, when the user presses the “off” button,
the system would pick the deepest sleep state consistent with the needs of the phone
answering service.

* BIOS code has become very complex to deal with power management. It is difficult to make
work with an OS and is limited to static configurations of the hardware.

* There is much less state information for the BIOS to retain and manage (because the OS
manages it).

* Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

* Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

* Because the BIOS has fewer functions and they are simpler, it is much easier (and therefore
cheaper) to implement and support.

* The existing structure of the PC platform constrains OS and hardware designs.

* Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the
hardware from the OS.

* ACPI is by nature more portable across operating systems and processors. ACPI control
methods allow for very flexible implementations of particular features.

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows
for both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware\OS Legacy OS ACPI OS with OSPM
Legacy hardware A legacy OS on legacy hardware | If the OS lacks legacy support, legacy
does what it always did. support is completely contained within the
hardware functions.
Legacy and ACPI It works just like a legacy OS on During boot, the OS tells the hardware to
hardware support in legacy hardware. switch from legacy to OSPM/ACPI mode
machine and from then on, the system has full

OSPM/ACPI support.
ACPI-only hardware There is no power management. | There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy
Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI
specification, two general implementation strategies are possible:

* An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM
software and implement the hardware part of the ACPI specification (for a given platform) in
one of many possible ways.

Version 5.1 Errata A 3

Advanced Configuration and Power Interface Specification

* An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens
up even more hardware implementation possibilities. However, OEMs who implement hardware
that is OSPM-compatible but not ACPI-compatible will bear the cost of developing, testing, and
distributing drivers for their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button
that is a “soft” button that does not turn the machine physically off but signals the OS to put the
machine in a soft off or sleeping state. ACPI defines two types of these “soft” buttons: one for
putting the machine to sleep and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button
as determined by user settings. The two-button model has an easily accessible sleep button and a
separate power button. In either model, an override feature that forces the machine to the soft-off
state without OSPM interaction is also needed to deal with various rare, but problematic, situations.

1.6 ACPI Specification and the Structure Of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data
structures. This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they
relate to each other. This specification describes the inferfaces between components, the contents of
the ACPI System Description Tables, and the related semantics of the other ACPI components.
Notice that the ACPI System Description Tables, which describe a particular platform’s hardware,
are at heart of the ACPI implementation and the role of the ACPI System Firmware is primarily to
supply the ACPI Tables (rather than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both
software and hardware and how they must behave. ACPI is, instead, an interface specification
comprised of both software and hardware elements.

4 April, 2015 Version 5.1 Errata A

Introduction

APPLICATIONS Dependent

Application
APIs

Kernel OSPM System Code

0S8 Specific

Device ACPI Driver/ _ technologies,
Driver AML Interpreter interfaces, and code

0s
ACPI Table
Independent
! Interface technologies,
interfaces, '
ACPI BIO godg, and
' ardware
Existing | Interface :
industry
standard

interfaces to
CMOS, PIC,
PITs, ... - — e —

Platform Hardware +«——>» BIOS

- OS specific technology, not part of ACPI

! - ACPI Spec Covers this area
- Hardware/Platform specific technology, not part of ACPI

Figure 1-1 OSPM/ACPI Global System

There are three run-time components to ACPI:

ACPI System Description Tables.

Describe the interfaces to the hardware. Some descriptions limit what can be built (for
example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be
built in arbitrary ways and can describe arbitrary operation sequences needed to make
the hardware function. ACPI Tables containing “Definition Blocks” can make use of a
pseudo-code type of language, the interpretation of which is performed by the OS.
That is, OSPM contains and uses an interpreter that executes procedures encoded in

Version 5.1 Errata A 5

Advanced Configuration and Power Interface Specification

the pseudo-code language and stored in the ACPI tables containing “Definition
Blocks.” The pseudo-code language, known as ACPI Machine Language (AML), is a
compact, tokenized, abstract type of machine language.

ACPI Registers.

The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.

ACPI System Firmware.

Refers to the portion of the firmware that is compatible with the ACPI specifications.
Typically, this is the code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely,
compared to a legacy BIOS. The ACPI Description Tables are also provided by the
ACPI System Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that
operating systems may require to completely support OSPM/ACPI. The minimum feature
implementation requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and
ACPI-defined software interfaces and system description tables via the ACPI system firmware.
Specific ACPI-defined interfaces and OSPM concepts while appropriate for one class of machine
(for example, a mobile system), may not be appropriate for another class of machine (for example, a
multi-domain enterprise server). It is beyond the capability and scope of this specification to specify
all platform classes and the appropriate ACPI-defined interfaces that should be required for the
platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces
and hardware requirements suitable to the particular system platform class addressed in a particular
design guide. Platform design guides should not define alternative interfaces that provide similar
functionality to those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design Guides

Common description text and category names should be used in design guides to describe all
features, concepts, and interfaces defined by the ACPI specification as requirements for a platform
class. Listed below is the recommended set of high-level text and category names to be used to
describe the features, concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces

6 April, 2015 Version 5.1 Errata A

Introduction

specified below are generally spread throughout the ACPI specification. The ACPI specification
defines:

System address map reporting interfaces (Section 14)
ACPI System Description Tables (Section 5.2):
Root System Description Pointer (RSDP)
System Description Table Header
Root System Description Table (RSDT)
Fixed ACPI Description Table (FADT)
Firmware ACPI Control Structure (FACS)
Differentiated System Description Table (DSDT)
Secondary System Description Table (SSDT)
Multiple APIC Description Table (MADT)
Smart Battery Table (SBST)
Extended System Description Table (XSDT)
Embedded Controller Boot Resources Table (ECDT)
System Resource Affinity Table (SRAT)
System Locality Information Table (SLIT)
Corrected Platform Error Polling Table (CPEP)
Maximum System Characteristics Table (MSCT)
ACPI RAS FeatureTable (RASF)
Memory Power StateTable (MPST)
Platform Memory Topology Table (PMTT)
Boot Graphics Resource Table (BGRT)
Firmware Performance Data Table (FPDT)
Generic Timer Description Table (GTDT)
ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):
Power management timer control/status
Power or sleep button with S5 override (also possible in generic space)
Real time clock wakeup alarm control/status
SCI /SMI routing control/status for Power Management and General-purpose events
System power state controls (sleeping/wake control) (Section 7)
Processor power state control (c states) (Section 8)
Processor throttling control/status (Section 8)
Processor performance state control/status (Section 8)
General-purpose event control/status
Global Lock control/status
System Reset control (Section 4.7.3.6)
Embedded Controller control/status (Section 12)
SMBus Host Controller (HC) control/status (Section 13)
Smart Battery Subsystem (Section 10.1)

Version 5.1 Errata A 7

Advanced Configuration and Power Interface Specification

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace (Section 4.2, Section 5.6.5):
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 11)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 9.1)
Devices and device controls (Section 9):
Processor (Section 8)
Control Method Battery (Section 10)
Smart Battery Subsystem (Section 10)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 12)
Fan
Generic Bus Bridge
ATA Controller
Floppy Controller
GPE Block
Module
Memory
Global Lock related interfaces

ACPI Event programming model (Section 5.6)
ACPI-defined System BIOS Responsibilities (Section 15)

ACPI-defined State Definitions (Section 2):
Global system power states (G-states, S0, S5)
System sleeping states (S-states S1-S4) (Section 15)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following provides an example of how a client platform design guide, whose goal is to require
robust configuration and power management for the system class, could use the recommended
terminology to define ACPI requirements.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system features,
concepts, and interfaces, along with their associated event models:

System address map reporting interfaces

8 April, 2015 Version 5.1 Errata A

Introduction

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)
Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
Devices and device controls:

Processor

Control Method Battery (or Smart Battery Subsystem on a mobile system)

Smart Battery Subsystem (or Control Method Battery on a mobile system)

Power or sleep button with S5 override (may also be implemented in fixed register space)
Global Lock related interfaces when a logical register in the hardware is shared between OS and firm-
ware environments

ACPI Event programming model (Section 5.6)

ACPI-defined System BIOS Responsibilities (Section 15)

ACPI-defined State Definitions:
System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
Device power states (D-states must be implemented in accordance with device class specifications)
Processor power states (All processors must support the C1 Power State)

The following provides an example of how a design guide for systems that execute multiple OS
instances, whose goal is to require robust configuration and continuous availability for the system
class, could use the recommended terminology to define ACPI related requirements.

Note: This example is provided as a guideline for how ACPI terminology can be used. It should not be
interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system features and
interfaces, along with their associated event models:

System address map reporting interfaces
ACPI System Description Tables provided in the system firmware
ACPI-defined Fixed Registers Interfaces:

Version 5.1 Errata A 9

Advanced Configuration and Power Interface Specification

Power management timer control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for Cl)

Global Lock control/status (if Global Lock interfaces are required by the system)

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
System indicators
Devices and device controls:
Processor
Global Lock related interfaces when a logical register in the hardware is shared between OS and firm-
ware environments
ACPI Event programming model (Section 5.6)
ACPI-defined System BIOS Responsibilities (Section 15)
ACPI-defined State Definitions:
Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with
their associated event models appropriate to the system platform class upon which the OS executes.
This is the implementation of OSPM. The following outlines the OS enhancements and elements
necessary to support all ACPI-defined interfaces. To support ACPI through the implementation of
OSPM, the OS needs to be modified to:

» Use system address map reporting interfaces.

* Find and consume the ACPI System Description Tables.

e Interpret ACPI machine language (AML).

* Enumerate and configure motherboard devices described in the ACPI Namespace.
» Interface with the power management timer.

* Interface with the real-time clock wake alarm.

* Enter ACPI mode (on legacy hardware systems).

* Implement device power management policy.

» Implement power resource management.

* Implement processor power states in the scheduler idle handlers.
* Control processor and device performance states.

* Implement the ACPI thermal model.

10 April, 2015 Version 5.1 Errata A

Introduction

Support the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.

Support acquisition and release of the Global Lock.
Use the reset register to reset the system.

Provide APIs to influence power management policy.
Implement driver support for ACPI-defined devices.
Implement APIs supporting the system indicators.

Support all system states S1-S5.

1.7.3 OS Requirements
The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:

Use system address map reporting interfaces to get the system address map on Intel Architecture
(IA) platforms:

* INT 15H, E820H - Query System Address Map interface (see Section 15,“System Address
Map Interfaces”)

* EFI GetMemoryMap() Boot Services Function (see Section 15, “System Address Map
Interfaces”)

Find and consume the ACPI System Description Tables (see Section 5, “ACPI Software
Programming Model”).

Implementation of an AML interpreter supporting all defined AML grammar elements (see
Section 20, ACPI Machine Language Specification”).

Support for the ACPI Event programming model including handling SCI interrupts, managing
fixed events, general-purpose events, embedded controller interrupts, and dynamic device
support.

Enumerate and configure motherboard devices described in the ACPI Namespace.
Implement support for the following ACPI devices defined within this specification:

* Embedded Controller Device (see Section 12, “ACPI Embedded Controller Interface
Specification”)

* GPE Block Device (see Section 9.10, “GPE Block Device”)

* Module Device (see Section 9.11, “Module Device”)

Implementation of the ACPI thermal model (see Section 11, “Thermal Management”).
Support acquisition and release of the Global Lock.

OS-directed power management support (device drivers are responsible for maintaining device
context as described by the Device Power Management Class Specifications described in
Section A).

1.8 Target Audience

This specification is intended for the following users:

OEMs building hardware containing ACPI-compatible interfaces

Version 5.1 Errata A 11

Advanced Configuration and Power Interface Specification

e Operating system and device driver developers
* BIOS and ACPI system firmware developers
* CPU and chip set vendors

* Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

» The first part of the specification (sections 1 through 3) introduces ACPI and provides an
executive overview.

* The second part (sections 4 and 5) defines the ACPI hardware and software programming
models.

* The third part (sections 6 through 17) specifies the ACPI implementation details; this part of the
specification is primarily for developers.

* The fourth part (sections 18 and 19) is technical reference material; section 18 is the ACPI
Source Language (ASL) reference, parts of which are referred to by most of the other sections in
the document.

* Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

1.9.1 ACPI Introduction and Overview

12

The first three sections of the specification provide an executive overview of ACPIL.
Section 1: Introduction.

Discusses the purpose and goals of the specification, presents an overview of the
ACPI-compatible system architecture, specifies the minimum requirements for an
ACPI-compatible system, and provides references to related specifications.

Section 2: Definition of Terms.

Defines the key terminology used in this specification. In particular, the global
system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep)
are defined in this section, along with the device power state definitions: Off (D3),
D3hot, D2, D1, and Fully-On (D0). Device and processor performance states (PO, P1,
...Pn) are also discussed.

Section 3: ACPI Overview.

Gives an overview of the ACPI specification in terms of the functional areas covered
by the specification: system power management, device power management,
processor power management, Plug and Play, handling of system events, battery
management, and thermal management.

April, 2015 Version 5.1 Errata A

Introduction

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification
that follow (all the rest of the sections of the specification) are based on the models defined in
sections 4 and 5. These sections are the heart of the ACPI specification. There are extensive cross-
references between the two sections.

Section 4: ACPI Hardware Specification.
Defines a set of hardware interfaces that meet the goals of this specification.
Section 5: ACPI Software Programming Model.

Defines a set of software interfaces that meet the goals of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily
for developers.

Section 6: Configuration.

Defines the reserved Plug and Play objects used to configure and assign resources to
devices, and share resources and the reserved objects used to track device insertion
and removal. Also defines the format of ACPI-compatible resource descriptors.

Section 7: Power and Performance Management.

Defines the reserved device power-management objects and the reserved-system
power-management objects.

Section 8: Processor Configuration and Control.

Defines how the OS manages the processors’ power consumption and other controls
while the system is in the working state.

Section 9: ACPI-Specific Device Objects.

Lists the integrated devices that need support for some device-specific ACPI controls,
along with the device-specific ACPI controls that can be provided. Most device
objects are controlled through generic objects and control methods and have generic
device IDs; this section discusses the exceptions.

Section 10: Power Source Devices.

Defines the reserved battery device and AC adapter objects.
Section 11: Thermal Management.

Defines the reserved thermal management objects.

Section 12: ACPI Embedded Controller Interface Specification.

Defines the interfaces between an ACPI-compatible OS and an embedded controller.

Version 5.1 Errata A 13

Advanced Configuration and Power Interface Specification

Section 13: ACPI System Management Bus Interface Specification.

Defines the interfaces between an ACPI-compatible OS and a System Management
Bus (SMBus) host controller.

Section 14: Platform Communications Channel.
Explains the generic mechanism for OSPM to communicate with an entity in the
platform defines a new address space type

Section 15: System Address Map Interfaces.

Explains the special INT 15 call for use in ISA/EISA/PCI bus-based systems. This
call supplies the OS with a clean memory map indicating address ranges that are
reserved and ranges that are available on the motherboard. UEFI-based memory
address map reporting interfaces are also described.

Section 16: Waking and Sleeping.

Defines in detail the transitions between system working and sleeping states and their
relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and
8.

Section 17: Non-Uniform Memory Access (NUMA) Architecture Platforms.

Discusses in detail how ACPI define interfaces can be used to describe a NUMA
architecture platform. Refers to the reserved objects defined in sections 5, 6, 8, and 9.

Section 18: ACPI Platform Error Interfaces.

Defines interfaces that enable OSPM to processes different types of hardware error
events that are detected by platform-based error detection hardware.

1.9.4 Technical Reference

14

The fourth part of the specification contains reference material for developers.

Section 19: ACPI Source Language Reference.

Defines the syntax of all the ASL statements that can be used to write ACPI control
methods, along with example syntax usage.

Section 20: ACPI Machine Language Specification.

Defines the grammar of the language of the ACPI virtual machine language. An ASL
translator (compiler) outputs AML.

Section 2: ACPI Data Tables and Table Language Definition.

Describes a simple language (the Table Definition Language or TDL) that can be used
to generate any ACPI data table.

Appendix A: Device class specifications.

Describes device-specific power management behavior on a per device-class basis.

Appendix B: Video Extensions.

Contains video device class-specific ACPI interfaces.

April, 2015 Version 5.1 Errata A

Introduction

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the
following, available from “Links to ACPI-Related Documents™ (http://uefi.org/acpi) under the
heading "Legacy PNP Guidelines".

* Advanced Power Management (APM) BIOS Specification, Revision 1.2.
e Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

Intel® Itanium™ Architecture Software Developer’s Manual, see “Links to ACPI-Related
Documents” (http://uefi.org/acpi) under the heading "Intel Architecture Specifications".

Ttanium™ Processor Fi amily System Abstraction Layer Specification, Intel Corporation, December
2003 (June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:

Unified Extensible Firmware Interface Specification, see “Links to ACPI-Related Documents”
(http://uefi.org/acpi) under the heading "Unified Extensible Firmware Interface Specifications"

Documentation and specifications for the Smart Battery System components and the SMBus are
available from http://www.sbs-forum.org:

* “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Smart Battery
System Components and SMBus Specification".

* Smart Battery Data Specification, see “Links to ACPI-Related Documents” (http://uefi.org/acpi)
under the heading "Smart Battery System Components and SMBus Specification".

* Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

* Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

o System Management Bus Specification, Revision 1.1, Smart Battery System Implementers
Forum, December, 1998.

Version 5.1 Errata A 15

Advanced Configuration and Power Interface Specification

16 April, 2015 Version 5.1 Errata A

Definition of Terms

2
Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section has three
parts:

General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global
system states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as
such, they are generally not visible to the user. For example, some devices may be in the off state
even though the system as a whole is in the working state. Device states apply to any device on any
bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI)

As defined in this document, ACPI is a method for describing hardware interfaces in
terms abstract enough to allow flexible and innovative hardware implementations and
concrete enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware

Computer hardware with the features necessary to support OSPM and with the
interfaces to those features described using the Description Tables as specified by this
document.

ACPI Namespace

A hierarchical tree structure in OS-controlled memory that contains named objects.
These objects may be data objects, control method objects, bus/device package
objects, and so on. The OS dynamically changes the contents of the namespace at run-
time by loading and/or unloading definition blocks from the ACPI Tables that reside
in the ACPI BIOS. All the information in the ACPI Namespace comes from the
Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)

Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which
ACPI control methods and objects are written. The AML encoding definition is
provided in section 19, “ACPI Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)

An interrupt controller architecture commonly found on Intel Architecture-based 32-
bit PC systems. The APIC architecture supports multiprocessor interrupt management
(with symmetric interrupt distribution across all processors), multiple I/O subsystem

Version 5.1 Errata A 17

Advanced Configuration and Power Interface Specification

18

support, 8259A compatibility, and inter-processor interrupt support. The architecture
consists of local APICs commonly attached directly to processors and /0O APICs
commonly in chip sets.

ACPI Source Language (ASL)

The programming language equivalent for AML. ASL is compiled into AML images.
The ASL statements are defined in section 18, “ACPI Source Language (ASL)
Reference.”

Control Method

A control method is a definition of how the OS can perform a simple hardware task.
For example, the OS invokes control methods to read the temperature of a thermal
zone. Control methods are written in an encoded language called AML that can be
interpreted and executed by the ACPI-compatible OS. An ACPI-compatible system
must provide a minimal set of control methods in the ACPI tables. The OS provides a
set of well-defined control methods that ACPI table developers can reference in their
control methods. OEMs can support different revisions of chip sets with one BIOS by
either including control methods in the BIOS that test configurations and respond as
needed or including a different set of control methods for each chip set revision.

Central Processing Unit (CPU) or Processor

Device

The part of a platform that executes the instructions that do the work. An ACPI-
compatible OS can balance processor performance against power consumption and
thermal states by manipulating the processor performance controls. The ACPI
specification defines a working state, labeled GO (S0), in which the processor executes
instructions. Processor sleeping states, labeled C1 through C3, are also defined. In the
sleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. The ACPI specification also
defines processor performance states, where the processor (while in C0) executes
instructions, but with lower performance and (potentially) lower power consumption
and operating temperature. For more information, see section 8, “Processor
Configuration and Control.”

A definition block contains information about hardware implementation and
configuration details in the form of data and control methods, encoded in AML. An
OEM can provide one or more definition blocks in the ACPI Tables. One definition
block must be provided: the Differentiated Definition Block, which describes the base
system. Upon loading the Differentiated Definition Block, the OS inserts the contents
of the Differentiated Definition Block into the ACPI Namespace. Other definition
blocks, which the OS can dynamically insert and remove from the active ACPI
Namespace, can contain references to the Differentiated Definition Block. For more
information, see section 5.2.11, “Definition Blocks.”

Hardware component outside the core chip set of a platform. Examples of devices are
liquid crystal display (LCD) panels, video adapters, Integrated Drive Electronics
(IDE) CD-ROM and hard disk controllers, COM ports, and so on. In the ACPI scheme

April, 2015 Version 5.1 Errata A

Definition of Terms

of power management, buses are devices. For more information, see section 3.3.2,
“Device Power States.”

Device Context

The variable data held by the device; it is usually volatile. The device might forget this
information when entering or leaving certain states (for more information, see section
2.3, “Device Power State Definitions.”), in which case the OS software is responsible
for saving and restoring the information. Device Context refers to small amounts of
information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)

An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the
Differentiated Definition Block, which supplies the implementation and configuration
information about the base system. The OS always inserts the DSDT information into
the ACPI Namespace at system boot time and never removes it.

Unified Extensible Firmware Interface (UEFI)

An interface between the OS and the platform firmware. The interface is in the form
of data tables that contain platform related information, and boot and run-time service
calls that are available to the OS and loader. Together, these provide a standard
environment for booting an OS.

Embedded Contorller

The general class of microcontrollers used to support OEM-specific implementations,
mainly in mobile environments. The ACPI specification supports embedded
controllers in any platform design, as long as the microcontroller conforms to one of
the models described in this section. The embedded controller performs complex low-
level functions through a simple interface to the host microprocessor(s).

Embedded Controller Interface

A standard hardware and software communications interface between an OS driver
and an embedded controller. This allows any OS to provide a standard driver that can
directly communicate with an embedded controller in the system, thus allowing other
drivers within the system to communicate with and use the resources of system
embedded controllers (for example, Smart Battery and AML code). This in turn
enables the OEM to provide platform features that the OS and applications can use.

Firmware ACPI Control Structure (FACS)

A structure in read/write memory that the BIOS uses for handshaking between the
firmware and the OS. The FACS is passed to an ACPI-compatible OS via the Fixed
ACPI Description Table (FADT). The FACS contains the system’s hardware
signature at last boot, the firmware waking vector, and the Global Lock.

Fixed ACPI Description Table (FADT)

A table that contains the ACPI Hardware Register Block implementation and
configuration details that the OS needs to directly manage the ACPI Hardware
Register Blocks, as well as the physical address of the DSDT, which contains other
platform implementation and configuration details. An OEM must provide an FADT

Version 5.1 Errata A 19

Advanced Configuration and Power Interface Specification

20

to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the namespace
information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removes it.

Fixed Features

A set of features offered by an ACPI interface. The ACPI specification places
restrictions on where and how the hardware programming model is generated. All
fixed features, if used, are implemented as described in this specification so that
OSPM can directly access the fixed feature registers.

Fixed Feature Events

A set of events that occur at the ACPI interface when a paired set of status and event
bits in the fixed feature registers are set at the same time. When a fixed feature event
occurs, a system control interrupt (SCI is raised. For ACPI fixed feature events,
OSPM (or an ACPI-aware driver) acts as the event handler.

Fixed Feature Registers

A set of hardware registers in fixed feature register space at specific address locations
in system I/O address space. ACPI defines register blocks for fixed features (each
register block gets a separate pointer from the FADT). For more information, see
section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers

The general-purpose event registers contain the event programming model for generic
features. All general-purpose events generate SCls.

Generic Feature

A generic feature of a platform is value-added hardware implemented through control
methods and general-purpose events.

Global System Status

Global system states apply to the entire system, and are visible to the user. The various
global system states are labeled GO through G3 in the ACPI specification. For more
information, see Section 2.2, “Global System State Definitions.”

Ignored Bits

Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI
specification. Ignored bits are undefined and can return zero or one (in contrast to
reserved bits, which always return zero). Software ignores ignored bits in ACPI
hardware registers on reads and preserves ignored bits on writes.

Intel Architecture-Personal Computer (I1A-PC)

A general descriptive term for computers built with processors conforming to the
architecture defined by the Intel processor family based on the Intel Architecture
instruction set and having an industry-standard PC architecture.

1/0 APIC

An Input/Output Advanced Programmable Interrupt Controller routes interrupts from
devices to the processor’s local APIC.

April, 2015 Version 5.1 Errata A

Definition of Terms

1/0 SAPIC

An Input/Output Streamlined Advanced Programmable Interrupt Controller routes
interrupts from devices to the processor’s local APIC.

Legacy

A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features
found in today’s systems are used to support power management in a system that uses
a legacy OS that does not support the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPI or OSPM power management support.
Legacy OS

An OS that is not aware of and does not direct the power management functions of the
system. Included in this category are operating systems with APM 1.x support.

Local APIC

A local Advanced Programmable Interrupt Controller receives interrupts from the I/0
APIC.

Local SAPIC

A local Streamlined Advanced Programmable Interrupt Controller receives interrupts
from the I/0 SAPIC.

Multiple APIC Description Table (MADT)

The Multiple APIC Description Table (MADT) is used on systems supporting the
APIC and SAPIC to describe the APIC implementation. Following the MADT is a list
of APIC/SAPIC structures that declare the APIC/SAPIC features of the machine.

Object

The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the
information in the system definition tables. These objects can be data objects, package
objects, control method objects, and so on. Package objects refer to other objects.
Objects also have type, size, and relative name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM)

A model of power (and system) management in which the OS plays a central role and
uses global information to optimize system behavior for the task at hand.

Package

An array of objects.

Version 5.1 Errata A 21

Advanced Configuration and Power Interface Specification

22

Power Button

A user push button or other switch contact device that switches the system from the
sleeping/soft off state to the working state, and signals the OS to transition to a
sleeping/soft off state from the working state.

Power Management

Mechanisms in software and hardware to minimize system power consumption,
manage system thermal limits, and maximize system battery life. Power management
involves trade-offs among system speed, noise, battery life, processing speed, and
alternating current (AC) power consumption. Power management is required for some
system functions, such as appliance (for example, answering machine, furnace
control) operations.

Power Resources

Resources (for example, power planes and clock sources) that a device requires to
operate in a given power state.

Power Sources

The battery (including a UPS battery) and AC line powered adapters or power
supplies that supply power to a platform.

Register Grouping
Consists of two register blocks (it has two pointers to two different blocks of
registers). The fixed-position bits within a register grouping can be split between the

two register blocks. This allows the bits within a register grouping to be split between
two chips.

Reserved Bits

Some unused bits in ACPI hardware registers are designated as “Reserved” in the
ACPI specification. For future extensibility, hardware-register reserved bits always
return zero, and data writes to them have no side effects. OSPM implementations must
write zeros to all reserved bits in enable and status registers and preserve bits in
control registers.

Root System Description Pointer (RSDP)

An ACPI-compatible system must provide an RSDP in the system’s low address
space. This structure’s only purpose is to provide the physical address of the RSDT
and XSDT.

Root System Description Table (RSDT)

A table with the signature ‘RSDT,’ followed by an array of physical pointers to other
system description tables. The OS locates that RSDT by following the pointer in the
RSDP structure.

Secondary System Description Table (SSDT)

SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a
platform description. After the DSDT is loaded into the ACPI Namespace, each
secondary description table listed in the RSDT/XSDT with a unique OEM Table ID is

April, 2015 Version 5.1 Errata A

Definition of Terms

loaded. This allows the OEM to provide the base support in one table, while adding
smaller system options in other tables.

Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button

A user push button that switches the system from the sleeping/soft off state to the
working state, and signals the OS to transition to a sleeping state from the working
state.

Smart Battery Subsystem

A Dattery subsystem that conforms to the following specifications: Smart Battery and
either Smart Battery System Manager or Smart Battery Charger and Selector—and the
additional ACPI requirements.

Smart Battery Table

An ACPI table used on platforms that have a Smart Battery subsystem. This table
indicates the energy-level trip points that the platform requires for placing the system
into different sleeping states and suggested energy levels for warning the user to
transition the platform into a sleeping state.

System Management Bus (SMBus)

A two-wire interface based upon the I>C protocol. The SMBus is a low-speed bus that
provides positive addressing for devices, as well as bus arbitration.

SMBus Interface

A standard hardware and software communications interface between an OS bus
driver and an SMBus controller.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)

An advanced APIC commonly found on Intel Itanium™ Processor Family-based 64-
bit systems.

System Context

The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)

A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an
active, low, shareable, level interrupt.

System Management Interrupt (SMI)

An OS-transparent interrupt generated by interrupt events on legacy systems. By
contrast, on ACPI systems, interrupt events generate an OS-visible interrupt that is
shareable (edge-style interrupts will not work). Hardware platforms that want to
support both legacy operating systems and ACPI systems must support a way of re-
mapping the interrupt events between SMIs and SCIs when switching between ACPI
and legacy models.

Version 5.1 Errata A 23

Advanced Configuration and Power Interface Specification

2.2

24

Thermal States

Thermal states represent different operating environment temperatures within thermal
zones of a system. A system can have one or more thermal zones; each thermal zone is
the volume of space around a particular temperature-sensing device. The transitions
from one thermal state to another are marked by trip points, which are implemented to
generate an SCI when the temperature in a thermal zone moves above or below the
trip point temperature.

Extended Root System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical
addresses of DESCRIPTION HEADERS that are larger than 32 bits. Notice that both
the XSDT and the RSDT can be pointed to by the RSDP structure.

Global System State Definitions

Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:

Does application software run?

What is the latency from external events to application response?

What is the power consumption?

Is it safe to disassemble the computer?

1
2
3
4. Isan OS reboot required to return to a working state?
5
6

Can the state be entered and exited electronically?

Following is a list of the system states:

G3 Mechanical Off

A computer state that is entered and left by a mechanical means (for example, turning
off the system’s power through the movement of a large red switch). It is implied by
the entry of this off state through a mechanical means that no electrical current is
running through the circuitry and that it can be worked on without damaging the
hardware or endangering service personnel. The OS must be restarted to return to the
Working state. No hardware context is retained. Except for the real-time clock, power
consumption is zero.

G2/S5 Soft Off

G1 Sleeping

A computer state where the computer consumes a minimal amount of power. No user
mode or system mode code is run. This state requires a large latency in order to return
to the Working state. The system’s context will not be preserved by the hardware. The
system must be restarted to return to the Working state. It is not safe to disassemble
the machine in this state.

A computer state where the computer consumes a small amount of power, user mode
threads are not being executed, and the system “appears” to be off (from an end user’s
perspective, the display is off, and so on). Latency for returning to the Working state

April, 2015 Version 5.1 Errata A

GO0 Working

Definition of Terms

varies on the wake environment selected prior to entry of this state (for example,
whether the system should answer phone calls). Work can be resumed without
rebooting the OS because large elements of system context are saved by the hardware
and the rest by system software. It is not safe to disassemble the machine in this state.

A computer state where the system dispatches user mode (application) threads and
they execute. In this state, peripheral devices (peripherals) are having their power state
changed dynamically. The user can select, through some Ul, various performance/
power characteristics of the system to have the software optimize for performance or
battery life. The system responds to external events in real time. It is not safe to
disassemble the machine in this state.

S4 Non-Volatile Sleep

A special global system state that allows system context to be saved and restored
(relatively slowly) when power is lost to the motherboard. If the system has been
commanded to enter S4, the OS will write all system context to a file on non-volatile
storage media and leave appropriate context markers. The machine will then enter the
S4 state. When the system leaves the Soft Off or Mechanical Off state, transitioning to
Working (G0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid non-volatile sleep data set is found, certain aspects of the
configuration of the machine have not changed, and the user has not manually aborted
the restore. If all these conditions are met, as part of the OS restarting, it will reload

the system context and activate it. The net effect for the user is what looks like a
resume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and
memory size. It might be possible for the user to swap a PC Card or a Device Bay

device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the
system context must be written to non-volatile storage by the hardware; entering the Working state
first so that the OS or BIOS can save the system context takes too long from the user’s point of view.
The transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-2 Summary of Global Power States

Global system Software | Latency | Power OSrestart | Safe to Exit state
state runs consumption | required disassemble | electronically
computer
GO0 Working Yes 0 Large No No Yes
G1 Sleeping No >0, Smaller No No Yes
varies
with
sleep
state

Version 5.1 Errata A

25

Advanced Configuration and Power Interface Specification

Global system Software | Latency | Power OSrestart | Safe to Exit state

state runs consumption | required disassemble | electronically
computer

G2/S5 Soft Off No Long Very near 0 Yes No Yes

G3 Mechanical Off | No Long RTC battery Yes Yes No

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This
implies that a platform designed to give the user the appearance of “instant-on,” similar to a home
appliance device, will use the GO and G1 states almost exclusively (the G3 state may be used for
moving the machine or repairing it).

