Unified Extensible Firmware Interface
Specification

Version 2.5 Errata A
January, 2016

Version 2.5 Errata A January, 2016 i

Unified Extensible Firmware Interface Specification

Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006-2016 Unified EFI, Inc. All Rights Reserved.

ii January, 2016 Version 2.5 Errata A

Revision History

Revision Revision History (numbers = Mantis ticket numbers) Date
20 First release of specification. January 31,
2006
2.1 Second release January 23,
2007
21a UEFI 2.1 incorporating Errata through 4-27-07 April 27, 2007
2.1b 51 Long physical blocks updates December 11,
2007
2.1b 156 SendForm API Errata December 11,
2007
2.1b 158 Errata to the UEFI 2.1 configuration sections December 11,
2007
2.1b 159 Adjust some of the #define names in the Simple Text Input Ex protocol | December 11,
2007
2.1b 160 Clean up references to PCIR December 11,
2007
2.1b 162 UEFI PIWG Device Path Errata December 11,
2007
2.1b 164 Update to USB2_HC PROTOCOL Table December 11,
2007
2.1b 165 Fix EFI_GRAPHICS_OUTPUT_PIXEL December 11,
2007
2.1b 168 Remove LOAD _OPTION_GRAPHICS December 11,
2007
2.1b 170 (Addition of) Driver Family Override Protocol December 11,
2007
2.1b 172 Typo for ResetSystem() December 11,
2007
2.1b 173 Minor changes to the description of two of the fields in the Common December 11,
Platform Error Record, in Appendix N 2007
2.1b 174 Error record addition for dma remapping units December 11,
2007
2.1b 175 Update to SendForm API December 11,
2007
2.1b 177 remove ending paragraph (editing text) in section 9.6 December 11,
2007
2.1b 181 Correct MNP GUID collision December 11,
2007
2.1b 182 Clarify EFI_MTFTP4_TOKEN December 11,
2007

Version 2.5 Errata A

January, 2016

Unified Extensible Firmware Interface Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.1b 184 SNIA/DDF Wording Update December 11,
2007
2.1b 185 Change EFI term to UEFI for consistency December 11,
2007
2.1b 186 change PCIR struct to match PCI FW Spec 3.0 December 11,
2007
2.1b 187 Clarify input protocols. December 11,
2007
2.1b 190 Extensive errata form UCST including OP codes changes ro resolve December 11,
conflicts. 2007
2.1b 197 EFI Loaded Image Device Path Protocol December 11,
2007
2.1b 205 Change Loadlmage() parameter name from FilePath to DevicePath; December 11,
ends confusion with EFI_LOADED_IMAGE_PROTOCOL 2007
2.1c 52 New GUID for Driver Diagnostics and Driver Configuration Protocols June 5, 2008
with new GUID
21c 54 ACPI Table Protocol GUID Update June 5, 2008
2.1c 55 Clarification on UpdateCapsule June 5, 2008
21c 56 Clarification on ResetSystem June 5, 2008
2.1c 57 Clarify text for Extended SCSI Pass Thru Protocol.GetNextTargetLun() | June 5, 2008
21c 58 Language update for EfiReservedMemory type usage June 5, 2008
2.1c 59 Add return code to Diagnostics Protocol June 5, 2008
21c 60 iSCSI Device Path Update June 5, 2008
2.1c 189 Graphics Output Protocol clarification June 5, 2008
21c 193 Loaded Image device paths for EFI Drivers loaded from PCI Option June 5, 2008
ROMs
2.1c 203 Platform Error Record - x64 register state errata June 5, 2008
21c 206 Clarify return values for extended scsi passthru protocol June 5, 2008
2.1c 207 Updated Wording for the File Path June 5, 2008
21c 208 Driver Protocol Names and GUIDs June 5, 2008
2.1c 209 ESP number/location clarifications June 5, 2008
21c 213 UEFI HIl Errata June 5, 2008
2.1c 214 Device_lO + typos June 5, 2008
21c 216 UEFI 2.1 text corrections June 5, 2008
2.1c 217 June 5, 2008
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query()
Update
21c 218 SATA update to section 9.3.5.6 June 5, 2008
21c 219 IA-32 and x64 stack need to be 16-byte aligned June 5, 2008
21c 220 Replace references to RFC 3066 to RFC 4646 June 5, 2008
21c 221Image Block Structure name typos in 27.3.7.2 June 5, 2008

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
21c 244 Replace references to EFI_FIRMWARE_VOLUME_INFO_PPI with June 5, 2008
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
2.1c 245 Remove extraneous text in Chapter 29 June 5, 2008
21c 246 New return code June 5, 2008
2.1c 248 Correction to text in Chapter 8.2 of UEFI 2.1b June 5, 2008
21c 249 Latest update to UCST Errata list June 5, 2008
2.1c 266 PKCS11.5 structure does not correctly specify the portion of the cited | June 5, 2008
RFC that pertains to the certificate struct/algorithm
21c 278 Change references to EFI_SIMPLE_INPUT_PROTOCOL into June 5, 2008
EFI_SIMPLE_TEXT_INPUT_PROTOCOL
2.1c 280 Some minor errata to keyboard related topics June 5, 2008
2.1c 281 Runtime memory allocation June 5, 2008
21c 283 Minor update to clarify a typedef/return code in Hll June 5, 2008
21c Re-format Revision History from bulleted lists to one row per Mantis ticket/ | June 5, 2008
Engineering Change Request
2.2 157 Floating-Point ABI Changes For X86, X64 & Itanium July 25, 2008
2.2 169 EFI Driver Health Protocol July 25, 2008
22 198 GUID Partition Entry Attributes Clarification and Definition July 25, 2008
2.2 199 FTP API July 25, 2008
2.2 200 VLAN July 25, 2008
2.2 201EAP July 25, 2008
2.2 202 EAP Management July 25, 2008
2.2 210 UEFI HII Animation addition July 25, 2008
2.2 211UEFI Setup Question / Form Access Update July 25, 2008
22 212 UEFI HII Standards Mapping July 25, 2008
2.2 215 new Start() RemainingDevicePath Syntax July 25, 2008
2.2 237 UEFI User Identification Proposal (from USST) July 25, 2008
2.2 242 UEFI ATA Pass-Through Protocol July 25, 2008
2.2 279 Firmware/OS Trusted Key Exchange and Image Validation July 25, 2008
2.2 282 Updated Requirements Section For ATA Pass Through (M242) July 25, 2008
2.2 288 Additional wording fixes for GPT Entry Attribute Bit 1 July 25, 2008
2.2 291 HIl Errata / Update July 25, 2008
2.2 294 LocateDevicePath with multi-instance device path July 25, 2008
2.2 299 PIWG Firmware File/Firmware Volume Typo Errata July 25, 2008
2.2 300 MTFTP errata July 25, 2008
2.2 301 Errata to the Authentication Protocol July 25, 2008
2.2 303 Add ability to have a capsule that initiates a reset & doesn’t return to July 25, 2008
the caller
2.2 304 Errata to UpdateCapsule() July 25, 2008
2.2 306 Some errata to the animation support July 25, 2008

Version 2.5 Errata A

January, 2016

Unified Extensible Firmware Interface Specification

vi

Revision Revision History (numbers = Mantis ticket numbers) Date
2.2 309 IPv6 Address display format clarification July 25, 2008
22 310 EFI UDPv6 Protocol July 25, 2008
2.2 311EFI DHCPv6 Protocol July 25, 2008
22 312 EFI IPv6 Protocol July 25, 2008
22 313 EFI IPv6 Configuration Protocol July 25, 2008
2.2 314 EFI MTFTP6 Protocol July 25, 2008
22 315 EFI TCP6 Protocol July 25, 2008
2.2 319 UEFI IPSec protocol July 25, 2008
2.2 320 Clarifcation for WIN_CERTIFICATE types & relationship with signature | July 25, 2008
database types
2.2 321Enable PCle 2.0 and beyond support in the UEFI error records July 25, 2008
22 322 Chapter 2 updates for IP6 net stack July 25, 2008
2.2 323 VLAN modification because of IPV6 July 25, 2008
22 324 ATA Pass-Thru ECR Update July 25, 2008
2.2 325 Minor correction 28.3.8.3.20 July 25, 2008
2.2 327 Clarify the support in DHCP4 protocol for "Inform" (DHCPINFORM) Sept. 25, 2008
messages.
2.2 330 EFI_IFR_REF: Change cross reference to a question Sept. 25, 2008
22 331 Definition for EFI_BROWSER_ACTION and the related #defines were | Sept. 25, 2008
not present--Insert.
2.2 332 Correct SendForm description Type, PackageGuid and FormsetGuid Sept. 25, 2008
parameters
2.2 333 Correct the incorrect ';' at the end of EFI_GUID #defines Sept. 25, 2008
2.2 335 User Authentication errata Sept. 25, 2008
22 337 Replace the EFI_CRYPT_HANDLE reference (in the IPSsec API)with | Sept. 25, 2008
a self-contained, independent definition.
2.2 339 Update missing TPL restrictions Sept. 25, 2008
22 340 UEFI 2.2 Editorial / Formatting Issues Sept. 25, 2008
2.2 343 Correct missing parameter for User() function in Sept. 25, 2008
EFI_USER_CREDENTIAL_PROTOCOL
2.2 344 Correct missing status codes returned section for Form() in Sept. 25, 2008
EFI_USER_CREDENTIAL_PROTOCOL.
2.2 346 Nest, Sections 10.11 & 10.12 Under 10.10 Sept. 25, 2008
22 347 Replace first paragraph of the “Description” section for the Sept. 25, 2008
ExitBootServices()
2.2 334 Standardized "Unicode" References Jan. 11, 2009
22 348 EFI_IFR_RESET_BUTTON is incorrectly listed as a question Jan. 11, 2009
22 350 EFI_HII_STRING_PROTOCOL Typos Jan. 11, 2009
22 351 Fix an unaligned field in a device path Jan. 11, 2009
2.2 357 Clarify EFI_IFR_DISABLE_IF behavior with regard to dynamic values | Jan. 11, 2009
22 394 Omission in EFI_USB2_HC_PROTOCOL Jan. 11, 2009

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
22 397 PCI CopyMem() misspelling Jan. 11, 2009
2.2 398 Update to M348 to fix small typo Jan. 11, 2009
2.2 errata 358 Missing signature for UEFI 2.2. Feb. 12, 2009
2.2 errata 359 TPL Table Feb. 12, 2009
2.2 errata 361 UEFI 2.2 Typos & Formatting Issues Feb. 12, 2009
2.2 errata 362 UEFI 2.2 Typos (Next) Feb. 12, 2009
2.2 errata 364 UEFI 2.2 Typos & Formatting Issues (ch. 9) Feb. 12, 2009
2.2 errata 366 UEFI 2.x: Erroneous references to EFI_BOOT_SERVICES_TABLE, Feb. 12, 2009
EFI_RUNTIME_SERVICES_TABLE
2.2 errata 368 EFI_FONT_DISPLAY_INFO.Fontinfo description incorrect Feb. 12, 2009
2.2 errata 370 EFI_SYSTEM_TABLE Errata (UEFI 2.1/UEFI 2.2) Feb. 12, 2009
2.2 errata 371 UEFI 2.1 & UEFI 2.2 Typos (ch. 10) Feb. 12, 2009
2.2 errata 372 UEFI 2.2 remove "Draft for Review” Feb. 12, 2009
2.2 errata 373 UEFI 2.2, chs. 9.5 & 9.6.2 & 9.6.3 (Device Path) Errata Feb. 12, 2009
2.2 errata 374 UEFI 2.1 & UEFI 2.2 Errata (10.7-10.10) Feb. 12, 2009
2.2 errata 375 Extra periods errata in UEFI 2.2 Feb. 12, 2009
2.2 errata 377 Missing BLT buffer figure. Feb. 12, 2009
2.2 errata 378 UEFI 2.1 & UEFI 2.2 HII Callback Clarifications Feb. 12, 2009
2.2 errata 379 UEFI 2.1/UEFI 2.2 HIl-Related Errata Feb. 12, 2009
2.2 errata 384 Fix HIl package description omission. Feb. 12, 2009
2.2 errata 387 UEFI 2.1/UEFI 2.2 Errata (ch. 12) Feb. 12, 2009
2.2 errata 389 UEFI 2.2 HIll-Related Formatting Issues Feb. 12, 2009
2.2 errata 390 UEFI 2.2 Miscellaneous Hll-related errata Feb. 12, 2009
2.2 errata 391 Polarity of INCONSISTENT_IF and NO_SUBMIT_IF IFR opcodes Feb. 12, 2009
wrong
2.2 errata 392 MBR errata in UEFI 2.2 Feb. 12, 2009
2.2 errata 393 UEFI 2.1/2.2 Boot Manager Behavior Clarification Feb. 12, 2009
2.2 errata 400 FreePool() description error Feb. 12, 2009
2.2 errata 404 Remove constraint form EFI_TIME.Year comment Feb. 12, 2009
2.2 errata 429 EFI_HASH_SERVICE_BINDING_PROTOCOL GUID define misses Feb. 12, 2009
_GUID
23 326 Add Firmware Management Protocol Feb. 12, 2009
23 376 Add ARM processor binding to UEFI Jan. 12, 2009
23 388 Add HiIl callback types (FORM_OPEN, FORM_CLOSE) when a form Feb. 12, 2009
is opened or closed.
23 394 Omission in EFI_USB2_HC_PROTOCOL Feb. 12, 2009
2.3 395 New "Non-removable Media Boot Behavior" section Feb. 12, 2009
23 406 Missing EFI System Table Revision In UEFI 2.3 Draft Feb. 12, 2009
2.3 408 ARM Binding corrections Feb. 12, 2009
23 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 12, 2009

Version 2.5 Errata A

January, 2016

Vii

Unified Extensible Firmware Interface Specification

viii

Revision Revision History (numbers = Mantis ticket numbers) Date
23 432 UEFI 2.3 Feb Draft: Appendix M. Feb. 12, 2009
23 434 UEFI 2.3 Feb Draft: 28.3.8.3.58 Feb. 12, 2009
2.3 435 Partition Signature clarification Feb. 12, 2009
2.3 436 UEFI 2.3 split Figure 88 into 3 figures Feb. 12, 2009
23 410 UNDI buffer usage Feb 18, 2009
2.3 413 Correct the definition of UEFI_CONFIG_LANG Feb 18, 2009
2.3 418 Change Appendix O from "UEFI ACPI Table" to "UEFI ACPI Data Feb 18, 2009
2.3 437 Errata to 2.3 draft material from UEFI Spec 2_3 Draft_Jan29 Feb 18, 2009
2.3 438 UEFI 2.3 Feb 13 Draft: Chapter 28 Formatting Issues Feb 18, 2009
2.3 439 Incorrect definitions of UEFI_CONFIG_LANG and Feb 25, 2009
UEFI_CONFIG_LANG_2 in UEFI 2.3 Feb18 draft
23 440 Change the defined type of EFI_STATUs from INTN to UINTN May 7, 2009
2.3 442 Section 28.3.8.3.64, EFI_IFR_SET, Prototype, lines 3-8, indent by 2 May 7, 2009
spaces
23 443 Section 28.3.8.3.38, EFI_IFR_MAP, Prototype, line 4, outdent 2 May 7, 2009
spaces.
2.3 444 Form Set Syntax: Section 28.2.5.1.1, section should be subheading, May 7, 2009
not heading level 5; Section 28.2.5.1, Syntax, line 3, text after := is not
aligned with other text on line 2, 4
2.3 445 Table 194: EFI_IFR_FORM_MAP_OP, 2nd column should be 0x5d May 7, 2009
(not 05xd)
2.3 446 Section 28.2.5.2 Forms, Syntax, change 3rd line to: May 7, 2009
form := EFI_IFR_FORM form-tag-list |
EFI_IFR_FORM_MAP form-tag-list
2.3 447Section 28.2.5.11.2 Moving Forms, Update line that starts with May 7, 2009
EFI_IFR_FORM to: EFI_IFR_FORM or EFI_IFR_FORM_MAP (and all
references in EFI_IFR_REF)
23 448 Section 28.2.5.4 Questions, Syntax, Update question-option-tag; Add | May 7, 2009
EFI_IFR_READ and EFI_IFR_WRITE in the question syntax.
23 449 Add missing EFI_IFR_GET, EFI_IFR_SET and EFI_IFR_MAP to the May 7, 2009
syntax.Section 28.2.5.7.
2.3 450 Missing opcode headers and formatting, section 28.3.8.3.x. May 7, 2009
2.3 452 Support to dynamically detect media errata - SNP May 7, 2009
2.3 453 Errata to support dynamic media detection - UNDI May 7, 2009
2.3 454 Dynamic support of media detection - network stack May 7, 2009
2.3 456 How to handle PXE boot w/o NIl Section 21.3 May 7, 2009
2.3 457 Change KeyData.PackedValue to 0x40000200, page 63. May 7, 2009
2.3 460 Chapter 2.6 language update May 7, 2009
2.3 4611P4 Mode Data definition update May 7, 2009
2.3 462 ExitBootServices timers deavtivation May 7, 2009
23 463 Update EFI_IP6_PROTOCOL.Neighbors() API May 7, 2009
23 A Sept 15, 2009

477 Text adjustment to ConfigAccess/ConfigRouting

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
23 A 478 Update to ALTCFG references Sept 15, 2009
23 A 490 Correction 28.2.5.6, Table 185. Information for Types of Storage Sept 15, 2009
23 A 505 TCP4/MTFTP4 status codes Sept 15, 2009
23 A 506 TCP6/MTFTP6 Status Code Definition Sept 15, 2009
23 A 513 add support for gateways in ipv4 & ipv6 device path nodes Sept 15, 2009
23 A 516 User Identity Protocol bugs Sept 15, 2009
23 A 517 IP stack related protocol update Sept 15, 2009
23 A 518 typos Sept 15, 2009
23 A 522 Bugs in EFI_CERT_BLOCK_RSA_2048_SHA256, ISCSI device path, | Sept 15, 2009
CHAP device path
23B 215 previously added to Device Driver (wrong), now BusDriver (correct) Dec. 15, 2009
2.3B 301 Errata to the Authentication Protocol Dec. 15, 2009
23B 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 24,2010
23B 454 Dynamic support of media dectection - network stack Dec. 15, 2009
23B 460 Section 2.6 language change Dec. 15, 2009
23B 476 Text adjustment to ConfigAccess & ConfigRouting Dec. 15, 2009
2.3B 479 TPM guideline added to section 2.6.2 Dec. 15, 2009
23B 507 Clarify ACPI Protocol’s position on checksums Dec. 15, 2009
23B 514 HIl Configuration String Syntax Clarification Feb. 24, 2010
238B 515 Authenticated Variables Clarification Feb. 24, 2010
2.3B 518 Typos in the UEFI2.3 specification Feb. 24, 2010
23B 519 Add console table (chapt 11) for Dec. 15, 2009
EFI_SIMPLE_TEXST_INPUT_EX_PROTOCOL
23B 531 Clarify HIl Variable Storage Dec. 15, 2009
23B 532 “Legacy BIOS Bootable” GPT attribute Dec. 15, 2009
2.3B 533 GPT editorial cleanup Dec. 15, 2009
23B 534 Size of Partition Entry restriction Dec. 15, 2009
2.3B 536 IPSec errata Dec. 15, 2009
23B 537 Add missing ACPI ADR Device Path Representation Dec. 15, 2009
2.3B 539 CHAP node fix for iSCSI Dec. 15, 2009
23B 540 Register name usage Dec. 15, 2009
2.3B 542 Device Path Description Changes Dec. 15, 2009
23B 545 Action parameter of the Dec. 15, 2009
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()
2.3B 546 typo in GOP definiton Dec. 15, 2009
23B 547 Clean-Up In HIl Sections Dec. 15, 2009
23B 549 Binary prefix change Dec. 15, 2009
23B 556 additional IPSec erratal/issues Dec. 15, 2009

Version 2.5 Errata A

January, 2016

Unified Extensible Firmware Interface Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
23B 557 Corrected Image Execution Information omission & ambiguity Dec. 15, 2009
23B 558 Clarify VLAN config publication requirements Dec. 15, 2009
23B 559 Extraneous “default” tag in EFI_IFR_SECUITY grammar Dec. 15, 2009
23B 560 Correct erroneous example in ExtractConfig() Dec. 15, 2009
23B 566 Minor update to HII->NewString function description Dec. 15, 2009
23B 567 Various miscellaneous typos/updates Feb. 24, 2010
23B 568 ATA_STATUS_BLOCK name errata Dec. 15, 2009
23B 572 EFI_IFR_SECURITY should be EFI_IFR_SECURITY_OP in Table Dec. 15, 2009
194
23B 573 EFI_DESCRIPTION_STRING and EFI_DESCRIPTION_BUNDLE Feb. 24, 2010
adjustments
23B 574 Add an "OPTIONAL" tag to a parameter in NewPackagelList Dec. 15, 2009
2.3B 576 Clarifications in the Routing Protocol Dec. 15, 2009
23B 577 clarifications on the user identity protocol Dec. 15, 2009
23B 578 ATA Passthrough updates / questions Dec. 15, 2009
23B 580 ACPI_SUPPORT_PROTOCOL clarifications related to FADT and the | Dec. 15, 2009
DSDT/FACS
23B 583 How do we know an EFI_HANDLE is Valid/Invalid Feb. 24, 2010
2.3B 575 Machine hand-off/MP state modification Feb. 24, 2010
23B 584 EFI_PXE_BASE_CODE_DHCPV6_PACKET missing for pxe bc Feb. 24, 2010
protocol
23B 585 Errata to EFI_IFR_SET op-code Feb. 24, 2010
23B 586 clarification of PXE2.1 specification for IPV4 interoperability issues Feb. 24, 2010
23B 587 UEFI User Identity - Naming consistency Feb. 24, 2010
23B 588 UEFI| User Identity - Return codes Feb. 24,2010
23B 589 Device path representation of IPv4/v6 text Feb. 24,2010
23B 590 Media detect clean-up Feb. 24, 2010
2.3B 598 ARP is only an IPV4 concept. Feb. 24, 2010
23B 600 Update to ConfigAccess/ConfigRouting Feb. 24, 2010
23B 601 UNDI update as part of media detect changes Feb. 24, 2010
23B 605 Clarify user identity Find API Feb. 24, 2010
2.3B 608 more media detect clean-up Feb. 24, 2010
23C 508 Update networking references, incl ipv6 July 14,2010
23C 583 How do we know an EFI_HANDLE is Valid/Invalid July 14,2010
23C 609 Startimage return code update July 14,2010
23C 610 RSA data structure clarification July 14,2010
23C 611 Language correction requested for InstallProtocollnterface() and July 14, 2010
InstallConfigurationTable(), Ref# 583

X January, 2016 Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
23C 613 PAUSE Key July 14, 2010
23C 620 Carification of need for Path MTU support for IPV4 and IPV6 July 14,2010
23C 621 Typos in an EFI_HII_CONFIG_ACCESS_PROTOCOL.Callback() July 14, 2010
member
23C 622 Identify() function errata July 14,2010
23C 625 Minor typo in surrogate character description section July 14,2010
23C 632 Clarify Block 10 ReadBlocks and WriteBlocks functions handling of July 14, 2010
media state change events
23C 633 Explicitly Specify ACPI Table Signature Format July 14,2010
23C 635 Missing GUID label for Config Access protocol July 14,2010
23C 636 Mistaken Reference to "Date" inside of Boolean question description | July 14,2010
23C 637 Clarification for Date/Time Question usage in IFR expressions. July 14,2010
23C 639 Callback() does not describe FORM_OPEN/FORM_CLOSE behavior | July 14,2010
23C 640 String Reference Cleanup July 14,2010
23D 538 IPV6 PXE Oct. 28, 2010
23D 638 Add facility for dynamic IFR dynamic cross-references Oct. 28, 2010
23D 650 networking support errata Oct. 28, 2010
23D 651 update to IPSec for tunnel mode support Oct. 28, 2010
23D 652 Clarification to the TimeZone value usage Oct. 28, 2010
23D 653 Errata to the Appendix N (Common Platform Error Record) Oct. 28, 2010
23D 659 Clarify section length definition in the error record Oct. 28, 2010
23D 662 ARM ABI errata Oct. 28, 2010
23D 663 Update ARM Platform binding to allow OS loader to assume unaligned | Nov. 10, 2010
access support is enabled
23D 664 Appendix update for IPV6 network boot Oct. 28, 2010
23D 667 Clarification to the UEFI Configuration Table definition Oct. 28, 2010
2.31 484 Key Management Service Protocol Oct. 28, 2010
2.3.1 612 UEFI system Partition FAT32 data Region Alignment Oct. 29, 2010
2.3.1 616 Security Protocol command to support encrypted HDD Oct. 29, 2010
2.3.1 634 Forms Browser Default Behavior Oct. 29, 2010
2.31 645 Non-blocking interface for BLOCK oriented devices (BLOCK_IO_EX Oct. 29, 2010
transition to BLOCK_IO_2)
2.3.1 661 USB 3.0 Updates Oct. 29, 2010
2.31 484 Key Management Service (KMS) Protocol Oct. 29, 2010
2.3.1 616 Security Protocol Command to support encrypted HDD Jan. 17, 2011
2.3.1 634 Forms Browser Default Behavior Jan. 17, 2011
2.31 671 Errata: USB device path example is incorrect Jan. 17, 2011

Version 2.5 Errata A

January, 2016

xi

Unified Extensible Firmware Interface Specification

Xii

Revision Revision History (numbers = Mantis ticket numbers) Date
2.31 674 Section 3.2: Missing variable type for SetupMode variable Jan. 17, 2011
2.3.1 677 Section 27.2.5 & 27.6.1: Typo in X509 Signature Type Jan. 17, 2011
2.3.1 678 Section 27.6.2: Imagehash reference needs to be removed Jan. 17,2011
2.31 679 UEFI Authenticated Variable & Signature Database Updates Jan. 17,2011
2.3.1 680 Netboot6 handle clarification Jan. 17, 2011
2.3.1 681 Typo: Pg. 56 Jan. 17, 2011
2.3.1 687 Update System Table with this new #define for 2.3.1 Jan. 17, 2011
2.31 668 LUN implementations are not consistent Feb. 3, 2011
2.31 682 [UCST] Modal Form Feb. 3, 2011
2.31 686 HIl - Clarify Forms Browser 'standard' user interfactions. Feb. 3, 2011
2.3.1 685 HIl - New op-code to enable event initiated refresh of browser context | Feb. 3, 2011
data
2.3.1 695 Add Port Ownership probing Feb. 3, 2011
2.3.1 696 Update System Table with this new #define for Feb. 3, 2011
EFI_SYSTEM_TABLE_REVISION
2.3.1 702 Clarifications on Variable Storage for Questions Feb. 3, 2011
2.31 704 Unload() definition is wrong Feb. 3, 2011
2.31 705 REPC signature definition still confusing Feb. 3, 2011
2.3.1 707 Errata revision in the EFI_IFR_VERSION format Feb. 3, 2011
708 Errata (non-blocking BLOCK 10) April 5, 2011
2.31 709 New Callback() Action Requests Related To Individual Forms. Feb. 3, 2011
2.31 478 (REVISIT) Update to ALTCFG references March 11, 2011
2.3.1 711 SetVariable Update March 11, 2011
2.31 713 Remove the errata revision from the EFI_IFR_VERSION format. March 11, 2011
2.3.1 715 CPER Record and section field clarification March 11, 2011
2.3.1 716 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() IN OUT | March 11, 2011
parameter Target input value shall be OxFFs
2.31 720 User Identification (UID) Errata — Credential Provider Enroll March 11, 2011
Clarification
2.31 721 User Identification (UID) Errata — SetInfo Clarification March 11, 2011
2.31 722 User Identification (UID) Errata — Credential Provider Enroll April 5, 2011
Clarification
2.3.1 723 User Identification (UID) Errata — EFI User Manager Notify & Enroll April 5, 2011
Clarification
2.3.1 724 SetVariable Update 2 March 11, 2011
2.3.1 726 Errata/clean-up of EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN March 11, 2011
definition
2.3.1 727 Errata on return code for User Info Identity policy record March 11, 2011
2.3.1 728 Netboot 6 errata - DUID-UUID March 11, 2011
2.31 729 Errata: clarification of Microsoft references in appendix Q March 11, 2011

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
2.3.1 732 Amendment to Mantis 711: section 7.2.1.6 March 11, 2011
2.3.1 733 Errata: 27.6.1 signatureheadersize definition March 11, 2011
2.3.1 734 SecureBoot variable April 5, 2011
2.3.1 735 Clarification on Tape Header Format March 11, 2011
2.3.1 736 Insert SMM Communication ACPI Table and related data structures | April 5, 2011
to the UEFI Specification
2.3.1 740 Errata: signatureheadersize inconsistency corrections April 6, 2011
2.3.1 741 Errata: corrected text for section 7.2.1.4 step 7 March 11, 2011
2.3.1 744 Processor context information structure definition not clear March 11, 2011
2.31 748 Clarify Standard GUID Text Representation March 11, 2011
2.31 749 Fix Table 10 (Global Variables) With Correct Attributes March 11, 2011
2.31 750 Fix section 27.2.5 "related definitions" re: RSA public key exponent March 11, 2011
2.3.1 751 Fix USB HC2 erroneous references to IsSlowDevice March 11, 2011
2.31 754 USB timeout parameter mismatch. April 5, 2011
2.3.1 755 Errata in Legacy MBR table and Legacy MBR GUID April 5, 2011
2.3.1 759 UEFI Errata - wincerts for rest of hash algorithms April 5, 2011
2.31 760 Suggested changes to 2.3.1 final draft spec April 5, 2011
2.31 761 Table 195. Information for Types of Storage April 5, 2011
2.3.1 762 DevicePath in the Image Execution Information Table. April 5, 2011
2.3.1 765 ECR to limit the hash and encryption algorithms used with PKCS April 5, 2011
certificates
231A 212 (revisit) final sentence section 28.2.15 missing final words. April 21, 2011
231A 767 The ReadBlocks function for BlocklO and BlocklO2 need August 17, 2011
synchronization
2.3.1A 770 Remove references to UEFI 2.1 spec August 17, 2011
231A 772 Definition of EFI_IMAGE_SECURITY_DATABAE_GUID incorrect August 17, 2011
231A 773 Clarify the value for opcode EFI_IFR_REFRESH_ID_OP August 17, 2011
231A 774 Define EFI_BLOCK_IO_PROTOCOL_REVISION3 August 17, 2011
23.1A 776 Clarifycomputation of EFI_VARIABLE_AUTHENTICATION_2 hash August 17, 2011
value
231A 777 Specified signature sizes incorrect in Section 27.6.1 August 17, 2011
231A 778 EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() Errata August 17, 2011
231A 780 Errata in return code descriptions August 17, 2011
231A 785 Allowing more general use of UEFI 2.3.1 Variable time-based August 17, 2011
authentication
231A 786 PCI 1/0 Dual Address Cycle attribute clarification August 17, 2011
231A 788 SasEx entry in Table 86-Device Node Table contains optional August 17, 2011
Reserved entry that does not exist in device path
231A 789 Clarify HIl opcode definition August 17, 2011
231A 790 Add warning to ReadKeyStrokeEx for partial key press August 17, 2011
231A 793 Inconsistent wording about RemainingDevicePath August 17, 2011

Version 2.5 Errata A

January, 2016

Xiii

Unified Extensible Firmware Interface Specification

Xiv

Revision Revision History (numbers = Mantis ticket numbers) Date
231A 794 Incomplete text describing clearing of Platform Key August 17, 2011
23.1A 795 Typo in ReadKeyStrokeEx() August 17, 2011
231A 796 Clarify IFR Opcode Summary and Description #1 August 17, 2011
231A 797 Clarify IFR Opcode Summary and Description #2 August 17, 2011
231A 800 Clarify IFR Opcode Summary and Description #3 August 17, 2011
231A 801 ClarifylFR Opcode Summary and Description #4 August 17, 2011
231A 803 Fix AcpiExp device node text description. August 17, 2011
2.3.1A 804 Clarify contraints and alternatives when enrolling PK, KeK, db or dbx August 17, 2011
keys
231A 805 Correct Wrong Palette Information in 28.3.7.2.3 example August 17, 2011
231A 806 Text update to Driver Health Description - clarify role of user August 17, 2011
interaction
231A 819 ECR715 was not fully implemented August 17, 2011
2.3.1A 820 Driver Health Needs to have Mantis 0000169 implemented August 17, 2011
231A Minor corrections in toes to tickets 772, 785, 794, 804, also formatting September 7,
correction for _WIN_CERTIFICATE_UEFI_GUID typedef's parameters 2011
2.31B 771 SHA1 and MD5 references April 10, 2012
23.1B 807 Give specific TPL rules to Stall() boot services April 10, 2012
231B 808 Errata — Boot File URL April 10, 2012
2318B 809 Errata — Messaging Device Path Clarification April 10, 2012
2.3.1B 812 Errata — DUID-UUID usage April 10, 2012
2318B 819 Mantis 715 was not fully implemented April 10, 2012
231B 825 DMTF SM CLP errata April 10, 2012
2318B 826 Comments against Mantis 790 April 10, 2012
231B 828 Network Driver Options April 10, 2012
2318B 836 Structure comment for EFI_IFR_TYPE_VALUE references unknown April 10, 2012
value type.
231B 842 Text to explain how the UEFI revision is referred April 10, 2012
2318B 845 EFI_SCSI_PASS_THRU_PROTOCOL replacement April 10, 2012
231B 847 When enrolling a PK, the platform shall not require a reboot to leave April 10, 2012
SetupMode
2318B 848 Clarification of semantics of SecureBoot variable April 10, 2012
231B 849 IFR EFI_IFR_MODAL_TAG_OP is also valid under April 10, 2012
EFI_IFR_FORM_MAP_OP
2318B 850 Clarification of responsibility for array allocation in April 10, 2012
EFI_HASH_PROTOCOL
23.1B 851 For EFI_IFR_REFRESH opcode, clarify Refreshinterval = 0 means no | April 10, 2012
auto-refresh.
23.18B 852 Various EFI_IFR_REFRESH_ID errata. April 10, 2012
23.1B 853 The EFI_HASH_PROTOCOL.Hash() description needs clarification on | April 10, 2012
padding responsibilities

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
2318B 855 Clarification of UEFI driver signing/ code definitions April 10, 2012
23.1B 857 Absolute pointer typo April 10, 2012
2318B 858 Superfluous and incorrect image hash description April 10, 2012
2.3.1B 861 Globally Defined Variables Errata April 10, 2012
2318B 862 User identity typo April 10, 2012
2.3.1B 863 Attributes of the Globally Defined Variables April 10, 2012
2318B 864 Typo in Question-Level Validation section April 10, 2012
2.3.1B 865 Modify Protective MBR BootIndicator definition April 10, 2012
231B 866 PK, KEK, db, dbx relations clarification April 10, 2012
23.1B 867 Clarify requirment for use of April 10, 2012
EFI_HASH_SERVICE_BINDING_PROTOCOL
2318B 869 Reference to FIPS 180 in Chapter 27.3 is obsolete and incorrect April 10, 2012
2.31B 870 Clarify FrameBufferSize definition under April 10, 2012
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE struct
2318B 871 Typo in InstallMultipleProtocollnterfaces April 10, 2012
2.3.1B 872 Change to April 10, 2012
SIMPLE_TEXT_INPUT_EX_ PROTOCOL.RegisterKeyNotify/
UnregisterKeyNotify
2318B 873 Section 9.3.7 incorrectly assumes that all uses of BBS device paths April 10, 2012
are non-UEFI
231B 876 To clarify EDID_OVERRIDE attribute definitions and expected April 10, 2012
operations
2318B 877 Table checksum update by the April 10, 2012
ACPI_TABLE_PROTOCOL.InstallAcpiTable
231B 878 Updated HIl "Selected Form" Behaviors to Reflect New Callback April 10, 2012
Results
23.1B 879 Reference to unsupported specification in SCSI Chapter (14.1) April 10, 2012
2.31B 880 netboot6 clarification/errata April 10, 2012
23.1B 881 netboot6 - multicast versus unicast April 10, 2012
231B 884 EFI_BOOT_KEY_DATA relies on implementation-defined behavior April 10, 2012
23.1B 885 Errata in the GPT Table structure comment April 10, 2012
2.3.1B 887 union is declared twice in same section April 10, 2012
2318B 888 typo in EFI_USB_HC Protocol April 10, 2012
2.31B 890 Drive Configuration Protocol Phantom. April 10, 2012
2318B 891 Component Name Protocol References April 10, 2012
23.1B 893 SMM Communication ACPI Table Update April 10, 2012
2318B 896 Startimage and ConnectController return codes April 10, 2012
231C 831 PXE Boot CSA Type definition cleanup June 13, 2012
231C 874 Provide a mechanism for providing keys in setup mode June 13, 2012
231C 882 Indications Variable - OS/FW feature & capability communication June 13, 2012
231C 907 iSCSI Device Path error June 13, 2012

Version 2.5 Errata A

January, 2016

XV

Unified Extensible Firmware Interface Specification

XVi

Revision Revision History (numbers = Mantis ticket numbers) Date
231C 909 Update to return codes for AllocatePool / AllocatePages June 13, 2012
231C 912 UEFI 2.3.1 Type June 13, 2012
231C 913 Enum definition does not match what our current compilers implement. | June 13, 2012
231C 914 Error Descriptor Reset Flag clarification June 13, 2012
231C 915 For x64, Change Floating Point Default Configuration to Double- June 13, 2012
Extended Precision
231C 917 UNDI drive does not need to be initialized as runtime driver June 13, 2012
231C 921 Length of IPv6 Device Path is incorrect June 13, 2012
231C 882 Indications Variable - OS/FW feature & capability communication June 13, 2012
231D 924 New Error Code to handle reporting of IPV4 duplicate address April 3, 2013
detection
2.3.1D 926 UEFI Image Verification clarification April 3, 2013
231D 928 Best Matching Language algorithm April 3, 2013
231D 930 Clarify usage of EFI Variable Varstores in Hll April 3,2013
231D 934 Missing Figures and typos April 3, 2013
231D 935 Clarify chaining requirements with regards to the Platform Key April 3, 2013
231D 938 InstallMultipleProtocolinterface() is missing Status Code Returned April 3, 2013
values
231D 941 Add OEM Status Code ranges to EFI Status Code Ranges Table April 3, 2013
231D 942 ExportConfig() description does not make sense April 3, 2013
231D 943 Errata - Proposed updates to required interfaces in chapter 2.6 April 3, 2013
231D 944 Errata - Replace RFC reference April 3, 2013
231D 949 PCI 10.GetBarAttributes needs adjustment - - Address Space April 3, 2013
Granularity field
231D 950 Indeterminate behavior for attribute modifications may cause security | April 3, 2013
issues
231D 952 Clarification of requirements to update timestamp associated with April 3, 2013
authenticated variable
231D 953 Need text definitions for Device Path Media Type Subtype 6/7 April 3, 2013
2.31D 954 Loadlmage Errata April 3, 2013
231D 955 Clearing The Platform Key Errata April 3, 2013
231D 959 InstallAcpiTable() does not say what to do when an attempt is made to | April 3, 2013
install a duplicate table
231D 960 Typo in netboot6 description April 3, 2013
2.3.1D 962 Remove 2.3 table revision number April 3, 2013
231D 965 File IO Async extenstion April 3, 2013
231D 970 Typo section 28.3.8.3.41 EFI_IFR_MODAL_TAG April 3, 2013
231D 971 typo April 3, 2013
231D 972 ISCSI DHCP6 boot April 3, 2013
231D 973 UNDI Mem_Map() Clarification April 3, 2013
231D 974 UNDI Incorrect CPB function names ECR April 3, 2013

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
231D 975 UNDI errata to add missing memory type definitions April 3, 2013
231D 976 BrowserCallback text update to description April 3, 2013
231D 977 missing statement April 3, 2013
231D 978 Error Retun Indicates Capsule requires Boot Services April 3, 2013
231D 980 Errata on SNP Media detect April 3, 2013
231D 987 EFI_BLOCK_102_PROTOCOL has a copy paste bug describing the April 3, 2013
Token Parameter
231D 988 EFI_BLOCK_102_PROTOCOL blocks child from stopping while doing | April 3, 2013
non-blocking 1/0
231D 989 Clarify hot-remove responsibility of a Bus Driver April 3, 2013
231D 990 EFI_ATA_PASS_THRU need one clarification if it supports ATAPI April 3, 2013
device
231D 994 Spec typos April 3, 2013
231D 995 CSA link change April 3, 2013
231D 996 UEFI 2.0 version number still in the 2.3.1C spec April 3, 2013
231D 1000 Clarification to the IFR_REF4 opcode April 3, 2013
231D 1003 Missing “(“ in section 11.7 April 3, 2013
231D 1011 Typo regarding Debug Port in UEFI Spec April 3, 2013
231D 1012 Touchup to text of GPT April 3, 2013
231D 1013 HIl Errata April 3, 2013
231D 1018 HIl Font Errata April 3, 2013
231D 1019 Alignment Requirements Clarification April 3, 2013
231D 1020 Clarify HIl variable store definitions. April 3, 2013
231D 1021 ATA_PASS_THRU on ATAPI device handle. April 3, 2013
24 905 Need more granularity in EFI_RESET_TYPE to support platform April 25, 2013
specific resets
2.4 920 Add a variable for indicating out of band key modification April 25, 2013
24 946 Forbid creation of non-spec variables in EFI_GLOBAL_VARIABLE April 25, 2013
namespace
2.4 956 Require network drivers to return EFI_NO_MEDIA April 25, 2013
24 963 Add new device path node NVM Express devices April 25, 2013
24 964 Disk 10 2 Protocol to support Async 10 April 25, 2013
24 966 Spec typos April 25, 2013
24 968 HIl Forms op-code for displaying a warning message April 25, 2013
2.4 991 Greater than 256 NICs support on UNDI April 25, 2013
24 992 Adapter Information Protocol (AIP) April 25, 2013
24 993 (original ticket--superseded by 1026)
2.4 997 Driver Health Protocol error codes April 25, 2013
24 1002 Timestamp Protocol April 25, 2013
2.4 1007 Create a new Security Technologies section to avoid blurring with April 25, 2013
Secure Boot

Version 2.5 Errata A

January, 2016

xvii

Unified Extensible Firmware Interface Specification

xviii

Revision Revision History (numbers = Mantis ticket numbers) Date
24 1008 New Random Number Generator / Entropy Protocol April 25, 2013
24 1009 Enable hashes of certificates to be used for revocation, and April 25, 2013
timestamp support
24 1015 Interruptible driver diagnostics April 25, 2013
24 1016 AIP Instance - Image Update April 25, 2013
2.4 1017 AIP Instance - FCOE SAN MAC Address April 25, 2013
2.4 1022 adapter information protocol for NIC iSCSI and FCoE boot April 25, 2013
capabilities and current Booot Mode.
2.4 1023 Definition of Capsule format to deliver update image to firmware April 25, 2013
management protocol
24 1024 Clarification to the NVMe Device Path text descriptions April 25, 2013
2.4 1026 (supersedes 993) Update to the AArch64 proposed Binding Change | April 25, 2013
2.4 1029 Method for delivery of Capsule on disk; Method for reporting Capsule | April 25, 2013
processing status
24 1031 NVMe subtype conflict errata April 25, 2013
24 1032 HiiConfigRouting->ExtractConfig Status Codes Errata May 16, 2013
2.4 1033 HiiConfigAccess->ExtractConfig Status Codes Errata May 16, 2013
2.4 1036 Comments on April 25 Draft May 16, 2013
24 1037 Add 2.4 to the system table version May 16, 2013
2.4 1044 Corrections to Mantis 1015, Interruptible driver diagnostics May 16, 2013
24 1045 PCI OpROM Device List changes to section 14.2 June 28, 2013
24 1047 Comment on Feb 25th draft - fix alignment issue May 16, 2013
24 1048 Comment against UEFI 2.4 - NVMe related May 16, 2013
24 1049 2.4 Draft April 25 has missing text for ECR 1008 May 16, 2013
24 1050 2.4 Draft April 25 has missing text for ECR 1009 May 16, 2013
2.4 1052 UEFI 2.4 Draft April 25th - corrections to ARM sections May 16, 2013
24 A 1035 PCI Option ROM Errata (five figures) Nov. 6, 2013
24 A 1053 Reduce Name space of Capsule Result variable to increase Nov. 6, 2013
performance
24 A 1054 Deprecate 6 Hash Algorithms with inconsistent usage Nov. 6, 2013
24 A 1055 Disk 10 2 errata Nov. 6, 2013
24 A 1056 text modification to definition of Nov. 6, 2013
EFI_FIRMWARE_IMAGE_DESCRIPTOR_VERSION 2
24 A 1058 Correct mistake in the system table revision Nov. 6, 2013
24 A 1059 Clarification of a return status code of HASH protocol Nov. 6, 2013
24 A 1060 Slight Clarification to FMP Authentication Requirments Nov. 6, 2013
24 A 1061 UEFI 2.4 section 2.6.2 and 2.6.3 don't use protocol hyperlinks Nov. 6, 2013
consistently
24 A 1062 EFI_CERT_X509_GUID does not specify the certificate encoding Nov. 6, 2013
24 A 1063 Correction to GPT expression for SizeofPartitionEntry Nov. 6, 2013
24 A 1064 AIP Errata Nov. 6, 2013

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
24 A 1066 Errata - ISCSI IPV6 Root Path Clarification Nov. 6, 2013
24 A 1073 Add requirement for EFI_USB_|IO_PROTOCOL Nov. 6, 2013
24 A 1074 Add clarifications on DMA requirements for PCI_IO Nov. 6, 2013
24 A 1075 Clarifications to Table 88. Device Node Table (Device Node to Text Nov. 6, 2013
Conversion)
24 A 1076 typo in UEFI v2.3.1d and v2.4 Nov. 6, 2013
24 A 1077 Fix wording in EVT_SIGNAL_EXIT_BOOT_SERVICES Nov. 6, 2013
24 A 1078 Adjust some text for handling Nov. 6, 2013
EFI_BROWSER_ACTION_CHANGING
24 A 1079 UEFI 2.4: Remove repetitive "the" (typo) Nov. 6, 2013
24 A 1081 Update Install Table protocol to deal with duplicate tables Nov. 6, 2013
24 A 1082 Mistake in 2.3.5.1 / 2.3.6.2 Handoff State Nov. 6, 2013
24 A 1085 Issues with Interactive password Nov.14, 2013
24 A 1088 Add revision #define to EFI_FILE_PROTOCOL Nov. 6, 2013
24 A 1089 Short-term CPER Memory Section errata Nov. 14, 2013
2.4B 1014 HIl Config Access Protocol Errata April 3, 2014
24B 1092 Clarification to PCI Option ROM Driver Loading Description March 27, 2014
24B 1101 Errata — ReinstallProtocolinterface March 27, 2014
24B 1111 Errors in DisconnectController() return code descriptions March 27, 2014
24B 1115 Clarification on the usage of XMM/FPU instructions from within a March 27, 2014
UEFI Runtime Service on an x64 processor
248B 1118 Network Performance Enhancements Concerning Volatile Variables | March 27, 2014
248B 1120 Make time stamp handling consistent around all of the networking March 27, 2014
API’s
24B 1122 Correct misleading language in the UEFI| 2.4a specification about the | March 27, 2014
EFI_ADAPTER_INFORMATION_PROTOCOL.EFI_ADAPTER_INFO_GE
T_SUPPORTED_TYPES function
24B 1124 Adding text description for NVMe device node March 27, 2014
24B 1127 USB Errata - unnecessary restriction on UEFI interrupt transfer types | March 27, 2014
24B 1128 URI device path node redux--supersedes (defunct) 1119 April 4, 2014
24B 1137 Typographic errors in the 2.4 Errata B draft April 16, 2014
24B 1146 Typos and broken links April 17, 2014
24B 1085 Error--added in missing text approved for 2.4A April 17, 2014
24 C 1042 Add Browser Action Request "reconnect” July 11, 2014
24C 1043 Ability to refresh the entire form [new content] July 11, 2014
24C 1066 Errata--reference to missing table (90) removed July 11, 2014
24C 1139 UEFI Errata on the storage security command protocol July 11, 2014
24C 1140UEFI Errata - image execution info table July 11, 2014
24C 1141 UEFI errata - ia32/x64 vector register management July 11, 2014
24C 1147 EF1I_USB2_HC_PROTOCOL.AsynclInterruptTransfer() Errata July 11, 2014
24C 1150 Missing Line Break Character (HIl Errata) July 11, 2014
Version 2.5 Errata A January, 2016 XiX

Unified Extensible Firmware Interface Specification

XX

Revision Revision History (numbers = Mantis ticket numbers) Date
24C 1162 Typo in ReinstallProtocollnterface() EFI 1.10 Extension section July 11, 2014
24C 1165 Option rom layout errata July 11, 2014
24C 1168 MTFTP Errata July 11, 2014
24C 1169 Errata - volatile networking variable cleanup July 11, 2014
24C 1170 Errata pxe bc api clarifiation July 11, 2014
24C 1172 EfiACPIMemoryNVS definition missing S4 July 11, 2014
24C 1173 EFI_IFR_NUMERIC Errata July 11, 2014
24C 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart January, 2015
24C 1182 Errata - UEFI URI Device path issue January, 2015
24 C 1184 errata - snp mode clarification January, 2015
24C 1185 errata - tcp api January, 2015
24C 1186 AArch64 binding clarifications and errata January, 2015
24C 1192 Cleanup GUID formatting issues January, 2015
24C 1194 Add EFI_IFR_FLAG_RECONNECT_REQUIRED January, 2015
24C 1198 EFI_ATA_PASS_THRU_PROTOCOL clarification January, 2015
24C 1200 Universal Flash Storage (UFS) Device Path January, 2015
24C 1205 Errata for Hii Set item January, 2015
24C 1209 Errata - UEFI networking API chapter 2.6 requirements January, 2015
24C 1211 EFI_LOAD_OPTION Definition January, 2015
24C 1244 sections of the spec misarranged January, 2015
24C 1257 Correct the typedef definitions for EFI_BOOT_SERVICES/ January, 2015
EFI_RUNTIME_SERVICES
24C 1287 Errata: EFI Driver Supported EFI Version not matching the spec January, 2015
revision
24C 1308 Fix typo's found in the final/published UEFI 2.4 Errata B spec January, 2015
25 1071 New EFI_HASH2_PROTOCOL February, 2015
25 1090 ESRT: EFI System Resource Table and component firmware February, 2015
updates
2.5 1091 Clarification of handle to host FMP February, 2015
25 1103 Longer term New CPER Memory Section February, 2015
2.5 1109 Smart Card Reader February, 2015
25 1121 IPV6 support from UNDI February, 2015
25 1147--REDACT February, 2015
25 1163 Inline Cryptographic Interface Protocol proposal February, 2015
2.5 1166 hash 2 protocol errata February, 2015
25 1158 errata - boot manager clarification February, 2015
2.5 1159 Proposal for System Prep Applications February, 2015
25 1167 Persistent Memory Type support February, 2015
25 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart February, 2015

