
VOLUME 3: Platform Initialization

Shared Architectural Elelments

Version 1.2 Errata B

July1, 2010

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

ii 7/1//2010 Version 1.2 Errata B

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 - 2010 Unified EFI, Inc. All Rights Reserved.

Version 1.2 Errata B 7/1//2010 iii

Revision History

Revision Revision History Date

1.0 Initial public release. 8/21/06

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

• M178 Remove references to tail in file header and made file
checksum for the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and
update all FV

10/29/07

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

1.1
correction

Restore (missing) MP protocol 03/12/08

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

iv 7/1//2010 Version 1.2 Errata B

1.1 Errata • 230 Updated to Volume 4, section 4.2, ReportStatusCode

• 231Parameter/description updates for Volume 4, section 4.3,
ReadSaveState() & WriteSaveState(), Parameters

• 232 SMM I/O Protocol Updates

• 233 Volume 4, Section 5.2 & 5.3 Updates

• 234 Volume 4, Section 5.5 Misc. Errata

• 235Volume 4, Chapter 8 Should Be Integrated Into Volume 3,
Section 2.1.4.1, 2.1.5.1 and 3.2.5

• 236 Volume 4, Section 9.5.1, 9.6, 9.7, 9.8 and 9.9 Formatting

• 238 CpuSaveStateFormat deprecated in Vol4 of SMM PI1.1 draft

• 239 rename EFI_SMM_HANDLER_ENTRY_POINT to be
EFI_SMM_HANDLER_ENTRY_POINT2 in Vol4 SMM of PI1.1

• 240 PI1.1 Vol4 typos

• 244 Replace EFI_FIRMWARE_VOLUME_INFO_PPI with
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

• 250 PEI_SPECIFICATION_MINOR_REVISION should be 10

• 251 Firmware File Type Table (Volume 3, 2.1.4.1, Table 1) Should
Not Contain Section Information

• 252 Volume 3, Table 2 (2.1.5.1) does not contain
EFI_SECTION_DISPOSABLE

• 253 EFI_SECTION_PIC has incorrect typedef

• 254 ReInstallPpi() has incorrect prototype

• 255 NotifyPpi() has the incorrect prototype

• 256 CreateHob() has incorrect prototype

• 257 PEI Specification, Section 4.2.1 and Section 4.2.2 should be
peers of 4.1, 4.3, etc.

• 258 CreateHob() refers to non-existent specification.

• 259 FfsFindNextFile() Parameters Are Incorrect

• 260 FfsFindSectionData() has incorrect parameter description

• 261 AllocatePages() (PEI) refers to a non-existent specification
and non-existent function.

• 262 FfsGetVolumeInfo() missing return status codes

• 263 EFI_PEI_NOTIFY_DESCRIPTOR and
EFI_PEI_PPI_DESCRIPTOR prototypes are incorrect

• 264 EFI_PEI_SERVICES: Remove references to "future installed
services" from prototype

• 265 EFI_FV_BLOCK_MAP definition does not exist

• 267 Invalid References To the PI Firmware Storage Specification

• 268 GUIDED_SECTION_EXTRACTION_PROTOCOL missing
'EFI_' prefix

• 269 References to EFI_FIRMWARE_VOLUME_PROTOCOL
should be EFI_FIRMWARE_VOLUME2_PROTOCOL

• 272 Various fixes for Communicate() in PI 1.1, Volume 4

• 273 EFI_SMM_CONTROL2_PROTOCOL Errata

• 274 Miscellanous SMST Errata from Volume 4, Section 3.2

• 275 Chapter heading for DXE ReportStatusCode function

• 276 EFI_STATUS_CODE_RUNTIME_PROTOCOL_GUID has
extra ';'

• 277 Remove references to "Framework" and "Framework-based"
in Volume 5

04/25/08

Version 1.2 Errata B 7/1//2010 v

1.1 Errata Mantis tickets
• 204 Stack HOB update 1.1errata

• 225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

01/13/09

1.1 Errata • 247 Clarification regarding use of dependency expression section
types with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

1.1 Errata • 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 455 Clarify InstallPeiMemory()

• 465 Correct PMI Interface

• 466 Add EXTENDED_SAL_PROC definition, etc

• 467 Vol2 & Vol3 Errata

05/22/09

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

vi 7/1//2010 Version 1.2 Errata B

1.1 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table
Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521 Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

1.1 Errata B • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

(2/24/10)

5/27/10

Version 1.2 Errata B 7/1//2010 vii

1.1 Errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()

5/27/10

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

viii 7/1//2010 Version 1.2 Errata B

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and
printing convenience. The Platform Initialization Specification consists of the following volumes:

VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface

VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization
Specification is available to aid search functions through the entire specification.

Version 1.2 Errata B 7/1//2010 ix

Contents

1
Platform Intialization
Shared Architectural Elements ... 1
1.1 Overview ... 1
1.2 Target Audience.. 1
1.3 Conventions Used in this Document... 1

1.3.1 Data Structure Descriptions .. 1
1.3.2 Pseudo-Code Conventions ... 2
1.3.3 Typographic Conventions ... 2

2
Firmware Storage Design Discussion .. 5
2.1 Firmware Storage Introduction.. 5

2.1.1 Firmware Devices ... 5
2.1.2 Firmware Volumes .. 5
2.1.3 Firmware File System ... 6
2.1.4 Firmware Files... 6
2.1.5 Firmware File Sections.. 12

2.2 PI Architecture Firmware File System Format .. 14
2.2.1 Firmware Volume Format.. 15
2.2.2 Firmware File System Format ... 15
2.2.3 Firmware File Format .. 16
2.2.4 Firmware File Section Format ... 17
2.2.5 File System Initialization.. 18
2.2.6 Traversal and Access to Files ... 21
2.2.7 File Integrity and State ... 22
2.2.8 File State Transitions .. 23

3
Firmware Storage Code Definitions.. 29
3.1 Firmware Storage Code Definitions Introduction ... 29
3.2 Firmware Storage Formats ... 29

3.2.1 Firmware Volume .. 29
EFI_FIRMWARE_VOLUME_HEADER... 29

3.2.2 Firmware File System ... 35
EFI_FIRMWARE_FILE_SYSTEM2_GUID.. 35
EFI_FFS_VOLUME_TOP_FILE_GUID... 36

3.2.3 Firmware File .. 37
EFI_FFS_FILE_HEADER ... 37

3.2.4 Firmware File Section ... 42
EFI_COMMON_SECTION_HEADER ... 42

3.2.5 Firmware File Section Types... 44
EFI_SECTION_COMPATIBILITY16 ... 44

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

x 7/1//2010 Version 1.2 Errata B

EFI_SECTION_COMPRESSION.. 45
EFI_SECTION_DISPOSABLE.. 46
EFI_SECTION_DXE_DEPEX ... 47
EFI_SECTION_FIRMWARE_VOLUME_IMAGE .. 48
EFI_SECTION_FREEFORM_SUBTYPE_GUID... 49
EFI_SECTION_GUID_DEFINED.. 50
EFI_SECTION_PE32 .. 52
EFI_SECTION_PEI_DEPEX... 53
EFI_SECTION_PIC... 54
EFI_SECTION_RAW .. 55
EFI_SECTION_SMM_DEPEX .. 56
EFI_SECTION_TE .. 57
EFI_SECTION_USER_INTERFACE .. 58
EFI_SECTION_VERSION... 59

3.3 PEI .. 60
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI.. 60
EFI_PEI_FIRMWARE_VOLUME_PPI .. 61
EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume().................................... 62
EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType() 63
EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName() 64
EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo() ... 65
EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo() 66
EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType().............................. 67
EFI_PEI_LOAD_FILE_PPI.. 68
EFI_PEI_LOAD_FILE_PPI.LoadFile()... 69
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI .. 71
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() 72
EFI_PEI_DECOMPRESS_PPI.. 74
EFI_PEI_DECOMPRESS_PPI.Decompress() .. 75

3.4 DXE... 76
EFI_FIRMWARE_VOLUME2_PROTOCOL.. 76
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes() 78
EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes().................... 81
EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile() 83
EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()................................ 87
EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile() 89
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile() 92
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()... 94
EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo() ... 96
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.. 98
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes() 100
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()................ 101
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress().... 102
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()............... 103
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()............................ 104
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()............................ 106
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks() 108

Version 1.2 Errata B 7/1//2010 xi

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL 110
EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection() 111

4
HOB Design Discussion .. 113
4.1 Explanation of HOB Terms ... 113
4.2 HOB Overview .. 113
4.3 Example HOB Producer Phase Memory Map and Usage .. 114
4.4 HOB List.. 114
4.5 Constructing the HOB List .. 115

4.5.1 Constructing the Initial HOB List ... 115
4.5.2 HOB Construction Rules ... 115
4.5.3 Adding to the HOB List.. 116

5
HOB Code Definitions .. 117
5.1 HOB Introduction .. 117
5.2 HOB Generic Header.. 118

EFI_HOB_GENERIC_HEADER.. 118
5.3 PHIT HOB ... 120

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB) ... 120
5.4 Memory Allocation HOB.. 122

5.4.1 Memory Allocation HOB.. 122
EFI_HOB_MEMORY_ALLOCATION.. 122

5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB............................ 125
EFI_HOB_MEMORY_ALLOCATION_STACK.. 125

5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB 127
EFI_HOB_MEMORY_ALLOCATION_BSP_STORE .. 127

5.4.4 Memory Allocation Module HOB ... 128
EFI_HOB_MEMORY_ALLOCATION_MODULE... 128
EFI_HOB_LOAD_PEIM .. 129

5.5 Resource Descriptor HOB .. 130
EFI_HOB_RESOURCE_DESCRIPTOR... 130

5.6 GUID Extension HOB ... 136
EFI_HOB_GUID_TYPE... 136

5.7 Firmware Volume HOB ... 137
EFI_HOB_FIRMWARE_VOLUME .. 137
EFI_HOB_FIRMWARE_VOLUME2 .. 138

5.8 CPU HOB.. 139
EFI_HOB_CPU ... 139

5.9 Memory Pool HOB .. 140
EFI_HOB_MEMORY_POOL... 140

5.10 Unused HOB... 141
EFI_HOB_TYPE_UNUSED .. 141

5.11 End of HOB List HOB ... 142
EFI_HOB_TYPE_END_OF_HOB_LIST.. 142

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

xii 7/1//2010 Version 1.2 Errata B

Figures
Figure 1. Example File Image (Graphical and Tree Representations).................................. 13
Figure 2. The Firmware Volume Format ... 15
Figure 3. Typical FFS File Layout ... 17
Figure 4. General Section Format... 18
Figure 5. Creating a File ... 24
Figure 6. Updating a File... 26
Figure 7. Bit Allocation of FFS Attributes.. 39
Figure 8. EFI_FV_FILE_ATTRIBUTES fields ... 85
Figure 9. Example HOB Producer Phase Memory Map and Usage.................................. 114

Tables
Table 1. Defined File Types .. 7
Table 2. Architectural Section Types .. 14
Table 3. Descriptions of EFI_FVB_ATTRIBUTES_2 .. 32
Table 4. Bit Allocation Definitions ... 40
Table 5. Supported FFS Alignments... 40
Table 6. Description of Fields for CompressionType .. 45
Table 7. Descriptions of Fields for GuidedSectionHeader.Attributes 51
Table 8. AuthenticationStatus Bit Definitions... 73
Table 9. Descriptions of Fields for EFI_FV_ATTRIBUTES... 80
Table 10. Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT 85
Table 11. Description of fields for EFI_FV_WRITE_POLICY ... 90
Table 12. Translation of HOB Specification Terminology ... 113
Table 13. HOB Producer Phase Resource Types .. 135

Version 1.1 Errata B 7/1/2010 1

1
Platform Intialization

Shared Architectural Elements

1.1 Overview
This volume describes the basic concepts behind Platform Initialization (PI) firmware storage and
Hand-Off Blocks implementation.

The basic Platform Initialization (PI) firmware storage concepts include:

• Firmware Volumes

• Firmware File Systems

• Firmware Files

• Standard Binary Layout

• Pre-EFI Initialization (PEI) PEIM-to-PEIM Interfaces (PPIs)

• Driver Execution Environment (DXE) Protocols

The core code that is required for an implementation of Hand-Off Blocks (HOBs) in the Platform
Initialization (PI) Architecture specifications are also shown. A HOB is a binary data structure that
passes system state information from the HOB producer phase to the HOB consumer phase in the PI
Architecture. This HOB specification does the following:

• Describes the basic components of HOBs and the rules for constructing them

• Provides code definitions for the HOB data types and structures that are architecturally required
by the PI Architecture specifications

1.2 Target Audience
This document is intended for the following readers:

• Independent hardware vendors (IHVs) and original equipment manufacturers (OEMs) who will
be implementing firmware components that are stored in firmware volumes

• Firmware developers who create firmware products or those who modify these products for use
in platforms

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

2 7/1/2010 Version 1.1 Errata B

address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.3 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Platform Intialization Shared Architectural Elements

Version 1.1 Errata B 7/1/2010 3

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
Requirements

This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

4 7/1/2010 Version 1.1 Errata B

facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

Version 1.1 Errata B 7/1/2010 5

2
Firmware Storage Design Discussion

2.1 Firmware Storage Introduction
This specification describes how files should be stored and accessed within non-volatile storage.
Firmware implementations must support the standard PI Firmware Volume and Firmware File
System format (described below), but may support additional storage formats.

2.1.1 Firmware Devices
A firmware device is a persistent physical repository that contains firmware code and/or data. It is
typically a flash component but may be some other type of persistent storage. A single physical
firmware device may be divided into smaller pieces to form multiple logical firmware devices.
Similarly, multiple physical firmware devices may be aggregated into one larger logical firmware
device.

This section describes the characteristics of typical physical firmware devices.

2.1.1.1 Flash
Flash devices are the most common non-volatile repository for firmware volumes. Flash devices are
often divided into sectors (or blocks) of possibly differing sizes, each with different run-time
characteristics. Flash devices have several unique qualities that are reflected in the design of the
firmware file system:

• Flash devices can be erased on a sector-by-sector basis. After an erasure, all bits within a sector
return to their erase value, either all 0 or all 1.

• Flash devices can be written on a bit-by-bit basis if the change is from its erase value to the non-
erase value. For example, if the erase value is 1, then a bit with the value 1 can be changed to 0.

• Flash devices can only change from a non-erase value to an erase value by performing an erase
operation on an entire flash sector.

• Some flash devices can enable or disable reads and writes to the entire flash device or to
individual flash sectors.

• Some flash devices can lock the current enable or disable state of reads and writes until the next
reset.

• Flash writes and erases are often longer operations than reads.

• Flash devices often place restrictions on the operations that can be performed while a write or
erase is occurring.

2.1.2 Firmware Volumes
A Firmware Volume (FV) is a logical firmware device. In this specification, the basic storage
repository for data and/or code is the firmware volume. Each firmware volume is organized into a
file system. As such, the file is the base unit of storage for firmware.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

6 7/1/2010 Version 1.1 Errata B

Each firmware volume has the following attributes:

• Name. Each volume has a name consisting of an UEFI Globally Unique Identifier (GUID).

• Size. Each volume has a size, which describes the total size of all volume data, including any
header, files, and free space.

• Format. Each volume has a format, which describes the Firmware File System used in the body
of the volume.

• Memory Mapped? Some volumes may be memory-mapped, which indicates that the entire
contents of the volume appear at once in the memory address space of the processor.

• Sticky Write? Some volumes may require special erase cycles in order to change bits from a
non-erase value to an erase value.

• Erase Polarity. If a volume supports “Sticky Write,” then all bits within the volume will return
to this value (0 or 1) after an erase cycle.

• Alignment. The first byte of a volume is required to be aligned on some power-of-two
boundary. At a minimum, this must be greater than or equal to the highest file alignment value.

• Read Enable/Disable Capable/Status. Volumes may have the ability to change from readable
to hidden.

• Write Enable/Disable Capable/Status. Volumes may have the ability to change from writable
to write protected.

• Lock Capable/Status. Volumes may be able to have their capabilities locked.

• Read-Lock Capable/Status. Volumes may have the ability to lock their read status.

• Write-Lock Capable/Status. Volumes may have the ability to lock their write status.

Firmware volumes may also contain additional information describing the mapping between OEM
file types and a GUID.

2.1.3 Firmware File System
A firmware file system (FFS) describes the organization of files and (optionally) free space within
the firmware volume. Each firmware file system has a unique GUID, which is used by the firmware
to associate a driver with a newly exposed firmware volume.

The PI Firmware File System is described in “Firmware File System Format” on page 15.

2.1.4 Firmware Files
Firmware files are code and/or data stored in firmware volumes.

Each of the files has the following attributes:

• Name. Each file has a name consisting of an UEFI GUID. File names must be unique within a
firmware volume. Some file names have special significance.

• Type. Each file has a type. There are four ranges of file types: Normal (0x00-0xBF), OEM
(0xC0-0xDF), Debug (0xE0-0xEF) and Firmware Volume Specific (0xF0-0xFF). For more
information on types, see “Firmware File Types” on page 7.

• Alignment. Each file’s data can be aligned on some power-of-two boundary. The specific
boundaries that are supported depend on the alignment and format of the firmware volume.

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 7

• Size. Each file’s data is zero or more bytes.

Specific firmware volume formats may support additional attributes, such as integrity verification
and staged file creation. The file data of certain file types is sub-divided in a standardized fashion
into “Firmware File Sections” on page 12.

Non-standard file types are supported through the use of the OEM file types. See “Firmware File
Types” on page 7 for more information.

In the PEI phase, file-related services are provided through the PEI Services Table, using
FfsFindNextFile, FfsFindFileByName and FfsGetFileInfo. In the DXE phase, file-
related services are provided through the EFI_FIRMWARE_VOLUME2_PROTOCOL services
attached to a volume’s handle (ReadFile, ReadSection, WriteFile and GetNextFile).

2.1.4.1 Firmware File Types
Consider an application file named FOO.EXE. The format of the contents of FOO.EXE is implied
by the “.EXE” in the file name. Depending on the operating environment, this extension typically
indicates that the contents of FOO.EXE are a PE/COFF image and follow the PE/COFF image
format.

Similarly, the PI Firmware File System defines the contents of a file that is returned by the firmware
volume interface.

The PI Firmware File System defines an enumeration of file types. For example, the type
EFI_FV_FILETYPE_DRIVER indicates that the file is a DXE driver and is interesting to the DXE
Dispatcher. In the same way, files with the type EFI_FV_FILETYPE_PEIM are interesting to the
PEI Dispatcher.

Table 1. Defined File Types

Name Value Description

EFI_FV_FILETYPE_RAW 0x01 Binary data

EFI_FV_FILETYPE_FREEFORM 0x02 Sectioned data

EFI_FV_FILETYPE_SECURITY_CORE 0x03 Platform core code used during
the SEC phase

EFI_FV_FILETYPE_PEI_CORE 0x04 PEI Foundation

EFI_FV_FILETYPE_DXE_CORE 0x05 DXE Foundation

EFI_FV_FILETYPE_PEIM 0x06 PEI module (PEIM)

EFI_FV_FILETYPE_DRIVER 0x07 DXE driver

EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER 0x08 Combined PEIM/DXE driver

EFI_FV_FILETYPE_APPLICATION 0x09 Application

EFI_FV_FILETYPE_SMM 0x0A Contains a PE32+ image that
will be loaded into SMRAM.

EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE 0x0B Firmware volume image

EFI_FV_FILETYPE_COMBINED_SMM_DXE 0x0C Contains PE32+ image that will
be dispatched by the DXE
Dispatcher and will also be
loaded into SMRAM.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

8 7/1/2010 Version 1.1 Errata B

2.1.4.1.1 EFI_FV_FILETYPE_APPLICATION

The file type EFI_FV_FILETYPE_APPLICATION denotes a file that contains a PE32 image that
can be loaded using the UEFI Boot Service LoadImage(). Files of type
EFI_FV_FILETYPE_APPLICATION are not dispatched by the DXE Dispatcher.

This file type is a sectioned file that must be constructed in accordance with the following rule:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

There are no restrictions on the encapsulation of the leaf section.

In the event that more than one EFI_SECTION_PE32 section is present in the file, the selection
algorithm for choosing which one represents the PE32 for the application in question is defined by
the LoadImage() boot service. See the Platform Initialization Driver Execution Environment
Core Interface Specification for details.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.2 EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER

The file type EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER denotes a file that contains code
suitable for dispatch by the PEI Dispatcher, as well as a PE32 image that can be dispatched by the
DXE Dispatcher. It has two uses:

• Enables sharing code between PEI and DXE to reduce firmware storage requirements.

• Enables bundling coupled PEIM/driver pairs in the same file.

This file type is a sectioned file and must follow the intersection of all rules defined for both
EFI_FV_FILETYPE_PEIM and EFI_FV_FILETYPE_DRIVER files. This intersection is listed
below:

• The file must contain one and only one EFI_SECTION_PE32 section. There are no
restrictions on encapsulation of this section; however, care must be taken to ensure any execute-
in-place requirements are satisfied.

• The file must not contain more than one EFI_SECTION_DXE_DEPEX section.

• The file must not contain more than one EFI_SECTION_PEI_DEPEX section.

• The file must contain no more than one EFI_SECTION_VERSION section.

EFI_FV_FILETYPE_SMM_CORE 0x0D SMM Foundation

EFI_FV_FILETYPE_OEM_MIN…
EFI_FV_FILETYPE_OEM_MAX

0xC0-
0xDF

OEM File Types

EFI_FV_FILETYPE_DEBUG_MIN…
EFI_FV_FILETYPE_DEBUG_MAX

0xE0-
0xEF

Debug/Test File Types

EFI_FV_FILETYPE_FFS_MIN…
EFI_FV_FILETYPE_FFS_MAX

0xF0-
0xFF

Firmware File System Specific
File Types

EFI_FV_FILETYPE_FFS_PAD 0xF0 Pad File For FFS

Name Value Description

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 9

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.3 EFI_FV_FILETYPE_COMBINED_SMM_DXE

The file type EFI_FV_FILETYPE_COMBINED_SMM_DXE denotes a file that contains a PE32+
image that will be dispatched by the DXE Dispatcher and will also be loaded into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section. This section is
ignored when the file is loaded into SMRAM.