2.3 Device Power State Definitions

26

Device power states are states of particular devices; as such, they are generally not visible to the
user. For example, some devices may be in the Off state even though the system as a whole is in the
Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal
criteria:

* Power consumption-How much power the device uses.

* Device context--How much of the context of the device is retained by the hardware. The OS is
responsible for restoring any lost device context (this may be done by resetting the device).

¢ Device driver--What the device driver must do to restore the device to full on.
* Restore time--How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all
four power states defined. Devices may be capable of several different low-power modes, but if
there is no user-perceptible difference between the modes, only the lowest power mode will be used.
The Device Class Power Management Specifications, included in Appendix A of this specification,
describe which of these power states are defined for a given type (class) of device and define the
specific details of each power state for that device class. For a list of the available Device Class
Power Management Specifications, see “Appendix A: Device Class Specifications.”

D3 (Off)

Power has been fully removed from the device. The device context is lost when this
state is entered, so the OS software will reinitialize the device when powering it back
on. Since device context and power are lost, devices in this state do not decode their
address lines. Devices in this state have the longest restore times. All classes of
devices define this state.

D3hot

The meaning of the D3hot State is defined by each device class. Devices in the D3hot
State are required to be software enumerable. In general, D3hot is expected to save

more power and optionally preserve device context. If device context is lost when this
state is entered, the OS software will reinitialize the device when transitioning to DO.

April, 2015 Version 5.1 Errata A

Definition of Terms

Devices in this state can have long restore times. All classes of devices define this

state.

Note: The D3hot state differs from the D3 state in two distinct parameters; the main power rail is present
and software can access a device in D3hot. For devices that support both D3hot and D3 exposed
to OSPM via _PR3, device software/drivers must always assume OSPM will target D3and must
assume device context will be lost.

D2
The meaning of the D2 Device State is defined by each device class. Many device
classes may not define D2. In general, D2 is expected to save more power and
preserve less device context than D1 or DO. Buses in D2 may cause the device to lose
some context (for example, by reducing power on the bus, thus forcing the device to
turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device
classes may not define D1. In general, D1 is expected to save less power and preserve
more device context than D2.

DO (Fully-On)

This state is assumed to be the highest level of power consumption. The device is
completely active and responsive, and is expected to remember all relevant context

continuously.

Table 2-3 Summary of Device Power States

Device State Power Consumption Device Context Retained | Driver Restoration

DO - Fully-On | As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization and
load

D3 - Off 0 None Full initialization and load

Note:

Devices often have different power modes within a given state. Devices can use these modes as

long as they can automatically transparently switch between these modes from the software,
without violating the rules for the current Dx state the device is in. Low-power modes that
adversely affect performance (in other words, low speed modes) or that are not transparent to
software cannot be done automatically in hardware; the device driver must issue commands to
use these modes.

2.4 Sleeping State Definitions

Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx

states are briefly defined below. For a detailed definition of the system behavior within each Sx state,
see Section 7.3.2, “System \ Sx States.” For a detailed definition of the transitions between each of
the Sx states, seeSection 16.1, “Sleeping States.”

Version 5.1 Errata A

27

Advanced Configuration and Power Interface Specification

2.5

28

S1 Sleeping State

The S1 sleeping state is a low wake latency sleeping state. In this state, no system
context is lost (CPU or chip set) and hardware maintains all system context.

S2 Sleeping State

The S2 sleeping state is a low wake latency sleeping state. This state is similar to the
S1 sleeping state except that the CPU and system cache context is lost (the OS is
responsible for maintaining the caches and CPU context). Control starts from the
processor’s reset vector after the wake event.

S3 Sleeping State

The S3 sleeping state is a low wake latency sleeping state where all system context is
lost except system memory. CPU, cache, and chip set context are lost in this state.
Hardware maintains memory context and restores some CPU and L2 configuration
context. Control starts from the processor’s reset vector after the wake event.

S4 Sleeping State

The S4 sleeping state is the lowest power, longest wake latency sleeping state
supported by ACPI. In order to reduce power to a minimum, it is assumed that the
hardware platform has powered off all devices. Platform context is maintained.

S5 Soft Off State

The S5 state is similar to the S4 state except that the OS does not save any context.
The system is in the “soft” off state and requires a complete boot when it wakes.
Software uses a different state value to distinguish between the S5 state and the S4
state to allow for initial boot operations within the BIOS to distinguish whether or not
the boot is going to wake from a saved memory image.

Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states
within the global working state, GO. The Cx states possess specific entry and exit semantics and are
briefly defined below. For a more detailed definition of each Cx state, see section 8.1, “Processor
Power States.”

CO Processor Power State
While the processor is in this state, it executes instructions.
C1 Processor Power State

This processor power state has the lowest latency. The hardware latency in this state
must be low enough that the operating software does not consider the latency aspect of
the state when deciding whether to use it. Aside from putting the processor in a non-
executing power state, this state has no other software-visible effects.

C2 Processor Power State

The C2 state offers improved power savings over the C1 state. The worst-case
hardware latency for this state is provided via the ACPI system firmware and the
operating software can use this information to determine when the C1 state should be

April, 2015 Version 5.1 Errata A

Definition of Terms

used instead of the C2 state. Aside from putting the processor in a non-executing
power state, this state has no other software-visible effects.

C3 Processor Power State

The C3 state offers improved power savings over the C1 and C2 states. The worst-
case hardware latency for this state is provided via the ACPI system firmware and the
operating software can use this information to determine when the C2 state should be
used instead of the C3 state. While in the C3 state, the processor’s caches maintain
state but ignore any snoops. The operating software is responsible for ensuring that the
caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states
within the active/executing states, CO for processors and DO for devices. The Px states are briefly
defined below. For a more detailed definition of each Px state from a processor perspective, see
section 8.4.4, “Processor Performance Control.” For a more detailed definition of each Px state from
a device perspective see section 3.6, “Device and Processor Performance States,” and the device
class specifications in Appendix A.

PO Performance State

While a device or processor is in this state, it uses its maximum performance
capability and may consume maximum power.

P1 Performance State

In this performance power state, the performance capability of a device or processor is
limited below its maximum and consumes less than maximum power.

Pn Performance State

In this performance state, the performance capability of a device or processor is at its
minimum level and consumes minimal power while remaining in an active state. State
n is a maximum number and is processor or device dependent. Processors and devices
may define support for an arbitrary number of performance states not to exceed 16.

Version 5.1 Errata A 29

Advanced Configuration and Power Interface Specification

30 April, 2015 Version 5.1 Errata A

ACPI Overview

3
ACPI Overview

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control
over the power management and motherboard device configuration functions of a computer. During
OS initialization, OSPM takes over these functions from legacy implementations such as the APM
BIOS, SMM-based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM is
responsible for handling motherboard device configuration events as well as for controlling the
power, performance, and thermal status of the system based on user preference, application requests
and OS imposed Quality of Service (QOS) / usability goals. ACPI provides low-level interfaces that
allow OSPM to perform these functions. The functional areas covered by the ACPI specification are:

System power management

ACPI defines mechanisms for putting the computer as a whole in and out of system
sleeping states. It also provides a general mechanism for any device to wake the
computer.

Device power management

ACPI tables describe motherboard devices, their power states, the power planes the
devices are connected to, and controls for putting devices into different power states.
This enables the OS to put devices into low-power states based on application usage.

Processor power management

While the OS is idle but not sleeping, it will use commands described by ACPI to put
processors in low-power states.

Device and processor performance management.

While the system is active, OSPM will transition devices and processors into different
performance states, defined by ACPI, to achieve a desirable balance between
performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).

Configuration / Plug and Play

ACPI specifies information used to enumerate and configure motherboard devices.
This information is arranged hierarchically so when events such as docking and
undocking take place, the OS has precise, a priori knowledge of which devices are
affected by the event.

System Events

ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal,
and so on. This mechanism is very flexible in that it does not define specifically how
events are routed to the core logic chip set.

Version 5.1 Errata A 31

Advanced Configuration and Power Interface Specification

32

Battery management

Battery management policy moves from the APM BIOS to the ACPI OS. An ACPI-
compatible battery device needs either a Smart Battery subsystem interface, which is
controlled by the OS directly through the embedded controller interface, or a Control
Method Battery interface. A Control Method Battery interface is completely defined
by AML control methods, allowing an OEM to choose any type of the battery and any
kind of communication interface supported by ACPI. The battery must comply with
the requirements of its interface, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by
adjusting the Low Battery or Battery Warning trip point. When there are multiple
batteries present, the battery subsystem is not required to perform any synthesis of a
“composite battery” from the data of the separate batteries. In cases where the battery
subsystem does not synthesize a “composite battery” from the separate battery’s data,
the OS must provide that synthesis.

Thermal management

Since the OS controls the power and performance states of devices and processors,
ACPI also addresses system thermal management. It provides a simple, scalable
model that allows OEMs to define thermal zones, thermal indicators, and methods for
cooling thermal zones.

Embedded Controller

ACPI defines a standard hardware and software communications interface between an
OS bus enumerator and an embedded controller. This allows any OS to provide a
standard bus enumerator that can directly communicate with an embedded controller
in the system, thus allowing other drivers within the system to communicate with and
use the resources of system embedded controllers. This in turn enables the OEM to
provide platform features that the OS and applications can use.

SMBus Controller

ACPI defines a standard hardware and software communications interface between an
OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus devices in the system. This in turn
enables the OEM to provide platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s
power, performance, and thermal status given the user’s preferences and while supporting OS
imposed Quality of Service (QOS) / usability goals. To achieve these goals, ACPI requires that once
an ACPI compliant platform is in ACPI mode, the platform’s hardware, firmware, or other non-OS
software must not manipulate the platform’s configuration, power, performance, and thermal control
interfaces independently of OSPM. OSPM alone is responsible for coordinating the configuration,
power management, performance management, and thermal control policy of the system.
Manipulation of these interfaces independently of OSPM undermines the purpose of OSPM/ACPI
and may adversely impact the system’s configuration, power, performance, and thermal policy
goals. There are two exceptions to this requirement. The first is in the case of the possibility of
damage to a system from an excessive thermal conditions where an ACPI compatible OS is present
and OSPM latency is insufficient to remedy an adverse thermal condition. In this case, the platform
may exercise a failsafe thermal control mechanism that reduces the performance of a system

April, 2015 Version 5.1 Errata A

ACPI Overview

component to avoid damage. If this occurs, the platform must notify OSPM of the performance
reduction if the reduction is of significant duration (in other words, if the duration of reduced
performance could adversely impact OSPM’s power or performance control policy - operating
system vendors can provide guidance in this area). The second exception is the case where the
platform contains Active cooling devices but does not contain Passive cooling temperature trip
points or controls,. In this case, a hardware based Active cooling mechanism may be implemented
without impacting OSPM’s goals. Any platform that requires both active and passive cooling must
allow OSPM to manage the platform thermals via ACPI defined active and passive cooling
interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user
preferences and knowledge of how devices are being used by applications, the OS puts devices in
and out of low-power states. Devices that are not being used can be turned off. Similarly, the OS
uses information from applications and user settings to put the system as a whole into a low- power
state. The OS uses ACPI to control power state transitions in hardware.

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:
Power

Failure/
Power Off

BIOS
Routine

GO0 (S0) -
Working

Performance
State Px

CO

G2 (S5) -

Soft Off

Version 5.1 Errata A 33

Advanced Configuration and Power Interface Specification

Figure 3-2 Global System Power States and Transitions

See Section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state,
the computer is used to do work. User-mode application threads are dispatched and running.
Individual devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if
they are not being used. Any device the system turns off because it is not actively in use can be
turned on with short latency. (What “short” means depends on the device. An LCD display needs to
come on in sub-second times, while it is generally acceptable to wait a few seconds for a printer to
wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working
sub-states differ in speed of computation, power used, heat produced, and noise produced. Tuning
within the Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer
into one of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The
sleeping sub-states differ in what events can arouse the system to a Working state, and how long this
takes. When the machine must awaken to all possible events or do so very quickly, it can enter only
the sub-states that achieve a partial reduction of system power consumption. However, if the only
event of interest is a user pushing on a switch and a latency of minutes is allowed, the OS could save
all system context into an NVS file and transition the hardware into the S4 sleeping state. In this
state, the machine draws almost zero power and retains system context for an arbitrary period of
time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management
interfaces boot in the Legacy state and transition to the Working state when an ACPI OS loads. A
system without legacy support (for example, a RISC system) transitions directly from the
Mechanical Off state to the Working state. Users typically put computers into the Mechanical Off
state by flipping the computer’s mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical
Off or, on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as
the user wants the machine to “come on” in less than 1 second with all context as it was when the
user turned the machine “off”), system alert functions (such as the system being used as an
answering machine or fax machine), or application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off
state. A mechanism to stop current flow is required for legal reasons in some jurisdictions (for
example, in some European countries). The other is the “main” power button. This is in some
obvious place (for example, beside the keyboard on a laptop). Unlike legacy on/off buttons, all it
does is send a request to the system. What the system does with this request depends on policy issues
derived from user preferences, user function requests, and application data.

34 April, 2015 Version 5.1 Errata A

ACPI Overview

3.2.2 Platform Power Management Characteristics

3.2.2.1Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/
ACPI will allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see
Section 11, “Thermal Management”) and the embedded controller interface (see Section 12, “ACPI
Embedded Controller Interface Specification™).

3.2.2.2 Desktop PCs

Power-managed desktops will be of two types, though the first type will migrate to the second over
time.

Ordinary “Green PC”

Here, new appliance functions are not the issue. The machine is really only used for
productivity computations. At least initially, such machines can get by with very
minimal function. In particular, they need the normal ACPI timers and controls, but
don’t need to support elaborate sleeping states, and so on. They, however, do need to
allow the OS to put as many of their devices/resources as possible into device standby
and device off states, as independently as possible (to allow for maximum compute
speed with minimum power wasted on unused devices). Such PCs will also need to
support wake from the sleeping state by means of a timer, because this allows
administrators to force them to turn on just before people are to show up for work.

Home PC

Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the
functionality of the ordinary green PC. In fact, it has all of the ACPI power
functionality of a laptop except for docking and lid events (and need not have any
legacy power management). Note that there is also a thermal management aspect to a
home PC, as a home PC user wants the system to run as quietly as possible, often in a
thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because
they have the largest hardware configurations and because it’s not practical for somebody to hit the
off switch when they leave at night.

Day Mode

In day mode, servers are power-managed much like a corporate ordinary green PC,
staying in the Working state all the time, but putting unused devices into low-power
states whenever possible. Because servers can be very large and have, for example,
many disk spindles, power management can result in large savings. OSPM allows
careful tuning of when to do this, thus making it workable.

Version 5.1 Errata A 35

Advanced Configuration and Power Interface Specification

Night Mode

In night mode, servers look like home PCs. They sleep as deeply as they can and are
still able to wake and answer service requests coming in over the network, phone
links, and so on, within specified latencies. So, for example, a print server might go
into deep sleep until it receives a print job at 3 A.M., at which point it wakes in
perhaps less than 30 seconds, prints the job, and then goes back to sleep. If the print
request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states
are introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping

state is described, and an example of ACPI-compatible device management using a modem is given.

3.3.1 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending
commands to a device. These standards define the operations used to manage power of devices on a
particular I/O interconnect and the power states that devices can be put into. Defining these
standards for each I/O interconnect creates a baseline level of power management support the OS
can utilize. Independent Hardware Vendors (IHVs) do not have to spend extra time writing software
to manage power of their hardware, because simply adhering to the standard gains them direct OS
support. For OS vendors, the I/O interconnect standards allow the power management code to be
centralized in the driver for each I/O interconnect. Finally, I/O interconnect-driven power
management allows the OS to track the states of all devices on a given 1/O interconnect. When all
the devices are in a given state (or example, D3 - off), the OS can put the entire I/O interconnect into
the power supply mode appropriate for that state (for example, D3 - off).

I/O interconnect-level power management specifications are written for a number of buses

including:

« PCI

* PCI Express
e CardBus

+ USB

» IEEE 1394

3.3.2 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used
for the power states of devices. Generally, these states are defined in terms of the following criteria:

e Power consumption--How much power the device uses.
* Device context--How much of the context of the device is retained by the hardware.

* Device driver--What the device driver must do to restore the device to fully on.

36 April, 2015 Version 5.1 Errata A

ACPI Overview

* Restore latency--How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for
the class. See Section 2.3, “Device Power State Definitions,” for the detailed description of the
general device power states (D0-D3).

3.3.3 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must
support some consistent set of power-related characteristics. For example, when the bus-specific
mechanism to set the device power state to a given level is invoked, the actions a device might take
and the specific sorts of behaviors the OS can assume while the device is in that state will vary from
device type to device type. For a fully integrated device power management system, these class-
specific power characteristics must also be standardized:

Device Power State Characteristics.

Each class of device has a standard definition of target power consumption levels,
state-change latencies, and context loss.

Minimum Device Power Capabilities.
Each class of device has a minimum standard set of power capabilities.

Device Functional Characteristics.

Each class of device has a standard definition of what subset of device functionality or
features is available in each power state (for example, the net card can receive, but
cannot transmit; the sound card is fully functional except that the power amps are off,
and so on).

Device Wakeup Characteristics.
Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state
characteristics for each class of device.

3.4 Controlling Device Power

ACPI interfaces provides control and information needed to perform device power management.
ACPI interfaces describe to OSPM the capabilities of all the devices it controls. It also gives the OS
the control methods used to set the power state or get the power status for each device. Finally, it has
a general scheme for devices to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. Power management of these devices is
handled through their own bus specification (in this case, PCI). All other devices on the main board
are handled through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported
through their own bus specification, the root of each bus in the system, and devices that have
additional power management or configuration options not covered by their own bus specification.

For more detailed information see Section 7, “Power and Performance Management.”

Version 5.1 Errata A 37

Advanced Configuration and Power Interface Specification

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management
features that the device supports. The Differentiated Definition Block given to the OS by the BIOS
describes every device handled by ACPI. This description contains the following information:

* A description of what power resources (power planes and clock sources) the device needs in
each power state that the device supports. For example, a device might need a high power bus
and a clock in the DO state but only a low-power bus and no clock in the D2 state.

* A description of what power resources a device needs in order to wake the machine (or none to
indicate that the device does not support wake). The OS can use this information to infer what
device and system power states from which the device can support wake.

* The optional control method the OS can use to set the power state of the device and to get and
set resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock
sources themselves and the control methods for turning them on and off. For detailed information,
see Section 7, “Power and Performance Management.”

3.4.2 Setting Device Power States

OSPM uses the Set Power State operation to put a device into one of the four power states.

When a device is put in a lower power state, it configures itself to draw as little power from the bus
as possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power
state based on the current device requirements on that bus. For example, if all devices on a bus are in
the D3 state, the OS will send a command to the bus control chip set to remove power from the bus
(thus putting the bus in the D3 state). If a particular bus supports a low-power supply state, the OS
puts the bus in that state if all devices are in the D1 or D2 state. Whatever power state a device is in,
the OS must be able to issue a Set Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device

before it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in Section 7, “Power and Performance Management.”).

Once the power resources have been switched, the OS executes the appropriate control method to
put the device in that power state. Notice that this might not mean that power is removed from the
device. If other active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status

38

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI
to inform the OS of changes in power status. For example, a device can trigger an interrupt to inform
the OS that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status
changes) to OSPM. The platform signals events to the OS via the SCI interrupt. An SCI interrupt

April, 2015 Version 5.1 Errata A

ACPI Overview

status bit is set to indicate the event to the OS. The OS runs the control method associated with the
event. This control method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification.
For batteries that report only basic battery status information (such as total capacity and remaining
capacity), the OS uses control methods from the battery’s description table to read this information.
To read status information for Smart Batteries, the OS can use a standard Smart Battery driver that
directly interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer

The wake operation enables devices to wake the computer from a sleeping power state. This
operation must not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in
which they can still forward the wake signal. When a device with wake enabled decides to wake the
machine, it sends the defined signal on its bus. Bus bridges must forward this signal to upstream
bridges using the appropriate signal for that bus. Thus, the signal eventually reaches the core chip set
(for example, an ACPI chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to
wake the machine based on application requests, and then enables wake on those devices in a device
and bus specific manner.

The OS enables the wake feature on devices by setting that device’s SCI Enable bit. The location of
this bit is listed in the device’s entry in the description table. Only devices that have their wake
feature enabled can wake the machine. The OS keeps track of the power states that the wake devices

support, and keeps the machine in a power state in which the wake can still wake the machine!
(based on capabilities reported in the description table).

When the computer is in the Sleeping state and a wake device decides to wake the machine, it
signals to the ACPI chip set. The SCI status bit corresponding to the device waking the machine is
set, and the ACPI chip set resumes the machine. After the OS is running again, it clears the bit and
handles the event that caused the wake. The control method for this event then uses the Notify
command to tell the OS which device caused the wake.

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI
platform must also be able to record and report the wake source to OSPM. When a system is
woken from certain states (such as the S4 state), it may start out in non-ACPI mode. In this case,

1. Some OS policies may require the OS to put the machine into a global system state for
which the device can no longer wake the system. Such as when a system has very low battery power.

Version 5.1 Errata A 39

Advan

Note:

ced Configuration and Power Interface Specification

the SCI status bit may be cleared when ACPI mode is re-entered. However the platform must still
attempt to record the wake source for retrieval by OSPM at a later point.

Although the above description explains how a device can wake the system, note that a device
can also be put into a low power state during the SO system state, and that this device may
generate a wake signal in the SO state as the following example illustrates.

3.4.5 Example: Modem Device Power Management

40

To illustrate how these power management methods function in ACPI, consider an integrated
modem. (This example is greatly simplified for the purposes of this discussion.) The power states of
a modem are defined as follows (this is an excerpt from the Modem Device Class Power
Management Specification):

DO
Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer
D1
Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook
D2
Same as D3
D3
Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook
The power policy for the modem is defined as follows:
D3 DO
COM port opened
D0,D1 D3
COM port closed
D0 D1
Modem put in answer mode
D1 DO

Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

April, 2015 Version 5.1 Errata A

ACPI Overview

Based on that policy, the modem and the COM port to which it is attached can be implemented in

hardware as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This
example is not intended to describe how OEMs should build hardware.

PWR1 PWR?2
By £y
PWRL1 EN | | 7 ¢
PWR2_EN | ﬁ
MDM_D3
MDM D1
COM_D3
- v A A
ACPI core /o e /o Ph
chip set COM port Modem Phone one
(UART) controller Control interface line
— RI
N
WAKE <

Figure 3-3 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in the

ACPI Differentiated Description Block so that devices are isolated as power planes are sequenced
off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the

modem’s entry in the Differentiated Definition Block. In this case, the entry for the modem would
report:

The device supports DO, D1, and D3:

* DO requires PWR1 and PWR?2 as power resources
D1 requires PWRI as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine
from DO, D1, and D3)

Control methods for setting power state and resources

3.4.5.2 Setting the Modem Power State

While the OS is running (GO state), it switches the modem to different power states according to the
power policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state.
Then if the application puts the modem in answer mode, the OS puts the modem in the D1 state to

Version 5.1 Errata A 41

Advanced Configuration and Power Interface Specification

wait for the call. To make this state transition, the ACPI first checks to see what power resources are
no longer needed. In this case, PWR?2 is not needed. Then it checks to make sure no other device in
the system requires the use of the PWR2 power resource. If the resource is no longer needed, the
OSPM uses the _OFF control method associated with that power resource in the Differentiated
Definition Block to turn off the PWR2 power plane. This control method sends the appropriate
commands to the core chip set to stop asserting the PWR2_EN line. Then, OSPM runs a control
method (_PS1) provided in the modem’s entry to put the device in the D1 state. This control method
asserts the MDM_ D1 signal that tells the modem controller to go into a low-power mode.

OSPM does not always turn off power resources when a given device is put in a lower power state.
For example, assume that the PWR1 power plane also powers an active line printer (LPT) port.
Suppose the user terminates the modem application, causing the COM port to be closed, and
therefore causing the modem to be shut off (state D3). As always, OSPM checks to see which power
resources are no longer needed. Because the LPT port is still active, PWR1 is in use. OSPM does not
turn off the PWR1 resource. It continues the state transition process by running the modem’s control
method to switch the device to the D3 power state. The control method causes the MDM_ D3 line to
be asserted. The modem controller now turns off all its major functions so that it draws little power,
if any, from the PWRI line. Because the COM port is closed, the same sequence of events will take
place to put it in the D3 state. Notice that these registers might not be in the device itself. For
example, the control method could read the register that controls MDM_D3.

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power
state of the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control
method (_PSC) supplied in the modem’s entry in the Differentiated Definition Block. This control

method reads from the necessary registers to determine the modem’s power state.

3.4.5.4 Waking the Computer

42

As indicated in the modem capabilities, this modem can wake the machine from any device power
state. Before putting the computer in a sleep state, the OS enables wake on any devices that
applications have requested to be able to wake the machine. Then, it chooses the lowest sleeping
state that can still provide the power resources necessary to allow all enabled wake devices to wake
the machine. Next, the OS puts each of those devices in the appropriate power state, and puts all
other devices in the D3 state. In this case, the OS puts the modem in the D3 state because it supports
wake from that state. Finally, the OS saves a resume vector and puts the machine into a sleep state
through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate
(RD) line when it detects a ring on the phone line. This line is routed to the core chip set to generate a
wake event. The chip set then wakes the system and the hardware will eventually passes control
back to the OS (the wake mechanism differs depending on the sleeping state). After the OS is
running, it puts the device in the DO state and begins handling interrupts from the modem to process
the event.

April, 2015 Version 5.1 Errata A

ACPI Overview

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and
C3) when the OS is idle. In these low-power states, the CPU does not run any instructions, and
wakes when an interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power
Management Timer. This timer runs at a known, fixed frequency and allows the OS to precisely
determine idle time. Depending on this idle time estimate, the OS will put the CPU into different
quality low-power states (which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in Section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/
executing states, CO for processors and DO for devices. Performance states allow OSPM to make
tradeoffs between performance and energy conservation. Device and processor performance states
have the greatest impact when the states invoke different device and processor efficiency levels as
opposed to a linear scaling of performance and energy consumption. Since performance state
transitions occur in the active/executing device states, care must be taken to ensure that performance
state transitions do not adversely impact the system.

Examples of device performance states include:

* A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.

e An LCD panel that supports multiple brightness levels that correspond to levels of power
consumption.

e A graphics component that scales performance between 2D and 3D drawing modes that
corresponds to levels of power consumption.

* An audio subsystem that provides multiple levels of maximum volume that correspond to levels
of maximum power consumption.

« A Direct-RDRAM™ controller that provides multiple levels of memory throughput
performance, corresponding to multiple levels of power consumption, by adjusting the
maximum bandwidth throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable
OSPM to configure the required resources of motherboard devices along with their dynamic
insertion and removal. ACPI Definition Blocks, including the Differentiated System Description
Table (DSDT) and Secondary System Description Tables (SSDTs), describe motherboard devices in
a hierarchical format called the ACPI namespace. The OS enumerates motherboard devices simply
by reading through the ACPI Namespace looking for devices with hardware IDs.

Version 5.1 Errata A 43

Advanced Configuration and Power Interface Specification

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report
the hardware resources that the device could occupy, an object that reports the resources that are
currently used by the device, and objects for configuring those resources. The information is used by
the Plug and Play OS (OSPM) to configure the devices.

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes

boot devices described in the ACPI system description tables as well as devices that are
controlled through other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it
when the OS finds it in the DSDT. This table will have control methods that give the OS the
following information:

* The device can use IRQ 3, I/0 3F8-3FF or IRQ 4, I/O 2E8-2EF
* The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one
of the supported configurations that does not conflict with any other devices. Then, OSPM
configures the device for those resources by running a control method supplied in the modem’s
section of the Differentiated Definition Block. This control method will write to any 1/O ports or
memory addresses necessary to configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of
hardware resources including processors, memory, and I/O buses, that comprise what is commonly
known as a “NUMA node”. Processor accesses to memory or I/O resources within the local NUMA
node is generally faster than processor accesses to memory or I/O resources outside of the local
NUMA node. ACPI defines interfaces that allow the platform to convey NUMA node topology
information to OSPM both statically at boot time and dynamically at run time as resources are added
or removed from the system.

3.8 System Events

44

ACPI includes a general event model used for Plug and Play, Thermal, and Power Management
events. There are two registers that make up the event model: an event status register and an event
enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS.
When the OS receives this interrupt, it will run the control methods corresponding to any bits set in
the event status register. These control methods use AML commands to tell the OS what event
occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management
events connected to the same pin in the core logic. The event status and event enable registers would
only have one bit each: the bit corresponding to the event pin.

April, 2015 Version 5.1 Errata A

ACPI Overview

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing
the status bit set, runs the control method for that bit. The control method checks the hardware and
determines the event was a docking event (for example). It then signals to the OS that a docking
event has occurred, and can tell the OS specifically where in the device hierarchy the new devices
will appear.

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug
and Play, Thermal, and Power Management events wired to three different pins so there would be
three status bits (and three enable bits). Yet another design might have every individual event wired
to its own pin and status bit. This design, at the opposite extreme from the single pin design, allows
very complex hardware, yet very simple control methods. Countless variations in wiring up events
are possible. However, note that care must be taken to ensure that if events share a signal that the
event that generated the signal can be determined in the corresponding event handling control
method allowing the proper device notification to be sent.

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by
adjusting the Low Battery or Battery Warning trip point. When there are multiple batteries present,
the battery subsystem is not required to perform any synthesis of a “composite battery” from the data
of the separate batteries. In cases where the battery subsystem does not synthesize a “composite
battery” from the separate battery's data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control
Method Battery interface.

* Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see Section 12.9, “SMBus
Host Controller Interface via Embedded Controller.” For additional information about the Smart
Battery subsystem interface, see Section 10.1, “Smart Battery Subsystems.”

» Control Method Battery is completely accessed by AML code control methods, allowing the
OEM to choose any type of battery and any kind of communication interface supported by
ACPI. For more information about the Control Method Battery Interface, see Section 10.2,
“Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to
query information from the platform’s battery system. This information may include full charged
capacity, present battery capacity, rate of discharge, and other measures of the battery’s condition.
All battery system types must provide notification to the OS when there is a change such as inserting
or removing a battery, or when a battery starts or stops discharging. Smart Batteries and some
Control Method Batteries are also able to give notifications based on changes in capacity. Smart
batteries provide extra information such as estimated run-time, information about how much power

Version 5.1 Errata A 45

Advanced Configuration and Power Interface Specification

the battery is able to provide, and what the run-time would be at a predetermined rate of
consumption.

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining
capacity. Remaining capacity decreases during usage, and it also changes depending on the
environment. Therefore, the OS must use latest full-charged capacity to calculate the battery
percentage. In addition the battery system must report warning and low battery levels at which the
user must be notified and the system transitioned to a sleeping state. SeeFigure 3-4 for the relation of
these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit
of battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

Designed capacity
Aqf----eeeeee Last full charged capacity

””” <4— Present remaining capacity

|1 €-------- OEM designed initial capacity for warning
.. _ IR TR OEM designed initial capacity for low

Figure 3-4 Reporting Battery Capacity

3.9.3 Battery Gas Gauge

At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following
formula:

Battery R ining C it Ah/mWh
Remaining Battery Percentage[%] = attery Remaining Capacity [mAh/mWh *100

Last Full Charged Capacity [mMAh/mWh]

Figure 3-5 Remaining Battery Percent Formula

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining battery life. At
the most basic level, Remaining Battery life is calculated by following formula:

Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mA/mW]

Remaining Battery Life [h]=

46 April, 2015 Version 5.1 Errata A

ACPI Overview

Figure 3-6 Re;maining Battery Life Formula

Smart Batteries also report the present rate of drain, but since they can directly report the estimated
run-time, this function should be used instead as it can more accurately account for variations
specific to the battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical
battery level or flag. The values for warning and low represent the amount of energy or battery
capacity needed by the system to take certain actions. The critical battery level or flag is used to
indicate when the batteries in the system are completely drained. OSPM can determine independent
warning and low battery capacity values based on the OEM-designed levels, but cannot set these
values lower than the OEM-designed values, as shown in the figure below

Full — ;
K Last full charged capacity

OSPM-selected low battery warning capacity

Warning

OEM-designed initial capacity for warning (minimum)

OSPM-selected low battery

gl e

OEM-designed initial capacity for low (minimum)

Critical SR OEM-defined Battery Critical flag

Figure 3-7 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and
OEM-designed initial low capacity as well as a flag to report when that battery has reached or is
below its critical energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily
specific to one particular machine type, so the OEM-designed warning, low, and critical levels are
reported separately in a Smart Battery Table described in Section 5.2.14.