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date
25 1183 New Protocol with 2 Function for PKCS7 Signature Verification February, 2015
Services
25 1186 AArch64 binding clarifications and errata February, 2015
25 1191 Add new SMBIOS3_TABLE_GUID in February, 2015
EFI_CONFIGURATION_TABLE
2.5 1199 Add NVM Express Pass Thru Protocol February, 2015
25 1201 Exposing Memory Redundancy to OSPM February, 2015
2.5 1204 new UEFI USB Function 1/0O Protocol addition to the UEFI spec February, 2015
2.5 1212 UEFI.Next feature - HTTP API February, 2015
2.5 1213 UEFI.Next feature - HTTP helper API February, 2015
25 1214 UEFI.Next feature - HTTP Boot February, 2015
2.5 1215 UEFI.Next feature - DNS version 4 February, 2015
25 1216 UEFI.next feature - DNS version 6 February, 2015
2.5 1217 UEFI.Next feature - WIFI| support February, 2015
25 1218 UEFI.Next feature - EAP2 Protocol February, 2015
2.5 1219 UEFI.Next Feature - UEFI TLS API February, 2015
25 1220 UEFI.Next feature - Bluetooth February, 2015
2.5 1221 UEFI.Next feature - REST Protocol February, 2015
25 1222 UEFI.Next feature - BMC/Service Processor Device Path February, 2015
2.5 1223 UEFI.Next networking features - chapter 2.6 requirements February, 2015
25 1224 UEFI.Next - Adding support for No executable data areas February, 2015
25 1227 UEFI.Next feature - Platform recovery February, 2015
25 1234 UEFI.Next feature - Smart card edge protocol February, 2015
25 1244 sections of the spec mis-arranged February, 2015
2.5 1251 EFI_REGULAR_EXPRESSION_PROTOCOL and February, 2015
EFI_IFR_MATCH2 HIl op-code
2.5 1254 SD Device Path February, 2015
25 1255 UFS Device Path Node Length February, 2015
25 1257 Correct the typedef definitions for EFI_BOOT_SERVICES/ February, 2015
EFI_RUNTIME_SERVICES--Reiterate
25 1263 Customized Deployment of Secure Boot February, 2015
2.5 1266 UEFI.Next Feature - IP_CONFIG2 Protocol February, 2015
25 1268 RAM Disk UEFI Device Path Node February, 2015
25 1269 Configuration Routing Protocol and Configuration String Updates February, 2015
25 1287 Errata: EFI Driver Supported EFI Version not matching the spec February, 2015
revision
2.5 1288 The Macro definition conflict in February, 2015
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute() in UEFI 2.4 B
25 1303 Update the UEFI version to reflect new revision February, 2015
25 1304 Add IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE to FMP | February, 2015
Check image

Version 2.5 Errata A

January, 2016

XXi

Unified Extensible Firmware Interface Specification

Revision Revision History (numbers = Mantis ticket numbers) Date

25 1308 Fix typo's found in the final/published UEFI 2.4 Errata B spec February, 2015

25 1309 Disallow EFI_VARIABLE_AUTHENTICATION from Secure Boot April, 2015
Policy Variables

25 1339 Errata in section 7.2.3.2 Hardware Error Record Variables April, 2015

25 1341 DNS4 - friendly amendment to be reviewed by USWG April, 2015

25 1342 DNS6 - friendly amendment for review by USWG April, 2015

25 1345 EFI_USB2_HC_PROTOCOL Errata April, 2015

25 1346 Mantis 1288 Errata April, 2015

25 1347 Boot Manager Policy Errata April, 2015

25 1348 ERRATA - Section 10.12 April, 2015
EFI_ADAPTER_INFORMATION_PROTOCOL Custom Types

25 1350 Keyword Strings Errata April, 2015

25 1352 Errata for 1263 and 1227

2.5 1353 SATA Device Path Node Errata April, 2015

25 1358 v2.5 amendment and v2.4 errata (missed implementation of Mantis April, 2015
1089)

25 1360 Vendor Range for UEFI memory Types April, 2015

25 1362 HTTP boot typos/bugs April, 2015

2.5 1364 Extend supplicant data type for EAP April, 2015

2.5Errata A November, 2015

2.5 Errata A | 1209 UEFI networking API chapter 2.6 requirements errors November, 2015

2.5 Errata A | 1363 Short form URI device path November, 2015

2.5 Errata A | 1365 7.4 Virtual Memory Services lists Section 2.3.2 through Section 2.3.4. | November, 2015
incorrectly

2.5 Errata A | 1381 Remove informative content in 12.6.1 November, 2015

2.5 Errata A | 1388 Missed memory type fixes November, 2015

2.5 Errata A | 1398 Errata update to the runtime GetVariable operation documentation November, 2015

2.5 Errata A | 1399 Clarification for November, 2015
EFI_BROWSER_ACTION_REQUEST_RECONNECT

2.5 Errata A | 1405 Errata in table 271 in Appendix O November, 2015

2.5 Errata A | 1407 Networking errata - EFI_HTTP_STATUS typos November, 2015

2.5 Errata A | 1410 Clarifications in appendix O November, 2015

2.5 Errata A | 1417 Add HttpMethodMax to EFI_ HTTP_METHOD enum November, 2015

2.5 Errata A | 1418 Inconsistent issues in DNS November, 2015

2.5 Errata A | 1419 Supplicant protocol using same GUID as TLS protocol November, 2015

2.5 Errata A | 1420 GetNextHighMonotonicCount clarification November, 2015

2.5 Errata A | 1421 Misc HTTP API typos November, 2015

2.5 Errata A | 1424 Incorrect link in Section 22.1 FMP Getlmagelnfo() November, 2015

2.5 Errata A | 1426 UEFI 2.5 typo November, 2015

2.5 Errata A | 1441 UEFI2.5 errata — UNDI Protocol Clarification November, 2015

XXii

January, 2016

Version 2.5 Errata A

Revision Revision History (numbers = Mantis ticket numbers) Date

2.5 Errata A | 1451 Memory Map Consistency November, 2015

2.5 Errata A | 1468 Errata on UEFI Supplicant protocol November, 2015

2.5 Errata A | 1469 UNDI Errata - add more statistics November, 2015

2.5 Errata A | 1472 ATA Pass Thru Errata November, 2015

2.5 Errata A | 1476 Update to Indicate that CloseEvent Unregisters Corresponding November, 2015
Protocol Notification Registrations

2.5 Errata A | 1477 Allow CloseEvent to be called within the Notification Function November, 2015

2.5 Errata A | 1481 new network config2 protocol data structure has a magic number November, 2015

2.5 Errata A | 1496 Bad table reference in 13.2 November, 2015

2.5 Errata A | 1501-Define the usage of the "Address Space Granularity" field is defined | November, 2015
in the PCI Root 10

2.5 Errata A | 1502 PCI 10 Define how to use the Address Translation Offset for systems | November, 2015
that are not mapped 1:1

2.5 Errata A | 1507 Insufficient qualification of page attributes for AArch64 November, 2015

2.5 Errata A | 1508 Lack of flexibility and realism in exception level choice when calling November, 2015
runtime services

2.5 Errata A | 1522 AArch64 bindings Alignment bit errata January, 2016

Version 2.5 Errata A

January, 2016

XXiii

Unified Extensible Firmware Interface Specification

Contents
1

INtrodUCtioN....... et r e e 1
1.1 UEFI Driver Model EXIENSIONSuuuuiiiiiiiiiiiiiiiiiiiietieeee ettt ee e e e e e e e e e e eeeeeeeeeeeeas 1
TL2 OVEBIVIEW ...ttt ettt e e e e e e e e et ettt e e e e eeeeeeeesetaa e eeaeaeeeeasstaaaaaeaaeaeeresnsnnns 2
LR € To Y= | TSSO RUPPRUPPIRPPRRN 6
1.4 Target AUIENCE.......eiiiiiiieee ettt e e e e e e e e e e e e e e ba e e e e e e e eaas 8
1.5 UEF] DESIGN OVEIVIEW.......uuuuiiiiiiiiiiiiiiiiiiitiittiiutusesseesveessssssssssesesesssssseeesseeeeeeeeeesseeseeeeeeeeeees 8
(SRS 1= o I B 1= g 1Y (o o 1= RSP 9
1.6.1 UEFI Driver Model GOalScccuiiiiiiiee et 10

1.6.2 Legacy Option ROM ISSUESuuiiiiiiiiiiiiiiiieee et 10

1.7 Migration REQUIFEMENTSuuiiiiiiiiiii e 11
1.7.1 Legacy Operating System SUPPOrtooooiiiiiiiiie e 11

1.7.2 Supporting the UEFI Specification on a Legacy Platform 11

1.8 Conventions Used in this DOCUMENT..........ooiiiiiiiiiiiee e 11
1.8.1 Data Structure Descriptionscoooviiiiiiiiiiiiiei e 11

1.8.2 Protocol DeSCHPONS ...cooovviiiiiiieieeeeeee e 12

1.8.3 Procedure DesCrPliONSooiveviiiiiiiiiee e 12

1.8.4 INStruction DeSCrIPIONSccvvveiiie e e e e 13

1.8.5 Pseudo-Code CONVENLIONSuueiiiiieiiiiiiiieeeee e a e e 13

1.8.6 Typographic CoNVENLIONScoiiiiiiiiiiiiiiiiiee e 13

1.8.7 NUMDEr fOrmMatsoooiiiiiiiiiiii 14

1.8.8 BiNary PrefiXes ... 15

2

L 3 = T 17
P = ToTo] 1Y = o =T [T SO PP PP RTPPPIR 17
2T UEFTIMAGES ...ttt e e a e e 18
2.1.2 APPLICALIONS ... 19

2. 1.3 UEFI OS LOAUEISeeiiiieeeiiiiieie ettt e e e e e e neneeeaaeeeeas 19
2.4 UEF] DIIVEIS .ttt ettt e e e e e e et e e e e e e e s snnnneeeaaeeeeas 20

P 10011V 1T O] - SRS 20
2.2 UEF]I SEIVICES ..o 20
2.2.2 RUNEIME SEIVICES ..o 21

2.3 Calling CONVENTIONS ...coiiiiiiiiiiee ettt e e e e e e e e e e e e e e anaeeeeee s 22
G T I D = = T I o = L N 23
2.3.2 IA-32 PIAtfOrmMS ...t a e 24
2.3.3 Intel® Itanium®-Based PIatformso.ooereeeeceeeeseeeeeeeeeeeeeeeeeseeee e, 27
2.3.4 XB4 Platforms .o 30
2.3.5 AAIrch32 Platforms ..o 34
2.3.6 AAIChB4 PIatfOrmMSooeiiiiiiiiiiieee e e e e e e e 37

B o) (oo] - PSSP 42
2.5 UEFI DriVEr MOGEIcooeeeeeeee ettt e e e e e et e e e e e e e s nnnaneeeee s 47
2.5.1 Legacy Option ROM ISSUEScciiiiiiiiiiiiiiiieee et 48

XXiV January, 2016 Version 2.5 Errata A

RS I B L AV a1 (= 1 =) (o) o T 50

2.5.3 HOSt BUS CONIIOIIEISooeeeiiieiieee ettt e e e e e e 52
2.5.4 DEVICE DIVEIS ..o 54
2. 5.5 BUS DIIVEIS. ..o 55
2.5.6 Platform Components ... 57
2.5.7 HOt-PIUG EVENES ...t 58
2.5.8 EFI Services BiNdiNg........ccoooiiiiiiii 58
B G T =T 81T =0 0= o € PPN 60
2.6.1 Required ElEmMENTS.....cccco i 60
2.6.2 Platform-Specific Elements ... 61
2.6.3 Driver-Specific EIemMents..........cooo i 64
2.6.4 Extensions to this Specification published elsewhere............c.cccooiiiiiiiiiiiiinnnnnes 66
3
Boot Manager ... 69
3.1 Firmware BOOt MANAGETooooiiiiiiiiiiieee et 69
3.1.1 Boot Manager Programmingooouiiiieeiieeiiie e 70
3.1.2 Load Option ProCessiNg........ccooiiiiiiiii e 71
3.1.3L0ad OPtioNS....cccoiiie 72
3.1.4 Boot Manager Capabilitiescooouiiiiiiiii e 74
3.1.5 Launching Boot#### Applications.............ueeeeiiiiiiiiiiiiiiiiieieeeeeeeee e 75
3.1.6 Launching Boot#### Load Options Using HOot Keyscceeveviiiiiiiiiiiiiiieces 75
3.1.7 Required System Preparation Applications............cccooiieiiiiiiiiiiiciie s 77
3.2 Boot Manager PoliCy ProtOCOL...........ooeuiiiiii e a e 78
3.3 Globally Defined Variables...........uuuiiiiiiiiiiieiiiieeeeeeeeeeee ettt 82
3.4 BOOt OPLION RECOVEIY ...ttt e e e e e as 87
3.4.1 OS-Defined Boot Option RECOVENYceviiiiiiiiiiiiieee e 88
3.4.2 Platform-Defined Boot Option RECOVENYccuviiiiiiiiiiiiiiiee e 88
3.4.3 Boot Option Variables Default Boot Behaviorooooeeiiiieeeeee, 89
3.5 BOOt MECNANISIMS ...ttt ettt ettt et e et e e e ettt e et e e et e e et e e e e aaaeeaaaaaaaaaaaaas 89
3.5.1 Boot via the Simple File Protocol ... 89
3.5.2 Boot via LOAD_FILE PROTOGCOL.......cuiiiiiiiiiiiiiiiie e 91
4
EFI System Table........oo s e 93
4.1 UEFIImage ENtry POINti it e e e e e e e eaanaas 93
4.2 EF1 Table HEAET ...ttt e e e s senseneeneneeas 94
4.3 EFI SYStem TabIecooiiii e 96
4.4 EF] BOOt SEIVICES TaDI@uuuiiiiiiiiiiiiiiiiiiiite et e e e e e e e e e e e e e e e e e e eaaaeaees 97
4.5 EFl Runtime Services Table ...t 102
4.6 EFI Configuration Table & Properties Tableuuevieiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeee e, 104
4.7 Image Entry PoOiNt EXAmMPIES......ccooiiiiiiiii et e e e eenes 107
4.7.1 Image Entry Point EXamples...........ooooiiiieeee e 107
4.7.2 UEFI Driver Model EXamPple.........coooviiiiiiiiieeeeeeeeeee e, 109
4.7.3 UEFI Driver Model Example (Unloadable) ... 110
4.7.4 EFI Driver Model Example (Multiple Instances)ccccceeiii, 111

Version 2.5 Errata A January, 2016 XXV

Unified Extensible Firmware Interface Specification

XXVi

GUID Partition Table (GPT) Disk Layoutccccoooriiiiiininiiniinniniininns 115
5.1 GPT and MBR disk layout COMPAriSONc.uuiiiiiiiiiiiiieie e 115
B2 LBA O FOMMaAt ..ottt e e e et e e e e e e e e e et eaeaaeeaanes 115
5.2.1 Legacy Master Boot Record (MBR)coooiiiiiiiiiii e 115
B.2.2 08 TYPES oo —————— 117
5.2.3 Protective MBR ... e 117
5.3 GUID Partition Table (GPT) Disk Layoutooeiiiiiiiiiiiiiiee e 119
B5.3.1 GPT OVEIVIBW. ...ttt ettt e e e e e e e e ettt e e e e e aeeeeeans 119
B.83.2 GPT HEAUENottt e e e e et e e e e e e e eeeeaas 122
5.3.3 GPT Partition Entry Array ... 124
Services — BOOt ServiCesommccciiiiiirrrr e 127
6.1 Event, Timer, and Task Priority ServiCes.......cccccciiiiiiiiii . 128
6.2 Memory AllOCAtioN SEIVICES........ouviiiiiiiieeieeeeeee e, 150
6.3 Protocol HAaNAIEr SEIVICESccoiiiiiiiiiiiee et e e e e eeae s 163
5.4 IMAQGE SEIVICES ..vviiiiiiieiiiieieeeeee ettt ettt ea e 210
6.5 Miscellaneous BOOt SEIVICEScooiiiiiiiiii e eeeeeeens 224
Services — Runtime Services ... 235
7.1 Runtime Services Rules and Restrictions..............uuieiiiiiiiiicc e, 236
7.1.1 Exception for Machine Check, INIT, and NMI. ..., 236
T.2Varable SEIVICES ...t e e e e e eeeaaas 237
7.2.1 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor (Recommended).....
247

7.2.2 Using the EFI_VARIABLE_AUTHENTICATION descriptorcccccevvvieeeennn. 249
7.2.3 Hardware Error Record Persistence ... 253
7.3 TIME SEIVICES ..ettuiiii ittt et e e e e e e e e e e eeee bt e e eeeaeeeeestaaaaeeaeeaeenenes 254
7.4 Virtual MEMOIY SEIVICESeeiiiiiiiiiiiiiii ettt e e a e 262
7.5 Miscellaneous RUNTIME SEIVICEScoiiiiiiiiiiiiiiiiie et 266
7.5.1 RESEE SYS M ... r e e e e e aeees 266
7.5.2 Get Next High Monotonic CoUNtuuuiiviiiiiiiiiiieeeeeeeeeeeeeee e 268
7.5.3Update CapSUIE ...ttt e e et e e e e e e e e e eeeeeees 270
7.5.4 Exchanging information between the OS and Firmware...........cccccoooiciiiieneenn. 278
7.5.5 Delivery of Capsules via file on Mass Storage deviceccccceeviiiiiiiieennenn. 280

7.5.6 UEFI variable reporting on the Success or any Errors encountered in processing
of capsules after restart ... 281
Protocols — EFl Loaded Image.......cc.coommmeiiiimmmeiiiimnssssirrmss s sssssss e ssmassas 285
8.1 EFI Loaded Image ProtOCOIcoeeeeiiiiii et e et e e e e e e eenes 285
8.2 EFI Loaded Image Device Path ProtoCol...........coceuiuiiiiiiiiiieeces e 288
Protocols — Device Path Protocolccooiciiiricrcrre e 291
9.1 DeViCe Path OVEIVIEW.........eeeiiii i e e e 291
January, 2016 Version 2.5 Errata A

0.2 EFI Device Path ProtOCOL..... ...ttt e e 291

9.3 Device Path NOAESooiiiiiiiieeeeee e 292
9.3.1 Generic Device Path StruCtUres...........ccuuiiiiiii e 293
9.3.2 Hardware Device Path ... 294
9.3.3 ACPI DEVICE PAthoeeiiiiiiiiiiieeieee et 296
9.3.4 ACPIl _ADR DeViCe Path.........uviiiiiiiiiiciieieee et 299
9.3.5 Messaging Device Path ... 299
9.3.6 Media Device Path ... 326
9.3.7 BIOS Boot Specification Device Pathccoooiiiiiiiiiiiiias 330

9.4 Device Path Generation RUIES..........oooiiiiiiiiiiiii 331
9.4.1 HouseKeeping RUIES ..o 331
9.4.2 Rules with ACPI _HID and _UIDccuuiiiiiiiei e 332
9.4.3 Rules With ACPI _ADR....... et e e 332
9.4.4 Hardware vs. Messaging Device Path Rules...........ccccooiiiiiiiiiiicci e, 333
9.4.5 Media Device Path RUIES ... 333
9.4.6 Other RUIES ... e 334

9.5 Device Path Ulilities ProtoCol..........coooevviiiiiiiiiiiii 334

9.6 EFI Device Path Display Format OVErvIEWcccooiiiiiiiiiiiieiiiieeeeee e 343
9.6.1 DeSIgN DiSCUSSION......ciiiieiieeiitiie e et e e e e r e e e e e e e e e eeearaareeeaaeeeennnns 343
9.6.2 Device Path to Text ProtoCol...........ooooiiiiiiiio e 362
9.6.3 Device Path from Text Protocol ... 365

10

Protocols — UEFI Driver Model ... 369

10.1 EFI Driver Binding ProtOCOL...........ouuuiiii e e e e ee e 369

10.2 EFI Platform Driver Override ProtoCol ... 391

10.3 EFI Bus Specific Driver Override ProtoColuueuiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 398

10.4 EFI Driver DiagnostiCS ProtOCOLuuiiiiiiiiiiiieiie e 401

10.5 EFI Component Name ProtOCOluuuuiiuiiiiiiiiiiiieeiieeeieees 405

10.6 EFI Service Binding ProtoColuuuuiiiiiiiiiiiiiiiiieieiieeieeeeee e eee e e e eeeeeeees 410

10.7 EFI Platform to Driver Configuration Protocol...............eeuviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 420
10.7.1 DMTF SM CLP ParameterTypeGuidccceeeiiiiiiiiiiiieieeeiiiieee e 426

10.8 EFI Driver Supported EFl Version Protocol ... 428

10.9 EFI Driver Family Override ProtoCOl ... 428
T0.9.1 OVEIVIEW ..ottt ettt e ettt e e e e e e sttt e e e e e e e e s e e e e e e e e e ennneeeees 428

10.10 EFI Driver Health ProtoCol e 431
10.10.1 UEFI Boot Manager Algorithmsccoooiiiririiici e, 440
10.10.2 UEFI Driver AlgOrithms ... 445

10.11 EFI Adapter Information ProtoCol................uuuuiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeee e 446

10.12 EFI Adapter Information Protocol Information Types........cceevevvviiiiiviiiiiiiiiieiiieeieeeee, 453
10.12.1 Network Media State..........oooueiiiiiiie e 453
10.12.2 NetWOrk BOOL......coeiiiiiiiiiiiiiiiiieeee e 454
10.12.3 SAN MAC AAAIESS ...eeiiiieeeieiiiiiiiee et e e e e e s s e e e e e e e e nnnaeees 455
10.12.4 IPV6 Support from UNDI........oooooriiiii e, 455

1
Protocols — Console SUPPOrt ... e e 457
11.1 CoNSOIE 1/O ProtOCOI ...ttt e e e e e e e e e e 457

Version 2.5 Errata A January, 2016 XXVii

Unified Extensible Firmware Interface Specification

1 P O T =T = PP 457
11.1.2 Consoleln Definitioncoooiiiiiiiiiee e 457
11.2 Simple Text INput EX ProtOCOL............uuuiiiiiiiiiiiiiiiiiiieeiieeeeeeeeee e e e e e e e e e 459
11.3 Simple Text INput ProtoCOI............uu et e e e e e e e e eeeeeas 468
11.3.1 ConsoleOut or StandardError ..., 471
11.4 Simple Text OUtPUL ProtOCOLueiiiiiiiiiiiiiiiiiiiiiee et e e e e eeeeeeeeeeeees 472
11.5 Simple POINTEr ProtOCOIuuuiiiiiiiiiiiiiiiiiiiiretieee e ee e eeeee e e e e e e eeeeeeeeeeeeeeeeeeeeees 488
11.6 EFI Simple Pointer Device Pathsccccciiiiiiiiiiiiiieiiieeeeeeeeeeeeee e 493
11.7 Absolute PoiNter ProtOCOIuuuuiiuiiiiiiiiiiiiiiieiieeeeeeee e e e e e e eeeeeeeeeeas 496
11.8 Serial /O ProtOCOL........uuiei et e e e e e e e e e e e e e eeeeaes 502
11.9 Graphics OUIPUL ProtOCOL...........uuiiiiiiiiiie e e e e e e e eeeeeeees 513
11,91 BIEBUFFEE . a e e e e 514
11.10 Rules fOr PCI/AGP DEVICESccceeiiieiiieeeiee ettt 529
12
Protocols - Media ACCESS......ccciiiiimmnriiiriness s sssss s s s s sms s e nmnsas 533
12.1 Load File ProtOCOIuuuiiiieeeeeeeee et e e e e e eeans 533
12.2 Load File 2 ProtOCOL ... ittt e e et e et e e e e e e eeeeeeeeeees 535
12.3 File System FOrMaAL....... ...t e e e e e e e e e e e e e e e e e reeeeeeeeees 538
12.3.1 System Partitionoooiiiiii 538
12.3.2 Partition DISCOVEIYeeiiiiiiiiiiiiieee ettt 541
12.3.3 Number and Location of System Partitions.............cccccceiiiiiiii, 542
12.3.4 Media FOrmatscooooiiiiiiiiiiiiiii 543
12.4 Simple File System ProtOCOLuuiuuiiiiiiiiiiiiiiiiiieeeeieeesee e ee e e e e e e e e eeeeeeeeees 544
12.5 EF] File PrOtOCOL ...ttt e ee e e e e eeeeeeeeeeeeeeeeeees 547
(P2 SR =T o T=T = ToTo) A0S T U o] o oy A 576
L ST B 1= o =30 1@ IR o] Lo i SR 576
12.6.2 TAPE /O ProtOCOIc..ceviiiiiieieeeeeeeeeee et 576
12.6.3 Tape Header FOrmat...........ccooii i e 586
12.7 DiSK /O PrOtOCOIeeeiiieieieeeee ettt e e e e e e e e e e e nnneeeees 588
12.8 DiSK /O 2 PrOtOCOI ...oeeeeieieeeeeee ettt e e e e e e e e e e e e e nnnnnees 592
12.9 EFI BIOCK I/O PrOtOCOL.....uuui ittt e e e e et e e e e e e eeeenes 600
12.10 EF1 BIOCK 1/O 2 PrOtOCOL.......uiiiiiie ettt a e e e 610
12.11 Inline Cryptographic Interfaceoooiiiiiiii e 618
12.12 ATA Pass Thru ProtOoCOl ...ttt e e e e e e e ee e e e e 634
12.13 Storage Security Command ProtoColuuuiiiiiiiieiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 654
12.14 NVM Express Pass Through ProtocCol ..o 659
13
Protocols - PCI Bus SUPPOTrt ... rremss s s s e s s s e 673
S T B O I 2o To A =14 o (o T @ IS 0] o] o o] o PP 673
13.1.1 PCI Root Bridge /O OVEIVIEWcoovviiiiiiiiiiiiiiiiiiieeeeeeeee 673
13.2 PCI Root Bridge /0 ProtOCOLcooiiiiieeeeie et 678
13.2.1 PCI Root Bridge Device Paths ... 710
13.3 PCIDVEIr MOEL.... ..o et e e e e e eeeeaes 713
13.3.1 PCI Driver Initialization ... 714
13.3.2 PCl BUS DIIVEIS ...ttt e e e e e e e 716
13.3.3 PCl DEVICE DIIVEISuveiiiiee ettt a e e e e e e e e e e e e enneneees 721

XXViii January, 2016 Version 2.5 Errata A

13.4 EFI PCI /O ProtoColoooiiiiiieeee e 722

13.4.1 PCIDEVICE Ptueeiiiiieiiiieeee et 761
13.4.2 PCl Option ROMSouiiiiiieeeiieeeeee ettt e e e e e e e e e e e e 763
13.4.3 NONVOIALile STOrage.......ccoeiiiiiiiiiiiieie e 772
13.4.4 PCl HOt-PIUG EVENLSooiiiiiiiiiiiieeee e 773
14
Protocols — SCSI Driver Models and Bus Support........ccccccecceiiiiirrnnenees 775
14.1 SCSI Driver Model OVEIVIEWuuuiiiiiiiiiiiiiiiiiiiiiees 775
T4.2 SCSIBUS DIIVEISottt e ettt e e e e e e e e et e e e e e e e eeeeaes 776
14.2.1 Driver Binding Protocol for SCSI Bus Driversceevviiiiiiiiiiieeeee e 776
14.2.2 SCSI ENUMEIAtioNeeiiiiiiiiiiiiiie et 777
14.3 SCSI DEVICE DIIVEIS ..ottt e e e e e e e et e e e e e e e e nsaneeeaaeeeeeennnseeees 777
14.3.1 Driver Binding Protocol for SCSI Device Driversccccccoeiiii. 777
14.4 EF1 SCSI /O ProtOCOL ...ttt e e e e e e e e e e e e e e s 778
14.5 SCSI DEVICE PAthSuiiiiiiiiiii et e e e e e e e e e eeeeeeeeeeeeeeaeeeeeees 789
14.5.1 SCSI Device Path EXampleoooovviviiiiiiiii, 789
14.5.2 ATAPI Device Path EXamplecooouiiiiiii e 790
14.5.3 Fibre Channel Device Path Exampleccccccccc . 791
14.5.4 InfiniBand Device Path Example............ccooii 792
14.6 SCSI Pass Thru Device Paths ... 793
14.7 Extended SCSI Pass Thru ProtoCOl.............uuuiiiiiiiiiiiiiieiiiieieeeeeeeeeeeeeeee e 795
15
Protocols - iSCSIBOOt ... e e 817
T5.1 OVEIVIEBW ...ttt et e e e e e e e ettt e e e e e e e e e e eae bt eeeaeaeseeesttaaaaaeaaeeeeneens 817
15.1.1 iSCSI UEFI Driver Layeringceeeieiiiiiiiiieieeee e 817
15.2 EF1 iSCSI Initiator Name ProtoCol...........ooouiiiiiiieee e 817
16
Protocols — USB Support.........ecciirnirrrrsessssssss s e e s s e s enmnnas 821
16.1 USB2 Host Controller ProtoCOIuuuiiiiiiiiiiiiiiiiiiieeiiieeeeeeeeeeeee e e e e eeeeeeeeeeeees 821
16.1.1 USB Host Controller Protocol OVErview.............oooiiiieiieiiieiiiiiiieeee e 821
16.2 USB DIiVEI MOUEI ..ottt e e e e e e e e e e e 856
TB.2.7 SCOPE ettt e et e et e aaaaaaaas 856
16.2.2 USB BUS DIIVET ... e 857
16.2.3 USB DEVICE DIVEN ..ottt 858
16.2.4 USB 1/0O ProtOCOL.........uuiiiiiee ettt a e 859
16.3 USB FUNCHON ProtOCOL........eiiiiiiiiiiiieeeee e 887
17
Protocols - Debugger SUPPOrtccoviiiiiiiiiiinnnnsie e 921
T7.1 OVEIVIEBW ...ttt e e e e e e e e ettt e e e e e e e e e e eeatb b aeeaaseeeeeees 921
17.2 EF1 Debug Support ProtOCOLuuuuuuiiiiiiiiiiiiiiiiiieeeieeeeseees 922
17.2.1 EFI Debug Support Protocol Overviewccccccoeeiiei, 922
17.3 EF1 Debugport ProtOCOIcoo ot e e e e e e e e e eenes 940
17.3.1 EF1 Debugport OVEIVIEWuuiiiiiiiiiiiee et 940
17.3.2 Debugport Device Pathuuiiiiiiiie e 945

Version 2.5 Errata A January, 2016 XXiX

Unified Extensible Firmware Interface Specification

17.3.3 EF1 Debugport Variable............cooovieeiiiiies e 946
17.4 EF1 Debug SUPPOrt TADIEuuiuuiiiiiiiiiiiiiiiiiiiiiireiieeeeeeee e eeeeeee e e eeeeeseeeeeeeeeeeeeeeeees 947
A T =T V= SRR 947
17.4.2 EF1 System Table LOCationooooiiiiiiiiiiiie e 948
17.4.3 EF1IMAage INfO....ooieeee e 948

18
Protocols - Compression Algorithm Specificationccccccceceiiiiiinneeee. 951
18.1 AIGOrthm OVEIVIEW ..o a e e 951
RS T2 = = o 0 = | 952
RS T T = 11 O o [T PP PRRPRPPP 952
18.2.2 OVerall STrUCIUIEeeeiiiiiieee e 953
18.2.3 BIOCK STIUCIUIE ...t e e e e e 954
18.3 COMPIrESSOr DESIGNuuiuiiiiiiiit et e e e e e reeeeeeesssseeesssesssesseeeseeeseeeeeeeeeeaeeeeeees 957
18.3.1 OVErall PrOCESS ..cceiiiiiiiiiiiieeeeeee et 957
18.3.2 SHHNG INTO LOG i 958
18.3.3 Huffman Code Generationcovvvvviiiiiiiiieeee e, 961
18.4 DeCOMPIeSSOr DESIGNuuuuuuiiiiiiiiiiitiitiieet ettt et eee ettt e et e e et e et e et eeeeeeeeeeeeeeeeeeeees 963
18.5 Decompress ProtOCOL....... ettt e e e e eees 964

19
Protocols - ACPI Protocols..........cccciiiiiiiiininissssssssesesseeessee e 969

20
Protocols - String Services.........cciiiirrrr s 973
b4 0 I W a1 eTeTo [@7a] | F= 11T] o TN o o] (o Yo o 973
20.2 Regular EXpression ProtOCOI ...t 981
20.2.1 EFI Regular Expression Syntax Type Definitionsccoovevviiiiiiiiiiiennenn. 986

21
EFI Byte Code Virtual Machine.........cooeeeiiiiiiicceerrrrces e 987
D2 g B O A= o = 987
21.1.1 Processor Architecture Independencecccoooiooiiiiiiiiiees 987
21.1.20S Independent ... —— 988
21 1.3 EFI Compliant ... —————— 988
21.1.4 Coexistence of Legacy Option ROMSccoooiiiiiiiiiiiiii s 988
21.1.5 Relocatable IMage ... 988
21.1.6 Size Restrictions Based on Memory Availablecccocoiiiiiiiiiiiiiiiiieeeee, 988
A IV V[T 0 g o]V @ o [= T4 T o Vo PP PRPPP PP 989
21.3 Virtual Maching RegiSerscoovviiiiieiie e e e e e eeees 989
b I N = (0 = o [T 990
A T T = T SRR 991
21.4.2 Bits Assigned to Natural UnitS............cuuiiiiiiiiiii e 991
21.4.3 CONSIANT ... e 991
21.4.4 Natural Units ... e 992
21.5 EBC Instruction OPErandsuuuuuiuiiiuiiiiiiiiiiiiisieeeeeeeeereeeeeeeeeeereeeeeeeereeeeeeeeeereeeesees 992
21.5.1 DireCt OPErandsccoiiiiiiiii i 992
21.5.2IndireCt OPErands..........coooooiiiiiiiiiii e 993

XXX January, 2016 Version 2.5 Errata A

21.5.3 Indirect with Index Operandsccoooiiiii i 993

21.5.4 Immediate OPerands............ooooiiiiiiiiiiiiii e 993
21.6 EBC INSTrUCHiON SYNTAXuuviiiiiiiiiiiiiiiiiiiiiiiiiiieei e eee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 994
21.7 INStruction ENCOGING ...ccoiiiiiiiiiieee et e e e 994
21.7.1 Instruction Opcode Byte ENCOAINGuvviiiiiiiiiiiiiiiieee e 994
21.7.2 Instruction Operands Byte ENCOAING........ccooiiiiiiiiiiiiiiiiiiieeeeeeeeee e 995
21.7.3 Index/Immediate Data ENcodingcccooiiiiiiiiiiiiicc 995
21.8 EBC INSIUCLION Set.....coeeeieeieee e e e e e 996
21.9 Runtime and Software ConVentionscoooiiiiiiiie e 1043
21.9.1 Calling OULSIAE VM ...ttt 1043
21.9.2 Calling INSIAE VMcooiiiiiieeeee et 1043
21.9.3 Parameter PasSiNg......ccouiiiiiiiiiii s 1043
21.9.4 Return ValUBS ... 1043
21.9.5 Binary FOrMaAL........uuuoiii it e e e e e e e e e eeees 1043
21.10 Architectural REqUIrEMENTES.........couiuiiiii e eeeeees 1043
21.10.1 EBC Image ReqUIrEMENTScooiiiimiiiiiiieiiieeeeee et 1043
21.10.2 EBC Execution Interfacing Requirements.............cccccoiiiiiiieieiniiiieeenn 1044
21.10.3 Interfacing Function Parameters Requirements..............ccceevveiiiiiiiiiinennn. 1044
21.10.4 Function Return RequUIremMentsooovuuiiiiiiiiiiicceeecs e 1044
21.10.5 Function Return Values Requirementscccovvreiiiiii e 1044
21.11 EBC Interpreter ProtOCOL...........uuuiiiiiiiiiiiiie ettt a e 1044
b2 W I = = T O I Yo] USRS 1050
21.12.1 EBC C COMPIIETeiiiiieiiceeeee ettt e e e e e aeeaaas 1050
21.12.2 C Coding ConVENtiONccoeeiiiieiie e 1050
21.12.3 EBC Interface Assembly Instructions................cooeeiiiiiiiei e, 1051
21.12.4 Stack Maintenance and Argument Passingccooooiiiiiiiiiiiicciiccccccnns 1051
21.12.5 Native to EBC Arguments Calling Conventionccccvvvieeeieiniiiinineenen. 1051
21.12.6 EBC to Native Arguments Calling Conventionccccvvveveiiiniiiiiieeeen. 1051
21.12.7 EBC to EBC Arguments Calling Convention..........cccccooviiiiiiieieiiiiiiiiieeeenn. 1052
21.12.8 FUNCLION REIUMS ... 1052
21.12.9 Function Return Values............oooiiiiiiiii e 1052
21.12.10 TRUNKING oottt e e e e e e e e e e e e e e e e e e nnnaeeees 1052
211211 EBC LINKET ...ttt a e e e 1054
21.12.12 1MAGE LOAAETeiiiiiiiiiiiee et 1055
21.12.13 DebUG SUPPOI ... 1055
b2 I R I VA B ==Y o3 i o TN F=T T |1 Vo P 1055
21.13.1 Divide By 0 EXCEPLIONeeeeiieiieeeeeeeeee e 1055
21.13.2 Debug Break EXCEPLIONc.uvveiiii i 1055
21.13.3 Invalid Opcode EXCePioncooiiiiiiiiiiiii e 1056
21.13.4 Stack Fault EXCEPiONooooiiii e 1056
21.13.5 AlIgNMment EXCEPLION ..o 1056
21.13.6 Instruction Encoding EXCeption...........coovviiiiiii i 1056
21.13.7 Bad Break EXCEPiON......cooceeiiiiie et 1056
21.13.8 Undefined EXCEPLiON ..o 1056
21.14 Option ROM FOIMALSuuuiuiiiiiiiiiiiiiiiiiiieiiieeie ettt et ee e e e e e e e e e eeeeeeeeeeeeeaaeeeaeeaaaees 1056
21.14.1 EFI Drivers for PCI Add-in Cardscooooiiiiiiiii e 1057
21.14.2 Non-PCl BUS SUPPOI ... 1057

Version 2.5 Errata A January, 2016 XXXi

Unified Extensible Firmware Interface Specification

22
Firmware Update and Reporting ... 1059
221 Firmware Management ProtoCol.............ooiiiiiiiiiiiee e 1059
22.2 Delivering Capsules Containing Updates to Firmware Management Protocol 1078
22.2.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID......cccccevviirrreennnn. 1078
22.2.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE
STRUGCTURE ...ttt et e e e e e e et a e e e e e e e snnrneeeeeeeeaanns 1079
22.2.3 Firmware Processing of the Capsule Identified by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID.........ccccocvvvveeeeinnnee 1083
22.3 EF1 System Resource Tableooouiiiiiiiii e 1085
22.3.1 Adding and Removing Devices from the ESRTccoooiiiiiiiiiiiiiic, 1087
22.3.2 ESRT and Firmware Management Protocolc..coooiii . 1088
22.3.3 Mapping Firmware Management Protocol Descriptors to ESRT Entries 1088
23
Network Protocols - SNP, PXE, BIS and HTTP Boot..........ccceeeirenirnnnnns 1091
23.1 Simple Network ProtOCOIuuuuiiiiiiiiiiiiiiiiieeieee e a e 1091
23.2 Network Interface Identifier ProtoCol...........oooiiiiiiiiiiie e 1118
23.3 PXE Base Code ProtOCOL..........uuuuuiiiiiiiiiiiiiiieiiie ettt e e e e e e e e e e eeaaaes 1121
23.3. 1 NEbBOOB.......ccoieeeee e 1160
23.4 PXE Base Code Callback ProtoColccouiiuiiiiiiiieiiiiiiiiieeee e 1166
23.5 Boot Integrity Services ProtoCol............uuuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 1168
23.6 DHCP options for ISCSI ON IPVB..........uuuuuiiiiiiiiiiiiiieeiieiiiesieeeeseeessseesseeesseeseeereseseee—. 1207
DA T A o I I = = To o | PRSP 1207
23.7.1 BOOt from URL ... 1207
23.7.2 Concept configuration for a typical HTTP Boot scenariocccccceeeunnnnee. 1209
23.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical
HTTP BOOt SCENAIOccoeeeeieee e 1210
23.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in
Corporate ENVIFONMENT)oiiiiiiiiiie e 1213
23.7.5 Concept of Message Exchange in HTTP Boot scenario (IPV6) 1216
24
Network Protocols — Managed Networkceeceiiiiiimimmccmcccsnnneeneeees 1219
24 .1 EFlI Managed Network ProtoColoeiiiiiiiiiie e 1219
25
Network Protocols — VLAN, EAP, Wi-Fi and Supplicant 1239
25.1 VLAN Configuration ProtOCOuuuiiiiiiiiiiiiiiiieieeeeeeeeeeee e ea e e 1239
DA T = N el o o] (o Yo o PP 1243
25.2.1 EAPManagement ProtOCOL...........coiiiiiiiiiiiii et 1248
25.2.2 EFI EAP Management2 ProtoColoouiiiiiiiiiieii e 1262
25.2.3 EFI EAP Configuration Protocol..............oooooiiiiiiiii i 1264
25.3 EFIl Wireless MAC Connection ProtoColc.uuviiiiiiiiiiiiiiieeeee e 1269
25.4 EF| SUPPICANT ProtOCOIuuuiiiiiiiiiiiiiiiiiiiiiiiiee et ee eaaeeaaaaaas 1294
25.4.1 Supplicant Service Binding Protocoloooi oo 1294
25.4.2 Supplicant ProtoCOlooo oo 1295

XXXii January, 2016 Version 2.5 Errata A

26

27

28

Network Protocols - Bluetooth..............coreerree e, 1309
26.1 EFI Bluetooth Host Controller Protocolcooiiiiiiiiiiiiec e 1309
26.2 EF1 Bluetooth BUs ProtoCol...........oouuuiiiiiiieecee e 1322
26.3 EFI Bluetooth Configuration ProtocCol.............ccccuveiiiiiiiiiiiieeeeeeeeee e 1340
Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations ... 1361
271 EFI TCPVA ProtOCOLcoviiieiiie ettt e e aaeeees 1361
27.1.1 TCP4 Service Binding Protocol..............ooooiiiiiiii i 1361
27.1.2 TCPA ProtOCOL.......eeeiiiiie ettt e e e e e e e e nneeeeeeas 1362
27.2 EF1I TCPVB ProfOCOl ...ttt e e e e et e e e e e e e nneeeees 1388
27.2.1 TCPv6 Service Binding ProtoCol.............oooiiiiiiiiiiiiieeeeeeeee 1388
27.2.2 TCPVEB ProtOCOLuueeiiiiie et 1390
27 .3 EFIIPVA ProtOCOIcoviiiiei ittt e a e 1414
27.3.1 IP4 Service Binding Protocol............coooooiiiiiiii e 1415
27.3.2 IP4 ProfOCOL......c ettt a e 1415
27.4 EF1 IPv4 Configuration ProtOCOL.............uuuuuiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee et 1437
27.5 EF1 IPv4 Configuration 1l ProtoCol...........cccoiiiiiiiiiiiieeee e 1443
27.6 EFTIPVE ProtOCOIcoovviiiiiiieeeeeeeecee et e aeeeees 1453
27.6.1 IPv6 Service Binding Protocol..............cooooiiiiiiii e 1454
27.6.2 IPV6 ProtOCOI.........eeieiiiieeeeieeee et 1454
27.7 EFIIPv6 Configuration ProtoCol.............uuuuiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 1481
B A T | =T o PEEPRP 1492
27.8.1 IPSEC OVEIVIEW ..covvuiiiii ittt e e e e e e e et e e e e e e e e e eaea it eeaaaaeas 1492
27.8.2 EFI IPsec Configuration ProtoCol ... 1493
27.8.3 EFIIPSEC Protocol ... 1513
27.8.4 EF1 IPSEC2 ProtoColcooooiiiiiii 1516
27.9 Network Protocol - EFI FTP ProtoCol............uuuuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 1520
27 10 EFI TLS ProtOCOIScoiiitieei ettt ettt e e e e e e e e ee e e e e e aaeeees 1537
27.10.1 EFI TLS Service Binding ProtoCol.............cooiiiiiiiiiiiiiieeeeceeeee e 1537
27.10.2 EFI TLS ProtOCOL....cciiiiiiiiiiieieee ettt e e e e 1538
27.10.3 EFI TLS Configuration Protocol ..., 1550
Network Protocols - ARP, DHCP, DNS, HTTP and REST.........ccccceeue.e.. 1555
28.1 ARP PrOtOCOI ...ttt e e e eaeaaeeees 1555
28.2 EF1 DHCPVA ProtOCOLttt e e 1569
28.3 EFI DHCPOG ProtoColcoiiiiiiiiiiieiiee et 1595
28.3.1 DHCPG6 Service Binding ProtocCol.............coooooiiiiiiiiiiccccccccccccccecc e 1595
28.3.2 DHCPB ProtOCOLeeiiiiiiiiiiiiiiiee e ettt e e e e e e e e e e e e nnneaeeeeas 1596
28.4 EF1 DNSVA ProtOCOI........uuuiiiiiie ettt e e e e e e e e e e e e e nnnneeees 1624
28.5 EFI DNSVE ProtOCOL........uuuiiieiiiieeeeee et et a e 1638
28.5.1 DNS6 Service Binding Protocol ..., 1639
28.5.2 DNSB ProtOCOIeeeiiieiiiiiiieiieie et 1639
28.6 EF1I HTTP ProtOCOIS ...ttt a e e e e e nneeeee s 1653
28.6.1 HTTP Service Binding ProtoCol..............ouiiiiiiiiiiceeeeeeeeee 1654

Version 2.5 Errata A January, 2016 XXXiii

Unified Extensible Firmware Interface Specification

28.6.2 EFI HTTP Protocol Specific Definitionscooooieiiiiiiiiiiccicccecc 1655
28.6.3 HTTP ULilities ProtOCOIuueiiiieeeeiieeeee e 1676
28.7 EF1I REST ProtOCOL.....cci ittt e e e e e e e e e e e e nneeeees 1679
28.7.1 EFI REST Protocol Definitions ... 1680

29
Network Protocols — UDP and MTFTP ... 1683
29.1 EF1 UDP ProtOCOL.....cccei ettt e e e e e e s e e e e e e e e nnneeeees 1683
29.1.1 UDP4 Service Binding Protocolooeiiiiiiiiiieeeeeeee e 1683
29.1.2 UDP4 ProtOCOIceeieiieiiiiiiiieee ettt e e e e e aeaeaas 1684
29.2 EF1 UDPVG ProtOCOL........uuuueiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee e eee e eeeeeeeeeeeeeeeeeeeeeeeeeeaaaeeeaeaeaeeees 1703
29.2.1 UDP®6 Service Binding Protocol ... 1703
29.2.2 EF1 UDPB ProtOCOL.....coieiiiiiiiiieee ettt 1704
29.3 EF1I MTFTPVA ProtOCOIueeiiiieeeieieieee ettt e e e e 1721
29.4 EF1I MTETPVE ProtOCOIueiiiiiiiiiiieiee ettt a e 1750
29.4.1 MTFTPG6 Service Binding Protocol ... 1751
29.4.2 MTFTPB ProtOCOIcccciiiiiiiiiiee ettt 1751

30
Secure Boot and Driver Signing ..o 1779
G0 T B 1= o1 0 = o o | APPSR 1779
30.2 UEFI Driver SigniNg OVEIVIEWuviiiiiiiiiiiiiieeeeee ettt a e aa e e e e e e 1784
30.2.1 Digital Signatures ... 1784
30.2.2 Embedded Signatures..............coooooiiiiiiii e 1786
30.2.3 Creating Image Digests from Images.........coooviiiiiiiiiiiiiiiieeeeee 1787
30.2.4 Code DefiNitioNSttt e e et eeeeeeeeees 1787
30.3 Firmware/OS Key Exchange: creating trust relationships................cccccccol. 1791
30.3.1 Enrolling The Platform KEYcccccciiuuiiiiiiiiiiiiiiiievvesvvssveeeseesssesseeeseesseeeees 1793
30.3.2 Clearing The Platform KeYuuuuuuuuuiiiiiiiiiiiiiieiiiervresressisessssssssesseeseseseeeee. 1794
30.3.3 Transitioning to AUdit MOAEcoiiiiiriecc e 1794
30.3.4 Transitioning to Deployed Mode ... 1794
30.3.5 Enrolling Key EXchange KeyYsccuuiiiiiiiiiiiiieec e 1794
30.3.6 Platform Firmware Key Storage Requirements...............uvvvevviviivviieeeeeeeeeennen. 1795
30.4 Firmware/OS Key Exchange: passing public Keyscccccceiiiiii, 1795
30.4.1 Signature Database ... 1795
30.4.2 Image Execution Information Tableooooiiiiiiiiii i, 1801
30.5 UEFI Image Validationccooiiii e 1803
30.5.1 OVEIVIEW ...ttt eeeeaeeeneeenneenssnnnnnnnes 1803
30.5.2 AULhOTIZEA USEI ...ttt s s eeeseeeseeeees 1804
30.5.3 Signature Database Update................oooooii oo 1804
30.6 Code DefiNItiONS......cceiiiiiieieee et 1809
30.6.1 UEFI Image Variable GUID & Variable Name.............ccooooiiiiiiiiiiciiiicccn, 1809

31
Human Interface Infrastructure Overview............occciinicccccccccnns 1811
K I T - | PP 1811
31.2 DeSigN DISCUSSIONcceeiiiiiiiii e e e et eereana e e eaeaaeenes 1812
31.2.1 Drivers And ApPlICAtioNS 1812