• The file must contain no more than one EFI_SECTION_SMM_DEPEX section. This section is
ignored when the file is dispatched by the DXE Dispatcher.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

2.1.4.1.4 EFI_FV_FILETYPE_DRIVER

The file type EFI_FV_FILETYPE_DRIVER denotes a file that contains a PE32 image that can be
dispatched by the DXE Dispatcher.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections.

In the event that more than one EFI_SECTION_PE32 section is present in the file, the selection
algorithm for choosing which one represents the DXE driver that will be dispatched is defined by the
LoadImage() boot service, which is used by the DXE Dispatcher. See the Platform Initialization
Driver Execution Environment Core Interface Specification for details.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.5 EFI_FV_FILETYPE_DXE_CORE

The file type EFI_FV_FILETYPE_DXE_CORE denotes the DXE Foundation file. This image is
the one entered upon completion of the PEI phase of a UEFI boot cycle.

This file type is a sectioned file that must be constructed in accordance with the following rules:

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

10 7/1/2010 Version 1.1 Errata B

• The file must contain at least one and only one executable section, which must have a type of
EFI_SECTION_PE32.

• The file must contain no more than one EFI_SECTION_VERSION section.

The sections that are described in the rules above may be optionally encapsulated in compression
and/or additional GUIDed sections as required by the platform design.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design.

2.1.4.1.6 EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE

The file type EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE denotes a file that contains one
or more firmware volume images.

This file type is a sectioned file that must be constructed in accordance with the following rule:

• The file must contain at least one section of type
EFI_SECTION_FIRMWARE_VOLUME_IMAGE. There are no restrictions on encapsulation of
this section.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.7 EFI_FV_FILETYPE_FREEFORM

The file type EFI_FV_FILETYPE_FREEFORM denotes a sectioned file that may contain any
combination of encapsulation and leaf sections. While the section layout can be parsed, the
consumer of this type of file must have a priori knowledge of how it is to be used.

A single EFI_SECTION_FREEFORM_SUBTYPE_GUID section may be included in a file of type
EFI_FV_FILETYPE_FREEFORM to provide additional file type differentiation. While it is
permissible to omit the EFI_SECTION_FREEFORM_SUBTYPE_GUID section entirely, there
must never be more than one instance of it.

2.1.4.1.8 EFI_FV_FILETYPE_FFS_PAD

A pad file is an FFS-defined file type that is used to pad the location of the file that follows it in the
storage file. The normal state of any valid (not deleted or invalidated) file is that both its header and
data are valid. This status is indicated using the State bits with State = 00000111b. Pad files
differ from all other types of files in that any pad file in this state must not have any data written into
the data space. It is essentially a file filled with free space.

Standard firmware file system services will not return the handle of any pad files, nor will they
permit explicit creation of such files. The Name field of the EFI_FFS_FILE_HEADER structure is
considered invalid for pad files and will not be used in any operation that requires name
comparisons.

2.1.4.1.9 EFI_FV_FILETYPE_PEIM

The file type EFI_FV_FILETYPE_PEIM denotes a file that is a PEI module (PEIM). A PEI
module is dispatched by the PEI Foundation based on its dependencies during execution of the PEI
phase. See the Platform Initialization Pre-EFI Initialization Core Interface Specification for details
on PEI operation.

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 11

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain one and only one executable section. This section must have one of the
following types:
—EFI_SECTION_PE32
—EFI_SECTION_PIC
—EFI_SECTION_TE

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_PEI_DEPEX section.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design. Care must be taken to ensure that additional
encapsulations do not render the file inaccessible due to execute-in-place requirements.

2.1.4.1.10 EFI_FV_FILETYPE_PEI_CORE

The file type EFI_FV_FILETYPE_PEI_CORE denotes the PEI Foundation file. This image is
entered upon completion of the SEC phase of a PI Architecture-compliant boot cycle.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain one and only one executable section. This section must have one of the
following types:
—EFI_SECTION_PE32
—EFI_SECTION_PIC
—EFI_SECTION_TE

• The file must contain no more than one EFI_SECTION_VERSION section.

As long as the above rules are followed, the file may contain other leaf and encapsulations as
required/enabled by the platform design.

2.1.4.1.11 EFI_FV_FILETYPE_RAW

The file type EFI_FV_FILETYPE_RAW denotes a file that does not contain sections and is treated
as a raw data file. The consumer of this type of file must have a priori knowledge of its format and
content. Because there are no sections, there are no construction rules.

2.1.4.1.12 EFI_FV_FILETYPE_SECURITY_CODE

The file type EFI_FV_FILETYPE_SECURITY_CORE denotes code and data that comprise the
first part of PI Architecture firmware to execute. Its format is undefined with respect to the PI
Architecture, as differing platform architectures may have varied requirements.

2.1.4.1.13 EFI_FV_FILETYPE_SMM

The file type EFI_FV_FILETYPE_SMM denotes a file that contains a PE32+ image that will be
loaded into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

12 7/1/2010 Version 1.1 Errata B

• The file must contain no more than one EFI_SECTION_SMM_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

2.1.4.1.14 EFI_FV_FILETYPE_SMM_CORE

The file type EFI_FV_FILETYPE_DXE_CORE denotes the SMM Foundation file. This image will
be loaded by SMM IPL into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one and only one executable section, which must have a type of
EFI_SECTION_PE32.

• The file must contain no more than one EFI_SECTION_VERSION section.

The sections that are described in the rules above may be optionally encapsulated in compression
and/or additional GUIDed sections as required by the platform design.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design.

2.1.5 Firmware File Sections
Firmware file sections are separate discrete “parts” within certain file types. Each section has the
following attributes:

• Type. Each section has a type. For more information on section types, see “Firmware File
Section Types” on page 13.

• Size. Each section has a size.

While there are many types of sections, they fall into the following two broad categories:

• Encapsulation sections

• Leaf sections

Encapsulation sections are essentially containers that hold other sections. The sections contained
within an encapsulation section are known as child sections, and the encapsulation section is known
as the parent section. Encapsulation sections may have many children. An encapsulation section’s
children may be leaves and/or more encapsulation sections and are called peers relative to each
other. An encapsulation section does not contain data directly; instead it is just a vessel that
ultimately terminates in leaf sections.

Files that are built with sections can be thought of as a tree, with encapsulation sections as nodes and
leaf sections as the leaves. The file image itself can be thought of as the root and may contain an
arbitrary number of sections. Sections that exist in the root have no parent section but are still
considered peers.

Unlike encapsulation sections, leaf sections directly contain data and do not contain other sections.
The format of the data contained within a leaf section is defined by the type of the section.

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 13

Figure 1. Example File Image (Graphical and Tree Representations)

In the example shown in Figure 1, the file image root contains two encapsulation sections (E0 and
E1) and one leaf section (L3). The first encapsulation section (E0) contains children, all of which are
leaves (L0, L1, and L2). The second encapsulation section (E1) contains two children, one that is an
encapsulation (E2) and the other that is a leaf (L6). The last encapsulation section (E2) has two
children that are both leaves (L4 and L5)

In the PEI phase, section-related services are provided through the PEI Service Table, using
FfsFindSectionData. In the DXE phase, section-related services are provided through the
EFI_FIRMWARE_VOLUME2_PROTOCOL services attached to a volume’s handle
(ReadSection).

2.1.5.1 Firmware File Section Types
Table 2 lists the defined architectural section types.

Root

E0 L3 E1

L0 L1 L2 E2 L6

L4 L5

Tree Representation

L4

L5

E2

L6

E1

L3

L2

L1

L0

E0

Graphical Representation

Complete file image

Encapsulation section (En)

Leaf section (Ln)

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

14 7/1/2010 Version 1.1 Errata B

Table 2. Architectural Section Types

2.2 PI Architecture Firmware File System Format
This section describes the standard binary encoding for PI Firmware Files, PI Firmware Volumes,
and the PI Firmware File System. Implementations that allow the non-vendor firmware files or
firmware volumes to be introduced into the system must support the standard formats. This section
also describes how features of the standard format map into the standard PEI and DXE interfaces.

The standard firmware file and volume format also introduces additional attributes and capabilities
that are used to guarantee the integrity of the firmware volume.

The standard format is broken into three levels: the firmware volume format, the firmware file
system format, and the firmware file format.

The standard firmware volume format (Figure 2) consists of two parts: the firmware volume header
and the firmware volume data. The firmware volume header describes all of the attributes specified
in “Firmware Volumes” on page 5. The header also contains a GUID which describes the format of
the firmware file system used to organize the firmware volume data. The firmware volume header
can support other firmware file systems other than the PI Firmware File System.

Name Value Description

EFI_SECTION_COMPRESSION 0x01 Encapsulation section where other
sections are compressed.

EFI_SECTION_GUID_DEFINED 0x02 Encapsulation section where other
sections have format defined by a GUID.

EFI_SECTION_DISPOSABLE 0x03 Encapsulation section used during the
build process but not required for
execution.

EFI_SECTION_PE32 0x10 PE32+ Executable image.

EFI_SECTION_PIC 0x11 Position-Independent Code.

EFI_SECTION_TE 0x12 Terse Executable image.

EFI_SECTION_DXE_DEPEX 0x13 DXE Dependency Expression.

EFI_SECTION_VERSION 0x14 Version, Text and Numeric.

EFI_SECTION_USER_INTERFACE 0x15 User-Friendly name of the driver.

EFI_SECTION_COMPATIBILITY16 0x16 DOS-style 16-bit EXE.

EFI_SECTION_FIRMWARE_VOLUME_IMAGE 0x17 PI Firmware Volume image.

EFI_SECTION_FREEFORM_SUBTYPE_GUID 0x18 Raw data with GUID in header to define
format.

EFI_SECTION_RAW 0x19 Raw data.

EFI_SECTION_PEI_DEPEX 0x1b PEI Dependency Expression.

EFI_SECTION_SMM_DEPEX 0x1c Leaf section type for determining the
dispatch order for an SMM driver

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 15

Figure 2. The Firmware Volume Format

The PI Firmware File System format describes how firmware files and free space are organized
within the firmware volume.

The PI Firmware File format describes how files are organized. The firmware file format consists of
two parts: the firmware file header and the firmware file data.

2.2.1 Firmware Volume Format
The PI Architecture Firmware Volume format describes the binary layout of a firmware volume.
The firmware volume format consists of a header followed by the firmware volume data. The
firmware volume header is described by EFI_FIRMWARE_VOLUME_HEADER.

The format of the firmware volume data is described by a GUID. Typically, this contains the
EFI_FIRMWARE_FILE_SYSTEM2_GUID.

2.2.2 Firmware File System Format
The PI Architecture Firmware File System is a binary layout of file storage within firmware
volumes. It is a flat file system in that there is no provision for any directory hierarchy; all files
reside in the root directly. Files are stored end to end without any directory entry to describe which
files are present. Parsing the contents of a firmware volume to obtain a listing of files present
requires walking the firmware volume from beginning to end.

All files stored with the FFS must follow the “PI Architecture Firmware File System Format” on
page 14. The standard file header provides for several levels of integrity checking to help detect file
corruption, should it occur for some reason.

This section describes:

• PI Architecture’s Firmware File System GUID

• Volume Top File (VTF)

FIRMWARE VOLUME
HEADER

FIRMWARE FILE SYSTEM

FIRMWARE FILE #1

FIRMWARE FILE #2

FIRMWARE FILE HEADER

FIRMWARE FILE DATA

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION HEADER

FIRMWARE FILE
SECTION DATA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

16 7/1/2010 Version 1.1 Errata B

2.2.2.1 Firmware File System GUID
The PI Architecture firmware volume header contains a data field for the file system GUID. See
EFI_FIRMWARE_VOLUME_HEADER on page 29 for more information on the firmware volume
header. For the FFS file system, the GUID is defined as
EFI_FIRMWARE_FILE_SYSTEM2_GUID on page 35.

2.2.2.2 Volume Top File
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID on page 36.

Firmware file system driver code must be aware of this GUID and insert a pad file as necessary to
guarantee the VTF is located correctly at the top of the firmware volume on write and update
operations. File length and alignment requirements must be consistent with the top of volume.
Otherwise, a write error occurs and the firmware volume is not modified.

2.2.3 Firmware File Format
All FFS files begin with a header that is 8-byte, aligned with respect to the beginning of the firmware
volume. FFS files can contain the following parts:

• Header

• Data

It is possible to create a file that has only a header and no data, which means it consumes 24 bytes of
space. This type of file is known as a zero-length file.

If the file contains data, the data immediately follows the header. The format of the data within a file
is defined by the Type field in EFI_FFS_FILE_HEADER on page 37.

Figure 3 illustrates the layout of a typical PI Architecture Firmware File.

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 17

Figure 3. Typical FFS File Layout

2.2.4 Firmware File Section Format
This section describes the standard firmware file section layout.

Each section begins with a section header, followed by data defined by the section type.

The section headers are 4-byte aligned within the parent file’s image. If padding is required between
the end of one section and the beginning of the next to achieve the 4-byte alignment requirement, all
padding bytes must be initialized to zero.

Many section types are variable in length and are more accurately described as data streams rather
than data structures.

Regardless of section type, all section headers begin with a 24-bit integer indicating the section size,
followed by an 8-bit section type. The format of the remainder of the section header and the section
data is defined by the section type. Figure 4 shows the general format of a section.

Name

IntegrityCheckTypeAttributes

State Size

File data

31 1516 0

File data.

EFI_FFS_FILE_HEADER

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

18 7/1/2010 Version 1.1 Errata B

Figure 4. General Section Format

2.2.5 File System Initialization
The algorithm below describes a method of FFS initialization that ensures FFS file corruption can be
detected regardless of the cause.

The State byte of each file must be correctly managed to ensure the integrity of the file system is
not compromised in the event of a power failure during any FFS operation. It is expected that an FFS
driver will produce an instance of the Firmware Volume Protocol and that all normal file operations
will take place in that context. All file operations must follow all the creation, update, and deletion
rules described in this specification to avoid file system corruption.

The following FvCheck() pseudo code must be executed during FFS initialization to avoid file
system corruption. If at any point a failure condition is reached, then the firmware volume is
corrupted and a crisis recovery is initiated.All FFS files, including files of type
EFI_FV_FILETYPE_FFS_PAD must be evaluated during file system initialization. It is legal for
multiple pad files with this file type to have the same Name field in the file header. No checks for
duplicate files should be performed on pad files.

// Firmware volume initialization entry point – returns TRUE
// if FFS driver can use this firmware volume.
BOOLEAN FvCheck(Fv)
{
 // first check out firmware volume header
 if (FvHeaderCheck(Fv) == FALSE) {
 FAILURE();// corrupted firmware volume header
 }
 if (Fv->FvFileSystemId != EFI_FIRMWARE_FILE_SYSTEM2_GUID) {
 return (FALSE); // This firmware volume is not
 // formatted with FFS
 }
 // next walk files and verify the FFS is in good shape
 for (FilePtr = FirstFile; Exists(Fv, FilePtr);
 FilePtr = NextFile(Fv, FilePtr)) {
 if (FileCheck (Fv, FilePtr) != 0) {
 FAILURE(); // inconsistent file system
 }
 }
 if (CheckFreeSpace (Fv, FilePtr) != 0) {

…
Section data: Format defined by section type

…

Remainder of section header: Format defined by section type (not all sections will have this portion)

Type Length

31 0

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 19

 FAILURE();
 }
 return (TRUE); // this firmware volume can be used by the FFS
 // driver and the file system is OK
}
// FvHeaderCheck – returns TRUE if FvHeader checksum is OK.
BOOLEAN FvHeaderCheck (Fv)
{
 return (Checksum (Fv.FvHeader) == 0);
}
// Exists – returns TRUE if any bits are set in the file header
BOOLEAN Exists(Fv, FilePtr)
{
 return (BufferErased (Fv.ErasePolarity,
 FilePtr, sizeof (EFI_FIRMWARE_VOLUME_HEADER) == FALSE);
}
// BufferErased – returns TRUE if no bits are set in buffer
BOOLEAN BufferErased (ErasePolarity, BufferPtr, BufferSize)
{
 UINTN Count;
 if (Fv.ErasePolarity == 1) {
 ErasedByte = 0xff;
 } else {
 ErasedByte = 0;
 }
 for (Count = 0; Count < BufferSize; Count++) {
 if (BufferPtr[Count] != ErasedByte) {
 return FALSE;
 }
 }
 return TRUE;
}
// GetFileState – returns high bit set of state field.
 UINT8 GetFileState (Fv, FilePtr) {
 UINT8 FileState;
 UINT8 HighBit;
 FileState = FilePtr->State;
 if (Fv.ErasePolarity != 0) {
 FileState = ~FileState;
 }
 HighBit = 0x80;
 while (HighBit != 0 && (HighBit & FileState) == 0) {
 HighBit = HighBit >> 1;
 }
 return HighBit;
}
// FileCheck – returns TRUE if the file is OK
BOOLEAN FileCheck (Fv, FilePtr) {
 switch (GetFileState (Fv, FilePtr)) {
 case EFI_FILE_HEADER_CONSTRUCTION:
 SetHeaderBit (Fv, FilePtr, EFI_FILE_HEADER_INVALID);

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

20 7/1/2010 Version 1.1 Errata B

 break;
 case EFI_FILE_HEADER_VALID:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 Break;
 case EFI_FILE_DATA_VALID:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (DuplicateFileExists (Fv, FilePtr,
 EFI_FILE_DATA_VALID) != NULL) {
 return (FALSE);
 }
 break;
 case EFI_FILE_MARKED_FOR_UPDATE:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (FilePtr->State & EFI_FILE_DATA_VALID) == 0) {
 return (FALSE);
 }
 if (FilePtr->Type == EFI_FV_FILETYPE_FFS_PAD) {
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 if (DuplicateFileExists (Fv, FilePtr, EFI_FILE_DATA_VALID)) {
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 if (Fv->Attributes & EFI_FVB_STICKY_WRITE) {
 CopyFile (Fv, FilePtr);
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 ClearHeaderBit (Fv, FilePtr, EFI_FILE_MARKED_FOR_UPDATE);
 }
 }
 }
 break;
 case EFI_FILE_DELETED:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 21

 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 break;
 case EFI_FILE_HEADER_INVALID:
 break;
 }
 return (TRUE);
}
// FFS_FILE_PTR * DuplicateFileExists (Fv, FilePtr, StateBit)
// This function searches the firmware volume for another occurrence
// of the file described by FilePtr, in which the duplicate files
// high state bit that is set is defined by the parameter StateBit.
// It returns a pointer to a duplicate file if it exists and NULL
// if it does not. If the file type is EFI_FV_FILETYPE_FFS_PAD
// then NULL must be returned.

// CopyFile (Fv, FilePtr)
// The purpose of this function is to clear the
// EFI_FILE_MARKED_FOR_UPDATE bit from FilePtr->State
// in firmware volumes that have EFI_FVB_STICKY_WRITE == TRUE.
// The file is copied exactly header and all, except that the
// EFI_FILE_MARKED_FOR_UPDATE bit in the file header of the
// new file is clear.
// VerifyHeaderChecksum (FilePtr)
// The purpose of this function is to verify the file header
// sums to zero. See IntegrityCheck.Checksum.Header definition
// for details.
// VerifyFileChecksum (FilePtr)
// The purpose of this function is to verify the file integrity
// check. See IntegrityCheck.Checksum.File definition for details.

2.2.6 Traversal and Access to Files
The Security (SEC), PEI, and early DXE code must be able to traverse the FFS and read and execute
files before a write-enabled DXE FFS driver is initialized. Because the FFS may have
inconsistencies due to a previous power failure or other system failure, it is necessary to follow a set
of rules to verify the validity of files prior to using them. It is not incumbent on SEC, PEI, or the
early read-only DXE FFS services to make any attempt to recover or modify the file system. If any
situation exists where execution cannot continue due to file system inconsistencies, a recovery boot
is initiated.

There is one inconsistency that the SEC, PEI, and early DXE code can deal with without initiating a
recovery boot. This condition is created by a power failure or other system failure that occurs during
a file update on a previous boot. Such a failure will cause two files with the same file name GUID to
exist within the firmware volume. One of them will have the EFI_FILE_MARKED_FOR_UPDATE
bit set in its State field but will be otherwise a completely valid file. The other one may be in any
state of construction up to and including EFI_FILE_DATA_VALID. All files used prior to the
initialization of the write-enabled DXE FFS driver must be screened with this test prior to their use.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

22 7/1/2010 Version 1.1 Errata B

If this condition is discovered, it is permissible to initiate a recovery boot and allow the recovery
DXE to complete the update.

The following pseudo code describes the method for determining which of these two files to use.
The inconsistency is corrected during the write-enabled initialization of the DXE FFS driver.
// Screen files to ensure we get the right one in case
// of an inconsistency.
FFS_FILE_PTR EarlyFfsUpdateCheck(FFS_FILE_PTR * FilePtr) {
 FFS_FILE_PTR * FilePtr2;
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 switch (GetFileState (Fv, FilePtr)) {
 case EFI_FILE_DATA_VALID:
 return (FilePtr);
 break;
 case EFI_FILE_MARKED_FOR_UPDATE:
 FilePtr2 = DuplicateFileExists (Fv, FilePtr,
 EFI_FILE_DATA_VALID);
 if (FilePtr2 != NULL) {
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 return (FilePtr2);
 } else {
 return (FilePtr);
 }
 break;
 }
}

Note: There is no check for duplicate files once a file in the EFI_FILE_DATA_VALID state is located.
The condition where two files in a single firmware volume have the same file name GUID and are
both in the EFI_FILE_DATA_VALID state cannot occur if the creation and update rules that are
defined in this specification are followed.

2.2.7 File Integrity and State
File corruption, regardless of the cause, must be detectable so that appropriate file system repair
steps may be taken. File corruption can come from several sources but generally falls into three
categories:

• General failure

• Erase failure

• Write failure

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 23

A general failure is defined to be apparently random corruption of the storage media. This
corruption can be caused by storage media design problems or storage media degradation, for
example. This type of failure can be as subtle as changing a single bit within the contents of a file.
With good system design and reliable storage media, general failures should not happen. Even so,
the FFS enables detection of this type of failure.