The table below describes how these values should be set by the OEM and interpreted by the OS.

Version 5.1 Errata A 47

Advanced Configuration and Power Interface Specification

Table 3-4

Low Battery Levels

Level

Description

Warning

When the total available energy (mWh) or capacity (mAh) in the batteries falls below this level,
the OS will notify the user through the Ul. This value should allow for a few minutes of run-time
before the “Low” level is encountered so the user has time to wrap up any important work,
change the battery, or find a power outlet to plug the system in.

Low

This value is an estimation of the amount of energy or battery capacity required by the system to
transition to any supported sleeping state. When the OS detects that the total available battery
capacity is less than this value, it will transition the system to a user defined system state (S1-
S5). In most situations this should be S4 so that system state is not lost if the battery eventually
becomes completely empty. The design of the OS should consider that users of a multiple battery
system may remove one or more of the batteries in an attempt replace or charge it. This might
result in the remaining capacity falling below the “Low” level not leaving sufficient battery capacity
for the OS to safely transition the system into the sleeping state. Therefore, if the batteries are
discharging simultaneously, the action might need to be initiated at the point when both batteries
reach this level.

Critical

The Critical battery state indicates that all available batteries are discharged and do not appear to
be able to supply power to run the system any longer. When this occurs, the OS must attempt to
perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of 0, but
an OEM may choose to put a larger value in the Smart Battery Table to provide an extra margin
of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per battery. If any
battery in the system is in a critically low state and is still providing power to the system (in other
words, the battery is discharging), the system is considered to be in a critical energy state. The
_BST control method is required to return the Critical flag on a discharging battery only when all
batteries have reached a critical state; the ACPI BIOS is otherwise required to switch to a non-
critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteries in a system are critical is not a situation that should be encountered
normally, since the system should be put into a sleeping state when the battery becomes low. In the
case that this does occur, the OS should take steps to minimize any damage to system integrity. The
emergency shutdown procedure should be designed to minimize bad effects based on the assumption
that power may be lost at any time. For example, if a hard disk is spun down, the OS should not try
to spin it up to write any data, since spinning up the disk and attempting to write data could
potentially corrupt files if the write were not completed. Even if a disk is spun up, the decision to
attempt to save even system settings data before shutting down would have to be evaluated since
reverting to previous settings might be less harmful than having the potential to corrupt the settings
if power was lost halfway through the write operation.

3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the
user. However, it is possible with many battery systems to provide more useable runtime on an old
battery if a calibration or conditioning cycle is run occasionally. The user has typically been able to

48

April, 2015 Version 5.1 Errata A

ACPI Overview

perform a calibration cycle either by going into the BIOS setup menu, or by running a custom driver
and calibration application provided by the OEM. The calibration process typically takes several
hours, and the laptop must be plugged in during this time. Ideally the application that controls this
should make this as good of a user experience as possible, for example allowing the user to schedule
the system to wake up and perform the calibration at some time when the system will not be in use.
Since the calibration user experience does not need to be different from system to system it makes
sense for this service to be provided by the OSPM. .In this way OSPM can provide a common
experience for end users and eliminate the need for OEMs to develop custom battery calibration
software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in Section 10.2.2.5 and

Section 10.2.2.6. First, there is a means to detect when it would be beneficial to calibrate the battery.
Second there is a means to perform that calibration cycle. Both of those functions may be
implemented by dedicated hardware such as a battery controller chip, by firmware in the embedded
controller, by the BIOS, or by OSPM. From here on any function implemented through AML,
whether or not the AML code relies on hardware, will be referred to as “AML controlled” since the
interface is the same whether the AML passes control to the hardware or not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be
reported through the BMD method. Alternately, the BMD method may simply report the number
of cycles before calibration should be performed and let the OS attempt to count the cycles. A
counter implemented by the hardware or the BIOS will generally be more accurate since the
batteries can be used without the OS running, but in some cases, a system designer may opt to
simplify the hardware or BIOS implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration
cycle can be AML controlled or OSPM controlled. OSPM can only implement a very simple
algorithm since it doesn’t have knowledge of the specifics of the battery system. It will simply
discharge the battery until it quits discharging, then charge it until it quits charging. In the case
where the AC adapter cannot be controlled through the BMC, it will prompt the user to unplug the
AC adapter and reattach it after the system powers off. If the calibration cycle is controlled by AML,
the OS will initiate the calibration cycle by calling BMC. That method will either give control to
the hardware, or will control the calibration cycle itself. If the control of the calibration cycle is
implemented entirely in AML code, the BIOS may avoid continuously running AML code by
having the initial call to BMC start the cycle, set some state flags, and then exit. Control of later
parts of the cycle can be accomplished by putting code that checks these state flags in the battery
event handler (_Qxx, Lxx, or Exx).

Details of the control methods for this interface are defined in Section 10.2.

3.10 Thermal Management

ACPI allows the OS to play a role in the thermal management of the system while maintaining the

platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can
make cooling decisions based on application load on the CPU as well as the thermal heuristics of the
system. OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is
one large thermal zone, but an OEM can partition the system into several logical thermal zones if

Version 5.1 Errata A 49

Advanced Configuration and Power Interface Specification

necessary. Figure 3-8 is an example mobile PC diagram that depicts a single thermal zone with a
central processor as the thermal-coupled device. In this example, the whole notebook is covered as
one large thermal zone. This notebook uses one fan for active cooling and the CPU for passive

-1l

cooling.
Thermalr = le—g—s CPY
assive Cooling Memory/ A
Zone cPU @ e PCl Bridge | -
.
> (e »| PCI/PCI
- Fan _ [] Bridge
.| (Active Cooling) A
C o LCD
% le»| Graphics
M l—»(-) CRT

1L

USB

9y

Port 1

Momentary
A 4

v lep| Keyboard
FO: PIC, PITs, F2: Embedded
DMA, RTC, EIO, .| USB Controller psi2
P> pors
H@ Mouse
F1l: BM A
IDE
DPRO ; P
A 4 SIO: -
EPROM COMs, DPR1
LPT, 4——-’[]1—»{:} CcoMm
FDC, [——»(—) LPT
ACPI

Figure 3-8 Thermal Zone

Docking

The following sections are an overview of the thermal control and cooling characteristics of a
computer. For some thermal implementation examples on an ACPI platform, see Section 11.6,
“Thermal Zone Interface Requirements.”

3.10.1 Active and Passive Cooling Modes

ACPI defines two cooling modes, Active and Passive:

50

Passive cooling

OS reduces the power consumption of devices at the cost of system performance to
reduce the temperature of the machine.

Active cooling

OS increases the power consumption of the system (for example, by turning on a fan)
to reduce the temperature of the machine.

These two cooling modes are inversely related to each other. Active cooling requires increased
power to reduce the heat within the system while Passive cooling requires reduced power to decrease

April, 2015

Version 5.1 Errata A

ACPI Overview

the temperature. The effect of this relationship is that Active cooling allows maximum system
performance, but it may create undesirable fan noise, while Passive cooling reduces system
performance, but is inherently quiet.

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a
preference (or a level of preference) for either performance or energy conservation. Allowing the
end user to choose this preference is most critical to mobile system users where maximizing system
run-time on a battery charge often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s
preference for energy conservation corresponds to the Passive cooling mode. ACPI defines an
interface to convey the cooling mode to the platform. Active cooling can be performed with minimal
OSPM thermal policy intervention. For example, the platform indicates through thermal zone
parameters that crossing a thermal trip point requires a fan to be turned on. Passive cooling requires
OSPM thermal policy to manipulate device interfaces that reduce performance to reduce thermal
zone temperature.

3.10.3 Acoustics (Noise)

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient
noise environment. In this case, the end user’s physical requirement for fan silence may override the
preference for either performance or energy conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire
for fan silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and
passive cooling, see Section 11, “Thermal Management.”

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended
thermal control in a complex system, ACPI specifies a multiple thermal zone implementation. Under
a multiple thermal zone model, OSPM will independently manage several thermal-coupled devices
and a designated thermal zone for each thermal-coupled device, using Active and/or Passive cooling
methods available to each thermal zone. Each thermal zone can have more than one Passive and
Active cooling device. Furthermore, each zone might have unique or shared cooling resources. In a
multiple thermal zone configuration, if one zone reaches a critical state then OSPM must shut down
the entire system.

3.11 Flexible Platform Architecture Support

ACPI defines mechanisms and models to accommodate platform architectures that deviate from the
traditional PC. ACPI provides support for platform technologies that enable lower-power, lower
cost, more design flexibility and more device diversity. This support is described in the following
sections, and detailed in later chapters.

Version 5.1 Errata A 51

Advanced Configuration and Power Interface Specification

3.11.1 Hardware-reduced ACPI

ACPI offers an alternative platform interface model that removes ACPI hardware requirements for
platforms that do not implement the PC Architecture. In the Hardware-reduced ACPI model, the
Fixed hardware interface requirements of Chapter 4 are removed, and Generic hardware interfaces
are used instead. This provides the level of flexibility needed to innovate and differentiate in low-
power hardware designs while enabling support by multiple Operating Systems.

Hardware-reduced ACPI has the following requirements:
» UEFI firmware interface for boot (Legacy BIOS is not supported).

* Boot in ACPI mode only (ACPI Enable, ACPI Disable, SMI_CMD and Legacy mode are not
supported)

* No hardware resource sharing between OSPM and other asynchronous operating environments,
such as UEFI Runtime Services or System Management Mode. (The Global Lock is not
supported)

* No dependence on OS-support for maintaining cache coherency across processor sleep states
(Bus Master Reload and Arbiter Disable are not supported)

* GPE block devices are not supported

Systems that do not meet the above requirements must implement the ACPI Fixed Hardware
interface.

3.11.1.1 Interrupt-based Wake Events

On HW-reduced ACPI platforms, wakeup is an attribute of connected interrupts. Interrupts that are
designed to wake the processor or the entire platform are defined as wake-capable. Wake-capable
interrupts, when enabled by OSPM, wake the system when they assert.

3.11.2 Low-Power Idle

Platform architectures may support hardware power management models other than the traditional
ACPI Sleep/Resume model. These are typically implemented in proprietary hardware and are
capable of delivering low-latency, connected idle while saving as much energy as ACPI Sleep states.
To support the diversity of hardware implementations, ACPI provides a mechanism for the platform
to indicate to OSPM that such capability is available.

3.11.2.1 Low Power SO Idle Capable Flag

52

This flag in the FADT informs OSPM whether a platform has advanced idle power capabilities such
that SO idle achieves savings similar to or better than those typically achieved in S3. With this flag,
OSPM can keep the system in SO idle for its low-latency response and its connectedness rather than
transitioning to a system sleep state which has neither. The flag enables support for a diversity of
platform implementations: traditional Sleep/Resume systems, systems with advanced idle power,
systems that support neither, and systems that can support both, depending on the capabilities of the
installed OS.

April, 2015 Version 5.1 Errata A

ACPI Overview

3.11.3 Connection Resources

General-purpose I/O (GPIO) and Simple Peripheral Bus (SPB) controllers are hardware resources
provided in silicon solutions to enable flexible configuration of a broad range of system designs.
These controllers can provide input, output, interrupt and serial communication connections to
arbitrary devices in a system. The function to which one of these connections is put depends on the
specific device involved and the needs of the platform design. In order to support these platform
technologies, ACPI defines a general abstraction for flexible connections.

In order to maintain compatibility with existing software models, ACPI abstracts these connections
as hardware resources.

The Connection Resource abstraction mirrors the hardware functionality of GPIO and SPB
controllers. Like other resources, these connections are allocated and configured before use. With
the resources described by the platform, OSPM abstracts the underlying configuration from device
drivers. Drivers, then, can be written for the device's function only, and reused with that functional
hardware regardless of how it is integrated into a given system.

The key aspects of the Connection Resource abstraction are:
* GPIO and SPB controllers are enumerated as devices in the ACPI Namespace.
* GPIO Connection and SPB Connection resource types are defined.

* Namespace devices that are connected to GPIO or SPB controllers use Resource Template
Macros to add Connection Resources to their resource methods (CRS, SRS, etc.).

* GPIO Connection Resources can be designated by the platform for use as GPIO-signaled ACPI
Events.

* Connection Resources can be used by AML methods to access pins and peripherals through
GPIO and SPB operation regions.

3.11.3.1 Supported Platforms

The HW-reduced ACPI and Low power SO Idle Capable flags combine to represent 4 platform types
that can be implemented. The following table enumerates these, as well as the intended OSPM
behavior and specific platform requirements.

Table 3-5 Implementable Platform Types

Low Power | Hardware- | OSPM Behavior Platform Implementation

SO Idle reduced

Capable ACPI

0 0 Fixed hardware interface accessed Implement Fixed-feature hardware
for features, events and system interface.

power management.
Traditional Sleep/Resume power
management.

Version 5.1 Errata A 53

Advanced Configuration and Power Interface Specification

54

Low Power | Hardware- | OSPM Behavior Platform Implementation
SO Idle reduced
Capable ACPI
0 1 Fixed-feature hardware interface not | Implement GPIO-signaled ACPI Events;
accessed. Implement software alternatives to any
Sleep/Resume Power Management ACPI fixed features, including the Sleep
using FADT SLEEP_*_REG fields registers.
and Interrupt-based wake signaling. Implement wake-capable interrupts for
wake events.
1 0 Fixed hardware interface accessed Implement Fixed-feature hardware
for features and events. interface.
Platform-specific Low-power Idle Implement low-power hardware such
power management. that the platform achieves power savings
in SO similar to or better than those
typically achieved in S3.
1 1 Fixed-feature hardware interface not | Implement GPIO-signaled ACPI Events;

accessed.
Platform-specific Low-power Idle
power management.

Implement software alternatives to any
ACPI fixed features desired;

Implement wake-capable interrupts for
any wake events.

Implement low-power hardware such
that the platform achieves power savings
in SO similar to or better than those
typically achieved in S3.

April, 2015

Version 5.1 Errata A

ACPI Hardware Specification

4
ACPI Hardware Specification

ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. These interface mechanisms are
optional (See "Hardware-Reduced ACPI", below).However, if the ACPI Hardware Specification is
implemented, platforms must comply with the requirements in this section.

This section describes the hardware aspects of ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of
the existing legacy programming model the same; however, to meet certain feature goals, designated
features conform to a specific addressing and programming scheme. Hardware that falls within this
category is referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section
carefully to understand the changes needed to convert a legacy-only hardware model to an ACPI/
Legacy hardware model or an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within
the generic category has a wide degree of flexibility in its implementation.

4.1 Hardware-Reduced ACPI

For certain classes of systems the ACPI Hardware Specification may not be adequate. Examples
include legacy-free, UEFI-based platforms with recent processors, and those implementing mobile
platform architectures. For such platforms, a Hardware-reduced ACPI mode is defined. Under this
definition, the ACPI Fixed Hardware interface is not implemented, and software alternatives for
many of the features it supports are used instead. Note, though, that Hardware-reduced ACPI is not
intended to support every possible ACPI system that can be built today. Rather, it is intended to
introduce new systems that are designed to be HW-reduced from the start. The ACPI HW
Specification should be used if the platform cannot be designed to work without it. Specifically, the
following features are not supported under the HW-reduced definition:

* The Global Lock, SMI_CMD, ACPI Enable and ACPI Disable. Hardware-reduced ACPI
systems always boot in ACPI mode, and do not support hardware resource sharing between
OSPM and other asynchronous operating environments, such as UEFI Runtime Services or
System Management Mode.

* Bus Master Reload and Arbiter Disable. Systems that depend on OS use of these bits to maintain
cache coherency across processor sleep states are not supported.

* GPE block devices are not supported.
Platforms that require the above features must implement the ACPI Hardware Specification.

Platforms that are designed for the Hardware-reduced ACPI definition must implement Revision 5
or greater of the Fixed ACPI Descriptor Table, and must set the HW_REDUCED_ACPI flag in the
Flags field.

Version 5.1 Errata A 55

Advanced Configuration and Power Interface Specification

Note: FFH is permitted and applicable to both full and HW-reduced ACPI implementations.

4.1.1 Hardware-Reduced Events

HW-reduced ACPI platforms require alternatives to some of the features supported in the ACPI HW
Specification, where none already exists. There are two areas that require such alternatives: The
ACPI Platform Event Model, and System and Device Wakeup.

4.1.1.1 GPIO-Signaled Events

General Purpose Input/Output (GPIO) hardware can be used for signaling platform events. GPIO
HW is a generalization of the GPE model, and is a shared hardware resource used for many
applications. ACPI support for GPIO is described in section 3.11.3, "Connection Resources".

ACPI Events are signaled by GPIO interrupt connections, which describe the connection to a GPIO
controller and pin, and which are mapped to the ACPI Event Handling mechanism via the ACPI
Event Information namespace object (_ AEI). OSPM treats GPIO Interrupt Connections listed in
_AEI exactly as it does SCI interrupts: it executes the Event Method associated with the specific
event. The name of the method to run is determined by the pin information contained in the GPIO
Interrupt Connection resource.

GPIO-signaled events can also be wake events, just as GPE events can on traditional ACPI
platforms. Designating which events are wake events is done through attributes of the GPIO
Interrupt Connection resource used.

4.1.1.2 Interrupt-based Wake Events

Wake events on HW-reduced ACPI platforms are always caused by an interrupt reaching the
processor. Therefore, there are two requirements for waking the system from a sleep or low-power
idle state, or a device from a low-power state. First, the interrupt line must be Wake-Capable. Wake-
capable interrupts are designed to be able to be delivered to the processor from low-power states.
This implies that it must also cause the processor and any required platform hardware to power-up so
that an Interrupt Service Routine can run. Secondly, an OS driver must enable the interrupt before
entering a low-power state, or before OSPM puts the system into a sleep or low-power idle state.

Wake-capable interrupts are designated as such in their Extended Interrupt or GPIO Interrupt
Connection resource descriptor.

4.2 Fixed Hardware Programming Model

56

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:

* Performance sensitive features
* Features that drivers require during wake
* Features that enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power
management timer are defined as fixed hardware to reduce the performance impact of accessing this
hardware, which will result in more quickly reducing a thermal condition or extending battery life. If
this logic were allowed to reside in PCI configuration space, for example, several layers of drivers

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

would be called to access this address space. This takes a long time and will either adversely affect
the power of the system (when trying to enter a low-power state) or the accuracy of the event (when
trying to get a time stamp value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to
load the entire OS. For example, if PCI configuration space access is needed, the bus enumerator is
loaded with all drivers used by the enumerator. Defining these interfaces in fixed hardware at
addresses with which OSPM can communicate without any other driver’s assistance, allows OSPM
to gather information prior to making a decision as to whether it continues loading the entire OS or
puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition
the system to the G2 state. In the case where OSPM event handler is no longer able to respond to
power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state.

4.3 Generic Hardware Programming Model

Although the fixed hardware programming model requires hardware registers to be defined at
specific address locations, the generic hardware programming model allows hardware registers to
reside in most address spaces and provides system OEMs with a wide degree of flexibility in the
implementation of specific functions in hardware. OSPM directly accesses the fixed hardware
registers, but relies on OEM-provided ACPI Machine Language (AML) code to access generic
hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s
control and event logic.

The section entitled “ACPI Source Language Reference” describes the ACPI Source Language
(ASL)—a programming language that OEMs use to create AML. The ASL language provides many
of the operators found in common object-oriented programming languages, but it has been
optimized to enable the description of platform power management and configuration hardware. An
ASL compiler converts ASL source code to AML, which is a very compact machine language that
the ACPI AML code interpreter executes.

AML does two things:
e Abstracts the hardware from OSPM
* Buffers OEM code from the different OS implementations

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an
ACPI configuration. One attribute of value-added hardware is that it is all implemented differently.
To enable OSPM to execute properly on different types of value added hardware, ACPI defines
higher level “control methods” that it calls to perform an action. The OEM provides AML code,
which is associated with control methods, to be executed by OSPM. By providing AML code,
generic hardware can take on almost any form.

Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has
to execute the same under any ACPI-compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues
specific to each particular OS.

Version 5.1 Errata A 57

Advanced Configuration and Power Interface Specification

58

The generic feature model is represented in the following block diagram. In this model the generic
feature is described to OSPM through AML code. This description takes the form of an object that
sits in the ACPI Namespace associated with the hardware to which it is adding value.

ACPI Driver

and AML-
Interpreter

ontrol
vents

GP Event Status
- = Generic
Generic Child il
Event Status Logic

Generic Event
Logic

Figure 4-9 Generic Hardware Feature Model

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would
then have a reference to the AML PowerResource object (which controls the value added power
plane) in its namespace, and associated with that object would be control methods that OSPM
invokes to control the D3 state of the drive:

* _PSO0: A control method to sequence the IDE drive to the DO state.
» _PS3: A control method to sequence the IDE drive to the D3 state.
* _PSC: A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the
hardware. OSPM understands how to control power planes (turn them on or off or to get their status)
through its defined PowerResource object, while the hardware has platform-specific AML code
(contained in the appropriate control methods) to perform the desired function. In this example, the
platform would describe its hardware to the ACPI OS by writing and placing the AML code to turn
the hardware off within the PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to
place the drive into the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate PS3 control method to control the value-added “generic” hardware
to place the HDD into an even lower power state.

As an example of a generic event feature, a platform might have a docking capability. In this case, it
will want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to
any shareable system interrupt. In the case of docking, the event is generated when a docking has

been detected or when the user requests to undock the system. This enables the following sequence:

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

OSPM responds to the SCI and calls the AML code event handler associated with that generic event.
The ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections
enable a reader to understand the following:

e Which hardware registers are required or optional when an ACPI feature, concept or interface is
required by a design guide for a platform class

* How to design fixed hardware features
* How to design generic hardware features
* The ACPI Event Model

4.4 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the
hardware are implemented. The following symbols are used in the logic diagrams to represent
programming bits.

@ Write-only control bit

& Enable, control or status bit
X Sticky status bit

Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the
behavior that it generates its control function when it is set. Reads to write-only bits are treated as
ignore by software (the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software
setting or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As
a status bit it directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a “1” to its bit
position.

The rectangular symbol represents a query value from the embedded controller. This is the value the
embedded controller returns to the system software upon a query command in response to an SCI
event. The query value is associated with the event control method that is scheduled to execute upon
an embedded controller event.

4.5 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams
use a notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit

Version 5.1 Errata A 59

Advanced Configuration and Power Interface Specification

Registername contains the name of the register as it appears in this specification
Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PMIx CNT.13

4.6 The ACPI Hardware Model

60

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various
global system states (G0-G3) as illustrated in the following figure by manipulating the defined
interfaces. When first powered on, the platform finds itself in the global system state G3 or
“Mechanical Off.” This state is defined as one where power consumption is very close to zero—the
power plug has been removed; however, the real-time clock device still runs off a battery. The G3
state is entered by any power failure, defined as accidental or user-initiated power loss.

The G3 state transitions into either the GO working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the GO
working state by always returning the status bit SCI_EN set (1) (for more information, see

Section 4.8.2.5, “Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy
and ACPI operations (which is necessary for supporting a non-ACPI OS), then it would always boot
into the Legacy state (illustrated by returning the SCI_EN clear (0)). In either case, a transition out of
the G3 state requires a total boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered
from either the G3 “Mechanical Off,” the G2 “Soft Off,” or the GO “Working” states only if the
hardware supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is
disabled (no SCIs are generated) and the hardware uses legacy power management and
configuration mechanisms. While in the Legacy state, an ACPI-compliant OS can request a
transition into the GO working state by performing an ACPI mode request. OSPM performs this
transition by writing the ACPI_ENABLE value to the SMI_CMD, which generates an event to the
hardware to transition the platform into ACPI mode. When hardware has finished the transition, it
sets the SCI_EN bit and returns control back to OSPM. While in the GO “working state,” OSPM can
request a transition to Legacy mode by writing the ACPI_DISABLE value to the SMI_CMD
register, which results in the hardware going into legacy mode and resetting the SCI_EN bit LOW
(for more information, see Section 4.8.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The GO “Working” state is the normal operating environment of an ACPI machine. In this state
different devices are dynamically transitioning between their respective power states (D0, D1, D2,
D3hot, or D3) and processors are dynamically transitioning between their respective power states
(CO0, C1, C2 or C3). In this state, OSPM can make a policy decision to place the platform into the
system G1 “sleeping” state. The platform can only enter a single sleeping state at a time (referred to
as the global G1 state); however, the hardware can provide up to four system sleeping states that
have different power and exit latencies represented by the S1, S2, S3, or S4 states. When OSPM
decides to enter a sleeping state it picks the most appropriate sleeping state supported by the
hardware (OS policy examines what devices have enabled wake events and what sleeping states
these support). OSPM initiates the sleeping transition by enabling the appropriate wake events and
then programming the SLP_TYPx field with the desired sleeping state and then setting the

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

SLP ENx bit. The system will then enter a sleeping state; when one of the enabled wake events
occurs, it will transition the system back to the working state (for more information, see Section 16,
“Waking and Sleeping”).

Another global state transition option while in the GO “working” state is to enter the G2 “soft off” or
the G3 “mechanical off” state. These transitions represent a controlled transition that allows OSPM
to bring the system down in an orderly fashion (unloading applications, closing files, and so on). The
policy for these types of transitions can be associated with the ACPI power button, which when
pressed generates an event to the power button driver. When OSPM is finished preparing the
operating environment for a power loss, it will either generate a pop-up message to indicate to the
user to remove power, in order to enter the G3 “Mechanical Off” state, or it will initiate a G2 “soft-
off” transition by writing the value of the S5 “soft off”” system state to the SLP_TYPx register and
setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support.
Each sleeping state has different power and wake latency characteristics. The sleeping state differs
from the working state in that the user’s operating environment is frozen in a low-power state until
awakened by an enabled wake event. No work is performed in this state, that is, the processors are
not executing instructions. Each system sleeping state has requirements about who is responsible for
system context and wake sequences (for more information, see Section 16, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the
sleeping state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the
sequence). Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI-only
machine will re-enter the GO state directly (hardware returns the SCI_EN bit set), while an ACPI/
Legacy machine transitions to the Legacy state (SCI_EN bit is clear).

Version 5.1 Errata A 61

Advanced Configuration and Power Interface Specification

Power
Failure/
Power Off

Legacy
Boot
(SCI_EN=0)

ACPI
Boot
(SCI_EN=1)

SBIOS F —— g BIOS

S4BIOS R2Q Routine

ACPI_ENABLE

(SCI_EN=1) \

GO (SO0) -
Working
ACPI_DISABLE___——m—""

(SCI_EN=0)

ACPI

Boot

Legacy (SCI_EN=1)
Boot

(SCI_EN=0)

and

PWRBTN_OR

Figure 4-10 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to
implement this behavior model. Events are used to notify OSPM that some action is needed, and
control logic is used by OSPM to cause some state transition. ACPI-defined events are “hardware”
or “interrupt” events. A hardware event is one that causes the hardware to unconditionally perform
some operation. For example, any wake event will sequence the system from a sleeping state (S1,
S2, S3, and S4 in the global G1 state) to the GO working state (see Figure 16-70).

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver),
which allows the software to make a policy decision based on the event. For ACPI fixed-feature
events, OSPM or an ACPI-aware driver acts as the event handler. For generic logic events OSPM
will schedule the execution of an OEM-supplied AML control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-
visible interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want
to support both legacy operating systems and ACPI systems support a way of re-mapping the
interrupt events between SMIs and SCIs when switching between ACPI and legacy models. This is
illustrated in the following block diagram.

62 April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

Legacy Only Event Logic

ACPIl/Legacy Event Logic
Timers ACPI Only Event Logic

Device | ACPI/Legacy Generic Control Features
Traps ACPI/Legacy Fixed Control Features

GLBL STBY

. SCI_EN SMI Arbiter SMI#

Timer

PWRBTN User
LID Interface SCI Arbiter SCl#

Sleep/Wake
Logic

DOCK Power Plane
SERTRd Hardware — SMIEvents control

Events Generic Space
—— SCI/SMI Events
CPU Clock

— Wake-up Events
-;i_—|
Control

Figure 4-11 Example Event Structure for a Legacy/ACPI Compatible Event Model

RI

This example logic illustrates the event model for a sample platform that supports both legacy and
ACPI event models. This example platform supports a number of external events that are power-
related (power button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status
change). The logic represents the three different types of events:

OS Transparent Events

These events represent OEM-specific functions that have no OS support and use
software that can be operated in an OS-transparent fashion (that is, SMIs).

Interrupt Events

These events represent features supported by ACPI-compatible operating systems, but
are not supported by legacy operating systems. When a legacy OS is loaded, these
events are mapped to the transparent interrupt (SMI# in this example), and when in
ACPI mode they are mapped to an OS-visible shareable interrupt (SCI#). This logic is
represented by routing the event logic through the decoder that routes the events to the
SMI# arbiter when the SCI_EN bit is cleared, or to the SCI# arbiter when the SCI_EN
bit is set.

Hardware events

These events are used to trigger the hardware to initiate some hardware sequence such
as waking, resetting, or putting the machine to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system
activity or idleness based on device idle timers, device traps, and the global standby timer. Legacy
power management models use the idle timers to determine when a device should be placed in a
low-power state because it is idle—that is, the device has not been accessed for the programmed
amount of time. The device traps are used to indicate when a device in a low-power state is being
accessed by OSPM. The global standby timer is used to determine when the system should be

Version 5.1 Errata A 63

Advanced Configuration and Power Interface Specification

64

allowed to go into a sleeping state because it is idle—that is, the user interface has not been used for
the programmed amount of time.

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI
mode. This work is handled by different software structures in an ACPI-compatible OS. For
example, the driver model of an ACPI-compatible OS is responsible for placing its device into a
low-power state (D1, D2, D3hot, or D3) and transitioning it back to the On state (D0) when needed.
And OSPM is responsible for determining when the system is idle by profiling the system (using the
PM Timer) and other knowledge it gains through its operating structure environment (which will
vary from OS to OS). When the system is placed into the ACPI mode, these events no longer
generate SMIs, as OSPM handles this function. These events are disabled through some OEM-
proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models
(docking, the power button, and so on) and this type of interrupt event changes to an SCI event when
enabled for ACPI. The ACPI OS will generate a request to the platform’s hardware (BIOS) to enter
into the ACPI mode. The BIOS sets the SCI_EN bit to indicate that the system has successfully
entered into the ACPI mode, so this is a convenient mechanism to map the desired interrupt (SMI or
SCI) for these events (as shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model:
the power management timer (PM Timer). This is a free running timer that the ACPI OS uses to
profile system activity. The frequency of this timer is explicitly defined in this specification and
must be implemented as described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on
where and how the programming model is generated. If used, all fixed hardware features are
implemented as described in this specification so that OSPM can directly access the fixed hardware
feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI
Namespace. These interfaces can be very flexible; however, their use is limited by the defined ACPI
control methods (for more information, see Section 9, “ACPI Devices and Device Specific
Objects”). Generic hardware usually controls power planes, buffer isolation, and device reset
resources. Additionally, “child” interrupt status bits can be accessed via generic hardware interfaces;
however, they have a “parent” interrupt status bit in the GP_STS register. ACPI defines eight
address spaces that may be accessed by generic hardware implementations. These include:

* System I/O space

* System memory space

e PCI configuration space

* Embedded controller space

* System Management Bus (SMBus) space
« CMOS

* PCIBAR Target

* IPMI space

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

Generic hardware power management features can be implemented accessing spare 1/0 ports
residing in any of these address spaces. The ACPI specification defines an optional embedded
controller and SMBus interfaces needed to communicate with these associated address spaces.

4.6.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and data writes to
them have no side affects. OSPM implementations must write zeros to reserved bits in enable and
status registers and preserve bits in control registers, and they will treat these bits as ignored.

4.6.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by
software. Hardware-ignored bits can return zero or one. When software reads a register with ignored
bits, it masks off ignored bits prior to operating on the result. When software writes to a register with
ignored bit fields, it preserves the ignored bit fields.

4.6.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software
writing a 1 to their bit position. Reads to write-only bit positions generate undefined results. Upon
reads to registers with write-only bits, software masks out all write-only bits.