XXXV January, 2016 Version 2.5 Errata A

I Nt I e Yoz=1 [2= | (0] o [N 1819

G 2 B U 1= T= Y 1o 11 | RSP 1820
31.2.4 Keyboard LayOuUl..........coooriiiiiiiii ittt e e e e e e e e eenes 1821
K 225 T o 4 o - PSSP 1824
312,60 SHINGS .eeeiieiiiit ettt e e a e 1854
0 I A o o | £ SPSRRNE 1858
2 T [4= = 1864
31.2.9 HII DAtabaseouuiiiiiieiiiieieee ettt e e e e e 1865
31.2.10 FOIMS BrOWSEN ... 1865
31.2.11 Configuration SettiNgSccoiiiiiiiii e 1870
31.2.12 Form Callback LOGICuuuiiiiieiiiiiiiieiee e 1873
31.2.13 Driver Model INteractioncccccooiiiiiiiiiiiiieevieeevee e eeeeeeeeeees 1876
31.2.14 Human Interface Component Interactionsccccvvvvvveeeieviiieeeeeeeeeeeeeeeee. 1877
31.2.15 Standards Map FOmMS..........ooooiiiiii e 1878
K I B 0o o L= B = {1 0 T1 (o] o I ST 1882
31.3.1 Package Lists and Package Headerscccceeeiiiiiiiiiiiiiccceieee 1883
31.3.2 Simplified FONt PACKAQJEceeviiiiiiiiiieii e 1885
371.3.3 FONE PACKAGEeeeiiiiiiiiie ettt a e 1887
31.3.4 Device Path Package.........cooovreiiiiiiiii e 1898
31.3.5 GUID PACKAGEeveeeiiieeeiiiiiiiiie ettt e e e e e e e e nnaeaeeeeas 1898
31.3.6 StriNg Package........ccooiiiiiiiiiiiii e 1899
31.3.7 IMage PacCKagecoooiiiiiiiiiiiie s 1915
31.3.8 FOIMS PACKAJEceiiiiiiiiiiiie ettt 1931
31.3.9 Keyboard Package........cooooeiiiiieiiiiis et e e e 2006
31.3.10 ANIMations PacKagecoovveiiiiiiiii et 2006
32
L |1 o (0T o o) = 2019
32,1 FONE PFOTOCOL. ...ttt e e e e e e e e e e e e e e aaaa s 2019
32.1.1 Code DefiNItiONScoiiiiiiiieiie e 2029
32.2 SHNG PrOTOCOIuiiiiiiiiiiiiiiiitet ittt e e e e e e e e e e e ee aeaeeaaaaas 2032
32.3 IMAQGE PrOtOCOL ..o 2041
32.4 Database ProtOCOIeiiiiiiiieiiieeeee ettt e e e e e e e 2049
32.4.1 Database StrUCLUIESuuuiiiiiit et eseaeeeeseeeseeeseeeeees 2073
33
HIl Configuration Processing and Browser Protocol...............ccccceuueee. 2077
B0 Tt I [o1 Yo [[1o] o 1SS 2077
33.1.1 Common Configuration Data Format ..o 2077
33.1.2 DAt FIOW ...t e e 2077
33.2 Configuration SEHNGSueuiiiiiiiiiiiiieiieeee e ee e e e e e e e e e e e e e e e e e e aaaaaaes 2077
33.2.1 StNG SYNIAX ..o, 2077
33.2.2 SHNG TYPES ittt e e e e e e e e e e eean 2083
33.3 EFI Configuration Keyword Handler Protocolcccveiiiiiiiiniiiieeiee 2083
33.4 EFI HIl Configuration Routing Protocol...............ccoiiiiiiiieeee e 2089
33.5 EFI HIl Configuration ACCESS ProtOCOL............uvviiiiiiiiiiiiieiieeeeeeeeeeeeee e 2100
33.6 FOrm Browser ProtOCOIeeiiiiiiiiiiiiiiiiiiiiieee e 2111

Version 2.5 Errata A January, 2016 XXXV

Unified Extensible Firmware Interface Specification

34
User IdentifiCationc.ccciveiiiiiiiieirireire s rss s sassesssassesssnssanssnnsanssnnss 2119
34.1 User Identification OVEIVIEWcouuiiieieeee et e s 2119
34.1.1 USEr [AENTITY ... 2119
34.1.2 USEI PrOfilES.. .ot e e e e e s 2121
34.1.3 Credential ProViderS........... et 2122
34.1.4 Security Considerationscccoo i 2123
34.1.5 Deferred EXECULIONcouniieiiie ettt e e e e e naaaeees 2125
34.2 User 1dentification PrOCESSc.u i 2125
34.2.1 User [dentification ProCESSoiieiiiiieee e 2125
34.2.2 Changing The Current User Profile...........ccccuuviviiiiiiiiiiiiiiieeeeeieveeeeeeveeeeeeee 2126
34.2.3 Ready TO BOOLuuiii i e e e 2126
G Nl 070 To [N B L= i a1 (o) o 1T 2126
34.3.1 User Manager ProtOCOIcooiiiiiiiieiieee e 2126
34.3.2 Credential Provider ProtOCOISc..oiieiiiee e 2143
34.3.3 Deferred Image Load ProtoCol ... 2158
34.4 USer INFOrmMationoiiiiiiiiiiie ettt e e et e e e e e e e et e e e eeaan 2161
34.4.1 EFI_USER_INFO_ACCESS POLICY RECORDcccceiiiiiiiiiianns 2162
34.4.2 EFI_USER_INFO_CBEFF_RECORD.......ccccuuuuiiuiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee 2166
34.4.3 EFI_USER_INFO_CREATE_DATE _RECORDcuvvvviiiiieiieieeeeeeeeeeeeeeeeeee 2167
34.4.4 EFI_USER_INFO_CREDENTIAL PROVIDER_RECORD......cccccccvvvreveeeneee. 2167
34.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD 2167
34.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORDccottviiviieiiieeeeeeeeeeee, 2168
34.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD.........ccccccuuurnnn. 2168
34.4.8 EFI_USER_INFO_GUID RECORDuuuuiuiiiiiiiiiiiiniiieeieeeeeeeeeeeeeeeeeeeeeeeees 2168
34.4.9 EFI_USER_INFO_FAR RECORDuuuuiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeee 2169
34.4.10 EFI_USER _INFO_IDENTIFIER_RECORDctuvvvieeiievieeeeeeeeeeeeeeeeeeeeeeeeee 2169
34.4.11 EFI_USER _INFO_IDENTITY_POLICY_RECORD........ccccvvvvvvrireeeeeeeeeeeeee 2169
34.412 EFI_USER_INFO_NAME_RECORDcvuuuiiiiiiiiiiiiiiniieeeieeeeeeeeeeeeeeeeeeeeee 2171
34.4.13 EFI_USER_INFO_PKCS11_RECORD........cceoiiiiiiiiieei e, 2171
34.4.14 EFI_USER _INFO_RETRY_RECORDuuuutuuiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee 2172
34.4.15 EFI_USER_INFO_USAGE_DATE_RECORDcuuvvuviiiiiiiiiieeeeeeeeeeeeeeeee 2172
34.4.16 EFI_USER _INFO _USAGE_COUNT RECORD.......cccevvveeeeeeeereeeeeeeeeeeeeeee 2172
34.5 User INformation Tableooouuiiiii e e eaa 2173
35
Secure Technologies ... 2175
S I P2 =] O AV =T VL[T 2T 2175
35.1.1 HASh REFEIENCEScevieeee et 2175
35.1.2 Other Code DefinitioNS.........cooiiiiiiiiiee e 2179
35.2 HASh2 ProtOCOIS.o e e e e e e e e e e e e e e aaas 2181
35.2.1 EFl Hash2 Service Binding ProtocColccccuiiiiiiiiiiiiieceeeieee 2181
35.2.2 EFI HASh2 ProtOCOlccuuiiiiieie ettt et e n e naaeees 2182
35.2.3 Other Code DefinitioNSccuiiiieiiie e e e e ees 2193
35.3 Key ManagemMENt SEIVICEuiviiiiiiiiiiiiieeeeeeeeeeeee ettt e e e e e e aaaa e 2194
35.4 PKCST VErify ProtOCOI.......cueiiiiiiiiiieeeeeeeeeeeeeeee ettt 2233
35.5 Random Number Generator ProtoColoooouuiiiiiiieeieeeeeeeeee e 2242

XXXVi January, 2016 Version 2.5 Errata A

35.5.1 EFI RNG Algorithm Definitions.........ccccoiiiiiii e 2246

35.5.2 RNG REfEIENCESeeiiiiee ittt e e 2246
35.6
Smart Card Reader and Smart Card Edge Protocolscccccooiiiiiiiiiiiiiiiiiiiiiiiins 2247
35.6.1 Smart Card Reader ProtoCol..........ccooooiiiiiiiiiiiiiicciecee e, 2247
35.6.2 Smart Card EAge ProtOoCOIl ... 2259
36
Protocols— Timestamp Protocol............cccoociiiimmccirrccr s 2283
36.1 EFI TIMeStamp ProtOCOIoeiiiiiiiiiiiiieieeeeeeeeeeeeeee ettt 2283
Appendix A
GUID and Time Formats........ccccooimiieiiiiicciirrcecsrrree s s e 2287
Appendix B
0o 4 £ o - RS 2289
B.1 EFI_SIMPLE_TEXT _INPUT_PROTOCOL and EFI_SIMPLE_TEXT_INPUT_EX_PRO-
10 10 S SPRESPRRR 2289
B.2 EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.......cccoiiiiieeiiiiee e eieee e 2291
Appendix C
Device Path EXamples ... rr s rr e ee s e e e 2293
C.1 Example ComMPULEr SYSEM......uviiiiiiiieeeeeeeeeeeeee et 2293
(O Yo £ YoV Al (o] o] o)V PP P PP PPPPRPPUP 2294
CLBIDE DISK ...uvtiieeeitiie e ettt et e nnnneeeanes 2295
C.4 Secondary Root PCI Bus with PCl to PCI Bridge..........cuvviiiiiiiiiiiiiieeeeee e 2296
O O] o B =T 1 o o 1 SRS OUO R URURPPNt 2297
C.6 EFI Device Path as a Name Space...........covevviiiiiiiiiiiiiiiii 2298
Appendix D
Status CodesS. ...t e e e e 2299
Appendix E
Universal Network Driver Interfaces..........cccommrreccccii i ssssceecccee e 2303
B INtrodUCHION ... et e e 2303
E. 1.1 DEfiNitiONS .cooeeiiiieeee e 2303
E.1.2 Referenced Specifications ... 2304
E.1.3 OS NetWOork Stacks.......ccooooiiiiiiiiiiii e 2307
E.2 OVBIVIBW. ..ottt e e e e ettt e e e e e e e e e e e et eeeeaeeeeeaeraaes 2308
E.2.1 32/64-bit UNDI INterfacecoveiiiiiiee e 2308
E.2.2 UNDI Command FOrmatcoeiiiiiiiiiiiie e 2313
E.3 UNDI C DEfiNItIONS ...eeeeiiiiieeiiiiie ettt e e st a e e e e e ennne e e e e nnneeee s 2315
E.3.1 Portability MAcCIOSccoiiiiiiiiieee e 2315
E.3.2 Miscellaneous MacCIOScooeiiiiiiiiii et eeeeen 2318
E.3.3 Portability TYPESueeiiiiiiiiiee e 2318
E.3.4 SiMpIe TYPES ..o 2319
E.3.5 Compound TYPES....ccooi i 2332
E.4 UNDI COMMANGSuuiiiiiiieeeiiiiieiee ettt e e e sttt e e e e e e e et eeaae e e s ennnneeeeeeeeeeaannnes 2337
E.4.1 Command Linking and QUEUINGc.cueiiiiiiiiiiiiieiee e 2339

Version 2.5 Errata A January, 2016 XXXVii

Unified Extensible Firmware Interface Specification

E4.2GetState. ... 2340
B4 8 S art ..o 2342
Ed.4 S0P .o 2348
[1Y A o 1 1 (o R 2350
E.4.6 Get Config INfO......uuiiiiiii i 2353
N N A 1o 11 (= [Y 2355
B4 .8 RESEL....coeeeii e 2358
E.4.9 Shutdown ... 2360
E.4.10 Interrupt ENADIES........oo i 2361
E.4.11 ReCIVE FIEIS ..o e 2363
E.4.12 Station AdAresSsS.......uuuciiiiii e 2365
E.4.13 StatistiCS.. oo 2367
E4.14 MCast IPTOMAC ... 2370
E. 4 A5 NVDALa ... e 2372
E.4.16 Get Status.......oooooiiiiii 2374
E.4. 17 Fill HEAETo et e e e e e ee e 2376
[N I =T o =] | 2379
B4 1O RECEIVE ...c.eeeeeeee e et e e e 2382
E.4.20 PXE 2.1 specification wire protocol clarifications..............cccccceeeennnnn. 2384
Appendix F
Using the Simple Pointer Protocolcimmiccccii e ee e 2387
Appendix G
Using the EFI Extended SCSI Pass Thru Protocol.........ccccccanuecieiennnnes 2389
Appendix H
Compression Source Codeciiiiiiiimmnicrr s 2393
Appendix |
Decompression Source Codeccccciiiiemciiiiiecin e e 2421
Appendix J
EFI Byte Code Virtual Machine Opcode Listccoommrrieccciieiineeeees 2437
Appendix K
Alphabetic Function Lists......ccccccoiimimiiiiiiciircrre e 2441
Appendix L
EFI 1.10 Protocol Changes and Deprecation Listcccccceecciiieennnes 2495
L.1 Protocol and GUID Name Changes from EFI 1.10 ..., 2495
L.2 Deprecated ProtOCOIScouuiueiiii et e e s 2497
Appendix M
Formats--Language Codes and Language Code Arrayscceeeeeee 2499
M.1 Specifying individual language codesoooiiii i 2499
M.1.1 Specifying language code arrays:ccccoeeeeeei e ieiiececccee e 2499
Appendix N
Common Platform Error Record ... reeens e e e 2501
Nt I 1) o Yo [T) o 2501

XXXViii January, 2016 Version 2.5 Errata A

N T2 o 0 0 = | (T 2501

N.2.1 Record Header ... 2501
N.2.2 Section DESCIIPLOrccoiiiiiee e 2506
N.2.3 Non-standard Section Body ..o 2509
N.2.4 Processor Error SECONS..........ooooiiiiiiiii e 2509
N.2.5 Memory Error SECHONoocuiiiiiiiie e 2521
N.2.6 Memory Error SECtion 2. 2523
N.2.7 PCI Express Error Section...........cccooooiiiii e 2525
N.2.8 PCI/PCI-X Bus Error S€CtioNcccoeiiiiiiiiiiiii e 2527
N.2.9 PCI/PCI-X Component Error Section..............coooooiiiiiiiiiiiiieee 2528
N.2.10 Firmware Error Record Reference...............ccooo oo, 2529
N.2.11 DMAr Error SECHONS......ccoieeiiieeeeeeeeeee e 2529
N.2.12 Error StatUS.......oo e 2532
Appendix O
UEFI ACPI Data Table........cceuueiiiiiieeeceecccr s s es s s s e s e e e s e 2535
Appendix P
Hardware Error Record Persistence Usage.........ccccccciiimrreciiiineenssennenns 2539
e I 1= (=Y o T T o =T o = Lo = 2539
P.2 Saving Hardware €ITOr FECOIASciiiiiiiiiiiiiieee et 2539
P.3 Clearing error record variables ... 2539
Appendix Q
ReferenCes ...t e e 2541
Q.1 Related INfOrmMationeueiiiiiiieiieeeeeeeeeeeeeeee e 2541
Q.2 Prerequisite SPecCifiCatioNSeuuiiiiiiiiiieeeee e 2547
Q.2.1 ACPI SPeCification..........uueeiiiiiiiiiiiiiieiiieeeeee e 2547
Q.2.2 Additional Considerations for Itanium-Based Platforms 2547
Appendix R
GlOSSAIY ...coiiiiiiiiiiii i 2549

Version 2.5 Errata A January, 2016 XXXiX

Unified Extensible Firmware Interface Specification

xl

Table 1. Organization of the UEFI Specificationcouvevviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 2
JLIEZ Lo =TT o =Y PSSR 15
Table 3. BINArY PrefiXESciiiiiiiiiiiiatbaer et b aeabassaas s bsssssssssssssssssssssesssssssssressennsens 15
Table 4. UEFI IMage MemOrY TYPESoouuuuuiiiiieeeieeeetiiisee e e e e eeeeeetes s e e e e e e e e eaaanaan e e e e eeeeeennnnns 19
Table 5. UEFI RUNIIME SEIVICES.....cocoi it 21
Table 6. Common UEF] Data TYPEeScccueiiiiiiieeiiie et 23
Table 7. Modifiers for Common UEF| Data TYPesSccouviiiiiiiiiiiiieeiieeee e 24
Table 8. Map: EFI memory types to AArch64 memory typeseeeeeveeeeiiiiiiiiiieiiiiiieeeeeeee. 40
Table 9. UEFI ProtOCOIS ettt eeeeeeeeeeeseeeeeeeeeee 44
Table 10. Required UEFI Implementation Elements.............cooorriiiiiiii e, 60
Table 11. Global VariabIes.uu e e e e 83
Table 12. UEF] IMage TYPESuiiiiiiieeiiiiiee ettt e e 90
Table 13. Legacy MBR ... 115
Table 14. Legacy MBR Partition RECOId.............uuuiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 116
Table 15. Protective MBR ettt e e et e e e e e e e e e e e eeeeeees 117
Table 16. Protective MBR Partition Record protecting the entire diskcccccooooooiis 118
Table 17. GPT HEAUE ..ot e e e e e e e e e e e e e e e nneeeees 122
Table 18. GPT Partition ENtry ...t eeeeveeesseeeeeesseeseeeeeeeseeseeeeeees 124
Table 19. Defined GPT Partition Entry - Partition Type GUIDSccooviiiiiiiiiiiiiiniiiiiee, 125
Table 20. Defined GPT Partition Entry - Attributes ..., 125
Table 21. Event, Timer, and Task Priority FUNCHONSoooiiiiiiiiiie 128
BLIE=1 o) ST N IR U Vo 1= RPN 129
Table 23. TPL ReESCHONS........uuiiiiiiiiiiiii ettt e e e e e e e e e e e e eeeeeeeeeeees 129
Table 24. Memory Allocation FUNCLHONSoiii i e e 150
Table 25. Memory Type Usage before ExitBootServices () .cooviiieiieeiiiiiieeeeeeeeenneeen. 151
Table 26. Memory Type Usage after ExitBootServices () .ccccoiiiiiiiireiiieiiieieeeeeeeeeeeeen. 152
Table 27. Protocol Interface FUNCHONSuuiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 163
Table 28. Image Type Differences SUMMArYcuvviiiiiiiiiiiiiiiieieeeeeee e 211
Table 29. IMage FUNCLONSoiiiiiiii e e e e e e et e e e e e e eeeenes 212
Table 30. Miscellaneous Boot Services FUNCHONSccooiiiiiiiiiiiiiiiieeee e 224
Table 31. Rules for Reentry Into RUNtime ServiCes.........uuuuuiiiiiiiiiiiiiiiiiiiceiieeeeeeeeeeeeeeeeee e 236
Table 32. Functions that may be called after Machine Check ,INIT and NMI 237
Table 33. Variable Services FUNCLIONSuuuiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeee e 238
Table 34. Hardware Error Record Persistence Variablescccooo, 253
Table 35. Time Services FUNCHONS ..o 254
Table 36. Virtual Memory FUNCHIONSuueiii e e e e e e 262
Table 37. Miscellaneous RUNIME SEIrVICESuuuvviiiiiiiiiiiiiiiiiiieiiereeeeeeeeeeeeeee e eeeeeeeees 266
Table 38. Flag Firmware BEhavior................uuuuuuiiuiiiiiiiiiiiiiiiiiiiieeieeeeee et e e e e e eeeas 273
Table 39. Variables Using EFI_CAPSULE_REPORT_GUIDccccoevviiiiiiiiiieee e 282
Table 40. Generic Device Path Node StruCture.............ccccoee i 293
Table 41. Device Path End StruCture.............oooiiii i 294
Table 42. PCIDeVice Path............oooiiiie e 294
Table 43. PCCARD DeVice Pathuuuuiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee et e e e e e 295
Table 44. Memory Mapped Device Path................oueeiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 295
Table 45. Vendor-Defined Device Pathueiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 295
Table 46. Controller Device Pathcooiiiiiiiiieee e 296
Table 47. BMC DeVice Path...........oooiiii e 296
Table 48. ACPI DeVice Pathooo e 297
Table 49. Expanded ACPI Device Pathccccoooiiiiiiiiiiiieeeec e, 298
Table 50. ACPI _ADR DeVice Path.........ccc.uuiiiiiiie et 299

January, 2016 Version 2.5 Errata A

Table 51. ATAPI Device Path ... 299

Table 52. SCSIDEVICE Path ..o e 299
Table 53. Fibre Channel Device Pathco.o oo 300
Table 54. Fibre Channel EX DeVice Pathc.coouovieiiie e 300
Table 55. Fibre Channel Ex Device Path EXample............uuuvviiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeee e, 301
Table 56. 1394 DEVICE PatN......coo oot e e 302
Table 57. USB DEVICE Pathccu it 302
Table 58. USB Device Path EXamPIESuuuuiiuiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeee e eee e ee e e eeeeeeeees 302
Table 59. Another USB Device Path EXample............uuuuviiiiiiiiiiiiiiiiiiiieeeeceeeeeeeeeeeeeeeeeeee e 303
Table 60. SATA DEVICE Pathooeiieieeee e e 304
Table 61. USB WWID DeViCe Path.........oooeeeee et 305
Table 62. Device Logical UNitcoooiiiiiiiiiii s e e e e e e e e eeaeens 305
Table 63. USB Class DEVICE Pathco.ov oot 306
Table 64. 120 DEVICE Path ... oo e 306
Table 65. MAC AdAress DeVvice Path ... 306
Table 66. IPVA DEVICE Pathoooiieiieee e e e e 307
Table 67. IPV6 DEVICE PaAthoooniieiieeeie ettt e e e e 307
Table 68. INfiNIBaNd DeViCe Path........coon vt 308
Table 69. UART DeVICE Path ...t 308
Table 70. Vendor-Defined Messaging Device Path ... 309
Table 71. UART Flow Control Messaging Device Path ..o 310
Table 72. Messaging Device Path StruCture.............cuuvviiiiiiiiiiee e 310
Table 73. Messaging Device Path Structure.............cccuveeiiiiiiiiiiii e 312
Table 74. iSCSI Device Path Node (Base Information)c.oceveeiiiiiiiiiiiiiiiiiiieiiieeeeeeee, 313
Table 75. IPV4 CONFIQUIAtIONuuiiiiiiiiiiiiiiiiieiiiie et e e e e e e e e e e e eeeeeeeeeeeeeeeeeeees 314
Table 76. IPV6 CONFIQUIAtIONuuuiiiiiiiiiiiiiiiiiiiie et e e e e e e eeeeeeeeeeeeeeeeeeeeees 319
Table 77. NVM Express Namespace Device Pathooevviiiiiiiiiiiiiiiiiiiiiciciceeeeeeeeeeee, 324
Table 78. URI DEVICE Path ..o 324
Table 79. UFS DEVICE PaAthooeiieieeee e 324
Table 80. SD DeViCe Path.......ooeee et 325
Table 81. BlUetooth DeviCe Pathooeiieii e e 325
Table 82. Wi-Fi DEVICE Pathoooeeeeeeeee et 325
Table 83. Hard Drive Media DeVvice Path..........coou e 326
Table 84. CD-ROM Media DeVvice Pathoouiiiee e 327
Table 85. Vendor-Defined Media Device Path...........c..ooouniiiiiiii e 327
Table 86. File Path Media Device Path..........coooooieiieiieee e 328
Table 87. Media Protocol Media Device Path ..o 328
Table 88. PIWG Firmware Volume Device Pathcoooeie oo 329
Table 89. PIWG Firmware Volume Device Path ..., 329
Table 90. Relative OffSet RANGE........cooiiiiiiii e 329
Table 91. RAM Disk DEVICE Path.......ccooeeieee e 329
Table 92. BIOS Boot Specification Device Pathcevvviiiiiiiiiiiiiiiiiieeeiieeeeeeeeeeeeeeeeee e, 331
Table 93. ACPI _CRS to EFI Device Path Mappingccouueviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 332
Table 94. ACPI _ADR to EFI Device Path Mappingccuueeiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeeee e 333
Table 95. EFI Device Path Option Parameter Values..............ceeveeviiiiiiiiiiiiiiiiieiiieeieeeeeeeee, 347
Table 96. DeVIice NOAE TabIEc.oeeiieee e et 348
Table 97. Supported Unicode Control Characters ... 458
Table 98. EFI Scan Codes for EFI_SIMPLE_TEXT INPUT_PROTOCOL.........c...cc.c........ 458
Table 99. EFI Scan Codes for EFI SIMPLE TEXT INPUT EX PROTOCOLccoovveunen.. 459
Table 100. EFI Cursor Location/Advance Rules.................. s 478
Table 101. PS/2 MouSE DEVICE Path 494
Table 102. Serial Mouse DeVvice Pathoooiieiie e 495
Table 103. USB Mouse DeVICe Pathcoooniieiee e 496
Table 104. Blt Operation TabIeuuuiiiiiiiiiiiiiiiiiieiiiiere e ere e e e e eeeeeeeeeeeeeeeeees 524
Table 105. Attributes Definition Tableo..ov oo 528

Version 2.5 Errata A January, 2016 xli

Unified Extensible Firmware Interface Specification

xlii

Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.

3.0).
Table 123.

765

Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152.
Table 153.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.

Tape Header FOrMats.........oouvuiiiiiiiee et e e e e ee e 587
PATA device mapping to ports and port multiplier ports...............ccccoeeeeeieen. 637
Special programming CONSIAEratioNScccoiiiiiiiiiiiieee e 643
PCI Configuration AQAreSSccoiiiiiiiiiiiie i 695
ACPI 2.0 QWORD Address Space DescCriptor.........coovcuuiiieiieee e 709
L O o I O N =1 o To I I Vo U SSSRRR 710
PCI Root Bridge Device Path for a Desktop Systemccccee. 711
PCI Root Bridge Device Path for Bridge #0 in a Server System....................... 711
PCI Root Bridge Device Path for Bridge #1 in a Server System....................... 712
PCI Root Bridge Device Path for Bridge #2 in a Server System....................... 712
PCI Root Bridge Device Path for Bridge #3 in a Server System...................... 712
PCI Root Bridge Device Path Using Expanded ACPI Device Path 713
ACPI 2.0 QWORD Address Space DescCriptor.........cooccuuiiiiiieeeiiiiiiiiieee e 758
ACPI 2.0 ENA TAG ittt a e e e e s e e e e e e e e e aaans 758
PCI Device 7, Function 0 on PCI Root Bridge Occoooiiiiiiiiiiiiiiiiiiiieeee, 762
PCI Device 7, Function 0 behind PCIl to PCl bridgecccooeeeiiiiiiiiii, 762

Standard PCI Expansion ROM Header (Example from PCI Firmware Specification

EFI PCI Expansion ROM Header ..o, 765
Device Path for an EFI Driver loaded from PCI Option ROM 766
Recommended PCI Device Driver Layoutooeveeiiiiiiiiieeeeeeeeieeeee 771
SCSI Device Path EXAMPIEScuvuiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e e 789
ATAPI Device Path EXamplescoouvveeiiiiiiiiiecee e 790
Fibre Channel Device Path Examplesccoooiiiiiiiiiiciii e 791
InfiniBand Device Path EXamples.........oooooiiiiiiiiiiiieeees 792
Single Channel PCl SCSI CoNtroller ... 793
Single Channel PCI SCSI Controller behind a PCI Bridgeccocccuviiieeeenn. 794
Channel #3 of a PCI SCSI Controller behind a PCI Bridgecccccooovvveee. 795
USB Hub Port Status Bitmap ..., 850
Hub Port Change Status Bitmap.........ccooooiiiiiiiiicic s 851
USB Port FEatUresoovvvvviiiiiieeiee e 854
Payload-associated Messages and Descriptionsccccvvveeeiiiiiniiiiiieeeeeenn. 904
Debugport Messaging Device Path ... 946
Block Header Fields ... 954
General Purpose VM REGISIEISuuviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 989
Dedicated VIM ReQIStEIScoooiiieeeeieciee et 990
VM Flags REGISTEr ... e 990
INAEX ENCOTING ..ttt e e e e e e 991
Index Size in Index ENCOAING...........uuiiiiiiiiiii e 991
Opcode Byte ENCOAINGvuvviiiiiiiiiiiiiiiieeiieeiteee e eeeeeee e e e e e ee e e e e e e e e e eeeeeeeeees 995
Operand Byte ENCOAINGuuuuiiiiiiiiiiiiiiiiiiieieeeeeeeee e e e e e e ee e 995
ADD Instruction ENCOAINGcooiiiiiiieeeci e 997
AND Instruction ENCOAINGcooiiiiiiiiiiieeee e 998
ASHR Instruction ENCOAING eiiiiiiiiiiiee e 999
VM Version FOrmMat ... eeeeeeees 1000
BREAK Instruction ENCOdiNgcouuuiiiiiiiiiieecees e 1000
CALL Instruction ENCOAiNG oevviiiiiiiiiiiiiieeieeeee e 1003
CMP Instruction ENCOAINGcoveviiiiiiiiiiiiiiieeieeeeee e, 1004
CMPI Instruction ENCOAING vvviiiiiiiiiiiiieee e 1006
DIV Instruction ENCOTING eeeiiiiiiiiiiiii e 1008
DIVU Instruction ENCOAINGcoooiiiiiiiiiiiieie e 1009
EXTNDB Instruction ENCOAINGuuuiiiiiiiiiceiiiie et 1010
EXTNDD Instruction ENCOAINGuvuoiiiiiiiiieeece e 1011

January, 2016 Version 2.5 Errata A

Table 159.
Table 160.
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
Table 184.
Table 185.
Table 186.
Table 187.
Table 188.
Table 189.
Table 190.
Table 191.
Table 192.
Table 193.
Table 194.
Table 195.
Table 196.
Table 197.
Table 198.
Table 199.
Table 200.
Table 201.
Table 202.

1789

Table 203.
Table 204.
Table 205.
Table 206.
Table 207.
Table 208.
Table 209.
Table 210.
Table 211.
Table 212.

Version 2.5 Errata A

EXTNDW Instruction ENCOAINGuvuiiiiiieiiieeeiiiies et e e 1012
JMP Instruction ENCOAING oueiiiiiiiieeiiee e 1013
JMP8 Instruction ENCOAING ouviiiiiiiiiiiieicec e 1015
LOADSP Instruction ENCOAINGooiuiiiiiiiiieeeiiiiee e 1016
MOD Instruction ENCodingcooovvviiiiiiiiiiiii 1017
MODU Instruction ENCodingcooooviiiiiiiiiiiiiiii 1018
MOV Instruction ENCOAiNGcoovivviiiiiiiiiiiiiiiiieeeee 1019
MOVI INStruction ENCOAINGceviiiiiiiiiiiiieeeee e 1021
MOVIN Instruction ENCOAING ..coooiiiiiiiiiiiieeee e 1023
MOVn Instruction ENCOAING ...ooiiiiiiiiiiiiee e 1024
MOVREL Instruction ENCoOdingcoooviiiiiiiiiiiiiiii 1025
MOVsn Instruction ENcodingoooovviiiiiiiii 1026
MUL Instruction ENCOAINGcccoeeiiiiiiiiii e 1028
MULU Instruction ENCOINGceoiiiiiiiiiiiiieeee e 1029
NEG Instruction ENCOAINGeeeiiiiiiiiiiiiieeee e 1030
NOT Instruction ENCOAINGcoooiiiiiiiiiiiee e 1031
OR Instruction ENCOAINGcuviiiiiiiiiiiiiiiieiiecee ettt 1032
POP Instruction ENCOding.......c.coooviiiiiiiiiiiiii 1033
POPN Instruction ENCoding........cooovvviiiiiiiiiiiie 1034
PUSH Instruction ENCOAINGcooiiiiiiiiiiiiiiiee e 1035
PUSHN Instruction ENCOAINGoooviiiiiiiiiiiiciie e 1036
RET Instruction ENCOAING eeeiiiiiiiiiieeeee e 1037
SHL INStruction ENCOTINGuvviiiiiiiiiiiiiiee e 1038
SHR Instruction ENCOAINGovviiiiiiiiiiiiiieieeeeeeeeeeeeeee e 1039
STORESP Instruction ENCOdingcoovviviiiiiiiiiiiiiieeeeeee 1040
SUB Instruction ENCOAINGovvviiiiiiiiiiiieiieeeeeeeee e, 1041
XOR Instruction ENCOAING...........uviiiiiiiiiiiiieeee e 1042
ESRT and FMP Fieldsouuiiiiiieiiieeee e 1089
PXE Tag Definitions for EF 1 ... 1131
Destination IP Filter Operation..........cccccco 1149
Destination UDP Port Filter Operationcccccccoovviiiiiii 1149
Source IP Filter Operationeuuevieiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee ettt 1149
Source UDP Port Filter Operation............cceveviiiiiiiiiiiiiieee 1149
DHCP4 EnNUMErationS........oooiiiiiiiieeeeeeeeeeee e 1573
Field DeSCriptioNScoooiiiiee 1601
Callback Return ValUESooiviiiiiiiiiiieeee et 1607
Descriptions of Parameters in MTFTPv4 Packet Structures.......................... 1733
Descriptions of Parameters in MTFTPv6 Packet Structures........................... 1761
MTFTPPacket OpCode DescriptionS.........cccovvviiiiiiiiieiiieieeeeeeeeeeeeeeeee 1763
MTFTP ERROR Packet ErrorCode Descriptions............cooooeeeiiiii. 1764
Generic Authentication Node Structure ... 1782
CHAP Authentication Node Structure using RADIUS 1782
CHAP Authentication Node Structure using Local Database 1783
PE/COFF Certificates Types and UEFI| Signature Database Certificate Types.....
Authorization process flOWcoooiiiiiii e 1808
LocCalization ISSUES.......coviiiiiiei e 1820
Information for Types of Storageoooooeiiiiiiiii i, 1844
Common Control Codes for Font Display Information 1856
Guidelines for UEFI System Fonts..........ooovviiiiiiiiiiiiii 1862
Truth table: Mapping a single question to three configuration settings........... 1881
Multiple configuration settings Example #2.............cccccooiiiiiiiiiee 1881
N AlUBS: ... 1882
= Lo = (o [T 1Y/ o 1= TS 1884
5[0 Tod QN 1Y/ o= T 1916

January, 2016 xliii

Unified Extensible Firmware Interface Specification

xliv

Table 213.
Table 214.
Table 215.
Table 216.
Table 217.
Table 218.
Table 219.
Table 220.
Table 221.
Table 222.
Table 223.
Table 224.
Table 225.
Table 226.
Table 227.
Table 228.
Table 229.
Table 230.
Table 231.
Table 232.
Table 233.
Table 234.
Table 235.
Table 236.
Table 237.
Table 238.
Table 239.
Table 240.
Table 241.
Table 242.
Table 243.
Table 244.
Table 245.
Table 246.
Table 247.
Table 248.
Table 249.
Table 250.
Table 251.
Table 252.
Table 253.
Table 254.
Table 255.
Table 256.
Table 257.
Table 258.
Table 259.
Table 260.
Table 261.
Table 262.
Table 263.
Table 264.
Table 265.
Table 266.
Table 267.

IFR OPCOAES ..., 1934
VarStoreType DeSCHPONSuuuueuiiiiiiiiiiiiiiiiieeieee e ereeeeeeeeeees 1955
ANIMAtion BIOCK TYPESceeiiiiiiiiiiieiiee e 2007
(0711 oF= o1 Q1 = 1= 4 F= 1V o) SRR 2108
Record values and descCriptionSccoooiieiiiiiiiiiici e 2161
Standard values for access to configure the platform................................... 2164
EFI Hash AlGOrithmsoo oo 2181
Identical hash results ... 2184
Algorithms that may be used with EFI_HASH2_PROTOCOLcccceeennne 2192
Encryption algorithm properties. ... 2201
Details of Supported Signature Format................ooooeiiiiiiiii i, 2234
EFT GUID FOIMat.....ooo ittt e e ee e e e 2287
Text representation relationships............vciiiiiiiiiiccc e, 2287
EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL..................... 2290
EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.............. 2290
Control Sequences to Implement EFT _SIMPLE_TEXT_ INPUT_ PROTOCOL.. 2291
Legacy Floppy Device Path ... 2295
IDE Disk Device Path..........ooooiii 2296
Secondary Root PCI Bus with PCI to PCI Bridge Device Path...................... 2297
EFI_STATUS C0Ode RANGESceiiiiiiiiiiiiiiiee e 2299
EFI_STATUS Success Codes (High Bit ClIear)............cccceoveveeeverereereenene. 2299
EFI_STATUS Error Codes (High Bit Set)ccceoeeveeiiieeeeeceeeeeeee e 2299
EFI_STATUS Warning Codes (High Bit Clear)...........cccccccoveveeereeereercenee. 2301
=Y T3 1T £ OO 2303
Referenced Specifications ..., 2304
Driver Types: Pros and CONS........ccooovvviiiiiiiieiiiiieeeeeeeeeeeee 2307
IPXE Structure Field Definitions...........coooo i, 2309
UNDI CDB Field DefinitioNSccooiiiiiiiiiiee e 2314
EBC Virtual Machine Opcode SUMMArYccccuuiiiiieeiiiiiiiieeeeee e 2437
Functions Listed in Alphabetic Order............cooooiiiiiiiiiiiiic, 2441
Functions Listed Alphabetically within a Service or Protocol........................... 2472
Protocol Name Changes........ooov oo 2495
Revision ldentifier Name Changes ..o 2496
Alias codes supported in addition to RFC 4646...........cccooiiiiiiiiiiiens 2499
Error record header.........oooiiiiiiee 2502
Error Record Header FIags........ooovvviiiiiiiii i 2505
Y= Yo 1ol g B LT Tod o o] (o] NP 2506
Processor Generic Error SECHONuvvivviiiiiiieee e 2510
Processor Error RECOIdovvviviiiiiiiieeeee e 2512
IA32/X64 Processor Error Information Structure ... 2513
IA32/X64 Cache Check Structure ... 2513
IA32/X64 TLB Check StruCture............ooveiiiiiiiiiiiee e 2515
IA32/X64 Bus Check Structure ..o 2516
IA32/X64 MS Check Field Description.............ooooiiiiiiiiiiiieiecccecccccc, 2517
IA32/X64 Processor Context Information..............ooooeiiiiiiiiiiiciie 2518
[A32 Register State.........uuuiiiiiiiiii e 2519
X64 Register STate..........oeiiiiiiiiiiiie e 2519
Y =Yg o) YA =1 4 o] g ==Y oTo] o S 2521
Memory Error RECOI 2ooo et 2524
PCI Express Error RECOrdooovvvvviiiiiiiiiiii 2526
PCI/PCI-X BUs Error SECioncovvvvvviiiiiiiiee e, 2527
PCI/PCI-X Component Error Sectioncoovvviviiiiiiieieee 2528
Firmware Error Record Reference.............oooooiiiiiiiii i 2529
DMATr GENEIIC EITOIS ...ttt ae e 2530
Intel® VT for Directed I/O specific DMAr EITors.......cccooeeieeiieeeiicciiccce 2531

January, 2016 Version 2.5 Errata A

Table 268. IOMMU specCific DMATI EFTOIS........uuuuiiiiiiiiiiiiiiiieiiiisieeesseseseseeeseeesseeeseesesesseeee. 2532

Table 269. Error Status Fields e e 2532
Table 270. EXTOF TYPES ..oeiiiiiiiiiiiie ettt e e e e e e e e e e s e nneee e s 2533
Table 271. UEF] Table StrUCIUIE et 2535
Table 272. SMM Communication ACPI Table.c..oveeeeeeee e 2535

Version 2.5 Errata A January, 2016 xlv

Unified Extensible Firmware Interface Specification

xlvi

Figures
Figure 1. UEFI Conceptual OVErVIEWcuuuiiiiiiieiiiiieieee e 9
Figure 2. BOOtING SEQUENCE ...ttt e et e e e e e e e anees 17
Figure 3. Stack after AddressOfEntryPoint Called, IA- 32........cevvvvviviiiviiiiieiieeeeeeeeeeee, 27
Figure 4. Stack after AddressOfEntryPoint Called, ltanium-based Systems................ 29
Figure 5. Construction of @ ProtoColcccoiiiiiiiiii e aeeeaeees 43
Figure 6. DesktOp SYSIEM ..o e e e 47
FIQUIE 7. SEIVEr SYSTEM ...t e et e e e e e e e 48
Figure 8. Image HaNdIe ... 51
Figure 9. Driver Image Handleoeiiiii e 52
Figure 10. Host BUS CONIIOIIEIScccoiiiii e bareaneeaeesanees 53
Figure 11. PCl Root Bridge Device Handlecccooiiiiie e 53
Figure 12. Connecting DeViCe DIIVEIScooiiiiiiiiiiie e 54
Figure 13. Connecting BUS DIVEIScoiiiiiiiiiieiice et 56
Figure 14. Child Device Handle with a Bus Specific Overrideccccoveiiiiiiiiiiiineceee 57
Figure 15. Software Service Relationshipsccoccoiiiiiiii s 59
Figure 16. MBRDisk Layout with legacy MBR example............ccccooiiiiriiiiiiiiiiiie e, 117
Figure 17. GPT disk layout with protective MBR example...........cccoooiiiiiiiiiiiiies 119
Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA
0t ol o o o == o 4 o PP 119
Figure 19. GUID Partition Table (GPT) eXxampleccoooiiioiiiiiii s 120
Figure 20. Device Handle to Protocol Handler Mapping.......c....ceeviiiiviieeiiiiiiiee e, 165
Figure 21. Handle Databasecouuuiiiiii i e e 167
Figure 22. Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures....... 276
Figure 23. Text to Binary CONVEIrSIONcccuuiiiiiiiiiiiiiie e e e 344
Figure 24. Binary to TeXt CONVEISIONcoiiuiuiiiiiiie et e e 344
Figure 25. Device Path Text Representationcccoooiviviiiieiiiccii e, 345
Figure 26. Text Device NOAE NaMESccoiii i e e e e e 346
Figure 27. Device Node Option NamMESccoooiiiiiiiiiii i 347
Figure 28. Driver Health Status Statescc.uueiiiiiiii e 433
Figure 29. Software BLT BUFfereiiii e 515
Figure 30. Nesting of Legacy MBR Partition Recordsccccooiiiiiiiiiiiiiiiiiiiiiiiieeees 541
Figure 31. Host Bus CONtrollers............ooooiiiiiiii i 674
Figure 32. Device Handle for a PCI Root Bridge Controller...........cccccoceiiiiniiiiniiiniiininnns 675
Figure 33. Desktop System with One PCl Root Bridgecccccociiiiiiiienns 675
Figure 34. Server System with Four PCl RoOt Bridges..........coooiiiiiiiiiiiiiiiiiiiiieeccee e 676
Figure 35. Server System with Two PCI Segments.............ooooiiiiiiiiiiieecceees 677
Figure 36. Server System with Two PCI HOSt BUSES...........cooiiiiiiiiiiiiiiiececeeiieeeeee e 677
Figure 37. Image HandIeccoo oot e e e 714
Figure 38. PCI Driver Image Handle ... 715
Figure 39. PCl Host Bus CONtroller...........coooiiiiiiiiiieccece e 716
Figure 40. Device Handle for a PCI Host Bus Controller ..o 77
Figure 41. Physical PCl BUS StrUCIUIe..........c.uuuiiiiiiiiiie e 718
Figure 42. Connecting @ PCl BUS DIIVEN..........uuiiiiiiiiiiieeeeee e 719

January, 2016 Version 2.5 Errata A

Figure 43. Child Handle Created by a PCI BUS Driver..........cccccoiiieieiins 719

Figure 44. Connecting a PCI DevVice DIVErcoooiiiiiiiiiiiieeccceccc e 722
Figure 45. Unsigned PCI Driver Image Layoutccoooiiiiiiiiiiiii e 768
Figure 46. Signed and Compressed PCI Driver Image FIOwcoccoiiiiiiiincns 768
Figure 47. Signed and Compressed PCI Driver Image Layout...........ccccccoovviiiiiiiieneeiiinnes 769
Figure 48. Signed but not Compressed PCI Driver Image FIOW ..o, 770
Figure 49. Signed and Uncompressed PCI Driver Image Layout..............ccccccvvuvivnninnnnnnns 771
Figure 50. Device Handle for a SCSI Bus Controller............ccccooiiiiiiiiiiiieininnns 776
Figure 51. Child Handle Created by a SCSI BUS DFIVETcccccoiiiiniiiiiiiieanans 777
Figure 52. Software Triggered State Transitions of a USB Host Controller........................ 830
Figure 53. USB Bus Controller Handleoooiiiiiiiiiieee e 856
Figure 54. Sequence of Operations with Endpoint Policy Changescccccccuvvvvvinnnnnnnes 920
Figure 55. Debug Support Table Indirection and Pointer Usagec.ccccccuvvriniinnennnnnnnns 948
Figure 56. Bit Sequence of Compressed Dataccooiiiiiiiiiiiiiiiici s 953
Figure 57. Compressed Data StruCtureooooiiiiiiiii i 953
Figure 58. BIOCK STrUCTUIEcooiiiiiiieee e 954
Figure 59. BIOCK BOGYuuiiiiiiiiiiiiieiee ettt e e e e e 957
Figure 60. String INfo LOg S€arch Tree........ccuuuiiiiiiiiiieiieeee e 959
Figure 61. Node Split ... 961
Figure 62. Firmware Image with no Authentication Support..........cccccvvvveiiiiiiiiiieeiieeeeeeee, 1066
Figure 63. Firmware Image with Authentication SUPpPOrt............ccccciiiiiiiiiiiiieeee 1066
Figure 64. Optional Scatter-Gather Construction of Capsule Submitted to UpdateCapsule() ..
1079
Figure 65. Capsule Header and Firmware Management Capsule Header....................... 1080
Figure 66. Firmware Management and Firmware Image Management headers.............. 1081
Figure 67. IPv6-based PXE DOOLoiiiiiiee e 1162
Figure 68. netboot6 (DHCP6 and ProxyDHCPG6 reside on the same server) 1164
Figure 69. IPv6-based PXE boot (DHCP6 and ProxyDHCPG6 reside on the different server)...
1165
Figure 70. HTTP Boot Network Topology Concept — Corporate Environment 1209
Figure 71. HTTP Boot Network Topology Concept2 — Home environments 1210
Figure 72. UEFI HTTP Boot Protocol Layout...........cccoooiiiiiiiiiiiiee e 1211
Figure 73. HTTP Boot overall fIOWcooiiiiiiiii e 1213
Figure 74. Creating A Digital Signatureooooiiiiiiii e 1785
Figure 75. Verifying a Digital Signaturecooiiiii e 1786
Figure 76. Embedded Digital Certificatescccccceioiiiiiiiii e 1787
Figure 77. Secure BoOt MOAEScoooiiiiiiiiiicce e rnrannees 1793
Figure 78. Signature lists ... 1797
Figure 79. Process for adding a new signature by the OS ... 1806
Figure 80. Platform Configuration OVEIVIEWcooiiiiiiiiiiiiiiiiieee e 1812
Figure 81. HIl Resources In Drivers & Applications............cccuvvvviiiviiiiiiiiiiiiiiiiieeeeeeeeeeeeeee. 1813
Figure 82. Creating Ul Resources With Resource Filesccccvvvvviiviiiiiiiiiieieeeiieeieeee, 1814
Figure 83. Creating Ul Resources With Intermediate Source Representation 1815
Figure 84. The Platform and Standard User Interactionscccccceecivuniinniinninininnnnnnnn. 1816
Figure 85. User and Platform Component Interactionccccooiiiiiiiiiiiiiiiiiiiieeeeeeeee 1816
Figure 86. User Interface COMPONENTSuuiiiiiiiiiiiiiii it 1817
Figure 87. Connected FOrms BrowSer/ProCeSSOrcuvieiiiiiieiiiiiiiie et 1818

Version 2.5 Errata A January, 2016 XIvii

Unified Extensible Firmware Interface Specification

xlviii

Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.

Disconnected FOrms Browser/ProCeSSOrcooviiieiiiieeeeeiiiiiieee e 1818
O/S-Present FOrms BrowSer/ProCeSSOrccuveeiiiiiiiiiiiieeeeieiiiieea e e e e e 1819
Platform Data STOrageuuvvuiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeee e 1819
Keyboard LayOuL............oooiiiiiiii e 1822
Forms-based Interface EXample..........eoeeiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e 1825
Platform Configuration OVEIVIEWccuviiiiiiiiiiiiiiieeeee e 1826
Question Value Retrieval ProCessooocviiiiiieiiiiiiieeeee e 1835
Question Value Change ProCeSS........ccoviiiiiiiiieei e 1836
StNG IdeNtifiers........oooiiiii i 1854
F OIS ettt ettt et e e e et et e e e e e e et e e et e aaaaaaaaaaaaaaans 1859
Font Description TEIMScooiiiiiiiiieeeeeeeeeeeee et 1860
16 X 19 Font Parameters ... 1861
FONt Structure LayOuULevviiiiiieieeeeeeeeeeeeeee ettt 1862
Proportional Font Parameters and Byte Paddingcccoooeviiiiiiiiiiicenenen, 1863
Aligning GIYPS ...cooooiii e, 1863
L L1 T= = o = P 1865
SEIUD BrOWSET ... rnne 1866
Storing Configuration Settingscoeiiiiiiiiiiii 1871
OS Runtime UtIliZation ..o 1872
Standard Application Obtaining Setting Examplecccooceeiiiiiiiiiiiiiiiinnnn, 1873
Typical Forms Processor Decisions Necessitating a Callback (1)................. 1874
Typical Forms Processor Decisions Necessitating a Callback (2)................. 1875
Typical Forms Processor Decisions Necessitating a Callback (3)................. 1876
Driver Model INteractionsuueeiiiiiiiiiiiiiiiieeeteeeeeeee e 1877
Managing Human Interface Componentscc.cccccevvviviiiiiiiiiee 1878
EFI IFR Form set configuration................eeuueeeieiiiiiiiiiieeeceeeeeeeeeeeeeeeeee e 1879
EFI IFR Form Set question changes ... 1880
Glyph Information Encoded in BIOCKS...........ccooiiiiiiiiiiiiiiieec e 1889
Glyph BlOCK ProCESSINGcciiiiiiiiiiiiiee ettt 1891
String Information Encoded in BIOCKSccoooiiiiiiiiiiiccece e, 1901
String Block Processing: Base Processing..........coooeeveeiiiiiicecieccieccces 1903
String Block Processing: SCSU Processingooooeeiieeiiieicceiiciieccccccns 1904
String Block Processing: UTF ProCessingccoeeiiiiiiiiiiiieiiiniiiiieecee e 1905
Image Information Encoded in BIOCKSccoooiiiiiiiiiiiiiee 1916
Palette Structure of a Black & White, One-Bit Imagecccccceeeeiinnnnnne. 1929
Palette Structure of a Four-Bit Image ... 1930
Palette Structure of a Four-Bit, Six-Color Imageccccooeeei. 1930
Simple Binary ODbJect ... 1931
Password Flowchart (part ONe)........cooouiiiiiiiiiiiieee e 1976
Password Flowchart (part tWo)coooiiiiiiiiii e 1976
Animation Information Encoded in BIOCKSccoovvvviiiiiiiiiiiii 2007
Keyboard LayOUL..........coooo it e e 2069
LU LY=o 1= o 142 2120
Hash WOTKFIOWeeiiiiiieeee e e 2185
Example Computer System ..o 2293
Partial ACPI Name Space for Example Systemcccccc. 2294
EFI Device Path Displayed As a Name Spacecccccccvvvvveeiiiiiiiicceeeeeeeeee 2298

January, 2016 Version 2.5 Errata A

Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.

Network Stacks with Three Classes of DIiVErS.........c.eevvvivveiiiiivieeeeiieeeeees 2307
IPXE Structures for H'W and S/W UNDIoooeiiiiiiii e 2309
Issuing UNDI Commandscoovvviiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeee 2313
UNDI Command Descriptor BIOCK (CDB)c.cooiiiiiiiiiiiiciiiieeeeeee 2314
SEOrAQE TYPES ettt a e 2318
UNDI States, Transitions & Valid Commandsccceevvviivieiiiiiieeeiiieeeeeees 2338
LINKEA CDBS ...t e et e e e e e e 2339
QUEUEA CDBS.....eeeeeeeeee e et e e e 2340
Error Record FOrmMat.......coouiiiie e 2501

Version 2.5 Errata A January, 2016 xlix

Unified Extensible Firmware Interface Specification

| January, 2016 Version 2.5 Errata A

Introduction

1
Introduction

This Unified Extensible Firmware Interface (hereafter known as UEFI) Specification describes an
interface between the operating system (OS) and the platform firmware. UEFI was preceded by the
Extensible Firmware Interface Specification 1.10 (EFI). As a result, some code and certain protocol
names retain the EFI designation. Unless otherwise noted, EFI designations in this specification may
be assumed to be part of UEFI.