An erase failure occurs when a block erase of firmware volume media is not completed due to a
power failure or other system failure. While the erase operation is not defined, it is expected that
most implementations of FFS that allow file write and delete operations will also implement a
mechanism to reclaim deleted files and coalesce free space. If this operation is not completed
correctly, the file system can be left in an inconsistent state.

Similarly, a write failure occurs when a file system write is in progress and is not completed due to a
power failure or other system failure. This type of failure can leave the file system in an inconsistent
state.

All of these failures are detectable during FFS initialization, and, depending on the nature of the
failure, many recovery strategies are possible. Careful sequencing of the State bits during normal
file transitions is sufficient to enable subsequent detection of write failures. However, the State
bits alone are not sufficient to detect all occurrences of general and/or erase failures. These types of
failures require additional support, which is enabled with the file header IntegrityCheck field.

For sample code that provides a method of FFS initialization that can detect FFS file corruption,
regardless of the cause, see “File System Initialization” on page 18.

2.2.8 File State Transitions

2.2.8.1 Overview
There are three basic operations that may be done with the FFS:

• Creating a file

• Deleting a file

• Updating a file

All state transitions must be done carefully at all times to ensure that a power failure never results in
a corrupted firmware volume. This transition is managed using the State field in the file header.

For the purposes of the examples below, positive decode logic is assumed
(EFI_FVB_ERASE_POLARITY = 0). In actual use, the EFI_FVB_ERASE_POLARITY in the
firmware volume header is referenced to determine the truth value of all FFS State bits. All
State bit transitions must be atomic operations. Further, except when specifically noted, only the
most significant State bit that is TRUE has meaning. Lower-order State bits are superseded by
higher-order State bits.

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on
page 29.

2.2.8.2 Initial State
The initial condition is that of “free space.” All free space in a firmware volume must be initialized
such that all bits in the free space contain the value of EFI_FVB_ERASE_POLARITY. As such, if
the free space is interpreted as an FFS file header, all State bits are FALSE.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

24 7/1/2010 Version 1.1 Errata B

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on
page 29

2.2.8.3 Creating a File
A new file is created by allocating space from the firmware volume immediately beyond the end of
the preceding file (or the firmware volume header if the file is the first one in the firmware volume).
Figure 5 illustrates the steps to create a new file, which are detailed below the figure.

Figure 5. Creating a File

As shown in Figure 5, the following steps are required to create a new file:

1. Allocate space in the firmware volume for a new EFI_FFS_FILE_HEADER and complete all
fields of the header (except for the State field, which is updated independently from the rest of
the header). This allocation is done by interpreting the free space as a file header and changing
the EFI_FILE_HEADER_CONSTRUCTION bit to TRUE. The transition of this bit to the TRUE
state must be atomic and fully complete before any additional writes to the firmware volume are
made. This transition yields State = 00000001b, which indicates the header construction

Change the
EFI_FILE_HEADER_

CONSTRUCTION
bit to TRUE

Change the
EFI_FILE_HEADER_

VALID bit to TRUE

Change the
EFI_FILE_DATA_
VALID bit to TRUE

Complete all fields in
the header

Write the file data

File is
“free

space”

File is
created

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 25

has begun but has not yet been completed. This value has the effect of “claiming” the FFS
header space from the firmware volume free space.

While in this state, the following fields of the FFS header are initialized and written to the
firmware volume:

• Name

• IntegrityCheck.Header

• Type

• Attributes

• Size

The value of IntegrityCheck.Header is calculated as described in
EFI_FFS_FILE_HEADER on page 37.

2. Mark the new header as complete and write the file data. To mark the header as complete, the
EFI_FILE_HEADER_VALID bit is changed to TRUE. The transition of this bit to the TRUE
state must be atomic and fully complete before any additional writes to the firmware volume are
made. This transition yields State = 00000011b, which indicates the header construction is
complete, but the file data has not yet been written. This value has the effect of “claiming” the
full length of the file from the firmware volume free space. Once the
EFI_FILE_HEADER_VALID bit is set, no further changes to the following fields may be
made:

• Name

• IntegrityCheck.Header

• Type

• Attributes

• Size

While in this state, the file data and IntegrityCheck.File are written to the firmware
volume. The order in which these are written does not matter. The calculation of the value for
IntegrityCheck.File is described in EFI_FFS_FILE_HEADER on page 37.

3. Mark the data as valid. To mark the data as valid, the EFI_FILE_DATA_VALID bit is changed
to TRUE. The transition of this bit to the TRUE state must be atomic and fully complete before
any additional writes to the firmware volume are made. This transition yields State =
00000111b, which indicates the file data is fully written and is valid.

2.2.8.4 Deleting a File
Any file with EFI_FILE_HEADER_VALID set to TRUE and EFI_FILE_HEADER_INVALID
and EFI_FILE_DELETED set to FALSE is a candidate for deletion.

To delete a file, the EFI_FILE_DELETED bit is set to the TRUE state. The transition of this bit to
the TRUE state must be atomic and fully complete before any additional writes to the firmware
volume are made. This transition yields State = 0001xx11b, which indicates the file is marked
deleted. Its header is still valid, however, in as much as its length field is used in locating the next
file in the firmware volume.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

26 7/1/2010 Version 1.1 Errata B

Note: The EFI_FILE_HEADER_INVALID bit must be left in the FALSE state.

2.2.8.5 Updating a File
A file update is a special case of file creation where the file being added already exists in the
firmware volume. At all times during a file update, only one of the files, either the new one or the old
one, is valid at any given time. This validation is possible by using the
EFI_FILE_MARKED_FOR_UPDATE bit in the old file.

Figure 6 illustrates the steps to update a file, which are detailed below the figure.

Figure 6. Updating a File

As shown in Figure 6, the following steps are required to update a file:

1. Set the EFI_FILE_MARKED_FOR_UPDATE bit to TRUE in the old file. The transition of this
bit to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00001111b, which indicates the
file is marked for update. A file in this state remains valid as long as no other file in the firmware
volume has the same name and a State of 000001xxb.

2. Create the new file following the steps described in “Creating a File” on page 24. When the new
file becomes valid, the old file that was marked for update becomes invalid. That is to say, a file
marked for update is valid only as long as there is no file with the same name in the firmware
volume that has a State of 000001xxb. In this way, only one of the files, either the new or
the old, is valid at any given time. The act of writing the EFI_FILE_DATA_VALID bit in the
new file’s State field has the additional effect of invalidating the old file.

3. Delete the old file following the steps described in “Deleting a File” on page 25.

File is

created

In the old file, change the
EFI_FILE_MARKED_

FOR_UPDATE bit to TRUE

Create the new file

Delete the old file

Writing the
EFI_FILE_DATA_VALID
bit to TRUE in the new file
invalidates the old file New

file is
created

Old file
is

deleted

See Deleting a File.

See Creating a File.

Firmware Storage Design Discussion

Version 1.1 Errata B 7/1/2010 27

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

28 7/1/2010 Version 1.1 Errata B

Version 1.1 Errata B 7/1/2010 29

3
Firmware Storage Code Definitions

3.1 Firmware Storage Code Definitions Introduction
This section provides the code definitions for:

• The PI Architecture Firmware Storage binary formats for volumes, file system, files, and file
sections.

• The PEI interfaces that support firmware volumes, firmware file systems, firmware files, and
firmware file sections.

• The DXE protocols that support firmware volumes, firmware file systems, firmware files, and
firmware file sections.

3.2 Firmware Storage Formats

3.2.1 Firmware Volume

EFI_FIRMWARE_VOLUME_HEADER

Summary
Describes the features and layout of the firmware volume.

Prototype
typedef struct {
 UINT8 ZeroVector[16];
 EFI_GUID FileSystemGuid;
 UINT64 FvLength;
 UINT32 Signature;
 EFI_FVB_ATTRIBUTES_2 Attributes;
 UINT16 HeaderLength;
 UINT16 Checksum;
 UINT16 ExtHeaderOffset;
 UINT8 Reserved[1];
 UINT8 Revision;
 EFI_FV_BLOCK_MAP BlockMap[];
} EFI_FIRMWARE_VOLUME_HEADER;

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

30 7/1/2010 Version 1.1 Errata B

Parameters
ZeroVector

The first 16 bytes are reserved to allow for the reset vector of processors whose reset
vector is at address 0.

FileSystemGuid

Declares the file system with which the firmware volume is formatted. Type
EFI_GUID is defined in InstallProtocolInterface() in the Unified
Extensible Firmware Interface Specification, version 2.0 (UEFI 2.0 specification).

FvLength

Length in bytes of the complete firmware volume, including the header.

Signature

Set to {'_','F','V','H'}.

Attributes

Declares capabilities and power-on defaults for the firmware volume. Current state is
determined using the GetAttributes() function and is not maintained in the
Attributes field of the firmware volume header. Type
EFI_FVB_ATTRIBUTES_2 is defined in “Related Definitions” below.

HeaderLength

Length in bytes of the complete firmware volume header.

Checksum

A 16-bit checksum of the firmware volume header. A valid header sums to zero.

ExtHeaderOffset

Offset, relative to the start of the header, of the extended header
(EFI_FIRMWARE_VOLUME_EXT_HEADER) or zero if there is no extended header.
The extended header is followed by zero or more variable length extension entries.
Each extension entry is prefixed with the EFI_FIRMWARE_VOLUME_EXT_ENTRY
structure (see “Related Definitions” below), which defines the type and size of the
extension entry. The extended header is always 32-bit aligned relative to the start of
the file header

.If there is an instance of the EFI_FIRMWARE_VOLUME_EXT_ENTRY, then the
firmware shall build an instance of the Firmware Volume Media Device Path (ref
Vol2, Section 8.2).

Reserved

In this version of the specification, this field must always be set to zero.

Revision

Set to 2. Future versions of this specification may define new header fields and will
increment the Revision field accordingly.

FvBlockMap[]

An array of run-length encoded FvBlockMapEntry structures. The array is
terminated with an entry of {0,0}.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 31

FvBlockMapEntry.NumBlocks

The number of blocks in the run.

FvBlockMapEntry.BlockLength

The length of each block in the run.

Description
A firmware volume based on a block device begins with a header that describes the features and
layout of the firmware volume. This header includes a description of the capabilities, state, and
block map of the device.

The block map is a run-length-encoded array of logical block definitions. This design allows a
reasonable mechanism of describing the block layout of typical firmware devices. Each block can be
referenced by its logical block address (LBA). The LBA is a zero-based enumeration of all of the
blocks—i.e., LBA 0 is the first block, LBA 1 is the second block, and LBA n is the (n-1) device.

The header is always located at the beginning of LBA 0.

Related Definitions
//***
// EFI_FVB_ATTRIBUTES_2
//***
typedef UINT32 EFI_FVB_ATTRIBUTES_2

// Attributes bit definitions
#define EFI_FVB2_READ_DISABLED_CAP 0x00000001
#define EFI_FVB2_READ_ENABLED_CAP 0x00000002
#define EFI_FVB2_READ_STATUS 0x00000004

#define EFI_FVB2_WRITE_DISABLED_CAP 0x00000008
#define EFI_FVB2_WRITE_ENABLED_CAP 0x00000010
#define EFI_FVB2_WRITE_STATUS 0x00000020

#define EFI_FVB2_LOCK_CAP 0x00000040
#define EFI_FVB2_LOCK_STATUS 0x00000080

#define EFI_FVB2_STICKY_WRITE 0x00000200
#define EFI_FVB2_MEMORY_MAPPED 0x00000400
#define EFI_FVB2_ERASE_POLARITY 0x00000800

#define EFI_FVB2_READ_LOCK_CAP 0x00001000
#define EFI_FVB2_READ_LOCK_STATUS 0x00002000

#define EFI_FVB2_WRITE_LOCK_CAP 0x00004000
#define EFI_FVB2_WRITE_LOCK_STATUS 0x00008000

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

32 7/1/2010 Version 1.1 Errata B

#define EFI_FVB2_ALIGNMENT 0x001F0000
#define EFI_FVB2_ALIGNMENT_1 0x00000000
#define EFI_FVB2_ALIGNMENT_2 0x00010000
#define EFI_FVB2_ALIGNMENT_4 0x00020000
#define EFI_FVB2_ALIGNMENT_8 0x00030000
#define EFI_FVB2_ALIGNMENT_16 0x00040000
#define EFI_FVB2_ALIGNMENT_32 0x00050000
#define EFI_FVB2_ALIGNMENT_64 0x00060000
#define EFI_FVB2_ALIGNMENT_128 0x00070000
#define EFI_FVB2_ALIGNMENT_256 0x00080000
#define EFI_FVB2_ALIGNMENT_512 0x00090000
#define EFI_FVB2_ALIGNMENT_1K 0x000A0000
#define EFI_FVB2_ALIGNMENT_2K 0x000B0000
#define EFI_FVB2_ALIGNMENT_4K 0x000C0000
#define EFI_FVB2_ALIGNMENT_8K 0x000D0000
#define EFI_FVB2_ALIGNMENT_16K 0x000E0000
#define EFI_FVB2_ALIGNMENT_32K 0x000F0000
#define EFI_FVB2_ALIGNMENT_64K 0x00100000
#define EFI_FVB2_ALIGNMENT_128K 0x00110000
#define EFI_FVB2_ALIGNMENT_256K 0x00120000
#define EFI_FVB2_ALIGNMNET_512K 0x00130000
#define EFI_FVB2_ALIGNMENT_1M 0x00140000
#define EFI_FVB2_ALIGNMENT_2M 0x00150000
#define EFI_FVB2_ALIGNMENT_4M 0x00160000
#define EFI_FVB2_ALIGNMENT_8M 0x00170000
#define EFI_FVB2_ALIGNMENT_16M 0x00180000
#define EFI_FVB2_ALIGNMENT_32M 0x00190000
#define EFI_FVB2_ALIGNMENT_64M 0x001A0000
#define EFI_FVB2_ALIGNMENT_128M 0x001B0000
#define EFI_FVB2_ALIGNMENT_256M 0x001C0000
#define EFI_FVB2_ALIGNMENT_512M 0x001D0000
#define EFI_FVB2_ALIGNMENT_1G 0x001E0000
#define EFI_FVB2_ALIGNMENT_2G 0x001F0000

Table 3 describes the fields in the above definition:

Table 3. Descriptions of EFI_FVB_ATTRIBUTES_2

Attribute Description

EFI_FVB2_READ_DISABLED_CAP TRUE if reads from the firmware volume may be disabled.

EFI_FVB2_READ_ENABLED_CAP TRUE if reads from the firmware volume may be enabled.

EFI_FVB2_READ_STATUS TRUE if reads from the firmware volume are currently enabled.

EFI_FVB2_WRITE_DISABLED_CAP TRUE if writes to the firmware volume may be disabled.

EFI_FVB2_WRITE_ENABLED_CAP TRUE if writes to the firmware volume may be enabled.

EFI_FVB2_WRITE_STATUS TRUE if writes to the firmware volume are currently enabled.

EFI_FVB2_LOCK_CAP TRUE if firmware volume attributes may be locked down.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 33

All other EFI_FVB_ATTRIBUTES_2 bits are reserved and must be zero.
typedef struct {
 UINT32 NumBlocks;
 UINT32 Length;
} EFI_FV_BLOCK_MAP;

NumBlocks

The number of sequential blocks which are of the same size.

Length

The size of the blocks.

typedef struct {
 EFI_GUID FvName;
 UINT32 ExtHeaderSize;
} EFI_FIRMWARE_VOLUME_EXT_HEADER;

EFI_FVB2_LOCK_STATUS TRUE if firmware volume attributes are currently locked down.

EFI_FVB2_STICKY_WRITE TRUE if a block erase is required to transition bits from

(NOT)EFI_FVB2_ERASE_POLARITY to

EFI_FVB2_ERASE_POLARITY. That is, after erasure, a write

may negate a bit in the EFI_FVB2_ERASE_POLARITY state,

but a write cannot flip it back again. A block erase cycle is required
to transition bits from the

(NOT)EFI_FVB2_ERASE_POLARITY state back to the

EFI_FVB2_ERASE_POLARITY state. See the

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL on

page 98.

EFI_FVB2_MEMORY_MAPPED TRUE if firmware volume is memory mapped.

EFI_FVB2_ERASE_POLARITY Value of all bits after erasure. See the

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL on

page 98.

EFI_FVB2_READ_LOCK_CAP TRUE if the firmware volume's read-status can be locked.

EFI_FVB2_READ_LOCK_STATUS TRUE If the firmware volume's read-status is locked.

EFI_FVB2_WRITE_LOCK_CAP TRUE if the firmware volume’s write status can be locked.

EFI_FVB2_WRITE_LOCK_STATUS TRUE if the firmware volume’s write-status is locked.

EFI_FVB2_ALIGNMENT The first byte of the firmware volume must be placed at an address
which is an even multiple of 2^(this field). For example, a value of 5
in this field would mean a required alignment of 32 bytes.

Attribute Description

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

34 7/1/2010 Version 1.1 Errata B

FvName

Firmware volume name.

ExtHeaderSize

Size of the rest of the extension header, including this structure.

After the extension header, there is an array of variable-length extension header entries, each
prefixed with the EFI_FIRMWARE_VOLUME_EXT_ENTRY structure.

typedef struct {
 UINT16 ExtEntrySize;
 UINT16 ExtEntryType;
} EFI_FIRMWARE_VOLUME_EXT_ENTRY;

ExtEntrySize

Size of this header extension.

ExtEntryType

Type of the header. See EFI_FV_EXT_TYPE_x.

#define EFI_FV_EXT_TYPE_OEM_TYPE0x01
typedef struct {
 EFI_FIRMWARE_VOLUME_EXT_ENTRY Hdr;
 UINT32 TypeMask;
 EFI_GUID Types[];
} EFI_FIRMWARE_VOLUME_EXT_ENTRY_OEM_TYPE;

Hdr

Standard extension entry, with the type EFI_FV_EXT_TYPE_OEM_TYPE.

TypeMask

A bit mask, one bit for each file type between 0xC0 (bit 0) and 0xDF (bit 31). If a bit
is ‘1’, then the GUID entry exists in Types. If a bit is ‘0’ then no GUID entry exists
in Types. For example, the value 0x01010301 would indicate that there would be
five total entries in Types for file types 0xC0 (bit 0), 0xC8 (bit 4), 0xC9 (bit 5), 0xD0
(bit 16), and 0xD8 (bit 24).

Types

An array of GUIDs, each GUID representing an OEM file type.

This extension header provides a mapping between a GUID and an OEM file type.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 35

3.2.2 Firmware File System

EFI_FIRMWARE_FILE_SYSTEM2_GUID

Summary
The firmware volume header contains a data field for the file system GUID. See the
EFI_FIRMWARE_VOLUME_HEADER on page 29 for more information on the firmware volume
header. For the FFS file system, the GUID is defined below.

GUID
// {8C8CE578-8A3D-4f1c-9935-896185C32DD3}
#define EFI_FIRMWARE_FILE_SYSTEM2_GUID \

{ 0x8c8ce578, 0x8a3d, 0x4f1c, \
0x99, 0x35, 0x89, 0x61, 0x85, 0xc3, 0x2d, 0xd3 }

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

36 7/1/2010 Version 1.1 Errata B

EFI_FFS_VOLUME_TOP_FILE_GUID

Summary
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID as defined below.

GUID
// {1BA0062E-C779-4582-8566-336AE8F78F09}

#define EFI_FFS_VOLUME_TOP_FILE_GUID \
{ 0x1BA0062E, 0xC779, 0x4582, 0x85, 0x66, 0x33, 0x6A, \
 0xE8, 0xF7, 0x8F, 0x9 }

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 37

3.2.3 Firmware File

EFI_FFS_FILE_HEADER

Summary
Each file begins with a header that describes the state and contents of the file. The header is 8-byte
aligned with respect to the beginning of the firmware volume.

Prototype
typedef struct {
 EFI_GUID Name;
 EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
 EFI_FV_FILETYPE Type;
 EFI_FFS_FILE_ATTRIBUTES Attributes;
 UINT8 Size[3];
 EFI_FFS_FILE_STATE State;
} EFI_FFS_FILE_HEADER;

Parameters
Name

This GUID is the file name. It is used to uniquely identify the file. There may be only
one instance of a file with the file name GUID of Name in any given firmware
volume, except if the file type is EFI_FV_FILETYPE_FFS_PAD.

IntegrityCheck

Used to verify the integrity of the file. Type EFI_FFS_INTEGRITY_CHECK is
defined in “Related Definitions” below.

Type

Identifies the type of file. Type EFI_FV_FILETYPE is defined in “Related
Definitions,” below. FFS-specific file types are defined in
EFI_FV_FILETYPE_FFS_PAD.

Attributes

Declares various file attribute bits. Type EFI_FFS_FILE_ATTRIBUTES is defined
in “Related Definitions” below.

Size

The length of the file in bytes, including the FFS header. The length of the file data is
either (Size – sizeof(EFI_FFS_FILE_HEADER)). This calculation means a
zero-length file has a Size of 24 bytes, which is
sizeof(EFI_FFS_FILE_HEADER).

Size is not required to be a multiple of 8 bytes. Given a file F, the next file header is
located at the next 8-byte aligned firmware volume offset following the last byte of
the file F.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

38 7/1/2010 Version 1.1 Errata B

State

Used to track the state of the file throughout the life of the file from creation to
deletion. Type EFI_FFS_FILE_STATE is defined in “Related Definitions” below.
See “File Integrity and State ” on page 22 for an explanation of how these bits are
used.

Related Definitions
//**
// EFI_FFS_INTEGRITY_CHECK
//**
typedef union {
 struct {
 UINT8 Header;
 UINT8 File;
 } Checksum;
 UINT16 Checksum16;
} EFI_FFS_INTEGRITY_CHECK;

Header

The IntegrityCheck.Checksum.Header field is an 8-bit checksum of the file
header. The State and IntegrityCheck.Checksum.File fields are assumed
to be zero and the checksum is calculated such that the entire header sums to zero. The
IntegrityCheck.Checksum.Header field is valid anytime the
EFI_FILE_HEADER_VALID bit is set in the State field. See “File Integrity and
State ” on page 22 for more details.