4.6.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the
operation of other unrelated devices, or allows other unrelated devices to interfere with its behavior.
This condition is not supportable and can cause platform failures. ACPI provides no support for
cross device dependencies and suggests that devices be designed to not exhibit this behavior. The
following two examples describe cross device dependencies:

4.6.4.1 Example 1: Related Device Interference

This example illustrates a cross device dependency where a device interferes with the proper
operation of other unrelated devices. Device A has a dependency that when it is being configured it
blocks all accesses that would normally be targeted for Device B. Thus, the device driver for Device
B cannot access Device B while Device A is being configured; therefore, it would need to
synchronize access with the driver for Device A. High performance, multithreaded operating
systems cannot perform this kind of synchronization without seriously impacting performance.

To further illustrate the point, assume that Device A is a serial port and Device B is a hard drive
controller. If these devices demonstrate this behavior, then when a software driver configures the
serial port, accesses to the hard drive need to block. This can only be done if the hard disk driver
synchronizes access to the disk controller with the serial driver. Without this synchronization, hard
drive data will be lost when the serial port is being configured.

4.6.4.2 Example 2: Unrelated Device Interference

This example illustrates a cross-device dependency where a device demonstrates a behavior that
allows other unrelated devices to interfere with its proper operation. Device A exhibits a

Version 5.1 Errata A 65

Advanced Configuration and Power Interface Specification

4.7

66

programming behavior that requires atomic back-to-back write accesses to successfully write to its
registers; if any other platform access is able to break between the back-to-back accesses, then the
write to Device A is unsuccessful. If the Device A driver is unable to generate atomic back-to-back
accesses to its device, then it relies on software to synchronize accesses to its device with every other
driver in the system; then a device cross dependency is created and the platform is prone to Device A
failure.

ACPI Hardware Features

This section describes the different hardware features defined by the ACPI interface. These features
are categorized as the following:

¢ Fixed Hardware Features
¢ QGeneric Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations
described by the ACPI programming model. Generic hardware features reside in one of four address
spaces (system I/O, system memory, PCI configuration, embedded controller, or serial device /O
space) and are described by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed
hardware features are optional, if implemented they must be implemented as described since OSPM
manipulates the registers of fixed hardware devices and expects the defined behavior. Functional
fixed hardware provides functional equivalents of the fixed hardware feature interfaces as described
in Section 4.3, “Functional Fixed Hardware.”

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied
AML code (for more information, see Section 5, “ACPI Software Programming Model”), which can
be written to support a wide variety of hardware. Also, ACPI provides specialized control methods
that provide capabilities for specialized devices. For example, the Notify command can be used to
notify OSPM from a generic hardware event handler (control method) that a docking or thermal
event has taken place. A good understanding of this section and Section 5 of this specification will
give designers a good understanding of how to design hardware to take full advantage of an ACPI-
compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support
many types of hardware not listed.

Table 4-6 Feature/Programming Model Summary

Feature Name Description Programming Model
Power Management 24-bit or 32-bit free running timer. Fixed Hardware Feature Control
Timer Logic
Power Button User pushes button to switch the system | Fixed Hardware Event and Control
between the working and sleeping states. | Logic or Generic Hardware Event
and Logic
Sleep Button User pushes button to switch the system | Fixed Hardware Event and Control
between the working and sleeping state. | Logic or Generic Hardware Event
and Logic

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

Feature Name

Description

Programming Model

Power Button Override

User sequence (press the power button
for 4 seconds) to turn off a hung system.

Real Time Clock Alarm

Programmed time to wake the system.

Optional Fixed Hardware Event?

Sleep/Wake Control
Logic

Logic used to transition the system

between the sleeping and working states.

Fixed Hardware Control and Event
Logic

Embedded Controller
Interface

ACPI Embedded Controller protocol and
interface, as described in Section 12,
“ACPI Embedded Controller Interface
Specification.”

Generic Hardware Event Logic, must
reside in the general-purpose register
block

Legacy/ACPI Select

Status bit that indicates the system is
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

Lid switch

Button used to indicate whether the
system’s lid is open or closed (mobile
systems only).

Generic Hardware Event Feature

C1 Power State

Processor instruction to place the
processor into a low-power state.

Processor ISA

C2 Power Control

Logic to place the processor into a C2
power state.

Fixed Hardware Control Logic

C3 Power Control

Logic to place the processor into a C3
power state.

Fixed Hardware Control Logic

Thermal Control

Logic to generate thermal events at
specified trip points.

Generic Hardware Event and Control
Logic (See description of thermal
logic in Section 3.10, “Thermal
Management.”)

Device Power
Management

Control logic for switching between
different device power states.

Generic Hardware control logic

AC Adapter

Logic to detect the insertion and removal
of the AC adapter.

Generic Hardware event logic

Docking/device insertion
and removal

Logic to detect device insertion and
removal events.

Generic Hardware event logic

a.

4.8 ACPI Register Model

ACPI hardware resides in one of six address spaces:

System I/O
System memory
PCI configuration
SMBus

Embedded controller

Functional Fixed Hardware

Version 5.1 Errata A

RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

67

Advanced Configuration and Power Interface Specification

68

Different implementations will result in different address spaces being used for different functions.
The ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed
hardware registers are required to implement ACPI-defined interfaces. The generic hardware
registers are needed for any events generated by value-added hardware.

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built
in memory at boot-up) that contains a list of pointers to the different fixed hardware register blocks
used by OSPM. The bits within these registers have attributes defined for the given register block.
The types of registers that ACPI defines are:

» Status/Enable Registers (for events)
* Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation
definition that needs to be followed (unless otherwise noted), which is illustrated by the following
diagram:

Status Bit

Event Input >—|X|—j—> Event Output

Enable Bit (L

Figure 4-12 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only
be cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting
or resetting of the status bit; it only determines if the SET status bit will generate an “Event Output,”
which generates an SCI when set if its enable bit is set.

ACPI also defines register groupings. A register grouping consists of two register blocks, with two
pointers to two different blocks of registers, where each bit location within a register grouping is
fixed and cannot be changed. The bits within a register grouping, which have fixed bit positions, can
be split between the two register blocks. This allows the bits within a register grouping to reside in
either or both register blocks, facilitating the ability to map bits within several different chips to the
same register thus providing the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved
bits, or unused bits within a register block always return zero for reads and have no side effects for
writes (which is a requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object \ Sx
contains a SLP_TYPa and a SLP_TYPD field. That is, the object returns a package with two integer
values of 0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed
by the SLP_TYPb value within the field to the “B” register block. All other bit locations will be
written with the same value. Also, OSPM does not read the SLP_ TYPx value but throws it away.

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

&0 @ ot @?

Register Block A %.% %

Figure 4-13 Example Fixed Hardware Feature Register Grouping

Register
Grouping

As an example, the above diagram represents a register grouping consisting of register block A and
register block b. Bits “a” and “d” are implemented in register block B and register block A returns a
zero for these bit positions. Bits “b”, “c” and “e” are implemented in register block A and register
block B returns a zero for these bit positions. All reserved or ignored bits return their defined ACPI
values.

When accessing this register grouping, OSPM must read register block a, followed by reading
register block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A
followed by writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate
pointer from the FADT. These addresses are set by the OEM as static resources, so they are never
changed—OSPM cannot re-map ACPI resources. The following register blocks are defined:

Registers Register Blocks Register Groupings
Pmi‘gsgz "} PMla_EVT BLK
PM1b STS :>— PM1 EVT Grouping
PM1b_EN ~ F—PM1b_EVT_BLK
PMla_CNT

PMla_CNT_BLK
:>— PM1 CNT Grouping

PM1b_CNT PM1b_CNT_BLK
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT
P_LVL2 37 P_BLK Processor Block
P_LVL3
Ggggasgﬁ }———— GPEO_BLK General Purpose Event 0
= Block
GPE1_STS B
GPEI_EN GPE1_BLK GlenEraI Purpose Event 1
Bloc!

Figure 4-14 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PMla EVT and PM1b_EVT register blocks, which contain
the fixed hardware feature event bits. Each event register block (if implemented) contains two
registers: a status register and an enable register. Each register grouping has a defined bit position

Version 5.1 Errata A 69

Advanced Configuration and Power Interface Specification

that cannot be changed; however, the bit can be implemented in either register block (A or B). The A
and B register blocks for the events allow chipsets to vary the partitioning of events into two or more
chips. For read operations, OSPM will generate a read to the associated A and B registers, OR the
two values together, and then operate on this result. For write operations, OSPM will write the value
to the associated register in both register blocks. Therefore, there are two rules to follow when
implementing event registers:

* Reserved or unimplemented bits always return zero (control or enable).
* Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PMla CNT BLK and PM1b_CNT BLK register blocks. Each register block is associated with a
single control register. Each register grouping has a defined bit position that cannot be changed;
however, the bit can be implemented in either register block (A or B). There are two rules to follow
when implementing CNT registers:

* Reserved or unimplemented bits always return zero (control or enable).
* Writes to reserved or unimplemented bits have no affect.

The PM2_CNT _BLK register block currently contains a single bit for the arbiter disable function.
The general-purpose event register contains the event programming model for generic features. All
generic events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere;
however, the top-level generic event resides in one of the general-purpose register blocks. Any
generic feature event status not in the general-purpose register space is considered a child or sibling
status bit, whose parent status bit is in the general-purpose event register space. Notice that it is
possible to have N levels of general-purpose events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPEO BLK or the
GPE1_BLK. Each register block is pointed to separately from within the FADT. Each register block
is further broken into two registers: GPEx_STS and GPEx EN. The status and enable registers in the
general-purpose event registers follow the event model for the fixed hardware event registers.

4.8.1 ACPI Register Summary

70

The following tables summarize the ACPI registers:

Table 4-7 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)
PMla_STS | PM1_EVT_LEN/2 <PMla_EVT_BLK >

PMla_EN PM1_EVT_LEN/2 <PMla_EVT_BLK >+PM1_EVT_LEN/2
PM1b_STS | PM1_EVT_LEN/2 <PM1b_EVT_BLK >

PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Table 4-8 PM1 Control Registers

Register Size (Bytes) Address (relative to register block)
PM1_CNTa | PM1_CNT_LEN <PMla_CNT_BLK >
PM1 CNTb | PM1 CNT_LEN <PM1b_CNT BLK >

April, 2015 Version 5.1 Errata A

Table 4-9 PM2 Control Register

ACPI Hardware Specification

Register

Size (Bytes)

Address (relative to register block)

PM2_CNT

PM2_CNT_LEN

<PM2_CNT_BLK >

Table 4-10 PM Timer Register

Register

Size (Bytes)

Address (relative to register block)

PM_TMR

PM_TMR_LEN

<PM_TMR_BLK >

Table 4-11 Processor Control Registers

Register Size (Bytes) Address (relative to register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object (See
Section 8.4.3.1, “PTC [Processor Throttling Control].”)

P_LVL2 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h

Table 4-12 General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)
GPEO_STS GPEO_LEN/2 <GPEO_BLK>

GPEO_EN GPEO_LEN/2 <GPEO_BLK>+GPEO_LEN/2
GPE1_STS GPE1_LEN/2 <GPE1l_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2

4.8.1.1 PM1 Event Registers
The PM1 event register grouping contains two register blocks: the PM1la EVT BLK is a required
register block when the following ACPI interface categories are required by a class specific platform
design guide:
* Power management timer control/status
* Processor power state control/status
* Global Lock related interfaces
* Power or Sleep button (fixed register interfaces)
* System power state controls (sleeping/wake control)

The PM1b_EVT BLK is an optional register block. Each register block has a unique 32-bit pointer
in the Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If
the PM1b_EVT BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same
size: the PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is
variable and is described by the PM1 _EVT LEN field in the FADT, which indicates the total length
of the register block in bytes. Hence if a length of “4” is given, this indicates that each register
contains two bytes of I/O space. The PM1 event register block has a minimum size of 4 bytes.

Version 5.1 Errata A 71

Advanced Configuration and Power Interface Specification

4.8.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PMla CNT BLK is a required
register block when the following ACPI interface categories are required by a class specific platform
design guide:

e SCI/SMI routing control/status for power management and general-purpose events

* Processor power state control/status

* Global Lock related interfaces

* System power state controls (sleeping/wake control)

The PM1b_CNT_BLK is an optional register block. Each register block has a unique 32-bit pointer
in the Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If
the PM1b_CNT BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The
length of the register is variable and is described by the PM1_CNT _LEN field in the FADT, which
indicates the total length of the register block in bytes. The PM1 control register block must have a
minimum size of 2 bytes.

4.8.1.3 PM2 Control Register

The PM2 control register is contained in the PM2 CNT_BLK register block. The FADT contains a
length variable for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the
PM2_CNT register (the only register in this register block). This register block is optional, if not
supported its block pointer and length contain a value of zero.

4.8.1.4 PM Timer Register

The PM timer register is contained in the PM_TMR_ BLK register block. It is an optional register
block that must be implemented when the power management timer control/status ACPI interface
category is required by a class specific platform design guide.

If defined, this register block contains the register that returns the running value of the power
management timer. The FADT also contains a length variable for this register block
(PM_TMR_LEN) that is equal to the size in bytes of the PM_TMR register (the only register in this
register block).

4.8.1.5 Processor Control Block (P_BLK)

There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert
to the lowest common denominator of processor control block support. The processor control block
contains the processor control register (P_CNT-a 32-bit performance control configuration register),
and the P_ LVL2 and P_ LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls
the behavior of the processor clock logic for that processor, the P LVL2 register is used to place the
CPU into the C2 state, and the P LVL3 register is used to place the processor into the C3 state.

4.8.1.6 General-Purpose Event Registers

72

The general-purpose event registers contain the root level events for all generic features. To
facilitate the flexibility of partitioning the root events, ACPI provides for two different general-

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

purpose event blocks: GPEO BLK and GPE1 BLK. These are separate register blocks and are not a
register grouping, because there is no need to maintain an orthogonal bit arrangement. Also, each
register block contains its own length variable in the FADT, where GPEO_LEN and GPE1_LEN
represent the length in bytes of each register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx EN (where x is 0
or 1). The length of the GPEO_STS and GPEO_EN registers is equal to half the GPEO_LEN. The
length of the GPE1_STS and GPE1_EN registers is equal to half the GPE1_LEN. If a generic
register block is not supported then its respective block pointer and block length values in the FADT
table contain zeros. The GPEO LEN and GPE1 LEN do not need to be the same size.

4.8.2 Fixed Hardware Features
This section describes the fixed hardware features defined by ACPI.

4.8.2.1 Power Management Timer

The ACPI specification defines an optional power management timer that provides an accurate time
value that can be used by system software to measure and profile system idleness (along with other
tasks). The power management timer provides an accurate time function while the system is in the
working (GO) state. To allow software to extend the number of bits in the timer, the power
management timer generates an interrupt when the last bit of the timer changes (from 0 to 1 or 1 to
0). ACPI supports either a 24-bit or 32-bit power management timer. The PM Timer is accessed
directly by OSPM, and its programming model is contained in fixed register space. The
programming model can be partitioned in up to three different register blocks. The event bits are
contained in the PM1_EVT register grouping, which has two register blocks, and the timer value can
be accessed through the PM_ TMR_ BLK register block. A block diagram of the power management
timer is illustrated in the following figure:

TMR_STS
BT PM1x_STS.0
_Counter PMTMR_PME
3579545 MHH—[BIts(23/31-0)
- 24/32 TMR_EN
PM1x_EN.O
TMR_VAL

PM_TMR.0-23/0-31
Figure 4-15 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off
a3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-
bit or 24-bit timer. The programming model for the PM Timer consists of event logic, and a read port
to the counter value. The event logic consists of an event status and enable bit. The status bit is set
any time the last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the
TMR_EN bit is set, then the setting of the TMR_STS will generate an ACPI event in the PM1_EVT
register grouping (referred to as PMTMR PME in the diagram). The event logic is only used to
emulate a larger timer.

OSPM uses the read-only TMR VAL field (in the PM TMR register grouping) to read the current
value of the timer. OSPM never assumes an initial value of the TMR VAL field; instead, it reads an

Version 5.1 Errata A 73

Advanced Configuration and Power Interface Specification

initial TMR VAL upon loading OSPM and assumes that the timer is counting. It is allowable to stop
the Timer when the system transitions out of the working (G0/SO0) state. The only timer reset
requirement is that the timer functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the
accuracy of reading the timer.

4.8.2.2 Console Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the GO
working state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a
recommended mechanism to unconditionally transition the platform from a hung GO working state
to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such,
these ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:

* A single-button model that generates an event for both sleeping and entering the soft-off state.
The function of the button can be configured using OSPM UI.

* A dual-button model where the power button generates a soft-off transition request and a
sleeping button generates a sleeping transition request. The type of button implies the function
of the button.

Control of these button events is either through the fixed hardware programming model or the
generic hardware programming model (control method based). The fixed hardware programming
model has the advantage that OSPM can access the button at any time, including when the system is
crashed. In a crashed system with a fixed hardware power button, OSPM can make a “best” effort to
determine whether the power button has been pressed to transition to the system to the soft-off state,
because it doesn’t require the AML interpreter to access the event bits.

4.8.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-
button model, the user button acts as both a power button for transitioning the system between the
GO0 and G2 states and a sleeping button for transitioning the system between the GO and G1 states.
The action of the user pressing the button is determined by software policy or user settings. In the
dual-button model, there are separate buttons for sleeping and power control. Although the buttons
still generate events that cause software to take an action, the function of the button is now
dedicated: the sleeping button generates a sleeping request to OSPM and the power button generates
a waking request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power
button device object, as shown in the following:

Table 4-13 Power Button Support

Indicated Support PWR_BUTTON Flag Power Button Device Object
Fixed hardware power button Clear Absent
Control method power button Set Present

74 April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

The power button can also have an additional capability to unconditionally transition the system
from a hung working state to the G2 soft-off state. In the case where OSPM event handler is no
longer able to respond to power button events, the power button override feature provides a back-up
mechanism to unconditionally transition the system to the soft-off state. This feature can be used
when the platform doesn’t have a mechanical off button, which can also provide this function. ACPI
defines that holding the power button active for four seconds or longer will generate a power button
override event.

4.8.2.2.1.1 Fixed Power Button

Seb o PWRBTN
PWRBTN# Chounce —{>o—‘ sthWRBLN P Over-ride
g atemachine PWRBTN Event
PWRBTN_STS
PM1x_STS.8
PWRBTN_EN
PM1x_EN.8

Figure 4-16 Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x_EVT BLK. This
logic consists of a single enable bit and sticky status bit. When the user presses the power button, the
power button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit
(PWRBTN_EN) is set and the power button status bit is set (PWRBTN_STS) due to a button press
while the system is in the GO state, then an SCI is generated. OSPM responds to the event by
clearing the PWRBTN_STS bit. The power button logic provides debounce logic that sets the
PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power
button press after the button press that transitioned the system into the sleeping state unconditionally
sets the power button status bit and wakes the system, regardless of the value of the power button
enable bit. OSPM responds by clearing the power button status bit and waking the system.

4.8.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This
allows the power button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the power button is implemented using generic
hardware, then the OEM needs to define the power button as a device with an HID object value of
“PNPOCOC,” which then identifies this device as the power button to OSPM. The AML event
handler then generates a Notify command to notify OSPM that a power button event was generated.
While the system is in the working state, a power button press is a user request to transition the
system into either the sleeping (G1) or soft-off state (G2). In these cases, the power button event
handler issues the Notify command with the device specific code of 0x80. This indicates to OSPM to
pass control to the power button driver (PNPOCOC) with the knowledge that a transition out of the
GO state is being requested. Upon waking from a G1 sleeping state, the AML event handler
generates a notify command with the code of 0x2 to indicate it was responsible for waking the
system.

The power button device needs to be declared as a device within the ACPI Namespace for the
platform and only requires an _HID. An example definition follows.

This example ASL code performs the following:

Version 5.1 Errata A 75

Advanced Configuration and Power Interface Specification

¢ Creates a device named “PWRB” and associates the Plug and Play identifier (through the HID
object) of “PNPOCOC.”

e The Plug and Play identifier associates this device object with the power button driver.

* Creates an operational region for the control method power button’s programming model:
System I/O space at 0x200.

» Fields that are not accessed are written as zeros. These status bits clear upon writing a 1 to their
bit position, therefore preserved would fail in this case.

* Creates a field within the operational region for the power button status bit (called PBP). In this
case the power button status bit is a child of the general-purpose event status bit 0. When this bit
is set, it is the responsibility of the ASL-code to clear it (OSPM clears the general-purpose status
bits). The address of the status bit is 0x200.0 (bit 0 at address 0x200).

* Creates an additional status bit called PBW for the power button wake event. This is the next bit
and its physical address would be 0x200.1 (bit 1 at address 0x200).

* Generates an event handler for the power button that is connected to bit 0 of the general-purpose
event status register 0. The event handler does the following:

* Clears the power button status bit in hardware (writes a one to it).

* Notifies OSPM of the event by calling the Notify command passing the power button object and
the device specific event indicator 0x80.

// Define a control method power button
Device(_SB.PWRB){
Name(_HID, EISAID(“PNPOCOC™))
Name(_PRW, Package(){0, 0x4})

OperationRegion(\PHO, SystemlO, 0x200, Ox1)
Field(\PHO, ByteAcc, NoLock, WriteAsZeros){
PBP, 1, // sleep/off request
PBW, 1 // wakeup request

} // end of power button device object

Scope(_GPE){ // Root level event handlers
Method(_L0O0){ // uses bit 0 of GPO_STS register
1TQ\PBP){
Store(One, \PBP) // clear power button status

Notify(_SB.PWRB, 0x80) // Notify 0S of event

T

1ITQ\PBW){
Store(One, \PBW)
Notify(_SB.PWRB, 0x2)

}
} 7/ end of _LOO handler

} 7/ end of _GPE scope

4.8.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four

seconds while the system is in the working state, a hardware event is generated and the system will
transition to the soft-off state. This hardware event is called a power button override. In reaction to
the power button override event, the hardware clears the power button status bit (PWRBTN_STS).

76 April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

4.8.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request
OSPM to transition the platform between the GO working and G1 sleeping states. Support for a sleep
button is indicated by a combination of the SLEEP_ BUTTON flag and the sleep button device
object:

Table 4-14 Sleep Button Support

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object
No sleep button Set Absent
Fixed hardware sleep button Clear Absent
Control method sleep button Set Present

4.8.2.2.2.1 Fixed Hardware Sleeping Button

SLPBTN_STS
PM1x_STS.9

SLPBTN# Deiaé)@;lir;ce > O Sta?elz_ iﬁizﬁine
SLPBTN Event
SLPBTN_EN
PM1x_EN.9

Figure 4-17 Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model in the PM1x_EVT BLK. This
logic consists of a single enable bit and sticky status bit. When the user presses the sleep button, the
sleep button status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button
enable bit (SLPBTN_EN) is set, and the sleep button status bit is set (SLPBTN_STS, due to a button
press) while the system is in the GO state, then an SCI is generated. OSPM responds to the event by
clearing the SLPBTN_STS bit. The sleep button logic provides debounce logic that sets the
SLPBTN_STS bit on the button press “edge.”

While the system is sleeping (in either the SO, S1, S2, S3 or S4 states), any further sleep button press
(after the button press that caused the system transition into the sleeping state) sets the sleep button
status bit (SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by
clearing the sleep button status bit and waking the system.

4.8.2.2.2.2 Control Method Sleeping Button

The sleep button programming model can also use the generic hardware programming model. This
allows the sleep button to reside in any of the generic hardware address spaces (for example, the
embedded controller) instead of fixed space. If the sleep button is implemented via generic
hardware, then the OEM needs to define the sleep button as a device with an HID object value of
“PNPOCOE”, which then identifies this device as the sleep button to OSPM. The AML event handler
then generates a Notify command to notify OSPM that a sleep button event was generated. While in
the working state, a sleep button press is a user request to transition the system into the sleeping (G1)
state. In these cases the sleep button event handler issues the Notify command with the device
specific code of 0x80. This will indicate to OSPM to pass control to the sleep button driver
(PNPOCOE) with the knowledge that the user is requesting a transition out of the GO state. Upon

Version 5.1 Errata A 77

Advanced Configuration and Power Interface Specification

waking-up from a G1 sleeping state, the AML event handler generates a Notify command with the
code of 0x2 to indicate it was responsible for waking the system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the
platform and only requires an HID. An example definition is shown below.

The AML code below does the following:

Creates a device named “SLPB” and associates the Plug and Play identifier (through the HID
object) of “PNPOCOE.”

The Plug and Play identifier associates this device object with the sleep button driver.

Creates an operational region for the control method sleep button’s programming model: System
1/0O space at 0x201.

Fields that are not accessed are written as “1s” (these status bits clear upon writing a “1” to their
bit position, hence preserved would fail in this case).

Creates a field within the operational region for the sleep button status bit (called PBP). In this
case the sleep button status bit is a child of the general-purpose status bit 0. When this bit is set it
is the responsibility of the AML code to clear it (OSPM clears the general-purpose status bits).
The address of the status bit is 0x201.0 (bit 0 at address 0x201).

Creates an additional status bit called PBW for the sleep button wake event. This is the next bit
and its physical address would be 0x201.1 (bit 1 at address 0x201).

Generates an event handler for the sleep button that is connected to bit 0 of the general-purpose
status register 0. The event handler does the following:

Clears the sleep button status bit in hardware (writes a “1” to it).

Notifies OSPM of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

// Define a control method sleep button
Device(_SB.SLPB){
Name(_HID, EISAID(*“PNPOCOE™))
Name(_PRW, Package(){0x01, 0x04})
OperationRegion(\Boo, SystemlO, 0x201, 0Ox1)
Field(\Boo, ByteAcc, NoLock, WriteAsZeros){

SBP, 1, // sleep request
SBW, 1 // wakeup request
} // end of field definition
3
Scope(_GPE){ // Root level event handlers
Method(_LO1){ // uses bit 1 of GPO_STS register
ITQ\SBP){
Store(One, \SBP) // clear sleep button status
Notify(_SB.SLPB, 0x80) // Notify OS of event
3
ITQ\SBW){

Store(One, \SBW)
Notify(_SB.SLPB, 0x2)

3
} 7/ end of _LO1 handler
} 7/ end of _GPE scope

78

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

4.8.2.3 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working
state upon a wake event. Notice that the S4BIOS state is entered in a different manner (for more
information, see Section 16.1.4.2, “The S4BIOS Transition™).

SLP EN SLP_TYP:3
PMix CNT SA.13 PM1x_CNT.S4.[10-12]
X
Led WAK_STS

PM1x_STS.S0.15

Sleeping D—g

"OR" or all
Wake H — Wakeup/
Events
Sleep
Logic

N\,
PWRBTN_OR)

Figure 4-18 Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The
type of sleep state desired is programmed into the SLP_TYPx field and upon assertion of the
SLP_EN the hardware will sequence the system into the defined sleeping state. OSPM gets values
for the SLP_TYPx field from the \ Sx objects defined in the static definition block. If the object is
missing OSPM assumes the hardware does not support that sleeping state. Prior to entering the
desired sleeping state, OSPM will read the designated \ Sx object and place this value in the
SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows
the user to initiate an Off sequence in the case where the system software is no longer able to recover
the system (the system has hung). ACPI defines that this sequence be initiated by the user pressing
the power button for over 4 seconds, at which point the hardware unconditionally sequences the
system to the Off state. This logic is represented by the PWRBTN_OR signal coming into the sleep
logic.

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to
sequence the system back to the working state (GO). The “Wake Status” bit (WAK_ STS) is provided
for OSPM to “spin-on” after setting the SLP_ EN/SLP_TYP bit fields. When waking from the S1
sleeping state, execution control is passed backed to OSPM immediately, whereas when waking
from the S2-S5 states execution control is passed to the BIOS software (execution begins at the
CPU’s reset vector). The WAK_STS bit provides a mechanism to separate OSPM’s sleeping and
waking code during an S1 sequence. When the hardware has sequenced the system into the sleeping
state (defined here as the processor is no longer able to execute instructions), any enabled wake
event is allowed to set the WAK STS bit and sequence the system back on (to the GO state). If the
system does not support the S1 sleeping state, the WAK STS bit can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able
to dynamically sequence between the different sleeping states. This is accomplished by waking the
system; OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit—
placing the system again in the sleeping state.

Version 5.1 Errata A 79

Advanced Configuration and Power Interface Specification

4.8.2.4 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in
the sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be
used to generate a wake event when the system is in a sleeping state. ACPI provides for additional
hardware to support OSPM in determining that the RTC was the source of the wake event: the
RTC_STS and RTC_EN bits. Although these bits are optional, if supported they must be
implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a
possible wake source; however, it might miss certain wake events. If implemented, the RTC wake
feature is required to work in the following sleeping states: S1-S3. S4 wake is optional and
supported through the RTC S4 flag within the FADT (if set, then the platform supports RTC wake
in the S4 state)l.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC _EN bit is set, an
RTC hardware power management event will be generated (which will wake the system from a
sleeping state, provided the battery low signal is not asserted).

RTC_STS
PM1x_STS.10

Real Time Clock
(ll?TC) & RTC Wake-up
Event
RTC_EN
PM1x_EN.10

Figure 4-19 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within
the FADT (FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event
status and enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the
source of the wake event without loading the entire OS. This also gives the platform the capability of
indicating an RTC wake source without consuming a GPE bit, as would be required if RTC wake
was not implemented using the fixed hardware RTC feature. If the fixed hardware feature event bits
are not supported, then OSPM will attempt to determine this by reading the RTC’s status field. If the
platform implements the RTC fixed hardware feature, and this hardware consumes resources, the
_FIX method can be used to correlate these resources with the fixed hardware. See Section 6.2.5,

“ FIX (Fixed Register Resource Provide”, for details.

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and
24-hour alarm). Optional extensions are provided for the following features:
Day Alarm.

The DAY ALRM field points to an optional CMOS RAM location that selects the
day within the month to generate an RTC alarm.

1. Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will dis-
able the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

80 April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

Month Alarm.

The MON_ALRM field points to an optional CMOS RAM location that selects the
month within the year to generate an RTC alarm.

Centenary Value.

The CENT field points to an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQ8 in IA-PC architecture systems).
OSPM will insure that the periodic and update interrupt sources are disabled prior to sleeping. This
allows the RTC’s interrupt pin to serve as the source for the RTC_STS bit generation. Note however
that if the RTC interrupt pin is used for RTC_STS generation, the RTC_STS bit value may not be
accurate when waking from S4. If this value is accurate when waking from S4, the platform should

set the S4 RTC STS VALID flag, so that OSPM can utilize the RTC _STS information.

Table 4-15 Alarm Field Decodings within the FADT

Field Value Address (Location) in RTC CMOS RAM
(Must be Bank 0)
DAY_ALRM Eight bit value that can represent 0x01-0x31 The DAY_ALRM field in the FADT will
days in BCD or 0x01-Ox1F days in binary. Bits | contain a non-zero value that represents
6 and 7 of this field are treated as Ignored by | an offset into the RTC’s CMOS RAM area
software. The RTC is initialized such that this | that contains the day alarm value. A value
field contains a “don’t care” value when the of zero in the DAY_ALRM field indicates
BIOS switches from legacy to ACPI mode. A | that the day alarm feature is not
don’t care value can be any unused value (not | supported.
0x1-0x31 BCD or 0x01-0x1F hex) that the
RTC reverts back to a 24 hour alarm.
MON_ALRM Eight bit value that can represent 01-12 The MON_ALRM field in the FADT will
months in BCD or 0x01-0xC months in binary. | contain a non-zero value that represents
The RTC is initialized such that this field an offset into the RTC’s CMOS RAM area
contains a don't care value when the BIOS that contains the month alarm value. A
switches from legacy to ACPI mode. A “don’t | value of zero in the MON_ALRM field
care” value can be any unused value (not 1-12 | indicates that the month alarm feature is
BCD or x01-xC hex) that the RTC reverts back | not supported. If the month alarm is
to a 24 hour alarm and/or 31 day alarm). supported, the day alarm function must
also be supported.
CENTURY 8-bit BCD or binary value. This value indicates | The CENTURY field in the FADT will
the thousand year and hundred year contain a non-zero value that represents
(Centenary) variables of the date in BCD (19 an offset into the RTC’s CMOS RAM area
for this century, 20 for the next) or binary (x13 | that contains the Centenary value for the
for this century, x14 for the next). date. A value of zero in the CENTURY
field indicates that the Centenary value is
not supported by this RTC.