The interface is in the form of data tables that contain platform-related information, and boot and
runtime service calls that are available to the OS loader and the OS. Together, these provide a
standard environment for booting an OS. This specification is designed as a pure interface
specification. As such, the specification defines the set of interfaces and structures that platform
firmware must implement. Similarly, the specification defines the set of interfaces and structures
that the OS may use in booting. How either the firmware developer chooses to implement the
required elements or the OS developer chooses to make use of those interfaces and structures is an
implementation decision left for the developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate
only information necessary to support the OS boot process. This is accomplished through a formal
and complete abstract specification of the software-visible interface presented to the OS by the
platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on platforms compatible with
supported processor specifications will be able to boot on a variety of system designs without further
platform or OS customization. The definition will also allow for platform innovation to introduce
new features and functionality that enhance platform capability without requiring new code to be
written in the OS boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code
over time. New device types and associated code can provide equivalent functionality through the
same defined abstract interface, again without impact on the OS boot support code.

The specification is applicable to a full range of hardware platforms from mobile systems to servers.
The specification provides a core set of services along with a selection of protocol interfaces. The
selection of protocol interfaces can evolve over time to be optimized for various platform market
segments. At the same time, the specification allows maximum extensibility and customization
abilities for OEMs to allow differentiation. In this, the purpose of UEFI is to define an evolutionary
path from the traditional “PC-AT”-style boot world into a legacy-API free environment.

1.1 UEFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. One purpose of the UEFI
Driver Model is to provide a replacement for “PC-AT”-style option ROMs. It is important to point
out that drivers written to the UEFI Driver Model are designed to access boot devices in the preboot
environment. They are not designed to replace the high-performance, OS-specific drivers.

Version 2.5 Errata A January, 2016 1

Unified Extensible Firmware Interface Specification

1.2

The UEFI Driver Model is designed to support the execution of modular pieces of code, also known
as drivers, that run in the preboot environment. These drivers may manage or control hardware buses
and devices on the platform, or they may provide some software-derived, platform-specific service.

The UEFI Driver Model also contains information required by UEFI driver writers to design and
implement any combination of bus drivers and device drivers that a platform might need to boot a
UEFI-compliant OS.

The UEFI Driver Model is designed to be generic and can be adapted to any type of bus or device.
The UEFI Specification describes how to write PCI bus drivers, PCI device drivers, USB bus
drivers, USB device drivers, and SCSI drivers. Additional details are provided that allow UEFI
drivers to be stored in PCI option ROMs, while maintaining compatibility with legacy option ROM
images.

One of the design goals in the UEFI Specification is keeping the driver images as small as possible.
However, if a driver is required to support multiple processor architectures, a driver object file
would also be required to be shipped for each supported processor architecture. To address this
space issue, this specification also defines the EFI Byte Code Virtual Machine. A UEFI driver can be
compiled into a single EFI Byte Code object file. UEFI Specification-complaint firmware must
contain an EFI Byte Code interpreter. This allows a single EFI Byte Code object file that supports
multiple processor architectures to be shipped. Another space saving technique is the use of
compression. This specification defines compression and decompression algorithms that may be
used to reduce the size of UEFI Drivers, and thus reduce the overhead when UEFI Drivers are stored
in ROM devices.

The information contained in the UEFI Specification can be used by OSVs, [HVs, OEMs, and
firmware vendors to design and implement firmware conforming to this specification, drivers that
produce standard protocol interfaces, and operating system loaders that can be used to boot UEFI-
compliant operating systems.

Overview
The UEFI Specification is organized as listed in Table 1.

Table 1. Organization of the UEFI Specification

Section/Appendix Description

1. Introduction Introduces the UEFI Specification and topics related to using the
specification.

2. Overview Describes the major components of UEFI, including the boot

manager, firmware core, calling conventions, protocols, and
requirements.

3. Boot Manager Describes the boot manager, which is used to load drivers and
applications written to this specification.

4. EFI System Table Describes the EFI System Table that is passed to every compliant
driver and application.

5. GUID Partition Table (GPT) Format Defines a new partitioning scheme that must be supported by
firmware conforming to this specification.

January, 2016 Version 2.5 Errata A

Introduction

Section/Appendix Description

6. Services — Boot Services Contains the definitions of the fundamental services that are
present in a UEFI-compliant system before an OS is booted.

7. Services — Runtime Services Contains definitions for the fundamental services that are present
in a compliant system before and after an OS is booted.

8. Protocols — EFI Loaded Image Defines the EFI Loaded Image Protocol that describes a UEFI
Image that has been loaded into memory.

9 Protocols — Device Path Protocol Defines the device path protocol and provides the information
needed to construct and manage device paths in the UEFI
environment.

10. Protocols — UEFI Driver Model Describes a generic driver model for UEFI. This includes the set
of services and protocols that apply to every bus and device type,
including the Driver Binding Protocol, the Platform Driver Override
Protocol, the Bus Specific Driver Override Protocol, the Driver
Diagnostics Protocol, the Driver Configuration Protocol, and the
Component Name Protocol.

11. Protocols — Console Support Defines the Console I/O protocols, which handle input and output
of text-based information intended for the system user while
executing in the boot services environment. These protocols
include the Simple Input Protocol, the Simple Text Output
Protocol, the Graphics Output Protocol, the Simple Pointer
Protocol, and the Serial 1/0 Protocol.

12. Protocols—Media Access Defines the Load File protocol, file system format and media
formats for handling removable media.
13. Protocols — PCI Bus Support Defines PCI Bus Drivers, PCI Device Drivers, and PCI Option

ROM layouts. The protocols described include the PCI Root
Bridge 1/0 Protocol and the PCI 1/O Protocol.

14. Protocols — SCSI Driver Models Defines the SCSI I/O Protocol and the Extended SCSI Pass Thru

and Bus Support Protocol that is used to abstract access to a SCSI channel that is
produced by a SCSI host controller.

15. Protocols —iSCSI Boot The iSCSI protocol defines a transport for SCSI data over TCP/
IP.

16. Protocols — USB Support Defines USB Bus Drivers and USB Device Drivers. The protocols
described include the USB2 Host Controller Protocol and the USB
1/0 Protocol.

17. Protocols — Debugger Support An optional set of protocols that provide the services required to

implement a source-level debugger for the UEFI environment.
The EFI Debug Port Protocol provides services to communicate
with a remote debug host. The Debug Support Protocol provides
services to hook processor exceptions, save the processor
context, and restore the processor context. These protocols can
be used in the implementation of a debug agent on the target
system that interacts with the remote debug host.

Version 2.5 Errata A January, 2016 3

Unified Extensible Firmware Interface Specification

Section/Appendix

18. Protocols — Compression Algorithm
Specification

19. Protocols — ACPI Protocols

20. EFI Byte Code Virtual Machine

21. Network Protocols—SNP, PXE, and
BIS

22. Network Protocols—Managed
Network

23. Network Protocols—VLAN and
EAP

24. Network Protocols—TCP, IP, IPsec,
FTP and Configuration

25. Network Protocols—ARP and

DHCP

26. Network Protocols—UDPv4 and
MTFPv4

27. Secure Boot and Driver Signing

28. Human Interface Infrastructure

Overview

29. HII Protocols

30. HIl Configuration Processing and
Browser Protocol

Description

Describes in detail the compression/decompression algorithm, as
well as the EFI Decompress Protocol. The EFI Decompress
Protocol provides a standard decompression interface for use at
boot time. The EFlI Decompress Protocol is used by a PCI Bus
Driver to decompress UEFI drivers stored in PCI Option ROMs.

Defines a protocol that may be used to install or remove an ACPI
table from a platform.

Defines the EFI Byte Code virtual processor and its instruction
set. It also defines how EBC object files are loaded into memory,
and the mechanism for transitioning from native code to EBC
code and back to native code. The information in this document is
sufficient to implement an EFI Byte Code interpreter, an EF| Byte
Code compiler, and an EFI Byte Code linker.

Defines the protocols that provide access to network devices

while executing in the UEFI boot services environment. These
protocols include the Simple Network Protocol, the PXE Base
Code Protocol, and the Boot Integrity services (BIS) Protocol.

Defines the EFI Managed Network Protocol, which provides raw
(unformatted) asynchronous network packet 1/0 services and
Managed Network Service Binding Protocol, which is used to
locate communication devices that are supported by an MNP
driver.

Defines a protocol is to provide a manageability interface for
VLAN configurations.

Defines the EFI TCPv4 (Transmission Control Protocol version 4)
Protocol and the EFI IPv4 (Internet Protocol version 4) Protocol
interface.

Defines the EFI Address Resolution Protocol (ARP) Protocol
interface and the EFI DHCPv4 Protocol.

Defines the EFI UDPv4 (User Datagram Protocol version 4)
Protocol that interfaces over the EFI IPv4 Protocol and defines
the EFI MTFTPv4 Protocol interface that is built on the EFI
UDPv4 Protocol.

Describes Secure Boot and a means of generating a digital
signature for UEFI.

Defines the core code and services that are required for an
implementation of the Human Interface Infrastructure (Hll),
including basic mechanisms for managing user input and code
definitions for related protocols.

Provides code definitions for the Hll-related protocols, functions,
and type definitions, including management of font, strings,
images and databases.

Describes the data and APIs used to manage the system’s
configuration: the actual data that describes the knobs and
settings.

January, 2016

Version 2.5 Errata A

Introduction

Section/Appendix
31. User Identification

32. Firmware Management Protocol

33. Secure Technologies

34.Protocols - Timestamp Protocol

A. GUID and Time Formats
B. Console

C. Device Path Examples

D. Status Codes

E. Universal Network Driver Interfaces

F. Using the Simple Pointer Protocol

G. Using the EFI Extended SCSI Pass
Thru Protocol

H. Compression Source Code

|. Decompression Source Code

J. EFI Byte Code Virtual Machine
Opcode Lists

K. Alphabetic Function List

L. EFI 1.10 Protocol Changes and
Deprecation Lists

M. Formats—Language Codes and
Language Code Arrays

N. Common Platform Error Record

O. UEFI ACPI Table

P. Hardware Error Record Persistence
Usage

Q. References

R. Glossary
Index

Description

Describes services which describe the current user of the
platform.

Provides an abstraction for devices to provide firmware
management support.

Describes the protocols for utilizing security technologies
including cryptographic hashing and key management.

Provides a platform independent interface for retrieving a high
resolution timestamp counter.

Explains the GUID (Guaranteed Unique Identifier) format.

Describes the requirements for a basic text-based console
required by EFl-conformant systems to provide communication
capabilities.

Examples of use of the data structures that define various
hardware devices to the boot services.

Lists success, error, and warning codes returned by UEFI
interfaces.

Defines the 32/64-bit hardware and software Universal Network
Driver Interfaces (UNDIs).

Provides the suggested usage of the Simple Pointer Protocol.

Provides an example of how the SCSI Pass Thru Protocol can be
used.

The C source code to an implementation of the Compression
Algorithm.

The C source code to an implementation of the EFI
Decompression Algorithm.

A summary of the opcodes in the instruction set of the EFI Byte
Code Virtual Machine.

Lists all UEFI interface functions alphabetically.

Lists the Protocol, GUID, and revision identifier name changes
and the deprecated protocols compared to the EFI Specification
1.10.

Lists the formats for language codes and language code arrays.

Describes the common platform error record format for
representing platform hardware errors.

Defines the UEFI ACPI table format.

Defines Hardware Error Record Persistence usage.

Lists all necessary or useful specifications, web sites, and other
documentation that is referenced in this UEFI specification.

Briefly describes terms defined or referenced by this specification.

Provides an index to the key terms and concepts in the
specification.

Version 2.5 Errata A

January, 2016 5

Unified Extensible Firmware Interface Specification

1.3 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the industry.
Each new platform capability or hardware innovation requires firmware developers to craft
increasingly complex solutions, and often requires OS developers to make changes to their boot
code before customers can benefit from the innovation. This can be a time-consuming process
requiring a significant investment of resources.

The primary goal of the UEFI specification is to define an alternative boot environment that can
alleviate some of these considerations. In this goal, the specification is similar to other existing boot
specifications. The main properties of this specification can be summarized by these attributes:

L]

Coherent, scalable platform environment. The specification defines a complete solution for the
firmware to describe all platform features and surface platform capabilities to the OS during the
boot process. The definitions are rich enough to cover a range of contemporary processor
designs.

Abstraction of the OS from the firmware. The specification defines interfaces to platform
capabilities. Through the use of abstract interfaces, the specification allows the OS loader to be
constructed with far less knowledge of the platform and firmware that underlie those interfaces.
The interfaces represent a well-defined and stable boundary between the underlying platform
and firmware implementation and the OS loader. Such a boundary allows the underlying
firmware and the OS loader to change provided both limit their interactions to the defined
interfaces.

Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces require the
OS loader to have specific knowledge of the workings of certain hardware devices. This
specification provides OS loader developers with something different: abstract interfaces that
make it possible to build code that works on a range of underlying hardware devices without
having explicit knowledge of the specifics for each device in the range.

Abstraction of Option ROMs from the firmware. This specification defines interfaces to
platform capabilities including standard bus types such as PCI, USB, and SCSI. The list of
supported bus types may grow over time, so a mechanism to extend to future bus types is
included. These defined interfaces, and the ability to extend to future bus types, are components
of the UEFI Driver Model. One purpose of the UEFI Driver Model is to solve a wide range of
issues that are present in existing “PC-AT” option ROMs. Like OS loaders, drivers use the
abstract interfaces so device drivers and bus drivers can be constructed with far less knowledge
of the platform and firmware that underlie those interfaces.

Architecturally shareable system partition. Initiatives to expand platform capabilities and add
new devices often require software support. In many cases, when these platform innovations are
activated before the OS takes control of the platform, they must be supported by code that is
specific to the platform rather than to the customer’s choice of OS. The traditional approach to
this problem has been to embed code in the platform during manufacturing (for example, in flash
memory devices). Demand for such persistent storage is increasing at a rapid rate. This
specification defines persistent store on large mass storage media types for use by platform
support code extensions to supplement the traditional approach. The definition of how this
works is made clear in the specification to ensure that firmware developers, OEMs, operating
system vendors, and perhaps even third parties can share the space safely while adding to
platform capability.

January, 2016 Version 2.5 Errata A

Introduction

Defining a boot environment that delivers these attributes could be accomplished in many ways.
Indeed, several alternatives, perhaps viable from an academic point of view, already existed at the
time this specification was written. These alternatives, however, typically presented high barriers to
entry given the current infrastructure capabilities surrounding supported processor platforms. This
specification is intended to deliver the attributes listed above, while also recognizing the unique
needs of an industry that has considerable investment in compatibility and a large installed base of
systems that cannot be abandoned summarily. These needs drive the requirements for the additional
attributes embodied in this specification:

e Evolutionary, not revolutionary. The interfaces and structures in the specification are designed
to reduce the burden of an initial implementation as much as possible. While care has been taken
to ensure that appropriate abstractions are maintained in the interfaces themselves, the design
also ensures that reuse of BIOS code to implement the interfaces is possible with a minimum of
additional coding effort. In other words, on PC-AT platforms the specification can be
implemented initially as a thin interface layer over an underlying implementation based on
existing code. At the same time, introduction of the abstract interfaces provides for migration
away from legacy code in the future. Once the abstraction is established as the means for the
firmware and OS loader to interact during boot, developers are free to replace legacy code
underneath the abstract interfaces at leisure. A similar migration for hardware legacy is also
possible. Since the abstractions hide the specifics of devices, it is possible to remove underlying
hardware, and replace it with new hardware that provides improved functionality, reduced cost,
or both. Clearly this requires that new platform firmware be written to support the device and
present it to the OS loader via the abstract interfaces. However, without the interface abstraction,
removal of the legacy device might not be possible at all.

* Compatibility by design. The design of the system partition structures also preserves all the
structures that are currently used in the “PC-AT” boot environment. Thus, it is a simple matter to
construct a single system that is capable of booting a legacy OS or an EFl-aware OS from the
same disk.

» Simplifies addition of OS-neutral platform value-add. The specification defines an open,
extensible interface that lends itself to the creation of platform “drivers.” These may be
analogous to OS drivers, providing support for new device types during the boot process, or they
may be used to implement enhanced platform capabilities, such as fault tolerance or security.
Furthermore, this ability to extend platform capability is designed into the specification from the
outset. This is intended to help developers avoid many of the frustrations inherent in trying to
squeeze new code into the traditional BIOS environment. As a result of the inclusion of
interfaces to add new protocols, OEMs or firmware developers have an infrastructure to add
capability to the platform in a modular way. Such drivers may potentially be implemented using
high-level coding languages because of the calling conventions and environment defined in the
specification. This in turn may help to reduce the difficulty and cost of innovation. The option of
a system partition provides an alternative to nonvolatile memory storage for such extensions.

* Built on existing investment. Where possible, the specification avoids redefining interfaces and
structures in areas where existing industry specifications provide adequate coverage. For
example, the ACPI specification provides the OS with all the information necessary to discover
and configure platform resources. Again, this philosophical choice for the design of the
specification is intended to keep barriers to its adoption as low as possible.

Version 2.5 Errata A January, 2016 7

Unified Extensible Firmware Interface Specification

1.4 Target Audience

This document is intended for the following readers:

[HVs and OEMs who will be implementing UEFTI drivers.

OEMs who will be creating supported processor platforms intended to boot shrink-wrap
operating systems.

BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in supported processor-based products.

Operating system developers who will be adapting their shrink-wrap operating system products
to run on supported processor-based platforms.

1.5 UEFI Design Overview

The design of UEFI is based on the following fundamental elements:

Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing specifications
that are commonly implemented on platforms compatible with supported processor
specifications must be implemented on platforms wishing to comply with the UEFI
specification. (For additional information, see Appendix Q.)

System partition. The System partition defines a partition and file system that are designed to
allow safe sharing between multiple vendors, and for different purposes. The ability to include a
separate, sharable system partition presents an opportunity to increase platform value-add
without significantly growing the need for nonvolatile platform memory.

Boot services. Boot services provide interfaces for devices and system functionality that can be
used during boot time. Device access is abstracted through “handles” and “protocols.” This
facilitates reuse of investment in existing BIOS code by keeping underlying implementation
requirements out of the specification without burdening the consumer accessing the device.

Runtime services. A minimal set of runtime services is presented to ensure appropriate
abstraction of base platform hardware resources that may be needed by the OS during its normal
operations.

Figure 1 shows the principal components of UEFI and their relationship to platform hardware and
OS software.

January, 2016 Version 2.5 Errata A

Introduction

OPERATING SYSTEM

EFI OS LOADER

EFI RUNTIME
EFI BOOT SERVICES SERVICES

INTERFACES
FROM
OTHER
REQUIRED
SPECS

PLATFORM HARDWARE
EFI SYSTEM PARTITION

EFI OS
LOADER

OM13141

Figure 1. UEFI Conceptual Overview

Figure 1 illustrates the interactions of the various components of an UEFI specification-compliant
system that are used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the System Partition. The
specification provides for a variety of mass storage device types including disk, CD-ROM, and DVD
as well as remote boot via a network. Through the extensible protocol interfaces, it is possible to add
other boot media types, although these may require OS loader modifications if they require use of
protocols other than those defined in this document.

Once started, the OS loader continues to boot the complete operating system. To do so, it may use
the EFI boot services and interfaces defined by this or other required specifications to survey,
comprehend, and initialize the various platform components and the OS software that manages
them. EFI runtime services are also available to the OS loader during the boot phase.

1.6 UEFI Driver Model

This section describes the goals of a driver model for firmware conforming to this specification. The
goal is for this driver model to provide a mechanism for implementing bus drivers and device drivers
for all types of buses and devices. At the time of writing, supported bus types include PCI, USB, and
so on.

As hardware architectures continue to evolve, the number and types of buses present in platforms are
increasing. This trend is especially true in high-end servers. However, a more diverse set of bus
types is being designed into desktop and mobile systems and even some embedded systems. This
increasing complexity means that a simple method for describing and managing all the buses and
devices in a platform is required in the preboot environment. The UEFI Driver Model provides this
simple method in the form of protocols services and boot services.

Version 2.5 Errata A January, 2016 9

Unified Extensible Firmware Interface Specification

1.6.1 UEFI Driver Model Goals
The UEFI Driver Model has the following goals:

Compatible — Drivers conforming to this specification must maintain compatibility with the EF1
1.10 Specification and the UEFI Specification. This means that the UEFI Driver Model takes
advantage of the extensibility mechanisms in the UEFI 2. 0 Specification to add the required
functionality.

Simple — Drivers that conform to this specification must be simple to implement and simple to
maintain. The UEFI Driver Model must allow a driver writer to concentrate on the specific
device for which the driver is being developed. A driver should not be concerned with platform
policy or platform management issues. These considerations should be left to the system
firmware.

Scalable — The UEFI Driver Model must be able to adapt to all types of platforms. These
platforms include embedded systems, mobile, and desktop systems, as well as workstations and
servers.

Flexible — The UEFI Driver Model must support the ability to enumerate all the devices, or to
enumerate only those devices required to boot the required OS. The minimum device
enumeration provides support for more rapid boot capability, and the full device enumeration
provides the ability to perform OS installations, system maintenance, or system diagnostics on
any boot device present in the system.

Extensible — The UEFI Driver Model must be able to extend to future bus types as they are
defined.

Portable — Drivers written to the UEFI Driver Model must be portable between platforms and
between supported processor architectures.

Interoperable — Drivers must coexist with other drivers and system firmware and must do so
without generating resource conflicts.

Describe complex bus hierarchies — The UEFI Driver Model must be able to describe a variety
of bus topologies from very simple single bus platforms to very complex platforms containing
many buses of various types.

Small driver footprint — The size of executables produced by the UEFI Driver Model must be
minimized to reduce the overall platform cost. While flexibility and extensibility are goals, the
additional overhead required to support these must be kept to a minimum to prevent the size of
firmware components from becoming unmanageable.

Address legacy option rom issues — The UEFI Driver Model must directly address and solve the
constraints and limitations of legacy option ROMs. Specifically, it must be possible to build
add-in cards that support both UEFI drivers and legacy option ROMs, where such cards can
execute in both legacy BIOS systems and UEFI-conforming platforms, without modifications to
the code carried on the card. The solution must provide an evolutionary path to migrate from
legacy option ROMs driver to UEFI drivers.

1.6.2 Legacy Option ROM Issues

This idea of supporting a driver model came from feedback on the UEFI Specification that provided
a clear, market-driven requirement for an alternative to the legacy option ROM (sometimes also

10

January, 2016 Version 2.5 Errata A

Introduction

referred to as an expansion ROM). The perception is that the advent of the UEFI Specification
represents a chance to escape the limitations implicit in the construction and operation of legacy
option ROM images by replacing them with an alternative mechanism that works within the
framework of the UEFI Specification.

1.7 Migration Requirements

Migration requirements cover the transition period from initial implementation of this specification
to a future time when all platforms and operating systems implement to this specification. During
this period, two major compatibility considerations are important:

* The ability to continue booting legacy operating systems;

e The ability to implement UEFI on existing platforms by reusing as much existing firmware code
to keep development resource and time requirements to a minimum.

1.7.1 Legacy Operating System Support

The UEFI specification represents the preferred means for a shrink-wrap OS and firmware to
communicate during the boot process. However, choosing to make a platform that complies with this
specification in no way precludes a platform from also supporting existing legacy OS binaries that
have no knowledge of the UEFI specification.

The UEFTI specification does not restrict a platform designer who chooses to support both the UEFI
specification and a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is to
be implemented, it should be developed in accordance with existing industry practice that is defined
outside the scope of this specification. The choice of legacy operating systems that are supported on
any given platform is left to the manufacturer of that platform.

1.7.2 Supporting the UEFI Specification on a Legacy Platform

The UEFI specification has been carefully designed to allow for existing systems to be extended to
support it with a minimum of development effort. In particular, the abstract structures and services
defined in the UEFI specification can all be supported on legacy platforms.

For example, to accomplish such support on an existing and supported 32-bit-based platform that
uses traditional BIOS to support operating system boot, an additional layer of firmware code would
need to be provided. This extra code would be required to translate existing interfaces for services
and devices into support for the abstractions defined in this specification.

1.8 Conventions Used in this Document

This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported 64-bit processors may be configured for both “little endian” and “big

Version 2.5 Errata A January, 2016 11

Unified Extensible Firmware Interface Specification

endian” operation. All implementations designed to conform to this specification use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

1.8.2 Protocol Descriptions

A protocol description generally has the following format:

P I'OtOCO| N dame. The formal name of the protocol interface.
Summary: A brief description of the protocol interface.
GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol

interface structure or any of its procedures.

1.8.3 Procedure Descriptions

A procedure description generally has the following format:

P roced ure N ame () . The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

12

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this

January, 2016 Version 2.5 Errata A

Introduction

table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.8.4 Instruction Descriptions

An instruction description for EBC instructions generally has the following format:

I n Stru Cti on N dame The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by a table that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.8.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a /ist is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the UEFI Specification.

1.8.6 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the
descriptive text in a specification.

Plain text (blue) Any plain text that is underlined and in blue indicates an active
link to the cross-reference. Click on the word to follow the
hyperlink.

Bold In text, a Bold typeface identifies a processor register name. In

other instances, a Bold typeface can be used as a running head
within a paragraph.

Italic In text, an Jtalic typeface can be used as emphasis to introduce a
new term or to indicate a manual or specification name.

Version 2.5 Errata A January, 2016 13

Unified Extensible Firmware Interface Specification

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red
color. These code listings normally appear in one or more
separate paragraphs, though words or segments can also be
embedded in a normal text paragraph.

Bold Monospace Words in a Bold Monospace typeface that is underlined and
in blue indicate an active hyperlink to the code definition for that
function or type definition. Click on the word to follow the
hyperlink.

Note: Due to management and file size considerations, only the first occurrence of the reference on each
page is an active link. Subsequent references on the same page will not be actively linked to the
definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the first
instance of the name (in the underlined BOLD Monospace typeface) on the page and click on
the word to jump to the function or type definition.

Ttalic Monospace In code or in text, words in Ttalic Monospace indicate
placeholder names for variable information that must be supplied
(i.e., arguments).

1.8.7 Number formats

A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).

Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0 0101 _1010b).

1.8.7.1 Hexadecimal

A hexadecimal number is represented in this standard by Ox preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23).

Underscores or spaces may be included between characters in hexadecimal number representations
to increase readability or delineate field boundaries (e.g., 0xB FD8C FA23 or 0xB_FD8C_FA23).

1.8.7.2 Decimal

A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

* the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

» the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

» the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.

14 January, 2016 Version 2.5 Errata A

Introduction

1.8.8 Binary prefixes

This standard uses the prefixes defined in the International System of Units (SI) for values that are
powers of ten. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "SI
Binary Prefixes”.

Table 2. Sl prefixes

103 1,000 kilo K
108 1,000,000 mega M
10° 1,000,000,000 giga G

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Table 3. Binary prefixes

Factor Factor Name Symbol
210 1,024 kibi Ki
220 1,048,576 mebi Mi
230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

Version 2.5 Errata A January, 2016 15

Unified Extensible Firmware Interface Specification

16 January, 2016 Version 2.5 Errata A

Overview

2
Overview

UEFT allows the extension of platform firmware by loading UEFI driver and UEFI application
images. When UEFI drivers and UEFI applications are loaded they have access to all UEFI-defined
runtime and boot services. See Figure 2.

EFI er
Application Bootcode kg OS Loader

EFI API

EFl Image
Load

Platform
Init

Standard Drivers and Boot from Operation
firmware applications ordered list handed off

platform loaded of EFIOS to OS loader
initialization iteratively loaders
— APl specified =---»Value add implementation

I:l Boot Manager - EFI binaries

OM13144

2.1

Figure 2. Booting Sequence

UEFI allows the consolidation of boot menus from the OS loader and platform firmware into a
single platform firmware menu. These platform firmware menus will allow the selection of any
UEFI OS loader from any partition on any boot medium that is supported by UEFI boot services. An
UEFI OS loader can support multiple options that can appear on the user interface. It is also possible
to include legacy boot options, such as booting from the A: or C: drive in the platform firmware
boot menus.

UEFI supports booting from media that contain an UEFI OS loader or an UEFI-defined System
Partition. An UEFI-defined System Partition is required by UEFI to boot from a block device. UEFI
does not require any change to the first sector of a partition, so it is possible to build media that will
boot on both legacy architectures and UEF]I platforms.

Boot Manager

UEFI contains a boot manager that allows the loading of applications written to this specification
(including OS 1st stage loader) or UEFI drivers from any file on an UEFI-defined file system or
through the use of an UEFI-defined image loading service. UEFI defines NVRAM variables that are

Version 2.5 Errata A January, 2016 17

Unified Extensible Firmware Interface Specification

used to point to the file to be loaded. These variables also contain application-specific data that are
passed directly to the UEFI application. The variables also contain a human readable string that can
be displayed in a menu to the user.

The variables defined by UEFI allow the system firmware to contain a boot menu that can point to
all of the operating systems, and even multiple versions of the same operating systems. The design
goal of UEFI was to have one set of boot menus that could live in platform firmware. UEFI specifies
only the NVRAM variables used in selecting boot options. UEFI leaves the implementation of the
menu system as value added implementation space.

UEFT greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first floppy,
hard drive, CD-ROM, USB keys, or network card attached to the system. Booting from a common
hard drive can cause many interoperability problems between operating systems, and different
versions of operating systems from the same vendor.

2.1.1 UEFI Images

UEFI Images are a class of files defined by UEFI that contain executable code. The most
distinguishing feature of UEFI Images is that the first set of bytes in the UEFI Image file contains an
image header that defines the encoding of the executable image.

UEFT uses a subset of the PE32+ image format with a modified header signature. The modification
to the signature value in the PE32+ image is done to distinguish UEFI images from normal PE32
executables. The “+” addition to PE32 provides the 64-bit relocation fix-up extensions to standard
PE32 format.

For images with the UEFI image signature, the Subsystem values in the PE image header are
defined below. The major differences between image types are the memory type that the firmware
will load the image into, and the action taken when the image’s entry point exits or returns. An
application image is always unloaded when control is returned from the image’s entry point. A
driver image is only unloaded if control is passed back with a UEFI error code.

// PE32+ Subsystem type for EFI images

#define EFI_IMAGE_SUBSYSTEM EFI_APPLICATION 10
#define EFI_IMAGE_SUBSYSTEM EFI_BOOT_ SERVICE DRIVER 11
#define EFI_IMAGE_SUBSYSTEM EFI_RUNTIME DRIVER 12

// PE32+ Machine type for EFI images

#define EFI_IMAGE MACHINE_IA32 0x014c
#define EFI_IMAGE_MACHINE IA64 0x0200
#define EFI_IMAGE MACHINE_EBC 0x0EBC
#define EFI_IMAGE_ MACHINE_x64 0x8664
#define EFI_IMAGE MACHINE_ARMTHUMB_MIXED 0x01C2
#define EFI_IMAGE_ MACHINE_AARCH64 0xAA64

Note: This image type is chosen to enable UEFI images to contain Thumb and Thumb2 instructions

18

while defining the EFI interfaces themselves to be in ARM mode.

January, 2016 Version 2.5 Errata A

Overview

Table 4. UEFI Image Memory Types

Subsystem Type Code Memory Type Data Memory Type
EFI_IMAGE_SUSBSYTEM_EFI_APPLICATION EfiLoaderCode EfiLoaderData
EFI_IMAGE_SUBSYSMTE_EFI_BOOT_SERVICES_ @ EfiBootServiceCode EfiBootServicesData
DRIVER

EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER | EfiRuntimeServicesCode EfiRuntimeServicesData

The Machine value that is found in the PE image file header is used to indicate the machine code
type of the image. The machine code types for images with the UEFI image signature are defined
below. A given platform must implement the image type native to that platform and the image type
for EFI Byte Code (EBC). Support for other machine code types is optional to the platform.

A UEFI image is loaded into memory through the EFI BOOT SERVICES.LoadImage () Boot
Service. This service loads an image with a PE32+ format into memory. This PE32+ loader is
required to load all sections of the PE32+ image into memory. Once the image is loaded into
memory, and the appropriate fix-ups have been performed, control is transferred to a loaded image at
the AddressOfEntryPoint reference according to the normal indirect calling conventions of
applications based on supported 32-bit or supported 64-bit processors. All other linkage to and from
an UEFI image is done programmatically.

2.1.2 Applications

Applications written to this specification are loaded by the Boot Manager or by other UEFI
applications. To load an application the firmware allocates enough memory to hold the image,
copies the sections within the application to the allocated memory, and applies the relocation fix-ups
needed. Once done, the allocated memory is set to be the proper type for code and data for the
image. Control is then transferred to the application’s entry point. When the application returns from
its entry point, or when it calls the Boot Service EFI BOOT SERVICES.Exit (), the application
is unloaded from memory and control is returned to the UEFI component that loaded the application.

When the Boot Manager loads an application, the image handle may be used to locate the “load
options” for the application. The load options are stored in nonvolatile storage and are associated
with the application being loaded and executed by the Boot Manager.

2.1.3 UEFI OS Loaders

An OS loader is a special type of UEFI application that normally takes over control of the system
from firmware conforming to this specification. When loaded, the OS loader behaves like any other
UEFT application in that it must only use memory it has allocated from the firmware and can only
use UEFI services and protocols to access the devices that the firmware exposes. If the OS Loader
includes any boot service style driver functions, it must use the proper UEFI interfaces to obtain
access to the bus specific-resources. That is, I/O and memory-mapped device registers must be
accessed through the proper bus specific I/O calls like those that an UEFI driver would perform.

If the OS loader experiences a problem and cannot load its operating system correctly, it can release
all allocated resources and return control back to the firmware via the Boot Service Exit () call.
The Exit () call allows both an error code and ExitData to be returned. The ExitData
contains both a string and OS loader-specific data to be returned.

Version 2.5 Errata A January, 2016 19

Unified Extensible Firmware Interface Specification

If the OS loader successfully loads its operating system, it can take control of the system by using
the Boot Service EFI BOOT SERVICES.ExitBootServices (). After successfully calling
ExitBootServices (), all boot services in the system are terminated, including memory
management, and the OS loader is responsible for the continued operation of the system.

2.1.4 UEFI Drivers

UEFI Drivers are loaded by the Boot Manager, firmware conforming to this specification, or by
other UEFT applications. To load an UEFI Driver the firmware allocates enough memory to hold the
image, copies the sections within the driver to the allocated memory and applies the relocation fix-
ups needed. Once done, the allocated memory is set to be the proper type for code and data for the
image. Control is then transferred to the driver’s entry point. When the driver returns from its entry
point, or when it calls the Boot Service EFI BOOT SERVICES.Exit (), the driver is optionally
unloaded from memory and control is returned to the component that loaded the driver. A driver is
not unloaded from memory if it returns a status code of EFI_SUCCESS. If the driver’s return code
is an error status code, then the driver is unloaded from memory.

There are two types of UEFI Drivers. These are Boot Service Drivers and Runtime Drivers. The only
difference between these two driver types is that Runtime Drivers are available after an OS Loader
has taken control of the platform with the Boot Service

EFI BOOT SERVICES.ExitBootServices().

Boot Service Drivers are terminated when ExitBootServices () is called, and all the memory
resources consumed by the Boot Service Drivers are released for use in the operating system
environment. A runtime driver of type EFI IMAGE _SUBSYSTEM_EFI RUNTIME DRIVER
gets fixed up with virtual mappings when the OS calls SetVirtualAddressMap ().

2.2 Firmware Core

This section provides an overview of the services defined by UEFI. These include boot services and
runtime services.

2.2.1 UEFI Services

20

The purpose of the UEFI interfaces is to define a common boot environment abstraction for use by
loaded UEFI images, which include UEFI drivers, UEFI applications, and UEFI OS loaders. The
calls are defined with a full 64-bit interface, so that there is headroom for future growth. The goal of
this set of abstracted platform calls is to allow the platform and OS to evolve and innovate
independently of one another. Also, a standard set of primitive runtime services may be used by
operating systems.

Platform interfaces defined in this section allow the use of standard Plug and Play Option ROMs as
the underlying implementation methodology for the boot services. The interfaces have been
designed in such as way as to map back into legacy interfaces. These interfaces have in no way been
burdened with any restrictions inherent to legacy Option ROMs.

The UEFI platform interfaces are intended to provide an abstraction between the platform and the
OS that is to boot on the platform. The UEFI specification also provides abstraction between
diagnostics or utility programs and the platform; however, it does not attempt to implement a full
diagnostic OS environment. It is envisioned that a small diagnostic OS-like environment can be

January, 2016 Version 2.5 Errata A

Overview

easily built on top of an UEFI system. Such a diagnostic environment is not described by this
specification.

Interfaces added by this specification are divided into the following categories and are detailed later
in this document:

¢ Runtime services

* Boot services interfaces, with the following subcategories:
— Global boot service interfaces
— Device handle-based boot service interfaces
— Device protocols
— Protocol services

2.2.2 Runtime Services

This section describes UEFI runtime service functions. The primary purpose of the runtime services
is to abstract minor parts of the hardware implementation of the platform from the OS. Runtime
service functions are available during the boot process and also at runtime provided the OS switches
into flat physical addressing mode to make the runtime call. However, if the OS loader or OS uses
the Runtime Service SetVirtualAddressMap () service, the OS will only be able to call
runtime services in a virtual addressing mode. All runtime interfaces are non-blocking interfaces and
can be called with interrupts disabled if desired.To ensure maximum compatibility with existing
platforms it is recommended that all UEFI modules that comprise the Runtime Services be
represented in the MemoryMap as a single EFI_MEMORY DESCRIPTOR of Type
EfiRuntimeServicesCode.

In all cases memory used by the runtime services must be reserved and not used by the OS. runtime
services memory is always available to an UEFI function and will never be directly manipulated by
the OS or its components. UEFI is responsible for defining the hardware resources used by runtime
services, so the OS can synchronize with those resources when runtime service calls are made, or
guarantee that the OS never uses those resources.

Table 5 lists the Runtime Services functions.

Table 5. UEFI Runtime Services

Name Description

GetTime () Returns the current time, time context, and time keeping
capabilities.

SetTime () Sets the current time and time context.

GetWakeupTime () Returns the current wakeup alarm settings.

SetWakeupTime () Sets the current wakeup alarm settings.

GetVariable () Returns the value of a named variable.

GetNextVariableName () Enumerates variable names.

SetVariable () Sets, and if needed creates, a variable.

SetVirtualAddressMap () Switches all runtime functions from physical to virtual
addressing.

Version 2.5 Errata A January, 2016 21

Unified Extensible Firmware Interface Specification

Name Description

ConvertPointer () Used to convert a pointer from physical to virtual
addressing.

GetNextHighMonotonicCount () Subsumes the platform's monotonic counter
functionality.

ResetSystem() Resets all processors and devices and reboots the
system.

UpdateCapsule () Passes capsules to the firmware with both virtual and
physical mapping.

QueryCapsuleCapabilities () Returns if the capsule can be supported via
UpdateCapsule ().

QueryVariableInfo () Returns information about the EF| variable store.

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the UEFI specification are called through pointers
in common, architecturally defined, calling conventions found in C compilers. Pointers to the
various global UEFI functions are found in the EFI_RUNTIME SERVICES and
EFI_BOOT_SERVICES tables that are located via the system table. Pointers to other functions
defined in this specification are located dynamically through device handles. In all cases, all pointers
to UEFI functions are cast with the word EFIAPI. This allows the compiler for each architecture to
supply the proper compiler keywords to achieve the needed calling conventions. When passing
pointer arguments to Boot Services, Runtime Services, and Protocol Interfaces, the caller has the
following responsibilities:

» Itis the caller’s responsibility to pass pointer parameters that reference physical memory
locations. If a pointer is passed that does not point to a physical memory location (i.e., a memory
mapped I/O region), the results are unpredictable and the system may halt.

« Itis the caller’s responsibility to pass pointer parameters with correct alignment. If an unaligned
pointer is passed to a function, the results are unpredictable and the system may halt.

o Itisthe caller’s responsibility to not pass in a NULL parameter to a function unless it is explicitly
allowed. If a NULL pointer is passed to a function, the results are unpredictable and the system
may hang.

* Unless otherwise stated, a caller should not make any assumptions regarding the state of pointer
parameters if the function returns with an error.

e A caller may not pass structures that are larger than native size by value and these structures
must be passed by reference (via a pointer) by the caller. Passing a structure larger than native
width (4 bytes on supported 32-bit processors; 8 bytes on supported 64-bit processor
instructions) on the stack will produce undefined results.

Calling conventions for supported 32-bit and supported 64-bit applications are described in more
detail below. Any function or protocol may return any valid return code.

All public interfaces of a UEFI module must follow the UEFI calling convention. Public interfaces
include the image entry point, UEFI event handlers, and protocol member functions. The type
EFIAPI is used to indicate conformance to the calling conventions defined in this section. Non

22 January, 2016 Version 2.5 Errata A

Overview

public interfaces, such as private functions and static library calls, are not required to follow the
UEFI calling conventions and may be optimized by the compiler.

2.3.1 Data Types

Table 6 lists the common data types that are used in the interface definitions, and Table 7 lists their
modifiers. Unless otherwise specified all data types are naturally aligned. Structures are aligned on

boundaries equal to the largest internal datum of the structure and internal data are implicitly padded
to achieve natural alignment.

The values of the pointers passed into or returned by the UEFI interfaces must provide natural
alignment for the underlying types.

Table 6. Common UEFI Data Types

Mnemonic
BOOLEAN

INTN

UINTN

INT8
UINT8
INT16
UINT16
INT32
UINT32
INT64
UINT64
CHARS8

CHAR16

VOID
EFI_GUID

EFI_STATUS
EFI_HANDLE
EFI_EVENT
EFI_LBA
EFI_TPL

Description
Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other
values are undefined.

Signed value of native width. (4 bytes on supported 32-bit processor instructions, 8
bytes on supported 64-bit processor instructions)

Unsigned value of native width. (4 bytes on supported 32-bit processor instructions,
8 bytes on supported 64-bit processor instructions)

1-byte signed value.
1-byte unsigned value.
2-byte signed value.
2-byte unsigned value.
4-byte signed value.
4-byte unsigned value.
8-byte signed value.
8-byte unsigned value.

1-byte character. Unless otherwise specified, all 1-byte or ASCII characters and
strings are stored in 8-bit ASCII encoding format, using the ISO-Latin-1 character
set.

2-byte Character. Unless otherwise specified all characters and strings are stored in
the UCS-2 encoding format as defined by Unicode 2.1 and ISO/IEC 10646
standards.

Undeclared type.

128-bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64-bit boundary.

Status code. Type UINTN.

A collection of related interfaces. Type VOID *.
Handle to an event structure. Type VOID *.
Logical block address. Type UINT64.

Task priority level. Type UINTN.

EFI_MAC_ADDRESS @ 32-byte buffer containing a network Media Access Control address.

Version 2.5 Errata A

January, 2016 23

Unified Extensible Firmware Interface Specification

Mnemonic Description

EFI_IPv4_ADDRESS 4-byte buffer. An IPv4 internet protocol address.

EFI_IPv6_ADDRESS @ 16-byte buffer. An IPv6 internet protocol address.

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol
address.

<Enumerated Type> | Element of a standard ANSI C enum type declaration. Type INT32.or UINT32.
ANSI C does not define the size of sign of an enum so they should never be used in
structures. ANSI C integer promotion rules make INT32 or UINT32 interchangeable
when passed as an argument to a function.

sizeof (VOID *) 4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit
processor instructions.

Bitfields Bitfields are ordered such that bit 0 is the least significant bit.

Table 7. Modifiers for Common UEFI Data Types

Mnemonic Description

IN Datum is passed to the function.

ouT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be
passed if the value is not supplied.

CONST Datum is read-only.

EFIAPI Defines the calling convention for UEFI interfaces.

2.3.2 1A-32 Platforms

All functions are called with the C language calling convention. The general-purpose registers that
are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are
nonvolatile and are preserved by the target function. In addition, unless otherwise specified by the
function definition, all other registers are preserved.

Firmware boot services and runtime services run in the following processor execution mode prior to
the OS calling ExitBootServices():

* Uniprocessor, as described in chapter 8.4 of:
— Intel 64 and 14-32 Architectures Software Developer's Manual
— Volume 3, System Programming Guide, Part 1
— Order Number: 253668-033US, December 2009

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading "Intel
Processor Manuals.

¢ Protected mode

* Paging mode may be enabled. If paging mode is enabled, PAE (Physical Address Extensions)
mode is recommended. If paging mode is enabled, any memory space defined by the UEFI
memory map is identity mapped (virtual address equals physical address). The mappings to
other regions are undefined and may vary from implementation to implementation.

¢ Selectors are set to be flat and are otherwise not used

24 January, 2016 Version 2.5 Errata A

Overview

Interrupts are enabled—though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

Direction flag in EFLAGs is clear
Other general purpose flag registers are undefined
128 KiB, or more, of available stack space

The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped
page tables.

Floating-point control word must be initialized to 0x027F (all exceptions masked, double-
precision, round-to-nearest)

Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow).

CRO.EM must be zero
CRO.TS must be zero

An application written to this specification may alter the processor execution mode, but the UEFI
image must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

After an Operating System calls ExitBootServices (), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime services
are still available and may be called with paging enabled and virtual address pointers if
SetVirtualAddressMap () has been called describing all virtual address ranges used by the
firmware runtime service.

For an operating system to use any UEFI runtime services, it must:

L]

Preserve all memory in the memory map marked as runtime code and runtime data

Call the runtime service functions, with the following conditions:

— In protected mode

— Paging may or may not be enabled, however if paging is enabled and
SetVirtualAddressMap () has not been called, any memory space defined by the
UEFI memory map is identity mapped (virtual address equals physical address). The
mappings to other regions are undefined and may vary from implementation to
implementation. See description of SetVirtualAddressMap () for details of memory
map after this function has been called.

— Direction flag in EFLAGs clear

— 4 KiB, or more, of available stack space

— The stack must be 16-byte aligned

— Floating-point control word must be initialized to 0x027F (all exceptions masked, double-
precision, round-to-nearest)

— Multimedia-extensions control word (if supported) must be initialized to Ox1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow)

— CRO.EM must be zero

— CRO.TS must be zero

— Interrupts disabled or enabled at the discretion of the caller

Version 2.5 Errata A January, 2016 25

Unified Extensible Firmware Interface Specification

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type Ef1iACPIMemoryNVS.

The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EEiACPIMemoryNVS.

EFI memory descriptors of type EELIACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY DESCRIPTOR havingthe EFI_MEMORY RUNTIME bitset must be aligned on
a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type Ef1ACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used for the storage of any EFI
Configuration Tables. The UEFI Specification intends to clarify the situation moving forward. Also,
only OSes conforming to the UEFI Specification are guaranteed to handle SMBIOS table in
memory of type EfiBootServicesData.

2.3.2.1 Handoff State

26

When a 32-bit UEFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit
mode. All descriptors are set to their 4GiB limits so that all of memory is accessible from all
segments.

Figure 3 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has been
called on supported 32-bit systems. All UEFI image entry points take two parameters. These are the
image handle of the UEFI image, and a pointer to the EFI System Table.

January, 2016 Version 2.5 Errata A

Overview

Stack Location

EFI_SYSTEM_TABLE * ESP + 8
EFI_HANDLE ESP +4
<return address> ESP

OM13145

Figure 3. Stack after AddressOfEntryPoint Called, IA- 32

2.3.2.2 Calling Convention

All functions are called with the C language calling convention. The general-purpose registers that
are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are
nonvolatile and are preserved by the target function.

In addition, unless otherwise specified by the function definition, all other CPU registers (including
MMX and XMM) are preserved.

The floating point status register is not preserved by the target function. The floating point control
register and MMX control register are saved by the target function.

If the return value is a float or a double, the value is returned in ST(0).

2.3.3 Intel® Itanium®-Based Platforms

UEFI executes as an extension to the SAL execution environment with the same rules as laid out by
the SAL specification.

During boot services time the processor is in the following execution mode:

* Uniprocessor, as detailed in chapter 13.1.2 of:
— Intel Itanium Architecture Software Developer's Manual
— Volume 2: System Architecture
— Revision 2.2
— January 2006

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel
Itanium Documentation”.

— Document Number: 245318-005
* Physical mode

* 128 KiB, or more, of available stack space

* 16 KiB, or more, of available backing store space
— FPSR.traps:Set to all 1's (all exceptions disabled)
— FPSR.sf0:

* .pc:Precision Control - 11b (extended precision)
* .rc:Rounding Control - 0 (round to nearest)

* .wre:Widest Range Exponent - 0 (IEEE mode)

o .ftz:Flush-To-Zero mode - 0 (off)

Version 2.5 Errata A January, 2016 27

Unified Extensible Firmware Interface Specification

28

— FPSR.sfl:

* .td:Traps Disable = 1 (traps disabled)

* .pc:Precision Control - 11b (extended precision)

* .rc:Rounding Control - 0 (round to nearest)

» wreWidest Range Exponent - 1 (full register exponent range)

ftzFlush-To-Zero mode - 0 (off)
— FPSR.sf2,3:

* .tdTraps Disable = 1 (traps disabled)
e pc:Precision Control - 11b (extended precision)

» .rc:Rounding Control - 0 (round to nearest)
* .wre:Widest Range Exponent - 0 (IEEE mode)
e ftz:Flush-To-Zero mode - 0 (off)

An application written to this specification may alter the processor execution mode, but the UEFI
image must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer available
and it is illegal to call any boot service. After ExitBootServices, firmware runtime services are still
available When calling runtime services, paging may or may not be enabled, however if paging is
enabled and SetVirtualAddressMap () has not been called, any memory space defined by the
UEFI memory map is identity mapped (virtual address equals physical address). The mappings to
other regions are undefined and may vary from implementation to implementation. See description
of SetVirtualAddressMap () for details of memory map after this function has been called.
After ExitBootServices(), runtime service functions may be called with interrupts disabled or
enabled at the discretion of the caller.

e ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must
be contained in memory of type EfiACPIMemoryNVS.

* The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

* EFI memory descriptors of type EELIACPIReclaimMemory and EfiACPIMemoryNVS.
must be aligned on an 8 KiB boundary and must be a multiple of 8 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY DESCRIPTOR having the EFI_MEMORY RUNTIME bit set must be aligned
on an § KiB boundary and must be a multiple of 8 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

e ACPI tables loaded at runtime must be contained in memory of type EfE1ACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,

January, 2016 Version 2.5 Errata A

Overview

cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

* In general, Configuration Tables loaded at boot time (e.g., SMBIOS table) can be contained in
memory of type EEiRuntimeServicesData (recommended and the system firmware must
not request a virtual mapping), EfiBootServicesData, EfiACPIReclaimMemory or
EfiACPIMemoryNVS. Tables loaded at runtime must be contained in memory of type
EfiRuntimeServicesData (recommended) or EEIACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI
Specification intends to clarify the situation moving forward. Also, only OSes conforming to the
UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

Refer to the 14-64 System Abstraction Layer Specification (see Appendix Q) for details.