File

If the FFS_ATTRIB_CHECKSUM (see definition below) bit of the Attributes
field is set to one, the IntegrityCheck.Checksum.File field is an 8-bit
checksum of the file data. If the FFS_ATTRIB_CHECKSUM bit of the Attributes
field is cleared to zero, the IntegrityCheck.Checksum.File field must be
initialized with a value of 0xAA. The IntegrityCheck.Checksum.File field
is valid any time the EFI_FILE_DATA_VALID bit is set in the State field. See
“File Integrity and State ” on page 22 for more details.

Checksum

IntegrityCheck. Checksum16 is the full 16 bits of the IntegrityCheck
field.

//**
// EFI_FV_FILETYPE
//**
typedef UINT8 EFI_FV_FILETYPE;

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 39

//**
// EFI_FFS_FILE_ATTRIBUTES
//**
typedef UINT8 EFI_FFS_FILE_ATTRIBUTES;

// FFS File Attributes
#define FFS_ATTRIB_FIXED 0x04
#define FFS_ATTRIB_DATA_ALIGNMENT 0x38
#define FFS_ATTRIB_CHECKSUM 0x40

Figure 7 depicts the bit allocation of the Attributes field in an FFS file’s header.

Figure 7. Bit Allocation of FFS Attributes

7 6 5 4 3 2 1 0

R
e

se
rve

d. M
u

st B
e

 S
e

t T
o 0

F
F

S
_

A
T

T
R

IB
_C

H
E

C
K

S
U

M

F
F

S
_A

T
T

R
IB

_ D
A

T
A

_
A

L
IG

N
M

E
N

T

F
F

S
_

A
T

T
R

IB
_F

IX
E

D

R
e

se
rve

d. M
u

st B
e

 S
e

t T
o 0

R
e

se
rv e

d. M
u

st B
e

 S
e

t T
o 0

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

40 7/1/2010 Version 1.1 Errata B

Table 4 provides descriptions of the fields in the above definition.

Table 4. Bit Allocation Definitions

Table 5 maps all FFS-supported alignments to FFS_ATTRIB_DATA_ALIGNMENT values and
firmware volume interface alignment values.

Table 5. Supported FFS Alignments

Value Definition

FFS_ATTRIB_FIXED Indicates that the file may not be moved from its present location.

FFS_ATTRIB_DATA_ALIGNMENT Indicates that the beginning of the file data (not the file header) must
be aligned on a particular boundary relative to the firmware volume
base. The three bits in this field are an enumeration of alignment
possibilities. The firmware volume interface allows alignments based
on powers of two from byte alignment to 64KB alignment. FFS does
not support this full range. The table below maps all FFS supported

alignments to FFS_ATTRIB_DATA_ALIGNMENT values and

firmware volume interface alignment values. No other alignments are
supported by FFS. When a file with an alignment requirement is
created, a pad file may need to be created before it to ensure proper
data alignment. See “EFI_FV_FILETYPE_FFS_PAD” on page 10 for
more information regarding pad files.

FFS_ATTRIB_CHECKSUM Determines the interpretation of

IntegrityCheck.Checksum.File. See the

IntegrityCheck definition above for specific usage.

Required Alignment (bytes) Alignment Value in FFS

Attributes Field

Alignment Value in Firmware
Volume Interfaces

1 0 0

2 0 1

4 0 2

8 0 3

16 1 4

128 2 7

512 3 9

1KB 4 10

4KB 5 12

32KB 6 15

64KB 7 16

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 41

//**
// EFI_FFS_FILE_STATE
//**
typedef UINT8 EFI_FFS_FILE_STATE;

// FFS File State Bits
#define EFI_FILE_HEADER_CONSTRUCTION 0x01
#define EFI_FILE_HEADER_VALID 0x02
#define EFI_FILE_DATA_VALID 0x04
#define EFI_FILE_MARKED_FOR_UPDATE 0x08
#define EFI_FILE_DELETED 0x10
#define EFI_FILE_HEADER_INVALID 0x20

All other State bits are reserved and must be set to EFI_FVB_ERASE_POLARITY. See “File
Integrity and State ” on page 22 for an explanation of how these bits are used. Type
EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on page 29.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

42 7/1/2010 Version 1.1 Errata B

3.2.4 Firmware File Section

EFI_COMMON_SECTION_HEADER

Summary
Defines the common header for all the section types.

Prototype
typedef struct {
 UINT8 Size[3];
 EFI_SECTION_TYPE Type;
} EFI_COMMON_SECTION_HEADER;

Parameters
Size

A 24-bit unsigned integer that contains the total size of the section in bytes, including
the EFI_COMMON_SECTION_HEADER. For example, a zero-length section has a
Size of 4 bytes.

Type

Declares the section type. Type EFI_SECTION_TYPE is defined in “Related
Definitions” below.

Description
The type EFI_COMMON_SECTION_HEADER defines the common header for all the section types.

Related Definitions
//**
// EFI_SECTION_TYPE
//**
typedef UINT8 EFI_SECTION_TYPE;

//**
// The section type EFI_SECTION_ALL is a pseudo type. It is
// used as a wild card when retrieving sections. The section
// type EFI_SECTION_ALL matches all section types.
//**
#define EFI_SECTION_ALL 0x00

//**
// Encapsulation section Type values
//**
#define EFI_SECTION_COMPRESSION 0x01
#define EFI_SECTION_GUID_DEFINED 0x02
#define EFI_SECTION_DISPOSABLE 0x03

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 43

//**
// Leaf section Type values
//**
#define EFI_SECTION_PE32 0x10
#define EFI_SECTION_PIC 0x11
#define EFI_SECTION_TE 0x12
#define EFI_SECTION_DXE_DEPEX 0x13
#define EFI_SECTION_VERSION 0x14
#define EFI_SECTION_USER_INTERFACE 0x15
#define EFI_SECTION_COMPATIBILITY16 0x16
#define EFI_SECTION_FIRMWARE_VOLUME_IMAGE 0x17
#define EFI_SECTION_FREEFORM_SUBTYPE_GUID 0x18
#define EFI_SECTION_RAW 0x19
#define EFI_SECTION_PEI_DEPEX 0x1B
#define EFI_SECTION_SMM_DEPEX 0x1C

All other values are reserved for future use.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

44 7/1/2010 Version 1.1 Errata B

3.2.5 Firmware File Section Types

EFI_SECTION_COMPATIBILITY16

Summary
A leaf section type that contains an IA-32 16-bit executable image.

Prototype
typedef EFI_COMMON_SECTION_HEADER
EFI_COMPATIBILITY16_SECTION;

Description
A Compatibility16 image section is a leaf section that contains an IA-32 16-bit executable image.
IA-32 16-bit legacy code that may be included in PI Architecture firmware is stored in a 16-bit
executable image.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 45

EFI_SECTION_COMPRESSION

Summary
An encapsulation section type in which the section data is compressed.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 UINT32 UncompressedLength;
 UINT8 CompressionType;
} EFI_COMPRESSION_SECTION;

Parameters
CommonHeader

Usual common section header. CommonHeader.Type =
EFI_SECTION_COMPRESSION.

UncompressedLength

UINT32 that indicates the size of the section data after decompression.

CompressionType

Indicates which compression algorithm is used.

Description
A compression section is an encapsulation section in which the section data is compressed. To
process the contents and extract the enclosed section stream, the section data must be decompressed
using the decompressor indicated by the CompressionType parameter. The decompressed
image is then interpreted as a section stream.

Related Definitions
//**
// CompressionType values
//**
#define EFI_NOT_COMPRESSED 0x00
#define EFI_STANDARD_COMPRESSION 0x01

Table 6 describes the fields in the above definition.

Table 6. Description of Fields for CompressionType

Field Description

EFI_NOT_COMPRESSED Indicates that the encapsulated section stream is not
compressed. This type is useful to grouping sections together
without requiring a decompressor.

EFI_STANDARD_COMPRESSION Indicates that the encapsulated section stream is compressed
using the compression standard defined by the UEFI 2.0
specification.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

46 7/1/2010 Version 1.1 Errata B

EFI_SECTION_DISPOSABLE

Summary
An encapsulation section type in which the section data is disposable.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_DISPOSABLE_SECTION;

Parameters
None

Description
A disposable section is an encapsulation section in which the section data may be disposed of during
the process of creating or updating a firmware image without significant impact on the usefulness of
the file. The Type field in the section header is set to EFI_SECTION_DISPOSABLE. This
allows optional or descriptive data to be included with the firmware file which can be removed in
order to conserve space. The contents of this section are implementation specific, but might contain
debug data or detailed integration instructions.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 47

EFI_SECTION_DXE_DEPEX

Summary
A leaf section type that is used to determine the dispatch order for a DXE driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_DXE_DEPEX_SECTION;

Description
The DXE dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for a DXE driver. See the Platform Initialization Driver
Execution Environment Core Interface Specification for details regarding the format of the
dependency expression.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

48 7/1/2010 Version 1.1 Errata B

EFI_SECTION_FIRMWARE_VOLUME_IMAGE

Summary
A leaf section type that contains a PI Firmware Volume.

Prototype
typedef EFI_COMMON_SECTION_HEADER
EFI_FIRMWARE_VOLUME_IMAGE_SECTION;

Description
A firmware volume image section is a leaf section that contains a PI Firmware Volume Image.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 49

EFI_SECTION_FREEFORM_SUBTYPE_GUID

Summary
A leaf section type that contains a single EFI_GUID.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 EFI_GUID SubTypeGuid;
} EFI_FREEFORM_SUBTYPE_GUID_SECTION;

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_FREEFORM_SUBTYPE_GUID.

SubtypeGuid

This GUID is defined by the creator of the file. It is a vendor-defined file type. Type
EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

Description
A free-form subtype GUID section is a leaf section that contains a single EFI_GUID. It is typically
used in files of type EFI_FV_FILETYPE_FREEFORM to provide an extensibility mechanism for
file types. See “EFI_FV_FILETYPE_FREEFORM” on page 10 for more details about
EFI_FV_FILETYPE_FREEFORM files.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

50 7/1/2010 Version 1.1 Errata B

EFI_SECTION_GUID_DEFINED

Summary
An encapsulation section type in which the method of encapsulation is defined by an identifying
GUID.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 EFI_GUID SectionDefinitionGuid;
 UINT16 DataOffset;
 UINT16 Attributes;
 // GuidSpecificHeaderFields;
} EFI_GUID_DEFINED_SECTION;

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_GUID_DEFINED.

SectionDefinitionGuid

GUID that defines the format of the data that follows. It is a vendor-defined section
type. Type EFI_GUID is defined in InstallProtocolInterface() in the
UEFI 2.0 specification.

DataOffset

Contains the offset in bytes from the beginning of the common header to the first byte
of the data.

Attributes

Bit field that declares some specific characteristics of the section contents. The bits are
defined in “Related Definitions” below.

GuidSpecificHeaderFields

Zero or more bytes of data that are defined by the section’s GUID. An example of this
data would be a digital signature and manifest.

Data

Zero or more bytes of arbitrary data. The format of the data is defined by
SectionDefinitionGuid.

Description
A GUID-defined section contains a section-type-specific header that contains an identifying GUID,
followed by an arbitrary amount of data. It is an encapsulation section in which the method of
encapsulation is defined by the GUID. A matching instance of
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL (DXE) or

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 51

EFI_GUIDED_SECTION_EXTRACTION_PPI (PEI) is required to extract the contents of this
encapsulation section.

The GUID-defined section enables custom encapsulation section types for any purpose. One
commonly expected use is creating an encapsulation section to enable a cryptographic authentication
of the section contents.

Related Definitions
//***
// Bit values for GuidedSectionHeader.Attributes
//***
#define EFI_GUIDED_SECTION_PROCESSING_REQUIRED 0x01
#define EFI_GUIDED_SECTION_AUTH_STATUS_VALID 0x02

Table 7 describes the fields in the above definition.

Table 7. Descriptions of Fields for GuidedSectionHeader.Attributes

All other bits are reserved and must be set to zero. Together, the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED and
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bits provide the necessary data to set the
proper bits of the AuthenticationStatus output parameter in the event that no
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL is available and the data is still returned.

Field Description

EFI_GUIDED_SECTION_
PROCESSING_REQUIRED

Set to 1 if the section requires processing to obtain meaningful
data from the section contents. Processing would be required, for
example, if the section contents were encrypted or compressed.
If the

EFI_GUIDED_SECTION_PROCESSING_REQUIRED

bit is cleared to zero, it is possible to retrieve the section’s
contents without processing in the absence of an associated
instance of the

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

(DXE) or

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI

(PEI).. In this case, the beginning of the encapsulated section

stream is indicated by the value of DataOffset.

EFI_GUIDED_SECTION_AUTH_
STATUS_VALID

Set to 1 if the section contains authentication data that is reported

through the AuthenticationStatus parameter returned

from the GUIDed Section Extraction
Protocol. If the

EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit is

clear, the AuthenticationStatus parameter is not

used.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

52 7/1/2010 Version 1.1 Errata B

EFI_SECTION_PE32

Summary
A leaf section type that contains a complete PE32+ image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PE32_SECTION;

Description
The PE32+ image section is a leaf section that contains a complete PE32+ image. Normal UEFI
executables are stored within PE32+ images.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 53

EFI_SECTION_PEI_DEPEX

Summary
A leaf section type that is used to determine dispatch order for a PEIM.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PEI_DEPEX_SECTION;

Description
The PEI dependency expression section is a leaf section that contains a dependency expression that
is used to determine dispatch order for a PEIM. See the Platform Initialization Pre-EFI Initialization
Core Interface Specification for details regarding the format of the dependency expression.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

54 7/1/2010 Version 1.1 Errata B

EFI_SECTION_PIC

Summary
A leaf section type that contains a position-independent-code (PIC) image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PIC_SECTION;

Description
A PIC image section is a leaf section that contains a position-independent-code (PIC) image.

In addition to normal PE32+ images that contain relocation information, PEIM executables may be
PIC and are referred to as PIC images. A PIC image is the same as a PE32+ image except that all
relocation information has been stripped from the image and the image can be moved and will
execute correctly without performing any relocation or other fix-ups.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 55

EFI_SECTION_RAW

Summary
A leaf section type that contains an array of zero or more bytes.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_RAW_SECTION;

Description
A raw section is a leaf section that contains an array of zero or more bytes. No particular formatting
of these bytes is implied by this section type.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

56 7/1/2010 Version 1.1 Errata B

EFI_SECTION_SMM_DEPEX

Summary

A leaf section type that is used to determine the dispatch order for an SMM driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_SMM_DEPEX_SECTION;

Description

The SMM dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for SMM drivers. Before the SMRAM invocation of the
SMM driver’s entry point, this dependency expression must evaluate to TRUE. See the Platform
Initialization Specification, Volume 2for details regarding the format of the dependency expression.

The dependency expression may refer to protocols installed in either the UEFI or the SMM protocol
database.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 57

EFI_SECTION_TE

Summary
A leaf section that contains a Terse Executable (TE) image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_TE_SECTION;

Description
The terse executable section is a leaf section that contains a Terse Executable (TE) image. A TE
image is an executable image format specific to the PI Architecture that is used for storing
executable images in a smaller amount of space than would be required by a full PE32+ image. Only
PEI Foundation and PEIM files may contain a TE section.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

58 7/1/2010 Version 1.1 Errata B

EFI_SECTION_USER_INTERFACE

Summary
A leaf section type that contains a Unicode string that contains a human-readable file name.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 CHAR16 FileNameString[…];
} EFI_USER_INTERFACE_SECTION;

Description
The user interface file name section is a leaf section that contains a Unicode string that contains a
human-readable file name.

This section is optional and is not required for any file types. There must never be more than one
user interface file name section contained within a file.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 59

EFI_SECTION_VERSION

Summary
A leaf section type that contains a numeric build number and an optional Unicode string that
represents the file revision.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 UINT16 BuildNumber;
 CHAR16 VersionString[…];
} EFI_VERSION_SECTION;

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_VERSION.

BuildNumber

A UINT16 that represents a particular build. Subsequent builds have monotonically
increasing build numbers relative to earlier builds.

VersionString

A null-terminated Unicode string that contains a text representation of the version. If
there is no text representation of the version, then an empty string must be provided.

Description
A version section is a leaf section that contains a numeric build number and an optional Unicode
string that represents the file revision.

To facilitate versioning of PEIMs, DXE drivers, and other files, a version section may be included in
a file. There must never be more than one version section contained within a file.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

60 7/1/2010 Version 1.1 Errata B

3.3 PEI

EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

Summary
Provides location and format of a firmware volume.

GUID
#define EFI_PEI_FIRMWARE_VOLUME_INFO_PPI_GUID \
 { 0x49edb1c1, 0xbf21, 0x4761, \
 { 0xbb, 0x12, 0xeb, 0x0, 0x31, 0xaa, 0xbb, 0x39 } };

Prototype
typedef struct _EFI_PEI_FIRMWARE_VOLUME_INFO_PPI {
 EFI_GUID FvFormat;
 VOID *FvInfo;
 UINT32 FvInfoSize;
 EFI_GUID *ParentFvName;
 EFI_GUID *ParentFileName;
} EFI_PEI_FIRMWARE_VOLUME_INFO_PPI ;

Parameters
FvFormat

Unique identifier of the format of the memory-mapped firmware volume.

FvInfo

Points to a buffer which allows the EFI_PEI_FIRMWARE_VOLUME_PPI to
process the volume. The format of this buffer is specific to the FvFormat. For
memory-mapped firmware volumes, this typically points to the first byte of the
firmware volume.

FvInfoSize

Size of the data provided by FvInfo. For memory-mapped firmware volumes, this is
typically the size of the firmware volume.

ParentFvName, ParentFileName

If the firmware volume originally came from a firmware file, then these point to the
parent firmware volume name and firmware volume file. If it did not originally come
from a firmware file, these should be NULL.

Description
This PPI describes the location and format of a firmware volume. The FvFormat can be
EFI_FIRMWARE_FILE_SYSTEM2_GUID or the GUID for a user-defined format. The
EFI_FIRMWARE_FILE_SYSTEM2_GUID is the PI Firmware Volume format.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 61

EFI_PEI_FIRMWARE_VOLUME_PPI

Summary
Provides functions for accessing a memory-mapped firmware volume of a specific format.

GUID
The GUID for this PPI is the same as the firmware volume format GUID.

Prototype
typedef struct _EFI_PEI_FIRMWARE_VOLUME_PPI {
 EFI_PEI_FV_PROCESS_FV ProcessVolume;
 EFI_PEI_FV_FIND_FILE_TYPE FindFileByType;
 EFI_PEI_FV_FIND_FILE_NAME FindFileByName;
 EFI_PEI_FV_GET_FILE_INFO GetFileInfo;
 EFI_PEI_FV_GET_INFO GetVolumeInfo;
 EFI_PEI_FV_FIND_SECTION FindSectionByType;
} EFI_PEI_FIRMWARE_VOLUME_PPI;

Parameters
ProcessVolume

Process a firmware volume and create a volume handle.

FindFileByType

Find all files of a specific type.

FindFileByName

Find the file with a specific name.

GetFileInfo

Return the information about a specific file

GetVolumeInfo

Return the firmware volume attributes.

FindSectionByType

Find all sections of a specific type.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

62 7/1/2010 Version 1.1 Errata B

EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume()

Summary
Process a firmware volume and create a volume handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_PROCESS_FV) (
IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
IN VOID *Buffer,
IN UINTN BufferSize,
OUT EFI_PEI_FV_HANDLE *FvHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

Buffer

Points to the start of the buffer.

BufferSize

Size of the buffer.

FvHandle

Points to the returned firmware volume handle. The firmware volume handle must be
unique within the system. The type EFI_PEI_FV_HANDLE is defined in the PEI
Services FfsFindNextVolume().

Description
Create a volume handle from the information in the buffer. For memory-mapped firmware volumes,
Buffer and BufferSize refer to the start of the firmware volume and the firmware volume size.
For non memory-mapped firmware volumes, this points to a buffer which contains the necessary
information for creating the firmware volume handle. Normally, these values are derived from the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI.

Status Codes Returned

EFI_SUCCESS Firmware volume handle created.

EFI_VOLUME_CORRUPTED Volume was corrupt.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 63

EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType()

Summary
Finds the next file of the specified type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_FILE_TYPE) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_FV_FILETYPE SearchType,
 IN EFI_PEI_FV_HANDLE FvHandle,
 IN OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

SearchType

A filter to find only files of this type. Type EFI_FV_FILETYPE_ALL causes no
filtering to be done.

FvHandle

Handle of firmware volume in which to search.

FileHandle

Points to the current handle from which to begin searching or NULL to start at the
beginning of the firmware volume. Updated upon return to reflect the file found.

Description
This service enables PEI modules to discover additional firmware files. The FileHandle must be
unique within the system.

Status Codes Returned

EFI_SUCCESS The file was found.

EFI_NOT_FOUND The file was not found. FileHandle contains NULL.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

64 7/1/2010 Version 1.1 Errata B

EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName()

Summary
Find a file within a volume by its name.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_FILE_NAME) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN CONST EFI_GUID *FileName,
 IN EFI_PEI_FV_HANDLE *FvHandle,
 OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FileName

A pointer to the name of the file to find within the firmware volume.

FvHandle

Upon entry, the pointer to the firmware volume to search or NULL if all firmware
volumes should be searched. Upon exit, the actual firmware volume in which the file
was found.

FileHandle

Upon exit, points to the found file’s handle or NULL if it could not be found.

Description
This service searches for files with a specific name, within either the specified firmware volume or
all firmware volumes. The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS File was found.

EFI_NOT_FOUND File was not found.

EFI_INVALID_PARAMETER FileHandle or FileName was NULL.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 65

EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_GET_FILE_INFO) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_FV_FILE_INFO *FileInfo
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FileHandle

Handle of the file.

FileInfo

Upon exit, points to the file’s information.

Description
This function returns information about a specific file, including its file name, type, attributes,
starting address and size.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo is NULL

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

66 7/1/2010 Version 1.1 Errata B

EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo()

Summary
Return information about the firmware volume.

Prototypes
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_GET_INFO)(
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_PEI_FV_HANDLE FvHandle,
 OUT EFI_FV_INFO *VolumeInfo
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FvHandle

Handle to the firmware handle.