4.8.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or
hardware sequence. ACPI operating systems use the SCI interrupt handler to respond to events,

Version 5.1 Errata A

81

Advanced Configuration and Power Interface Specification

82

while legacy systems use some type of transparent interrupt handler to respond to these events (that
is, an SMI interrupt handler). ACPI-compatible hardware can choose to support both legacy and
ACPI modes or just an ACPI mode. Legacy hardware is needed to support these features for non-
ACPI-compatible operating systems. When the ACPI OS loads, it scans the BIOS tables to
determine that the hardware supports ACPI, and then if the it finds the SCI_EN bit reset (indicating
that ACPI is not enabled), issues an ACPI activate command to the SMI handler through the SMI
command port. The BIOS acknowledges the switching to the ACPI model of power management by
setting the SCI_EN bit (this bit can also be used to switch over the event mechanism as illustrated
below):

SCI_EN
PM1x_CNT.O
Power —— » SMI_EVNT
Management —————— bec
i — >
Event Logic ! SCI_EVNT
Shareable
Interrupt

Figure 4-20 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent
through a decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the
interrupt events to the SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt
events to the SCI interrupt logic. This bit always returns set for ACPI-compatible hardware that does
not support a legacy power management mode (in other words, the bit is wired to read as “1”” and
ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt
that uses a shareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt
is mapped to (see Section 5.2.6, “System Description Table Header”™).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a
hardware event (for example, SMI for IA-PC processors). OSPM uses this register to make the
hardware switch in and out of ACPI mode. Within the FADT are three values that signify the
address (SMI_CMD) of this port and the data value written to enable the ACPI state
(ACPI_ENABLE), and to disable the ACPI state (ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following
would occur:

* ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.

* OSPM does an OUT to the SMI_CMD port with the data in the ACPI ENABLE field of the
FADT.

e OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following
would occur:

e ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

e OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the
FADT.

e OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the
Legacy to ACPI transition stated above.

4.8.2.6 Processor Control

The ACPI specification defines several processor controls including power state control, throttling
control, and performance state control. See Section 8, “Processor Configuration and Control,” for a
complete description of the processor controls.

4.8.3 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe
fixed hardware features under the programming model. OSPM owns all the fixed hardware resource
registers; these registers cannot be manipulated by AML code. Registers are accessed with any
width up to its register width (byte granular).

4.8.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register
blocks. This allows these registers to be partitioned between two chips, or all placed in a single chip.
Although the bits can be split between the two register blocks (each register block has a unique
pointer within the FADT), the bit positions are maintained. The register block with unimplemented
bits (that is, those implemented in the other register block) always returns zeros, and writes have no
side effects.

4.8.3.1.1 PM1 Status Registers

Register Location: <PMla_EVT BLK / PMlb_EVT_BLK> System 1/0 or Memory Space

Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT_LEN / 2
The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between
two registers: PM1la_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a EVT BLK or PM1b EVT BLK. The values for these
pointers to the register space are found in the FADT. Accesses to the PM1 status registers are done
through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state this register is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or
soft-off state to the GO working state this register is cleared prior to entering the GO working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as
ignored.

Version 5.1 Errata A 83

Advanced Configuration and Power Interface Specification

84

Table 4-16 PM1 Status Registers Fixed Hardware Feature Status Bits

Name

Description

TMR_STS

This is the timer carry status bit. This bit gets set any time the most significant
bit of a 24/32-bit counter changes from clear to set or set to clear. While
TMR_EN and TMR_STS are set, an interrupt event is raised.

Reserved

Reserved

BM_STS

This is the bus master status bit. This bit is set any time a system bus master
requests the system bus, and can only be cleared by writing a “1” to this bit
position. Notice that this bit reflects bus master activity, not CPU activity (this
bit monitors any bus master that can cause an incoherent cache for a
processor in the C3 state when the bus master performs a memory
transaction).

GBL_STS

This bit is set when an SCI is generated due to the BIOS wanting the attention
of the SCI handler. BIOS will have a control bit (somewhere within its address
space) that will raise an SCI and set this bit. This bit is set in response to the

BIOS releasing control of the Global Lock and having seen the pending bit set.

Reserved

Reserved. These bits always return a value of zero.

PWRBTN_STS

This optional bit is set when the Power Button is pressed. In the system
working state, while PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off state, a wake event is
generated when the power button is pressed (regardless of the PWRBTN_EN
bit setting). This bit is only set by hardware and can only be reset by software
writing a “1” to this bit position.

ACPI defines an optional mechanism for unconditional transitioning a system
that has stopped working from the GO working state into the G2 soft-off state
called the power button override. If the Power Button is held active for more
than four seconds, this bit is cleared by hardware and the system transitions
into the G2/S5 Soft Off state (unconditionally).

Support for the power button is indicated by the PWR_BUTTON flag in the
FADT being reset (zero). If the PWR_BUTTON flag is set or a power button
device object is present in the ACPI Namespace, then this bit field is ignored by
OSPM.

If the power button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.

SLPBTN_STS

This optional bit is set when the sleep button is pressed. In the system working
state, while SLPBTN_EN and SLPBTN_STS are both set, an interrupt event is
raised. In the sleeping or soft-off states a wake event is generated when the
sleeping button is pressed and the SLPBTN_EN bit is set. This bit is only set by
hardware and can only be reset by software writing a “1” to this bit position.
Support for the sleep button is indicated by the SLP_BUTTON flag in the FADT
being reset (zero). If the SLP_BUTTON flag is set or a sleep button device
object is present in the ACPI Namespace, then this bit field is ignored by
OSPM.

If the sleep button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

Bit

Name

Description

10

RTC_STS

This optional bit is set when the RTC generates an alarm (asserts the RTC IRQ
signal). Additionally, if the RTC_EN bit is set then the setting of the RTC_STS
bit will generate a power management event (an SCI, SMI, or resume event).
This bit is only set by hardware and can only be reset by software writing a “1”
to this bit position.

If the RTC was the cause of the wake (from an S1-S3 state), then this bit is set
prior to returning control to OSPM. If the RTC_S4 flag within the FADT is set,
and the RTC was the cause of the wake from the S4 state), then this bit is set
prior to returning control to OSPM.

11

Ignore

This bit field is ignored by software.

12-13

Reserved

Reserved. These bits always return a value of zero.

14

PCIEXP_WAKE_
STS

This bit is required for chipsets that implement PCI Express. This bit is set by
hardware to indicate that the system woke due to a PCI Express wakeup event.
A PCI Express wakeup event is defined as the PCI Express WAKE# pin being
active , one or more of the PCI Express ports being in the beacon state, or
receipt of a PCI Express PME message at a root port. This bit should only be
set when one of these events causes the system to transition from a non-S0O
system power state to the SO system power state. This bit is set independent of
the state of the PCIEXP_WAKE_DIS bit.

Software writes a 1 to clear this bit. If the WAKE# pin is still active during the
write, one or more PCI Express ports is in the beacon state or the PME
message received indication has not been cleared in the root port, then the bit
will remain active (i.e. all inputs to this bit are level-sensitive).

Note: This bit does not itself cause a wake event or prevent entry to a sleeping
state. Thus if the bit is 1 and the system is put into a sleeping state, the system
will not automatically wake.

15

WAK_STS

This bit is set when the system is in the sleeping state and an enabled wake
event occurs. Upon setting this bit system will transition to the working state.
This bit is set by hardware and can only be cleared by software writing a “1” to
this bit position.

4.8.3.1.2 PM1Enable Registers
Register Location: <PMla_EVT_BLK / PM1b_EVT_BLK> + PM1_EVT_LEN 7/ 2 System 1/0 or Memory Space

Default Value:

Attribute:
Size:

00h

Read/Write

PM1_EVT_LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split
between two registers: PM1la_EN or PM1b_EN. Each register grouping can be at a different 32-bit
aligned address and is pointed to by the PM1la EVT BLK or PM1b_EVT BLK. The values for
these pointers to the register space are found in the FADT. Accesses to the PM1 Enable registers are
done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state the enables
are cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-
only platforms (where SCI_EN is always set), when transitioning from either the mechanical off
(G3) or soft-off state to the GO working state this register is cleared prior to entering the GO working

state.

Version 5.1 Errata A 85

Advanced Configuration and Power Interface Specification

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats the enable bits as
write as zero.

Table 4-17 PM1 Enable Registers Fixed Hardware Feature Enable Bits

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an
SCI event is generated anytime the TMR_STS bit is set. When this bit is
reset then no interrupt is generated when the TMR_STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.
GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS bit
are set, an SCl is raised.
6-7 Reserved Reserved
PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit to

generate a power management event (SCI or wake). The PWRBTN_STS
bit is set anytime the power button is asserted. The enable bit does not
have to be set to enable the setting of the PWRBTN_STS bit by the
assertion of the power button (see description of the power button
hardware).

Support for the power button is indicated by the PWR_BUTTON flag in
the FADT being reset (zero). If the PWR_BUTTON flag is set or a power
button device object is present in the ACPl Namespace, then this bit field
is ignored by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit to
generate a power management event (SCI or wake). The SLPBTN_STS
bit is set anytime the sleep button is asserted. The enable bit does not
have to be set to enable the setting of the SLPBTN_STS bit by the active
assertion of the sleep button (see description of the sleep button
hardware).

Support for the sleep button is indicated by the SLP_BUTTON flag in the
FADT being reset (zero). If the SLP_BUTTON flag is set or a sleep
button device object is present in the ACPI Namespace, then this bit field
is ignored by OSPM.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit to
generate a wake event. The RTC_STS bit is set any time the RTC
generates an alarm.

11-13 | Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE_DIS This bit is required for chipsets that implement PCI Express. This bit
disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no impact on
the value of the PCIEXP_WAKE_STS bit.

15 Reserved Reserved. These bits always return a value of zero.

4.8.3.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers.
This allows these registers to be partitioned between two chips, or all placed in a single chip.

86 April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

Although the bits can be split between the two register blocks (each register block has a unique
pointer within the FADT), the bit positions specified here are maintained. The register block with
unimplemented bits (that is, those implemented in the other register block) returns zeros, and writes

have no side effects.

4.8.3.2.1 PM1 Control Registers
Register Location: <PMla_CNT_BLK / PM1b_CNT_BLK> System I/0 or Memory Space

Default Value:

Attribute:

Size:

ignored.

00h

Read/Write
PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split
between two registers: PM1la CNT or PM1b_CNT. Each register grouping can be at a different 32-
bit aligned address and is pointed to by the PM1a_ CNT BLK or PM1b_CNT_BLK. The values for
these pointers to the register space are found in the FADT. Accesses to PM1 control registers are
accessed through byte and word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as

Table 4-18 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit

Name

Description

0

SCI_EN

Selects the power management event to be either an SCI or SMI interrupt for the
following events. When this bit is set, then power management events will
generate an SCI interrupt. When this bit is reset power management events will
generate an SMl interrupt. It is the responsibility of the hardware to set or reset this
bit. OSPM always preserves this bit position.

BM_RLD

When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the CO state. When this bit is reset, the
generation of a bus master request does not affect any processor in the C3 state.

GBL_RLS

This write-only bit is used by the ACPI software to raise an event to the BIOS
software, that is, generates an SMI to pass execution control to the BIOS for IA-PC
platforms. BIOS software has a corresponding enable and status bit to control its
ability to receive ACPI events (for example, BIOS_EN and BIOS_STS). The
GBL_RLS bit is set by OSPM to indicate a release of the Global Lock and the
setting of the pending bit in the FACS memory structure.

Reserved

Reserved. These bits are reserved by OSPM.

Ignore

Software ignores this bit field.

SLP_TYPx

Defines the type of sleeping state the system enters when the SLP_EN bit is set to
one. This 3-bit field defines the type of hardware sleep state the system enters
when the SLP_EN bit is set. The _Sx object contains 3-bit binary values
associated with the respective sleeping state (as described by the object). OSPM
takes the two values from the _Sx object and programs each value into the
respective SLP_TYPx field.

13

SLP_EN

This is a write-only bit and reads to it always return a zero. Setting this bit causes
the system to sequence into the sleeping state associated with the SLP_TYPx
fields programmed with the values from the _Sx object.

14-15

Reserved

Reserved. This field always returns zero.

Version 5.1 Errata A 87

Advanced Configuration and Power Interface Specification

4.8.3.3 Power Management Timer (PM_TMR)

Register Location: <PM_TMR_BLK> System 1/0 or Memory Space

Default Value: 00h
Attribute: Read-Only
Size: 32 bits

This optional read-only register returns the current value of the power management timer (PM timer)
if it is implemented on the platform. The FADT has a flag called TMR VAL EXT that an OEM sets
to indicate a 32-bit PM timer or reset to indicate a 24-bit PM timer. When the last bit of the timer
toggles the TMR_STS bit is set. This register is accessed as 32 bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as
ignored.

Table 4-19 PM Timer Bits

Bit Name Description

0-23 TMR_VAL This read-only field returns the running count of the power management timer.
This is a 24-bit counter that runs off a 3.579545-MHz clock and counts while in
the SO working system state. The starting value of the timer is undefined, thus
allowing the timer to be reset (or not) by any transition to the SO state from any
other state. The timer is reset (to any initial value), and then continues counting
until the system’s 14.31818 MHz clock is stopped upon entering its Sx state. If the
clock is restarted without a reset, then the counter will continue counting from
where it stopped.

24-31 | E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power management
timer. If the hardware supports a 32-bit timer, then this field will return the upper
eight bits; if the hardware supports a 24-bit timer then this field returns all zeros.

4.8.3.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System 1/0, System Memory, or Functional

Fixed Hardware Space

Default Value: 00h
Attribute: Read/Write
Size: PM2_CNT_LEN

88

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is
byte aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates
that the feature is not supported as a fixed hardware feature, then software treats these bits as
ignored.

Table 4-20 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit is CLEAR
the system arbiter is enabled and the arbiter can grant the bus to other bus
masters. When this bit is SET the system arbiter is disabled and the default CPU
has ownership of the system.

OSPM clears this bit when using the CO, C1 and C2 power states.

>0 Reserved Reserved

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

4.8.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one unique
processor register block per processor in the system. For more information about controlling
processors and control methods that can be used to control processors, see Section 8, “Processor
Configuration and Control.” This register block is DWORD aligned and the context of this register
block is not maintained across S3 or S4 sleeping states, or the S5 soft-off state.

4.8.3.5.1 Processor Control (P_CNT): 32
Register Location: Either <P_BLK>: System 1/0 Space
or specified by PTC Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read/Write
Size: 32 bits

This register is accessed as a DWORD. The CLK VAL field is where the duty setting of the
throttling hardware is programmed as described by the DUTY_ WIDTH and DUTY_OFFSET values
in the FADT. Software treats all other CLK VAL bits as ignored (those not used by the duty setting
value).

Table 4-21 Processor Control Register Bits

Bit Name Description
0-3 CLK_VAL Possible locations for the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL field. THT_EN bit

must be reset LOW when changing the CLK_VAL field (changing the duty setting).
5-31 CLK_VAL Possible locations for the clock throttling value.

4.8.3.5.2 Processor LVL2 Register (P_LVL2): 8
Register Location: Either <P_BLK> + 4: System 1/0 Space
or specified by _CST Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-22 Processor LVL2 Register Bits

Bit Name Description

0-7 P_LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads to
this register also generate an “enter a C2 power state” to the clock control logic.

Version 5.1 Errata A 89

Advanced Configuration and Power Interface Specification

4.8.3.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK> + 5: System 1/0 Space

or specified by _CST Object: System 1/0, System Memory, or
Functional Fixed Hardware Space

Default Value: 00h
Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-23 Processor LVL3 Register Bits

Bit Name Description

0-7 P_LVL3 Reads to this register return all zeros; writes to this register have no effect. Reads to
this register also generate an “enter a C3 power state” to the clock control logic.

4.8.3.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete
system reset. When implemented, this mechanism must reset the entire system. This includes
processors, core logic, all buses, and all peripherals. From an OSPM perspective, asserting the reset
mechanism is the logical equivalent to power cycling the machine. Upon gaining control after a
reset, OSPM will perform actions in like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET REG in the FADT
(always accessed via the natural alignment and size described in RESET REG). To reset the
machine, software will write a value (indicated in RESET VALUE in FADT) to the reset register.
The RESET_REG field in the FADT indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a
function in bus 0. Therefore, the Address_Space ID value in RESET _REG must be set to I/O space,
Memory space, or PCI Configuration space (with a bus number of 0). As the register is only 8 bits,
Register Bit Width must be 8 and Register Bit Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the
processor will not execute beyond the write instruction. OSPM should execute spin loops on the
CPUs in the system following a write to this register.

4.8.3.7 Sleep Control and Status Registers

90

The optional ACPI sleep registers (SLEEP_ CONTROL REG and SLEEP_STATUS REG) specify
a standard mechanism for system sleep state entry on HW-Reduced ACPI systems. When
implemented, the Sleep registers are a replacement for the SLP_TYP, SLP_EN and WAK_STS
registers in the PM1_BLK. Use of these registers is at the discretion of OSPM. OSPM can decide
whether to enter sleep states on the platform based on the LOW_POWER SO0 IDLE CAPABLE
flag. Even when implemented, OSPM may use other provided options for hibernate and shutdown
(e.g. UEFI ResetSystem()).

The HW-reduced Sleep mechanism is implemented via two 8-bit registers described by

SLEEP _CONTROL REG and SLEEP STATUS REG in the FADT (always accessed via the
natural alignment and size described in SLEEP_* REGQG). To put the machine into a system sleep
state, software will write the HW-reduced Sleep Type value (obtained from the \ Sx object in the
DSDT) and the SLP_EN bit to the sleep control register. The OSPM then polls the WAK_STS bit of

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

the SLEEP_STATUS REG waiting for it to be one (1), indicating that the system has been
transitioned back to the Working state.

The Sleep registers may exist only in I/O space, Memory space, or in PCI Configuration space on a
function in bus 0. Therefore, the Address_Space ID value must be set to I/O space, Memory space,
or PCI Configuration space (with a bus number of 0). As the registers are only 8 bits,
Register Bit Width must be 8 and Register Bit Offset must be 0.

Table 4-24 Sleep Control Register

Field Name Bit Bit Description
Length | Offset

Reserved 1 0 Reserved. This bit is reserved by OSPM.

Ignore 1 1 Software ignores this bit field.

SLP_TYPx 3 2 Defines the type of sleeping state the system enters when the
SLP_EN bit is set to one. This 3-hit field defines the type of hardware
sleep state the system enters when the SLP_EN bit is set. The _Sx
object contains 3-bit binary values associated with the respective
sleeping state (as described by the object). OSPM takes the HW-
reduced Sleep Type value from the _SX object and programs it into
the SLP_TYPx field.

SLP_EN 1 5 This is a write-only bit and reads to it always return a zero. Setting
this bit causes the system to sequence into the sleeping state
associated with the SLP_TYPx fields programmed with the values
from the _Sx object.

Reserved 2 6 Reserved. This field always returns zero.

Table 4-25 Sleep Status Register

Field Name Bit Bit Description
Length | Offset

Ignore 4 0 Software ignores this bit field.

Reserved 2 4 Reserved. These bits always return a value of zero.

Ignore 1 6 Software ignores this bit field.

WAK_STS 1 7 This bit is set when the system is in the sleeping state and an
enabled wake event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and can
only be cleared by software writing a “1” to this bit position.

4.8.4 Generic Hardware Registers

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-

compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system 1/O,
system memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are
contained in the general-purpose event registers. The general-purpose event registers are pointed to

Version 5.1 Errata A 91

Advanced Configuration and Power Interface Specification

92

by the GPEO BLK and GPE1 BLK register blocks, and the generic hardware registers can be in any
of the defined ACPI address spaces. A device’s generic hardware programming model is described
through an associated object in the ACPI Namespace, which specifies the bit’s function, location,
address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits
are used to generate an event that allows OSPM to call a control method associated with the pending
status bit. The called control method can then control the hardware by manipulating the hardware
control bits or by investigating child status bits and calling their respective control methods. ACPI
requires that the top level “parent” event status and enable bits reside in either the GPEO _STS or
GPE1_STS registers, and “child” event status bits can reside in generic address space.

The example below illustrates some of these concepts. The top diagram shows how the logic is
partitioned into two chips: a chipset and an embedded controller.

* The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

* The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions using
an OS-transparent interrupt in the embedded controller (represented by the EXTSMI# signal).

April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

Momentary o la 8 _
g >
©
Power I3} EC_CS# ~ ACH
Button PWRBTN# IS ”| Embedded |+——
K EXTSMI#
S ¢ Controller
=]
ACPI-Compatil £ | EXTPME#
N .
Chlp Set g bocks | Docking
g Chip
®
Momentary o
-
]
LID L]
Switch Lip# R
2
EXTSMI# SMi-only
GPx_REG g\’\//gnct)snl EXTSMI# } } EXTSMI#, sources
o AC_STS
Block Ac
EC_STS 04 AC#
GP_STS.0 e
| EXTPME# &
(Salalos EXTPIE P0.40.1
35 DOCK# DOCK#
EC_EN
SCH -
Shareable GP_EN.0
Interrupt RI_STS

GP_STS.1
RI#
RI_EN
GP_EN.1

LID_STS
GP_STS.2

ELIDEN
GP_EN.2

Other SCI
sources

Debounce

LID_POL
$332

Figure 4-21 Example of General-Purpose vs. Generic Hardware Events

At the top level, the generic events in the GPEx_STS register are the:

* Embedded controller interrupt, which contains two query events: one for AC detection and one
for docking (the docking query event has a child interrupt status bit in the docking chip).

* Ring indicate status (used for waking the system).

* Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events
is active.

* A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this
event; OSPM will then schedule for execution the control method associated with query value
34.

Another query event is for the docking chip that generates a docking event. In this case, the
embedded controller will return a query value of 35 upon a query command from system software
responding to an SCI from the embedded controller. OSPM will then schedule the control method
associated with the query value of 35 to be executed, which services the docking event.

Version 5.1 Errata A 93

Advanced Configuration and Power Interface Specification

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the
GPEx_EN register. Notice that the child status bits do not necessarily need enable bits (see the
DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open
(LID_POL is set and LID is set) or closed (LID POL is clear and LID is clear). This control bit
resides in generic I/O space (in this case, bit 2 of system 1/O space 33h) and would be manipulated
with a control method associated with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks.
However, AML code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML.
ACPI provides both an event and control model for development of these features. The ACPI
specification also provides specific control methods for notifying OSPM of certain power
management and Plug and Play events. Section 5, “ACPI Software Programming Model,” provides
information on the types of hardware functionality that support the different types of subsystems.
The following is a list of features supported by ACPI. The list is not intended to be complete or
comprehensive.

* Device insertion/ejection (for example, docking, device bay, A/C adapter)

+ Batteries!

* Platform thermal subsystem

e Turning on/off power resources
* Mobile lid Interface

* Embedded controller

* System indicators

* OEM-specific wake events

* Plug and Play configuration

4.8.4.1 General-Purpose Event Register Blocks

ACPI supports up to two general-purpose register blocks as described in the FADT (see Section 5,
“ACPI Software Programming Model”) and an arbitrary number of additional GPE blocks described
as devices within the ACPI namespace. Each register block contains two registers: an enable and a
status register. Each register block is 32-bit aligned. Each register in the block is accessed as a byte.
It is up to the specific design to determine if these bits retain their context across sleeping or soft-off
states. If they lose their context across a sleeping or soft-off state, then BIOS resets the respective
enable bit prior to passing control to the OS upon waking.

4.8.4.1.1 General-Purpose Event 0 Register Block

This register block consists of two registers: The GPEO_STS and the GPEO_EN registers. Each
register’s length is defined to be half the length of the GPEO register block, and is described in the

1. ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined standard
for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control methods for use by
OEMs that use a proprietary “control method” battery interface.

94 April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

ACPI FADT’s GPEO BLK and GPEO BLK LEN operators. OSPM owns the general-purpose
event resources and these bits are only manipulated by OSPM; AML code cannot access the general-
purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for
various events.

The platform designer would then wire the GPEs to the various value-added event hardware and the
AML code would describe to OSPM how to utilize these events. As such, there will be the case
where a platform has GPE events that are not wired to anything (they are present in the chip set), but
are not utilized by the platform and have no associated AML code. In such, cases these event pins
are to be tied inactive such that the corresponding SCI status bit in the GPE register is not set by a
floating input pin.

4.8.4.1.1.1 General-Purpose Event 0 Status Register
Register Location:<GPEO_STS> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPEO_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank
zero of the general-purpose registers. Each available status bit in this register corresponds to the bit
with the same bit position in the GPEO_EN register. Each available status bit in this register is set
when the event is active, and can only be cleared by software writing a “1” to its respective bit
position. For the general-purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with
its respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their

length).
4.8.4.1.1.2 General-Purpose Event 0 Enable Register
Register Location: <GPEO_EN> System 1/0 or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPEO_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each
available enable bit in this register corresponds to the bit with the same bit position in the
GPEOQ_STS register. The enable bits work similarly to how the enable bits in the fixed-event
registers are defined: When the enable bit is set, then a set status bit in the corresponding status bit
will generate an SCI bit. OSPM accesses GPE registers through byte accesses (regardless of their
length).

4.8.4.1.2 General-Purpose Event 1 Register Block

This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each
register’s length is defined to be half the length of the GPE1 register block, and is described in the
ACPI FADT’s GPE1_BLK and GPE1 _BLK LEN operators.

Version 5.1 Errata A 95

Advanced Configuration and Power Interface Specification

4.8.4.1.2.1 General-Purpose Event 1 Status Register
Register Location: <GPE1l_STS> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each
available status bit in this register corresponds to the bit with the same bit position in the GPE1_EN
register. Each available status bit in this register is set when the event is active, and can only be
cleared by software writing a “1” to its respective bit position. For the general-purpose event
registers, unimplemented bits are ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with
its respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.1.2.2 General-Purpose Event 1 Enable Register
Register Location: <GPE1l_EN> System 1/0 or System Memory Space

Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each
available enable bit in this register corresponds to the bit with the same bit position in the
GPE1_STS register. The enable bits work similarly to how the enable bits in the fixed-event
registers are defined: When the enable bit is set, a set status bit in the corresponding status bit will
generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.8.4.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

4.8.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be
used by the OS as policy input for sleeping the system, or for waking the system from a sleeping
state. If used, then the OEM needs to define the lid switch as a device with an HID object value of
“PNPOCOD”, which identifies this device as the lid switch to OSPM. The Lid device needs to
contain a control method that returns its status. The Lid event handler AML code reconfigures the lid
hardware (if it needs to) to generate an event in the other direction, clear the status, and then notify
OSPM of the event.

Example hardware and ASL code is shown below for such a design.

V-

8 ms 7
O O hd Debounce
Momentary Normally LID_STS

Open push button

LID_POL

Figure 4-22 Example Generic Address Space Lid Switch Logic

96 April, 2015 Version 5.1 Errata A

ACPI Hardware Specification

This logic will set the Lid status bit when the button is pressed or released (depending on the
LID POL bit).

The ASL code below defines the following:

* An operational region where the lid polarity resides in address space System address space in
registers 0x201.

* A field operator to allow AML code to access this bit: Polarity control bit (LID POL) is called
LPOL and is accessed at 0x201.0.

* A device named \ SB.LID with the following:
— A Plug and Play identifier “PNPOCOD” that associates OSPM with this object.
— Defines an object that specifies a change in the lid’s status bit can wake the system from the
S4 sleep state and from all higher sleep states (S1, S2, or S3).
* The lid switch event handler that does the following:
— Defines the lid status bit (LID_STS) as a child of the general-purpose event 0 register bit 1.

— Defines the event handler for the lid (only event handler on this status bit) that does the
following:

* Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite
condition).

* Generates a notify to the OS that does the following:
* Passes the \ SB.LID object.

* Indicates a device specific event (notify value 0x80).
// Define a Lid switch
OperationRegion(\PHO, SystemlO, 0x201, Ox1)
Field(\PHO, ByteAcc, NolLock, Preserve) {
LPOL, 1 // Lid polarity control bit
}

Device(_SB.LID){
Name(_HID, EISAID(“PNPOCOD))
Method(_LID){Return(LPOL)}
Name(_PRW, Package(2){

1, // bit 1 of GPE to enable Lid wakeup
0x04% // can wakeup from S4 state
)
ks
Scope(_GPE){ // Root level event handlers
Method(_LO1){ // uses bit 1 of GPO_STS register
Not(LPOL, LPOL) // Flip the lid polarity bit
Notify(LID, 0x80) // Notify OS of event
3
ks

4.8.4.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value
added hardware is contained within the embedded controller while allowing the AML code to access
this hardware in an abstracted fashion.

¢ The embedded controller is defined as a device and must contain a set number of control
methods:

Version 5.1 Errata A 97

Advanced Configuration and Power Interface Specification

e HID with a value of PNPOCO09 to associate this device with the ACPI’s embedded controller’s
driver.

e _CRS to return the resources being consumed by the embedded controller.
* GPE that returns the general-purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s
device as control methods. An example of defining an embedded controller device is shown below:

Device(ECO) {

// PnP ID
Name(_HID, EISAID(*“PNPOC097"))
// Returns the “Current Resources” of EC
Name(_CRS,
ResourceTemplate(){
10(Decodel6, 0x62, 0x62, 0, 1)
10(Decodel6, 0x66, 0x66, 0, 1)

b
// Indicate that the EC SCI is bit O of the GP_STS register
Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

OperationRegion(\ECO, EmbeddedControl, 0, OxFF)
Field(ECO, ByteAcc, Lock, Preserve) {

// Field definitions

3

// Query methods

Method(_Q00){-...}

Method(_QFF){...}

For more information on the embedded controller, see Section 12, “ACPI Embedded Controller
Interface Specification.”

4.8.4.2.3 Fan

98

ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a
device with the Plug and Play ID of “PNPOCOB.” It should then contain a list power resources used
to control the fan.

For more information, see Section 9, “ACPI-Defined Devices and Device Specific Objects.” .

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

5
ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in Section 4, “ACPI Hardware Specification.”
ACPI also provides an abstract interface for controlling the power management and configuration of
an ACPI system. Finally, ACPI defines an interface between an ACPI-compatible OS and the
system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe
system information, features, and methods for controlling those features. These tables list devices on
the system board or devices that cannot be detected or power managed using some other hardware
standard, plus their capabilities as described in Section 3, “Overview.” They also list system
capabilities such as the sleeping power states supported, a description of the power planes and clock
sources available in the system, batteries, system indicator lights, and so on. This enables OSPM to
control system devices without needing to know how the system controls are implemented.

Topics covered in this section are:

e The ACPI system description table architecture is defined, and the role of OEM-provided
definition blocks in that architecture is discussed.

e The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address
space and is setup by the platform firmware. This structure contains the address of the Extended
System Description Table (XSDT), which references other description tables that provide data to
OSPM, supplying it with knowledge of the base system’s implementation and configuration (see

Figure 5-23).

Located in system's memory address space
A

[)
Root System Extended System
Description Pointer Description Table
RSD PTR
Pointer
Pointer Entry
Entry | contents contents
Entry

Version 5.1 Errata A 99

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

Advanced Configuration and Power Interface Specification

100

Figure 5-23 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system
description tables is to define for OSPM various industry-standard implementation details. Such
definitions enable various portions of these implementations to be flexible in hardware requirements
and design, yet still provide OSPM with the knowledge it needs to control hardware directly.

The Extended System Description Table (XSDT) points to other tables in memory. Always the first
table, it points to the Fixed ACPI Description table (FADT). The data within this table includes
various fixed-length entries that describe the fixed ACPI features of the hardware. The FADT table
always refers to the Differentiated System Description Table (DSDT), which contains information
and descriptions for various system features. The relationship between these tables is shown in

Figure 5-24.

Fixed ACPI Differentiated System Firmware ACPI
Description Table

Control Structure

FACS

Wake Vector
Shared Lock

Description Table

Static info
EIRM Differet}t.iated
DSDT Definition

BLKs Block

Software

Hardware

GPx_BLK

OEM-Specific

Located in
port space

Device I/O
Device Memory
PCI configuration
Embedded Controller space

Figure 5-24 Description Table Structures

* OSPM finds the RSDP structure as described in Figure 5.2.5.1 (“Finding the RSDP on [A-PC
Systems”) or Figure 5.2.5.2 (“Finding the RSDP on UEFI Enabled Systems™).

When OSPM locates the structure, it looks at the physical address for the Root System Description
Table or the Extended System Description Table. The Root System Description Table starts with the
signature “RSDT”, while the Extended System Description Table starts with the signature “XSDT”.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

These tables contain one or more physical pointers to other system description tables that provide
various information about the system. As shown in Figure 5-24, there is always a physical address in
the Root System Description Table for the Fixed ACPI Description table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for a known
signature. Based on the signature, OSPM can then interpret the implementation-specific data within
the description table.