UEFI procedures are invoked using the P64 C calling conventions defined for Intel® Itanium®-

based applications. Refer to the document 64 Bit Runtime Architecture and Software Conventions
for 14-64 (seeAppendix Q) for more information.

2.3.3.1 Handoff State

UEFI uses the standard P64 C calling conventions that are defined for Itanium-based operating
systems. Figure 4 shows the stack after ImageEntryPoint has been called on Itanium-based
systems. The arguments are also stored in registers: out0 contains EFI_HANDLE and outl contains
the address of the EFI_SYSTEM TABLE. The gp for the UEFI Image will have been loaded from
the plabel pointed to by the AddressOfEntryPoint inthe image’s PE32+ header. All UEFI
image entry points take two parameters. These are the image handle of the image, and a pointer to
the System Table.

Stack Location Register

EFI_SYSTEM_TABLE * SP +8 outl
EFI_HANDLE SP outO

OM13146

Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see Appendix Q) defines the state of the system registers at boot handoff.
The SAL specification also defines which system registers can only be used after UEFI boot services
have been properly terminated.

2.3.3.2 Calling Convention

UEFI executes as an extension to the SAL execution environment with the same rules as laid out by

Version 2.5 Errata A January, 2016 29

Unified Extensible Firmware Interface Specification

the SAL specification. UEFI procedures are invoked using the P64 C calling conventions defined for
Intel® Itanium®-based applications. Refer to the document 64 Bit Runtime Architecture and
Software Conventions for IA-64 (see Glossary for more information.

For floating point, functions may only use the lower 32 floating point registers Return values appear
in f8-f15 registers. Single, double, and extended values are all returned using the appropriate format.
Registers f6-f7 are local registers and are not preserved for the caller. All other floating point
registers are preserved. Note that, when compiling UEFI programs, a special switch will likely need
to be specified to guarantee that the compiler does not use f32-f127, which are not normally
preserved in the regular calling convention for Itanium. A procedure using one of the preserved
floating point registers must save and restore the caller's original contents without generating a NaT
consumption fault.

Floating point arguments are passed in £8-f15 registers when possible. Parameters beyond the
registers appear in memory, as explained in Section 8.5 of the Itanium Software Conventions and
Runtime Architecture Guide. Within the called function, these are local registers and are not
preserved for the caller. Registers fo-f7 are local registers and are not preserved for the caller. All
other floating point registers are preserved. Note that, when compiling UEFI programs, a special
switch will likely need to be specified to guarantee that the compiler does not use f32-f127, which
are not normally preserved in the regular calling convention for Itanium. A procedure using one of
the preserved floating point registers must save and restore the caller's original contents without
generating a NaT consumption fault.

The floating point status register must be preserved across calls to a target function. Flags fields in
SF1,2,3 are not preserved for the caller. Flags fields in SFO upon return will reflect the value passed
in, and with bits set to 1 corresponding to any IEEE exceptions detected on non-speculative floating-
point operations executed as part of the callee.

Floating-point operations executed by the callee may require software emulation. The caller must be
prepared to handle FP Software Assist (FPSWA) interruptions. Callees should not raise IEEE traps
by changing FPSR.traps bits to 0 and then executing floating-point operations that raise such traps.

2.3.4 x64 Platforms

30

All functions are called with the C language calling convention. See Section 2.3.4.2 for more detail.
During boot services time the processor is in the following execution mode:

» Uniprocessor, as described in chapter 8.4 of:
— Intel 64 and I1A-32 Architectures Software Developer's Manual
— Volume 3, System Programming Guide, Part 1
— Order Number: 253668-033US, December 2009

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Intel
Processor Manuals”.

* Long mode, in 64-bit mode

* Paging mode is enabled and any memory space defined by the UEFI memory map is identity
mapped (virtual address equals physical address). The mappings to other regions are undefined
and may vary from implementation to implementation.

¢ Selectors are set to be flat and are otherwise not used.

January, 2016 Version 2.5 Errata A

Overview

Interrupts are enabled—though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

Direction flag in EFLAGs is clear
Other general purpose flag registers are undefined
128 KiB, or more, of available stack space

The stack must be 16-byte aligned. Stack may be marked as non-executable in identity mapped
page tables.

Floating-point control word must be initialized to 0x037F (all exceptions masked, double-
extended-precision, round-to-nearest)

Multimedia-extensions control word (if supported) must be initialized to 0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow).

CRO.EM must be zero
CRO.TS must be zero

For an operating system to use any UEFI runtime services, it must:

Preserve all memory in the memory map marked as runtime code and runtime data
Call the runtime service functions, with the following conditions:

In long mode, in 64-bit mode

Paging enabled

All selectors set to be flat with virtual = physical address. If the OS Loader or OS used
SetVirtualAddressMap () to relocate the runtime services in a virtual address space, then
this condition does not have to be met. See description of SetVirtualAddressMap () for
details of memory map after this function has been called.

Direction flag in EFLAGs clear
4 KiB, or more, of available stack space
The stack must be 16-byte aligned

Floating-point control word must be initialized to 0x037F (all exceptions masked, double-
extended-precision, round-to-nearest)

Multimedia-extensions control word (if supported) must be initialized to O0x1F80 (all exceptions
masked, round-to-nearest, flush to zero for masked underflow)

CRO.EM must be zero
CRO.TS must be zero
Interrupts may be disabled or enabled at the discretion of the caller.

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EEiACPIMemoryNVS. ACPI FACS must
be contained in memory of type EE1ACPIMemoryNVS.

The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

EFI memory descriptors of type EELIACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Version 2.5 Errata A January, 2016 31

Unified Extensible Firmware Interface Specification

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY DESCRIPTOR having the EFI_MEMORY RUNTIME bitset must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type Ef1ACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfEiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI|
Specification intends to clarify the situation moving forward. Also, only OSes conforming to the
UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.4.1 Handoff State

Rex — EFI HANDLE
Rdx — EFI_SYSTEM_TABLE *

RSP - <return address>

2.3.4.2 Detailed Calling Conventions

32

The caller passes the first four integer arguments in registers. The integer values are passed from left
to right in Rex, Rdx, R8, and R9 registers. The caller passes arguments five and above onto the
stack. All arguments must be right-justified in the register in which they are passed. This ensures the
callee can process only the bits in the register that are required.

The caller passes arrays and strings via a pointer to memory allocated by the caller. The caller passes
structures and unions of size 8, 16, 32, or 64 bits as if they were integers of the same size. The caller
is not allowed to pass structures and unions of other than these sizes and must pass these unions and
structures via a pointer.

The callee must dump the register parameters into their shadow space if required. The most common
requirement is to take the address of an argument.

January, 2016 Version 2.5 Errata A

Overview

If the parameters are passed through varargs then essentially the typical parameter passing applies,
including spilling the fifth and subsequent arguments onto the stack. The callee must dump the
arguments that have their address taken.

Return values that fix into 64-bits are returned in the Rax register. If the return value does not fit
within 64-bits, then the caller must allocate and pass a pointer for the return value as the first
argument, Rcx. Subsequent arguments are then shifted one argument to the right, so for example
argument one would be passed in Rdx. User-defined types to be returned must be 1,2,4,8,16,32, or
64 bits in length.

The registers Rax, Rex Rdx R8, R9, R10, R11, and XMMO0-XMMS5 are volatile and are, therefore,
destroyed on function calls.

The registers RBX, RBP, RDI, RSI, R12, R13, R14, R15, and XMM6-XMM15 are considered
nonvolatile and must be saved and restored by a function that uses them.

Function pointers are pointers to the label of the respective function and don’t require special
treatment.

A caller must always call with the stack 16-byte aligned.

For MMX, XMM and floating-point values, return values that can fit into 64-bits are returned
through RAX (including MMX types). However, XMM 128-bit types, floats, and doubles are
returned in XMMO. The floating point status register is not saved by the target function. Floating-
point and double-precision arguments are passed in XMMO - XMM3 (up to 4) with the integer slot
(RCX, RDX, R8, and R9) that would normally be used for that cardinal slot being ignored (see
example) and vice versa. XMM types are never passed by immediate value but rather a pointer will
be passed to memory allocated by the caller. MMX types will be passed as if they were integers of
the same size. Callees must not unmask exceptions without providing correct exception handlers.

In addition, unless otherwise specified by the function definition, all other CPU registers (including
MMX and XMM) are preserved.

2.3.4.3 Enabling Paging or Alternate Translations in an Application

Boot Services define an execution environment where paging is not enabled (supported 32-bit) or
where translations are enabled but mapped virtual equal physical (x64) and this section will describe
how to write an application with alternate translations or with paging enabled. Some Operating
Systems require the OS Loader to be able to enable OS required translations at Boot Services time.

If a UEFI application uses its own page tables, GDT or IDT, the application must ensure that the
firmware executes with each supplanted data structure. There are two ways that firmware
conforming to this specification can execute when the application has paging enabled.

* Explicit firmware call
* Firmware preemption of application via timer event

An application with translations enabled can restore firmware required mapping before each UEFI
call. However the possibility of preemption may require the translation enabled application to
disable interrupts while alternate translations are enabled. It’s legal for the translation enabled
application to enable interrupts if the application catches the interrupt and restores the EFI firmware
environment prior to calling the UEFI interrupt ISR. After the UEFI ISR context is executed it will
return to the translation enabled application context and restore any mappings required by the
application.

Version 2.5 Errata A January, 2016 33

Unified Extensible Firmware Interface Specification

2.3.5 AArch32 Platforms

All functions are called with the C language calling convention specified in Section 2.3.5.3. In
addition, the invoking OSs can assume that unaligned access support is enabled if it is present in the
processor.

34

During boot services time the processor is in the following execution mode:

Unaligned access should be enabled if supported; Alignment faults are enabled
otherwise.

Uniprocessor.

A privileged mode.

The MMU is enabled (CP15 c1 System Control Register (SCTLR) SCTLR.M=1) and any RAM
defined by the UEFI memory map is identity mapped (virtual address equals physical address).
The mappings to other regions are undefined and may vary from implementation to
implementation

The core will be configured as follows (common across all processor architecture revisions):

MMU enabled

Instruction and Data caches enabled
Access flag disabled

Translation remap disabled

Little endian mode

Domain access control mechanism (if supported) will be configured to check access
permission bits in the page descriptor

Fast Context Switch Extension (FCSE) must be disabled

This will be achieved by:

Configuring the CP15 c1 System Control Register (SCTLR) as follows: I=1, C=1, B=0,
TRE=0, AFE=0, M=1

Configuring the CP15 ¢3 Domain Access Control Register (DACR) to 0x33333333.

Configuring the CP15 c1 System Control Register (SCTLR), A=1 on ARMv4 and ARMVS5,
A=0, U=1 on ARMv6 and ARMV7.

The state of other system control register bits is not dictated by this specification.

Implementations of boot services will enable architecturally manageable caches and TLBs i.e.,
those that can be managed directly using CP15 operations using mechanisms and procedures
defined in the ARM Architecture Reference Manual. They should not enable caches requiring
platform information to manage or invoke non-architectural cache/TLB lockdown mechanisms

MMU configuration--Implementations must use only 4k pages and a single translation base
register. On devices supporting multiple translation base registers, TTBR0 must be used solely.
The binding does not mandate whether page tables are cached or un-cached.

On processors implementing the ARMv4 through ARMv6K architecture definitions, the
core is additionally configured to disable extended page tables support, if present.

This will be achieved by configuring the CP15 ¢l System Control Register (SCTLR) as
follows: XP=0

January, 2016 Version 2.5 Errata A

Overview

e On processors implementing the ARMv7 and later architecture definitions, the core will be
configured to enable the extended page table format and disable the TEX remap mechanism.

This will be achieved by configuring the CP15 ¢l System Control Register (SCTLR) as
follows: XP=1, TRE=0

Interrupts are enabled—though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling.”)

128 KiB or more of available stack space

For an operating system to use any runtime services, it must:

Preserve all memory in the memory map marked as runtime code and runtime data
Call the runtime service functions, with the following conditions:
* In a privileged mode.

* The system address regions described by all the entries in the EFI memory map that have the
EFI_MEMORY RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtual AddressMap() to relocate the runtime
services in a virtual address space, then this condition does not have to be met. See
description of SetVirtualAddressMap() for details of memory map after this function has
been called.

e The processor must be in a mode in which it has access to the system address regions
specified in the EFI memory map with the EFI_MEMORY RUNTIME bit set.

* 4 KiB, or more, of available stack space
* Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but the invoking
OS must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

If ACPI is supported :

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must
be contained in memory of type EfiACPIMemoryNVS

The system firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

EFI memory descriptors of type EELIACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY DESCRIPTOR having the EFI_MEMORY RUNTIME bit set must be aligned
on a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type EE1ACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI

Version 2.5 Errata A January, 2016 35

Unified Extensible Firmware Interface Specification

memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI
Specification intends to clarify the situation moving forward. Also, only OSes conforming to the
UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.5.1 Handoff State

RO — EFI HANDLE
R1 - EFI_SYSTEM_TABLE *
R14 — Return Address

2.3.5.2 Enabling Paging or Alternate Translations in an Application

36

Boot Services define a specific execution environment. This section will describe how to write an
application that creates an alternative execution environment. Some Operating Systems require the
OS Loader to be able to enable OS required translations at Boot Services time, and make other
changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure
that the firmware executes with each supplanted functionality. There are two ways that firmware
conforming to this specification can execute in this alternate execution environment:

* Explicit firmware call
* Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before
each UEFI call. However the possibility of preemption may require the alternate execution-enabled
application to disable interrupts while the alternate execution environment is active. It's legal for the
alternate execution environment enabled application to enable interrupts if the application catches
the interrupt and restores the EFI firmware environment prior to calling the UEFI interrupt ISR.
After the UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the semantics or
behavior of the MMU configuration created by the UEFI firmware prior to invoking
ExitBootServices (), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices () it should immediately configure the exception
vector to point to appropriate code.

January, 2016 Version 2.5 Errata A

Overview

2.3.5.3 Detailed Calling Convention
The base calling convention for the ARM binding is defined here:

Procedure Call Standard for the ARM Architecture V2.06 (or later)
See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Arm Architecture
Base Calling Convention”.

This binding further constrains the calling convention in these ways:

» Calls to UEFI defined interfaces must be done assuming that the target code requires the ARM
instruction set state. Images are free to use other instruction set states except when invoking
UEFI interfaces.

* Floating point, SIMD, vector operations and other instruction set extensions must not be used.
e Only little endian operation is supported.

* The stack will maintain 8 byte alignment as described in the AAPCS for public interfaces.

» Use of coprocessor registers for passing call arguments must not be used

* Structures (or other types larger than 64-bits) must be passed by reference and not by value

e The EFI ARM platform binding defines register r9 as an additional callee-saved variable
register.

2.3.6 AArch64 Platforms

AArch64 UEFI will only execute 64-bit ARM code, as the ARMvS architecture does not allow for
the mixing of 32-bit and 64-bit code at the same privilege level.

All functions are called with the C language calling convention specified in Detailed calling
Convention section below. During boot services only a single processor is used for execution. All
secondary processors must be either powered off or held in a quiescent state.

The primary processor is in the following execution mode:
» Unaligned access must be enabled.

* Use the highest 64 bit non secure privilege level available; Non-secure EL2 (Hyp) or Non-
secure EL1(Kernel).

* The MMU is enabled and any RAM defined by the UEFI memory map is identity mapped
(virtual address equals physical address). The mappings to other regions are undefined and may
vary from implementation to implementation

* The core will be configured as follows:
¢ MMU enabled
* Instruction and Data caches enabled
» Little endian mode
» Stack Alignment Enforced
* NOT Top Byte Ignored
* Valid Physical Address Space
e 4K Translation Granule
This will be achieved by:

Version 2.5 Errata A January, 2016 37

Unified Extensible Firmware Interface Specification

Note:

38

Configuring the System Control Register SCTLR EL2 or SCTLR ELI:
EE=0, I=1, SA=1, C=1, A=0, M=1

Configuring the appropriate Translation Control Register:

TCR_EL2

*+ TBI=0

* PS must contain the valid Physical Address Space Size.
* TG0=00

TCR_ELI1

« TBIO=0

* IPS must contain the valid Intermediate Physical Address Space Size.
+ TGO0=00

The state of other system control register bits is not dictated by this specification.

All floating point traps and exceptions will be disabled at the relevant exception levels
(FPCR=0, CPACR_EL1.FPEN=11, CPTR_EL2.TFP=0). This implies that the FP unit will be
enabled by default.

Implementations of boot services will enable architecturally manageable caches and TLBs i.e.,
those that can be managed directly using implementation independent registers using
mechanisms and procedures defined in the ARM Architecture Reference Manual. They should
not enable caches requiring platform information to manage or invoke non-architectural cache/
TLB lockdown mechanisms.

MMU configuration: Implementations must use only 4k pages and a single translation base
register. On devices supporting multiple translation base registers, TTBR0O must be used solely.
The binding does not mandate whether page tables are cached or un-cached.

Interrupts are enabled, though no interrupt services are supported other than the UEFI boot
services timer functions (All loaded device drivers are serviced synchronously by “polling”). All
UEFT interrupts must be routed to the IRQ vector only.

The architecture generic timer must be initialized and enabled. The Counter Frequency register
(CNTFRQ) must be programmed with the timer frequency. Timer access must be provided to
non-secure EL1 and ELO by setting bits ELIPCTEN and EL1PCEN in register
CNTHCTL_EL2.

128 KiB or more of available stack space

The ARM architecture allows mapping pages at a variety of granularities, including 4KiB and
64KiB. If a 64KiB physical page contains any 4KiB page with any of the following types listed
below, then all 4KiB pages in the 64KiB page must use identical ARM Memory Page Attributes
(as described in Table 8)

— EfiRuntimeServicesCode

— EfiRuntimeServicesData

— EfiReserved

— EfiACPIMemoryNVS

Mixed attribute mappings within a larger page are not allowed.

January, 2016 Version 2.5 Errata A

Overview

Note: This constraint allows a 64K paged based Operating System to safely map runtime services
memory.

For an operating system to use any runtime services, Runtime services must:

e Support calls from either the EL1 or the EL2 exception levels.

* Once called, simultaneous or nested calls from EL1 and EL2 are not permitted.

Note: Sequential, non-overlapping, calls from EL1 and EL2 are permitted.

Runtime services are permitted to make synchronous SMC and HVC calls into higher exception

levels.

Note: These rules allow Boot Services to start at EL2, and Runtime services to be assigned to an EL1
Operating System. In this case a call to SetVirtualAddressMap () is expected to provided
an EL1 appropriate set of mappings.

For an operating system to use any runtime services, it must:

* Enable unaligned access support.

* Preserve all memory in the memory map marked as runtime code and runtime data

» Call the runtime service functions, with the following conditions:

L]

L]

From either EL1 or EL2 exception levels.

Consistently call runtime services from the same exception level. Sharing of runtime
services between different exception levels is not permitted.

Runtime services must only be assigned to a single operating system or hypervisor. They
must not be shared between multiple guest operating systems.

The system address regions described by all the entries in the EFI memory map that have the
EFI_MEMORY RUNTIME bit set must be identity mapped as they were for the EFI boot
environment. If the OS Loader or OS used SetVirtualAddressMap () to relocate the
runtime services in a virtual address space, then this condition does not have to be met. See
description of SetVirtualAddressMap () for details of memory map after this
function has been called.

The processor must be in a mode in which it has access to the system address regions
specified in the EFI memory map with the EFI_MEMORY RUNTIME bit set.

8 KiB, or more, of available stack space.
The stack must be 16-byte aligned (128-bit).

Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but the invoking
OS must ensure firmware boot services and runtime services are executed with the prescribed
execution environment.

If ACPI is supported :

e ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EEiACPIMemoryNVS.

e ACPI FACS must be contained in memory of type EfiACPIMemoryNVS. The system
firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EEiACPIMemoryNVS.

Version 2.5 Errata A January, 2016 39

Unified Extensible Firmware Interface Specification

EFI memory descriptors of type EE1ACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY DESCRIPTOR havingthe EFI_MEMORY RUNTIME bitset must be aligned on
a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory map. If
the system memory map does not contain cacheability attributes, the ACPI Memory Op-region
must inherit its cacheability attributes from the ACPI name space. If no cacheability attributes
exist in the system memory map or the ACPI name space, then the region must be assumed to be
non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type Ef1ACPIMemoryNVS.
The cacheability attributes for ACPI tables loaded at runtime should be defined in the UEFI
memory map. If no information about the table location exists in the UEFI memory map,
cacheability attributes may be obtained from ACPI memory descriptors. If no information about
the table location exists in the UEFI memory map or ACPI memory descriptors, the table is
assumed to be non-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesdata,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 intends
to clarify the situation moving forward. Also, only OSes conforming to UEFI 2.0 are guaranteed to
handle SMBIOS table in memory of type EfiBootServicesdata.

2.3.6.1 Memory types

40

Table 8. Map: EFI memory types to AArch64 memory types

EFl Memory Type ARM Memory Type: ARM Memory Type:

MAIR attribute encoding Meaning
Attr<n> [7:4] [3:0]

EFI_MEMORY_UC (Not

Device-nGnRnE

combine)

cacheable) 0000 0000 (Device non-Gathering,
non-Reordering,
no Early Write Acknowledgement)
EFI_MEMORY_WC (Write 0100 0100 Normal Memory

Outer non-cacheable
Inner non-cacheable

EFI_MEMORY_WT (Write
through)

1011 1011

Normal Memory
Outer Write-through non-transient
Inner Write-through non-transient

January, 2016

Version 2.5 Errata A

Overview

EFI_MEMORY_WB (Write back) | 1111 1111 Normal Memory
Outer Write-back non-transient
Inner Write-back non-transient

EFI_MEMORY_XP, Not used or defined
EFI_MEMORY_WP,
EFI_MEMORY_RP,

EFI_MEMORY_UCE

2.3.6.2 Handoff State
X0 - EFI HANDLE
X1 —-EFI SYSTEM TABLE *
X30 — Return Address

2.3.6.3 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to write an
application that creates an alternative execution environment. Some Operating Systems require the
OS Loader to be able to enable OS required translations at Boot Services time, and make other
changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application must ensure
that the firmware executes with each supplanted functionality. There are two ways that firmware
conforming to this specification can execute in this alternate execution environment:

* Explicit firmware call
* Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware environment before
each UEFI call. However the possibility of preemption may require the alternate execution-enabled
application to disable interrupts while the alternate execution environment is active. It's legal for the
alternate execution environment enabled application to enable interrupts if the application catches
the interrupt and restores the EFI firmware environment prior to calling the UEFI interrupt ISR.
After the UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the semantics or
behavior of the MMU configuration created by the UEFI firmware prior to invoking
ExitBootServices (), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices () it should immediately configure the exception
vector to point to appropriate code.

2.3.6.4 Detailed Calling Convention

The base calling convention for the AArch64 binding is defined in the document Procedure Call
Standard for the ARM 64-bit Architecture Version A-0.06 (or later):

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ARM 64-bit Base
Calling Convention”

This binding further constrains the calling convention in these ways:

Version 2.5 Errata A January, 2016 41

Unified Extensible Firmware Interface Specification

* The AArch64 execution state must not be modified by the callee.
* All code exits, normal and exceptional, must be from the A64 instruction set.
* Floating point and SIMD instructions may be used.
* Optional vector operations and other instruction set extensions may only be used:
* After dynamically checking for their existence.
e Saving and then later restoring any additional execution state context.
» Additional feature enablement or control, such as power, must be explicitly managed.
e Only little endian operation is supported.
* The stack will maintain 16 byte alignment.
* Structures (or other types larger than 64-bits) must be passed by reference and not by value.

» The EFI AArch64 platform binding defines the platform register (r18) as “do not use”. Avoiding
use of r18 in firmware makes the code compatible with both a fixed role for r18 defined by the
OS platform ABI and the use of r18 by the OS and its applications as a temporary register.

2.4 Protocols

42

The protocols that a device handle supports are discovered through the

EFI BOOT SERVICES.HandleProtocol () Boot Service or the

EFI BOOT SERVICES.OpenProtocol () Boot Service. Each protocol has a specification that
includes the following:

e The protocol’s globally unique ID (GUID)

¢ The Protocol Interface structure

* The Protocol Services

Unless otherwise specified a protocol’s interface structure is not allocated from runtime memory and
the protocol member functions should not be called at runtime. If not explicitly specified a protocol
member function can be called at a TPL level of less than or equal to TPL_NOTIFY (see

Section 6.1). Unless otherwise specified a protocol’s member function is not reentrant or MP safe.

Any status codes defined by the protocol member function definition are required to be
implemented, Additional error codes may be returned, but they will not be tested by standard
compliance tests, and any software that uses the procedure cannot depend on any of the extended
error codes that an implementation may provide.

To determine if the handle supports any given protocol, the protocol’s GUID is passed to
HandleProtocol () or OpenProtocol (). If the device supports the requested protocol, a
pointer to the defined Protocol Interface structure is returned. The Protocol Interface structure links
the caller to the protocol-specific services to use for this device.

Figure 5 shows the construction of a protocol. The UEFI driver contains functions specific to one or
more protocol implementations, and registers them with the Boot Service

EFI BOOT SERVICES.InstallProtocolInterface (). The firmware returns the
Protocol Interface for the protocol that is then used to invoke the protocol specific services. The
UEFI driver keeps private, device-specific context with protocol interfaces.

January, 2016 Version 2.5 Errata A

Overview

HandleProtocol (GUID, ...)
«— Handle

EFI Driver

: Protocol Interface Protocol
Invoking one of specific

the protocol Function Pointer functions
services Function Pointer

A\

— > Device, or

Protocol
specific
functions

OM13147

Figure 5. Construction of a Protocol

The following C code fragment illustrates the use of protocols:

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;

Status = HandleProtocol (
EffectsDevice.EFIHandle,
&IllustrationProtocolGuid,
&EffectsDevice.IllustrationProtocol

)

// Use the EffectsDevice illustration protocol’s “MakeEffects”
// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (
EffectsDevice.IllustrationProtocol,
TheFlashyAndNoisyEffect
);

Table 9 lists the UEFI protocols defined by this specification.

Version 2.5 Errata A January, 2016 43

Unified Extensible Firmware Interface Specification

Table 9. UEFI Protocols

Protocol
EFI LOADED IMAGE PROTOCOL

EFI LOADED IMAGE DEVICE PATH PROT
OCOL

EFI DEVICE PATH PROTOCOL
EFI DRIVER BINDING PROTOCOL

EFI DRIVER FAMILY OVERRIDE PROTOC
oL
EFI PLATFORM DRIVER OVERRIDE PROT

OCOL
EFI BUS SPECIFIC DRIVER OVERRIDE

PROTOCOL
EFI DRIVER DIAGNOSTICS2 PROTOCOL

EFI COMPONENT NAME2 PROTOCOL

EFI SIMPLE TEXT INPUT PROTOCOL

EFI SIMPLE TEXT OUTPUT PROTOCOL

EFI
EFI

SIMPLE POINTER PROTOCOL
SERIAL IO PROTOCOL

EFI
EFI

LOAD FILE PROTOCOL
LOAD FILE2 PROTOCOL

EFI SIMPLE FILE SYSTEM PROTOCOL

EFI FILE PROTOCOL
EFI DISK IO PROTOCOL

EFI BLOCK IO PROTOCOL

EFI BLOCK IO2 PROTOCOL

EFI UNICODE COLLATION PROTOCOL
EFI PCI ROOT BRIDGE IO PROTOCOL

Description
Provides information on the image.

Specifies the device path that was used when a PE/COFF
image was loaded through the EFI Boot Service Loadlmage().

Provides the location of the device.

Provides services to determine if an UEFI driver supports a
given controller, and services to start and stop a given
controller.

Provides a the Driver Family Override mechanism for selecting
the best driver for a given controller.

Provide a platform specific override mechanism for the
selection of the best driver for a given controller.

Provides a bus specific override mechanism for the selection of
the best driver for a given controller.

Provides diagnostics services for the controllers that UEFI
drivers are managing.

Provides human readable names for UEFI Drivers and the
controllers that the drivers are managing.

Protocol interfaces for devices that support simple console
style text input.

Protocol interfaces for devices that support console style text
displaying.

Protocol interfaces for devices such as mice and trackballs.
Protocol interfaces for devices that support serial character
transfer.

Protocol interface for reading a file from an arbitrary device.
Protocol interface for reading a non-boot option file from an
arbitrary device

Protocol interfaces for opening disk volume containing a UEFI
file system.

Provides access to supported file systems.
A protocol interface that layers onto any BLOCK_IO or
BLOCK 10 _EX interface.

Protocol interfaces for devices that support block 1/0 style
accesses.

Protocol interfaces for devices that support block 1/0O style
accesses. This interface is capable of non-blocking
transactions.

Protocol interfaces for string comparison operations.

Protocol interfaces to abstract memory, 1/0O, PCI configuration,
and DMA accesses to a PClI root bridge controller.

44 January, 2016

Version 2.5 Errata A

Overview

Protocol

EFI

PCI IO PROTOCOL

EFI

USB IO PROTOCOL

EFI

SIMPLE NETWORK PROTOCOL

EFI

PXE BASE CODE PROTOCOL

EFI

BIS PROTOCOL

EFI

DEBUG SUPPORT PROTOCOL

EFI

DEBUGPORT PROTOCOL

EFI

DECOMPRESS PROTOCOL

EFI

EBC PROTOCOL

EFI

GRAPHICS OUTPUT PROTOCOL

EFI

NVM EXPRESS PASS THRU PROTOCO

L

EFI

EXT SCSI PASS THRU PROTOCOL

EFI

USB2 HC PROTOCOL

EFI

AUTHENTICATION INFO PROTOCOL

EFI

DEVICE PATH UTILITIES PROTOCO

L

EFI

DEVICE PATH TO TEXT PROTOCOL

EFI

DEVICE PATH FROM TEXT PROTOCO

L

EFI

EDID DISCOVERED PROTOCOL

EFI

EDID ACTIVE PROTOCOL

EFI

EDID OVERRIDE PROTOCOL

EFI

ISCSI INITIATOR NAME PROTOCOL

EFI

TAPE IO PROTOCOL

EFI

MANAGED NETWORK PROTOCOL

Description

Protocol interfaces to abstract memory, 1/0, PCI configuration,
and DMA accesses to a PCI controller on a PCI bus.

Protocol interfaces to abstract access to a USB controller.
Provides interface for devices that support packet based
transfers.

Protocol interfaces for devices that support network booting.

Protocol interfaces to validate boot images before they are
loaded and invoked.

Protocol interfaces to save and restore processor context and
hook processor exceptions.

Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.

Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

Protocols interfaces required to support an EFIl Byte Code
interpreter.

Protocol interfaces for devices that support graphical output.

Protocol interfaces that allow NVM Express commands to be
issued to an NVM Express controller.

Protocol interfaces for a SCSI channel that allows SCSI
Request Packets to be sent to SCSI devices.

Protocol interfaces to abstract access to a USB Host
Controller.

Provides access for generic authentication information
associated with specific device paths

Aids in creating and manipulating device paths.

Converts device nodes and paths to text.

Converts text to device paths and device nodes.

Contains the EDID information retrieved from a video output
device.

Contains the EDID information for an active video output
device.

Produced by the platform to allow the platform to provide EDID
information to the producer of the Graphics Output protocol

Sets and obtains the iSCSI Initiator Name.
Provides services to control and access a tape drive.

Used to locate communication devices that are supported by
an MNP driver and create and destroy instances of the MNP
child protocol driver that can use the underlying
communications devices.

Version 2.5 Errata A

January, 2016

45

Unified Extensible Firmware Interface Specification

Protocol
EFI ARP SERVICE BINDING PROTOCOL

EFI ARP PROTOCOL

EFI DHCP4 SERVICE BINDING PROTOCO

e

EFI DHCP4 PROTOCOL

EFI TCP4 SERVICE BINDING PROTOCOL

EFI
EFI

TCP4 PROTOCOL
IP4 SERVICE BINDING PROTOCOL

EFI
EFI

IP4 PROTOCOL
IP4 CONFIG PROTOCOL

EFI IP4 CONFIG2 PROTOCOL

EFI UDP4 SERVICE BINDING PROTOCOL

EFI UDP4 PROTOCOL

EFI MTFTP4 SERVICE BINDING PROTOC

OL

EFI MTFTP4 PROTOCOL

EFI HASH PROTOCOL

EFI HASH SERVICE BINDING PROTOCOL

Description

Used to locate communications devices that are supported by
an ARP driver and to create and destroy instances of the ARP
child protocol driver.

Used to resolve local network protocol addresses into network
hardware addresses.

Used to locate communication devices that are supported by
an EFI DHCPv4 Protocol driver and to create and destroy EFI
DHCPvV4 Protocol child driver instances that can use the
underlying communications devices.

Used to collect configuration information for the EFI IPv4
Protocol drivers and to provide DHCPv4 server and PXE boot
server discovery services.

Used to locate EFI TCPv4Protocol drivers to create and
destroy child of the driver to communicate with other host using
TCP protocol.

Provides services to send and receive data stream.

Used to locate communication devices that are supported by
an EFI IPv4 Protocol Driver and to create and destroy
instances of the EFI IPv4 Protocol child protocol driver that can
use the underlying communication device.

Provides basic network IPv4 packet 1/O services.

The EFI IPv4 Config Protocol driver performs platform- and
policy-dependent configuration of the EFI IPv4 Protocol driver.

The EFI IPv4 Configuration Il Protocol driver performs
platform- and policy-dependent configuration of the EFI IPv4
Protocol driver.

Used to locate communication devices that are supported by
an EFl UDPv4 Protocol driver and to create and destroy
instances of the EFI UDPv4 Protocol child protocol driver that
can use the underlying communication device.

Provides simple packet-oriented services to transmit and
receive UDP packets.

Used to locate communication devices that are supported by
an EFlI MTFTPv4 Protocol driver and to create and destroy
instances of the EFI MTFTPv4 Protocol child protocol driver
that can use the underlying communication device.

Provides basic services for client-side unicast or multicast
TFTP operations.

Allows creating a hash of an arbitrary message digest using
one or more hash algorithms.

Used to locate hashing services support provided by a driver
and create and destroy instances of the EFI Hash Protocol so
that a multiple drivers can use the underlying hashing services.

46 January, 2016

Version 2.5 Errata A

Overview

2.5 UEFI Driver Model

The UEFI Driver Model is intended to simplify the design and implementation of device drivers, and
produce small executable image sizes. As a result, some complexity has been moved into bus drivers
and in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image handle on which
the driver was loaded. It then waits for the system firmware to connect the driver to a controller.
When that occurs, the device driver is responsible for producing a protocol on the controller’s device
handle that abstracts the I/O operations that the controller supports. A bus driver performs these
exact same tasks. In addition, a bus driver is also responsible for discovering any child controllers on
the bus, and creating a device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more processors
connected to one or more core chipsets. The core chipsets are responsible for producing one or more
I/0 buses. The UEFI Driver Model does not attempt to describe the processors or the core chipsets.
Instead, the UEFI Driver Model describes the set of I/0 buses produced by the core chipsets, and any
children of these I/O buses. These children can either be devices or additional I/O buses. This can be
viewed as a tree of buses and devices with the core chipsets at the root of that tree.

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This could include
keyboards, displays, disks, network, etc. The nonleaf nodes are the buses that move data between
devices and buses, or between different bus types. Figure 6 shows a sample desktop system with
four buses and six devices.

CPU om <«>| Keyboard
USB Bus
Nh AR g | Y Mouse
o ar
- - B0
<> CD-ROM
<> VGA
PCl Bus |Device Controller
OM13142

Figure 6. Desktop System

Figure 7 is an example of a more complex server system. The idea is to make the UEFI Driver
Model simple and extensible so more complex systems like the one below can be described and
managed in the preboot environment. This system contains six buses and eight devices.

Version 2.5 Errata A January, 2016 47

Unified Extensible Firmware Interface Specification

I PCl Bus A
USB Bus
North Hard
4—» '«>| KBD Drive [
‘ <«>| MOUSE Hard |
CPU <] VGA Drive
Hard
Drive [
PCl Bus
Hard
Drive [
OM13143

Figure 7. Server System

The combination of firmware services, bus drivers, and device drivers in any given platform is likely
to be produced by a wide variety of vendors including OEMs, IBVs, and IHVs. These different
components from different vendors are required to work together to produce a protocol for an I/O
device than can be used to boot a UEFI compliant operating system. As a result, the UEFI Driver
Model is described in great detail in order to increase the interoperability of these components.

This remainder of this section is a brief overview of the UEFI Driver Model. It describes the legacy
option ROM issues that the UEFI Driver Model is designed to address, the entry point of a driver,
host bus controllers, properties of device drivers, properties of bus drivers, and how the UEFI Driver
Model can accommodate hot-plug events.

2.5.1 Legacy Option ROM Issues

Legacy option ROMs have a number of constraints and limitations that restrict innovation on the
part of platform designers and adapter vendors. At the time of writing, both ISA and PCI adapters
use legacy option ROMs. For the purposes of this discussion, only PCI option ROMs will be
considered; legacy ISA option ROMs are not supported as part of the UEFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For each
issue, the design considerations that went into the design of the UEFI Driver Model are also listed.
Thus, the design of the UEFI Driver Model directly addresses the requirements for a solution to
overcome the limitations implicit to PC-AT-style legacy option ROMs.

2.5.1.1 32-bit/16-Bit Real Mode Binaries

48

Legacy option ROMs typically contain 16-bit real mode code for an [A-32 processor. This means
that the legacy option ROM on a PCI card cannot be used in platforms that do not support the
execution of IA-32 real mode binaries. Also, 16-bit real mode only allows the driver to access
directly the lower 1 MiB of system memory. It is possible for the driver to switch the processor into
modes other than real mode in order to access resources above 1 MiB, but this requires a lot of
additional code, and causes interoperability issues with other option ROMs and the system BIOS.

January, 2016 Version 2.5 Errata A

Overview

Also, option ROMs that switch the processor into to alternate execution modes are not compatible
with Itanium Processors.

UEFI Driver Model design considerations:
* Drivers need flat memory mode with full access to system components.
* Drivers need to be written in C so they are portable between processor architectures.

* Drivers may be compiled into a virtual machine executable, allowing a single binary driver to
work on machines using different processor architectures.

2.5.1.2 Fixed Resources for Working with Option ROMs

Since legacy option ROMs can only directly address the lower 1 MiB of system memory, this means
that the code from the legacy option ROM must exist below 1 MiB. In a PC-AT platform, memory
from 0x00000-0x9FFFF is system memory. Memory from 0xA0000-0xBFFFF is VGA memory,
and memory from 0xFO000-OxFFFFF is reserved for the system BIOS. Also, since system BIOS has
become more complex over the years, many platforms also use 0xE0000-OxEFFFF for system
BIOS. This leaves 128 KiB of memory from 0xC0000-0xDFFFF for legacy option ROMs. This
limits how many legacy option ROMs can be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are to allocate
memory from Extended BIOS Data Area (EBDA), allocate memory through a Post Memory
Manager (PMM), or search for free memory based on a heuristic. Of these, only EBDA is standard,
and the others are not used consistently between adapters, or between BIOS vendors, which adds
complexity and the potential for conflicts.

UEFI Driver Model design considerations:
* Drivers need flat memory mode with full access to system components.

* Drivers need to be capable of being relocated so that they can be loaded anywhere in memory
(PE/COFF Images)

* Drivers should allocate memory through the boot services. These are well-specified interfaces,
and can be guaranteed to function as expected across a wide variety of platform
implementations.

2.5.1.3 Matching Option ROMs to their Devices

It is not clear which controller may be managed by a particular legacy option ROM. Some legacy
option ROMs search the entire system for controllers to manage. This can be a lengthy process
depending on the size and complexity of the platform. Also, due to limitation in BIOS design, all the
legacy option ROMs must be executed, and they must scan for all the peripheral devices before an
operating system can be booted. This can also be a lengthy process, especially if SCSI buses must be
scanned for SCSI devices. This means that legacy option ROMs are making policy decision about
how the platform is being initialized, and which controllers are managed by which legacy option
ROMs. This makes it very difficult for a system designer to predict how legacy option ROMs will
interact with each other. This can also cause issues with on-board controllers, because a legacy
option ROM may incorrectly choose to manage the on-board controller.

UEFI Driver Model design considerations:

* Driver to controller matching must be deterministic

Version 2.5 Errata A January, 2016 49

Unified Extensible Firmware Interface Specification

e Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol

e It must be possible to start only the drivers and controllers required to boot an operating system.

2.5.1.4 Ties to PC-AT System Design

Legacy option ROMs assume a PC-AT-like system architecture. Many of them include code that
directly touches hardware registers. This can make them incompatible on legacy-free and headless
platforms. Legacy option ROMs may also contain setup programs that assume a PC-AT-like system
architecture to interact with a keyboard or video display. This makes the setup application
incompatible on legacy-free and headless platforms.

UEFI Driver Model design considerations:

* Drivers should use well-defined protocols to interact with system hardware, system input
devices, and system output devices.

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience

Many legacy option ROMs and BIOS code contain workarounds because of incompatibilities
between legacy option ROMs and system BIOS. These incompatibilities exist in part because there
are no clear specifications on how to write a legacy option ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs. It is not
always clear which device will be the boot device for the OS.

UEFI Driver Model design considerations:

* Drivers and firmware are written to follow this specification. Since both components have a
clearly defined specification, compliance tests can be developed to prove that drivers and system
firmware are compliant. This should eliminate the need to build workarounds into either drivers
or system firmware (other than those that might be required to address specific hardware issues).

* Give OEMs more control through Platform Driver Override Protocol and Driver Configuration
Protocol and other OEM value-add components to manage the boot device selection process.

2.5.2 Driver Initialization

The file for a driver image must be loaded from some type of media. This could include ROM,
FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a driver image
has been found, it can be loaded into system memory with the boot service

EFI BOOT SERVICES.LoadImage ().LoadImage () loads a PE/COFF formatted image
into system memory. A handle is created for the driver, and a Loaded Image Protocol instance is
placed on that handle. A handle that contains a Loaded Image Protocol instance is called an /mage
Handle. At this point, the driver has not been started. It is just sitting in memory waiting to be
started. Figure 8 shows the state of an image handle for a driver after LoadImage () has been
called.

50 January, 2016 Version 2.5 Errata A

Overview

Image Handle

’ BEA_LOADED_IMAGE _PROTOCOL H

’ BEA_LOADED_IMAGE _DEVICE _PATH_PROTOCOL m

OoM13148

Figure 8. Image Handle

After a driver has been loaded with the boot service LoadImage (), it must be started with the boot
service EFI_BOOT SERVICES.StartImage (). This is true of all types of UEFI Applications
and UEFI Drivers that can be loaded and started on an UEFI-compliant system. The entry point for a
driver that follows the UEFI Driver Model must follow some strict rules. First, it is not allowed to
touch any hardware. Instead, the driver is only allowed to install protocol instances onto its own
Image Handle. A driver that follows the UEFI Driver Model is required to install an instance of the
Driver Binding Protocol onto its own Image Handle. It may optionally install the Driver
Configuration Protocol, the Driver Diagnostics Protocol, or the Component Name Protocol. In
addition, if a driver wishes to be unloadable it may optionally update the Loaded Image Protocol
(see Section 8) to provide its own Unload () function. Finally, if a driver needs to perform any
special operations when the boot service EFI BOOT SERVICES.ExitBootServices () is
called, it may optionally create an event with a notification function that is triggered when the boot
service ExitBootServices () is called. An /mage Handle that contains a Driver Binding
Protocol instance is known as a Driver Image Handle. Figure 9 shows a possible configuration for
the Image Handle from Figure 8 after the boot service StartImage () has been called.

Version 2.5 Errata A January, 2016 51

Unified Extensible Firmware Interface Specification

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional E> EFI_DRIVER _FAMILY_OVERRIDE_PROTOCOL

Optional > EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

Optional [—> EFI_COMPONENT_NAME2_PROTOCOL

Figure 9. Driver Image Handle

2.5.3 Host Bus Controllers

Drivers are not allowed to touch any hardware in the driver’s entry point. As a result, drivers will be
loaded and started, but they will all be waiting to be told to manage one or more controllers in the
system. A platform component, like the Boot Manager, is responsible for managing the connection
of drivers to controllers. However, before even the first connection can be made, there has to be
some initial collection of controllers for the drivers to manage. This initial collection of controllers is
known as the Host Bus Controllers. The 1/O abstractions that the Host Bus Controllers provide are
produced by firmware components that are outside the scope of the UEFI Driver Model. The device
handles for the Host Bus Controllers and the 1/O abstraction for each one must be produced by the
core firmware on the platform, or a driver that may not follow the UEFI Driver Model. See the PCI
Root Bridge I/O Protocol Specification for an example of an I/O abstraction for PCI buses.

A platform can be viewed as a set of processors and a set of core chipset components that may
produce one or more host buses. Figure 10 shows a platform with »# processors (CPUs), and a set of
core chipset components that produce m host bridges.

52 January, 2016 Version 2.5 Errata A

Overview

CPU1 CPU 2 s e CPUn

JC JT T

Front Side Bus

J L

Core Chipset Components

HB 1 HB 2 HB m

= = =
O ==

OM13150

Figure 10. Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains a Device Path Protocol
instance, and a protocol instance that abstracts the I/O operations that the host bus can perform.
For example, a PCI Host Bus Controller supports one or more PCI Root Bridges that are abstracted
by the PCI Root Bridge I/O Protocol. Figure 11 shows an example device handle for a PCI

Root Bridge.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

OM13151

Figure 11. PCI Root Bridge Device Handle

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each of the
PCI devices in the system. PCI Device Drivers should then be connected to these child handles, and
produce 1/O abstractions that may be used to boot a UEFI compliant OS. The following section
describes the different types of drivers that can be implemented within the UEFI Driver Model. The
UEFI Driver Model is very flexible, so all the possible types of drivers will not be discussed here.

Version 2.5 Errata A January, 2016 53

Unified Extensible Firmware Interface Specification

Instead, the major types will be covered that can be used as a starting point for designing and
implementing additional driver types.

2.5.4 Device Drivers

A device driver is not allowed to create any new device handles. Instead, it installs additional
protocol interfaces on an existing device handle. The most common type of device driver will attach
an 1/0O abstraction to a device handle that was created by a bus driver. This I/O abstraction may be
used to boot a UEFI compliant OS. Some example I/O abstractions would include Simple Text
Output, Simple Input, Block 1/0, and Simple Network Protocol. Figure 12 shows a device handle
before and after a device driver is connected to it. In this example, the device handle is a child of the
XYZ Bus, so it contains an XYZ 1/O Protocol for the I/O services that the XYZ bus supports. It also
contains a Device Path Protocol that was placed there by the XYZ Bus Driver. The Device Path
Protocol is not required for all device handles. It is only required for device handles that represent
physical devices in the system. Handles for virtual devices will not contain a Device Path Protocol.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_l/O_PROTOCOL

Stop() Start()

Device Handle

EFI_DEVICE_PATH_PROTOCOL

=~ | EFI_XYZ_I/O_PROTOCOL

Installed by Start
Uninstalled b); Stop8 _) EFI_BLOCK_I/O_PROTOCOL

OM13152

54

Figure 12. Connecting Device Drivers

The device driver that connects to the device handle in Figure 12 must have installed a Driver
Binding Protocol on its own image handle. The Driver Binding Protocol (see Section 10.1) contains
three functions called Supported (), Start (), and Stop (). The Supported () function
tests to see if the driver supports a given controller. In this example, the driver will check to see if the
device handle supports the Device Path Protocol and the XYZ 1/O Protocol. If a driver’s

January, 2016 Version 2.5 Errata A

Overview

Supported () function passes, then the driver can be connected to the controller by calling the
driver’s Start () function. The Start () function is what actually adds the additional I/O
protocols to a device handle. In this example, the Block I/O Protocol is being installed. To provide
symmetry, the Driver Binding Protocol also has a Stop () function that forces the driver to stop
managing a device handle. This will cause the device driver to uninstall any protocol interfaces that
were installed in Start ().

The Supported (), Start (), and Stop () functions of the EFI Driver Binding Protocol are
required to make use of the boot service EFI_BOOT SERVICES.OpenProtocol () to geta
protocol interface and the boot service EFI BOOT SERVICES.CloseProtocol () toreleasea
protocol interface. OpenProtocol () and CloseProtocol () update the handle database
maintained by the system firmware to track which drivers are consuming protocol interfaces. The
information in the handle database can be used to retrieve information about both drivers and
controllers. The new boot service EFI BOOT SERVICES.OpenProtocolInformation ()
can be used to get the list of components that are currently consuming a specific protocol interface.

2.5.5 Bus Drivers

Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s point of view.
The only difference is that a bus driver creates new device handles for the child controllers that the
bus driver discovers on its bus. As a result, bus drivers are slightly more complex than device
drivers, but this in turn simplifies the design and implementation of device drivers. There are two
major types of bus drivers. The first creates handles for all child controllers on the first call to
Start (). The other type allows the handles for the child controllers to be created across multiple
calls to Start (). This second type of bus driver is very useful in supporting a rapid boot
capability. It allows a few child handles or even one child handle to be created. On buses that take a
long time to enumerate all of their children (e.g. SCSI), this can lead to a very large timesaving in
booting a platform. Figure 13 shows the tree structure of a bus controller before and after Start ()
is called. The dashed line coming into the bus controller node represents a link to the bus controller’s
parent controller. If the bus controller is a Host Bus Controller, then it will not have a parent
controller. Nodes A, B, C ,D, and E represent the child controllers of the bus controller.

Version 2.5 Errata A January, 2016 55

Unified Extensible Firmware Interface Specification

K
@s ControlD Bus Controller
Start()
Stopo é] E’]

OM13153

56

Figure 13. Connecting Bus Drivers

A bus driver that supports creating one child on each call to Start () might choose to create child
C first, and then child E, and then the remaining children A, B, and D. The Supported (),
Start (), and Stop () functions of the Driver Binding Protocol are flexible enough to allow this
type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a minimum, it
must install a protocol interface that provides an I/O abstraction of the bus’s services to the child
controllers. If the bus driver creates a child handle that represents a physical device, then the bus
driver must also install a Device Path Protocol instance onto the child handle. A bus driver may
optionally install a Bus Specific Driver Override Protocol onto each child handle. This protocol is
used when drivers are connected to the child controllers. The boot service

EFI BOOT SERVICES.ConnectController () uses architecturally defined precedence
rules to choose the best set of drivers for a given controller. The Bus Specific Driver Override
Protocol has higher precedence than a general driver search algorithm, and lower precedence than
platform overrides. An example of a bus specific driver selection occurs with PCI. A PCI Bus Driver
gives a driver stored in a PCI controller’s option ROM a higher precedence than drivers stored
elsewhere in the platform. Figure 14 shows an example child device handle that was created by the
XYZ Bus Driver that supports a bus specific driver override mechanism.