VolumeInfo

Points to the returned firmware volume information.

Description
This function returns information about the firmware volume.

Status Codes Returned

EFI_SUCCESS Information returned successfully.

EFI_INVALID_PARAMETER FvHandle does not indicate a valid firmware volume or

VolumeInfo is NULL

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 67

EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType()

Summary
Find the next matching section in the firmware file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_SECTION) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_SECTION_TYPE SearchType,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT VOID **SectionData
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

SearchType

A filter to find only sections of this type.

FileHandle

Handle of firmware file in which to search.

SectionData

Updated upon return to point to the section found.

Description
This service enables PEI modules to discover sections of a given type within a valid file.

Status Codes Returns

EFI_SUCCESS Section was found.

EFI_NOT_FOUND Section of the specified type was not found. SectionData contains

NULL.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

68 7/1/2010 Version 1.1 Errata B

EFI_PEI_LOAD_FILE_PPI

Summary
Installed by a PEIM that supports the Load File PPI.

GUID
#define EFI_PEI_LOAD_FILE_PPI_GUID \

{ 0xb9e0abfe, 0x5979, 0x4914, \
0x97, 0x7f, 0x6d, 0xee, 0x78, 0xc2, 0x78, 0xa6 }

Prototype
typedef struct _EFI_PEI_LOAD_FILE_PPI {

EFI_PEI_LOAD_FILE LoadFile;
} EFI_PEI_LOAD_FILE_PPI;

Parameters
LoadFile

Loads a PEIM into memory for subsequent execution. See the LoadFile() function
description.

Description
This PPI is a pointer to the Load File service. This service will be published by a PEIM. The PEI
Foundation will use this service to launch the known PEI module images.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 69

EFI_PEI_LOAD_FILE_PPI.LoadFile()

Summary
Loads a PEIM into memory for subsequent execution.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOAD_FILE) (
 IN CONST EFI_PEI_LOAD_FILE_PPI *This,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
 OUT UINT64 *ImageSize,
 OUT EFI_PHYSICAL_ADDRESS *EntryPoint,
 OUT UINT32 *AuthenticationState
);

Parameters
This

Interface pointer that implements the Load File PPI instance.

FileHandle

File handle of the file to load. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile().

ImageAddress

Pointer to the address of the loaded image.

ImageSize

Pointer to the size of the loaded image.

EntryPoint

Pointer to the entry point of the image.

AuthenticationState

On exit, points to the attestation authentication state of the image or 0 if no attestation
was performed. The format of AuthenticationState is defined in
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() on
page 72

Description
This service is the single member function of EFI_LOAD_FILE_PPI. This service separates
image loading and relocating from the PEI Foundation. For example, if there are compressed images
or images that need to be relocated into memory for performance reasons, this service performs that
transformation. This service is very similar to the EFI_LOAD_FILE_PROTOCOL in the UEFI 2.0
specification. The abstraction allows for an implementation of the LoadFile() service to support
different image types in the future. There may be more than one instance of this PPI in the system.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

70 7/1/2010 Version 1.1 Errata B

For example, the PEI Foundation might support only XIP images natively, but another PEIM might
contain support for relocatable images. There must be an LoadFile() instance that at least
supports the PE/COFF and Terse Executable (TE) image format.

For sectioned files, this function should use FfsFindSectionData in order to find the
executable image section.

This service must support loading of XIP images. If the image within the specified file cannot be
loaded because it must be copied into memory (either because the FV is not memory mapped or
because the image contains relocations), the function will return EFI_NOT_SUPPORTED. If
permanent memory is available, then the PEIM should be loaded into permanent memory unless the
image is not relocatable.

Any behavior PEIM which requires to be executed from code permanent memory should include
wait for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI and
EFI_PEI_LOAD_FILE_PPI to be installed.

Status Codes Returned

EFI_SUCCESS The image was loaded successfully.

EFI_OUT_OF_RESOURCES There was not enough memory.

EFI_LOAD_ERROR There was no supported image in the file

EFI_INVALID_PARAMETER FileHandle was not a valid firmware file handle.

EFI_INVALID_PARAMETER EntryPoint was NULL.

EFI_UNSUPPORTED An image requires relocations or is not memory mapped.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 71

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI

Summary
If a GUID-defined section is encountered when doing section extraction, the PEI Foundation or the
EFI_PEI_FILE_LOADER_PPI instance calls the appropriate instance of the GUIDed Section
Extraction PPI to extract the section stream contained therein.

GUID
Typically, protocol interface structures are identified by associating them with a GUID. Each
instance of a protocol with a given GUID must have the same interface structure. While all instances
of the GUIDed Section Extraction PPI must have the same interface structure, they do not all have
the same GUID. The GUID that is associated with an instance of the GUIDed Section Extraction
Protocol is used to correlate it with the GUIDed section type that it is intended to process.

Protocol Interface Structure
typedef struct {
 EFI_PEI_EXTRACT_GUIDED_SECTION ExtractSection;
} EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI;

Parameters
ExtractSection

Takes the GUIDed section as input and produces the section stream data. See the
ExtractSection() function description.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

72 7/1/2010 Version 1.1 Errata B

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection()

Summary
Processes the input section and returns the data contained therein along with the authentication
status.

Prototype
EFI_STATUS
(EFIAPI *EFI_PEI_EXTRACT_GUIDED_SECTION)(
 IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
 IN CONST VOID *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI instance.

InputSection

Buffer containing the input GUIDed section to be processed.

OutputBuffer

*OutputBuffer is allocated from PEI permanent memory and contains the new
section stream.

OutputSize

A pointer to a caller-allocated UINTN in which the size of *OutputBuffer
allocation is stored. If the function returns anything other than EFI_SUCCESS, the
value of *OutputSize is undefined.

AuthenticationStatus

A pointer to a caller-allocated UINT32 that indicates the authentication status of the
output buffer. If the input section’s GuidedSectionHeader.Attributes field
has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear,
*AuthenticationStatus must return zero. These bits reflect the status of the
extraction operation. If the function returns anything other than EFI_SUCCESS, the
value of *AuthenticationStatus is undefined.

Description
The ExtractSection() function processes the input section and returns a pointer to the section
contents. If the section being extracted does not require processing (if the section’s
GuidedSectionHeader.Attributes has the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED field cleared), then OutputBuffer is
just updated to point to the start of the section’s contents. Otherwise, *Buffer must be allocated
from PEI permanent memory.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 73

If the section being extracted contains authentication information (the section’s
GuidedSectionHeader.Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set), the values returned in
AuthenticationStatus must reflect the results of the authentication operation.

If the section contains other encapsulation sections, their contents do not need to be extracted or
decompressed.

Related Definitions
//**
// Bit values for AuthenticationStatus
//**
#define EFI_AUTH_STATUS_PLATFORM_OVERRIDE 0x01
#define EFI_AUTH_STATUS_IMAGE_SIGNED 0x02
#define EFI_AUTH_STATUS_NOT_TESTED 0x04
#define EFI_AUTH_STATUS_TEST_FAILED 0x08

// all other bits are reserved and must be 0

The bit definitions above lead to the evaluations of AuthenticationStatus: in Table 8.

Table 8. AuthenticationStatus Bit Definitions

Status Codes Returned

Bit Definition

xx00 Image was not signed.

xxx1 Platform security policy override. Assumes same meaning as 0010 (the image was signed, the
signature was tested, and the signature passed authentication test).

0010 Image was signed, the signature was tested, and the signature passed authentication test.

0110 Image was signed and the signature was not tested. This can occur if there is no GUIDed Section
Extraction Protocol available to process a GUID-defined section, but it was still possible to retrieve
the data from the GUID-defined section directly.

1010 Image was signed, the signature was tested, and the signature failed the authentication test.

1110 To generate this code, there must be at least two layers of GUIDed encapsulations. In one layer, the

AuthenticationStatus was returned as 0110; in another layer, it was returned as 1010.

When these two results are OR-ed together, the aggregate result is 1110.

EFI_SUCCESS The InputSection was successfully processed and the section

contents were returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the

GUIDed Section Extraction PPI.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

74 7/1/2010 Version 1.1 Errata B

EFI_PEI_DECOMPRESS_PPI

Summary
Provides decompression services to the PEI Foundatoin.

GUID
#define EFI_PEI_DECOMPRESS_PPI_GUID \
{ 0x1a36e4e7, 0xfab6, 0x476a, \
{ 0x8e, 0x75, 0x69, 0x5a, 0x5, 0x76, 0xfd, 0xd7 } }

Prototype
struct _EFI_PEI_DECOMPRESS_PPI {
 EFI_PEI_DECOMPRESS_DECOMPRESS Decompress;
} EFI_PEI_DECOMPRESS_PPI;

Members
Decompress

Decompress a single compression section in a firmware file. See Decompress()
for more information.

Description
This PPI’s single member function decompresses a compression encapsulated section. It is used by
the PEI Foundation to process sectioned files. Prior to the installation of this PPI, compression
sections will be ignored.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 75

EFI_PEI_DECOMPRESS_PPI.Decompress()

Summary
Decompress a single section.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DECOMPRESS_DECOMPRESS)(
 IN CONST EFI_PEI_DECOMPRESS_PPI *This,
 IN CONST EFI_COMPRESSION_SECTION *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize
);

Parameters
This

Points to this instance of the EFI_PEI_DECOMPRESS_PEI PPI.

InputSection

Points to the compressed section.

OutputBuffer

Holds the returned pointer to the decompressed sections.

OutputSize

Holds the returned size of the decompress section streams.

Description
Decompresses the data in a compressed section and returns it as a series of standard PI Firmware
File Sections. The required memory is allocated from permanent memory.

Status Codes Returned

EFI_SUCCESS The section was decompressed successfully.

OutputBuffer contains the resulting data and

OutputSize contains the resulting size.

EFI_OUT_OF_RESOURCES Unable to allocate sufficient memory to hold the decompressed
data.

EFI_UNSUPPORTED The compression type specified in the compression header is
unsupported.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

76 7/1/2010 Version 1.1 Errata B

3.4 DXE

EFI_FIRMWARE_VOLUME2_PROTOCOL

Summary
The Firmware Volume Protocol provides file-level access to the firmware volume. Each firmware
volume driver must produce an instance of the Firmware Volume Protocol if the firmware volume is
to be visible to the system during the DXE phase. The Firmware Volume Protocol also provides
mechanisms for determining and modifying some attributes of the firmware volume.

GUID
#define EFI_FIRMWARE_VOLUME2_PROTOCOL_GUID \
{ 0x220e73b6, 0x6bdb, 0x4413, 0x84, 0x5, 0xb9, 0x74, 0xb1, 0x8,
0x61, 0x9a }

Protocol Interface Structure
typedef struct {
 EFI_FV_GET_ATTRIBUTES GetVolumeAttributes;
 EFI_FV_SET_ATTRIBUTES SetVolumeAttributes;
 EFI_FV_READ_FILE ReadFile;
 EFI_FV_READ_SECTION ReadSection;
 EFI_FV_WRITE_FILE WriteFile;
 EFI_FV_GET_NEXT_FILE GetNextFile;
 UINT32 KeySize;
 EFI_HANDLE ParentHandle;
 EFI_FV_GET_INFO GetInfo;
 EFI_FV_SET_INFO SetInfo;
} EFI_FIRMWARE_VOLUME2_PROTOCOL;

Parameters
GetVolumeAttributes

Retrieves volume capabilities and current settings. See the
GetVolumeAttributes() function description.

SetVolumeAttributes

Modifies the current settings of the firmware volume. See the
SetVolumeAttributes() function description.

ReadFile

Reads an entire file from the firmware volume. See the ReadFile() function
description.

ReadSection

Reads a single section from a file into a buffer. See the ReadSection() function
description.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 77

WriteFile

Writes an entire file into the firmware volume. See the WriteFile() function
description.

GetNextFile

Provides service to allow searching the firmware volume. See the GetNextFile()
function description.

KeySize

Data field that indicates the size in bytes of the Key input buffer for the
GetNextFile() API.

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

GetInfo

Gets the requested file or volume information. See the GetInfo() function
description.

SetInfo

Sets the requested file information. See the SetInfo() function description.

Description
The Firmware Volume Protocol contains the file-level abstraction to the firmware volume as well as
some firmware volume attribute reporting and configuration services. The Firmware Volume
Protocol is the interface used by all parts of DXE that are not directly involved with managing the
firmware volume itself. This abstraction allows many varied types of firmware volume
implementations. A firmware volume may be a flash device or it may be a file in the UEFI system
partition, for example. This level of firmware volume implementation detail is not visible to the
consumers of the Firmware Volume Protocol.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

78 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes()

Summary
Returns the attributes and current settings of the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_GET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

FvAttributes

Pointer to an EFI_FV_ATTRIBUTES in which the attributes and current settings are
returned. Type EFI_FV_ATTRIBUTES is defined in “Related Definitions” below.

Description
Because of constraints imposed by the underlying firmware storage, an instance of the Firmware
Volume Protocol may not be to able to support all possible variations of this architecture. These
constraints and the current state of the firmware volume are exposed to the caller using the
GetVolumeAttributes() function.

GetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the UEFI 2.0 specification.

Related Definitions
//**
// EFI_FV_ATTRIBUTES
//**
typedef UINT64 EFI_FV_ATTRIBUTES;

//**
// EFI_FV_ATTRIBUTES bit definitions
//**

// EFI_FV_ATTRIBUTES bit semantics
#define EFI_FV2_READ_DISABLE_CAP 0x0000000000000001
#define EFI_FV2_READ_ENABLE_CAP 0x0000000000000002
#define EFI_FV2_READ_STATUS 0x0000000000000004

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 79

#define EFI_FV2_WRITE_DISABLE_CAP 0x0000000000000008
#define EFI_FV2_WRITE_ENABLE_CAP 0x0000000000000010
#define EFI_FV2_WRITE_STATUS 0x0000000000000020

#define EFI_FV2_LOCK_CAP 0x0000000000000040
#define EFI_FV2_LOCK_STATUS 0x0000000000000080
#define EFI_FV2_WRITE_POLICY_RELIABLE 0x0000000000000100

#define EFI_FV2_READ_LOCK_CAP 0x0000000000001000
#define EFI_FV2_READ_LOCK_STATUS 0x0000000000002000
#define EFI_FV2_WRITE_LOCK_CAP 0x0000000000004000
#define EFI_FV2_WRITE_LOCK_STATUS 0x0000000000008000
#define EFI_FV2_ALIGNMENT 0x00000000001F0000

#define EFI_FV2_ALIGNMENT_1 0x0000000000000000
#define EFI_FV2_ALIGNMENT_2 0x0000000000010000
#define EFI_FV2_ALIGNMENT_4 0x0000000000020000
#define EFI_FV2_ALIGNMENT_8 0x0000000000030000
#define EFI_FV2_ALIGNMENT_16 0x0000000000040000
#define EFI_FV2_ALIGNMENT_32 0x0000000000050000
#define EFI_FV2_ALIGNMENT_64 0x0000000000060000
#define EFI_FV2_ALIGNMENT_128 0x0000000000070000
#define EFI_FV2_ALIGNMENT_256 0x0000000000080000
#define EFI_FV2_ALIGNMENT_512 0x0000000000090000
#define EFI_FV2_ALIGNMENT_1K 0x00000000000A0000
#define EFI_FV2_ALIGNMENT_2K 0x00000000000B0000
#define EFI_FV2_ALIGNMENT_4K 0x00000000000C0000
#define EFI_FV2_ALIGNMENT_8K 0x00000000000D0000
#define EFI_FV2_ALIGNMENT_16K 0x00000000000E0000
#define EFI_FV2_ALIGNMENT_32K 0x00000000000F0000
#define EFI_FV2_ALIGNMENT_64K 0x0000000000100000
#define EFI_FV2_ALIGNMENT_128K 0x0000000000110000
#define EFI_FV2_ALIGNMENT_256K 0x0000000000120000
#define EFI_FV2_ALIGNMENT_512K 0x0000000000130000
#define EFI_FV2_ALIGNMENT_1M 0x0000000000140000
#define EFI_FV2_ALIGNMENT_2M 0x0000000000150000
#define EFI_FV2_ALIGNMENT_4M 0x0000000000160000
#define EFI_FV2_ALIGNMENT_8M 0x0000000000170000
#define EFI_FV2_ALIGNMENT_16M 0x0000000000180000
#define EFI_FV2_ALIGNMENT_32M 0x0000000000190000
#define EFI_FV2_ALIGNMENT_64M 0x00000000001A0000
#define EFI_FV2_ALIGNMENT_128M 0x00000000001B0000
#define EFI_FV2_ALIGNMENT_256M 0x00000000001C0000
#define EFI_FV2_ALIGNMENT_512M 0x00000000001D0000
#define EFI_FV2_ALIGNMENT_1G 0x00000000001E0000

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

80 7/1/2010 Version 1.1 Errata B

#define EFI_FV2_ALIGNMENT_2G 0x00000000001F0000

Table 9 describes the fields in the above definition.

Table 9. Descriptions of Fields for EFI_FV_ATTRIBUTES

All other bits are reserved and are cleared to zero.

Status Codes Returned

Field Description

EFI_FV_READ_DISABLED_CAP Set to 1 if it is possible to disable reads from the firmware volume.

EFI_FV_READ_ENABLED_CAP Set to 1 if it is possible to enable reads from the firmware volume.

EFI_FV_READ_STATUS Indicates the current read state of the firmware volume. Set to 1 if
reads from the firmware volume are enabled.

EFI_FV_WRITE_DISABLED_CAP Set to 1 if it is possible to disable writes to the firmware volume.

EFI_FV_WRITE_ENABLED_CAP Set to 1 if it is possible to enable writes to the firmware volume.

EFI_FV_WRITE_STATUS Indicates the current state of the firmware volume. Set to 1 if writes
to the firmware volume are enabled.

EFI_FV_LOCK_CAP Set to 1 if it is possible to lock firmware volume read/write attributes.

EFI_FV_LOCK_STATUS Set to 1 if firmware volume attributes are locked down.

EFI_FV_WRITE_POLICY_RELIABLE Set to 1 if the firmware volume supports “reliable” writes..

EFI_FV_READ_LOCK_CAP Set to 1 if it is possible to lock the read status for the firmware
volume.

EFI_FV_READ_LOCK_STATUS Indicates the current read lock state of the firmware volume. Set to
1 if the read lock is currently enabled.

EFI_FV_WRITE_LOCK_CAP Set to 1 if it is possible to lock the write status for the firmware
volume.

EFI_FV_WRITE_LOCK_STATUS Indicates the current write lock state of the firmware volume. Set to
1 if the write lock is currently enabled.

EFI_FV_ALIGNMENT The first byte of the firmware volume must be at an address which is
an even multiple of the alignment specified.

EFI_SUCCESS The firmware volume attributes were returned.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 81

EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes()

Summary
Modifies the current settings of the firmware volume according to the input parameter.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_SET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

FvAttributes

On input, FvAttributes is a pointer to an EFI_FV_ATTRIBUTES containing
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. On unsuccessful return, FvAttributes is not
modified and the firmware volume settings are not changed. Type
EFI_FV_ATTRIBUTES is defined in GetVolumeAttributes().

Description
The SetVolumeAttributes() function is used to set configurable firmware volume attributes.
Only EFI_FV_READ_STATUS, EFI_FV_WRITE_STATUS, and EFI_FV_LOCK_STATUS may
be modified, and then only in accordance with the declared capabilities. All other bits of
*FvAttributes are ignored on input. On successful return, all bits of *FvAttributes are
valid and it contains the completed EFI_FV_ATTRIBUTES for the volume.

To modify an attribute, the corresponding status bit in the EFI_FV_ATTRIBUTES is set to the
desired value on input. The EFI_FV_LOCK_STATUS bit does not affect the ability to read or write
the firmware volume. Rather, once the EFI_FV_LOCK_STATUS bit is set, it prevents further
modification to all the attribute bits.

SetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
SetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The requested firmware volume attributes were set and the resulting

EFI_FV_ATTRIBUTES is returned in FvAttributes.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

82 7/1/2010 Version 1.1 Errata B

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is set to 1 on input, but

the device does not support enabling reads

(FvAttributes:EFI_FV_READ_ENABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is cleared to 0 on

input, but the device does not support disabling reads

(FvAttributes:EFI_FV_READ_DISABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is set to 1 on input,

but the device does not support enabling writes

(FvAttributes:EFI_FV_WRITE_ENABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is cleared to 0 on

input, but the device does not support disabling writes

(FvAttributes:EFI_FV_WRITE_DISABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_LOCK_STATUS is set on input, but the

device does not support locking

(FvAttributes:EFI_FV_LOCK_CAP is clear on return from

GetVolumeAttributes()). Actual volume attributes are

unchanged.

EFI_ACCESS_DENIED Device is locked and does not allow attribute modification

(FvAttributes:EFI_FV_LOCK_STATUS is set on return from

GetVolumeAttributes()). Actual volume attributes are

unchanged.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 83

EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile()

Summary
Retrieves a file and/or file information from the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_READ_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *NameGuid,
 IN OUT VOID **Buffer,
 IN OUT UINTN *BufferSize,
 OUT EFI_FV_FILETYPE *FoundType,
 OUT EFI_FV_FILE_ATTRIBUTES *FileAttributes,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which is the file name. All firmware file names are
EFI_GUIDs. A single firmware volume must not have two valid files with the same
file name EFI_GUID. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Buffer

Pointer to a pointer to a buffer in which the file contents are returned, not including
the file header. See “Description” below for more details on the use of the Buffer
parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented by
*Buffer. See “Description” below for more details on the use of the BufferSize
parameter.

FoundType

Pointer to a caller-allocated EFI_FV_FILETYPE. See “Firmware File Types” on
page 7 for EFI_FV_FILETYPE related definitions.

FileAttributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. Type
EFI_FV_FILE_ATTRIBUTES is defined in “Related Definitions” below.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

84 7/1/2010 Version 1.1 Errata B

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See “Related Definitions” in
EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() for more
information.

Description
ReadFile() is used to retrieve any file from a firmware volume during the DXE phase. The
actual binary encoding of the file in the firmware volume media may be in any arbitrary format as
long as it does the following:

• It is accessed using the Firmware Volume Protocol.