The purpose of the FADT is to define various static system information related to configuration and
power management. The Fixed ACPI Description Table starts with the “FACP” signature. The
FADT describes the implementation and configuration details of the ACPI hardware registers on the
platform.

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT BLK, PM1b EVT BLK,
PMla CNT BLK, PM1b CNT BLK, PM2 CNT BLK,PM TMR BLK, GP0O BLK, GP1 BLK,
and one or more P BLKSs), see Section 4.8, “ACPI Register Model.” The PM1la EVT BLK,
PMI1b EVT BLK, PMla CNT BLK, PMlb CNT BLK, PM2 CNT BLK, and PM_TMR BLK
blocks are for controlling low-level ACPI system functions.

The GPEO_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model
for Control Methods. The P_ BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical
pointer to a data structure known as the Differentiated System Description Table (DSDT), which is
encoded in Definition Block format (See Section 5.2.11, “Definition Blocks™).

A Definition Block contains information about the platform’s hardware implementation details in
the form of data objects arranged in a hierarchical (tree-structured) entity known as the “ACPI
namespace”, which represents the platform’s hardware configuration. All definition blocks loaded
by OSPM combine to form one namespace that represents the platform. Data objects are encoded in
a format known as ACPI Machine Language or AML for short. Data objects encoded in AML are
“evaluated” by an OSPM entity known as the AML interpreter. Their values may be static or
dynamic. The AML interpreter’s dynamic data object evaluation capability includes support for
programmatic evaluation, including accessing address spaces (for example, I/O or memory
accesses), calculation, and logical evaluation, to determine the result. Dynamic namespace objects
are known as “control methods”. OSPM “loads” or “unloads” an entire definition block as a logical
unit — adding to or removing the associated objects from the namespace. The DSDT is always loaded
by OSPM at boot time and cannot be unloaded. It contains a Definition Block named the
Differentiated Definition Block that contains implementation and configuration information OSPM
can use to perform power management, thermal management, or Plug and Play functionality that
goes beyond the information described by the ACPI hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior
definitions. A Definition Block can be loaded from system memory address space. One use of a
Definition Block is to describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to
the ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks
enable simple platform implementations to be expressed by using a few well-defined object names.
In theory, it might be possible to define a PCI configuration space-like access method within a
Definition Block, by building it from I/O space, but that is not the goal of the Definition Block
specification. Such a space is usually defined as a “built in” operator.

Version 5.1 Errata A 101

Advanced Configuration and Power Interface Specification

Some operators perform simple functions and others encompass complex functions. The power of
the Definition Block comes from its ability to allow these operations to be glued together in
numerous ways, to provide functionality to OSPM. The operators present are intended to allow
many useful hardware designs to be ACPI-expressed, not to allow all hardware designs to be
expressed.

5.1.1 Address Space Translation

Note:

Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass
through the bridges. This translation can take the form of the addition or subtraction of an offset. Or
it can take the form of a conversion from I/O cycles into Memory cycles and back again. When
translation takes place, the addresses placed on the processor bus by the processor during a read or
write cycle are not the same addresses that are placed on the 1/O bus by the I/O bus bridge. The
address the processor places on the processor bus will be known here as the processor-relative
address. And the address that the bridge places on the I/O bus will be known as the bus-relative
address. Unless otherwise noted, all addresses used within this section are processor-relative
addresses.

For example, consider a platform with two root PCI buses. The platform designer has several
choices. One solution would be to split the 16-bit I/O space into two parts, assigning one part to the
first root PCI bus and one part to the second root PCI bus. Another solution would be to make both
root PCI buses decode the entire 16-bit I/O space, mapping the second root PCI bus’s I/O space into
memory space. In this second scenario, when the processor needs to read from an I/O register of a
device underneath the second root PCI bus, it would need to perform a memory read within the
range that the root PCI bus bridge is using to map the I/O space.

Industry standard PCs do not provide address space translations because of historical
compatibility issues.

5.2 ACPI System Description Tables

102

This section specifies the structure of the system description tables:
* Root System Description Pointer (RSDP)

* System Description Table Header

* Root System Description Table (RSDT)

* Fixed ACPI Description Table (FADT)

e Firmware ACPI Control Structure (FACS)

» Differentiated System Description Table (DSDT)

* Secondary System Description Table (SSDT)

* Multiple APIC Description Table (MADT)

* Smart Battery Table (SBST)

* Extended System Description Table (XSDT)

* Embedded Controller Boot Resources Table (ECDT)
* System Locality Distance Information Table (SLIT)

April, 2015 Version 5.1 Errata A

L]

L]

ACPI Software Programming Model

System Resource Affinity Table (SRAT)
Corrected Platform Error Polling Table (CPEP)
Maximum System Characteristics Table (MSCT)
ACPI RAS FeatureTable (RASF)

Memory Power StateTable (MPST)

Platform Memory Topology Table (PMTT)

Boot Graphics Resource Table (BGRT)
Firmware Performance Data Table (FPDT)
Generic Timer Description Table (GTDT)

All numeric values in ACPI-defined tables, blocks, and structures are always encoded in little endian
format. Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all data items marked as reserved in this specification have strict meanings.
This section lists software requirements for reserved fields. Notice that the list contains terms such
as ACPI tables and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components

OEM implementations of software and AML code return the bit value of 0 for all reserved bits
in ACPI tables or in other software values, such as resource descriptors.

For all reserved bits in ACPI tables and registers, OSPM implementations must:
Ignore all reserved bits that are read.

Preserve reserved bit values of read/write data items (for example, OSPM writes back reserved
bit values it reads).

Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components

OEM implementations of software and AML code return only defined values and do not return
reserved values.

OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components

Software ignores all reserved bits read from hardware enable or status registers.
Software writes zero to all reserved bits in hardware enable registers.
Software ignores all reserved bits read from hardware control and status registers.

Software preserves the value of all reserved bits in hardware control registers by writing back
read values.

Version 5.1 Errata A 103

Advanced Configuration and Power Interface Specification

5.2.1.4 Ignored Hardware Bits and Software Components

» Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits
in these same types of registers.

5.2.2 Compatability

All versions of the ACPI tables must maintain backward compatibility. To accomplish this,
modifications of the tables consist of redefinition of previously reserved fields and values plus
appending data to the 1.0 tables. Modifications of the ACPI tables require that the version numbers
of the modified tables be incremented. The length field in the tables includes all additions and the
checksum is maintained for the entire length of the table.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory
or I/O space. This was targeted at the IA-32 environment. Newer architectures require addressing
mechanisms beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-
bit addressing and it must allow the placement of control registers in address spaces other than
System 1/O.

5.2.3.1 Functional Fixed Hardware

104

ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard
configuration and system power management. Additionally, the definition of these interfaces, as
well as others defined in this specification, conveys to OS Vendors (OSVs) developing ACPI-
compatible operating systems, the necessary interfaces that operating systems must manipulate to
provide robust support for system configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU
architectures cannot be accommodated by this model as they can require a sequence of hardware
manipulations intermixed with native CPU instructions to provide the ACPI-defined interface
function. In this case, an ACPI-defined fixed hardware interface can be functionally implemented by
the CPU manufacturer through an equivalent combination of both hardware and software and is
defined by ACPI as Functional Fixed Hardware.

In TA-32-based systems, functional fixed hardware can be accommodated in an OS independent
manner by using System Management Mode (SMM) based system firmware. Unfortunately, the
nature of SMM-based code makes this type of OS independent implementation difficult if not
impossible to debug. As such, this implementation approach is not recommended. In some cases,
Functional Fixed Hardware implementations may require coordination with other OS components.
As such, an OS independent implementation may not be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical
information supplied by the CPU manufacturer. The downside of this approach is that functional
fixed hardware support must be developed for each OS. In some cases, the CPU manufacturer may
provide a software component providing this support. In other cases support for the functional fixed
hardware may be developed directly by the OS vendor.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

The hardware register definition was expanded, in ACPI 2.0, to allow registers to exist in address
spaces other than the System I/O address space. This is accomplished through the specification of an
address space ID in the register definition (see Section 5.2.3.2, “Generic Address Structure,” for
more information). When specifically directed by the CPU manufacturer, the system firmware
may define an interface as functional fixed hardware by supplying a special address space identifier,
FfixedHW (0x7F), in the address space ID field for register definitions. It is emphasized that
functional fixed hardware definitions may be declared in the ACPI system firmware only as
indicated by the CPU Manufacturer for specific interfaces as the use of functional fixed hardware
requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only
when the interfaces are common across machine designs for example, systems sharing a common
CPU architecture that does not support fixed hardware implementation of an ACPI-defined
interface. OEMs are cautioned not to anticipate that functional fixed hardware support will be
provided by OSPM differently on a system-by-system basis. The use of functional fixed hardware
carries with it a reliance on OS specific software that must be considered. OEMs should consult OS
vendors to ensure that specific functional fixed hardware interfaces are supported by specific
operating systems.

Note: FFH is permitted and applicable to both full and HW-reduced ACPI implementations.

5.2.3.2 Generic Address Structure

The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-26), is used to express register addresses within
tables defined by ACPI .

Table 5-26 Generic Address Structure (GAS)

Field Byte Byte Description
Length | Offset
Address Space | 1 0 The address space where the data structure or register exists.
ID Defined values are:
0 System Memory
1 System 1/O
2 PCI Configuration Space
3 Embedded Controller
4 SMBus
5 to 0x09 Reserved
O0x0A Platform Communications Channel (PCC)
0x0B to Ox7E Reserved
Ox7F Functional Fixed Hardware
0x80 to OxBF Reserved
0xCO to OXFF OEM Defined
Register Bit 1 1 The size in bits of the given register. When addressing a data
Width structure, this field must be zero.
Register Bit 1 2 The bit offset of the given register at the given address. When
Offset addressing a data structure, this field must be zero.

Version 5.1 Errata A 105

Advanced Configuration and Power Interface Specification

Field Byte Byte Description
Length | Offset

Access Size 1 3 Specifies access size.

Undefined (legacy reasons)
Byte access

Word access

Dword access

QWord access

A WDNPF O

Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for specific
formats.)

Table 5-27 Address Space Format

Address Space Format

0—System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-bit
platforms must have the high DWORD set to 0.

1-System I/O The 64-bit I/O address (relative to the processor) of the register. 32-bit platforms

must have the high DWORD set to 0.

2—PCI Configuration PCI Configuration space addresses must be confined to devices on
Space
PCI Segment Group 0, bus 0. This restriction exists to accommodate access to fixed
hardware prior to PCI bus enumeration. The format of addresses are defined as

follows:
WORD Location Description
Highest WORD Reserved (must be 0)
PCI Device number on bus 0
PCI Function number
Lowest WORD Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

0x7F-Functional Use of GAS fields other than Address_Space_ID is specified by the CPU

Fixed Hardware manufacturer. The use of functional fixed hardware carries with it a reliance on OS
specific software that must be considered. OEMs should consult OS vendors to
ensure that specific functional fixed hardware interfaces are supported by specific
operating systems.

5.2.4 Universal Uniform Identifiers (UUID)

106

UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally Unique IDentifiers) are
128 bit long values that extremely likely to be different from all other UUIDs generated until 3400
A.D. UUIDs are used to distinguish between callers of ASL methods, such as DSM and OSC.

The format of both the binary and string representations of UUIDs along with an algorithm to
generate them is specified in ISO/IEC 11578:1996 and can be found as part of the Distributed
Computing Environment 1.1: Remote Procedure Call specification, which can be found in “Links to

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

ACPI-Related Documents™ (http://uefi.org/acpi) under the heading "Universal Uniform Identifiers
(UUID)".

5.2.5 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure
from the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it
then locates the Root System Description Table (RSDT) or the Extended Root System Description
Table (XSDT) using the physical system address supplied in the RSDP.

5.2.5.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory
ranges on 16-byte boundaries for a valid Root System Description Pointer structure signature and
checksum match as follows:

* The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the
EBDA can be found in the two-byte location 40:0Eh on the BIOS data area.

* The BIOS read-only memory space between 0EO000h and OFFFFFh.

5.2.5.2 Finding the RSDP on UEFI Enabled Systems

In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure
exists within the EFI System Table. The OS loader is provided a pointer to the EFI System Table at
invocation. The OS loader must retrieve the pointer to the RSDP structure from the EFI System
Table and convey the pointer to OSPM, using an OS dependent data structure, as part of the hand off
of control from the OS loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table
within the EFI System Table. EFI Configuration Table entries consist of Globally Unique Identifier
(GUID)/table pointer pairs. The UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0
and the other for ACPI 2.0 or later specification revisions.

The EFI GUID for a pointer to the ACPI 1.0 specification RSDP structure is:

* EB9D2D30-2D88-11D3-9A16-0090273FC14D.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is:
+ 8868E871-E4F1-11D3-BC22-0080C73C8881.

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer using the
current revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If
the GUID is not found then the OS loader will search for the RSDP structure pointer using the ACPI
1.0 version GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before
assuming platform control via the EFI ExitBootServices interface. See the UEFI Specification for
more information.

5.2.5.3 RSDP Structure

The revision number contained within the structure indicates the size of the table structure.

Version 5.1 Errata A 107

Advanced Configuration and Power Interface Specification

Table 5-28 Root System Description Pointer Structure

Field Byte Byte Description
Length | Offset

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing blank
character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table, bytes
0to 19, including the checksum field. These bytes must sum to
zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 15 The revision of this structure. Larger revision numbers are backward
compatible to lower revision numbers. The ACPI version 1.0
revision number of this table is zero. The current value for this field
is 2.

RsdtAddress 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting from
offset 0. This field is used to record the size of the entire table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended 32 This is a checksum of the entire table, including both checksum

Checksum fields.

Reserved 3 33 Reserved field

5.2.6 System Description Table Header

All system description tables begin with the structure shown in Table 5-29. The Signature field
determines the content of the system description table. System description table signatures defined
by this specification are listed in Table 5-30.

108

Table 5-29 DESCRIPTION_HEADER Fields

Field Byte Byte Description
Length | Offset

Signature 4 0 The ASCII string representation of the table identifier. Notice that if
OSPM finds a signature in a table that is not listed in Table 5-30,
OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the values in the
Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting from
offset 0. This field is used to record the size of the entire table.

Revision 1 8 The revision of the structure corresponding to the signature field for
this table. Larger revision numbers are backward compatible to
lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the particular
data table. This field is particularly useful when defining a definition
block to distinguish definition block functions. The OEM assigns
each dissimilar table a new OEM Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed to
be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision | 4 32 Revision of utility that created the table. For tables containing

Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table
ID fields in any table. The intent of these fields is to allow for a binary control system that support
services can use. Because many support functions can be automated, it is useful when a tool can
programmatically determine which table release is a compatible and more recent revision of a prior
table on the same OEMID and OEM Table ID.

Table 5-30 and Table 5-31 contain the system description table signatures defined by this
specification. These system description tables may be defined by ACPI and documented within this
specification (Table 5-30) or they may be simply reserved by ACPI and defined by other industry
specifications (Table 5-31). This allows OS and platform specific tables to be defined and pointed to
by the RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI
specification acts as gatekeeper to avoid collisions in table signatures.

Table signatures will be reserved by the ACPI promoters and posted independently of this
specification in ACPI errata and clarification documents on the ACPI web site. Requests to reserve a
4-byte alphanumeric table signature should be sent to the email address info@acpi.info and should
include the purpose of the table and reference URL to a document that describes the table format.
Tables defined outside of the ACPI specification may define data value encodings in either little
endian or big endian format. For the purpose of clarity, external table definition documents should
include the endian-ness of their data value encodings.

Since reference URLs can change over time and may not always be up-to-date in this specification, a
separate document containing the latest known reference URLs can be found at “Links to ACPI-
Related Documents” (http://uefi.org/acpi), which should conspicuously be placed in the same
location as this specification.

Table 5-30 DESCRIPTION_HEADER Signatures for tables defined by ACPI

Signature | Description Reference

“APIC” Multiple APIC Description Table Section 5.2.12, “Multiple APIC Description Table”

“BERT” Boot Error Record Table Section 18.3.1, “Boot Error Source”

“BGRT” Boot Graphics Resource Table Section 5.2.22, “Boot Graphics Resource Table”

“CPEP” Corrected Platform Error Polling Section 5.2.18, “Corrected Platform Error Polling Table”
Table

“‘DSDT” Differentiated System Description Section 5.2.11.1, “Differentiated System Description
Table Table”

Version 5.1 Errata A 109

Advanced Configuration and Power Interface Specification

110

Table

Signature | Description Reference

“ECDT” Embedded Controller Boot Section 5.2.15 “Embedded Controller Boot Resources
Resources Table Table”

“EINJ” Error Injection Table Section 18.6.1, “Error Injection Table”

“ERST” Error Record Serialization Table Section 18.5, “Error Serialization”

"FACP” Fixed ACPI Description Table Section 5.2.9, “Fixed ACPI Description Table”
(FADT)

“FACS” Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control Structure”

“FPDT” Firmware Performance Data Table | Section 5.2.23, “Firmware Performance Data Table”

“‘GTDT” Generic Timer Description Table Section 5.2.24, “Generic Timer Description Table”

“HEST” Hardware Error Source Table Section 18.3.2, “ACPI Error Source”

“MSCT” Maximum System Characteristics Section 5.2.19, “Maximum System Characteristics
Table Table”

“MPST” Memory Power StateTable Section 5.2.21, “Memory Power StateTable”

“OEMX” OEM Specific Information Tables OEM Specific tables. All table signatures starting with

“OEM” are reserved for OEM use.

“PMTT” Platform Memory Topology Table Section 5.2.21.12, Memory Topology Table (PMTT)

“PSDT” Persistent System Description Section 5.2.11.3, “Persistent System Description Table”
Table

“RASF” ACPI RAS FeatureTable Section 5.2.20.3, “ACPI RAS FeatureTable”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description Table”

“SBST” Smart Battery Specification Table Section 5.2.14, “Smart Battery Table”

“SLIT” System Locality Distance Section 5.2.17, “System Locality Distance Information
Information Table Table”

“SRAT” System Resource Affinity Table Section 5.2.16, “System Resource Affinity Table”

“SSDT” Secondary System Description Section 5.2.11.2, “Secondary System Description Table”
Table

“XSDT” Extended System Description Section 5.2.8, “Extended System Description Table”

Table 5-31 DESCRIPTION_HEADER Signatures for tables reserved by ACPI

Signature | Description and External Reference

“BOOT” Simple Boot Flag Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Simple
Boot Flag Table".

“CSRT” Core System Resource Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Core
System Resource Table".

“‘DBG2” Debug Port Table 2

Microsoft Debug Port Table 2 Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Debug Port

Table 2".

April, 2015

Version 5.1 Errata A

ACPI Software Programming Model

Signature

Description and External Reference

“‘DBGP”

Debug Port Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Debug Port
Table".

“DMAR”

DMA Remapping Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "DMA
Remapping Table".

"DRTM"

Dynamic Root of Trust for Measurement Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading “TCG D-
RTM Architecture Specification”.

“‘ETDT”

Event Timer Description Table (Obsolete)
IA-PC Multimedia Timers Specification. This sighature has been superseded by “HPET” and is
now obsolete.

“HPET”

IA-PC High Precision Event Timer Table

IA-PC High Precision Event Timer Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "IA-PC High
Precision Event Timer Table".

“IBFT”

iSCSI Boot Firmware Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "iSCSI Boot
Firmware Table".

“IVRS”

I/O Virtualization Reporting Structure
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "I/O
Virtualization Reporting Structure”.

"LPIT"

Low Power Idle Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Low Power
Idle Table".

“MCFG”

PCI Express memory mapped configuration space base address Description Table
PCI Firmware Specification, Revision 3.0
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "PCI Sig".

“MCHI”

Management Controller Host Interface Table

DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification
See“Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading
"Management Controller Host Interface Table".

“MSDM”

Microsoft Data Management Table

See: Microsoft Data Management Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Microsoft
Data Management Table".

“SLIC”

Microsoft Software Licensing Table Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Microsoft
Software Licensing Table Specification”.

“SPCR”

Serial Port Console Redirection Table

Microsoft Serial Port Console Redirection Table

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Serial Port
Console Redirection Table".

Version 5.1 Errata A 111

Advanced Configuration and Power Interface Specification

Signature | Description and External Reference

“SPMI” Server Platform Management Interface Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Server
Platform Management Interface Table".

“TCPA” Trusted Computing Platform Alliance Capabilities Table

TCPA PC Specific Implementation Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Trusted
Computing Platform Alliance Capabilities Table".

TPM2 Trusted Platform Module 2 Table

See: Trusted Platform Module 2 Table Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Trusted
Platform Module 2 Table".

“UEFI” UEFI ACPI Data Table

UEFI Specification

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Unified
Extensible Firmware Interface Specifications".

“WAET” Windows ACPI Emulated Devices Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Windows
ACPI Emulated Devices Table".

“WDAT” Watch Dog Action Table

Requirements for Hardware Watchdog Timers Supported by Windows — Design Specification
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Watchdog
Action Table".

“WDRT" Watchdog Resource Table

Watchdog Timer Hardware Requirements for Windows Server 2003

See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Watchdog
Timer Resource Table (WDRT)".

“WPBT” Windows Platform Binary Table
See “Links to ACPI-Related Documents” (http://uefi.org/acpi) under the heading "Windows
Platform Binary Table".

5.2.7 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure.
The RSDT, shown in Table 5-32, starts with the signature ‘RSDT’ followed by an array of physical
pointers to other system description tables that provide various information on other standards
defined on the current system. OSPM examines each table for a known signature. Based on the
signature, OSPM can then interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT,
described in the next section, supersedes RSDT functionality.

Table 5-32 Root System Description Table Fields (RSDT)

Byte Byte
Field Length | Offset | pegcription

Header

112 April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Signature 4 0 ‘RSDT’ Signature for the Root System Description Table.

Length Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.

Revision 1 1

Checksum 1 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

Creator ID 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 4*n 36 An array of 32-bit physical addresses that point to other

DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

5.2.8 Extended System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERsS that are larger than 32 bits. Notice that both the XSDT and the RSDT
can be pointed to by the RSDP structure. An ACPI-compatible OS must use the XSDT if present.

Table 5-33 Extended System Description Table Fields (XSDT)

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘XSDT'. Signature for the Extended System Description Table.
Length 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Version 5.1 Errata A 113

Advanced Configuration and Power Interface Specification

Field Byte Byte Description
Length | Offset
Entry 8*n 36 An array of 64-bit physical addresses that point to other

DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can further
address the table based upon its Length field.

5.2.9 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital
to an ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PMla EVT BLK,PMIb EVT BLK,PMla CNT BLK, PM1b CNT BLK, PM2 CNT BLK,
PM_TMR_BLK, GPEO BLK, and GPE1 BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which
in turn provides variable information to an ACPI-compatible OS concerning the base system design.

Note:

114

All fields in the FADT that provide hardware addresses provide processor-relative physical

addresses.

If the HW_REDUCED_ACPI flag in the table is set, OSPM will ignore fields related to the ACPI
HW register interface: Fields at offsets 46 through 108 and 148 through 232, as well as FADT Flag
bits 1, 2, 3,7,8,12,13, 14, 16 and 17).

Table 5-34 Fixed ACPI Description Table (FADT) Format

Field Byte Byte Description
Length | Offset
Header

Signature 4 0 ‘FACP'. Signature for the Fixed ACPI Description Table. (This
signature predates ACPI 1.0, explaining the mismatch with
this table's name.)

Length Length, in bytes, of the entire FADT.

FADT Major Version 5
Major Version of this FADT structure, in "Major.Minor" form,
where 'Minor' is the value in the Minor Version Field (Byte
offset 131 in this table)

Checksum 9 Entire table must sum to zero.

OEMID 10 OEM ID

OEM Table ID 16 For the FADT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the RSDT.

OEM Revision 24 OEM revision of FADT for supplied OEM Table ID.

Creator ID 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field Byte Byte Description
Length | Offset
FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM and

Firmware exchange control information. See Section 5.2.6,
“Root System Description Table,” for a description of the
FACS. If the X_FIRMWARE_CTRL field contains a non zero
value then this field must be zero. If the
HARDWARE_REDUCED_ACPI flag is set, and the
X_FIRMWARE_CTRL field is zero, this field may also be
zero. A zero value indicates that no FACS is specified by this
field. If both this field and the X_FIRMWARE_CTRL field are
zero, there is no FACS available.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as a field named INT_MODEL,
which was eliminated in ACPI 2.0. Platforms should set this
field to zero but field values of one are also allowed to
maintain compatibility with ACPI 1.0.

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.

Field Values:

Unspecified

Desktop

Mobile

Workstation

Enterprise Server

SOHO Server

Appliance PC

Performance Server

Tablet

~No o wNNPRE O

(s}
~

>8 Reserved

SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the
Global System interrupt number of the SCI interrupt. OSPM is
required to treat the ACPI SClI interrupt as a sharable, level,
active low interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port. During ACPI
OS initialization, OSPM can determine that the ACPI
hardware registers are owned by SMI (by way of the SCI_EN
bit), in which case the ACPI OS issues the ACPI_ENABLE
command to the SMI_CMD port. The SCI_EN bit effectively
tracks the ownership of the ACPI hardware registers. OSPM
issues commands to the SMI_CMD port synchronously from
the boot processor. This field is reserved and must be zero on
system that does not support System Management mode.

Version 5.1 Errata A 115

Advanced Configuration and Power Interface Specification

Field

Byte
Length

Byte
Offset

Description

ACPI_ENABLE

52

The value to write to SMI_CMD to disable SMI ownership of
the ACPI hardware registers. The last action SMI does to
relinquish ownership is to set the SCI_EN bit. During the OS
initialization process, OSPM will synchronously wait for the
transfer of SMI ownership to complete, so the ACPI system
releases SMI ownership as quickly as possible. This field is
reserved and must be zero on systems that do not support
Legacy Mode.

ACPI_DISABLE

53

The value to write to SMI_CMD to re-enable SMI ownership
of the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off
all SClI interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the boot
processor. This field is reserved and must be zero on systems
that do not support Legacy Mode.

S4BIOS_REQ

54

The value to write to SMI_CMD to enter the S4BIOS state.
The S4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in S4BIOS_F indicates
S4BIOS_REQ is not supported. (See Table 5-38)

PSTATE_CNT

55

If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to assume processor performance state
control responsibility.

PMla_EVT BLK

56

System port address of the PM1a Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field. This field is superseded by the X_PM1la_EVT_BLK field.

PM1b_EVT_BLK

60

System port address of the PM1b Event Register Block. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.
This field is superseded by the X_PM1b_EVT_BLK field.

PMla_CNT_BLK

64

System port address of the PM1a Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required
field. This field is superseded by the X_PM1a_CNT_BLK
field.

PM1b_CNT_BLK

68

System port address of the PM1b Control Register Block. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.
This field is superseded by the X_PM1b_CNT_BLK field.

116

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

PM2_CNT_BLK

72

System port address of the PM2 Control Register Block. See
Section 4.8.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.
This field is superseded by the X_PM2_CNT_BLK field.

PM_TMR_BLK

76

System port address of the Power Management Timer
Control Register Block. See Section 4.8.3.3, “Power
Management Timer (PM_TMR),” for a hardware description
layout of this register block. This is an optional field; if this
register block is not supported, this field contains zero. This
field is superseded by the X_PM_TMR_BLK field.

GPEO_BLK

80

System port address of General-Purpose Event 0 Register
Block. See Section 4.8.4.1, “General-Purpose Event Register
Blocks,” for a hardware description of this register block. This
is an optional field; if this register block is not supported, this
field contains zero. This field is superseded by the
X_GPEQ_BLK field.

GPE1_BLK

84

System port address of General-Purpose Event 1 Register
Block. See Section 4.8.4.1, “General-Purpose Event Register
Blocks,” for a hardware description of this register block. This
is an optional field; if this register block is not supported, this
field contains zero. This field is superseded by the
X_GPE1_BLK field.

PM1_EVT_LEN

88

Number of bytes decoded by PM1a_EVT_BLK and, if
supported, PM1b_ EVT_BLK. This value is > 4.

PM1_CNT_LEN

89

Number of bytes decoded by PM1a_CNT_BLK and, if
supported, PM1b_CNT_BLK. This value is > 2.

PM2_CNT_LEN

90

Number of bytes decoded by PM2_CNT_BLK. Support for the
PM2 register block is optional. If supported, this value is > 1. If
not supported, this field contains zero.

PM_TMR_LEN

91

Number of bytes decoded by PM_TMR_BLK. If the PM Timer
is supported, this field’s value must be 4. If not supported, this
field contains zero.

GPEO_BLK_LEN

92

Number of bytes decoded by GPEO_BLK. The value is a non-
negative multiple of 2.

GPE1_BLK_LEN

93

Number of bytes decoded by GPE1_BLK. The value is a non-
negative multiple of 2.

GPE1_BASE

94

Offset within the ACPI general-purpose event model where
GPEL1 based events start.

CST_CNT

95

If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to indicate OS support for the _CST object
and C States Changed notification.

P_LVL2 LAT

96

The worst-case hardware latency, in microseconds, to enter
and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

Version 5.1 Errata A 117

Advanced Configuration and Power Interface Specification

Field Byte Byte Description
Length | Offset
P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter

and exit a C3 state. A value > 1000 indicates the system does
not support a C3 state.

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush
strides that need to be read (using cacheable addresses) to
completely flush dirty lines from any processor's memory
caches. Notice that the value in FLUSH_STRIDE is typically
the smallest cache line width on any of the processor’s
caches (for more information, see the FLUSH_STRIDE field
definition). If the system does not support a method for
flushing the processor’s caches, then FLUSH_SIZE and
WBINVD are set to zero. Notice that this method of flushing
the processor caches has limitations, and WBINVD=1 is the
preferred way to flush the processors caches. This value is
typically at least 2 times the cache size. The maximum
allowed value for FLUSH_SIZE multiplied by
FLUSH_STRIDE is 2 MB for a typical maximum supported
cache size of 1 MB. Larger cache sizes are supported using
WBINVD=1.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility
on existing systems. Processors in new ACPI-compatible
systems are required to support the WBINVD function and
indicate this to OSPM by setting the WBINVD field = 1.

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line width, in
bytes, of the processor's memory caches. This value is
typically the smallest cache line width on any of the
processor’s caches. For more information, see the description
of the FLUSH_SIZE field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility
on existing systems. Processors in new ACPI-compatible
systems are required to support the WBINVD function and
indicate this to OSPM by setting the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle
setting is within the processor’'s P_CNT register.

118 April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

DUTY_WIDTH

105

The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows
the software to select a nominal processor frequency below
its absolute frequency as defined by:
THTL_EN =1
BF * DC/(zDUTY_WIDTH)

Where:
BF-Base frequency
DC-Duty cycle setting
When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle
is not supported and the processor continuously runs at its
base frequency.

DAY_ALRM

106

The RTC CMOS RAM index to the day-of-month alarm value.
If this field contains a zero, then the RTC day of the month
alarm feature is not supported. If this field has a non-zero
value, then this field contains an index into RTC RAM space
that OSPM can use to program the day of the month alarm.
See Section 4.8.2.4 “Real Time Clock Alarm,” for a
description of how the hardware works.

MON_ALRM

107

The RTC CMOS RAM index to the month of year alarm value.
If this field contains a zero, then the RTC month of the year
alarm feature is not supported. If this field has a non-zero
value, then this field contains an index into RTC RAM space
that OSPM can use to program the month of the year alarm. If
this feature is supported, then the DAY_ALRM feature must
be supported also.

CENTURY

108

The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains a
zero, then the RTC centenary feature is not supported. If this
field has a non-zero value, then this field contains an index
into RTC RAM space that OSPM can use to program the
centenary field.

IAPC_BOOT_ARCH

109

IA-PC Boot Architecture Flags. See Table 5-36 for a
description of this field.

Reserved

111

Must be 0.

Flags

112

Fixed feature flags. See Table 5-35 for a description of this
field.

RESET_REG

12

116

The address of the reset register represented in Generic
Address Structure format (See Section 4.8.3.6, “Reset
Register,” for a description of the reset mechanism.)

Note: Only System 1/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

Version 5.1 Errata A 119

Advanced Configuration and Power Interface Specification

Length | Offset

Field Byte Byte Description

RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to reset
the system. (See Section 4.8.3.6, “Reset Register,” for a
description of the reset mechanism.)

ARM_BOOT_ARCH 2 129 ARM Boot Architecture Flags. See Table 5-37 for a
description of this field.