January, 2016 Version 2.5 Errata A

Overview

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

Optional I::>

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

OM13154

Figure 14. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components

Under the UEFI Driver Model, the act of connecting and disconnecting drivers from controllers in a
platform is under the platform firmware’s control. This will typically be implemented as part of the
UEFI Boot Manager, but other implementations are possible. The boot services

EFI BOOT SERVICES.ConnectController () and

EFI BOOT SERVICES.DisconnectController () can beused by the platform firmware to
determine which controllers get started and which ones do not. If the platform wishes to perform
system diagnostics or install an operating system, then it may choose to connect drivers to all
possible boot devices. If a platform wishes to boot a preinstalled operating system, it may choose to
only connect drivers to the devices that are required to boot the selected operating system. The UEFI
Driver Model supports both these modes of operation through the boot services
ConnectController () and DisconnectController (). In addition, since the platform
component that is in charge of booting the platform has to work with device paths for console
devices and boot options, all of the services and protocols involved in the UEFI Driver Model are
optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce consoles
and gain access to a boot device, the OS present device drivers cannot assume that a UEFI driver for
a device has been executed. The presence of a UEFI driver in the system firmware or in an option
ROM does not guarantee that the UEFI driver will be loaded, executed, or allowed to manage any
devices in a platform. All OS present device drivers must be able to handle devices that have been
managed by a UEFI driver and devices that have not been managed by an UEFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override Protocol.
This is similar to the Bus Specific Driver Override Protocol, but it has higher priority. This gives the
platform firmware the highest priority when deciding which drivers are connected to which
controllers. The Platform Driver Override Protocol is attached to a handle in the system. The boot
service ConnectController () will make use of this protocol if it is present in the system.

Version 2.5 Errata A January, 2016 57

Unified Extensible Firmware Interface Specification

2.5.7 Hot-Plug Events

In the past, system firmware has not had to deal with hot-plug events in the preboot environment.
However, with the advent of buses like USB, where the end user can add and remove devices at any
time, it is important to make sure that it is possible to describe these types of buses in the UEFI
Driver Model. 1t is up to the bus driver of a bus that supports the hot adding and removing of devices
to provide support for such events. For these types of buses, some of the platform management is
going to have to move into the bus drivers. For example, when a keyboard is hot added to a USB bus
on a platform, the end user would expect the keyboard to be active. A USB Bus driver could detect
the hot-add event and create a child handle for the keyboard device. However, because drivers are
not connected to controllers unless EFI BOOT SERVICES.ConnectController () iscalled,
the keyboard would not become an active input device. Making the keyboard driver active requires
the USB Bus driver to call ConnectController () when a hot-add event occurs. In addition,
the USB Bus Driver would have to call

EFI BOOT SERVICES.DisconnectController () when a hot-remove event occurs. If
EFI BOOT SERVICES.DisconnectController () returns an error the USB Bus Driver
needs to retry the EFI BOOT SERVICES.DisconnectController () from a timer event
until it succeeds.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can be
removed without any notice. This means that the Stop () functions of USB device drivers will have
to deal with shutting down a driver for a device that is no longer present in the system. As a result,
any outstanding I/O requests will have to be flushed without actually being able to touch the device
hardware.

In general, adding support for hot-plug events greatly increases the complexity of both bus drivers
and device drivers. Adding this support is up to the driver writer, so the extra complexity and size of
the driver will need to be weighed against the need for the feature in the preboot environment.

2.5.8 EFI Services Binding

The UEFI Driver Model maps well onto hardware devices, hardware bus controllers, and simple
combinations of software services that layer on top of hardware devices. However, the UEFI driver
Model does not map well onto complex combinations of software services. As a result, an additional
set of complementary protocols are required for more complex combinations of software services.

Figure 15 contains three examples showing the different ways that software services relate to each
other. In the first two cases, each service consumes one or more other services, and at most one other
service consumes all of the services. Case #3 differs because two different services consume
service A. The EFI_DRIVER BINDING PROTOCOL can be used to model cases #1 and #2, but it
cannot be used to model case #3 because of the way that the UEFI Boot Service

OpenProtocol () behaves. When used with the BY DRIVER open mode,

OpenProtocol () allows each protocol to have only at most one consumer. This feature is very
useful and prevents multiple drivers from attempting to manage the same controller. However, it
makes it difficult to produce sets of software services that look like case #3.

58 January, 2016 Version 2.5 Errata A

Overview

Case #1: Linear Stack o

Case #3: Multiple Consumers

Case #2: Multiple Dependencies

Figure 15. Software Service Relationships

The EFI_SERVICE BINDING PROTOCOL provides the mechanism that allows protocols to have
more than one consumer. The EFT __SERVICE BINDING PROTOCOL is used with the
EFI_DRIVER BINDING | PROTOCOL. A UEFI driver that produces protocols that need to be
available to more than one consumer at the same time will produce both the

EFI_DRIVER BINDING PROTOCOL and the EFI __SERVICE_BINDING_PROTOCOL. This
type ‘of driver is a hybrid driver that will produce the EFI _DRIVER BINDING PROTOCOL in its
driver entry point.

When the driver receives a request to start managing a controller, it will produce the
EFI_SERVICE BINDING PROTOCOL on the handle of the controller that is being started. The
EFI_SERVICE BINDING PROTOCOL is slightly different from other protocols defined in the
UEFI Specification. It does not have a GUID associated with it. Instead, this protocol instance
structure actually represents a family of protocols. Each software service driver that requires an
EFI_SERVICE BINDING PROTOCOL instance will be required to generate a new GUID for its
own type of EFI_SERVICE BINDING PROTOCOL. This requirement is why the various network
protocols in this spemﬁcatlon contain two GUIDs. One is the

EFI_SERVICE BINDING PROTOCOL GUID for that network protocol, and the other GUID is
for the protocol that contains the specific member services produced by the network driver. The
mechanism defined here is not limited to network protocol drivers. It can be applied to any set of
protocols that the EFI_DRIVER BINDING PROTOCOL cannot directly map because the
protocols contain one or more relatlonshlps like case #3 in Figure 15.

Neither the EFI_DRIVER BINDING PROTOCOL nor the combination of the

EFI_DRIVER BINDING PROTOCOL and the EFI __SERVICE_BINDING_ PROTOCOL can
handle circular d dependenmes There are methods to allow circular references, but they require that
the circular link be present for short periods of time. When the protocols across the circular link are
used, these methods also require that the protocol must be opened with an open mode of
EXCLUSIVE, so that any attempts to deconstruct the set of protocols with a call to

Version 2.5 Errata A January, 2016 59

Unified Extensible Firmware Interface Specification

DisconnectController () will fail. As soon as the driver is finished with the protocol across
the circular link, the protocol should be closed.

2.6 Requirements

This document is an architectural specification. As such, care has been taken to specify architecture
in ways that allow maximum flexibility in implementation. However, there are certain requirements
on which elements of this specification must be implemented to ensure that operating system loaders
and other code designed to run with UEFI boot services can rely upon a consistent environment.

For the purposes of describing these requirements, the specification is broken up into required and
optional elements. In general, an optional element is completely defined in the section that matches
the element name. For required elements however, the definition may in a few cases not be entirely
self contained in the section that is named for the particular element. In implementing required
elements, care should be taken to cover all the semantics defined in this specification that relate to
the particular element.

2.6.1 Required Elements

60

Table 10 lists the required elements. Any system that is designed to conform to this specification
must provide a complete implementation of all these elements. This means that all the required
service functions and protocols must be present and the implementation must deliver the full
semantics defined in the specification for all combinations of calls and parameters. Implementers of
applications, drivers or operating system loaders that are designed to run on a broad range of systems
conforming to the UEFI specification may assume that all such systems implement all the required
elements.

A system vendor may choose not to implement all the required elements, for example on specialized
system configurations that do not support all the services and functionality implied by the required
elements. However, since most applications, drivers and operating system loaders are written
assuming all the required elements are present on a system that implements the UEFI specification;
any such code is likely to require explicit customization to run on a less than complete
implementation of the required elements in this specification.

Table 10. Required UEFI Implementation Elements

Element Description

EFI SYSTEM TARLE Provides access to UEFI Boot Services, UEFI Runtime Services,
consoles, firmware vendor information, and the system
configuration tables.

EFI BOOT SERVICES All functions defined as boot services.

EFI RUNTIME SERVICES All functions defined as runtime services.

EFI LOADED IMAGE PROTOCO | Provides information on the image.

L

EFI LOADED IMAGE DEVICE Specifies the device path that was used when a PE/COFF image
PATH PROTOCOL was loaded through the EFI Boot Service Loadlmage().

EFI DEVICE PATH PROTOCOL Provides the location of the device.

January, 2016 Version 2.5 Errata A

Overview

Element Description

EFI DECOMPRESS PROTOCOL Protocol interfaces to decompress an image that was compressed

using the EFI Compression Algorithm.

EFI DEVICE PATH UTILITIE @ Protocol interfaces to create and manipulate UEFI device paths

S PROTOCOL and UEFI device path nodes.

2.6.2 Platform-Specific Elements

There are a number of elements that can be added or removed depending on the specific features that
a platform requires. Platform firmware developers are required to implement UEFI elements based
upon the features included. The following is a list of potential platform features and the elements
that are required for each feature type:

1.

If a platform includes console devices, the EFI SIMPLE TEXT INPUT PROTOCOL,
EFI SIMPLE TEXT INPUT EX PROTOCOL, and
EFI SIMPLE TEXT OUTPUT PROTOCOL must be implemented.

If a platform includes a configuration infrastructure, then the

EFI HII DATABASE PROTOCOL, EFI HII STRING PROTOCOL,

EFI HII CONFIG ROUTING PROTOCOL, and

EFI HII CONFIG ACCESS PROTOCOL are required. If you support bitmapped fonts, you
must support EFI HII FONT PROTOCOL.

If a platform includes graphical console devices, then the

EFI GRAPHICS OUTPUT PROTOCOL,EFI EDID DISCOVERED PROTOCOL, and
EFI EDID ACTIVE PROTOCOL must be implemented. In order to support the

EFI GRAPHICS OUTPUT PROTOCOL, a platform must contain a driver to consume
EFI GRAPHICS OUTPUT PROTOCOL and produce

EFI SIMPLE TEXT OUTPUT PROTOCOL even if the

EFI GRAPHICS OUTPUT PROTOCOL is produced by an external driver.

If a platform includes a pointer device as part of its console support, the
EFI SIMPLE POINTER PROTOCOL must be implemented.

If a platform includes the ability to boot from a disk device, then the

EFI BLOCK IO PROTOCOL, the EFI DISK IO PROTOCOL, the

EFI SIMPLE FILE SYSTEM PROTOCOL, and the

EFI UNICODE COLLATION PROTOCOL are required. In addition, partition support for
MBR, GPT, and El Torito must be implemented. For disk devices supporting the security
commands of the SPC-4 or ATA8-ACS command set, the

EFI STORAGE SECURITY COMMAND PROTOCOL is alsorequired. An external driver may
produce the Block I/O Protocol and the EFI STORAGE SECURITY COMMAND PROTOCOL.
All other protocols required to boot from a disk device must be carried as part of the platform.

If a platform includes the ability to perform a TFTP-based boot from a network device, then the
EFI PXE BASE CODE PROTOCOL is required. The platform must be prepared to produce
this protocol on any of EFI_NETWORK INTERFACE IDENTIFIER PROTOCOL (UNDI),
EFI SIMPLE NETWORK PROTOCOL, or the EFI MANAGED NETWORK PROTOCOL Ifa
platform includes the ability to validate a boot image received through a network device, it is
also required that image verification be supported, including Se t upMode equal zero and the
boot image hash or a verification certificate corresponding to the image exist in the 'db' variable
and not in the 'dbx' variable. An external driver may produce the UNDI interface. All other
protocols required to boot from a network device must be carried by the platform.

Version 2.5 Errata A January, 2016 61

Unified Extensible Firmware Interface Specification

62

7.

10.

11.

12.

13.

14.

15.

16.

If a platform supports UEFI general purpose network applications, then the

EFI MANAGED NETWORK PROTOCOL,

EFI MANAGED NETWORK SERVICE BINDING PROTOCOL, EFI ARP PROTOCOL,
EFI ARP SERVICE BINDING PROTOCOL, EFI DHCP4 PROTOCOL,

EFI DHCP4 SERVICE BINDING PROTOCOL, EFI TCP4 PROTOCOL,

EFI TCP4 SERVICE BINDING PROTOCOL, IP4 Protocol,

EFI IP4 SERVICE BINDING PROTOCOL,EFI IP4 CONFIG2 PROTOCOL,

EFI UDP4 PROTOCOL,and EFI UDP4 SERVICE BINDING PROTOCOL are required. If
additional IPv6 support is needed for the platform, then EFI DHCP6 PROTOCOL,

EFI DHCP6 SERVICE BINDING PROTOCOL, EFI TCP6 PROTOCOL,

EFI TCP6 SERVICE BINDING PROTOCOL, EFI IP6 PROTOCOL,

EFI IP6 SERVICE BINDING PROTOCOL, EFI IP6 CONFIG PROTOCOL,

EFI UDP6 PROTOCOL, and EFI UDP6 SERVICE BINDING PROTOCOL are
additionally required. If the network application requires DNS capability,

EFI DNS4 SERVICE BINDING PROTOCOL and EFI DNS4 PROTOCOL are required
for the IPv4 stack. EFI DNS6 SERVICE BINDING PROTOCOL and

EFI DNS6 PROTOCOL are required for the IPv6 stack. If the network environment requires
TLS features, EFI TLS SERVICE BINDING PROTOCOL,EFI TLS PROTOCOL and
EFI TLS CONFIGURATION PROTOCOL are required. If the network environment requires
IPSEC feature, EFI IPSEC CONFIG PROTOCOL and EFI IPSEC2 PROTOCOL are
required. If the network environment requires VLAN features,

EFI VLAN CONFIG PROTOCOL is required.

If a platform includes a byte-stream device such as a UART, then the
EFI SERIAL IO PROTOCOL must be implemented.

If a platform includes PCI bus support, then the EFI _PCI ROOT BRIDGE IO PROTOCOL,
the EFI_PCI IO PROTOCOL, must be implemented.

If a platform includes USB bus support, then the EFI USB2 HC PROTOCOL and the
EFI USB IO PROTOCOL must be implemented. An external device can support USB by
producing a USB Host Controller Protocol.

. If a platform includes an NVM Express controller, then the
EFI NVM EXPRESS PASS THRU PROTOCOL mustbe implemented.

If a platform supports booting from a block-oriented NVM Express controller, then the

EFI BLOCK IO PROTOCOL must be implemented. An external driver may produce the
EFI NVM EXPRESS PASS THRU PROTOCOL . All other protocols required to boot from
an NVM Express subsystem must be carried by the platform.

If a platform includes an I/O subsystem that utilizes SCSI command packets, then the
EFI EXT SCSI PASS THRU PROTOCOL must be implemented.

If a platform supports booting from a block oriented SCSI peripheral, then the

EFI SCSI IO PROTOCOL and EFI BLOCK IO PROTOCOL must be implemented. An
external driver may produce the EFI EXT SCSI PASS THRU PROTOCOL. All other
protocols required to boot from a SCSI I/O subsystem must be carried by the platform.

If a platform supports booting from an iSCSI peripheral, then the
EFI ISCSI INITIATOR NAME PROTOCOL and the
EFI AUTHENTICATION INFO PROTOCOL must be implemented.

If a platform includes debugging capabilities, then the EFI DEBUG SUPPORT PROTOCOL,
the EFI DEBUGPORT PROTOCOL, and the EFI Image Info Table must be implemented.

January, 2016 Version 2.5 Errata A

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Overview

If a platform includes the ability to override the default driver to the controller matching
algorithm provided by the UEFI Driver Model, then the
EFI PLATFORM DRIVER OVERRIDE PROTOCOL must be implemented.

If a platform includes an I/O subsystem that utilizes ATA command packets, then the
EFI ATA PASS THRU PROTOCOL must be implemented

If a platform supports option ROMs from devices not permanently attached to the platform and
it supports the ability to authenticate those option ROMs, then it must support the option ROM
validation methods described in Network Protocols — UDP and MTFTP and the authenticated
EFI variables described in Section 7.2.

If a platform includes the ability to authenticate UEFI images and the platform potentially
supports more than one OS loader, it must support the methods described in Network Protocols
— UDP and MTFTP and the authenticated UEFI variables described in Section 7.2.

If a platform policy supports the inclusion or addition of any device that provides a container for
one or more UEFI Drivers that are required for initialization of that device then an EBC
interpreter must be implemented. If an EBC interpreter is implemented, then it must produce the
EFI EBC PROTOCOL interface.

If a platform includes the ability to perform a HTTP-based boot from a network device, then the
EFI HTTP SERVICE BINDING PROTOCOL, EFI HTTP PROTOCOL and

EFI HTTP UTILITIES PROTOCOL are required. If it includes the ability to perform a
HTTPS-based boot from network device, besides above protocols,

EFI TLS SERVICE BINDING PROTOCOL,EFI TLS PROTOCOL and

EFI TLS CONFIGURATION PROTOCOL are also required. If it includes the ability to
perform a HTTP(S)-based boot with DNS feature, then

EFI DNS4 SERVICE BINDING PROTOCOL,EFI DNS4 PROTOCOL are required for
the IPv4 stack; EFI DNS6 SERVICE BINDING PROTOCOL and EFI DNS6 PROTOCOL
are required for the IPv6 stack.

If a platform includes the ability to perform a wireless boot from a network device with EAP
feature, and if this platform provides a standalone wireless EAP driver, then

EFI EAP PROTOCOL,EFI EAP CONFIGURATION PROTOCOL, and

EFI EAP MANAGEMENT2 PROTOCOL are required; if the platform provides a standalone
wireless supplicant, then EFI SUPPLICANT PROTOCOL and

EFI EAP CONFIGURATION PROTOCOL are required. If it includes the ability to perform a
wireless boot with TLS feature, then EFI TLS SERVICE BINDING PROTOCOL,

EFI TLS PROTOCOL and EFI TLS CONFIGURATION PROTOCOL are required.

If a platform supports classic Bluetooth, then EFI BLUETOOTH HC PROTOCOL,

EFI BLUETOOTH IO PROTOCOL, and EFI BLUETOOTH CONFIG PROTOCOL must be
implemented. If a platform support Bluetooth Smart (Bluetooth Low Energy), then

EFI BLUETOOTH HC PROTOCOL, EFI BLUETOOTH IO PROTOCOL and

EFI BLUETOOTH CONFIG PROTOCOL may be implemented.

24. If a platform supports RESTful communication over HTTP or over an in-band path to a
BMC, then the EFI REST PROTOCOL must be implemented.

If a platform includes the ability to use a hardware feature to create high quality random
numbers, this capability should be exposed by instance of EFI RNG PROTOCOL with at least
one EFI RNG Algorithm supported.

If a platform permits the installation of Load Option Variables, (Boot####, or Driver####, or
SysPrep###t), the platform must support and recognize all defined values for Attributes within
the variable and report these capabilities in BootOptionSupport. If a platform supports

Version 2.5 Errata A January, 2016 63

Unified Extensible Firmware Interface Specification

28.

installation of Load Option Variables of type Driver####, all installed Driver#### variables
must be processed and the indicated driver loaded and initialized during every boot. And all
installed SysPrep#### options must be processed prior to processing Boot#### options.

If the platform supports UEFI secure boot as described in Secure Boot and Driver Signing , the
platform must provide the PKCS verification functions described in Section 35.4.

2.6.3 Driver-Specific Elements

There are a number of UEFI elements that can be added or removed depending on the features that a
specific driver requires. Drivers can be implemented by platform firmware developers to support
buses and devices in a specific platform. Drivers can also be implemented by add-in card vendors for
devices that might be integrated into the platform hardware or added to a platform through an
expansion slot.

64

The following list includes possible driver features, and the UEFI elements that are required for
each feature type:

1.

If a driver follows the driver model of this specification, the

EFI DRIVER BINDING PROTOCOL must be implemented. It is strongly recommended that
all drivers that follow the driver model of this specification also implement the

EFI COMPONENT NAME2 PROTOCOL.

If a driver requires configuration information, the driver must use the
EFI HII DATABASE PROTOCOL. A driver should not otherwise display information to the
user or request information from the user.

If a driver requires diagnostics, the EFI_DRIVER DIAGNOSTICS2 PROTOCOL must be
implemented. In order to support low boot times, limit diagnostics during normal boots. Time
consuming diagnostics should be deferred until the

EFI DRIVER DIAGNOSTICS2 PROTOCOL is invoked.

If a bus supports devices that are able to provide containers for drivers (e.g. option ROMs), then
the bus driver for that bus type must implement the
EFI BUS SPECIFIC DRIVER OVERRIDE PROTOCOL.

If a driver is written for a console output device, then the
EFI SIMPLE TEXT OUTPUT PROTOCOL must be implemented.

If a driver is written for a graphical console output device, then the
EFI GRAPHICS OUTPUT PROTOCOL,EFI EDID DISCOVERED PROTOCOL and
EFI EDID ACTIVE PROTOCOL must be implemented.

If a driver is written for a console input device, then the
EFI SIMPLE TEXT INPUT PROTOCOL and
EFI SIMPLE TEXT INPUT EX PROTOCOL must be implemented.

If a driver is written for a pointer device, then the EFI SIMPLE POINTER PROTOCOL must
be implemented.

If a driver is written for a network device, then the

EFI NETWORK INTERFACE IDENTIFIER PROTOCOL,

EFI SIMPLE NETWORK PROTOCOL or EFI MANAGED NETWORK PROTOCOL must be
implemented. If VLAN is supported in hardware, then driver for the network device may
implement the EFI VLAN CONFIG PROTOCOL. If a network device chooses to only produce
the EFI MANAGED NETWORK PROTOCOL, then the driver for the network device must
implement the EFI_VLAN CONFIG PROTOCOL. . If a driver is written for a network device

January, 2016 Version 2.5 Errata A

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Overview

to supply wireless feature, besides above protocols,

EFI ADAPTER INFORMATION PROTOCOL must be implemented. If the wireless driver
does not provide user configuration capability,

EFI WIRELESS MAC CONNECTION PROTOCOL must be implemented. If the wireless
driver is written for a platform which provides a standalone wireless EAP driver,

EFI EAP PROTOCOL must be implemented.

If a driver is written for a disk device, then the EFI BLOCK IO PROTOCOL and the

EFI BLOCK IO2 PROTOCOL must be implemented. In addition, the

EFI STORAGE SECURITY COMMAND PROTOCOL must be implemented for disk devices
supporting the security commands of the SPC-4 or ATA8-ACS command set. In addition, for
devices that support incline encryption in the host storage controller, the

EFI BLOCK IO CRYPTO PROTOCOL must be supported.

If a driver is written for a disk device, then the EFI BLOCK IO PROTOCOL and the

EFI BLOCK IO2 PROTOCOL must be implemented. In addition, the

EFI STORAGE SECURITY COMMAND PROTOCOL must be implemented for disk devices
supporting the security commands of the SPC-4 or ATA8-ACS command set.

If a driver is written for a device that is not a block oriented device but one that can provide a file
system-like interface, then the EFI SIMPLE FILE SYSTEM PROTOCOL must be
implemented.

If a driver is written for a PCI root bridge, then the
EFI PCI ROOT BRIDGE IO PROTOCOL and the EFI PCI IO PROTOCOL must be
implemented.

If a driver is written for an NVM Express controller, then the
EFI NVM EXPRESS PASS THRU PROTOCOL must be implemented.

If a driver is written for a USB host controller, then the EFI USB2 HC PROTOCOL and the
EFI USB IO PROTOCOL must be implemented.If a driver is written for a USB host
controller, then the must be implemented.

If a driver is written for a SCSI controller, then the
EFI EXT SCSI PASS THRU PROTOCOL must be implemented.

If a driver is digitally signed, it must embed the digital signature in the PE/COFF image as
described in “‘Embedded Signatures” on page 1786.

If a driver is written for a boot device that is not a block-oriented device, a file system-based
device, or a console device, then the EFI LOAD FILE PROTOCOL must be implemented.

If a driver follows the driver model of this specification, and the driver wants to produce
warning or error messages for the user, then the EFI DRIVER HEALTH PROTOCOL must be
used to produce those messages. The Boot Manager may optionally display the messages to the
user.

If a driver follows the driver model of this specification, and the driver needs to perform a repair
operation that is not part of the normal initialization sequence, and that repair operation requires
an extended period of time, then the EFI_DRIVER HEALTH PROTOCOL must be used to
provide the repair feature. If the Boot Manager detects a boot device that requires a repair
operation, then the Boot Manager must use the EFI_DRIVER HEALTH PROTOCOL to
perform the repair operation. The Boot Manager can optionally display progress indicators as
the repair operation is performed by the driver.

If a driver follows the driver model of this specification, and the driver requires the user to make
software and/or hardware configuration changes before the boot devices that the driver manages
can be used, then the EFI DRIVER HEALTH PROTOCOL must be produced. If the Boot

Version 2.5 Errata A January, 2016 65

Unified Extensible Firmware Interface Specification

Manager detects a boot device that requires software and/or hardware configuration changes to
make the boot device usable, then the Boot Manager may optionally allow the user to make
those configuration changes.

22. If a driver is written for an ATA controller, then the EFI ATA PASS THRU PROTOCOL
must be implemented.

23. If a driver follows the driver model of this specification, and the driver wants to be used with
higher priority than the Bus Specific Driver Override Protocol when selecting the best driver for
controller, then the EFI DRIVER FAMILY OVERRIDE PROTOCOL must be produced on
the same handle as the EFI_DRIVER BINDING PROTOCOL.

24. If a driver supports firmware management by an external agent or application, then the
EFI FIRMWARE MANAGEMENT PROTOCOL must be used to support firmware management.

25. If a driver follows the driver model of this specification and a driver is a device driver as defined
in Section 2.5, it must perform bus transactions via the bus abstraction protocol produced by a
parent bus driver. Thus a driver for a device that conforms to the PCI specification must use
EFI PCI IO PROTOCOL for all PCI memory space, PCI I/O, PCI configuration space, and
DMA operations.

26. . If a driver is written for a classic Bluetooth controller, then
EFI BLUETOOTH HC PROTOCOL, EFI BLUETOOTH IO PROTOCOL and
EFI BLUETOOTH CONFIG PROTOCOL must be implemented. If a driver written for a
Bluetooth Smart (Bluetooth Low Energy) controller, then EFI BLUETOOTH HC PROTOCOL,
EFI BLUETOOTH IO PROTOCOL and EFI BLUETOOTH CONFIG PROTOCOL may be
implemented.

2.6.4 Extensions to this Specification published elsewhere

This specification has been extended over time to include support for new devices and technologies.

As the name of the specification implies, the original intent in its definition was to create a baseline
for firmware interfaces that is extensible without the need to include extensions in the main body of
this specification.

Readers of this specification may find that a feature or type of device is not treated by the
specification. This does not necessarily mean that there is no agreed "standard" way to support the
feature or device in implementations that claim conformance to this Specification. On occasion, it
may be more appropriate for other standards organizations to publish their own extensions that are
designed to be used in concert with the definitions presented here. This may for example allow
support for new features in a more timely fashion than would be accomplished by waiting for a
revision to this specification or perhaps that such support is defined by a group with a specific
expertise in the subject area. Readers looking for means to access features or devices that are not
treated in this document are therefore recommended to inquire of appropriate standards groups to
ascertain if appropriate extension publications already exist before creating their own extensions.

By way of examples, at the time of writing the UEFI Forum is aware of a number of extension
publications that are compatible with and designed for use with this specification. Such extensions
include:

Developers Interface Guide for Itanium® Architecture Based Servers: published and
hosted by the DIG64 group (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “Developers Interface Guide for Itanium® Architecture Based

66 January, 2016 Version 2.5 Errata A

Overview

Servers”). This document is a set of technical guidelines that define hardware,
firmware, and operating system compatibility for Itanium™-based servers;

TCG EFI Platform Specification: published and hosted by the Trusted Computing
Group (See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “TCG EFI Platform Specification”). This document is about the processes
that boot an EFI platform and boot an OS on that platform. Specifically, this
specification contains the requirements for measuring boot events into TPM PCRs and
adding boot event entries into the Event Log.

TCG EFI Protocol Specification: published and hosted by the Trusted Computing
Group (See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the
heading “TCG EFI Protocol Specification™). This document defines a standard
interface to the TPM on an EFI platform.

Other extension documents may exist outside the view of the UEFI Forum or may have been created
since the last revision of this document.

Version 2.5 Errata A

January, 2016 67

Unified Extensible Firmware Interface Specification

68 January, 2016

Version 2.5 Errata A

Boot Manager

3
Boot Manager

The UEFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load UEFI
drivers and UEFI applications (including UEFI OS boot loaders) in an order defined by the global
NVRAM variables. The platform firmware must use the boot order specified in the global NVRAM
variables for normal boot. The platform firmware may add extra boot options or remove invalid boot
options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an
exceptional condition is discovered in the firmware boot process. One example of a value added
feature would be not loading a UEFI driver if booting failed the first time the driver was loaded.
Another example would be booting to an OEM-defined diagnostic environment if a critical error was
discovered in the boot process.

The boot sequence for UEFI consists of the following:

* The boot order list is read from a globally defined NVRAM variable. Modifications to this
variable are only guaranteed to take effect after the next platform reset. The boot order list
defines a list of NVRAM variables that contain information about what is to be booted. Each
NVRAM variable defines a name for the boot option that can be displayed to a user.

* The variable also contains a pointer to the hardware device and to a file on that hardware device
that contains the UEFI image to be loaded.

e The variable might also contain paths to the OS partition and directory along with other
configuration specific directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The platform
firmware has no knowledge of what is contained in the load options. The load options are set by
higher level software when it writes to a global NVRAM variable to set the platform firmware boot
policy. This information could be used to define the location of the OS kernel if it was different than
the location of the UEFI OS loader.

3.1 Firmware Boot Manager

The boot manager is a component in firmware conforming to this specification that determines
which drivers and applications should be explicitly loaded and when. Once compliant firmware is
initialized, it passes control to the boot manager. The boot manager is then responsible for
determining what to load and any interactions with the user that may be required to make such a
decision.

The actions taken by the boot manager depend upon the system type and the policies set by the
system designer. For systems that allow the installation of new Boot Variables (Section 3.4), the
Boot Manger must automatically or upon the request of the loaded item, initialize at least one system
console, as well as perform all required initialization of the device indicated within the primary boot

Version 2.5 Errata A January, 2016 69

Unified Extensible Firmware Interface Specification

target. For such systems, the Boot Manger is also required to honor the priorities set in BootOrder
variable.

In particular, likely implementation options might include any console interface concerning boot,
integrated platform management of boot selections, and possible knowledge of other internal
applications or recovery drivers that may be integrated into the system through the boot manager.

3.1.1 Boot Manager Programming

70

Programmatic interaction with the boot manager is accomplished through globally defined variables.
On initialization the boot manager reads the values which comprise all of the published load options
among the UEFI environment variables. By using the SetVariable () function the data that
contain these environment variables can be modified. Such modifications are guaranteed to take
effect after the next system boot commences. However, boot manager implementations may choose
to improve on this guarantee and have changes take immediate effect for all subsequent accesses to
the variables that affect boot manager behavior without requiring any form of system reset

Each load option entry resides in a Boot ####, Driver####, SysPrep####,
OsRecovery####or PlatformRecovery#### variable where #### is replaced by a unique
option number in printable hexadecimal representation using the digits 0—9, and the upper case
versions of the characters A—F (0000—FFFF).

The #### must always be four digits, so small numbers must use leading zeros. The load options
are then logically ordered by an array of option numbers listed in the desired order. There are two
such option ordering lists when booting normally. The first is DriverOrder that orders the
Driver#### load option variables into their load order. The second is BootOrder that orders
the Boot #### load options variables into their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the
option number of the new Boot #### variable would be added to the BootOrder ordered list and
the BootOrder variable would be rewritten. To change boot option on an existing Boot ### #,
only the Boot #### variable would need to be rewritten. A similar operation would be done to add,
remove, or modify the driver load list.

If the boot via Boot #### returns with a status of EFI__SUCCESS, platform firmware supports boot
manager menu, and if firmware is configured to boot in an interactive mode, the boot manager will
stop processing the BootOrder variable and present a boot manager menu to the user. If any of the
above-mentioned conditions is not satisfied, the next Boot #### in the BootOrder variable will
be tried until all possibilities are exhausted. In this case, boot option recovery must be performed
(see Section 3.4).

The boot manager may perform automatic maintenance of the database variables. For example, it
may remove unreferenced load option variables or any load option variables that cannot be parsed,
and it may rewrite any ordered list to remove any load options that do not have corresponding load
option variables. The boot manager can also, at its own discretion, provide an administrator with the
ability to invoke manual maintenance operations as well. Examples include choosing the order of
any or all load options, activating or deactivating load options, initiating OS-defined or platform-
defined recovery, etc. In addition, if a platform intends to create P1at formRecovery####,
before attempting to load and execute any DriverOrder or BootOrder entries, the firmware
must create any and all P1atformRecovery#### variables (see Section 3.4.2). The firmware
should not, under normal operation, automatically remove any correctly formed Boot#### variable

January, 2016 Version 2.5 Errata A

Boot Manager

currently referenced by the BootOrder or BootNext variables. Such removal should be limited
to scenarios where the firmware is guided by direct user interaction.

The contents of P1atformRecovery#### represent the final recovery options the firmware
would have attempted had recovery been initiated during the current boot, and need not include
entries to reflect contingencies such as significant hardware reconfiguration, or entries
corresponding to specific hardware that the firmware is not yet aware of.

The behavior of the UEFI Boot Manager is impacted when Secure Boot is enabled, See Section 30.4.

3.1.2 Load Option Processing

The boot manager is required to process the Driver load option entries before the Boot load option
entries. If the EFI_OS_INDICATIONS_ START OS_RECOVERY bit has been set in
OsIndications, the firmware shall attempt OS-defined recovery (see Section 3.4.1) rather than
normal boot processing. If the EFI_OS_INDICATIONS START PLATFORM RECOVERY bit
has been set in OsIndications, the firmware shall attempt platform defined ¢ recovery (see
Section 3.4.2) rather than normal boot processing or handling of the
EFI_OS_INDICATIONS_ START OS_RECOVERY bit. In either case, both bits should be cleared.

Otherwise, the boot manager is also required to initiate a boot of the boot option specified by the
BootNext variable as the first boot option on the next boot, and only on the next boot. The boot
manager removes the BootNext variable before transferring control to the BootNext boot
option. After the BootNext boot option is tried, the normal BootOrder list is used. To prevent
loops, the boot manager deletes BootNext before transferring control to the preselected boot
option.

If all entries of BootNext and BootOrder have been exhausted without success, or if the
firmware has been instructed to attempt boot order recovery, the firmware must attempt boot option
recovery (see Section 3.4).

The boot manager must call EFI_BOOT SERVICES.LoadImage () which supports at least
EFI SIMPLE FILE SYSTEM PROTOCOL and EFI LOAD FILE PROTOCOL for resolving
load options. If LoadImage () succeeds, the boot manager must enable the watchdog timer for 5
minutes by using the EFI BOOT SERVICES.SetWatchdogTimer () boot service prior to
calling EFI BOOT SERVICES.StartImage (). Ifa boot option returns control to the boot
manager, the boot manager must disable the watchdog timer with an additional call to the
SetWatchdogTimer () boot service.

If the boot image is not loaded via EFI BOOT SERVICES.LoadImage () the boot manager is
required to check for a default application to boot. Searching for a default application to boot
happens on both removable and fixed media types. This search occurs when the device path of the
boot image listed in any boot option points directly to an

EFI_SIMPLE FILE SYSTEM PROTOCOL device and does not specify the exact file to load.
The file d1sc0very method is explamed in Section 3.4. The default media boot case of a protocol
other than EFI_SIMPLE FILE SYSTEM PROTOCOL is handled by the

EFI LOAD FILE PROTOCOL for the target device path and does not need to be handled by the
boot manager.

The UEFI boot manager must support booting from a short-form device path that starts with the first
element being a USB WWID (see Table 61) or a USB Class (see Table 63) device path. For USB
WWID, the boot manager must use the device vendor ID, device product id, and serial number, and

Version 2.5 Errata A January, 2016 71

Unified Extensible Firmware Interface Specification

must match any USB device in the system that contains this information. If more than one device
matches the USB WWID device path, the boot manager will pick one arbitrarily. For USB Class, the
boot manager must use the vendor ID, Product ID, Device Class, Device Subclass, and Device
Protocol, and must match any USB device in the system that contains this information. If any of the
ID, Product ID, Device Class, Device Subclass, or Device Protocol contain all F's (OXFFFF or
0xFF), this element is skipped for the purpose of matching. If more than one device matches the
USB Class device path, the boot manager will pick one arbitrarily.

The boot manager must also support booting from a short-form device path that starts with the first
element being a hard drive media device path (see Table 83). The boot manager must use the GUID
or signature and partition number in the hard drive device path to match it to a device in the system.
If the drive supports the GPT partitioning scheme the GUID in the hard drive media device path is
compared with the UniquePartitionGuid field of the GUID Partition Entry (see Table 18). If
the drive supports the PC-AT MBR scheme the signature in the hard drive media device path is
compared with the UniqueMBRS1ignature in the Legacy Master Boot Record (see Table 13). Ifa
signature match is made, then the partition number must also be matched. The hard drive device path
can be appended to the matching hardware device path and normal boot behavior can then be used.
If more than one device matches the hard drive device path, the boot manager will pick one
arbitrarily. Thus the operating system must ensure the uniqueness of the signatures on hard drives to
guarantee deterministic boot behavior.

The boot manager must also support booting from a short-form device path that starts with the first
element being a File Path Media Device Path (see Table 86). When the boot manager attempts to
boot a short-form File Path Media Device Path, it will enumerate all removable media devices,
followed by all fixed media devices, creating boot options for each device. The boot option
FilePathList[0] is constructed by appending short-form File Path Media Device Path to the device
path of a media. The order within each group is undefined. These new boot options must not be
saved to non volatile storage, and may not be added to BootOrder. The boot manager will then
attempt to boot from each boot option. If a device does not support the

EFI_SIMPLE FILE SYSTEM PROTOCOL, but supports the EFI_BLOCK_ IO PROTOCOL
protocol, then the EFI Boot Service ConnectController must be called for this device with
DriverImageHandleand RemainingDevicePath setto NULL and the Recursive flag is set
to TRUE. The firmware will then attempt to boot from any child handles produced using the
algorithms outlined above.

The boot manager must also support booting from a short-form device path that starts with the first
element being a URI Device Path (see Table 78). When the boot manager attempts to boot a short-
form URI Device Path, it could attempt to connect any device which will produce a device path
protocol including a URI device path node until it matches a device, or fail to match any device. The
boot manager will enumerate all LoadFi 1e protocol instances, and invoke LoadFi 1e protocol
with F'i 1ePath set to the short-form device path during the matching process.

3.1.3 Load Options

Each load option variable contains an EFI_LOAD OPTION descriptor that is a byte packed buffer
of variable length fields.
typedef struct _EFI_LOAD OPTION {

UINT32 Attributes;
UINT16 FilePathListLength;

72 January, 2016 Version 2.5 Errata A

Boot Manager

// CHAR16 Description([];
// EFI_DEVICE_ PATH PROTOCOL FilePathList[],;
// UINTS8 OptionalDatal];

} EFI_LOAD OPTION;

Parameters

Attributes The attributes for this load option entry. All unused bits must be
zero and are reserved by the UEFI specification for future growth.
See “Related Definitions.”

FilePathListLength Lengthin bytes ofthe FilePathList. OptionalData
starts at offset sizeof (UINT32) + sizeof (UINT16) +
StrSize (Description) + FilePathListLength of
the EFI_LOAD_ OPTION descriptor.

Description The user readable description for the load option. This field ends
with a Null character.
FilePathList A packed array of UEFI device paths. The first element of the

array is a device path that describes the device and location of the
Image for this load option. The FilePathList [0] is specific
to the device type. Other device paths may optionally exist in the
FilePathList, but their usage is OSV specific. Each element
in the array is variable length, and ends at the device path end
structure. Because the size of Description is arbitrary, this
data structure is not guaranteed to be aligned on a natural
boundary. This data structure may have to be copied to an
aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a binary
data buffer that is passed to the loaded image. If the field is zero
bytes long, a NULL pointer is passed to the loaded image. The
number of bytes in OptionalData can be computed by
subtracting the starting offset of OptionalData from total size
in bytes of the EFI_LOAD OPTION.

Related Definitions

//***

// Attributes
//***

#define LOAD_ OPTION ACTIVE 0x00000001
#define LOAD OPTION FORCE RECONNECT 0x00000002
#define LOAD OPTION_ HIDDEN 0x00000008
#define LOAD OPTION CATEGORY 0x00001F00

#define LOAD_ OPTION CATEGORY_ BOOT 0x00000000
#define LOAD OPTION CATEGORY APP 0x00000100
// All values 0x00000200-0x00001F00 are reserved

Version 2.5 Errata A January, 2016 73

Unified Extensible Firmware Interface Specification

Description

Calling SetVariable () creates a load option. The size of the load option is the same as the size
of the DataSize argument to the SetVariable () call that created the variable. When creating
anew load option, all undefined attribute bits must be written as zero. When updating a load option,
all undefined attribute bits must be preserved.

If a load option is marked as LOAD OPTION ACTIVE, the boot manager will attempt to boot
automatically using the device path information in the load option. This provides an easy way to
disable or enable load options without needing to delete and re-add them.

If any Driver#### load option is marked as LOAD OPTION FORCE RECONNECT, then all of
the UEFI drivers in the system will be disconnected and reconnected after the last Driver####
load option is processed. This allows a UEFI driver loaded with a Driver#### load option to
override a UEFTI driver that was loaded prior to the execution of the UEFI Boot Manager.

The executable indicated by FilePathList [0] in Driver#### load option must be of type
EFI IMAGE SUBSYSTEM EFI BOOT SERVICE DRIVER or

EFI _IMAGE SUBSYSTEM EFI_RUNTIME | DRIVER otherwise the indicated executable will not
be entered for initialization.

The executable indicated by FilePathList [0] in SysPrep###, Boot####, or
OsRecovery#### load option must be of type

EFI_IMAGE SUBSYSTEM EFI_APPLICATION, otherwise the indicated executable will not be
entered.

The LOAD OPTION_CATEGORY is a sub-field of Attributes that provides details to the boot

manager to describe how it should group the Boot #### load options. This field is ignored for
variables of the form Driver####, SysPrep####,0r OsRecovery####.

Boot#### load options with LOAD OPTION_ CATEGORY set to
LOAD OPTION_ CATEGORY_ BOOT are meant to be part of the normal boot processing.

Boot#### load options with LOAD OPTION_ CATEGORY set to

LOAD_ OPTION CATEGORY_ APP are executables which are not part of the normal boot
processing but can be optlonally chosen for execution if boot menu is provided, or via Hot Keys. See
Section 3.1.6 for details.

Boot options with reserved category values, will be ignored by the boot manager.

If any Boot#### load option is marked as LOAD OPTION HIDDEN, then the load option will
not appear in the menu (if any) provided by the boot manager for load option selection.

3.1.4 Boot Manager Capabilities

74

The boot manager can report its capabilities through the global variable BootOptionSupport. If
the global variable is not present, then an installer or application must act as if a value of 0 was
returned.

#define EFI_BOOT OPTION SUPPORT KEY 0x00000001
#define EFI_BOOT OPTION SUPPORT APP 0x00000002
#define EFI_BOOT OPTION SUPPORT SYSPREP 0x00000010
#define EFI_BOOT OPTION SUPPORT COUNT 0x00000300

IfEFI_BOOT_ OPTION SUPPORT_KEY is set then the boot manager supports launching of
Boot#### load options using key presses. IfEFI_BOOT OPTION_ SUPPORT APP is set then

January, 2016 Version 2.5 Errata A

Boot Manager

the boot manager supports boot options with LOAD OPTION CATEGORY APP.If
EFI_BOOT OPTION SUPPORT SYSPREP is set 't then the boot manager supports boot options of
form . SysPrep####

The value specified in EFI_BOOT OPTION SUPPORT COUNT describes the maximum number
of key presses which the boot manager supports in the

EFI_KEY OPTION.KeyData.InputKeyCount. This value is only valid if
EFI_BOOT_ OPTION_ SUPPORT_ KEY is set. Key sequences with more keys specified are
ignored.

3.1.5 Launching Boot#### Applications

The boot manager may support a separate category of Boot #### load option for applications. The
boot manager indicates that it supports this separate category by setting the
EFI_BOOT OPTION SUPPORT APP inthe BootOptionSupport global variable.

When an application’s Boot #### option is being added to the BootOrder, the installer should
clear LOAD OPTION ACTIVE so that the boot manager does not attempt to automatically “boot”
the apphcatlon If the boot manager indicates that it supports a separate application category, as
described above, the installer should set LOAD OPTION CATEGORY_ APP. If not, it should set
LOAD OPTION_CATEGORY_ BOOT.

3.1.6 Launching Boot#### Load Options Using Hot Keys

The boot manager may support launching a Boot #### load option using a special key press. If so,
the boot manager reports this capability by setting EFI_BOOT OPTION SUPPORT KEY in the
BootOptionSupport global variable.

A boot manager which supports key press launch reads the current key information from the
console. Then, if there was a key press, it compares the key returned against zero or more Key # # # #
global variables. If it finds a match, it verifies that the Boot #### load option specified is valid and,
if so, attempts to launch it immediately. The #### in the Key#### is a printable hexadecimal
number (‘0’-°9°, ‘A’-‘F’) with leading zeroes. The order which the Key ### # variables are checked
is implementation-specific.

The boot manager may ignore Key#### variables where the hot keys specified overlap with those
used for internal boot manager functions. It is recommended that the boot manager delete these keys.

The Key#### variables have the following format:

Version 2.5 Errata A January, 2016 75

Unified Extensible Firmware Interface Specification

Prototype

typedef struct _EFI_KEY OPTION ({

EFI_BOOT_KEY DATA
UINT32
UINT16

// EFI_INPUT_KEY

} EFI_KEY OPTION;

Parameters
KeyData

Specifies options about how the key will be processed. Type

KeyData,

BootOptionCrc;

BootOption;,
Keys[]7

EFI_BOOT_KEY DATA is defined in “Related Definitions” below.

BootOptionCrc

The CRC-32 which should match the CRC-32 of the entire EFI_LOAD OPTION to
which BootOption refers. If the CRC-32s do not match this value, then this key

option is ignored.

BootOption

The Boot#### option which will be invoked if this key is pressed and the boot option

is active (LOAD_OPTION_ ACTIVE is set).

Keys

The key codes to compare against those returned by the

EFI_SIMPLE TEXT INPUT and EFI __SIMPLE TEXT INPUT_EX protocols.
The number of k key codes (0-3)is spec1ﬁed by the EFI KEY __CODE_ "COUNT field in

KeyOptions.

Related Definitions
typedef union {
struct {
UINT32 Revision

8;

UINT32 ShiftPressed : 1;
UINT32 ControlPressed : 1;

UINT32 AltPressed
UINT32 LogoPressed
UINT32 MenuPressed

1;
1;
1

4

UINT32 SysRegPressed : 1;

UINT32 Reserved

16;

UINT32 InputKeyCount : 2;

} Options;

UINT32 PackedValue;
} EFI_BOOT_KEY DATA;

76

January, 2016

Version 2.5 Errata A

Boot Manager

Revision

Indicates the revision of the EFI_KEY OPTION structure. This revision level should
be 0.

ShiftPressed

Either the left or right Shift keys must be pressed (1) or must not be pressed (0).
ControlPressed

Either the left or right Control keys must be pressed (1) or must not be pressed (0).
AltPressed

Either the left or right Alt keys must be pressed (1) or must not be pressed (0).
LogoPressed

Either the left or right Logo keys must be pressed (1) or must not be pressed (0).
MenuPressed

The Menu key must be pressed (1) or must not be pressed (0).
SysReqgPressed

The SysReq key must be pressed (1) or must not be pressed (0).
InputKeyCount

Specifies the actual number of entries in EFI_KEY OPTION.Keys, from 0-3. If
zero, then only the shift state is considered. If more than one, then the boot option will
only be launched if all of the specified keys are pressed with the same shift state.

Example #1: ALT is the hot key. KeyData. PackedValue =0x00000400.
Example #2: CTRL-ALT-P-R. KeyData.PackedValue=0x80000600.
Example #3: CTRL-F1. KeyData.PackedValue = 0x40000200.

3.1.7 Required System Preparation Applications

A load option of the form SysPrep#### is intended to designate a UEFI application that is
required to execute in order to complete system preparation prior to processing of any Boot ####
variables. The execution order of SysPrep#### applications is determined by the contents of the
variable SysPrepOrder in a way directly analogous to the ordering of Boot ### # options by
BootOrder.

The platform is required to examine all SysPrep#### variables referenced in SysPrepOrder.
If Attributes bit LOAD _OPTION_ ACTIVE is set, and the application referenced by
FilePathList[0] is present, , the UEFI Applications thus identified must be loaded and
launched in the order they appear in SysPrepOrder and prior to the launch of any load options of type
Boot####.

When launched, the platform is required to provide the application loaded by Sy sPrep####, with
the same services such as console and network as are normally provided at launch to applications
referenced by a Boot #### variable. SysPrep#### application must exit and may not call
ExitBootServices (). Processing of any Error Code returned at exit is according to system
policy and does not necessarily change processing of following boot options. Any driver portion of

Version 2.5 Errata A January, 2016 77

Unified Extensible Firmware Interface Specification

the feature supported by Sy sPrep#### boot option that is required to remain resident should be
loaded by use of Driver#### variable.

The Attributes option LOAD OPTION FORCE_ RECONNECT is ignored for SysPrep####
variables, and in the event that an apphcatlon so launched performs some action that adds to the
available hardware or drivers, the system preparation application shall itself utilize appropriate calls
to ConnectController () or DisconnectController () to revise connections between
drivers and hardware.

After all SysPrep#### variables have been launched and exited, the platform shall notify
EFI_EVENT GROUP_READY TO_BOOT event group and begin to evaluate Boot #### variables
with Attributes set to LOAD _OPTION CATEGORY_ BOOT according to the order defined by
BootOrder. The FilePathList of variables marked LOAD OPTION CATEGORY BOOT
shall not be evaluated prior to the completion of EFI_EVENT GROUP_READY TO BOOT event
group processing.

3.2 Boot Manager Policy Protocol

EFI_BOOT_MANAGER_POLICY_PROTOCOL

78

Summary

This protocol is used by EFI Applications to request the UEFI Boot Manager to connect devices
using platform policy.