• The image that is returned follows the image format defined in Code Definitions: PI Firmware
File Format.

If the input value of Buffer==NULL, it indicates the caller is requesting only that the type,
attributes, and size of the file be returned and that there is no output buffer. In this case, the
following occurs:

• *BufferSize is returned with the size that is required to successfully complete the read.

• The output parameters *FoundType and *FileAttributes are returned with valid values.

• The returned value of *AuthenticationStatus is undefined.

If the input value of Buffer!=NULL, the output buffer is specified by a double indirection of the
Buffer parameter. The input value of *Buffer is used to determine if the output buffer is caller
allocated or is dynamically allocated by ReadFile().

If the input value of *Buffer!=NULL, it indicates the output buffer is caller allocated. In this case,
the input value of *BufferSize indicates the size of the caller-allocated output buffer. If the
output buffer is not large enough to contain the entire requested output, it is filled up to the point that
the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and then
*BufferSize is returned with the size required to successfully complete the read. All other output
parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadFile(). In this case, ReadFile() will allocate an appropriately sized buffer from boot
services pool memory, which will be returned in *Buffer. The size of the new buffer is returned in
*BufferSize and all other output parameters are returned with valid values.

ReadFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of ReadFile() at
any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL() in the UEFI 2.0 specification.

 The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Related Definitions
//**
// EFI_FV_FILE_ATTRIBUTES

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 85

//**
typedef UINT32 EFI_FV_FILE_ATTRIBUTES;

#define EFI_FV_FILE_ATTRIB_ALIGNMENT 0x0000001F
#define EFI_FV_FILE_ATTRIB_FIXED 0x00000100
#define EFI_FV_FILE_ATTRIB_MEMORY_MAPPED 0x00000200

Figure 8. EFI_FV_FILE_ATTRIBUTES fields

This value is returned by EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile() and the PEI
Service FfsGetFileInfo(). It is not the same as EFI_FFS_FILE_ATTRIBUTES.

The Reserved field must be set to zero.

The EFI_FV_FILE_ATTRIB_ALIGNMENT field indicates that the beginning of the file data (not
the file header) must be aligned on a particular boundary relative to the beginning of the firmware
volume. This alignment only makes sense for block-oriented firmware volumes. This field is an
enumeration of alignment possibilities. The allowable alignments are powers of two from byte
alignment to 2GB alignment. The supported alignments are described in Table 10. All other values
are reserved.

Table 10. Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT

Required Alignment (bytes) Alignment Value in Attributes Field

1 0

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512 9

1KB 10

2KB 11

4KB 12

8KB 13

16KB 14

R ESERVED ALIGN MENT

FIX
E

D

M
E

M
 M

AP
P

E
D

R ESER VED

31 10 89 5 0

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

86 7/1/2010 Version 1.1 Errata B

The EFI_FV_FILE_ATTRIB_FIXED attribute indicates that the file has a fixed location and
should not be moved (1) or may be moved to any address consistent with the alignment specified in
EFI_FV_FILE_ATTRIB_ALIGNMENT.

The EFI_FV_FILE_ATTRIB_MEMORY_MAPPED attribute indicates that the file is memory
mapped in the firmware volume and thus its contents may be accessed directly. If this is clear, then
Buffer is invalid. This value can be derived from the EFI_FV_ATTRIBUTES value returned by
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes() or the PEI Service
FfsGetVolumeInfo().

Status Codes Returned

32KB 15

64KB 16

128 KB 17

256 KB 18

512 KB 19

1 MB 20

2 MB 21

4 MB 22

8 MB 23

16 MB 24

32 MB 25

64 MB 26

128 MB 27

256 MB 28

512 MB 29

1 GB 30

2 GB 31

EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_TOO_SMALL The buffer is too small to contain the requested output. The buffer is
filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND Name was not found in the firmware volume.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware
volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

Required Alignment (bytes) Alignment Value in Attributes Field

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 87

EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()

Summary
Locates the requested section within a file and returns it in a buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_READ_SECTION) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *NameGuid,
 IN EFI_SECTION_TYPE SectionType,
 IN UINTN SectionInstance,
 IN OUT VOID **Buffer,
 IN OUT UINTN *BufferSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which indicates the file name from which the requested
section will be read. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

SectionType

Indicates the section type to return. SectionType in conjunction with
SectionInstance indicates which section to return. Type
EFI_SECTION_TYPE is defined in EFI_COMMON_SECTION_HEADER.

SectionInstance

Indicates which instance of sections with a type of SectionType to return.
SectionType in conjunction with SectionInstance indicates which section to
return. SectionInstance is zero based.

Buffer

Pointer to a pointer to a buffer in which the section contents are returned, not
including the section header. See “Description” below for more details on the usage of
the Buffer parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented by
*Buffer. See “Description” below for more details on the usage of the
BufferSize parameter.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

88 7/1/2010 Version 1.1 Errata B

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() for more
information.

Description
ReadSection() is used to retrieve a specific section from a file within a firmware volume. The
section returned is determined using a depth-first, left-to-right search algorithm through all sections
found in the specified file. See “Firmware File Sections” on page 12 for more details about sections.

The output buffer is specified by a double indirection of the Buffer parameter. The input value of
*Buffer is used to determine if the output buffer is caller allocated or is dynamically allocated by
ReadSection().

If the input value of *Buffer!=NULL, it indicates that the output buffer is caller allocated. In this
case, the input value of *BufferSize indicates the size of the caller-allocated output buffer. If the
output buffer is not large enough to contain the entire requested output, it is filled up to the point that
the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and then
*BufferSize is returned with the size that is required to successfully complete the read. All other
output parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadSection(). In this case, ReadSection() will allocate an appropriately sized buffer from
boot services pool memory, which will be returned in *Buffer. The size of the new buffer is
returned in *BufferSize and all other output parameters are returned with valid values.

ReadSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ReadSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_
TOO_SMALL

The caller-allocated buffer is too small to contain the requested output. The
buffer is filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND The requested file was not found in the firmware volume.

EFI_NOT_FOUND The requested section was not found in the specified file.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

EFI_PROTOCOL_ERROR The requested section was not found, but the file could not be fully parsed
because a required

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL was not

found. It is possible the requested section exists within the file and could be
successfully extracted once the required

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL is

published.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 89

EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile()

Summary
Writes one or more files to the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_WRITE_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN UINT32 NumberOfFiles,
 IN EFI_FV_WRITE_POLICY WritePolicy,
 IN EFI_FV_WRITE_FILE_DATA *FileData
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NumberOfFiles

Indicates the number of elements in the array pointed to by FileData.

WritePolicy

Indicates the level of reliability for the write in the event of a power failure or other
system failure during the write operation. Type EFI_FV_WRITE_POLICY is
defined in “Related Definitions” below.

FileData

Pointer to an array of EFI_FV_WRITE_FILE_DATA. Each element of
FileData[] represents a file to be written. Type EFI_FV_WRITE_FILE_DATA
is defined in “Related Definitions” below.

Description
WriteFile() is used to write one or more files to a firmware volume. Each file to be written is
described by an EFI_FV_WRITE_FILE_DATA structure.

The caller must ensure that any required alignment for all files listed in the FileData array is
compatible with the firmware volume. Firmware volume capabilities can be determined using the
GetVolumeAttributes() call.

Similarly, if the WritePolicy is set to EFI_FV_RELIABLE_WRITE, the caller must check the
firmware volume capabilities to ensure EFI_FV_RELIABLE_WRITE is supported by the firmware
volume. EFI_FV_UNRELIABLE_WRITE must always be supported.

Writing a file with a size of zero (FileData[n].BufferSize == 0) deletes the file from the
firmware volume if it exists. Deleting a file must be done one at a time. Deleting a file as part of a
multiple file write is not allowed.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

90 7/1/2010 Version 1.1 Errata B

WriteFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of WriteFile()
at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL() in the UEFI 2.0 specification.

Related Definitions
//**
// EFI_FV_WRITE_POLICY
//**
typedef UINT32 EFI_FV_WRITE_POLICY

#define EFI_FV_UNRELIABLE_WRITE 0x00000000
#define EFI_FV_RELIABLE_WRITE 0x00000001

All other values of EFI_FV_WRITE_POLICY are reserved. Table 11 describes the fields in the
above definition.

Table 11. Description of fields for EFI_FV_WRITE_POLICY

//**
// EFI_FV_WRITE_FILE_DATA
//**

typedef struct {
 EFI_GUID *NameGuid,
 EFI_FV_FILETYPE Type,
 EFI_FV_FILE_ATTRIBUTES FileAttributes
 VOID *Buffer,
 UINT32 BufferSize
} EFI_FV_WRITE_FILE_DATA;

Field Description

EFI_FV_UNRELIABLE_WRITE This value in the WritePolicy parameter indicates that there is no

required reliability if a power failure or other system failure occurs during a
write operation. Updates may leave a combination of old and new files.
Data loss, including complete loss of all files involved, is also permissible.
In essence, no guarantees are made regarding what files will be present

following a system failure during a write with a WritePolicy of

EFI_FV_UNRELIABLE_WRITE. The advantage of this mode is that

it can be implemented to use much less space in the storage media.
Space-constrained firmware volumes may be able to support writes where
it would be otherwise impossible.

EFI_FV_RELIABLE_WRITE This value in the WritePolicy parameter indicates that, on the next

initialization of the firmware volume following a power failure or other

system failure during a write, all files listed in the FileData array are

completely written and are valid, or none is written and the state of the
firmware volume is the same as it was before the write operation was
attempted.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 91

NameGuid

Pointer to a GUID, which is the file name to be written. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Type

Indicates the type of file to be written. Type EFI_FV_FILETYPE is defined in
“Related Definitions” of EFI_FFS_FILE_HEADER on page 37.

FileAttributes

Indicates the attributes for the file to be written. Type
EFI_FV_FILE_ATTRIBUTES is defined in ReadFile().

Buffer

Pointer to a buffer containing the file to be written.

BufferSize

Indicates the size of the file image contained in Buffer.

Status Codes Returned

Other than EFI_DEVICE_ERROR, all error codes imply the firmware volume has not been
modified. In the case of EFI_DEVICE_ERROR, the firmware volume may have been corrupted and
appropriate repair steps must be taken.

EFI_SUCCESS The write completed successfully.

EFI_OUT_OF_RESOURCES The firmware volume does not have enough free space to storefile(s).

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_WRITE_PROTECTED The firmware volume is configured to disallow writes.

EFI_NOT_FOUND A delete was requested, but the requested file was not found in the firmware
volume.

EFI_INVALID_PARAMETER A delete was requested with a multiple file write.

EFI_INVALID_PARAMETER An unsupported WritePolicy was requested.

EFI_INVALID_PARAMETER An unknown file type was specifiedspecified or the specified file type is not
supported by the firmware file system.

EFI_INVALID_PARAMETER A file system specific error has occurred.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

92 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile()

Summary
Retrieves information about the next file in the firmware volume store that matches the search
criteria.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_GET_NEXT_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN OUT VOID *Key,
 IN OUT EFI_FV_FILETYPE *FileType,
 OUT EFI_GUID *NameGuid,
 OUT EFI_FV_FILE_ATTRIBUTES *Attributes,
 OUT UINTN *Size
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

Key

Pointer to a caller-allocated buffer that contains implementation-specific data that is
used to track where to begin the search for the next file. The size of the buffer must be
at least This->KeySize bytes long. To re-initialize the search and begin from the
beginning of the firmware volume, the entire buffer must be cleared to zero. Other
than clearing the buffer to initiate a new search, the caller must not modify the data in
the buffer between calls to GetNextFile().

FileType

Pointer to a caller-allocated EFI_FV_FILETYPE. The GetNextFile() API can
filter its search for files based on the value of the *FileType input. A *FileType
input of EFI_FV_FILETYPE_ALL causes GetNextFile() to search for files of
all types. If a file is found, the file’s type is returned in *FileType. *FileType is
not modified if no file is found. See“Related Definitions” of
EFI_FFS_FILE_HEADER on page 37.

NameGuid

Pointer to a caller-allocated EFI_GUID. If a matching file is found, the file’s name is
returned in *NameGuid. If no matching file is found, *NameGuid is not modified.
Type EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

Attributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. If a matching file is
found, the file’s attributes are returned in *Attributes. If no matching file is

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 93

found, *Attributes is not modified. Type EFI_FV_FILE_ATTRIBUTES is
defined in ReadFile().

Size

Pointer to a caller-allocated UINTN. If a matching file is found, the file’s size is
returned in *Size. If no matching file is found, *Size is not modified.

Description
GetNextFile() is the interface that is used to search a firmware volume for a particular file. It is
called successively until the desired file is located or the function returns EFI_NOT_FOUND.

To filter uninteresting files from the output, the type of file to search for may be specified in
*FileType. For example, if *FileType is EFI_FV_FILETYPE_DRIVER, only files of this
type will be returned in the output. If *FileType is EFI_FV_FILETYPE_ALL, no filtering of
file types is done.The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

The Key parameter is used to indicate a starting point of the search. If the buffer *Key is completely
initialized to zero, the search re-initialized and starts at the beginning. Subsequent calls to
GetNextFile() must maintain the value of *Key returned by the immediately previous call. The
actual contents of *Key are implementation specific and no semantic content is implied.

GetNextFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetNextFile() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The output parameters are filled with data obtained from the first matching
file that was found.

EFI_NOT_FOUND No files of type FileType were found.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

94 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()

Summary
Return information about a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FV_GET_INFO) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *InformationType,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_FIRMWARE_VOLUME2_PROTOCOL instance that is the file
handle the requested information is for.

InformationType

The type identifier for the information being requested. Type EFI_GUID is defined in
the UEFI 2.0 specification.

BufferSize

On input, the size of Buffer. On output, the amount of data returned in Buffer. In
both cases, the size is measured in bytes.

Buffer

A pointer to the data buffer to return. The buffer’s type is indicated by
InformationType.

Description
The GetInfo() function returns information of type InformationType for the requested
firmware volume. If the volume does not support the requested information type, then
EFI_UNSUPPORTED is returned. If the buffer is not large enough to hold the requested structure,
EFI_BUFFER_TOO_SMALL is returned and the BufferSize is set to the size of buffer that is
required to make the request. The information types defined by this specification are required
information types that all file systems must support.

Status Codes Returned

EFI_SUCCESS The information was retrieved.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 95

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.

BufferSize has been updated with the size needed to complete the

request.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

96 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo()

Summary
Sets information about a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FV_SET_INFO) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *InformationType,
 IN UINTN BufferSize,
 IN CONST VOID *Buffer
);

Parameters
This

A pointer to the EFI_FIRMWARE_VOLUME2_PROTOCOL instance that is the file
handle the information is for.

InformationType

The type identifier for the information being set. Type EFI_GUID is defined in the
UEFI 2.0 specification.

BufferSize

The size, in bytes, of Buffer.

Buffer

A pointer to the data buffer to write. The buffer’s type is indicated by
InformationType.

Description
The SetInfo() function sets information of type InformationType on the requested
firmware volume.

Status Codes Returned

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The media is read only.

EFI_VOLUME_FULL The volume is full.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 97

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type

indicated by InformationType.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

98 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL

Summary
This optional protocol provides control over block-oriented firmware devices.

GUID
//{8F644FA9-E850-4db1-9CE2-0B44698E8DA4}
#define EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL_GUID \
{0x8f644fa9, 0xe850, 0x4db1, 0x9c, 0xe2, 0xb, 0x44, \
0x69, 0x8e, 0x8d, 0xa4}

Protocol Interface Structure
typedef {
 EFI_FVB_GET_ATTRIBUTES GetAttributes;
 EFI_FVB_SET_ATTRIBUTES SetAttributes;
 EFI_FVB_GET_PHYSICAL_ADDRESS GetPhysicalAddress;
 EFI_FVB_GET_BLOCK_SIZE GetBlockSize;
 EFI_FVB_READ Read;
 EFI_FVB_WRITE Write;
 EFI_FVB_ERASE_BLOCKS EraseBlocks;
 EFI_HANDLE ParentHandle;
} EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL;

Parameters
GetAttributes

Retrieves the current volume attributes. See the GetAttributes() function
description.

SetAttributes

Sets the current volume attributes. See the SetAttributes() function
description.

GetPhysicalAddress

Retrieves the memory-mapped address of the firmware volume. See the
GetPhysicalAddress() function description.

GetBlockSize

Retrieves the size for a specific block. Also returns the number of consecutive
similarly sized blocks. See the GetBlockSize() function description.

Read

Reads n bytes into a buffer from the firmware volume hardware. See the Read()
function description.

Write

Writes n bytes from a buffer into the firmware volume hardware. See the Write()
function description.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 99

EraseBlocks

Erases specified block(s) and sets all values as indicated by the
EFI_FVB_ERASE_POLARITY bit. See the EraseBlocks() function description.
Type EFI_FVB_ERASE_POLARITY is defined in
EFI_FIRMWARE_VOLUME_HEADER.

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The Firmware Volume Block Protocol is the low-level interface to a firmware volume. File-level
access to a firmware volume should not be done using the Firmware Volume Block Protocol.
Normal access to a firmware volume must use the Firmware Volume Protocol. Typically, only the
file system driver that produces the Firmware Volume Protocol will bind to the Firmware Volume
Block Protocol.

The Firmware Volume Block Protocol provides the following:

• Byte-level read/write functionality.

• Block-level erase functionality.

• It further exposes device-hardening features, such as may be required to protect the firmware
from unwanted overwriting and/or erasure.

• It is useful to layer a file system driver on top of the Firmware Volume Block Protocol. This file
system driver produces the Firmware Volume Protocol, which provides file-level access to a
firmware volume. The Firmware Volume Protocol abstracts the file system that is used to format
the firmware volume and the hardware device-hardening features that may be present.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

100 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes()

Summary
Returns the attributes and current settings of the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Attributes

Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and current settings
are returned. Type EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.

Description
The GetAttributes() function retrieves the attributes and current settings of the block.

Status Codes Returned

EFI_SUCCESS The firmware volume attributes were returned.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 101

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()

Summary
Modifies the current settings of the firmware volume according to the input parameter.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_SET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Attributes

On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2 that contains
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. Type EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.

Description
The SetAttributes() function sets configurable firmware volume attributes and returns the
new settings of the firmware volume.

Status Codes Returned

EFI_SUCCESS The firmware volume attributes were returned.

EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities as
declared in the firmware volume header.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

102 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress
()

Summary
Retrieves the physical address of a memory-mapped firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_PHYSICAL_ADDRESS) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 OUT EFI_PHYSICAL_ADDRESS *Address
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Address

Pointer to a caller-allocated EFI_PHYSICAL_ADDRESS that, on successful return
from GetPhysicalAddress(), contains the base address of the firmware
volume. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the UEFI 2.0 specification.

Description
The GetPhysicalAddress() function retrieves the base address of a memory-mapped
firmware volume. This function should be called only for memory-mapped firmware volumes.

Status Codes Returned

EFI_SUCCESS The firmware volume base address is returned.

EFI_UNSUPPORTED The firmware volume is not memory mapped.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 103

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()

Summary
Retrieves the size in bytes of a specific block within a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_BLOCK_SIZE) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 OUT UINTN *BlockSize,
 OUT UINTN *NumberOfBlocks
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

Indicates the block for which to return the size. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

BlockSize

Pointer to a caller-allocated UINTN in which the size of the block is returned.

NumberOfBlocks

Pointer to a caller-allocated UINTN in which the number of consecutive blocks,
starting with Lba, is returned. All blocks in this range have a size of BlockSize.

Description
The GetBlockSize() function retrieves the size of the requested block. It also returns the
number of additional blocks with the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).

Status Codes Returned

EFI_SUCCESS The firmware volume base address is returned.

EFI_INVALID_PARAMETER The requested LBA is out of range.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

104 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()

Summary
Reads the specified number of bytes into a buffer from the specified block.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_READ) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 OUT UINT8 *Buffer,
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

The starting logical block index from which to read. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

Offset

Offset into the block at which to begin reading.

NumBytes

Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At
exit, *NumBytes contains the total number of bytes read.

Buffer

Pointer to a caller-allocated buffer that will be used to hold the data that is read.

Description
The Read() function reads the requested number of bytes from the requested block and stores them
in the provided buffer.

Implementations should be mindful that the firmware volume might be in the ReadDisabled
state. If it is in this state, the Read() function must return the status code EFI_ACCESS_DENIED
without modifying the contents of the buffer.

The Read() function must also prevent spanning block boundaries. If a read is requested that
would span a block boundary, the read must read up to the boundary but not beyond. The output
parameter NumBytes must be set to correctly indicate the number of bytes actually read. The caller
must be aware that a read may be partially completed.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 105

Status Codes Returned

EFI_SUCCESS The firmware volume was read successfully and contents are in Buffer.

EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary. On output, NumBytes

contains the total number of bytes returned in Buffer.

EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

106 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()

Summary
Writes the specified number of bytes from the input buffer to the block.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_WRITE) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 IN UINT8 *Buffer
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

The starting logical block index to write to. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

Offset

Offset into the block at which to begin writing.

NumBytes

Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At
exit, *NumBytes contains the total number of bytes actually written.

Buffer

Pointer to a caller-allocated buffer that contains the source for the write.

Description
The Write() function writes the specified number of bytes from the provided buffer to the
specified block and offset.

If the firmware volume is sticky write, the caller must ensure that all the bits of the specified range to
write are in the EFI_FVB_ERASE_POLARITY state before calling the Write() function, or else
the result will be unpredictable. This unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY state but it cannot flip it
back again. In general, before calling the Write() function, the caller should call the
EraseBlocks() function first to erase the specified block to write. A block erase cycle will
transition bits from the (NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 107

Implementations should be mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the firmware volume.

The Write() function must also prevent spanning block boundaries. If a write is requested that
spans a block boundary, the write must store up to the boundary but not beyond. The output
parameter NumBytes must be set to correctly indicate the number of bytes actually written. The
caller must be aware that a write may be partially completed.

All writes, partial or otherwise, must be fully flushed to the hardware before the Write() service
returns.

Status Codes Returned

EFI_SUCCESS The firmware volume was written successfully.

EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary. On output, NumBytes

contains the total number of bytes actually written.

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.