FADT Minor Version 1 131 1

Minor Version of this FADT structure, in "Major.Minor" form,
where 'Major' is the value in the Major Version Field (Byte
offset 8 in this table).

X_FIRMWARE_CTRL 8 132 64bit physical address of the FACS. This field is used when
the physical address of the FACS is above 4GB. If the
FIRMWARE_CTRL field contains a non zero value then this
field must be zero. If the HARDWARE_REDUCED_ACPI flag
is set, and the FIRMWARE_CTRL field is zero, this field may
also be zero. A zero value indicates that no FACS is
specified by this field. If both this field and the
FIRMWARE_CTRL field are zero, there is no FACS available.

X_DSDT 8 140 64bit physical address of the DSDT.

field.

X PMla EVT BLK 12 148 Extended address of the PM1a Event Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This is a required

X_PM1b_EVT_BLK 12 160 Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.

field.

X _PMla CNT_BLK 12 172 Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required

X_PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block,
represented in Generic Address Structure format. See
Section 4.8.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.

X _PM2_CNT_BLK 12 196 Extended address of the Power Management 2 Control
Register Block, represented in Generic Address Structure
format. See Section 4.8.3.4 “PM2 Control (PM2_CNT),” for a
hardware description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

120 April, 2015

Version 5.1 Errata A

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

X_PM_TMR_BLK

12

208

Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure
format. See Section 4.8.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this register
block. This field is optional; if this register block is not
supported, this field contains zero.

X_GPEO_BLK

12

220

Extended address of the General-Purpose Event O Register
Block, represented in Generic Address Structure format. See
Section 5.2.9 “Fixed ACPI Description Table,” for a hardware
description of this register block. This is an optional field; if
this register block is not supported, this field contains zero.

X_GPE1_BLK

12

232

Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format. See
Section 5.2.9, “Fixed ACPI Description Table,” for a hardware
description of this register block. This is an optional field; if
this register block is not supported, this field contains zero.

SLEEP_CONTROL_RE
G

12

244

The address of the Sleep register, represented in Generic
Address Structure format (See Section 4.8.3.7, "Sleep
Control and Status Registers," for a description of the sleep
mechanism.)

Note: Only System /O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

SLEEP_STATUS_REG

12

256

The address of the Sleep status register, represented in
Generic Address Structure format (See Section 4.8.3.7,
"Sleep Control and Status Registers," for a description of the
sleep mechanism.)

Note: Only System /O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_|D. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

Version 5.1 Errata A 121

Advanced Configuration and Power Interface Specification

122

Table 5-35 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag

Bit
Length

Bit
Offset

Description

WBINVD

1

0

Processor properly implements a functional equivalent to the
WBINVD |A-32 instruction.

If set, signifies that the WBINVD instruction correctly flushes
the processor caches, maintains memory coherency, and
upon completion of the instruction, all caches for the current
processor contain no cached data other than what OSPM
references and allows to be cached. If this flag is not set, the
ACPI OS is responsible for disabling all ACPI features that
need this function. This field is maintained for ACPI 1.0
processor compatibility on existing systems. Processors in
new ACPI-compatible systems are required to support this
function and indicate this to OSPM by setting this field.

WBINVD_FLUSH

If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but
does not guarantee the caches are invalidated. This provides
the complete semantics of the WBINVD instruction, and
provides enough to support the system sleeping states. If
neither of the WBINVD flags is set, the system will require
FLUSH_SIZE and FLUSH_STRIDE to support sleeping
states. If the FLUSH parameters are also not supported, the
machine cannot support sleeping states S1, S2, or S3.

PROC_C1

A one indicates that the C1 power state is supported on all
processors.

P _LVL2 UP

A zero indicates that the C2 power state is configured to only
work on a uniprocessor (UP) system. A one indicates that the
C2 power state is configured to work on a UP or
multiprocessor (MP) system.

PWR_BUTTON

A zero indicates the power button is handled as a fixed
feature programming model; a one indicates the power button
is handled as a control method device. If the system does not
have a power button, this value would be “1” and no sleep
button device would be present.

Independent of the value of this field, the presence of a power
button device in the namespace indicates to OSPM that the
power button is handled as a control method device.

SLP_BUTTON

A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is
handled as a control method device.

If the system does not have a sleep button, this value would
be “1” and no sleep button device would be present.
Independent of the value of this field, the presence of a sleep
button device in the namespace indicates to OSPM that the
sleep button is handled as a control method device.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

FACP - Flag

Bit
Length

Bit
Offset

Description

FIX_RTC

6

A zero indicates the RTC wake status is supported in fixed
register space; a one indicates the RTC wake status is not
supported in fixed register space.

RTC_S4

Indicates whether the RTC alarm function can wake the
system from the S4 state. The RTC must be able to wake the
system from an S1, S2, or S3 sleep state. The RTC alarm can
optionally support waking the system from the S4 state, as
indicated by this value.

TMR_VAL_EXT

A zero indicates TMR_VAL is implemented as a 24-bit value.
A one indicates TMR_VAL is implemented as a 32-bit value.
The TMR_STS bit is set when the most significant bit of the
TMR_VAL toggles.

DCK_CAP

A zero indicates that the system cannot support docking. A
one indicates that the system can support docking. Notice
that this flag does not indicate whether or not a docking
station is currently present; it only indicates that the system is
capable of docking.

RESET_REG_SUP

10

If set, indicates the system supports system reset via the
FADT RESET_REG as described in Section 4.8.3.6, “Reset
Register.”

SEALED_CASE

11

System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the case is sealed.

HEADLESS

12

System Type Attribute. If set indicates the system cannot
detect the monitor or keyboard / mouse devices.

CPU_SW_SLP

13

If set, indicates to OSPM that a processor native instruction
must be executed after writing the SLP_TYPx register.

PCI_EXP_WAK

14

If set, indicates the platform supports the
PCIEXP_WAKE_STS bit in the PM1 Status register and the
PCIEXP_WAKE_EN bit in the PM1 Enable register. This bit
must be set on platforms containing chipsets that implement
PCI Express.

Version 5.1 Errata A 123

Advanced Configuration and Power Interface Specification

FACP - Flag Bit Bit Description

Length | Offset
USE_PLATFORM_CLO | 1 15 A value of one indicates that OSPM should use a platform
CK provided timer to drive any monotonically non-decreasing

counters, such as OSPM performance counter services.
Which particular platform timer will be used is OSPM specific,
however, it is recommended that the timer used is based on
the following algorithm: If the HPET is exposed to OSPM,
OSPM should use the HPET. Otherwise, OSPM will use the
ACPI power management timer. A value of one indicates that
the platform is known to have a correctly implemented ACPI
power management timer.

A platform may choose to set this flag if a internal processor
clock (or clocks in a multi-processor configuration) cannot
provide consistent monotonically non-decreasing counters.
Note: If a value of zero is present, OSPM may arbitrarily
choose to use an internal processor clock or a platform timer
clock for these operations. That is, a zero does not imply that
OSPM will necessarily use the internal processor clock to
generate a monotonically non-decreasing counter to the
system.

S4 RTC_STS_VALID 1 16 A one indicates that the contents of the RTC_STS flag is valid
when waking the system from S4.

See Table 4-16 — PM1 Status Registers Fixed Hardware
Feature Status Bits for more information. Some existing
systems do not reliably set this input today, and this bit allows
OSPM to differentiate correctly functioning platforms from
platforms with this errata.

REMOTE_POWER_ON | 1 17 A one indicates that the platform is compatible with remote
_CAPABLE power- on.

That is, the platform supports OSPM leaving GPE wake
events armed prior to an S5 transition. Some existing
platforms do not reliably transition to S5 with wake events
enabled (for example, the platform may immediately generate
a spurious wake event after completing the S5 transition).
This flag allows OSPM to differentiate correctly functioning
platforms from platforms with this type of errata.

FORCE_ 1 18 A one indicates that all local APICs must be configured for the
APIC_CLUSTER_MOD cluster destination model when delivering interrupts in logical
EL mode.

If this bit is set, then logical mode interrupt delivery operation
may be undefined until OSPM has moved all local APICs to
the cluster model.

Note that the cluster destination model doesn’t apply to
Itanium™ Processor Family (IPF) local SAPICs. This bit is
intended for xAPIC based machines that require the cluster
destination model even when 8 or fewer local APICs are
present in the machine.

124 April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

FACP - Flag Bit Bit Description
Length | Offset

FORCE_APIC_PHYSIC | 1 19 A one indicates that all local xAPICs must be configured for

AL_DESTINATION_MO physical destination mode. If this bit is set, interrupt delivery

DE operation in logical destination mode is undefined. On
machines that contain fewer than 8 local xAPICs or that do
not use the xAPIC architecture, this bit is ignored.

HW_REDUCED_ACPI 1 20 A one indicates that the ACPI Hardware Interface (chapter 4)
is not implemented. Software-only alternatives are used for
supported fixed-features defined in chapter 4.

LOW_POWER_SO_IDL |1 21 A one informs OSPM that the platform is able to achieve

E_CAPABLE power savings in SO similar to or better than those typically
achieved in S3. In effect, when this bit is set it indicates that
the system will achieve no power benefit by making a sleep
transition to S3.

Reserved 10 22

5.2.9.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as a
guide for setting the Preferred PM_Profile field in the FADT. OSPM can use this field to set default
power management policy parameters during OS installation.

Desktop

Mobile

Workstation

A single user, full featured, stationary computing device that resides on or near an
individual’s work area. Most often contains one processor. Must be connected to AC
power to function. This device is used to perform work that is considered mainstream
corporate or home computing (for example, word processing, Internet browsing,
spreadsheets, and so on).

A single-user, full-featured, portable computing device that is capable of running on
batteries or other power storage devices to perform its normal functions. Most often
contains one processor. This device performs the same task set as a desktop. However
it may have limitations dues to its size, thermal requirements, and/or power source
life.

A single-user, full-featured, stationary computing device that resides on or near an
individual’s work area. Often contains more than one processor. Must be connected to
AC power to function. This device is used to perform large quantities of computations
in support of such work as CAD/CAM and other graphics-intensive applications.

Enterprise Server

A multi-user, stationary computing device that frequently resides in a separate, often
specially designed, room. Will almost always contain more than one processor. Must
be connected to AC power to function. This device is used to support large-scale

Version 5.1 Errata A 125

Advanced Configuration and Power Interface Specification

networking, database, communications, or financial operations within a corporation or
government.

SOHO Server

A multi-user, stationary computing device that frequently resides in a separate area or
room in a small or home office. May contain more than one processor. Must be
connected to AC power to function. This device is generally used to support all of the
networking, database, communications, and financial operations of a small office or
home office.

Appliance PC

A device specifically designed to operate in a low-noise, high-availability
environment such as a consumer’s living rooms or family room. Most often contains
one processor. This category also includes home Internet gateways, Web pads, set top
boxes and other devices that support ACPI. Must be connected to AC power to
function. Normally they are sealed case style and may only perform a subset of the
tasks normally associated with today’s personal computers.

Performance Server

A multi-user stationary computing device that frequently resides in a separate, often
specially designed room. Will often contain more than one processor. Must be
connected to AC power to function. This device is used in an environment where
power savings features are willing to be sacrificed for better performance and quicker
responsiveness.

Tablet

A full-featured, highly mobile computing device which resembles writing tablets and
which users interact with primarily through a touch interface. The touch digitizer is
the primary user input device, although a keyboard and/or mouse may be present.
Tablet devices typically run on battery power and are generally only plugged into AC
power in order to charge. This device performs many of the same tasks as Mobile;
however battery life expectations of Tablet devices generally require more aggressive
power savings especially for managing display and touch components.

5.2.9.2 System Type Attributes

This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power
management and device settings. For example, a system that has the SEALED CASE bit set may
take a very aggressive low noise policy toward thermal management. In another example an OS
might not load video, keyboard or mouse drivers on a HEADLESS system.

5.2.9.3 IA-PC Boot Architecture Flags

126

This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on
IA-PC platforms. These flags are used by an OS at boot time (before the OS is capable of providing
an operating environment suitable for parsing the ACPI namespace) to determine the code paths to
take during boot. In IA-PC platforms with reduced legacy hardware, the OS can skip code paths for
legacy devices if none are present. For example, if there are no ISA devices, an OS could skip code

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

that assumes the presence of these devices and their associated resources. These flags are used
independently of the ACPI namespace. The presence of other devices must be described in the ACPI
namespace as specified in Section 6, “Configuration.” These flags pertain only to IA-PC platforms.
On other system architectures, the entire field should be set to 0.

Table 5-36 Fixed ACPI Description Table Boot IA-PC Boot Architecture Flags

IAPC_BOOT_ARCH Bit Bit Description
length | offset
LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible

devices on the LPC or ISA bus. User-visible devices are devices
that have end-user accessible connectors (for example, LPT
port), or devices for which the OS must load a device driver so
that an end-user application can use a device. If clear, the OS
may assume there are no such devices and that all devices in the
system can be detected exclusively via industry standard device
enumeration mechanisms (including the ACPI namespace).

8042 1 1 If set, indicates that the motherboard contains support for a port
60 and 64 based keyboard controller, usually implemented as an
8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the VGA
hardware (that responds to MMIO addresses AO00Oh-BFFFFh
and |10 ports 3BOh-3BBh and 3C0Oh-3DFh) that may cause
machine check on this system. If clear, indicates to OSPM that it
is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicates to OSPM that it must not enable Message
Signaled Interrupts (MSI) on this platform.

PCle ASPM Controls | 1 4 If set, indicates to OSPM that it must not enable OSPM ASPM
control on this platform.

CMOS RTC Not 1 5 If set, indicates that the CMOS RTC is either not implemented, or

Present does not exist at the legacy addresses. OSPM uses the Control
Method Time and Alarm Namespace device instead.

Reserved 10 6 Must be 0.

5.2.9.4 ARM Architecture boot flags

These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during
boot. For the PSCI flags, specifically, the flags describe if the platform is compliant with the PSCI
specification. The PSCI specification is found at Links to ACPI-Related Document" (http://uefi.org/
acpi) under the heading PSCI Specification.

The ARM Architecture boot flags are described in Table 5-37:

Table 5-37 Fixed ACPI Description Table ARM Boot Architecture Flags

ARM_BOOT_ARCH Bit Bit Description
Length | Offset
PSCI_COMPLIANT 1 0 1if PSCI is implemented.

Version 5.1 Errata A 127

Advanced Configuration and Power Interface Specification

PSCI_USE_HVC 1 1 1 if HYC must be used as the PSCI conduit.instead of SMC.

Reserved 14 2 This value is zero.

5.2.10 Firmware ACPI Control Structure (FACS)

128

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS
reserves for ACPI usage. This structure is optional if and only if the

HARDWARE REDUCED_ACPI flag in the FADT is set. The FACS is passed to an ACPI-
compatible OS using the FADT. For more information about the FADT FIRMWARE CTRL field,
see Table 5.2.9, “Fixed ACPI Description Table (FADT).”

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s memory address
space. The memory where the FACS structure resides must not be reported as system
AddressRangeMemory in the system address map. For example, the E820 address map reporting
interface would report the region as AddressRangeReserved. For more information about system
address map reporting interfaces, see Section 15, “System Address Map Interfaces.”

Table 5-38 Firmware ACPI Control Structure (FACS)

Byte Byte
Field Length | Offset | pescription
Signature 4 0 ‘FACS’
Length 4 4 Length, in bytes, of the entire Firmware ACPI Control Structure.
This value is 64 bytes or larger.
Hardware Signature 4 8 The value of the system’s “hardware signature” at last boot.

This value is calculated by the BIOS on a best effort basis to
indicate the base hardware configuration of the system such
that different base hardware configurations can have different
hardware signature values. OSPM uses this information in
waking from an S4 state, by comparing the current hardware
signhature to the signature values saved in the non-volatile sleep
image. If the values are not the same, OSPM assumes that the
saved non-volatile image is from a different hardware
configuration and cannot be restored.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field

Byte
Length

Byte
Offset

Description

Firmware Waking
Vector

12

This field is superseded by the X_Firmware_Waking_Vector
field.
The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory address of an
OS-specific wake function. During POST, the platform firmware
first checks if the value of the X_Firmware_Waking_Vector field
is non-zero and if so transfers control to OSPM as outlined in
the X_Firmware_Waking_vector field description below. If the
X_Firmware_Waking_Vector field is zero then the platform
firmware checks the value of this field and if it is non-zero,
transfers control to the specified address.
On PCs, the wake function address is in memory below 1 MB
and the control is transferred while in real mode. OSPM’s wake
function restores the processors’ context.
For IA-PC platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps to.
If, for example, the physical address is 0x12345, then the BIOS
must jump to real mode address 0x1234:0x0005. In general this
relationship is

Real-mode address =

Physical address>>4 : Physical address and 0xO00F
Notice that on IA-PC platforms, A20 must be enabled when the
BIOS jumps to the real mode address derived from the physical
address stored in the Firmware Waking Vector.

Global Lock

16

This field contains the Global Lock used to synchronize access
to shared hardware resources between the OSPM environment
and an external controller environment (for example, the SMI
environment). This lock is owned exclusively by either OSPM or
the firmware at any one time. When ownership of the lock is
attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has
been released. For example, the Global Lock can be used to
protect an embedded controller interface such that only OSPM
or the firmware will access the embedded controller interface at
any one time. See Section 5.2.10.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags

20

Firmware control structure flags. See Table 5-39 for a
description of this field.

Version 5.1 Errata A 129

Advanced Configuration and Power Interface Specification

Field

Byte
Length

Byte
Offset

Description

X Firmware Waking
Vector

24

64-bit physical address of OSPM’s Waking Vector.

Before transitioning the system into a global sleeping state,
OSPM fills in this field and the OSPM Flags field to describe the
waking vector. OSPM populates this field with the physical
memory address of an OS-specific wake function. During
POST, the platform firmware checks if the value of this field is
non-zero and if so transfers control to OSPM by jumping to this
address after creating the appropriate execution environment,
which must be configured as follows:

For 64-bit Itanium™ Processor Family (IPF) -based platforms:
Interrupts must be disabled

The processor must have psr.i set to 0. See the Intel® Itanium

Architecture Software Developer’'s Manual for more information.
Memory address translation must be disabled
The processor must have psr.it, psr.dt, and psr.rt set to 0. See

the Intel® Itanium " Architecture Software Developer’'s Manual
for more information.

For IA 32 and x64 platforms, platform firmware is required to
support a 32 bit execution environment. Platform firmware can
additionally support a 64 bit execution environment. If platform
firmware supports a 64 bit execution environment, firmware
inspects the OSPM Flags during POST. If the 64BIT_WAKE_F
flag is set, the platform firmware creates a 64 bit execution
environment. Otherwise, the platform firmware creates a 32 bit
execution environment.

For 64 bit execution environment:

Interrupts must be disabled

EFLAGS.IF setto 0

Long mode enabled

Paging mode is enabled and physical memory for waking vector
is identity mapped (virtual address equals physical address)
Waking vector must be contained within one physical page
Selectors are set to be flat and are otherwise not used

For 32 bit execution environment:

Interrupts must be disabled

EFLAGS.IF setto 0

Memory address translation / paging must be disabled

4 GB flat address space for all segment registers

Version

32

2-Version of this table

Reserved

33

This value is zero.

OSPM Flags

36

OSPM enabled firmware control structure flags. Platform
firmware must initialize this field to zero. See Table 5-40 for a
description of the OSPM control structure feature flags.

Reserved

24

40

This value is zero.

130

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Table 5-39 Firmware Control Structure Feature Flags

FACS - Flag Bit Bit Description
Length | Offset
S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If

S4BIOS_REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the S4 state.

64BIT_WAKE_SUPP |1 1 Indicates that the platform firmware supports a 64 bit execution
ORTED_F environment for the waking vector. When set and the OSPM
additionally set 64BIT_WAKE_F, the platform firmware will
create a 64 bit execution environment before transferring
control to the X_Firmware_Waking_Vector.

Reserved 30 2 The value is zero.

Table 5-40 OSPM Enabled Firmware Control Structure Feature Flags

FACS - Flag Bit Bit Description
Length | Offset
64BIT_WAKE_F 1 0 OSPM sets this bit to indicate to platform firmware that the

X_Firmware_Waking_Vector requires a 64 bit execution
environment.

This flag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flags field.
This bit field has no affect on Itanium ™ Processor Family

(IPF) -based platforms, which require a 64 bit execution
environment.

Reserved 31 1 The value is zero.

5.2.10.1 Global Lock

The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the
ROM BIOS. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the
FACS and is accessed and updated by both the OS environment and the SMI environment in a
defined manner to provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the
actual memory location of the lock. The FACS and Global Lock may be located anywhere in
physical memory.

By convention, this lock is used to ensure that while one environment is accessing some hardware,
the other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its
attempt to acquire the lock, and waits for the owning environment to signal that the lock has been
released before attempting to acquire the lock again. When releasing the lock, if the pending bit in
the lock is set after the lock is released, a signal is sent via an interrupt mechanism to the other
environment to inform it that the lock has been released. During interrupt handling for the “lock
released” event within the corresponding environment, if the lock ownership were still desired an
attempt to acquire the lock would be made. If ownership is not acquired, then the environment must
again set “pending” and wait for another “lock release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.

Version 5.1 Errata A 131

Advanced Configuration and Power Interface Specification

Note:

AcquireGloballLock:

acqlo:

132

Table 5-41 Global Lock Structure within the FACS

Field Bit Length Bit Offset Description

Pending 1 0 Non-zero indicates that a request for ownership of the Global
Lock is pending.

Owned 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the
Global Lock. If non-zero is returned by the function, the caller has been granted ownership of the
Global Lock and can proceed. If zero is returned by the function, the caller has not been granted
ownership of the Global Lock, the “pending” bit has been set, and the caller must wait until it is
signaled by an interrupt event that the lock is available before attempting to acquire access again.

In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-hit Global Lock location within the FACS.

mov
mov

mov
and
bts
adc

lock cmpxchg dword ptr[ecx], edx

ecx, GloballLock

eax, [ecx]

edx, eax
edx, not 1
edx, 1
edx, O

jnz short acqlO

cmp
sbb

ret

dl, 3
eax, eax

; ecx = Address of Global Lock in FACS
; Get current value of Global Lock

; Clear pending bit
; Check and set owner bit
; I owned, set pending bit

; Attempt to set new value
; If not set, try again

; Was it acquired or marked pending?
; acquired = -1, pending = 0

The following code sequence is used by OSPM and the firmware to release ownership of the Global
Lock. If non-zero is returned, the caller must raise the appropriate event to the other environment to
signal that the Global Lock is now free. Depending on the environment, this signaling is done by
setting the either the GBL_RLS or BIOS RLS within their respective hardware register spaces. This
signal only occurs when the other environment attempted to acquire ownership while the lock was

owned.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

ReleaseGloballLock:
mov ecx, GloballLock ; ecx = Address of Global Lock in FACS
rel10: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax
and edx, not 03h ; Clear owner and pending field

lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
jnz short rell0 ; If not set, try again

and eax, 1 ; Was pending set?

; If one is returned (we were pending) the caller must signal that the
; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

ret

Although using the Global Lock allows various hardware resources to be shared, it is important to
notice that its usage when there is ownership contention could entail a significant amount of system
overhead as well as waits of an indeterminate amount of time to acquire ownership of the Global
Lock. For this reason, implementations should try to design the hardware to keep the required usage
of the Global Lock to a minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if
bit 0 is used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that
register needs to be protected under the Global Lock, ensuring that the register’s contents do not
change from underneath one environment while the other is making changes to it. Similarly if the
entire register is shared, as the case might be for the embedded controller interface, access to the
register needs to be protected under the Global Lock.

5.2.11 Definition Blocks

A Definition Block consists of data in AML format (see Section 5.4 “Definition Block Encoding”)
and contains information about hardware implementation details in the form of AML objects that
contain data, AML code, or other AML objects. The top-level organization of this information after
a definition block is loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition
block either as a result of executing the AML Load() or LoadTable() operator or encountering a
table definition during initialization. During initialization, OSPM loads the Differentiated System
Description Table (DSDT), which contains the Differentiated Definition Block, using the DSDT
pointer retrieved from the FADT. OSPM will load other definition blocks during initialization as a
result of encountering Secondary System Description Table (SSDT) definitions in the RSDT/XSDT.
The DSDT and SSDT are described in the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block
to load other Definition Blocks, either statically or dynamically, where they in turn can either define
new system attributes or, in some cases, build on prior definitions. Although this gives the hardware
the ability to vary widely in implementation, it also confines it to reasonable boundaries. In some
cases, the Definition Block format can describe only specific and well-understood variances. In
other cases, it permits implementations to be expressible only by means of a specified set of “built
in” operators. For example, the Definition Block has built in operators for I/O space.

Version 5.1 Errata A 133

Advanced Configuration and Power Interface Specification

In theory, it might be possible to define something like PCI configuration space in a Definition
Block by building it from I/O space, but that is not the goal of the definition block. Such a space is
usually defined as a “built in” operator.

Some AML operators perform simple functions, and others encompass complex functions. The
power of the Definition block comes from its ability to allow these operations to be glued together in
numerous ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs
to be easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI
2.0, see Section 19.2.5, “ASL Data Types”. Existing ACPI definition block implementations may
contain an inherent assumption of a 32-bit integer width. Therefore, to maintain backwards
compatibility, OSPM uses the Revision field, in the header portion of system description tables
containing Definition Blocks, to determine whether integers declared within the Definition Block
are to be evaluated as 32-bit or 64-bit values. A Revision field value greater than or equal to 2
signifies that integers declared within the Definition Block are to be evaluated as 64-bit values. The
ASL writer specifies the value for the Definition Block table header’s Revision field via the ASL
Definition Block’s ComplianceRevision field. See Section 19.5.28, “DefinitionBlock (Declare
Definition Block)”, for more information. It is the responsibility of the ASL writer to ensure the
Definition Block’s compatibility with the corresponding integer width when setting the
ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)

134

The Differentiated System Description Table (DSDT) is part of the system fixed description. The
DSDT is comprised of a system description table header followed by data in Definition Block
format. This Definition Block is like all other Definition Blocks, with the exception that it cannot be
unloaded. See Section 5.2.11, “Definition Blocks,” for a description of Definition Blocks. During
initialization, OSPM finds the pointer to the DSDT in the Fixed ACPI Description Table (using the
FADT’s DSDT or X _DSDT fields) and then loads the DSDT to create the ACPI Namespace.

Table 5-42 Differentiated System Description Table Fields (DSDT)

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.
Length 4 4 Length, in bytes, of the entire DSDT (including the header).
Revision 1 8 2. This field also sets the global integer width for the AML
interpreter. Values less than two will cause the interpreter to use
32-bit integers and math. Values of two and greater will cause the
interpreter to use full 64-bit integers and math.
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field Byte Byte Description
Length | Offset
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision | 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see Section 5.4, “Definition Block
Encoding”)

5.2.11.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is
comprised of a system description table header followed by data in Definition Block format. There
can be multiple SSDTs present. After OSPM loads the DSDT to create the ACPI Namespace, each
secondary system description table listed in the RSDT/XSDT with a unique OEM Table ID is
loaded.

Note: Additional tables can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system options in
other tables. For example, the OEM might put dynamic object definitions into a secondary table such
that the firmware can construct the dynamic information at boot without needing to edit the static
DSDT. A SSDT can only rely on the DSDT being loaded prior to it.

Table 5-43 Secondary System Description Table Fields (SSDT)

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Table.
Length 4 4 Length, in bytes, of the entire SSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision | 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see Section 5.4 , “Definition Block
Encoding”)

5.2.11.3 Persistent System Description Table (PSDT)

The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the
ACPI 1.0 specification. The PSDT was judged to provide no specific benefit and as such has been
deleted from follow-on versions of the ACPI specification. OSPM will evaluate a table with the
“PSDT” signature in like manner to the evaluation of an SSDT as described in Section 5.2.11.2,
“Secondary System Description Table.”

Version 5.1 Errata A 135

Advanced Configuration and Power Interface Specification

5.2.12 Multiple APIC Description Table (MADT)

The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT-compatible dual 8259 interrupt
controller, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller
(APIC) and Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC), and, for ARM
processor-based systems, the Generic Interrupt Controller (GIC). The choice of the interrupt
model(s) to support is up to the platform designer. The interrupt model cannot be dynamically
changed by the system firmware; OSPM will choose which model to use and install support for that
model at the time of installation. If a platform supports multiple models, an OS will install support
for only one of the models; it will not mix models. Multi-boot capability is a feature in many modern
operating systems. This means that a system may have multiple operating systems or multiple
instances of an OS installed at any one time. Platform designers must allow for this.

This section describes the format of the Multiple APIC Description Table (MADT), which provides
OSPM with information necessary for operation on systems with APIC, SAPIC or GIC
implementations.

ACPI represents all interrupts as "flat" values known as global system interrupts. Therefore to
support APICs, SAPICs or GICs on an ACPI-enabled system, each used interrupt input must be
mapped to the global system interrupt value used by ACPI. See Section 5.2.13. Global System
Interrupts,” for a description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that implementations
might support (for example, identifying each processor's local interrupt controller ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-44 Multiple APIC Description Table (MADT) Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.
Length 4 4 Length, in bytes, of the entire MADT.
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision of MADT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Local Interrupt 4 36 The 32-bit physical address at which each processor can access
Controller Address its local interrupt controller.
Flags 4 40 Multiple APIC flags. See Table 5-45 for a description of this field.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field Byte Byte Description
Length | Offset
Interrupt Controller | — 44 A list of interrupt controller structures for this implementation. This
Structure[n] list will contain all of the structures from Table 5-46 needed to
support this platform. These structures are described in the
following sections.

Table 5-45 Multiple APIC Flags

Multiple APIC Bit Bit Description

Flags Length | Offset

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-compatible
dual-8259 setup. The 8259 vectors must be disabled (that is,
masked) when enabling the ACPI APIC operation.

Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADT is a list of interrupt controller structures that declare

the interrupt features of the machine. The first byte of each structure declares the type of that
structure and the second byte declares the length of that structure.

Table 5-46 Interrupt Controller Structure Types

Value Description

0 Processor Local APIC

1 1/0 APIC

2 Interrupt Source Override

3 Non-maskable Interrupt Source (NMI)
4 Local APIC NMI

5 Local APIC Address Override

6 I/O SAPIC

7 Local SAPIC

8 Platform Interrupt Sources

9 Processor Local x2APIC

OxA Local x2APIC NMI

0xB GICC CPU Interface Structure

0xC GICD GIC Distributor Structure

0xD GICv2m MSI Frame

OxE GICR Redistributor Structure
OxF-0x7F Reserved. OSPM skips structures of the reserved type.
0x80-0xFF Reserved for OEM use

Version 5.1 Errata A

137

Advanced Configuration and Power Interface Specification

5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order

OSPM implementations may limit the number of supported processors on multi-processor
platforms. OSPM executes on the boot processor to initialize the platform including other
processors. To ensure that the boot processor is supported post initialization, two guidelines should
be followed. The first is that OSPM should initialize processors in the order that they appear in the
MADT. The second is that platform firmware should list the boot processor as the first processor
entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common
processor hardware. ACPI defines logical processors in an identical manner as physical processors.
To ensure that non multi-threading aware OSPM implementations realize optimal performance on
platforms containing multi-threaded processors, two guidelines should be followed. The first is the
same as above, that is, OSPM should initialize processors in the order that they appear in the
MADT. The second is that platform firmware should list the first logical processor of each of the
individual multi-threaded processors in the MADT before listing any of the second logical
processors. This approach should be used for all successive logical processors.

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in
both unpredictable and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure

When using the APIC interrupt model, each processor in the system is required to have a Processor
Local APIC record and an ACPI Processor object. OSPM does not expect the information provided
in this table to be updated if the processor information changes during the lifespan of an OS boot.
While in the sleeping state, processors are not allowed to be added, removed, nor can their APIC ID
or Flags change. When a processor is not present, the Processor Local APIC information is either not
reported or flagged as disabled.

Table 5-47 Processor Local APIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0 Processor Local APIC structure
Length 1 1 8
ACPI 1 2 The Processorld for which this processor is listed in the ACPI
Processor ID Processor declaration operator. For a definition of the Processor
operator, see Section 19.5.100, “Processor (Declare Processor).”
APIC ID 1 3 The processor’s local APIC ID.
Flags 4 4 Local APIC flags. See Table 5-47 for a description of this field.

Table 5-48 Local APIC Flags

LocalAPIC Flags | Bit Bit Description
Length | Offset
Enabled 1 0 If zero, this processor is unusable, and the operating system

support will not attempt to use it.

Reserved 31 1 Must be zero.