GUID
#define EFI _BOOT_MANAGER POLICY_ PROTOCOL_ GUID \
{ 0xFEDF8EOC 0xE147 0x11E3 \
{ 0x99, 0x03, 0xB8, O0xE8, 0x56, 0x2C, O0xBA, OxFA } }

Protocol Interface Structure

typedef struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL

EFI BOOT MANAGER POLICY PROTOCOL;

struct EFI BOOT MANAGER POLICY PROTOCOL {
UINT64 Revision;
EFI_BOOT_MANAGER POLICY_ CONNECT DEVICE PATH ConnectDevicePath;
EFI_BOOT_MANAGER POLICY CONNECT DEVICE CLASS

ConnectDeviceClass;

};

ConnectDevicePath Connect a Device Path following the platforms EFI Boot
Manager policy.

ConnectDeviceClass Connect a class of devices, named by EFI_GUID, following the
platforms UEFI Boot Manger policy.

January, 2016 Version 2.5 Errata A

Boot Manager

Description

The EFI_BOOT_ MANAGER PROTOCOL is produced by the platform firmware to expose Boot
Manager policy and platform specific EFI BOOT SERVICES.ConnectController ()
behavior.

Related Definitions
#define EFI_BOOT MANAGER POLICY PROTOCOL REVISION 0x00010000

Version 2.5 Errata A January, 2016 79

Unified Extensible Firmware Interface Specification

EFI_BOOT_MANAGER_PROTOCOL.ConnectDevicePath()

Summary

Connect a device path following the platforms EFI Boot Manager policy.
Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT MANAGER POLICY CONNECT DEVICE PATH) (
IN EFI_BOOT MANAGER POLICY PROTOCOL *This,

IN EFI_DEVICE_PATH *DevicePath,
IN BOOLEAN Recursive
),
Parameters
This A pointer to the EFI_BOOT MANAGER_POLICY_PROTOCOL

instance. Type EFI_BOOT_EANAGER_POLICY_PROTOCOL
defined above.

DevicePath Points to the start of the EFI device path to connect. If
DevicePathis NULL then all the controllers in the system will
be connected using the platforms EFI Boot Manager policy.

Recursive If TRUE, then ConnectController () is called recursively
until the entire tree of controllers below the controller specified
by DevicePath have been created. If FALSE, then the tree of
controllers is only expanded one level. If DevicePath is
NULL then Recursive is ignored.

Description
The ConnectDevicePath () function allows the caller to connect a DevicePath using the
same policy as the EFI Boot Manger.

If Recursive is TRUE, then ConnectController () is called recursively until the entire tree
of controllers below the controller specified by DevicePath have been created. If Recursiveis
FALSE, then the tree of controllers is only expanded one level. If DevicePath is NULL then
Recursive is ignored.

Status Codes Returned

EFI_SUCCESS The DevicePath was connected

EFI_NOT_FOUND The DevicePath was not found

EFI_NOT_FOUND No driver was connected to DevicePath.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the
DevicePath.

EFI_UNSUPPORTED The current TPL is not TPL. APPLICATION.

80 January, 2016 Version 2.5 Errata A

Boot Manager

EFI_BOOT_MANAGER_PROTOCOL.ConnectDeviceClass()

Summary
Connect a class of devices using the platform Boot Manager policy.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT MANAGER POLICY CONNECT DEVICE CLASS) (
IN EFI_BOOT MANAGER POLICY PROTOCOL *This,

IN EFI_GUID *Class
)

Parameters
This A pointer to the EFI_BOOT MANAGER POLICY PROTOCOL

instance. Type EFI_BOOT MANAGER POLICY PROTOCOL is
defined above.

Class A pointer to an EFI_GUID that represents a class of devices that
will be connected using the Boot Mangers platform policy.

Description

The ConnectDeviceClass () function allows the caller to request that the Boot Manager
connect a class of devices.

If Classis EFI_BOOT_MANAGER POLICY CONSOLE_GUID then the Boot Manager will use
platform policy to connect consoles. Some platforms may restrict the number of consoles connected
as they attempt to fast boot, and calling ConnectDeviceClass () with a Class value of
EFI_BOOT MANAGER POLICY CONSOLE_GUID must connect the set of consoles that follow
the Boot Manager platform pol1cy, and the EFI_SIMPLE TEXT INPUT PROTOCOL,
EFI_SIMPLE TEXT INPUT_ EX PROTOCOL and the

EFI_SIMPLE ' . TEXT ' OUTPUT_PROTOCOL are produced on the connected handles. The Boot
Manager may restrict which consoles get connect due to platform policy, for example a security
policy may require that a given console is not connected.

If Classis EFI_BOOT_ MANAGER POLICY NETWORK GUID then the Boot Manager will
connect the protocols the 1 platforms supports for UEFI general purpose network applications on one
or more handles. The protocols associated with UEFI general purpose network applications are
defined in Section 2.6.2, list item number 7. If more than one network controller is available a
platform will connect, one, many, or all of the networks based on platform policy. Connecting UEFI
networking protocols, like EFI_DHCP4_PROTOCOL, does not establish connections on the
network. The UEFI general purpose network application that called ConnectDeviceClass ()
may need to use the published protocols to establish the network connection. The Boot Manager can
optionally have a policy to establish a network connection.

If Classis EFI_BOOT_MANAGER POLICY CONNECT ALL GUID then the Boot Manager
will connect all UEFI drivers using the UEFI Boot Service

EFI BOOT SERVICES.ConnectController (). Ifthe Boot Manager has policy associated
with connect all UEFI drivers this policy will be used.

Version 2.5 Errata A January, 2016 81

Unified Extensible Firmware Interface Specification

A platform can also define platform specific C1ass values as a properly generated EFI_GUID
would never conflict with this specification.

Related Definitions
#define EFI_BOOT MANAGER POLICY CONSOLE_ GUID \
{ 0xCABOE94C, OxE1l5F, O0x11lE3,\
{ 0x91, 0x8D, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT MANAGER POLICY NETWORK GUID \
{ 0xD04159DC, OxE1l5F, O0x11E3,\
{ 0xB2, 0x61l, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT MANAGER POLICY CONNECT ALL GUID \
{ 0x113B2126, OxFC8A, O0x11E3,\
{ 0xBD, 0Ox6C, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }

Status Codes Returned

EFI_SUCCESS At least one devices of the C1ass was connected.
EFI_DEVICE_ERROR Devices were not connected due to an error.
EFI_NOT_FOUND The Class is not supported by the platform.
EFI_UNSUPPORTED The current TPL is not TPL. APPLICATION.

3.3 Globally Defined Variables

82

This section defines a set of variables that have architecturally defined meanings. In addition to the
defined data content, each such variable has an architecturally defined attribute that indicates when
the data variable may be accessed. The variables with an attribute of NV are nonvolatile. This
means that their values are persistent across resets and power cycles. The value of any environment
variable that does not have this attribute will be lost when power is removed from the system and the
state of firmware reserved memory is not otherwise preserved. The variables with an attribute of BS
are only available before EFI BOOT SERVICES.ExitBootServices () is called. This
means that these environment variables can only be retrieved or modified in the preboot
environment. They are not visible to an operating system. Environment variables with an attribute
of RT are available before and after ExitBootServices () is called. Environment variables of
this type can be retrieved and modified in the preboot environment, and from an operating system.
The variables with an attribute of AT are variables with a time-based authenticated write access
defined in Section 7.2.1. All architecturally defined variables use the EFI_GLOBAL VARIABLE
VendorGuid:

#define EFI_GLOBAL VARIABLE\
{0x8BE4DF61,0x93CA,0x11d2,\

{0xAA,0x0D,0x00,0xEQ0,0x98,0x03,0x2B,0x8C}}

To prevent name collisions with possible future globally defined variables, other internal firmware
data variables that are not defined here must be saved with a unique VendorGuid other than
EFI_GLOBAL VARIABLE or any other GUID defined by the UEFI Specification.

January, 2016 Version 2.5 Errata A

Boot Manager

Implementations must only permit the creation of variables with a UEFI Specification-defined
VendorGuid when these variables are documented in the UEFI Specification.

Table 11. Global Variables

Variable Name Attribute Description

AuditMode BS, RT Whether the system is operating in Audit Mode (1) or not
(0). All other values are reserved. Should be treated as
read-only except when DeployedMode is 0. Always
becomes read-only after ExitBootServices() is called.

Boot##tt NV, BS, RT A boot load option. #### is a printed hex value. No 0x or
h is included in the hex value.

BootCurrent BS, RT The boot option that was selected for the current boot.

BootNext NV, BS, RT The boot option for the next boot only.

BootOrder NV, BS, RT The ordered boot option load list.

BootOptionSupport BS,RT, The types of boot options supported by the boot
manager. Should be treated as read-only.

Conlin NV, BS, RT The device path of the default input console.

ConinDev BS, RT The device path of all possible console input devices.

ConOut NV, BS, RT The device path of the default output console.

ConOQOutDev BS, RT The device path of all possible console output devices.

dbDefault BS, RT The OEM's default secure boot signature store. Should
be treated as read-only.

dbrDefault BS, RT The OEM's default OS Recovery signature store. Should
be treated as read-only.

dbtDefault BS, RT The OEM's default secure boot timestamp signature
store. Should be treated as read-only.

dbxDefault BS, RT The OEM's default secure boot blacklist signature store.

Should be treated as read-only.

DeployedMode BS, RT Whether the system is operating in Deployed Mode (1) or
not (0). All other values are reserved. Should be treated
as read-only when its value is 1. Always becomes read-
only after ExitBootServices() is called.

Driver##tt# NV, BS, RT A driver load option. #### is a printed hex value.
DriverOrder NV, BS, RT The ordered driver load option list.

ErrOut NV, BS, RT The device path of the default error output device.
ErrOutDev BS, RT The device path of all possible error output devices.
HwErrRecSupport NV, BS, RT Identifies the level of hardware error record persistence

support implemented by the platform. This variable is
only modified by firmware and is read-only to the OS.

KEK NV, BS, RT,AT The Key Exchange Key Signature Database.

KEKDefault BS, RT The OEM's default Key Exchange Key Signature
Database. Should be treated as read-only.

Key#tHt# NV, BS, RT Describes hot key relationship with a Boot#### load
option.

Version 2.5 Errata A January, 2016 83

Unified Extensible Firmware Interface Specification

84

Variable Name
Lang

LangCodes

Oslndications

OslIndicationsSupported

OsRecoveryOrder
PK
PKDefault

PlatformLangCodes
PlatformLang
PlatformRecovery###H

SignatureSupport

SecureBoot

SetupMode

SysPrep###

SysPrepOrder
Timeout

VendorKeys

Attribute
NV, BS, RT

BS, RT

NV, BS, RT

BS, RT

BS,RT,NV,AT
NV, BS, RT,AT
BS, RT

BS, RT
NV, BS, RT
BS, RT

BS, RT

BS, RT

BS, RT

NV, BS, RT

NV, BS, RT
NV, BS, RT

BS, RT

Description

The language code that the system is configured for. This
value is deprecated.

The language codes that the firmware supports. This
value is deprecated.

Allows the OS to request the firmware to enable certain
features and to take certain actions.

Allows the firmware to indicate supported features and
actions to the OS.

OS-specified recovery options.

The public Platform Key.

The OEM's default public Platform Key. Should be treated
as read-only.

The language codes that the firmware supports.

The language code that the system is configured for.
Platform-specified recovery options. These variables are
only modified by firmware and are read-only to the OS.

Array of GUIDs representing the type of signatures
supported by the platform firmware. Should be treated as
read-only.

Whether the platform firmware is operating in Secure boot
mode (1) or not (0). All other values are reserved. Should
be treated as read-only.

Whether the system should require authentication on
SetVariable() requests to Secure Boot policy variables (0)
or not (1). Should be treated as read-only.

The system is in "Setup Mode" when SetupMode==1,
AuditMode==0, and DeployedMode==0.

A System Prep application load option containing a
EFI_LOAD_OPTION descriptor. ####is a printed hex
value.

The ordered System Prep Application load option list.

The firmware’s boot managers timeout, in seconds,
before initiating the default boot selection.

Whether the system is configured to use only vendor-
provided keys or not. Should be treated as read-only.

The PlatformLangCodes variable contains a null- terminated ASCII string representing the
language codes that the firmware can support. At initialization time the firmware computes the
supported languages and creates this data variable. Since the firmware creates this value on each
initialization, its contents are not stored in nonvolatile memory. This value is considered read-only.
PlatformLangCodes is specified in Native RFC 4646 format. See Appendix M. LangCodes
is deprecated and may be provided for backwards compatibility.

The Plat formLang variable contains a null- terminated ASCII string language code that the
machine has been configured for. This value may be changed to any value supported by

January, 2016

Version 2.5 Errata A

Boot Manager

PlatformLangCodes. If this change is made in the preboot environment, then the change will
take effect immediately. If this change is made at OS runtime, then the change does not take effect
until the next boot. If the language code is set to an unsupported value, the firmware will choose a
supported default at initialization and set P1at formLang to a supported value. PlatformLang
is specified in Native RFC 4646 array format. See Appendix M. Lang is deprecated and may be
provided for backwards compatibility.

Lang has been deprecated. If the platform supports this variable, it must map any changes in the
Lang variable into PI1at formLang in the appropriate format.

Langcodes has been deprecated. If the platform supports this variable, it must map any changes in
the Langcodes variable into P1atformLang in the appropriate format.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the
firmware will wait before initiating the original default boot selection. A value of 0 indicates that
the default boot selection is to be initiated immediately on boot. If the value is not present, or
contains the value of OxFFFF then firmware will wait for user input before booting. This means the
default boot selection is not automatically started by the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI DEVICE PATH PROTOCOL
descriptor that defines the default device to use on boot. Changes to these values made in the
preboot environment take effect immediately. Changes to these values at OS runtime do not take
effect until the next boot. If the firmware cannot resolve the device path, it is allowed to
automatically replace the values, as needed, to provide a console for the system. If the device path
starts with a USB Class device path (see Table 63), then any input or output device that matches the
device path must be used as a console if it is supported by the firmware.

The ConInDev, ConOutDev, and ErrOutDev variables each contain an
EFI_DEVICE PATH PROTOCOL descriptor that defines all the possible default devices to use on
boot. These variables are volatile, and are set dynamically on every boot. ConIn, ConOut, and
ErroOut are always proper subsets of ConInDev, ConOutDev, and ErrOutDev.

Each Boot #### variable contains an EFI_LOAD OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four digit hexadecimal number. For example, Boot0001,
Boot0002, Boot0A02, etc.

The OsRecoveryOrder variable contains an array of EFI_GUID structures. Each EFI_GUID
structure specifies a namespace for variables containing OS-defined recovery entries (see

Section 3.4.1). Write access to this variable is controlled by the security key database dbr (see
Section 7.2.1).

PlatformRecovery#### variables share the same structure as Boot#### variables. These
variables are processed when the system is performing recovery of boot options

The BootOrder variable contains an array of UINT16’s that make up an ordered list of the
Boot#### options. The first element in the array is the value for the first logical boot option, the
second element is the value for the second logical boot option, etc. The BootOrder order list is
used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot ### # option that is to be tried
first on the next boot. After the BootNext boot option is tried the normal BootOrder list is used.
To prevent loops, the boot manager deletes this variable before transferring control to the
preselected boot option.

Version 2.5 Errata A January, 2016 85

Unified Extensible Firmware Interface Specification

86

The BootCurrent variable is a single UINT16 that defines the Boot #### option that was
selected on the current boot.

The BootOptionSupport variable is a UINT32 that defines the types of boot options
supported by the boot manager.

Each Driver#### variable contains an EFI_LOAD OPTION. Each load option variable is
appended with a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of the
Driver#### variable. The first element in the array is the value for the first logical driver load
option, the second element is the value for the second logical driver load option, etc. The
DriverOrder list is used by the firmware’s boot manager as the default load order for UEFI
drivers that it should explicitly load.

The Key #### variable associates a key press with a single boot option. Each Key#### variable
is the name "Key" appended with a unique four digit hexadecimal number. For example, Key0001,
Key0002, Key00AO, etc.

The HwErrRecSupport variable contains a binary UINT16 that supplies the level of support for
Hardware Error Record Persistence (see Section 7.2.3) that is implemented by the platform. If the
value is not present, then the platform implements no support for Hardware Error Record
Persistence. A value of zero indicates that the platform implements no support for Hardware Error
Record Persistence. A value of 1 indicates that the platform implements Hardware Error Record
Persistence as defined in Section 7.2.3. Firmware initializes this variable. All other values are
reserved for future use.

The SetupMode variable is an 8-bit unsigned integer that defines whether the system is should
require authentication (0) or not (1) on SetVariable () requests to Secure Boot Policy Variables.
Secure Boot Policy Variables include:

» The global variables PK, KEK, and OsRecoveryOrder
* All variables named OsRecovery#### under all VendorGuids
* All variables with the VendorGuid EFI_IMAGE SECURITY DATABASE GUID.

Secure Boot Policy Variables must be created using the EFI_VARIABLE AUTHENTICATION 2
structure.

The AuditMode variable is an 8-bit unsigned integer that defines whether the system is currently
operating in Audit Mode.

The DeployedMode variable is an 8-bit unsigned integer that defines whether the system is
currently operating in Deployed Mode.

The KEK variable contains the current Key Exchange Key database.

The PK variable contains the current Platform Key.

The VendorKeys variable is an 8-bit unsigned integer that defines whether the Security Boot
Policy Variables have been modified by anyone other than the platform vendor or a holder of the
vendor-provided keys. A value of 0 indicates that someone other than the platform vendor or a

holder of the vendor-provided keys has modified the Secure Boot Policy Variables Otherwise, the
value will be 1.

The KEKDefault variable, if present, contains the platform-defined Key Exchange Key database.
This is not used at runtime but is provided in order to allow the OS to recover the OEM's default key

January, 2016 Version 2.5 Errata A

Boot Manager

setup. The contents of this variable do not include an EFI_VARIABLE AUTHENTICATION or
EFI_VARIABLE AUTHENTICATION2 structure.

The PKDe fault variable, if present, contains the platform-defined Platform Key. This is not used
at runtime but is provided in order to allow the OS to recover the OEM's default key setup. The
contents of this variable do not include an EFI_VARIABLE AUTHENTICATION2 structure.

The dbDe fault variable, if present, contains the platform-defined secure boot signature database.
This is not used at runtime but is provided in order to allow the OS to recover the OEM's default key
setup. The contents of this variable do not include an EFI_VARIABLE AUTHENTICATION2
structure.

The dbrDefault variable, if present, contains the platform-defined secure boot authorized
recovery signature database. This is not used at runtime but is provided in order to allow the OS to
recover the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE AUTHENTICATION2 structure.

The dbtDefault variable, if present, contains the platform-defined secure boot timestamp
signature database. This is not used at runtime but is provided in order to allow the OS to recover the
OEM's default key setup. The contents of this variable do not include an

EFI_VARIABLE AUTHENTICATION2 structure.

The dbxDe fault variable, if present, contains the platform-defined secure boot blacklist signature
database. This is not used at runtime but is provided in order to allow the OS to recover the OEM's
default key setup. The contents of this variable do not include an

EFI_VARIABLE AUTHENTICATION2 structure.

The SignatureSupport variable returns an array of GUIDs, with each GUID representing a
type of signature which the platform firmware supports for images and other data. The different
signature types are described in "Signature Database".

The SecureBoot variable is an 8-bit unsigned integer that defines if the platform firmware is
operating in secure boot mode. A value of 1 indicates that platform firmware performs driver and
boot application signature verification as specified in Section 30.5 during the current boot. A value
of 0 indicates that driver and boot application signature verification is not active during the current
boot. The platform firmware is operating in secure boot mode if the value of the SetupMode
variable is 0 and the SecureBoot variable is set to 1. A platform cannot operate in secure boot
mode if the SetupMode variable is set to 1. The SecureBoot variable should be treated as read-
only.

The OsIndicationsSupported variable indicates which of the OS indication features and
actions that the firmware supports. This variable is recreated by firmware every boot, and cannot be
modified by the OS (see SetVariable () Attributes usage rules once ExitBootServices ()
is performed).

The OsIndications variable is used to indicate which features the OS wants firmware to enable
or which actions the OS wants the firmware to take. The OS will supply this data with a
SetVariable () call. See Section 7.5.4 for the variable definition.

3.4 Boot Option Recovery

Boot option recovery consists of two independent parts, operating system-defined recovery and
platform-defined recovery. OS-defined recovery is an attempt to allow installed operating systems to

Version 2.5 Errata A January, 2016 87

Unified Extensible Firmware Interface Specification

recover any needed boot options, or to launch full operating system recovery. Platform-defined
recovery includes any remedial actions performed by the platform as a last resort when no operating
system is found, such as the Default Boot Behavior (see Section 3.3.3). This could include behaviors
such as warranty service reconfiguration or diagnostic options.

In the event that boot option recovery must be performed, the boot manager must first attempt OS-
defined recovery, re-attempt normal booting via Boot #### and BootOrder variables, and finally
attempt platform-defined recovery if no options have succeeded.

3.4.1 OS-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS_ START OS_RECOVERY bitis setin OsIndications, or if
processing of BootOrder does not result in success, the platform must process OS-defined
recovery options. In the case where OS-defined recovery is entered due to OsIndications,
SysPrepOrder and SysPrep#### variables should not be processed. Note that in order to
avoid ambiguity in intent, this bit is ignored in OsIndications if
EFI_OS_INDICATIONS_ START PLATFORM RECOVERY is set.

OS-defined recovery uses the OsRecoveryOrder variable, as well as variables created with
vendor specific VendorGuid values and a name following the pattern OsRecovery####. Each
of these variables must be an authenticated variable with the

EFI_VARIABLE TIME BASED AUTHENTICATED WRITE ACCESS attribute set.

To process these variables, the boot manager iterates over the array of EFI_GUID structures in the
OsRecoveryOrder variable, and each GUID specified is treated as a VendorGuid associated
with a series of variable names. For each GUID, the firmware attempts to load and execute, in
hexadecimal sort order, every variable with that GUID and a name following the pattern
OsRecovery####. These variables have the same format as Boot ### # variables, and the boot
manager must verify that each variable it attempts to load was created with a public key that is
associated with a certificate chaining to one listed in the authorized recovery signature database dbr
or the Key Exchange Key database KEK, or by the current Platform Key PK.

If the boot manager finishes processing OsRecovery#### options without

EFI BOOT SERVICES.ExitBootServices () or ResetSystem () having been called, it
must attempt to process BootOrder a second time. If booting does not succeed during that process,
OS-defined recovery has failed, and the boot manager must attempt platform-based recovery.

If, while processing OsRecovery#### variables, the boot manager encounters an entry which
cannot be loaded or executed due to a security policy violation, it must ignore that variable.

3.4.2 Platform-Defined Boot Option Recovery

88

If the EFI_OS_INDICATIONS_ START PLATFORM RECOVERY bit is set in
OsIndications, orif OS-defined recovery has failed, the system firmware must commence with
platform-specific recovery by iterating its P1atformRecovery#### variables in the same
manner as OsRecovery####, but must stop processing if any entry is successful. In the case
where platform-specific recovery is entered due to OsIndications, SysPrepOrder and
SysPrep#### variables should not be processed.

January, 2016 Version 2.5 Errata A

Boot Manager

3.4.3 Boot Option Variables Default Boot Behavior

The default state of globally-defined variables is firmware vendor specific. However the boot
options require a standard default behavior in the exceptional case that valid boot options are not
present on a platform. The default behavior must be invoked any time the BootOrder variable
does not exist or only points to nonexistent boot options, or if no entry in BootOrder can
successfully be executed.

If system firmware supports boot option recovery as described in Section 3.4, system firmware must
include a P1atformRecovery#### variable specifying a short-form File Path Media Device
Path (see Table 3.1.2) containing the platform default file path for removable media (see Table 12).
It is recommended for maximal compatibility with prior versions of this specification that this entry
be the first such variable, though it may be at any position within the list.

It is expected that this default boot will load an operating system or a maintenance utility. If this is an
operating system setup program it is then responsible for setting the requisite environment variables
for subsequent boots. The platform firmware may also decide to recover or set to a known set of boot
options.

3.5 Boot Mechanisms

EFI can boot from a device using the EFI_SIMPLE FILE SYSTEM PROTOCOL or the
EFI_LOAD FILE PROTOCOL. A device that supports the

EFI_SIMPLE FILE SYSTEM PROTOCOL must materialize a file system protocol for that
device to be bootable. If a device does not wish to support a complete file system it may produce an
EFI_LOAD FILE PROTOCOL which allows it to materialize an image directly. The Boot
Manager will attempt to boot using the EFI_SIMPLE FILE SYSTEM PROTOCOL first. If that
fails, then the EFI_LOAD FILE PROTOCOL will be used.

3.5.1 Boot via the Simple File Protocol

When booting via the EFI_SIMPLE FILE SYSTEM PROTOCOL, the F'i1lePath will start with
a device path that points to) the device that * speaks” the

EFI_SIMPLE FILE SYSTEM PROTOCOL. The next partof the FilePath will point to the file
name, 1nclud1ng sub directories that contain the bootable i image. If the file name is a null device
path, the file name must be discovered on the media using the rules defined for removable media
devices with ambiguous file names (see Section 3.5.1.1 below).

The format of the file system specified is contained in Section 12.3. While the firmware must
produce an EFI_SIMPLE FILE SYSTEM PROTOCOL that understands the UEFI file system,
any file system can be abstracted with the EFT _SIMPLE FILE SYSTEM PROTOCOL interface.

3.5.1.1 Removable Media Boot Behavior

On a removable media device it is not possible for the i 1e Path to contain a file name, including
sub directories. FiilePathList [0] is stored in non volatile memory in the platform and cannot
possibly be kept in sync with a media that can change at any time. A FilePathList [0] fora
removable media device will point to a device that supports the

EFI_SIMPLE FILE SYSTEM PROTOCOL or EFI BLOCK IO PROTOCOL. The
FilePathList [0] will not contain a file name or sub directories.

Version 2.5 Errata A January, 2016 89

Unified Extensible Firmware Interface Specification

If FilePathList [0] points to a device that supports the

EFI_SIMPLE FILE SYSTEM PROTOCOL, then the system firmware will attempt to boot from a
removable media Fi lePathlList [0] by adding a default file name in the form
\EFI\BOOT\BOOT {machine type short-name}.EFI. Where machine type short-name defines a
PE32+ image format architecture. Each file only contains one UEFI image type, and a system may
support booting from one or more images types. Table 12 lists the UEFI image types.

Table 12. UEFI Image Types

File Name Convention PE Executable Machine Type *
32-bit BOOTIA32.EFI 0x14c
x64 BOOTx64.EFI 0x8664
Itanium architecture BOOTIA64.EFI 0x200
AArch32 architecture BOOTARM.EFI 0x01c2
AArch64 architecture BOOTAAG4.EFI 0xAA64

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0

A media may support multiple architectures by simply having a \EFI\BOOT\BOOT {machine type
short-name}.EFI file of each possible machine type.

If FilePathList[0] device does not support the

EFI_SIMPLE FILE SYSTEM PROTOCOL, but support the EFI BLOCK IO PROTOCOL
protocol, then the EFI Boot Service EFI BOOT SERVICES.ConnectController () mustbe
called for FilePathList [0] with DriverImageHandle and RemainingDevicePath
set to NULL and the Recursive flag is set to TRUE.The firmware will then attempt to boot from
any child handles produced using the algorithms outlined above.

3.5.1.2 Non-removable Media Boot Behavior

90

It is expected that on a non-removable media device, a complete F'i 1ePath can be used which
includes sub directories and a file name for the boot target and the platform will boot using this
FilePath according to normal system policy.

However, in the case where all the Boot#### variables that are referenced in the BootOrder
variable point to devices that are not present, the boot devices have timed out, the specific boot file
did not exist, or there was no valid boot variable, boot option recovery must be performed. (See
Section 3.4.)

If a system does not support boot option recovery, then default boot processing will consist of the
boot manager searching non-removable media that supports the

EFI_SIMPLE FILE SYSTEM PROTOCOL or EFI_BLOCK IO PROTOCOL. In general the
boot n manager will search all candidate media but platform pohcy may optionally limit the search to
a subset of all possible devices connected to a given system; choices for such policy limits are
implementation specific. If the device supports the EFI_SIMPLE FILE SYSTEM PROTOCOL
layered on an EFI system partition, then the system firmware will attempt to boot from the media by
executing a default file name in the form \EFI\BOOT\BOOT {machine type short-name}.EFI. Where
machine type short-name defines a PE32+ image format architecture. Each file only contains one
UEFI image type, and a system may support booting from one or more images types. The target file

January, 2016 Version 2.5 Errata A

Boot Manager

names will follow the naming convention specified in the removable media boot behavior section. A
media may support multiple architectures by simply having a \EFI\BOOT\BOOT {machine type
short-name} .EFI file of each possible machine type.

If the device does not support the EFI_SIMPLE FILE SYSTEM PROTOCOL, but supports the
EFI_BLOCK IO PROTOCOL protocol then the EFI Boot Service ConnectController must be
called for this device with Dri verImageHandle and RemainingDevicePath set to NULL
and the Recursive flag is set to TRUE. The firmware will then attempt to boot from any child handles
produced using the algorithms outlined above.

When boot option recovery is supported, this default behavior is handled as a part of Platform-
defined boot option recovery (see Section 3.4.2).

3.5.2 Boot via LOAD_FILE PROTOCOL

When booting via the EFI LOAD FILE PROTOCOL protocol, the FilePath is a device path
that points to a device that “speaks” the EFI_LOAD FILE PROTOCOL. The image is loaded
directly from the device that supports the EFI_LOAD FILE PROTOCOL. The remainder of the
FilePath will contain information that is spec1ﬁc to the device. Firmware passes this device-
specific data to the loaded image, but does not use it to load the image. If the remainder of the
FilePath is anull device path it is the loaded image's responsibility to implement a policy to find
the correct boot device.

The EFI_LOAD FILE PROTOCOL is used for devices that do not directly support file systems.
Network devices ¢ commonly boot in this model where the image is materialized without the need of a
file system.

3.5.2.1 Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE specifies UDP,
DHCP, and TFTP network protocols that a booting platform can use to interact with an intelligent
system load server. UEFI defines special interfaces that are used to implement PXE. These
interfaces are contained in the EFI_PXE BASE CODE_PROTOCOL (see Section 23.3).

3.5.2.2 Future Boot Media

Since UEFI defines an abstraction between the platform and the OS and its loader it should be
possible to add new types of boot media as technology evolves. The OS loader will not necessarily
have to change to support new types of boot. The implementation of the UEFI platform services
may change, but the interface will remain constant. The OS will require a driver to support the
new type of boot media so that it can make the transition from UEFI boot services to OS control of
the boot media.

Version 2.5 Errata A January, 2016 91

Unified Extensible Firmware Interface Specification

92 January, 2016 Version 2.5 Errata A

EFI System Table

4
EFl System Table

This section describes the entry point to a UEFI image and the parameters that are passed to that
entry point. There are three types of UEFI images that can be loaded and executed by firmware
conforming to this specification. These are UEFI Applications, OS Loaders, and drivers. There are
no differences in the entry point for these three image types.

4.1 UEFI Image Entry Point

The most significant parameter that is passed to an image is a pointer to the System Table. This
pointer is EFI IMAGE ENTRY POINT (see definition immediately below), the main entry point
for a UEFI Image. The System Table contains pointers to the active console devices, a pointer to the
Boot Services Table, a pointer to the Runtime Services Table, and a pointer to the list of system
configuration tables such as ACPI, SMBIOS, and the SAL System Table. This section describes the
System Table in detail.

EFl_IMAGE_ENTRY_POINT

Summary

This is the main entry point for a UEFI Image. This entry point is the same for UEFI Applications,
UEFI OS Loaders, and UEFI Drivers including both device drivers and bus drivers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY POINT) (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)
Parameters
ImageHandle The firmware allocated handle for the UEFI image.
SystemTable A pointer to the EFI System Table.
Description

This function is the entry point to an EFI image. An EFI image is loaded and relocated in system
memory by the EFI Boot Service EFI BOOT SERVICES.LoadImage (). An EFI image is
invoked through the EFI Boot Service EFI BOOT SERVICES.StartImage().

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the

Version 2.5 Errata A January, 2016 93

Unified Extensible Firmware Interface Specification

EFI_BOOT SERVICES and EFI_RUNTIME SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the System Table contains
pointers to other standard tables that a loaded image may use if the associated pointers are initialized
to nonzero values. Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ITmageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images support
the EFI_LOADED IMAGE PROTOCOL and the
EFI_LOADED IMAGE DEVICE PATH PROTOCOL thatreturns the source location of the image,
the memory location of the image, the load options for the image, etc. The exact
EFI_LOADED IMAGE PROTOCOL and EFI_LOADED IMAGE DEVICE PATH PROTOCOL
structures are defined in Section 8.

If the image is an application written to this specification, then the application executes and either
returns or calls the EFI Boot Services EFI_BOOT SERVICES.Exit (). An applications written
to this specification is always unloaded from memory when it exits, and its return status is returned
to the component that started the application.

If the EFI image is an EFI OS Loader, then the EFI OS Loader executes and either returns, calls the
EFI Boot Service Exit (), or calls the EFI Boot Service

EFI BOOT SERVICES.ExitBootServices (). Ifthe EFI OS Loader returns or calls

Exit (), then the load of the OS has failed, and the EFI OS Loader is unloaded from memory and
control is returned to the component that attempted to boot the EFI OS Loader. If
ExitBootServices () is called, then the OS Loader has taken control of the platform, and EFI
will not regain control of the system until the platform is reset. One method of resetting the platform
is through the EFI Runtime Service ResetSystem ().

If the image is a UEFI Driver, then the driver executes and either returns or calls the Boot Service
Exit (). If a driver returns an error, then the driver is unloaded from memory. If the driver returns
EFI_SUCCESS, then it stays resident in memory. If the driver does not follow the UEFI Driver
Model, then it performs any required initialization and installs its protocol services before returning.
If the driver does follow the UEFI Driver Model, then the entry point is not allowed to touch any
device hardware. Instead, the entry point is required to create and install the

EFI DRIVER BINDING PROTOCOL (see Section 10.1) on the TmageHandle of the UEFI
driver. If this process is completed, then EFI__SUCCESS is returned. If the resources are not
available to complete the driver initialization, then EFI_OUT OF RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The driver was initialized.
EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

4.2 EFl Table Header

94

The data type EFI_TABLE HEADER is the data structure that precedes all of the standard EFI table
types. It includes a signature that is unique for each table type, a revision of the table that may be
updated as extensions are added to the EFI table types, and a 32-bit CRC so a consumer of an EFI
table type can validate the contents of the EFI table.

January, 2016 Version 2.5 Errata A

EFI System Table

EFI_TABLE_HEADER

Summary
Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {

UINT64 Signature;,
UINT32 Revision;
UINT32 HeaderSize;
UINT32 CRC32;
UINT32 Reserved;

} EFI_TABLE HEADER;

Parameters

Signature A 64-bit signature that identifies the type of table that follows.
Unique signatures have been generated for the EFI System Table,
the EFI Boot Services Table, and the EFI Runtime Services
Table.

Revision The revision of the EFI Specification to which this table
conforms. The upper 16 bits of this field contain the major
revision value, and the lower 16 bits contain the minor revision
value. The minor revision values are binary coded decimals and
are limited to the range of 00..99.

When printed or displayed UEFI spec revision is referred as
(Major revision).(Minor revision upper decimal).(Minor revision
lower decimal) or (Major revision).(Minor revision upper
decimal) in case Minor revision lower decimal is set to 0. For
example:

A specification with the revision value ((2<<16) | (30)) would be
referred as 2.3;

A specification with the revision value ((2<<16) | (31)) would be
referred as 2.3.1

HeaderSize The size, in bytes, of the entire table including the
EFTI TABLE HEADER.

CRC32 The 32-bit CRC for the entire table. This value is computed by
setting this field to 0, and computing the 32-bit CRC for
HeaderSize bytes.

Reserved Reserved field that must be set to 0.
Note: The capabilities found in the EFI system table, runtime table and boot services table may change
over time. The first field in each of these tables is an EFI_TABLE HEADER. This header’s

Revision field is incremented when new capabilities and functions are added to the functions in the
table. When checking for capabilities, code should verify that Revision is greater than or equal to

Version 2.5 Errata A January, 2016 95

Unified Extensible Firmware Interface Specification

the revision level of the table at the point when the capabilities were added to the UEFI

specification.

Note: Unless otherwise specified, UEFI uses a standard CCITT32 CRC algorithm with a seed
polynomial value of 0x04c11db7 for its CRC calculations.

Note: The size of the system table, runtime services table, and boot services table may increase over
time. It is very important to always use the HeaderSize field of the EFI_TABLE HEADER fo

determine the size of these tables.

4.3 EFl System Table

UEFT uses the EFI System Table, which contains pointers to the runtime and boot services tables.
The definition for this table is shown in the following code fragments. Except for the table header,
all elements in the service tables are pointers to functions as defined in Section 6 and Section 7. Prior
toacallto EFI BOOT SERVICES.ExitBootServices (), all of the fields of the EFI System

Table are valid. After an operating system has taken control of the platform with a call to
ExitBootServices (), only the Hdr, FirmwareVendor, FirmwareRevision,
RuntimeServices, NumberOfTableEntries, and ConfigurationTable fields are

valid.

EFI_SYSTEM_TABLE

Summary

Contains pointers to the runtime and boot services tables.

Related Definitions

#define EFI_SYSTEM TABLE_SIGNATURE

#define EFI_2_ 50 _SYSTEM TABLE REVISION ((2<<16)
#define EFI_2_ 40_SYSTEM TABLE REVISION ((2<<16)
#define EFI_2 31 SYSTEM TABLE REVISION ((2<<16)
#define EFI_2_ 30 _SYSTEM TABLE REVISION ((2<<16)
#define EFI_2_ 20 SYSTEM TABLE REVISION ((2<<16)
#define EFI_2_ 10 _SYSTEM TABLE REVISION ((2<<16)
#define EFI_2_ 00_SYSTEM TABLE REVISION ((2<<16)
#define EFI_1_10_SYSTEM TABLE REVISION ((1<<16)
#define EFI_1_02_SYSTEM TABLE REVISION ((1<<16)

#define EFI_SPECIFICATION_ VERSION

0x5453595320494249

(30))
(40))
(31))
(30))
(20))
(10))
(00))
(10))
(02))

EFI_SYSTEM TABLE REVISION

#define EFI_SYSTEM TABLE_REVISION EFI_2_50_SYSTEM TABLE REVISION

typedef struct ({
EFI_TABLE HEADER

CHAR16
UINT32
EFI_HANDLE

Hdr,;

*FirmwareVendor,;
FirmwareRevision;

ConsoleInHandle;,;

EFI_SIMPLE TEXT INPUT PROTOCOL *ConIn;

EFI_HANDLE

96

ConsoleOutHandle;,

January, 2016

Version 2.5 Errata A

EFI System Table

EFI_SIMPLE_TEXT OUTPUT PROTOCOL *ConOut;

EFI_HANDLE

StandardErrorHandle,

EFI_SIMPLE_TEXT OUTPUT PROTOCOL *StdErr;

EFI_RUNTIME SERVICES

EFI_BOOT_SERVICES
UINTN

*RuntimeServices;
*BootServices;,
NumberOfTableEntries,

EFI_CONFIGURATION TABLE *ConfigurationTable;

} EFI_SYSTEM TABLE;

Parameters
Hdr

FirmwareVendor
FirmwareRevision

ConsoleInHandle

ConlIn
ConsoleQOutHandle

ConOut

The table header for the EFI System Table. This header contains
the EFI __SYSTEM TABLE SIGNATURE and

EFI SYSTEM TABLE REVISION values along with the size
of the EFI SYSTEM TABLE structure and a 32-bit CRC to
verify that the contents of the EFI System Table are valid.

A pointer to a null terminated string that identifies the vendor that
produces the system firmware for the platform.

A firmware vendor specific value that identifies the revision of
the system firmware for the platform.

The handle for the active console input device. This handle must
support EFI_SIMPLE TEXT INPUT PROTOCOL and
EFI_SIMPLE TEXT INPUT EX PROTOCOL.

A pOlnter to the EFI SIMPLE TEXT INPUT PROTOCOL
interface that is associated with ConsoleTnHandle.

The handle for the active console output device. This handle
must support the EFI SIMPLE TEXT OUTPUT PROTOCOL.

A pomter to the EFI SIMPLE TEXT OUTPUT PROTOCOL
interface that is associated with ConsoleOutHandle.

StandardErrorHandleThe handle for the active standard error console device. This

StdErr

RuntimeServices

BootServices

handle must support the
EFI_SIMPLE TEXT OUTPUT_ PROTOCOL.

A pomter to the EFI SIMPLE TEXT OUTPUT PROTOCOL
interface that is associated with StandardErrorHandle.

A pointer to the EFI Runtime Services Table. See Section 4.5.
A pointer to the EFI Boot Services Table. See Section 4.4.

NumberOfTableEntriesThe number of system configuration tables in the buffer

ConfigurationTable.

ConfigurationTable A pointer to the system configuration tables. The number of

entries in the table is NumberOfTableEntries.

4.4 EFI1 Boot Services Table

UEFT uses the EFI Boot Services Table, which contains a table header and pointers to all of the boot
services. The definition for this table is shown in the following code fragments. Except for the table

Version 2.5 Errata A

January, 2016 97

Unified Extensible Firmware Interface Specification

header, all elements in the EFI Boot Services Tables are prototypes of function pointers to functions
as defined in Section 6. The function pointers in this table are not valid after the operating system
has taken control of the platform with a call to

EFI BOOT SERVICES.ExitBootServices().

EFI_BOOT_SERVICES

Summary
Contains a table header and pointers to all of the boot services.

Related Definitions
#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544£4f42
#idefine EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION

typedef struct {

EFI_TABLE_HEADER Hdr;

//

// Task Priority Services

//

EFI_RAISE TPL RaiseTPL; // EFI 1.0+
EFI_RESTORE TPL RestoreTPL; // EFI 1.0+
//

// Memory Services

//

EFI_ALLOCATE_PAGES AllocatePages; // EFI 1.0+
EFI_FREE PAGES FreePages; // EFI 1.0+
EFI_GET_MEMORY MAP GetMemoryMap; // EFI 1.0+
EFI_ALLOCATE_POOL AllocatePool; // EFI 1.0+
EFI_FREE POOL FreePool;, // EFI 1.0+
//

// Event & Timer Services

//

EFI_CREATE_EVENT CreateEvent; // EFI 1.0+
EFI_SET_TIMER SetTimer; // EFI 1.0+
EFI_WAIT_FOR_EVENT WaitForEvent; // EFI 1.0+
EFI_SIGNAL_EVENT SignalEvent; // EFI 1.0+
EFI_CLOSE_EVENT CloseEvent; // EFI 1.0+
EFI_CHECK_EVENT CheckEvent; // EFI 1.0+

98 January, 2016 Version 2.5 Errata A

EFI System Table

//

// Protocol Handler Services

//

EFI_INSTALL PROTOCOL INTERFACE InstallProtocolInterface; // EFI
1.0+

EFI_REINSTALL PROTOCOL INTERFACE ReinstallProtocolInterface; //
EFT 1.0+

EFI_UNINSTALL_ PROTOCOL_INTERFACE UninstallProtocolInterface; // EFI
1.0+

EFI_HANDLE_PROTOCOL HandleProtocol; // EFI 1.0+

VOID* Reserved; // EFI 1.0+

EFI_REGISTER PROTOCOL NOTIFY RegisterProtocolNotify; // EFI
1.0+

EFI_LOCATE_HANDLE LocateHandle; // EFI 1.0+

EFI_LOCATE_DEVICE_ PATH LocateDevicePath; // EFI 1.0+

EFI_INSTALL CONFIGURATION TABLE InstallConfigurationTable; // EFI
1.0+

//

// Image Services

//

EFI_IMAGE LOAD LoadImage; // EFI 1.0+

EFI_IMAGE START StartImage; // EFI 1.0+

EFI_EXIT Exit; // EFI 1.0+

EFI_IMAGE UNLOAD UnloadImage; // EFI 1.0+

EFI_EXIT BOOT_SERVICES ExitBootServices; // EFI 1.0+

//

// Miscellaneous Services

//

EFI_GET_NEXT MONOTONIC_COUNT GetNextMonotonicCount; // EFI

1.0+

EFI_STALL Stall; // EFI 1.0+

EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; // EFI 1.0+

//

// DriverSupport Services

//

EFI_CONNECT CONTROLLER ConnectController; // EFI 1.1

EFI_DISCONNECT CONTROLLER DisconnectController;// EFI 1.1+

//

Version 2.5 Errata A January, 2016 99

Unified Extensible Firmware Interface Specification

// Open and Close Protocol Services

//
EFI_OPEN_PROTOCOL

EFI_CLOSE_ PROTOCOL
1.1+
EFI_OPEN PROTOCOL INFORMATION

//

// Library Services
//
EFI_PROTOCOLS_PER_HANDLE

EFI_LOCATE_ HANDLE BUFFER

EFI_LOCATE_PROTOCOL

EFI_INSTALL MULTIPLE PROTOCOL INTERFACES

erfaces; // EFI 1.1+

// EFT 1.1+
// EFI

OpenProtocol;
CloseProtocol;

OpenProtocolInformation; // EFI
1.1+

ProtocolsPerHandle,; // EFT
1.1+

LocateHandleBuffer; // EFI
1.1+

LocateProtocol; // EFT
1.1+

InstallMultipleProtocolInt

EFI_UNINSTALL MULTIPLE PROTOCOL INTERFACES UninstallMultipleProtocol

Interfaces; // EFT 1.1+
//
// 32-bit CRC Services
//
EFI_CALCULATE CRC32 CalculateCrc32; // EFI
1.1+
//
// Miscellaneous Services
//
EFI_COPY_ MEM CopyMem;, // EFT 1.1+
EFI_SET_MEM SetMem; // EFI 1.1+
EFI_CREATE_EVENT EX CreatekEventEx; // UEFI 2.0+
} EFI_BOOT_ SERVICES;
Parameters
Hdr The table header for the EFI Boot Services Table. This header
contains the EFI_BOOT_ SERVICES_ SIGNATURE and
EFI_BOOT_SERVICES_REVISION values along with the size
of the EFI_BOOT_SERVICES structure and a 32-bit CRC to
verify that the contents of the EFI Boot Services Table are valid.
RaiseTPL Raises the task priority level.

100 January, 2016

Version 2.5 Errata A

EFI System Table

RestoreTPL Restores/lowers the task priority level.

AllocatePages Allocates pages of a particular type.

FreePages Frees allocated pages.

GetMemoryMap Returns the current boot services memory map and memory map
key.

AllocatePool Allocates a pool of a particular type.

FreePool Frees allocated pool.

CreateEvent Creates a general-purpose event structure.

SetTimer Sets an event to be signaled at a particular time.

WaitForEvent Stops execution until an event is signaled.

SignalEvent Signals an event.

CloseEvent Closes and frees an event structure.

CheckEvent Checks whether an event is in the signaled state.

InstallProtocolInterface
Installs a protocol interface on a device handle.

ReinstallProtocolInterface
Reinstalls a protocol interface on a device handle.

UninstallProtocolInterface
Removes a protocol interface from a device handle.

HandleProtocol Queries a handle to determine if it supports a specified protocol.
Reserved Reserved. Must be NULL.

RegisterProtocolNotify
Registers an event that is to be signaled whenever an interface is
installed for a specified protocol.

LocateHandle Returns an array of handles that support a specified protocol.

LocateDevicePath Locates all devices on a device path that support a specified
protocol and returns the handle to the device that is closest to the
path.

InstallConfigurationTable
Adds, updates, or removes a configuration table from the EFI

System Table.
LoadImage Loads an EFI image into memory.
StartImage Transfers control to a loaded image’s entry point.
Exit Exits the image’s entry point.
UnloadImage Unloads an image.

ExitBootServices Terminates boot services.

GetNextMonotonicCount
Returns a monotonically increasing count for the platform.

Stall Stalls the processor.
SetWatchdogTimer Resets and sets a watchdog timer used during boot services time.

Version 2.5 Errata A January, 2016 101

Unified Extensible Firmware Interface Specification

ConnectController Uses a set of precedence rules to find the best set of drivers to
manage a controller.

DisconnectController
Informs a set of drivers to stop managing a controller.

OpenProtocol Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Removes elements from the list of agents consuming a protocol
interface.

OpenProtocolInformation
Retrieve the list of agents that are currently consuming a protocol
interface.

ProtocolsPerHandle Retrieves the list of protocols installed on a handle. The return
buffer is automatically allocated.

LocateHandleBuffer Retrieves the list of handles from the handle database that meet
the search criteria. The return buffer is automatically allocated.

LocateProtocol Finds the first handle in the handle database the supports the
requested protocol.

InstallMultipleProtocolInterfaces
Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolInterfaces
Uninstalls one or more protocol interfaces from a handle.

CalculateCrc32 Computes and returns a 32-bit CRC for a data buffer.
CopyMem Copies the contents of one buffer to another buffer.
SetMem Fills a buffer with a specified value.
CreateEventEx Creates an event structure as part of an event group.

4.5 EFl Runtime Services Table

UEFT uses the EFI Runtime Services Table, which contains a table header and pointers to all of the

runtime services. The definition for this table is shown in the following code fragments. Except for
the table header, all elements in the EFI Runtime Services Tables are prototypes of function pointers
to functions as defined in Section 7. Unlike the EFI Boot Services Table, this table, and the function
pointers it contains are valid after the operating system has taken control of the platform with a call

to EFI BOOT SERVICES.ExitBootServices (). Ifacallto

SetVirtualAddressMap () is made by the OS, then the function pointers in this table are fixed
up to point to the new virtually mapped entry points.

EFI_RUNTIME_SERVICES

102

Summary
Contains a table header and pointers to all of the runtime services.

Related Definitions
#define EFI_RUNTIME SERVICES SIGNATURE 0x56524553544e5552

January, 2016 Version 2.5 Errata A

EFI System Table

#define EFI_RUNTIME SERVICES REVISION EFI_SPECIFICATION_VERSION
typedef struct {

EFI_TABLE HEADER Hdr;

//

// Time Services

//

EFI_GET_TIME GetTime;

EFI_SET_TIME SetTime;

EFI_GET WAKEUP_TIME GetWakeupTime;
EFI_SET_WAKEUP_TIME SetWakeupTime ;

//

// Virtual Memory Services

//

EFI_SET VIRTUAL ADDRESS_ MAP SetVirtualAddressMap;
EFI_CONVERT_ POINTER ConvertPointer;

//

// Variable Services

//

EFI_GET_ VARIABLE GetVariable;
EFI_GET_NEXT VARIABLE NAME GetNextVariableName;
EFI_SET VARIABLE SetVariable;,

//

// Miscellaneous Services

//

EFI_GET NEXT HIGH MONO_COUNT GetNextHighMonotonicCount;
EFI_RESET SYSTEM ResetSystem;

//

// UEFI 2.0 Capsule Services

//

EFI_UPDATE CAPSULE UpdateCapsule;,

EFI_QUERY CAPSULE CAPABILITIES QueryCapsuleCapabilities;

//

// Miscellaneous UEFI 2.0 Service

//

EFI_QUERY VARIABLE INFO QueryVariableInfo;

} EFI_RUNTIME SERVICES;

Version 2.5 Errata A January, 2016 103

Unified Extensible Firmware Interface Specification

Parameters
Hdr

GetTime

SetTime
GetWakeupTime
SetWakeupTime

The table header for the EFI Runtime Services Table. This
header contains the EFI_RUNTIME SERVICES_ SIGNATURE
and EFI RUNTIME SERVICES REVISION Values along
with the size of the EFI RUNTIME SERVICES structure and a
32-bit CRC to verify that the contents of the EFI Runtime
Services Table are valid.