EFI_DEVICE_ERROR The block device is malfunctioning and could not be written.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

108 7/1/2010 Version 1.1 Errata B

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks()

Summary
Erases and initializes a firmware volume block.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_ERASE_BLOCKS) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 …
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

…

The variable argument list is a list of tuples. Each tuple describes a range of LBAs to
erase and consists of the following:

• An EFI_LBA that indicates the starting LBA

• A UINTN that indicates the number of blocks to erase

The list is terminated with an EFI_LBA_LIST_TERMINATOR. Type
EFI_LBA_LIST_TERMINATOR is defined in “Related Definitions” below.

For example, the following indicates that two ranges of blocks (5–7 and 10–11) are to
be erased:

EraseBlocks (This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);

Description
The EraseBlocks() function erases one or more blocks as denoted by the variable argument list.
The entire parameter list of blocks must be verified before erasing any blocks. If a block is requested
that does not exist within the associated firmware volume (it has a larger index than the last block of
the firmware volume), the EraseBlocks() function must return the status code
EFI_INVALID_PARAMETER without modifying the contents of the firmware volume.

Implementations should be mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the EraseBlocks() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the firmware volume.

All calls to EraseBlocks() must be fully flushed to the hardware before the EraseBlocks()
service returns.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 109

Related Definitions
//***
// EFI_LBA_LIST_TERMINATOR
//***
#define EFI_LBA_LIST_TERMINATOR 0xFFFFFFFFFFFFFFFF

Status Codes Returned

EFI_SUCCESS The erase request was successfully completed.

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written.
The firmware device may have been partially erased.

EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do not exist
in the firmware volume.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

110 7/1/2010 Version 1.1 Errata B

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

Summary
If a GUID-defined section is encountered when doing section extraction, the section extraction
driver calls the appropriate instance of the GUIDed Section Extraction Protocol to extract the section
stream contained therein.

GUID
Typically, protocol interface structures are identified by associating them with a GUID. Each
instance of a protocol with a given GUID must have the same interface structure. While all instances
of the GUIDed Section Extraction Protocol must have the same interface structure, they do not all
have the same GUID. The GUID that is associated with an instance of the GUIDed Section
Extraction Protocol is used to correlate it with the GUIDed section type that it is intended to process.

Protocol Interface Structure
typedef struct {
 EFI_EXTRACT_GUIDED_SECTION ExtractSection;
} EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL;

Parameters
ExtractSection

Takes the GUIDed section as input and produces the section stream data. See the
ExtractSection() function description.

Firmware Storage Code Definitions

Version 1.1 Errata B 7/1/2010 111

EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

Summary
Processes the input section and returns the data contained therein along with the authentication
status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXTRACT_GUIDED_SECTION)(
 IN CONST EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL *This,
 IN CONST VOID *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL instance.

InputSection

Buffer containing the input GUIDed section to be processed.

OutputBuffer

*OutputBuffer is allocated from boot services pool memory and contains the new
section stream. The caller is responsible for freeing this buffer.

OutputSize

A pointer to a caller-allocated UINTN in which the size of *OutputBuffer
allocation is stored. If the function returns anything other than EFI_SUCCESS, the
value of *OutputSize is undefined.

AuthenticationStatus

A pointer to a caller-allocated UINT32 that indicates the authentication status of the
output buffer. If the input section’s GuidedSectionHeader.Attributes field
has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear,
*AuthenticationStatus must return zero. Both local bits (19:16) and
aggregate bits (3:0) in AuthenticationStatus are returned by
ExtractSection(). These bits reflect the status of the extraction operation. The
bit pattern in both regions must be the same, as the local and aggregate authentication
statuses have equivalent meaning at this level. If the function returns anything other
than EFI_SUCCESS, the value of *AuthenticationStatus is undefined.

Description
The ExtractSection() function processes the input section and allocates a buffer from the
pool in which it returns the section contents.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

112 7/1/2010 Version 1.1 Errata B

If the section being extracted contains authentication information (the section’s
GuidedSectionHeader.Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set), the values returned in
AuthenticationStatus must reflect the results of the authentication operation.

Depending on the algorithm and size of the encapsulated data, the time that is required to do a full
authentication may be prohibitively long for some classes of systems. To indicate this, use
EFI_SECURITY_POLICY_PROTOCOL_GUID, which may be published by the security policy
driver (see the Platform Initialization Driver Execution Environment Core Interface Specification
for more details and the GUID definition). If the EFI_SECURITY_POLICY_PROTOCOL_GUID
exists in the handle database, then, if possible, full authentication should be skipped and the section
contents simply returned in the OutputBuffer. In this case, the
EFI_AUTH_STATUS_PLATFORM_OVERRIDE bit AuthenticationStatus must be set on
return. See “Related Definitions” in
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() on page 72 for the
definition of type EFI_AUTH_STATUS_PLATFORM_OVERRIDE.

ExtractSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ExtractSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL
is defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The InputSection was successfully processed and the section

contents were returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the GUIDed

Section Extraction Protocol.

Version 1.1 Errata B 7/1/2010 113

4
HOB Design Discussion

4.1 Explanation of HOB Terms
Because HOBs are the key architectural mechanism that is used to hand off system information in
the early preboot stages and because not all implementations of the PI Architecture will use the Pre-
EFI Initialization (PEI) and Driver Execution Environment (DXE) phases, this specification refrains
from using the PEI and DXE nomenclature used in other PI specifications.

Instead, this specification uses the following terms to refer to the phases that deal with HOBs:

• HOB producer phase

• HOB consumer phase

The HOB producer phase is the preboot phase in which HOBs and the HOB list are created. The
HOB consumer phase is the preboot phase to which the HOB list is passed and then consumed.

If the PI Architecture implementation incorporates the PEI and DXE, the HOB producer phase is the
PEI phase and the HOB consumer phase is the DXE phase. The producer and consumer can change,
however, depending on the implementation.

The following table translates the terminology used in this specification with that used in other PI
specifications.

Table 12. Translation of HOB Specification Terminology

4.2 HOB Overview
The HOB producer phase provides a simple mechanism to allocate memory for data storage during
the phase’s execution. The data store is architecturally defined and described by HOBs. This data
store is also passed to the HOB producer phase when it is invoked from the HOB producer phase.

The basic container of data storage is named a Hand-Off Block, or HOB. HOBs are allocated
sequentially in memory that is available to executable content in the HOB producer phase. There are
a series of services that facilitate HOB manipulation. The sequential list of HOBs in memory will be
referred to as the HOB list.

Term Used in the HOB Specification Term Used in Other PI Specifications

HOB producer phase PEI phase

HOB consumer phase DXE phase

executable content in the HOB producer
phase

Pre-EFI Initialization Module (PEIM)

hand-off into the HOB consumer phase DXE Initial Program Load (IPL) PEIM or
DXE IPL PEIM-to-PEIM Interface (PPI)

platform boot-policy phase Boot Device Selection (BDS) phase

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

114 7/1/2010 Version 1.1 Errata B

For definitions of the various HOB types and the semantics for creating them, see “HOB Code
Definitions” on page 117.

4.3 Example HOB Producer Phase Memory Map and Usage
Figure 9 shows an example of the HOB producer phase memory map and its usage. This map is a
possible means by which to subdivide the region.

Figure 9. Example HOB Producer Phase Memory Map and Usage

4.4 HOB List
The first HOB in the HOB list must be the Phase Handoff Information Table (PHIT) HOB. The last
HOB in the HOB list must be the End of HOB List HOB.

Only HOB producer phase components are allowed to make additions or changes to HOBs. Once the
HOB list is passed into the HOB consumer phase, it is effectively read only. The ramification of a
read-only HOB list is that handoff information, such as boot mode, must be handled in a
distinguished fashion. For example, if the HOB consumer phase were to engender a recovery
condition, it would not update the boot mode but instead would implement the action using a special

HOB Design Discussion

Version 1.1 Errata B 7/1/2010 115

type of reset call. The HOB list contains system state data at the time of HOB consumer–to–HOB
producer handoff and does not represent the current system state during the HOB consumer phase.

4.5 Constructing the HOB List

4.5.1 Constructing the Initial HOB List
The HOB list is initially built by the HOB producer phase. The HOB list is created in memory that is
present, initialized, and tested. Once the initial HOB list has been created, the physical memory
cannot be remapped, interleaved, or otherwise moved by a subsequent software agent.

The HOB producer phase must build the following three HOBs in the initial HOB list before
exposing the list to other modules:

• The PHIT HOB

• A memory allocation HOB describing where the boot-strap processor (BSP) stack for permanent
memory is located

or

A memory allocation HOB describing where the BSP store for permanent memory is located
(Itanium® processor family only)

• A resource descriptor HOB that describes a physical memory range encompassing the HOB
producer phase memory range with its attributes set as present, initialized, and tested

The HOB list creator may build more HOBs into the initial HOB list, such as additional HOBs to
describe other physical memory ranges. There can also be additional modules, which might include
a HOB producer phase–specific HOB to record memory errors discovered during initialization.

When the HOB producer phase completes its list creation, it exposes a pointer to the PHIT HOB to
other modules.

4.5.2 HOB Construction Rules
HOB construction must obey the following rules:

1. All HOBs must start with a HOB generic header. This requirement allows users to locate the
HOBs in which they are interested while skipping the rest. See the
EFI_HOB_GENERIC_HEADER definition.

2. HOBs may contain boot services data that is available during the HOB producer and consumer
phases only until the HOB consumer phase is terminated.

3. HOBs may be relocated in system memory by the HOB consumer phase. HOBs must not
contain pointers to other data in the HOB list, including that in other HOBs. The table must be
able to be copied without requiring internal pointer adjustment.

4. All HOBs must be multiples of 8 bytes in length. This requirement meets the alignment
restrictions of the Itanium® processor family.

5. The PHIT HOB must always begin on an 8-byte boundary. Due to this requirement and
requirement #4 in this list, all HOBs will begin on an 8-byte boundary.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

116 7/1/2010 Version 1.1 Errata B

6. HOBs are added to the end of the HOB list. HOBs can only be added to the HOB list during the
HOB producer phase, not the HOB consumer phase.

7. HOBs cannot be deleted. The generic HOB header of each HOB must describe the length of the
HOB so that the next HOB can be found. A private GUIDed HOB may provide a mechanism to
mark some or its entire contents invalid; however, this mechanism is beyond the scope of this
document.

Note: The HOB list must be valid (i.e., no HOBs “under construction”) when any HOB producer phase
service is invoked. Another HOB producer phase component’s function might walk the HOB list,
and if a HOB header contains invalid data, it might cause unreliable operation.

4.5.3 Adding to the HOB List
To add a HOB to the HOB list, HOB consumer phase software must obtain a pointer to the
PHIT HOB (start of the HOB list) and follow these steps:

1. Determine NewHobSize, where NewHobSize is the size in bytes of the HOB to be created.

2. Check free memory to ensure that there is enough free memory to allocate the new HOB. This
test is performed by checking that NewHobSize <= PHIT->EfiFreeMemoryTop -
PHIT->EfiFreeMemoryBottom).

3. Construct the HOB at PHIT->EfiFreeMemoryBottom.

4. Set PHIT->EfiFreeMemoryBottom = PHIT->EfiFreeMemoryBottom +
NewHobSize.

Version 1.1 Errata B 7/1/2010 117

5
HOB Code Definitions

5.1 HOB Introduction
This section contains the basic definitions of various HOBs. All HOBs consist of a generic header,
EFI_HOB_GENERIC_HEADER, that specifies the type and length of the HOB. Each HOB has
additional data beyond the generic header, according to the HOB type. The following data types and
structures are defined in this section:

• EFI_HOB_GENERIC_HEADER

• EFI_HOB_HANDOFF_INFO_TABLE

• EFI_HOB_MEMORY_ALLOCATION

• EFI_HOB_MEMORY_ALLOCATION_STACK

• EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

• EFI_HOB_MEMORY_ALLOCATION_MODULE

• EFI_HOB_RESOURCE_DESCRIPTOR

• EFI_HOB_GUID_TYPE

• EFI_HOB_FIRMWARE_VOLUME

• EFI_HOB_FIRMWARE_VOLUME2

• EFI_HOB_CPU

• EFI_HOB_MEMORY_POOL

• EFI_HOB_TYPE_UNUSED

• EFI_HOB_TYPE_END_OF_HOB_LIST

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in “Related
Definitions” of the parent data structure definition:

• EFI_HOB_MEMORY_ALLOCATION_HEADER

• EFI_RESOURCE_TYPE

• EFI_RESOURCE_ATTRIBUTE_TYPE

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

118 7/1/2010 Version 1.1 Errata B

5.2 HOB Generic Header

EFI_HOB_GENERIC_HEADER

Summary
Describes the format and size of the data inside the HOB. All HOBs must contain this generic HOB
header.

Prototype
typedef struct _EFI_HOB_GENERIC_HEADER{
 UINT16 HobType;
 UINT16 HobLength;
 UINT32 Reserved;
} EFI_HOB_GENERIC_HEADER;

Parameters
HobType

Identifies the HOB data structure type. See “Related Definitions” below for the HOB
types that are defined in this specification.

HobLength

The length in bytes of the HOB.

Reserved

For this version of the specification, this field must always be set to zero.

Description
All HOBs have a common header that is used for the following:

• Traversing to the next HOB

• Describing the format and size of the data inside the HOB

Related Definitions
The following values for HobType are defined by this specification.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 119

//**
// HobType values
//**

#define EFI_HOB_TYPE_HANDOFF 0x0001
#define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002
#define EFI_HOB_TYPE_RESOURCE_DESCRIPTOR 0x0003
#define EFI_HOB_TYPE_GUID_EXTENSION 0x0004
#define EFI_HOB_TYPE_FV 0x0005
#define EFI_HOB_TYPE_CPU 0x0006
#define EFI_HOB_TYPE_MEMORY_POOL 0x0007
#define EFI_HOB_TYPE_FV2 0x0009
#define EFI_HOB_TYPE_LOAD_PEIM_UNUSED 0x000A
#define EFI_HOB_TYPE_UNUSED 0xFFFE
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Other values for HobType are reserved for future use by this specification.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

120 7/1/2010 Version 1.1 Errata B

5.3 PHIT HOB

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

Summary
Contains general state information used by the HOB producer phase. This HOB must be the first
one in the HOB list.

Prototype
typedef struct _EFI_HOB_HANDOFF_INFO_TABLE {
 EFI_HOB_GENERIC_HEADER Header;
 UINT32 Version;
 EFI_BOOT_MODE BootMode;
 EFI_PHYSICAL_ADDRESS EfiMemoryTop;
 EFI_PHYSICAL_ADDRESS EfiMemoryBottom;
 EFI_PHYSICAL_ADDRESS EfiFreeMemoryTop;
 EFI_PHYSICAL_ADDRESS EfiFreeMemoryBottom;
 EFI_PHYSICAL_ADDRESS EfiEndOfHobList;
} EFI_HOB_HANDOFF_INFO_TABLE;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_HANDOFF.

Version

The version number pertaining to the PHIT HOB definition. See “Related
Definitions” below for the version numbers defined by this specification. This value is
4 bytes in length to provide an 8-byte aligned entry when it is combined with the
4-byte BootMode.

BootMode

The system boot mode as determined during the HOB producer phase. Type
EFI_BOOT_MODE is a UINT32; if the PI Architecture-compliant implementation
incorporates the PEI phase, the possible bit values are defined in the Platform
Initialization Pre-EFI Initialization Core Interface Specification (PEI CIS).

EfiMemoryTop

The highest address location of memory that is allocated for use by the HOB producer
phase. This address must be 4-KB aligned to meet page restrictions of UEFI. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

EfiMemoryBottom

The lowest address location of memory that is allocated for use by the HOB producer
phase.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 121

EfiFreeMemoryTop

The highest address location of free memory that is currently available for use by the
HOB producer phase. This address must be 4-KB aligned to meet page restrictions of
UEFI.

EfiFreeMemoryBottom

The lowest address location of free memory that is available for use by the HOB
producer phase.

EfiEndOfHobList

The end of the HOB list.

Description
The Phase Handoff Information Table (PHIT) HOB must be the first one in the HOB list. A pointer
to this HOB is available to a HOB producer phase component through some service. This
specification commonly refers to this HOB as the PHIT HOB, or sometimes the handoff HOB.

The HOB consumer phase reads the PHIT HOB during its initialization.

Related Definitions
//***
// Version values
//***

#define EFI_HOB_HANDOFF_TABLE_VERSION 0x0009

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

122 7/1/2010 Version 1.1 Errata B

5.4 Memory Allocation HOB

5.4.1 Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION

Summary
Describes all memory ranges used during the HOB producer phase that exist outside the HOB list.
This HOB type describes how memory is used, not the physical attributes of memory.

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
 //
 // Additional data pertaining to the “Name” Guid memory
 // may go here.
 //
} EFI_HOB_MEMORY_ALLOCATION;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in “Related Definitions”
below.

Description
The memory allocation HOB is used to describe memory usage outside the HOB list. The HOB
consumer phase does not make assumptions about the contents of the memory that is allocated by
the memory allocation HOB, and it will not move the data unless it has explicit knowledge of the
memory allocation HOB’s Name (EFI_GUID). Memory may be allocated in either the HOB
producer phase memory area or other areas of present and initialized system memory.

The HOB consumer phase reads all memory allocation HOBs and allocates memory into the system
memory map based on the following fields of EFI_HOB_MEMORY_ALLOCATION_HEADER of
each memory allocation HOB:

• MemoryBaseAddress

• MemoryLength

• MemoryType

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 123

The HOB consumer phase does not parse the GUID-specific data identified by the Name field of
each memory allocation HOB, except for a specific set of memory allocation HOBs that defined by
this specification. A HOB consumer phase driver that corresponds to the specific Name GUIDed
memory allocation HOB can parse the HOB list to find the specifically named memory allocation
HOB and then manipulate the memory space as defined by the usage model for that GUID.

Note: Special design care should be taken to ensure that two HOB consumer phase components do not
modify memory space that is described by a memory allocation HOB, because unpredictable
behavior might result.

This specification defines a set of memory allocation HOBs that are architecturally used to allocate
memory used by the HOB producer and consumer phases. Additionally, the following memory
allocation HOBs are defined specifically for use by the final stage of the HOB producer phase to
describe the processor state prior to handoff into the HOB consumer phase:

• BSP stack memory allocation HOB

• BSP store memory allocation HOB

• Memory allocation module HOB

Related Definitions
//**
// EFI_HOB_MEMORY_ALLOCATION_HEADER
//**

typedef struct _EFI_HOB_MEMORY_ALLOCATION_HEADER {
 EFI_GUID Name;
 EFI_PHYSICAL_ADDRESS MemoryBaseAddress;
 UINT64 MemoryLength;
 EFI_MEMORY_TYPE MemoryType; // UINT32
 UINT8 Reserved[4]; // Padding for Itanium®
 // processor family
} EFI_HOB_MEMORY_ALLOCATION_HEADER;

Name

A GUID that defines the memory allocation region’s type and purpose, as well as
other fields within the memory allocation HOB. This GUID is used to define the
additional data within the HOB that may be present for the memory allocation HOB.
Type EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

MemoryBaseAddress

The base address of memory allocated by this HOB. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

MemoryLength

The length in bytes of memory allocated by this HOB.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

124 7/1/2010 Version 1.1 Errata B

MemoryType

Defines the type of memory allocated by this HOB. The memory type definition
follows the EFI_MEMORY_TYPE definition. Type EFI_MEMORY_TYPE is defined
in AllocatePages() in the UEFI 2.0 specification.

Reserved

For this version of the specification, this field will always be set to zero.

Note: MemoryBaseAddress and MemoryLength must each have 4-KB granularity to meet the
page size requirements of UEFI.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 125

5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_STACK

Summary
Describes the memory stack that is produced by the HOB producer phase and upon which all post-
memory-installed executable content in the HOB producer phase is executing.

GUID
#define EFI_HOB_MEMORY_ALLOC_STACK_GUID \
{0x4ed4bf27, 0x4092, 0x42e9, 0x80, 0x7d, 0x52, 0x7b, 0x1d, 0x0,
0xc9, 0xbd}

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_STACK {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
} EFI_HOB_MEMORY_ALLOCATION_STACK;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in
EFI_HOB_MEMORY_ALLOCATION.

Description
This HOB describes the memory stack that is produced by the HOB producer phase and upon which
all post-memory-installed executable content in the HOB producer phase is executing. It is
necessary for the hand-off into the HOB consumer phase to know this information so that it can
appropriately map this stack into its own execution environment and describe it in any subsequent
memory maps.

The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s stack to meet size and location requirements that are defined by
the HOB consumer phase’s implementation. Therefore, other HOB consumer phase components
cannot rely on the BSP stack memory allocation HOB to describe where the BSP stack is located
during execution of the HOB consumer phase.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

126 7/1/2010 Version 1.1 Errata B

Note: BSP stack memory allocation HOB must be valid at the time of hand off to the HOB consumer
phase. If BSP stack is reallocated during HOB producer phase, the component that reallocates the
stack must also update BSP stack memory allocation HOB.

The BSP stack memory allocation HOB without any additional qualification describes either of the
following:

• The stack that is currently consumed by the BSP.

• The processor that is currently executing the HOB producer phase and its executable content.

• The model for the PI architecture and the HOB producer phase is that of a single-threaded
execution environment, so it is this single, distinguished thread of control whose environment is

described by this HOB. The Itanium® processor family has the additional requirement of having
to describe the value of the BSPSTORE (AR18) (“Backing Store Pointer Store”) register,
which holds the successive location in memory where the Itanium processor family Register
Stack Engine (RSE) will spill its values.

• In addition, Itanium®-based systems feature a system architecture where all processors come out
of reset and execute the reset path concurrently. As such, the stack resources that are consumed
by these alternate agents need to be described even though they are not responsible for executing
the main thread of control through the HOB producer and consumer phases.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 127

5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

Note: This HOB is valid for the Itanium® processor family only.

Summary
Defines the location of the boot-strap processor (BSP) BSPStore (“Backing Store Pointer Store”)
register overflow store.