138 April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

5.2.12.3 1/0 APIC Structure

In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of
interrupt inputs, referred to as INTIn, where the value of # is from 0 to the number of the last
interrupt input on the I/O APIC. The I/O APIC structure declares which global system interrupts are
uniquely associated with the I/O APIC interrupt inputs. There is one /O APIC structure for each I/O
APIC in the system. For more information on global system interrupts see Section 5.2.13, “Global
System Interrupts.”

Table 5-49 1/0O APIC Structure

Field Byte Byte Description
Length | Offset

Type 1 0 1 I/O APIC structure

Length 1 1 12

I/O APIC ID 1 2 The 1/O APIC’s ID.

Reserved 1 3 0

I/O APIC Address | 4 4 The 32-bit physical address to access this /0 APIC. Each I/0O APIC
resides at a unique address.

Global System 4 8 The global system interrupt number where this I1/0 APIC’s interrupt

Interrupt Base inputs start. The number of interrupt inputs is determined by the I/O
APIC’s Max Redir Entry register.

5.2.12.4 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts
0-15 to the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see

Section 5.2.12.5, “Interrupt Source Override Structure” below). This means that I/O APIC interrupt
inputs 0-15 must be mapped to global system interrupts 0-15 and have identical sources as the 8259
IRQs 0-15 unless overrides are used. This allows a platform to support OSPM implementations that
use the APIC model as well as OSPM implementations that use the 8259 model (OSPM will only
use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global
system interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts
greater than 15 are ignored. If OSPM implements APIC support, it will enable the APIC as described
by the APIC specification and will use all reported global system interrupts that fall within the limits
of the interrupt inputs defined by the I/O APIC structures. For more information on hardware
resource configuration see Section 6, “Configuration.”

5.2.12.5 Interrupt Source Override Structure

Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual
8259 interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first /O APIC sources. Most
existing APIC designs, however, will contain at least one exception to this assumption. The Interrupt
Source Override Structure is provided in order to describe these exceptions. It is not necessary to
provide an Interrupt Source Override for every ISA interrupt. Only those that are not identity-
mapped onto the APIC interrupt inputs need be described.

Version 5.1 Errata A 139

Advanced Configuration and Power Interface Specification

Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA
IRQ 0, but in APIC mode, it is connected to /O APIC interrupt input 2, then you would need an
Interrupt Source Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.’

Table 5-50 Interrupt Source Override Structure

Field Byte Byte Description
Length | Offset
Type 1 0 2 Interrupt Source Override
Length 1 1 10
Bus 1 2 0 Constant, meaning ISA
Source 1 3 Bus-relative interrupt source (IRQ)
Global System 4 4 The Global System Interrupt that this bus-relative interrupt source
Interrupt will signal.
Flags 2 8 MPS INTI flags. See Table 5-51 for a description of this field.

The MPS INTI flags listed in Table 5-51 are identical to the flags used in Table 4-10 of the MPS
version 1.4 specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL
bits.

Table 5-51 MPS INTI Flags

Local APIC - Bit Bit Description
Flags Length | Offset
Polarity 2 0 Polarity of the APIC 1/O input signals:
00 Conforms to the specifications of the bus
(For example, EISA is active-low for level-triggered interrupts)
01 Active high
10 Reserved
11 Active low
Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:
00 Conforms to specifications of the bus
(For example, ISA is edge-triggered)
01 Edge-triggered
10 Reserved
11 Level-triggered
Reserved 12 4 Must be zero.

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-
standard polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this
IRQ is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if
SCl is connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you

140 April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

should have 9 in SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to
INTIN11.

5.2.12.6 Non-Maskable Interrupt Source Structure

This structure allows a platform designer to specify which 1/O (S)APIC interrupt inputs should be
enabled as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table 5-52 Non-maskable Source Structure

Field Byte Byte Description
Length | Offset
Type 1 0 3 NMI
Length 1 1 8
Flags 2 2 Same as MPS INTI flags
Global System 4 4 The Global System Interrupt that this NMI will signal.
Interrupt

5.2.12.7 Local APIC NMI Structure

This structure describes the Local APIC interrupt input (LINT#) that NMI is connected to for each of
the processors in the system where such a connection exists. This information is needed by OSPM to
enable the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if
the platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two
Local APIC NMI entries would be needed in the MADT.

Table 5-53 Local APIC NMI Structure

Field Byte Byte Description
Length | Offset
Type 1 0 4 Local APIC NMI Structure
Length 1 1 6
ACPI Processor 1 2 Processor ID corresponding to the ID listed in the processor object.
ID A value of OXFF signifies that this applies to all processors in the
machine.
Flags 2 3 MPS INTI flags. See Table 5-51 for a description of this field.
Local APIC LINT# | 1 5 Local APIC interrupt input LINTn to which NMI is connected.

5.2.12.8 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an override of the physical address of
the local APIC in the MADT’s table header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for all local APICs (and local
SAPICs), rather than the address contained in the MADT’s table header. Only one Local APIC
Address Override Structure may be defined.

Version 5.1 Errata A 141

Advanced Configuration and Power Interface Specification

Table 5-54 Local APIC Address Override Structure

Field Byte Byte Description
Length | Offset

Type 1 0 5 Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC 8 4 Physical address of Local APIC. For Itanium™ Processor Family

Address (IPF)-based platforms, this field contains the starting address of the
Processor Interrupt Block. See the Intel® Itanium’” Architecture
Software Developer’'s Manual for more information.

5.2.12.9 1/0 SAPIC Structure
The I/0 SAPIC structure is very similar to the /O APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the /O SAPIC structure must be used.
The I/0 SAPIC structure uses the I/O_APIC _ID field as defined in the I/O APIC table. The

Vector Base field remains unchanged but has been moved. The I/O APIC address has been deleted.
A new address and reserved field have been added.

5.2.12.10 Local SAPIC Structure

142

Table 5-55 1/0 SAPIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 6 I/O SAPIC Structure
Length 1 1 16
I/O APIC ID 1 2 I/O SAPIC ID
Reserved 1 3 Reserved (must be zero)
Global System 4 4 The global system interrupt number where this 1/0O SAPIC’s
Interrupt Base interrupt inputs start. The number of interrupt inputs is determined
by the I/O SAPIC’s Max Redir Entry register.
I/O SAPIC 8 8 The 64-bit physical address to access this I/O SAPIC. Each I/O
Address SAPIC resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the
information from the I/O APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must
prevent “mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least
as many I/O SAPIC structures as I/O APIC structures and that every I/O APIC structure has a
corresponding I/O SAPIC structure (same APIC ID).

The Processor local SAPIC structure is very similar to the processor local APIC structure. When
using the SAPIC interrupt model, each processor in the system is required to have a Processor Local
SAPIC record and an ACPI Processor object. OSPM does not expect the information provided in

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

this table to be updated if the processor information changes during the lifespan of an OS boot.
While in the sleeping state, processors are not allowed to be added, removed, nor can their SAPIC
ID or Flags change. When a processor is not present, the Processor Local SAPIC information is
either not reported or flagged as disabled.

Table 5-56 Processor Local SAPIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 7 Processor Local SAPIC structure
Length 1 1 Length of the Local SAPIC Structure in bytes.
ACPI Processor 1 2 OSPM associates the Local SAPIC Structure with a processor
ID object declared in the namespace using the Processor statement

by matching the processor object’s ProcessorID value with this
field. For a definition of the Processor object, see Section 19.5.100,
“Processor (Declare Processor).”

Local SAPIC ID 1 3 The processor’s local SAPIC ID

Local SAPICEID |1 4 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-48 for a description of this field.

ACPI Processor 4 12 OSPM associates the Local SAPIC Structure with a processor

UID Value object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates to a
numeric value, by matching the numeric value with this field.

ACPI Processor >=1 16 OSPM associates the Local SAPIC Structure with a processor

UID String object declared in the namespace using the Device statement,

when the _UID child object of the processor device evaluates to a
string, by matching the string with this field. This value is stored as a
null-terminated ASCII string.

5.2.12.11 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs
are connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various

events (similar to SMI in [A-32). The Intel® Itanium™ architecture permits the I/O SAPIC to send a
vector value in the interrupt message of the PMI type. This value is specified in the I/O SAPIC
Vector field of the Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error
correction), the interrupt input line used to signal such corrected errors is specified by the Global
System Interrupt field in the following table. Some systems may restrict the retrieval of corrected
platform error information to a specific processor. In such cases, the firmware indicates the
processor that can retrieve the corrected platform error information through the Processor ID and
EID fields in the structure below. OSPM is required to program the I/O SAPIC redirection table
entries with the Processor ID, EID values specified by the ACPI system firmware. On platforms

Version 5.1 Errata A 143

Advanced Configuration and Power Interface Specification

where the retrieval of corrected platform error information can be performed on any processor, the
firmware indicates this capability by setting the CPEI Processor Override flag in the Platform
Interrupt Source Flags field of the structure below. If the CPEI Processor Override Flag is set,
OSPM uses the processor specified by Processor ID, and EID fields of the structure below only as a
target processor hint and the error retrieval can be performed on any processor in the system.
However, firmware is required to specify valid values in Processor ID, EID fields to ensure
backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor
that is targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set,
OSPM can retarget the corrected platform error interrupt to a different processor when the target
processor is ejected.

Note that the MAT object can return a buffer containing Platform Interrupt Source Structure
entries. It is allowed for such an entry to refer to a Global System Interrupt that is already specified
by a Platform Interrupt Source Structure provided through the static MADT table, provided the
value of platform interrupt source flags are identical.

Refer to the Itanium™ Processor Family System Abstraction Layer (SAL) Specification for details
on handling the Corrected Platform Error Interrupt.

Table 5-57 Platform Interrupt Sources Structure

Field Byte Byte Description
Length | Offset
Type 1 0 8 Platform Interrupt Source structure
Length 1 1 16
Flags 2 2 MPS INTI flags. See Table 5-51 for a description of this field.
Interrupt Type 1 4 1 PMI
2 INIT
3 Corrected Platform Error Interrupt
All other values are reserved.
Processor ID 1 5 Processor ID of destination.
Processor EID 1 6 Processor EID of destination.
I/O SAPIC Vector | 1 7 Value that OSPM must use to program the vector field of the 1/O
SAPIC redirection table entry for entries with the PMI interrupt type.
Global System 4 8 The Global System Interrupt that this platform interrupt will signal.
Interrupt
Platform Interrupt | 4 12 Platform Interrupt Source Flags. See Table 5-58 for a description of
Source Flags this field

144 April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Table 5-58 Platform Interrupt Source Flags

Platform Bit Bit Description

Interrupt Source | Length | Offset

Flags

CPEI Processor 1 0 When set, indicates that retrieval of error information is allowed
Override from any processor and OSPM is to use the information provided

by the processor ID, EID fields of the Platform Interrupt Source
Structure (Table 5-57) as a target processor hint.

Reserved 31 1 Must be zero.

5.2.12.12 Processor Local x2APIC Structure

The Processor X2APIC structure is very similar to the processor local APIC structure. When using
the X2APIC interrupt model, logical processors with APIC ID values of 255 and greater are required
to have a Processor Device object and must convey the processor’s APIC information to OSPM
using the Processor Local X2APIC structure. Logical processors with APIC ID values less than 255
must use the Processor Local APIC structure to convey their APIC information to OSPM. OSPM
does not expect the information provided in this table to be updated if the processor information
changes during the lifespan of an OS boot. While in the sleeping state, logical processors must not be
added or removed, nor can their X2APIC ID or x2APIC Flags change. When a logical processor is
not present, the processor local X2APIC information is either not reported or flagged as disabled.

The format of x2APIC structure is listed in Table 5-59

Table 5-59 Processor Local x2APIC Structure

Field Byte Byte Description
Length | Offset

Type 1 0 9 Processor Local x2APIC structure

Length 1 1 16

Reserved 2 2 Reserved - Must be zero

X2APIC ID 4 4 The processor’s local x2APIC ID.

Flags 4 8 Same as Local APIC flags. See Table 5-47 for a description of this
field.

ACPI Processor 4 12 OSPM associates the X2APIC Structure with a processor object

uiD declared in the namespace using the Device statement, when the
_UID child object of the processor device evaluates to a numeric
value, by matching the numeric value with this field

5.2.12.13 Local x2APIC NMI Structure

The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTn) that
NMI is connected to for each of the logical processors in the system where such a connection exists.
Each NMI connection to a processor requires a separate NMI structure. This information is needed
by OSPM to enable the appropriate APIC entry.

NMI connection to a logical processor with local x2APIC ID 255 and greater requires an X2APIC
NMI structure. NMI connection to a logical processor with an x2APIC ID less than 255 requires a

Version 5.1 Errata A 145

Advanced Configuration and Power Interface Specification

146

Local APIC NMI structure. For example, if the platform contains 8 logical processors with x2APIC
IDs 0-3 and 256-259 and NMI is connected LINT1 for processor 3, 2, 256 and 257 then two Local
APIC NMI entries and two X2APIC NMI entries must be provided in the MADT.

The Local APIC NMI structure is used to specify global LINTx for all processors if all logical
processors have x2APIC ID less than 255. If the platform contains any logical processors with an
x2APIC ID of 255 or greater then the Local X2APIC NMI structure must be used to specify global
LINTx for ALL logical processors. The format of x2APIC NMI structure is listed in Table 5-60.

Table 5-60 Local x2APIC NMI Structure

Field Byte Byte Description
Length | Offset
Type 1 0 OAH Local x2APIC NMI Structure
Length 1 1 12
Flags 2 2 Same as MPS INTI flags. See Table 5-51 for a description of this
field.
ACPI Processor 4 4 UID corresponding to the ID listed in the processor Device object. A
uiD value of OXFFFFFFFF signifies that this applies to all processors in
the machine.
Local x2APIC 1 8 Local x2APIC interrupt input LINTn to which NMI is connected.
LINT#
Reserved 3 9 Reserved - Must be zero.

April, 2015 Version 5.1 Errata A

Global System Interrupt Vector
(ie ACPI PnP IRQ#)

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

v

23

24

39
40
51

55

ACPI Software Programming Model

Interrupt Input Lines ‘System Vector Base’

on [OAPIC reported in IOAPIC Struc
INTI 0 0
INTI 23
INTI 0 24
INTI 15
INTI 0 40
NTI 11
NTI 23

Figure 5-25 APIC-Global System Interrupts

5.2.12.14 GICC Structure

In the GICC interrupt model, logical processors are required to have a Processor Device object in the
DSDT, and must convey each processor’s GICC information to the OS using the GICC structure.

The format of the GICC structure is shown in Table 5-61.

Table 5-61 GICC Structure Format

Field Byte Byte Description
Length | Offset
Type 1 0 OxB GICC structure
Length 1 1 76
Reserved 2 2 Reserved - Must be zero
CPU Interface 4 4 GIC's CPU Interface Number. In GICv1/v2 implementations, this
Number value matches the bit index of the associated processor in the GIC

distributor's GICD_ITARGETSR register.

For GICv3/4 implementations this field must be provided by the
platform, if compatibility mode is supported.

If it is not supported by the implementation, then this field must be
ignored by the OSPM.

Version 5.1 Errata A 147

Advanced Configuration and Power Interface Specification

148

Field Byte Byte Description
Length | Offset

ACPI Processor 4 8 The OS associates this GICC Structure with a processor device

uiD object in the namespace when the _UID child object of the
processor device evaluates to a numeric value that matches the
numeric value in this field.

Flags 4 12 See Table 5-62.

Parking Protocol 4 16 Version of the ARM-Processor Parking Protocol implemented. See

Version http://uefi.org/acpi. The document link is listed under
"Multiprocessor Startup for ARM Platforms"
For systems that support PSCI exclusively and do not support the
parking protocol, this field must be set to 0.

Performance 4 20 The GSIV used for Performance Monitoring Interrupts

Interrupt GSIV

Parked Address 8 24 The 64-bit physical address of the processor’s Parking Protocol
mailbox

Physical Base 8 32 On GICv1/v2 systems and GICv3/4 systems in GICv2 compatibility

Address mode, this field holds the 64-bit physical address at which the
processor can access this GIC CPU Interface. If provided here, the
“"Local Interrupt Controller Address" field in the MADT must be
ignored by the OSPM.

GICV 8 40 Address of the GIC virtual CPU interface registers. If the platform is
not presenting a GICv2 with virtualization extensions this field can
be 0.

GICH 8 48 Address of the GIC virtual interface control block registers. If the
platform is not presenting a GICv2 with virtualization extensions
this field can be 0.

VGIC 4 56 GSIV for Virtual GIC maintenance interrupt

Maintenance

interrupt

GICR Base 8 60 On systems supporting GICv3 and above, this field holds the 64-bit

Address physical address of the associated Redistributor. If all of the GIC

Redistributors are in the always-on power domain, GICR structures
should be used to describe the Redistributors instead, and this field
must be set to 0.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field Byte Byte Description
Length | Offset
MPIDR 8 68 This fields follows the MPIDR formatting of ARM architecture.

If the implements ARMv7 architecure then the format must be:

Bits [24:63] Must be zero

Bits [16:23] Aff2 : Match Aff2 of target processor MPIDR
Bits [8:15] Aff1 : Match Affl of target processor MPIDR
Bits [0:7] AffO : Match AffO of target processor MPIDR

For platforms implementing ARMv8 the format must be:
Bits [40:63]: Must be zero

Bits [32:39] Aff3 : Match Aff3 of target processor MPIDR
Bits [24:31] Must be zero

Bits [16:23] Aff2 : Match Aff2 of target processor MPIDR
Bits [8:15] Aff1 : Match Affl of target processor MPIDR
Bits [0:7] AffO : Match AffO of target processor MPIDR

Table 5-62 GICC CPU Interface Flags

GIC Flags Bit Bit Description
Length | Offset
Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.
Performance 1 1 0 - Level-triggered
Interrupt Mode 1 - Edge-Triggered
VGIC 1 2 0 - Level-triggered
Maintenance 1 - Edge-Triggered
interrupt Mode
Flags
Reserved 29 3 Must be zero.

Note: GICC descriptor structures are listed immediately after the Flags field in the MADT, one descriptor
for each GICC, followed by one for each GICC Distributor. The Local GICC corresponding to the
boot processor must be the first entry in the Interrupt Controller Structure list.

5.2.12.15 GIC Distributor Structure

ACPI represents all interrupts as “flat” values known as global system interrupts (GSIVs)

(Section 5.2.13). On ARM, the GIC Distributor has some number of interrupt inputs corresponding
to the same number of contiguous GSIVs. Therefore, each used interrupt input must be mapped to
the global system interrupt value used by ACPI for that input. This mapping is provided by the GIC
Distributor structure, by setting the base GSIV for the GIC Distributor.

The format of the GIC Distributor structure is listed in Table 5-63.

Version 5.1 Errata A 149

Advanced Configuration and Power Interface Specification

5.2.12.16 GIC MSI Frame Structure

150

Table 5-63 GIC Distributor Structure

Field Byte Byte Description
Length | Offset

Type 1 0 0xC GIC Distributor structure
Length 1 1 24
Reserved 2 2 Reserved - Must be zero
GIC ID 4 4 This GIC Distributor’s hardware 1D
Physical Base 8 8 The 64-bit physical address for this Distributor
Address
System Vector 4 16 The global system interrupt number where this GIC Distributor’'s
Base interrupt inputs start.
GIC version 1 20 0x01: GICv2

0x02: GICvZm

0x03: GICv3

0x04: GICv4

0x00, 0x05-0xFF, Reserved for future use.
Reserved 3 21 Must be zero

Each GICv2m MSI frame consists of a 4k page which includes registers to generate message
signaled interrupts to an associated GIC distributor. The frame also includes registers to discover the
set of distributor lines which may be signaled by MSIs from that frame. A system may have multiple
MSI frames, and separate frames may be defined for secure and non-secure access. This structure
must only be used to describe non-secure MSI frames.

The format of the GIC MSI Frame Structure is listed in Table 5-64.

Table 5-64 GIC MSI Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0xD GIC MSI structure
Length 1 1 24
Reserved 2 2 Reserved - Must be zero
GIC MSI Frame ID | 4 4 GIC MSI Frame ID. In a system with multiple GIC MSI frames, this
value must be unique to each one.
Physical Base 8 8 The 64-bit physical address for this MSI Frame
Address
Flags 4 16 GIC MSI Frame Flags. See Table 5-65
SPI Count 2 20 SPI Count used by this frame. Unless the SPI Count Select flag is

set to 1 this value should match the lower 16 bits of the
MSI_TYPER register in the frame.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Field Byte Byte Description
Length | Offset
SPI Base 2 22 SPI Base used by this frame. Unless the SPI Base Select flag is

set to 1 this value should match the upper 16 bits of the
MSI_TYPER register in the frame.

Table 5-65 GIC MSI Frame Flags

GIC MSI Frame Bit Bit Description

Flags Length | Offset

SPI Count/Base 1 0 0: The SPI Count and Base fields should be ignored, and the
Select actual values should be queried from the MSI_TYPER register in

the associated GIC MSI frame.
1: The SPI Count and Base values override the values specified in
the MSI_TYPER register in the associated GIC MSI frame.

Reserved 31 1 Must be zero.

5.2.12.17 GICR Structure

The GICR Structure is described in Table 5-68. This structure enables the discovery of GIC
Redistributor base addresses by providing the Physical Base Address of a page range containing the
GIC Redistributors. More than one GICR Structure may be presented in the MADT. GICR
structures should only be used when describing GIC implementations which conform to version 3 or
higher of the GIC architecture and which place all Redistributors in the always-on power domain.

Table 5-66 GIC Redistributor Structure

Field Byte Byte Description
Length | Offset
Type 1 0 OxE GIC Redistributor structure
Length 1 1 16
Reserved 2 2 Reserved - Must be zero
Discovery Range 8 4 The 64-bit physical address of a page range containing all GIC
Base Address Redistributors
Discovery Range 4 12 Length of the GIC Redistributor Discovery page range.
Length

5.2.13 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do
not confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259
interrupts they correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by
each I/0 APIC can vary. OSPM determines the mapping of the Global System Interrupts by

Version 5.1 Errata A 151

Advanced Configuration and Power Interface Specification

determining how many interrupt inputs each I/O APIC supports and by determining the global
system interrupt base for each I/O APIC as specified by the I/O APIC Structure. OSPM determines
the number of interrupt inputs by reading the Max Redirection register from the I/O APIC. The
global system interrupts mapped to that [/O APIC begin at the global system interrupt base and
extending through the number of interrupts specified in the Max Redirection register. This mapping
is depicted in Figure 5-25.

There is exactly one I/O APIC structure per I/O APIC in the system.

Global System Interrupt Vector 8259 ISA TRQs

(ie ACPI PnP IRQ#) ¢ ¢
0 IRQO
M aster iRQ3
8259
7 IRQ7
IR8
Slave)
8259 IRQI1
15 IRQ15

Figure 5-26 8259-Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached
to a master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs
and their mappings to the 8259 pair are part of the AT standard and are well defined. This mapping
is depicted in Figure 5-26.

5.2.14 Smart Battery Table (SBST)

152

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an
Smart Battery Table (SBST) is present. This table indicates the energy level trip points that the
platform requires for placing the system into the specified sleeping state and the suggested energy
levels for warning the user to transition the platform into a sleeping state. Notice that while Smart
Batteries can report either in current (mA/mAh) or in energy (mW/mWh), OSPM must set them to
operate in energy (mW/mWh) mode so that the energy levels specified in the SBST can be used.
OSPM uses these tables with the capabilities of the batteries to determine the different trip points.
For more precise definitions of these levels, see Section 3.9.3, “Battery Gas Gauge.”

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Table 5-67 Smart Battery Description Table (SBST) Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.
Length 4 4 Length, in bytes, of the entire SBST
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.
Warning Energy 4 36 OEM suggested energy level in milliWatt-hours (mWh) at which
Level OSPM warns the user.
Low Energy Level 4 40 OEM suggested platform energy level in mWh at which OSPM wiill
transition the system to a sleeping state.
Critical Energy 4 44 OEM suggested platform energy level in mWh at which OSPM

Level

performs an emergency shutdown.

5.2.15 Embedded Controller Boot Resources Table (ECDT)

This optional table provides the processor-relative, translated resources of an Embedded Controller.
The presence of this table allows OSPM to provide Embedded Controller operation region space
access before the namespace has been evaluated. If this table is not provided, the Embedded
Controller region space will not be available until the Embedded Controller device in the AML
namespace has been discovered and enumerated. The availability of the region space can be detected
by providing a REG method object underneath the Embedded Controller device.

Table 5-68 Embedded Controller Boot Resources Table Format

Field Byte Byte Description
Length Offset
Header
Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.
Length 4 4 Length, in bytes, of the entire Embedded Controller Table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the

manufacturer model ID.

Version 5.1 Errata A 153

Advanced Configuration and Power Interface Specification

154

Field

Byte
Length

Byte
Offset

Description

OEM Revision

24

OEM revision of Embedded Controller Table for supplied OEM
Table ID.

Creator ID

28

Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision

32

Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC_CONTROL

12

36

Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller Command/
Status register.

Note: Only System 1/O space and System Memory space are
valid for values for Address_Space_ID.

EC_DATA

12

48

Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.

Note: Only System /O space and System Memory space are
valid for values for Address_Space_ID.

uiD

60

Unique ID—-Same as the value returned by the _UID under the
device in the namespace that represents this embedded
controller.

GPE_BIT

64

The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described in the FADT that the embedded
controller triggers.

EC_ID

Variable

65

ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC"). Quotes are
omitted in the data field.

ACPI OSPM implementations supporting Embedded Controller devices must also support the
ECDT. ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The
following example code shows how to detect whether the Embedded Controller operation regions
are available in a manner that is backward compatible with prior versions of ACPI/OSPM.

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Device(ECO) {

}

Name (REGC,Ones)
Method(_REG,2) {
1f(Lequal (Argo, 3)) {
Store(Argl, REGC)
}
}

Method (ECAV,0) {

}

I f(Lequal (REGC,Ones)) {
If(LgreaterEqual (_REV,2)) {

Return(One)
¥
Else {
Return(Zero)
¥
3
Else {
Return(REGC)
3

To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCI0O.ECO.ECAVQ)) {

}

...regions are available...

else {

}

...regions are not available...

5.2.16 System Resource Affinity Table (SRAT)

This optional table provides information that allows OSPM to associate processors and memory
ranges, including ranges of memory provided by hot-added memory devices, with system localities /
proximity domains and clock domains. On NUMA platforms, SRAT information enables OSPM to
optimally configure the operating system during a point in OS initialization when evaluation of
objects in the ACPI Namespace is not yet possible. OSPM evaluates the SRAT only during OS
initialization. The Local APIC ID / Local SAPIC ID / Local x2APIC ID or the GICC ACPI
Processor UID of all processors started at boot time must be present in the SRAT. If the Local APIC
ID / Local SAPIC ID / Local x2APIC ID or the GICC ACPI Processor UID of a dynamically added
processor is not present in the SRAT, a PXM object must exist for the processor’s device or one of
its ancestors in the ACPI Namespace.

Table 5-69 Static Resource Affinity Table Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SRAT'. Signature for the System Resource Affinity Table.
Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.

Version 5.1 Errata A 155

Advanced Configuration and Power Interface Specification

OEMID 6 10 OEM ID.
OEM Table ID 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.
OEM Revision 4 24 OEM revision of System Resource Affinity Table for supplied OEM
Table ID.
Creator ID 4 28 Vendor ID of utility that created the table.
Creator Revision | 4 32 Revision of utility that created the table.
Reserved 4 36 Reserved to be 1 for backward compatibility
Reserved 8 40 Reserved
Static Resource 48 A list of static resource allocation structures for the platform. See
Allocation Section 5.2.16.1,"Processor Local APIC/SAPIC Affinity Structure”,
Structure[n] Section 5.2.16.2 “Memory Affinity Structure”, Section 5.2.16.3
“Processor Local x2APIC Affinity Structure”, and Section 5.2.16.4,
“GICC Affinity Structure.

5.2.16.1 Processor Local APIC/SAPIC Affinity Structure

The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID
or SAPIC ID/EID of a processor and the proximity domain to which the processor belongs. Table 5-
70 provides the details of the Processor Local APIC/SAPIC Affinity structure.

Table 5-70 Processor Local APIC/SAPIC Affinity Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure
Length 1 1 16
Proximity Domain 1 2 Bit[7:0] of the proximity domain to which the processor belongs.
[7:0]
APIC ID 1 3 The processor local APIC ID.
Flags Flags — Processor Local APIC/SAPIC Affinity Structure. See
Table 5-56 for a description of this field.
Local SAPIC EID The processor local SAPIC EID.
Proximity Domain 3 Bit[31:8] of the proximity domain to which the processor belongs.
[31:8]
Clock Domain 4 12 The clock domain to which the processor belongs. See
Section 6.2.1, “* CDM (Clock Domain)”.

Table 5-71 Flags — Processor Local APIC/SAPIC Affinity Structure

Field

Bit
Lengt
h

Bit
Offset

Description

April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only

enable them as necessary.

Reserved 31 1 Must be zero.

5.2.16.2 Memory Affinity Structure
The Memory Affinity structure provides the following topology information statically to the
operating system:
» The association between a range of memory and the proximity domain to which it belongs
* Information about whether the range of memory can be hot-plugged.

Table 5-72 provides the details of the Memory Affinity structure.

Table 5-72 Memory Affinity Structure

Field Byte Byte Description
Length | Offset

Type 1 0 1 Memory Affinity Structure

Length 1 1 40

Proximity Domain 4 2 Integer that represents the proximity domain to which the
processor belongs

Reserved 2 Reserved

Base Address Low | 4 Low 32 Bits of the Base Address of the memory range

Base Address High | 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved.

Flags 4 28 Flags — Memory Affinity Structure. Indicates whether the region of
memory is enabled and can be hot plugged. See Table 5-73.

Reserved 8 32 Reserved.

Table 5-73 Flags — Memory Affinity Structure

Field Bit Bit Description
Length | Offset
Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity

Structure. This allows system firmware to populate the SRAT with
a static number of structures but only enable then as necessary.

Version 5.1 Errata A 157

Advanced Configuration and Power Interface Specification

Hot Pluggable? 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set and the Hot Pluggable bit is also set. The
system hardware supports hot-add and hot-remove of this memory
region

If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.

If the Enabled bit is clear, the OSPM will ignore the contents of the
Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory
Reserved 29 3 Must be zero.
a.

5.2.16.3 Processor Local x2APIC Affinity Structure

The Processor Local x2APIC Affinity structure provides the association between the local x2APIC
ID of a processor and the proximity domain to which the processor belongs. Table 5-74 provides the
details of the Processor Local x2APIC Affinity structure.

Table 5-74 Processor Local x2APIC Affinity Structure

Field Byte Byte Description
Length | Offset

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved — Must be zero

Proximity Domain | 4 4 The proximity domain to which the logical processor belongs.

X2APIC ID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure flags. See
Table 5-71 for a description of this field.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
Section 6.2.1, “* CDM (Clock Domain)”.

Reserved 4 20 Reserved.

On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift
into PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.

5.2.16.4 GICC Affinity Structure

The GICC Affinity Structure provides the association between the ACPI Processor UID of a
processor and the proximity domain to which the processor belongs. Table 5-75 provides the details
of the GICC Affinity structure.

158 April, 2015 Version 5.1 Errata A

ACPI Software Programming Model

Table 5-75 GICC Affinity Structure

Field Byte Byte Description
Length | Offset
Type 1 0 3 GICC Affinity Structure.
Length 1 1 18
Proximity Domain | 4 2 The proximity domain to which the logical processor belongs.
ACPI Processor 4 6 The ACPI Processor UID of the associated GICC.
uiD
Flags 4 10 Flags — GICC Affinity Structure. See Table 5-76 for a description of
this field.
Clock Domain 4 14 The clock domain to which the logical processor belongs. See

Section 6.2.1, “* CDM (Clock Domain)”.

Table 5-76 Flags — GICC Affinity Structure

Field Byte Byte Description
Length | Offset
Enabled 1 0 If clear, the OSPM ignores the contents of the GICC Affinity

Structure. This allows system firmware to populate the SRAT with
a static number of structures but only enable them as necessary.

Reserved 31 1 Must be zero.

5.2.17 System Locality Distance Information Table (SLIT)

This optional table provides a matrix that describes the relative distance (memory latency) between
all System Localities, which are also referred to as Proximity Domains. Systems employing a Non
Uniform Memory Access (NUMA) architecture contain collections of hardware resources including
for example, processors, memory, and I/O buses, that comprise what is known as a “NUMA node”.
Processor accesses to memory or 1/O resources within the local NUMA