GUID
#define EFI_HOB_MEMORY_ALLOC_BSP_STORE_GUID \
 {0x564b33cd, 0xc92a, 0x4593, 0x90, 0xbf, 0x24, 0x73, 0xe4,
 0x3c, 0x63, 0x22}

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_BSP_STORE {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
} EFI_HOB_MEMORY_ALLOCATION_BSP_STORE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

Description
The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s register store to meet size and location requirements that are
defined by the HOB consumer phase’s implementation. Therefore, other HOB consumer phase
components cannot rely on the BSP store memory allocation HOB to describe where the BSP store
is located during execution of the HOB consumer phase.

Note: BSP BSPSTORE memory allocation HOB must be valid at the time of hand off to the HOB
consumer phase. If BSP BSPSTORE is reallocated during HOB producer phase, the component
that reallocates the stack must also update BSP BSPSTORE memory allocation HOB.

This HOB is valid for the Itanium processor family only.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

128 7/1/2010 Version 1.1 Errata B

5.4.4 Memory Allocation Module HOB

EFI_HOB_MEMORY_ALLOCATION_MODULE

Summary
Defines the location and entry point of the HOB consumer phase.

GUID
#define EFI_HOB_MEMORY_ALLOC_MODULE_GUID \
{0xf8e21975, 0x899, 0x4f58, 0xa4, 0xbe, 0x55, 0x25, 0xa9, 0xc6,
0xd7, 0x7a}

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER MemoryAllocationHeader;
 EFI_GUID ModuleName;
 EFI_PHYSICAL_ADDRESS EntryPoint;
} EFI_HOB_MEMORY_ALLOCATION_MODULE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

MemoryAllocationHeader

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

ModuleName

The GUID specifying the values of the firmware file system name that contains the
HOB consumer phase component. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

EntryPoint

The address of the memory-mapped firmware volume that contains the HOB
consumer phase firmware file. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI 2.0 specification.

Description
The HOB consumer phase reads the memory allocation module HOB during its initialization. This
HOB describes the memory location of the HOB consumer phase. The HOB consumer phase should
use the information to create the image handle for the HOB consumer phase.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 129

EFI_HOB_LOAD_PEIM

Summary
Describes request of the module to be loaded to the permanent memory once it is available. Unlike
most of the other HOBs, this HOB is produced and consumed during the HOB producer phase.

Prototype
typedef struct _EFI_HOB_LOAD_PEIM {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PEI_FILE_HANDLE FileHandle;
 EFI_PEIM_ENTRY_POINT2 EntryPoint;
 EFI_PEIM_ENTRY_POINT2 InMemEntryPoint;
} EFI_HOB_LOAD_PEIM;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_LOAD_PEIM.

FileHandle

File handle of the module to be loaded.

EntryPoint

Normal module entry point

InMemEntryPoint

Function to be called once PEIM is loaded to the permanent memory.

Description
The Load PEIM HOB is created by the PEIM to request loading to the permanent memory once it is
available.

The Load PEIM HOB may only be created during the execution of the PEIM entry point.

Any Load PEIM HOBs created before permanent memory and LoadFile PPI are available will be
processed when permanent memory and LoadFile PPI become available.

Any Load PEIM HOBs created after permanent memory and LoadFile PPI are available will be
processed when control returns from the entry point of the PEIM, which created the HOB back to the
PEI Dispatcher.

The PEI Foundation processes Load PEIM HOB as follows:

• Loads FFS file corresponding to FileHandle to the permanent memory using LoadFile PPI,
unless file is already in memory.

• Calculates address of the function InMemoryEntryPoint in permanent memory and makes
a call to that address.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

130 7/1/2010 Version 1.1 Errata B

5.5 Resource Descriptor HOB

EFI_HOB_RESOURCE_DESCRIPTOR

Summary
Describes the resource properties of all fixed, nonrelocatable resource ranges found on the processor
host bus during the HOB producer phase.

Prototype
typedef struct _EFI_HOB_RESOURCE_DESCRIPTOR {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_GUID Owner;
 EFI_RESOURCE_TYPE ResourceType;
 EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 UINT64 ResourceLength;
} EFI_HOB_RESOURCE_DESCRIPTOR;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_RESOURCE_DESCRIPTOR.

Owner

A GUID representing the owner of the resource. This GUID is used by HOB
consumer phase components to correlate device ownership of a resource.

ResourceType

Resource type enumeration as defined by EFI_RESOURCE_TYPE. Type
EFI_RESOURCE_TYPE is defined in “Related Definitions” below.

ResourceAttribute

Resource attributes as defined by EFI_RESOURCE_ATTRIBUTE_TYPE. Type
EFI_RESOURCE_ATTRIBUTE_TYPE is defined in “Related Definitions” below.

PhysicalStart

Physical start address of the resource region. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI 2.0 specification.

ResourceLength

Number of bytes of the resource region.

Description
The resource descriptor HOB describes the resource properties of all fixed, nonrelocatable resource
ranges found on the processor host bus during the HOB producer phase. This HOB type does not
describe how memory is used but instead describes the attributes of the physical memory present.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 131

The HOB consumer phase reads all resource descriptor HOBs when it established the initial Global
Coherency Domain (GCD) map. The minimum requirement for the HOB producer phase is that
executable content in the HOB producer phase report one of the following:

• The resources that are necessary to start the HOB consumer phase

• The fixed resources that are not captured by HOB consumer phase driver components that were
started prior to the dynamic system configuration performed by the platform boot-policy phase

For example, executable content in the HOB producer phase should report any physical memory
found during the HOB producer phase. Another example is reporting the Boot Firmware Volume
(BFV) that contains firmware volume(s). Executable content in the HOB producer phase does not
need to report fixed system resources such as I/O port 70h/71h (real-time clock) because these fixed
resources can be allocated from the GCD by a platform-specific chipset driver loading in the HOB
consumer phase prior to the platform boot-policy phase, for example.

Current thinking is that the GCD does not track the HOB’s Owner GUID, so a HOB consumer
phase component that assumes ownership of a device’s resource must deallocate the resource
initialized by the HOB producer phase from the GCD before attempting to assign the devices
resource to itself in the HOB consumer phase.

Related Definitions
There can only be a single ResourceType field, characterized as follows.

//***
// EFI_RESOURCE_TYPE
//***

typedef UINT32 EFI_RESOURCE_TYPE;

#define EFI_RESOURCE_SYSTEM_MEMORY 0x00000000
#define EFI_RESOURCE_MEMORY_MAPPED_IO 0x00000001
#define EFI_RESOURCE_IO 0x00000002
#define EFI_RESOURCE_FIRMWARE_DEVICE 0x00000003
#define EFI_RESOURCE_MEMORY_MAPPED_IO_PORT 0x00000004
#define EFI_RESOURCE_MEMORY_RESERVED 0x00000005
#define EFI_RESOURCE_IO_RESERVED 0x00000006
#define EFI_RESOURCE_MAX_MEMORY_TYPE 0x00000007

The following table describes the fields listed in the above definition.

EFI_RESOURCE_SYSTEM_MEMORY Memory that persists out of the HOB producer
phase.

EFI_RESOURCE_MEMORY_MAPPED_IO Memory-mapped I/O that is programmed in the
HOB producer phase.

EFI_RESOURCE_IO Processor I/O space.

EFI_RESOURCE_FIRMWARE_DEVICE Memory-mapped firmware devices.

EFI_RESOURCE_MEMORY_MAPPED_IO_PORT Memory that is decoded to produce I/O cycles.

EFI_RESOURCE_MEMORY_RESERVED Reserved memory address space.

EFI_RESOURCE_IO_RESERVED Reserved I/O address space.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

132 7/1/2010 Version 1.1 Errata B

EFI_RESOURCE_MAX_MEMORY_TYPE Any reported HOB value of this type or greater
should be deemed illegal. This value could
increase with successive revisions of this
specification, so the “illegality” will also be based
upon the revision field of the PHIT HOB.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 133

The ResourceAttribute field is characterized as follows:
//***
// EFI_RESOURCE_ATTRIBUTE_TYPE
//***

typedef UINT32 EFI_RESOURCE_ATTRIBUTE_TYPE;

// These types can be ORed together as needed.
//
// The first three enumerations describe settings
//
#define EFI_RESOURCE_ATTRIBUTE_PRESENT 0x00000001
#define EFI_RESOURCE_ATTRIBUTE_INITIALIZED 0x00000002
#define EFI_RESOURCE_ATTRIBUTE_TESTED 0x00000004

#define EFI_RESOURCE_ATTRIBUTE_SINGLE_BIT_ECC 0x00000008
#define EFI_RESOURCE_ATTRIBUTE_MULTIPLE_BIT_ECC 0x00000010
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_1 0x00000020
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_2 0x00000040
#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED 0x00000080
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED 0x00000100
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
 0x00000200
#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTABLE
 0x00100000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTABLE
 0x00200000
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTABLE
 0x00400000

// The rest of the settings describe capabilities
//

#define EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE 0x00000400
#define EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE 0x00000800
#define EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE
 0x00001000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
 0x00002000
#define EFI_RESOURCE_ATTRIBUTE_16_BIT_IO 0x00004000
#define EFI_RESOURCE_ATTRIBUTE_32_BIT_IO 0x00008000
#define EFI_RESOURCE_ATTRIBUTE_64_BIT_IO 0x00010000
#define EFI_RESOURCE_ATTRIBUTE_UNCACHED_EXPORTED 0x00020000

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

134 7/1/2010 Version 1.1 Errata B

The following table describes the fields listed in the above definition.

EFI_RESOURCE_ATTRIBUTE_
PRESENT

Physical memory attribute: The memory region
exists.

EFI_RESOURCE_ATTRIBUTE_
INITIALIZED

Physical memory attribute: The memory region
has been initialized.

EFI_RESOURCE_ATTRIBUTE_
TESTED

Physical memory attribute: The memory region
has been tested.

EFI_RESOURCE_ATTRIBUTE_SINGLE_
BIT_ECC

Physical memory attribute: The memory region
supports single-bit ECC.

EFI_RESOURCE_ATTRIBUTE_
MULTIPLE_BIT_ECC

Physical memory attribute: The memory region
supports multibit ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_1

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_2

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_READ_
PROTECTED

Physical memory protection attribute: The
memory region is read protected.

EFI_RESOURCE_ATTRIBUTE_WRITE_
PROTECTED

Physical memory protection attribute: The
memory region is write protected.

EFI_RESOURCE_ATTRIBUTE_
EXECUTION_PROTECTED

Physical memory protection attribute: The
memory region is execution protected.

EFI_RESOURCE_ATTRIBUTE_
UNCACHEABLE

Memory cacheability attribute: The memory does
not support caching.

EFI_RESOURCE_ATTRIBUTE_WRITE_
THROUGH_CACHEABLE

Memory cacheability attribute: The memory
supports being programmed with a write-through
cacheable attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
COMBINEABLE

Memory cacheability attribute: The memory
supports a write-combining attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
BACK_CACHEABLE

Memory cacheability attribute: The memory region
supports being configured as cacheable with a
write-back policy. Reads and writes that hit in the
cache do not propagate to main memory. Dirty
data is written back to main memory when a new
cache line is allocated.

EFI_RESOURCE_ATTRIBUTE_16_
BIT_IO

Memory physical attribute: The memory supports
16-bit I/O.

EFI_RESOURCE_ATTRIBUTE_32_
BIT_IO

Memory physical attribute: The memory supports
32-bit I/O.

EFI_RESOURCE_ATTRIBUTE_64_
BIT_IO

Memory physical attribute: The memory supports
64-bit I/O.

EFI_RESOURCE_ATTRIBUTE_
UNCACHED_EXPORTED

Memory cacheability attribute: The memory region
is uncacheable and exported and supports the
fetch and add semaphore mechanism.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 135

 Table 13 specifies the resource attributes applicable to each resource type.

Table 13. HOB Producer Phase Resource Types

EFI_RESOURCE_ATTRIBUTE_TYPE HOB Producer
Phase System
Memory

HOB Producer
Phase Memory-
Mapped I/O

HOB Producer
Phase I/O

Present X

Initialized X

Tested X

SingleBitEcc X

MultipleBitEcc X

EccReserved1 X

EccReserved2 X

ReadProtected X X

WriteProtected X X

ExecutionProtected X

Uncacheable X X

WriteThroughCacheable X X

WriteCombineable X X

WriteBackCacheable X X

16bitIO X

32bitIO X

64bitIO X

UncachedExported X X

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

136 7/1/2010 Version 1.1 Errata B

5.6 GUID Extension HOB

EFI_HOB_GUID_TYPE

Summary
Allows writers of executable content in the HOB producer phase to maintain and manage HOBs
whose types are not included in this specification. Specifically, writers of executable content in the
HOB producer phase can generate a GUID and name their own HOB entries using this module-
specific value.

Prototype
typedef struct _EFI_HOB_GUID_TYPE {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_GUID Name;

 //
 // Guid specific data goes here
 //
} EFI_HOB_GUID_TYPE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_GUID_EXTENSION.

Name

A GUID that defines the contents of this HOB. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The GUID extension HOB allows writers of executable content in the HOB producer phase to create
their own HOB definitions using a GUID. This HOB type should be used by all executable content
in the HOB producer phase to define implementation-specific data areas that are not architectural.
This HOB type may also pass implementation-specific data from executable content in the HOB
producer phase to drivers in the HOB consumer phase.

A HOB consumer phase component such as a HOB consumer phase driver will read the GUID
extension HOB during the HOB consumer phase. The HOB consumer phase component must
inherently know the GUID for the GUID extension HOB for which it is scanning the HOB list. This
knowledge establishes a contract on the HOB’s definition and usage between the executable content
in the HOB producer phase and the HOB consumer phase driver.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 137

5.7 Firmware Volume HOB

EFI_HOB_FIRMWARE_VOLUME

Summary
Details the location of firmware volumes that contain firmware files.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
} EFI_HOB_FIRMWARE_VOLUME;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

Length

The length in bytes of the firmware volume.

Description
The firmware volume HOB details the location of firmware volumes that contain firmware files. It
includes a base address and length. In particular, the HOB consumer phase will use these HOBs to
discover drivers to execute and the hand-off into the HOB consumer phase will use this HOB to
discover the location of the HOB consumer phase firmware file.

The firmware volume HOB is produced in the following ways:

• By the executable content in the HOB producer phase in the Boot Firmware Volume (BFV) that
understands the size and layout of the firmware volume(s) that are present in the platform.

• By a module that has loaded a firmware volume from some media into memory. The firmware
volume HOB details this memory location.

Firmware volumes described by the firmware volume HOB must have a firmware volume header as
described in this specification.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the PI Firmware Image Format. The HOB
producer phase is required to describe any firmware volumes that may contain the HOB consumer
phase or platform drivers that are required to discover other firmware volumes.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

138 7/1/2010 Version 1.1 Errata B

EFI_HOB_FIRMWARE_VOLUME2

Summary
Details the location of a firmware volume which was extracted from a file within another firmware
volume.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;
EFI_GUID FvName;
EFI_GUID FileName;
} EFI_HOB_FIRMWARE_VOLUME2;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV2.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the Unified
Extensible Firmware Interface Specification, version 2.0.

Length

The length in bytes of the firmware volume.

FvName

The name of the firmware volume.

FileName

The name of the firmware file which contained this firmware volume.

Description
The firmware volume HOB details the location of a firmware volume that was extracted prior to the
HOB consumer phase from a file within a firmware volume. By recording the volume and file name,
the HOB consumer phase can avoid processing the same file again.

This HOB is created by a module that has loaded a firmware volume from another file into memory.
This HOB details the base address, the length, the file name and volume name.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the PI Firmware Image format.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 139

5.8 CPU HOB

EFI_HOB_CPU

Summary
Describes processor information, such as address space and I/O space capabilities.

Prototype
typedef struct _EFI_HOB_CPU {
 EFI_HOB_GENERIC_HEADER Header;
 UINT8 SizeOfMemorySpace;
 UINT8 SizeOfIoSpace;
 UINT8 Reserved[6];
} EFI_HOB_CPU;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_CPU.

SizeOfMemorySpace

Identifies the maximum physical memory addressability of the processor.

SizeOfIoSpace

Identifies the maximum physical I/O addressability of the processor.

Reserved

For this version of the specification, this field will always be set to zero.

Description
The CPU HOB is produced by the processor executable content in the HOB producer phase. It
describes processor information, such as address space and I/O space capabilities. The HOB
consumer phase consumes this information to describe the extent of the GCD capabilities.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

140 7/1/2010 Version 1.1 Errata B

5.9 Memory Pool HOB

EFI_HOB_MEMORY_POOL

Summary
Describes pool memory allocations.

Prototype
typedef struct _EFI_HOB_MEMORY_POOL {
 EFI_HOB_GENERIC_HEADER Header;
} EFI_HOB_MEMORY_POOL;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_POOL.

Description
The memory pool HOB is produced by the HOB producer phase and describes pool memory
allocations. The HOB consumer phase should be able to ignore these HOBs. The purpose of this
HOB is to allow for the HOB producer phase to have a simple memory allocation mechanism within
the HOB list. The size of the memory allocation is stipulated by the HobLength field in
EFI_HOB_GENERIC_HEADER.

HOB Code Definitions

Version 1.1 Errata B 7/1/2010 141

5.10 Unused HOB

EFI_HOB_TYPE_UNUSED

Summary
Indicates that the contents of the HOB can be ignored.

Prototype
#define EFI_HOB_TYPE_UNUSED 0xFFFE

Description
This HOB type means that the contents of the HOB can be ignored. This type is necessary to
support the simple, allocate-only architecture of HOBs that have no delete service. The consumer of
the HOB list should ignore HOB entries with this type field.

An agent that wishes to make a HOB entry ignorable should set its type to the prototype defined
above.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

142 7/1/2010 Version 1.1 Errata B

5.11 End of HOB List HOB

EFI_HOB_TYPE_END_OF_HOB_LIST

Summary
Indicates the end of the HOB list. This HOB must be the last one in the HOB list.

Prototype
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Description
This HOB type indicates the end of the HOB list. This HOB type must be the last HOB type in the
HOB list and terminates the HOB list. A HOB list should be considered ill formed if it does not have
a final HOB of type EFI_HOB_TYPE_END_OF_HOB_LIST.

	Revision History
	Contents
	1 Platform Intialization Shared Architectural Elements
	1.1 Overview
	1.2 Target Audience
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Pseudo-Code Conventions
	1.3.3 Typographic Conventions

	2 Firmware Storage Design Discussion
	2.1 Firmware Storage Introduction
	2.1.1 Firmware Devices
	2.1.2 Firmware Volumes
	2.1.3 Firmware File System
	2.1.4 Firmware Files
	2.1.5 Firmware File Sections

	2.2 PI Architecture Firmware File System Format
	2.2.1 Firmware Volume Format
	2.2.2 Firmware File System Format
	2.2.3 Firmware File Format
	2.2.4 Firmware File Section Format
	2.2.5 File System Initialization
	2.2.6 Traversal and Access to Files
	2.2.7 File Integrity and State
	2.2.8 File State Transitions

	3 Firmware Storage Code Definitions
	3.1 Firmware Storage Code Definitions Introduction
	3.2 Firmware Storage Formats
	3.2.1 Firmware Volume
	EFI_FIRMWARE_VOLUME_HEADER

	3.2.2 Firmware File System
	EFI_FIRMWARE_FILE_SYSTEM2_GUID
	EFI_FFS_VOLUME_TOP_FILE_GUID

	3.2.3 Firmware File
	EFI_FFS_FILE_HEADER

	3.2.4 Firmware File Section
	EFI_COMMON_SECTION_HEADER

	3.2.5 Firmware File Section Types
	EFI_SECTION_COMPATIBILITY16
	EFI_SECTION_COMPRESSION
	EFI_SECTION_DISPOSABLE
	EFI_SECTION_DXE_DEPEX
	EFI_SECTION_FIRMWARE_VOLUME_IMAGE
	EFI_SECTION_FREEFORM_SUBTYPE_GUID
	EFI_SECTION_GUID_DEFINED
	EFI_SECTION_PE32
	EFI_SECTION_PEI_DEPEX
	EFI_SECTION_PIC
	EFI_SECTION_RAW
	EFI_SECTION_SMM_DEPEX
	EFI_SECTION_TE
	EFI_SECTION_USER_INTERFACE
	EFI_SECTION_VERSION

	3.3 PEI
	EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
	EFI_PEI_FIRMWARE_VOLUME_PPI
	EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName()
	EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo()
	EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType()
	EFI_PEI_LOAD_FILE_PPI
	EFI_PEI_LOAD_FILE_PPI.LoadFile()
	EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI
	EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection()
	EFI_PEI_DECOMPRESS_PPI
	EFI_PEI_DECOMPRESS_PPI.Decompress()

	3.4 DXE
	EFI_FIRMWARE_VOLUME2_PROTOCOL
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress ()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks()
	EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL
	EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

	4 HOB Design Discussion
	4.1 Explanation of HOB Terms
	4.2 HOB Overview
	4.3 Example HOB Producer Phase Memory Map and Usage
	4.4 HOB List
	4.5 Constructing the HOB List
	4.5.1 Constructing the Initial HOB List
	4.5.2 HOB Construction Rules
	4.5.3 Adding to the HOB List

	5 HOB Code Definitions
	5.1 HOB Introduction
	5.2 HOB Generic Header
	EFI_HOB_GENERIC_HEADER

	5.3 PHIT HOB
	EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

	5.4 Memory Allocation HOB
	5.4.1 Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION

	5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_STACK

	5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

	5.4.4 Memory Allocation Module HOB
	EFI_HOB_MEMORY_ALLOCATION_MODULE
	EFI_HOB_LOAD_PEIM

	5.5 Resource Descriptor HOB
	EFI_HOB_RESOURCE_DESCRIPTOR

	5.6 GUID Extension HOB
	EFI_HOB_GUID_TYPE

	5.7 Firmware Volume HOB
	EFI_HOB_FIRMWARE_VOLUME
	EFI_HOB_FIRMWARE_VOLUME2

	5.8 CPU HOB
	EFI_HOB_CPU

	5.9 Memory Pool HOB
	EFI_HOB_MEMORY_POOL

	5.10 Unused HOB
	EFI_HOB_TYPE_UNUSED

	5.11 End of HOB List HOB
	EFI_HOB_TYPE_END_OF_HOB_LIST