Returns the current time and date, and the time-keeping
capabilities of the platform.

Sets the current local time and date information.
Returns the current wakeup alarm clock setting.
Sets the system wakeup alarm clock time.

SetVirtualAddressMap

ConvertPolinter

GetVariable

Used by an OS loader to convert from physical addressing to
virtual addressing.

Used by EFI components to convert internal pointers when
switching to virtual addressing.

Returns the value of a variable.

GetNextVariableNameEnumerates the current variable names.

SetVariable

Sets the value of a variable.

GetNextHighMonotonicCount

ResetSystem
UpdateCapsule

Returns the next high 32 bits of the platform’s monotonic
counter.

Resets the entire platform.

Passes capsules to the firmware with both virtual and physical
mapping.

QueryCapsuleCapabilities

QueryVariableInfo

Returns if the capsule can be supported via
UpdateCapsule().

Returns information about the EFI variable store.

4.6 EFl Configuration Table & Properties Table

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by the
EFI_CONFIGURATION TABLE structure below. The number of types of configuration tables is
expected to grow over time. This is why a GUID is used to identify the configuration table type. The
EFI Configuration Table may contain at most once instance of each table type.

EFI_CONFIGURATION_TABLE

104

Summary

Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI

System Table.

January, 2016 Version 2.5 Errata A

EFI System Table

Related Definitions
typedef struct{
EFI_GUID VendorGuid;,
VOID *VendorTable;,
} EFI_CONFIGURATION_TABLE;

Parameters

The following list shows the GUIDs for tables defined in some of the industry standards. These
industry standards define tables accessed as UEFI Configuration Tables on UEFI-based systems.
This list is not exhaustive and does not show GUIDS for all possible UEFI Configuration tables.

VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.
VendorTable A pointer to the table associated with VendorGuid. Whether

this pointer is a physical address or a virtual address during
runtime is determined by the VendorGuid. The VendorGuid
associated with a given VendorTab1e pointer defines whether
or not a particular address reported in the table gets fixed up when
a call to SetVirtualAddressMap () is made. It is the
responsibility of the specification defining the VendorTable to
specify whether to convert the addresses reported in the table.

The following list shows the GUIDs for tables defined in some of the industry standards. These
industry standards define tables accessed as UEFI Configuration Tables on UEFI-based systems. All
the addresses reported in these table entries will be referenced as physical and will not be fixed up
when transition from preboot to runtime phase. This list is not exhaustive and does not show GUIDs
for all possible UEFI Configuration tables.

Version 2.5 Errata A January, 2016 105

Unified Extensible Firmware Interface Specification

#define EFI_ACPI_20_TABLE GUID \
{0x8868e871,0xedfl,0x11d3,\
{0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI _TABLE GUID \
{0xeb9d2d30 0x2d88 0x11d3,\
{0x9%a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}}

#define SAL SYSTEM TABLE_ GUID \
{0xeb9d2d32 0x2d88 0x11d3 \
{0x9%9a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}}

#define SMBIOS_ TABLE GUID \
{0xeb9d2d31, 0x2d88 0x11d3 \
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xcl,b0x4d}}

#define SMBIOS3_TABLE GUID \
{0x£f2£fd1544, 0x9794, Ox4da2c,\
{0x99,0x2e,0xe5,0xbb,0xcf,0x20,0xe3,0x94})

##define MPS TABLE GUID \
{0xeb9d2d2f 0x2d88 0x11d3,\
{0x9%9a,0x16,0x00,0x90,0x27,0x3f,0xcl, 0x4d}}
//
// ACPI 2.0 or newer tables should use EFI_ACPI_TABLE GUID
//
#define EFI_ACPI_TABLE GUID \
{0x8868e871,0xed4£fl,0x11d3,\
{0xbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_10 TABLE GUID \
{0xeb9d2d30,0x2d88,0x11d3, \
{0x9%9a,0x16,0x00,0x90,0x27,0x3f,0xcl,0x4d}}

#define EFI PROPERTIES TABLE GUID \
{0x880aaca3 0x4adc, 0x4a04 \
{0x90,0x79,0xb7,0x47,0x34,0x8,0x25,0xe5}}

EFI_PROPERTIES_TABLE

This table is published if the platform meets some of the construction requirements listed in the
MemoryProtectionAttributes.

106 January, 2016 Version 2.5 Errata A

EFI System Table

typedef struct {

UINT32 Version;
UINT32 Length;
UINT64 MemoryProtectionAttribute;

} EFI_PROPERTIES TABLE;

Version This is revision of the table. Successive version may populate
additional bits and growth the table length. In the case of the
latter, the Length field will be adjusted appropriately

#define EFI_PROPERTIES TABLE VERSION 0x00010000

Length This is the size of the entire EFI_PROPERTIES TABLE
structure, including the version. The initial version will be of
length 16.

MemoryProtectionAttribute

This field is a bit mask. Any bits not defined shall be considered
reserved. A set bit means that the underlying firmware has been
constructed responsive to the given property.

//

// Memory attribute (Not defined bits are reserved)

//

#define

EFI_PROPERTIES RUNTIME MEMORY PROTECTION NON EXECUTABLE PE DATA

0x1 \

// BIT 0 - description - implies the runtime data is separated
from the code

This bit implies that the UEFI runtime code and data sections of the executable image are separate
and must be aligned as specified in Section 2.3. This bit also implies that the data pages do not have
any executable code.

It is recommended not to use this attribute, especially for implementations that broke the runtime
code memory map descriptors into the underlying code and data sections within UEFI modules. This
splitting causes interoperability issues with operating systems that invoke

SetVirtualAddress () without realizing that there is a relationship between these runtime
descriptors.

4.7 Image Entry Point Examples

The examples in the following sections show how the various table examples are presented in
the UEFI environment.

4.7.1 Image Entry Point Examples

The following example shows the image entry point for a UEFI Application. This application makes
use of the EFI System Table, the EFI Boot Services Table, and the EFI Runtime Services Table.

Version 2.5 Errata A January, 2016 107

Unified Extensible Firmware Interface Specification

108

EFI_SYSTEM TABLE *gST;
EFI BOOT SERVICES *gBS;
EFI_RUNTIME SERVICES *gRT;

EfiApplicationEntryPoint (

IN EFI HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)

EFI STATUS Status;
EFI TIME *Time;

gST = SystemTable;

gBS = gST->BootServices;
gRT = gST->RuntimeServices;
//

// Use EFI System Table to print “Hello World” to the active console output
// device.
//
Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
if (EFI_ERROR (Status)) {
return Status;

}
1/

// Use EFI Boot Services Table to allocate a buffer to store the current time
// and date.
//
Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time
)
if (EFI_ERROR (Status)) {
return Status;

}
/7

// Use the EFI Runtime Services Table to get the current time and date.
//
Status = gRT->GetTime (Time, NULL)
if (EFI_ERROR (Status)) {
return Status;

}

return Status;

The following example shows the UEFI image entry point for a driver that does not follow the UEFI
Driver Model. Since this driver returns EFI_SUCCESS, it will stay resident in memory after it
exits.

EFI_SYSTEM TABLE *gST;
EFI_BOOT SERVICES *gBS;
EFI_RUNTIME SERVICES *gRT;

EfiDriverEntryPoint (

January, 2016 Version 2.5 Errata A

EFI System Table

IN EFI HANDLE ImageHandle,
IN EFI_SYSTEM TABLE *SystemTable
)

gST = SystemTable;

gBS = gST->BootServices;

gRT = gST->RuntimeServices;

//

// Implement driver initialization here.
//

return EFI SUCCESS;

The following example shows the UEFI image entry point for a driver that also does not follow the
UEFI Driver Model. Since this driver returns EFI_DEVICE ERROR, it will not stay resident in
memory after it exits.

EFI_SYSTEM TABLE *gST;
EFI BOOT SERVICES *gBS;
EFI_RUNTIME SERVICES *gRT;

EfiDriverEntryPoint (
IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

//
// Implement driver initialization here.

!/

return EFI DEVICE ERROR;

4.7.2 UEFI Driver Model Example

The following is an UEFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI DRIVER BINDING PROTOCOL and the
function prototypes for AbcSupported (), AbcStart (), and AbeStop () are defined in
Section 10.1.This function saves the driver’s image handle and a pointer to the EFI boot services
table in global variables, so the other functions in the same driver can have access to these values. It
then creates an instance of the EFI_DRIVER BINDING PROTOCOL and installs it onto the
driver's image handle.

extern EFI GUID gEfiDriverBindingProtocolGuid;
EFI BOOT SERVICES *gBS;
static EFI DRIVER BINDING PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,

Version 2.5 Errata A January, 2016 109

Unified Extensible Firmware Interface Specification

NULL,
NULL
i

AbcEntryPoint (
IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

EFI STATUS Status;

gBS = SystemTable->BootServices;

mAbcDriverBinding->ImageHandle
mAbcDriverBinding->DriverBindingHandle =

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid,

NULL
);
return Status;

4.7.3 UEFI Driver Model Example (Unloadable)

ImageHandle;
ImageHandle;

&mAbcDriverBinding,

The following is the same UEFI Driver Model example as above, except it also includes the code
required to allow the driver to be unloaded through the boot service Unload (). Any protocols
installed or memory allocated in AbcEntryPoint () must be uninstalled or freed in the

AbcUnload().

extern EFI GUID gkfiloadedImageProtocolGuid;

extern EFI GUID gEfiDriverBindingProtocolGuid;

EFI BOOT SERVICES *gBS;

static EFI_DRIVER BINDING PROTOCOL mAbcDriverBinding

AbcSupported,
AbcStart,
AbcStop,
1,
NULL,
NULL

bi

EFI_STATUS
AbcUnload (
IN EFI HANDLE ImageHandle
)
AbcEntryPoint (
IN EFI HANDLE ImageHandle,

IN EFI SYSTEM TABLE *SystemTable
)

EFI_STATUS Status;
EFI LOADED IMAGE PROTOCOL *LoadedImage;

gBS = SystemTable->BootServices;

110 January, 2016

Version 2.5 Errata A

EFI System Table

Status = gBS->OpenProtocol (
ImageHandle,
&gEfiLoadedImageProtocolGuid,
&LoadedImage,
ImageHandle,
NULL,
EFI OPEN PROTOCOL_ GET PROTOCOL
) i

if (EFI_ERROR (Status)) {

return Status;

}
LoadedImage->Unload = AbcUnload;

mAbcDriverBinding->ImageHandle ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces (
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
) i

return Status;

}

EFI STATUS
AbcUnload (
IN EFI HANDLE ImageHandle

)

EFI STATUS Status;

Status = gBS->UninstallMultipleProtocolInterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
)i

return Status;

4.7.4 EFI Driver Model Example (Multiple Instances)

The following is the same as the first UEFI Driver Model example, except it produces three
EFI DRIVER BINDING PROTOCOL instances. The first one is installed onto the driver’s image
handle. The other two are installed onto newly created handles.

extern EFI GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT SERVICES *gBS;

static EFI DRIVER BINDING PROTOCOL mAbcDriverBindingA = ({
AbcSupportedA,
AbcStartA,
AbcStopA,
1,
NULL,
NULL

Version 2.5 Errata A January, 2016 111

Unified Extensible Firmware Interface Specification

112

static EFI DRIVER BINDING PROTOCOL mAbcDriverBindingB = ({
AbcSupportedB,
AbcStartB,
AbcStopB,
1,
NULL,
NULL
bi

static EFI DRIVER BINDING PROTOCOL mAbcDriverBindingC = ({
AbcSupportedC,
AbcStartC,
AbcStopC,
1,
NULL,
NULL
}i

AbcEntryPoint (
IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

EFI STATUS Status;

gBS = SystemTable->BootServices;

//

// Install mAbcDriverBindingA onto ImageHandle

//

mAbcDriverBindingA->ImageHandle = ImageHandle;
mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolInterfaces (
&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
NULL
) i

if (EFI_ERROR (Status)) {

return Status;

}

//

// Install mAbcDriverBindingB onto a newly created handle
//

mAbcDriverBindingB->ImageHandle = ImageHandle;

mAbcDriverBindingB->DriverBindingHandle = NULL;

Status = gBS->InstallMultipleProtocolInterfaces (
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL
) i

if (EFI_ERROR (Status)) {

return Status;

}

//
// Install mAbcDriverBindingC onto a newly created handle

January, 2016 Version 2.5 Errata A

EFI System Table

1/

mAbcDriverBindingC->ImageHandle = ImageHandle;
mAbcDriverBindingC->DriverBindingHandle NULL;

Status = gBS->InstallMultipleProtocolInterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL
)i

return Status;

Version 2.5 Errata A January, 2016 113

Unified Extensible Firmware Interface Specification

114 January, 2016 Version 2.5 Errata A

GUID Partition Table (GPT) Disk Layout

5

GUID Partition Table (GPT) Disk Layout

5.1 GPT and MBR disk layout comparison

This specification defines the GUID Partition table (GPT) disk layout (i.e., partitioning scheme).
The following list outlines the advantages of using the GPT disk layout over the legacy Master Boot

Record (MBR) disk layout:

* Logical Block Addresses (LBAs) are 64 bits (rather than 32 bits).

e Supports many partitions (rather than just four primary partitions).

* Provides both a primary and backup partition table for redundancy.

» Uses version number and size fields for future expansion.

» Uses CRC32 fields for improved data integrity.

* Defines a GUID for uniquely identifying each partition.

* Uses a GUID and attributes to define partition content type.

* Each partition contains a 36 character human readable name.

5.2 LBA 0 Format

LBA 0 (i.e., the first logical block) of the hard disk contains either
* alegacy Master Boot Record (MBR) (see Section 5.2.1)
» or a protective MBR (see Section 5.2.3).

5.2.1 Legacy Master Boot Record (MBR)

A legacy MBR may be located at LBA 0 (i.e., the first logical block) of the disk if it is not using the
GPT disk layout (i.e., if it is using the MBR disk layout). The boot code on the MBR is not executed

by UEFI firmware.

Table 13. Legacy MBR

Mnemonic

BootCode

UniqueMBRDiskSigna
ture

Byte Byte
Offset Length
0 424
440 4

Description

x86 code used on a non-UEFI system to select
an MBR partition record and load the first
logical block of that partition . This code shall
not be executed on UEFI systems.

Unique Disk Signature This may be used by
the OS to identify the disk from other disks in
the system. This value is always written by the
OS and is never written by EFI firmware.

Version 2.5 Errata A

January, 2016

115

Unified Extensible Firmware Interface Specification

116

Unknown 444 2 Unknown. This field shall not be used by UEFI
firmware.

PartitionRecord 446 16*4 Array of four legacy MBR partition records (see
Table 14).

Signature 510 2 Set to 0XAAS55 (i.e., byte 510 contains 0x55 and
byte 5 11 contains 0xAA).

Reserved 512 Logical The rest of the logical block, if any, is reserved.

BlockSize - 512

The MBR contains four partition records (see Table 11) that each define the beginning and ending
LBAs that a partition consumes on a disk.

Table 14. Legacy MBR Partition Record

Byte Byte

Mnemonic Offset Length | Description

BootIndicator O 1 0x80 indicates that this is the bootable legacy partition. Other
values indicate that this is not a bootable legacy partition.
This field shall not be used by UEFI firmware.

StartingCHS 1 3 Start of partition in CHS address format. This field shall not
be used by UEFI firmware.

OSType 4 1 Type of partition. See Section 5.2.2.

EndingCHS 5 3 End of partition in CHS address format. This field shall not be
used by UEFI firmware.

StartingLBA 8 4 Starting LBA of the partition on the disk. This field is used by
UEFI firmware to determine the start of the partition.

SizeInLBA 12 4 Size of the partition in LBA units of logical blocks. This field is

used by UEFI firmware to determine the size of the partition.

If an MBR partition has an OSType field of OXEF (i.e., UEFI System Partition), then the firmware
must add the UEFI System Partition GUID to the handle for the MBR partition using
InstallProtocolInterface (). This allows drivers and applications, including OS loaders,
to easily search for handles that represent UEFI System Partitions.The following test must be
performed to determine if a legacy MBR is valid:

* The Signature must be Oxaa55.

* A Partition Record that contains an OSType value of zero or a SizeInLBA value of zero may
be ignored.

Otherwise:

e The partition defined by each MBR Partition Record must physically reside on the disk (i.e., not
exceed the capacity of the disk).

* Each partition must not overlap with other partitions.

Figure 16 shows an example of an MBR disk layout with four partitions.

January, 2016 Version 2.5 Errata A

GUID Partition Table (GPT) Disk Layout

/Le/g£ Partition Paﬁition Pa}ition "artition
MBR

LBA O LBAz

Figure 16. MBRDisk Layout with legacy MBR example

5.2.2 OS Types

Unique types defined by this specification (other values are not defined by this specification):
* OxEF (i.e., UEFI System Partition) defines a UEFI system partition.

* OxEE (i.e., GPT Protective) is used by a protective MBR (see 5.2.2) to define a fake partition
covering the entire disk.

Other values are used by legacy operating systems, and are allocated independently of the UEFI
specification.

Note: “Partition types” by Andries Brouwer: See “Links to UEFI-Related Documents” (http.//uefi.org/uefi)
under the heading “OS Type values used in the MBR disk layout”.

5.2.3 Protective MBR

A Protective MBR may be located at LBA 0 (i.e., the first logical block) of the disk if it is using the
GPT disk layout. The Protective MBR precedes the GUID Partition Table Header to maintain
compatibility with existing tools that do not understand GPT partition structures.

Table 15. Protective MBR

Mnemonic Byte Byte Contents
Offset | Length

Boot Code 0 440 Unused by UEFI systems.

Unique MBR 440 4 Unused. Set to zero.

Disk Signature

Unknown 444 2 Unused. Set to zero.

Partition 446 16*4 Array of four MBR partition records. Contains:

Record » one partition record as defined Table 16; and
« three partition records each set to zero.

Signature 510 2 Set to OxXAA55 (i.e., byte 510 contains 0x55 and byte 511 contains
0xAA).

Version 2.5 Errata A January, 2016 117

Unified Extensible Firmware Interface Specification

Mnemonic Byte Byte Contents
Offset | Length
Reserved 512 Logical The rest of the logical block, if any, is reserved. Set to zero.
Block Size
-512

One of the Partition Records shall be as defined in table 12, reserving the entire space on the disk
after the Protective MBR itself for the GPT disk layout.

Table 16. Protective MBR Partition Record protecting the entire disk

Byte Byte

Mnemonic Offset Length Description

BootIndicator O 1 Set to 0x00 to indicate a non-bootable partition. If set to
any value other than 0x00 the behavior of this flag on
non-UEFI systems is undefined. Must be ignored by
UEFI implementations.

StartingCHS 1 3 Set to 0x000200, corresponding to the Starting LBA
field.

OSType 4 1 Set to OxEE (i.e., GPT Protective)

EndingCHS 5 3 Set to the CHS address of the last logical block on the
disk. Set to OXFFFFFF if it is not possible to represent
the value in this field.

StartingLBA 8 4 Set to 0x00000001 (i.e., the LBA of the GPT Partition
Header).

SizeInLBA 12 4 Set to the size of the disk minus one. Set to

OxFFFFFFFF if the size of the disk is too large to be
represented in this field.

The remaining Partition Records shall each be set to zeros.

Figure 17 shows an example of a GPT disk layout with four partitions with a protective MBR.

118 January, 2016 Version 2.5 Errata A

GUID Partition Table (GPT) Disk Layout

Protective Erﬁné U]?FI Pa&tion P%ition ParTition Backup GPT
MBR GPT system
partition
GPT Protective partition
\ A

LBAO __ LBA z

Figure 17. GPT disk layout with protective MBR example

Figure 18 shows an example of a GPT disk layout with four partitions with a protective MBR, where
the disk capacity exceeds LBA OxFFFFFFFF.

Protective érﬁna/ UQFI Par[%ion Pa}tion P%ti on Backup
MBR GPT system GPT
partition
GPT Protective partition

\ A
LBM LBA OxFFFFFFFF LBAz

Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA
OxFFFFFFFF example.

5.3 GUID Partition Table (GPT) Disk Layout

5.3.1 GPT overview

The GPT partitioning scheme is depicted in Figure 19. The GPT Header (see Section 5.3.2) includes
a signature and a revision number that specifies the format of the data bytes in the partition header.
The GUID Partition Table Header contains a header size field that is used in calculating the CRC32
that confirms the integrity of the GPT Header. While the GPT Header’s size may increase in the
future it cannot span more than one logical block on the device.

Version 2.5 Errata A January, 2016 119

Unified Extensible Firmware Interface Specification

LBA 0 (i.e., the first logical block) contains a protective MBR (see Section 5.2.3).

Two GPT Header structures are stored on the device: the primary and the backup. The primary GPT
Header must be located in LBA 1 (i.e., the second logical block), and the backup GPT Header must
be located in the last LBA of the device. Within the GPT Header the My LBA field contains the
LBA of the GPT Header itself, and the Al ternate LBA field contains the LBA of the other GPT
Header. For example, the primary GPT Header's My LBA value would be 1 and its Alternate
LBA would be the value for the last LBA of the device. The backup GPT Header's fields would be
reversed.

The GPT Header defines the range of LBAs that are usable by GPT Partition Entries. This range is
defined to be inclusive of First Usable LBAthrough Last Usable LBA on the logical
device. All data stored on the volume must be stored between the First Usable LBA through
Last Usable LBA,and only the data structures defined by UEFI to manage partitions may reside
outside of the usable space. The value of Disk GUIDis a GUID that uniquely identifies the entire
GPT Header and all its associated storage. This value can be used to uniquely identify the disk. The
start of the GPT Partition Entry Array is located at the LBA indicated by the Partition Entry
LBA field. The size of a GUID Partition Entry element is defined in the Size Of Partition
Entry field. There is a 32-bit CRC of the GPT Partition Entry Array that is stored in the GPT
Header in Partition Entry Array CRC32 field. The size of the GPT Partition Entry Array
isSize Of Partition Entry multiplied by Number Of Partition Entries.Ifthe
size of the GUID Partition Entry Array is not an even multiple of the logical block size, then any
space left over in the last logical block is Reserved and not covered by the Partition Entry
Array CRC32 field. When a GUID Partition Entry is updated, the Partition Entry Array
CRC32 must be updated. When the Partition Entry Array CRC32 isupdated, the GPT
Header CRC must also be updated, since the Partition Entry Array CRC32is stored in the

GPT Header.
First useable block Start partition
End partition
LBAO LBA1 LBAN
v
; - 0|1 n g_)| 5
T||E S
B Partition 1 ® 3
o o
Py 05 5
Py ol1 Py
e n
4
Start partition End partition [
ast useable block
—_— ——
Primary Partition Backup Partition
Table Table

OM13160

Figure 19. GUID Partition Table (GPT) example

120 January, 2016 Version 2.5 Errata A

GUID Partition Table (GPT) Disk Layout

The primary GPT Partition Entry Array must be located after the primary GPT Header and end
before the First Usable LBA. The backup GPT Partition Entry Array must be located after the
Last Usable LBA and end before the backup GPT Header.

Therefore the primary and backup GPT Partition EntryArrays are stored in separate locations on the
disk. Each GPT Partition Entry defines a partition that is contained in a range that is within the
usable space declared by the GPT Header. Zero or more GPT Partition Entries may be in use in the
GPT Partition Entry Array. Each defined partition must not overlap with any other defined partition.
If all the fields of a GUID Partition Entry are zero, the entry is not in use. A minimum of 16,384
bytes of space must be reserved for the GPT Partition Entry Array.

If the block size is 512, the First Usable LBA must be greater than or equal to 34 (allowing 1
block for the Protective MBR, 1 block for the Partition Table Header, and 32 blocks for the GPT
Partition Entry Array); if the logical block size is 4096, the F'i rst Useable LBA mustbe greater
than or equal to 6 (allowing 1 block for the Protective MBR, 1 block for the GPT Header, and 4
blocks for the GPT Partition Entry Array).

The device may present a logical block size that is not 512 bytes long. In ATA, this is called the
Long Logical Sector feature set; an ATA device reports support for this feature set in IDENTIFY
DEVICE data word 106 bit 12 and reports the number of words (i.e., 2 bytes) per logical sector in
IDENTIFY DEVICE data words 117-118 (see ATA8-ACS). A SCSI device reports its logical block
size in the READ CAPACITY parameter data Block Length In Bytes field (see SBC-3).

The device may present a logical block size that is smaller than the physical block size (e.g., present
a logical block size of 512 bytes but implement a physical block size of 4,096 bytes). In ATA, this is
called the Long Physical Sector feature set; an ATA device reports support for this feature set in
IDENTIFY DEVICE data word 106 bit 13 and reports the Physical Sector Size/Logical Sector Size
exponential ratio in IDENTIFY DEVICE data word 106 bits 3-0 (See ATA8-ACS). A SCSI device
reports its logical block size/physical block exponential ratio in the READ CAPACITY (16)

parameter data Logical Blocks Per Physical Block Exponent field (see SBC-3).These fields return 2*
logical sectors per physical sector (e.g., 3 means 2°=8 logical sectors per physical sector).

A device implementing long physical blocks may present logical blocks that are not aligned to the
underlying physical block boundaries. An ATA device reports the alignment of logical blocks within
a physical block in IDENTIFY DEVICE data word 209 (see ATA8-ACS). A SCSI device reports its
alignment in the READ CAPACITY (16) parameter data Lowest Aligned Logical Block Address
field (see SBC-3). Note that the ATA and SCSI fields are defined differently (e.g., to make LBA 63
aligned, ATA returns a value of 1 while SCSI returns a value of 7).

In SCSI devices, the Block Limits VPD page Optimal Transfer Length Granularity field (see SBC-3)
may also report a granularity that is important for alignment purposes (e.g., RAID controllers may
return their RAID stripe depth in that field)

GPT partitions should be aligned to the larger of:

a the physical block boundary, if any

b the optimal transfer length granularity, if any.
For example

a Ifthe logical block size is 512 bytes, the physical block size is 4,096 bytes (i.e., 512 bytes x
8 logical blocks), there is no optimal transfer length granularity, and logical block 0 is

Version 2.5 Errata A January, 2016 121

Unified Extensible Firmware Interface Specification

aligned to a physical block boundary, then each GPT partition should start at an LBA that is
a multiple of 8.

b If'the logical block size is 512 bytes, the physical block size is 8,192 bytes (i.e., 512 bytes x
16 logical blocks), the optimal transfer length granularity is 65,536 bytes (i.e., 512 bytes x
128 logical blocks), and logical block 0 is aligned to a physical block boundary, then each
GPT partition should start at an LBA that is a multiple of 128.

To avoid the need to determine the physical block size and the optimal transfer length granularity,
software may align GPT partitions at significantly larger boundaries. For example, assuming logical
block 0 is aligned, it may use LBAs that are multiples of 2,048 to align to 1,048,576 byte (1 MiB)
boundaries, which supports most common physical block sizes and RAID stripe sizes.

References are as follows:

ISO/IEC 24739-200 [ANSI INCITS 452-2008] AT Attachment 8 - ATA/ATAPI Command Set
(ATAB8-ACS). By the INCITS T13 technical committee. (See “Links to UEFI-Related Documents”
(http://uefi.org/uefi under the headings “InterNational Committee on Information Technology
Standards (INCITS)” and “INCITs T13 technical committee™).

ISO/IEC 14776-323 [T10/1799-D] SCSI Block Commands - 3 (SBC-3). Available from
www.incits.org. By the INCITS T10 technical committee (See “Links to UEFI-Related Documents”

(http://uefi.org/uefi under the headings “InterNational Committee on Information Technology
Standards (INCITS)” and “SCSI Block Commands”).

5.3.2 GPT Header

122

Table 17 defines the GPT Header.

Table 17. GPT Header

Byte Byte
Mnemonic Offset | Length Description
Signature 0 8 Identifies EFI-compatible partition table

header. This value must contain the ASCII
string “EFI PART”, encoded as the 64-bit
constant 0x5452415020494645.

Revision 8 4 The revision number for this header. This
revision value is not related to the UEFI
Specification version. This header is version
1.0, so the correct value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GPT Header. The
HeaderSize must be greater than or
equal to 92 and must be less than or equal to
the logical block size.

HeaderCRC32 16 4 CRC32 checksum for the GPT Header
structure. This value is computed by
setting this field to 0, and computing the 32-bit
CRC for HeaderSize bytes.

Reserved 20 4 Must be zero.

January, 2016 Version 2.5 Errata A

GUID Partition Table (GPT) Disk Layout

Byte Byte

Mnemonic Offset | Length Description

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GPT Header.

FirstUsableLBA 40 8 The first usable logical block that may be used
by a partition described by a GUID Partition
Entry.

LastUsablel.BA 48 8 The last usable logical block that may be used
by a partition described by a GUID Partition
Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the
disk.

PartitionEntryLBA 72 8 The starting LBA of the GUID Partition Entry
array.

NumberOfPartitionEntrie @ 80 4 The number of Partition Entries in the GUID

s Partition Entry array.

SizeOfPartitionEntry 84 4 The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry
array. This field shall be set to a value of 128 x
2" where n is an integer greater than or equal
to zero (e.g., 128, 256, 512, etc.).
NOTE: Previous versions of this specification
allowed any multiple of 8..

PartitionEntryArrayCRC3 | 88 4 The CRC32 of the GUID Partition Entry array.

2 Starts at PartitionEntryLBA andis
computed over a byte length of
NumberOfPartitionEntries *
SizeOfPartitionEntry.

Reserved 92 BlockSi | The rest of the block is reserved by UEFI and

ze — 92 must be zero.

The following test must be performed to determine if a GPT is valid:

* Check the Signature

* Check the Header CRC

* Check that the My LBA entry points to the LBA that contains the GUID Partition Table
* Check the CRC of the GUID Partition Entry Array

If the GPT is the primary table, stored at LBA 1:

* Check the AlternateLBAto see if it is a valid GPT

If the primary GPT is corrupt, software must check the last LBA of the device to see if it has a valid
GPT Header and point to a valid GPT Partition Entry Array. If it points to a valid GPT Partition
Entry Array, then software should restore the primary GPT if allowed by platform policy settings
(e.g. a platform may require a user to provide confirmation before restoring the table, or may allow
the table to be restored automatically). Software must report whenever it restores a GPT.

Version 2.5 Errata A January, 2016 123

Unified Extensible Firmware Interface Specification

Software should ask a user for confirmation before restoring the primary GPT and must report
whenever it does modify the media to restore a GPT. If a GPT formatted disk is reformatted to the
legacy MBR format by legacy software, the last logical block might not be overwritten and might
still contain a stale GPT. If GPT-cognizant software then accesses the disk and honors the stale GPT,
it will misinterpret the contents of the disk. Software may detect this scenario if the legacy MBR
contains valid partitions rather than a protective MBR (see Section 5.2.1).

Any software that updates the primary GPT must also update the backup GPT. Software may
update the GPT Header and GPT Partition Entry Array in any order, since all the CRCs are stored in
the GPT Header. Software must update the backup GPT before the primary GPT, so if the size of
device has changed (e.g. volume expansion) and the update is interrupted, the backup GPT is in the
proper location on the disk

If the primary GPT is invalid, the backup GPT is used instead and it is located on the last logical
block on the disk. If the backup GPT is valid it must be used to restore the primary GPT. If the
primary GPT is valid and the backup GPT is invalid software must restore the backup GPT. If both
the primary and backup GPTs are corrupted this block device is defined as not having a valid GUID
Partition Header.

Both the primary and backup GPTs must be valid before an attempt is made to grow the size of a
physical volume. This is due to the GPT recovery scheme depending on locating the backup GPT at
the end of the device. A volume may grow in size when disks are added to a RAID device. As soon
as the volume size is increased the backup GPT must be moved to the end of the volume and the
primary and backup GPT Headers must be updated to reflect the new volume size.

5.3.3 GPT Partition Entry Array

124

The GPT Partition Entry Array contains an array of GPT Partition Entries. Table 18 defines the GPT
Partition Entry.

Table 18. GPT Partition Entry

Byte Byte
Mnemonic Offset Length Description
PartitionTypeGUID 0 16 Unique ID that defines the purpose

and type of this Partition. A value of
zero defines that this partition entry
is not being used.

UniquePartitionGUID 16 16 GUID that is unique for every
partition entry. Every partition ever

created will have a unique GUID.
This GUID must be assigned when
the GPT Partition Entry is created.
The GPT Partition Entry is created
whenever the
NumberOfPartitionEntr

iesinthe GPT Headeris
increased to include a larger range
of addresses.

January, 2016 Version 2.5 Errata A

GUID Partition Table (GPT) Disk Layout

StartingLBA 32 8 Starting LBA of the partition defined
by this entry.

EndingLBA 40 8 Ending LBA of the partition defined
by this entry.

Attributes 48 8 Attribute bits, all bits reserved by
UEFI (see Table 19).

PartitionName 56 72 Null-terminated string containing a
human-readable name of the
partition.

Reserved 128 SizeOfPartiti | The restof the GPT Partition Entry,

onEntry-128 if any, is reserved by UEFI and

must be zero.

The SizeOfPartitionEntry variable in the GPT Header defines the size of each GUID
Partition Entry. Each partition entry contains a Unique Partition GUID value thatuniquely
identifies every partition that will ever be created. Any time a new partition entry is created a new
GUID must be generated for that partition, and every partition is guaranteed to have a unique GUID.
The partition is defined as all the logical blocks inclusive of the StartingLBA and EndingLBA.

The PartitionTypeGUID field identifies the contents of the partition. This GUID is similar to
the OS Type field in the MBR. Each filesystem must publish its unique GUID. The
Attributes field can be used by utilities to make broad inferences about the usage of a partition
and is defined in Table 19.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition
using EFI BOOT SERVICES.InstallProtocolInterface (). This will allow drivers
and applications, including OS loaders, to easily search for handles that represent EFI System
Partitions or vendor specific partition types.

Software that makes copies of GPT-formatted disks and partitions must generate new Di sk

GUID values in the GPT Headers and new Unique Partition GUID valuesineach GPT
Partition Entry. If GPT-cognizant software encounters two disks or partitions with identical GUIDs,
results will be indeterminate.

Table 19. Defined GPT Partition Entry - Partition Type GUIDs

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000
EFI System Partition C12A7328-F81F-11D2-BA4B-00A0C93EC93B
Partition containing a legacy MBR 024DEE41-33E7-11D3-9D69-0008C781F39F

OS vendors need to generate their own Partition Type GUIDs to identify their partition types.

Table 20. Defined GPT Partition Entry - Attributes

Bits Name Description

Version 2.5 Errata A January, 2016 125

Unified Extensible Firmware Interface Specification

126

Bit 0

Bit 1

Bit 2

Bits 3-47

Bits 48-63

Required
Partition

No Block 10
Protocol

Legacy
BIOS
Bootable

If this bit is set, the partition is required for the platform to function. The owner/
creator of the partition indicates that deletion or modification of the contents
can result in loss of platform features or failure for the platform to boot or
operate. The system cannot function normally if this partition is removed, and it
should be considered part of the hardware of the system. Actions such as
running diagnostics, system recovery, or even OS install or boot could
potentially stop working if this partition is removed. Unless OS software or
firmware recognizes this partition, it should never be removed or modified as
the UEFI firmware or platform hardware may become non-functional.

If this bit is set, then firmware must not produce an
EFI_BLOCK_ IO _PROTOCOL device for this partition. See Section 12.3.2
for more details. By not producing an EFI_BLOCK_ IO PROTOCOL
partition, file system mappings will not be created for this partition in UEFI.
This bit is set aside by this specification to let systems with traditional PC-AT
BIOS firmware implementations inform certain limited, special-purpose
software running on these systems that a GPT partition may be bootable. For
systems with firmware implementations conforming to this specification, the
UEFI boot manager (see chapter 3) must ignore this bit when selecting a UEFI-
compliant application, e.g., an OS loader (see 2.1.3). Therefore there is no
need for this specification to define the exact meaning of this bit.

Undefined and must be zero. Reserved for expansion by future versions of the
UEFI specification.

Reserved for GUID specific use. The use of these bits will vary depending on
the PartitionTypeGUID. Only the owner of the
PartitionTypeGUID is allowed to modify these bits. They must be
preserved if Bits 0—47 are modified.

January, 2016 Version 2.5 Errata A

Services — Boot Services

6
Services — Boot Services

This section discusses the fundamental boot services that are present in a compliant system. The
services are defined by interface functions that may be used by code running in the UEFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as applications running in the preboot environment, and OS loaders.

Two types of services apply in an compliant system:

Boot Services Functions that are available before a successful call to
EFI BOOT SERVICES.ExitBootServices (). These
functions are described in this section.

Runtime Services Functions that are available before and after any call to
ExitBootServices (). These functions are described in
Section 7.

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or “handle-based.” The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms (since
some devices are not available on some platforms). Protocols are created dynamically. This section

discusses the “global” functions and runtime functions; subsequent sections discuss the “handle-
based.”

UEFI applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an Image is provided a pointer to a system table which contains the Boot
Services dispatch table and the default handles for accessing the console. All boot services
functionality is available until an OS loader loads enough of its own environment to take control of
the system’s continued operation and then terminates boot services with a call to
ExitBootServices ().

In principle, the ExitBootServices () call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing to
boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS loader,
however, may or may not choose to call ExitBootServices (). This choice may in part depend
upon whether or not such code is designed to make continued use of boot services or the boot
services environment.

The rest of this section discusses individual functions. Global boot services functions fall into these
categories:

* Event, Timer, and Task Priority Services (Section 6.1)
* Memory Allocation Services (Section 6.2)

* Protocol Handler Services (Section 6.3)

Version 2.5 Errata A January, 2016 127

Unified Extensible Firmware Interface Specification

* Image Services (Section 6.4)

* Miscellaneous Services (Section 6.5)

6.1 Event, Timer, and Task Priority Services

128

The functions that make up the Event, Timer, and Task Priority Services are used during preboot to
create, close, signal, and wait for events; to set timers; and to raise and restore task priority levels.
See Table 21.

Table 21. Event, Timer, and Task Priority Functions

Name Type Description

CreateEvent Boot Creates a general-purpose event structure.
CreateEventEx Boot Creates an event structure as part of an event group
CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.
CheckEvent Boot Checks whether an event is in the signaled state.
SetTimer Boot Sets an event to be signaled at a particular time.
RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.

Execution in the boot services environment occurs at different task priority levels, or TPLs. The
boot services environment exposes only three of these levels to UEFI applications and drivers:

e TPL APPLICATION, the lowest priority level
*+ TPL CALLBACK, an intermediate priority level
* TPL NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority level.
For example, tasks that run at the TPL._NOTIFY level may interrupt tasks that run at the

TPL APPLICATION or TPL CALLBACK level. While TPL_NOTIFY is the highest level
exposed to the boot services applications, the firmware may have higher task priority items it deals
with. For example, the firmware may have to deal with tasks of higher priority like timer ticks and
internal devices. Consequently, there is a fourth TPL, TPL. HIGH LEVEL, designed for use
exclusively by the firmware.

The intended usage of the priority levels is shown in Table 22 from the lowest level
(TPL_APPLICATION) to the highest level (TPL_HIGH LEVEL). As the level increases, the
duration of the code and the amount of blocking allowed decrease. Execution generally occurs at the
TPL APPLICATION level. Execution occurs at other levels as a direct result of the triggering of
an event notification function(this is typically caused by the signaling of an event). During timer
interrupts, firmware signals timer events when an event’s “trigger time” has expired. This allows
event notification functions to interrupt lower priority code to check devices (for example). The
notification function can signal other events as required. After all pending event notification
functions execute, execution continues at the TP, APPLICATION level.

January, 2016 Version 2.5 Errata A

Services — Boot Services

Table 22. TPL Usage

Task Priority Level Usage

TPL APPLICATION This is the lowest priority level. Itis the level of execution which occurs when
. no event notifications are pending and which interacts with the user. User I/O
(and blocking on User 1/0) can be performed at this level. The boot manager
executes at this level and passes control to other UEFI applications at this level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level
. Long term operations (such as file system operations and disk 1/0) can occur
at this level.

TPL_NOTIFY Interrupts code executing below TPL _NOTIFY level

. Blocking is not allowed at this level. Code executes to completion and
returns. If code requires more processing, it needs to signal an event to wait to
obtain control again at whatever level it requires. This level is typically used to
process low level IO to or from a device.

(Firmware Interrupts) This level is internal to the firmware
. ltis the level at which internal interrupts occur. Code running at this level
interrupts code running at the TPL._NOTIFY level (or lower levels). If the
interrupt requires extended time to complete, firmware signals another event
(or events) to perform the longer term operations so that other interrupts can
occur.

TPL_ HIGH_LEVEL Interrupts code executing below TPL_HIGH LEVEL
. This is the highest priority level. It is not interruptible (interrupts are disabled)
and is used sparingly by firmware to synchronize operations that need to be
accessible from any priority level. For example, it must be possible to signal
events while executing at any priority level. Therefore, firmware manipulates
the internal event structure while at this priority level.

Executing code can temporarily raise its priority level by calling the

EFI BOOT SERVICES.RaiseTPL () function. Doing this masks event notifications from code
running at equal or lower priority levels until the EFI_BOOT SERVICES.RestoreTPL ()
function is called to reduce the priority to a level below that of the pending event notifications.
There are restrictions on the TPL levels at which many UEFI service functions and protocol
interface functions can execute. Table 23 summarizes the restrictions.

Table 23. TPL Restrictions

Name Restrictions Task Priority Level
Protocol Handler Services <= TPL_NOTIIFY
Block 1/0O Protocol <= TPL_CALLBACK
CheckEvent() < TPL_HIGH LEVEL
CloseEvent() < TPL_HIGH LEVEL
CreateEvent() < TPL_HIGH LEVEL
Disk 1/0O Protocol <= TPL_CALLBACK

Version 2.5 Errata A January, 2016 129

Unified Extensible Firmware Interface Specification

130

Name
Event Notification Levels

Exit()

ExitBootServices()
Loadlmage()

Memory Allocation Services
PXE Base Code Protocol
Serial /0 Protocol
SetTimer()

SignalEvent()

Stall()

Simple File System Protocol
Simple Input Protocol
Simple Network Protocol
Simple Text Output Protocol
Startimage()

Time Services
Unloadimage()

Variable Services
WaitForEvent()

ACPI Table Protocol
Authentication Info

Device Path Utilities

Device Path From Text
EDID Discovered

EDID Active

Graphics Output EDID Override
iSCSI Initiator Name

Tape 10

Managed Network Service Binding
ARP Service Binding

ARP

DHCP4 Service Binding
DHCP4

TCP4 Service Binding
TCP4

IP4 Service Binding

Restrictions

Task Priority Level

TPL_APPLICATION
TPL_HIGH LEVEL

TPL_CALLBACK
TPL_APPLICATION
TPL_CALLBACK
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_HIGH_LEVEL
TPL_HIGH_LEVEL
TPL_HIGH_LEVEL
TPL_CALLBACK
TPL_APPLICATION
TPL_CALLBACK
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_APPLICATION
TPL_NOTIFY
TPL_NOTIFY
TPL_NOTIFY
TPL_NOTIFY
TPL_NOTIFY
TPL_NOTIFY
TPL_NOTIFY
TPL_NOTIFY
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK

January, 2016

Version 2.5 Errata A

Services — Boot Services

Name

IP4

IP4 Config

IP4 Config2

UDP4 Service Binding
UDP4

MTFTP4 Service Binding
MTFTP4

VLAN Configuration
EAP

EAP Management

FTP

IPSec Configuration
TCP6

TCP6 Service Binding
IP6

IP6 Config

UDP6

UDP6 Service Binding
DHCP6

DHCP6 Service Binding
MTFTP6

MTFTP6 Service Binding
User Manager Protocol
User Manager Protocol/ldentify()
User Credential Protocol
User Info Protocol
Deferred Image Load Protocol
HIl Protocols

Form Browser2 Protocol/SendForm
Driver Health

EAP Mangement2

EAP Configuration
Supplicant

HTTP Service Binding
HTTP

HTTP Utilities

DNS4 Service Binding

Restrictions

Task Priority Level
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_NOTIFY

TPL_APPLICATION

TPL NOTIFY
TPL NOTIFY
TPL_NOTIFY
TPL NOTIFY

TPL APPLICATION

TPL_NOTIFY

TPL CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL CALLBACK

Version 2.5 Errata A

January, 2016

131

Unified Extensible Firmware Interface Specification

132

Name

DNS4

DNS6 Service Binding
DNS6

TLS Service Binding

TLS

TLS Configuration
Wireless MAC Connection
Bluetooth Host Controller
Bluetooth 10 Service Binding
Bluetooth 10

Bluetooth Configuration
REST

Other protocols and services, if not
listed above

Restrictions

Task Priority Level
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL NOTIFY

January, 2016

Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.CreateEvent()

Summary
Creates an event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREATE_ EVEN
IN UINT32
IN EFI_TPL
IN EFI_EVENT_ NOTIFY
IN VOID

OUT EFI_EVENT
);

Parameters
Type

NotifyTpl
NotifyFunction
NotifyContext

Event

Related Definitions

//**********************

// EFI_EVENT
[/ RRE KKK KKK KKK KKKk KKk k

typedef VOID*EFI_EVENT

//**********************

// Event Types /[/***xkxkx
// These types can be “O
// EVT_TIMER might be “O
// EVT_NOTIFY SIGNAL.

T) (
Type,
NotifyTpl,
NotifyFunction, OPTIONAL
*NotifyContext, OPTIONAL
*Event

The type of event to create and its mode and attributes. The
#define statements in “Related Definitions” can be used to
specify an event’s mode and attributes.

The task priority level of event notifications, if needed. See
EFI BOOT SERVICES.RaiseTPL().

Pointer to the event’s notification function, if any. See “Related
Definitions.”

Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

Pointer to the newly created event if the call succeeds; undefined
otherwise.

hhkkhkkkhkkkhkkhkkhkkkhkkkhkhkkhkkkhkkkhkhkkhkxkx

khkhkhkhkhkhkhkhkhkkkhkhkhkhkhkhkhkhkkkkhkhkhkhkhkhhkhkkxk

khkkhkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkx

hhkkhkkkhkkkhkhkkhkhkkhhkkhkhkhkkhkhkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkkkhkhkkhkkkkk

Red” together as needed - for example,
red” with EVT NOTIFY WAIT or

#define EVT TIMER 0x80000000
#define EVT RUNTIME 0x40000000
#define EVT NOTIFY WAIT 0x00000100
#define EVT NOTIFY SIGNAL 0x00000200

Version 2.5 Errata A

January, 2016 133

Unified Extensible Firmware Interface Specification

134

#define EVT_ SIGNAL EXIT BOOT_SERVICES 0x00000201
#define EVT_ SIGNAL VIRTUAL ADDRESS CHANGE 0x60000202
EVT_ TIMER The event is a timer event and may be passed to

EVT_RUNTIME

EVT _NOTIFY WAIT

EVT_NOTIFY_ SIGNAL

EFI BOOT SERVICES.SetTimer (). Note that timers only
function during boot services time.

The event is allocated from runtime memory. If an event is to be
signaled after the call to

EFI BOOT SERVICES.ExitBootServices (), the
event’s data structure and notification function need to be
allocated from runtime memory. For more information, see
SetVirtualAddressMap().

If an event of this type is not already in the signaled state, then the
event’s NotificationFunction will be queued at the
event’s Not i fyTpl whenever the event is being waited on via
EFI BOOT SERVICES.WaitForEvent () or

EFI BOOT SERVICES.CheckEvent().

The event’s NotifyFunction is queued whenever the event
is signaled.

EVT_SIGNAL EXIT BOOT_SERVICES

This event is to be notified by the system when
ExitBootServices () is invoked. This event is of type
EVT NOTIFY SIGNAL and should not be combined with any
other event types. The notification function for this event is not
allowed to use the Memory Allocation Services, or call any
functions that use the Memory Allocation Services and must only
call functions that are known not to use Memory Allocation
Services, because these services modify the current memory
map.The notification function must not depend on timer events
since timer services will be deactivated before any notification
functions are called.

EVT_SIGNAL VIRTUAL ADDRESS CHANGE

typedef
VOID

" The event is to be notified by the system when
SetVirtualAddressMap () is performed. This event type is
a composite of EVT_NOTIFY SIGNAL, EVT RUNTIME, and
EVT_RUNTIME CONTEXT and should not be combined with
any other event types.

//***

// EFI EVENT NOTIFY
[[%% %% ok e ok ok e o ok e ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok ok o ok ok ok o

(EFIAPI *EFI_EVENT_NOTIFY) (
IN EFI_EVENT Event,
IN VOID *Context

January, 2016 Version 2.5 Errata A

Services — Boot Services

);

Event Event whose notification function is being invoked.

Context Pointer to the notification function’s context, which is
implementation-dependent. Context corresponds to
NotifyContext in
EFI BOOT SERVICES.CreateEventEx ().

Description

The CreateEvent () function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext,and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created, firmware puts
it in the “waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EVT NOTIFY SIGNAL is specified, places a call to its notification function in a FIFO queue.
There is a queue for each of the “basic” task priority levels defined in Section 6.1
(TPL_CALLBACK, and TPL_NOTIFY). The functions in these queues are invoked in FIFO order,
starting with the highest priority level queue and proceeding to the lowest priority queue that is
unmasked by the current TPL. If the current TPL is equal to or greater than the queued notification,
it will wait until the TPL is lowered via EFI BOOT SERVICES.RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of program
execution. This capability is typically used with device drivers. For example, a network device
driver that needs to poll for the presence of new packets could create an event whose type includes
EVT_TIMER and then call the EFI_BOOT SERVICES.SetTimer () function. When the timer
expires, the firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the

EFI BOOT SERVICES.ExitBootServices () function. ExitBootServices () can
clean up the firmware since it understands firmware internals, but it cannot clean up on behalf of
drivers that have been loaded into the system. The drivers have to do that themselves by creating an
event whose type is EVT_SIGNAL EXIT BOOT_SERVICES and whose notification function is a
function within the driver itself. Then when ExitBootServices () has finished its cleanup, it
signals each event of type EVT_SIGNAL EXIT BOOT_ SERVICES.

Another example of the use of synchronous events occurs when an event of type
EVT_SIGNAL VIRTUAL ADDRESS_ CHANGE is used in conjunction with the
SetVirtualAddres sMap () .

The EVT_NOTIFY WAIT and EVT _NOTIFY SIGNAL flags are exclusive. If neither flag is
spemﬁed the caller does not require any notification concerning the event and the NotifyTpl,
NotifyFunction,and NotifyContext parameters are ignored. If EVT _NOTIFY WAIT is
specified and the event is not in the signaled state, then the EVT NOTIFY WAIT notify function
is queued whenever a consumer of the event is waiting for the event (via

EFI BOOT SERVICES.WaitForEvent () or EFI BOOT SERVICES.CheckEvent()).

Version 2.5 Errata A January, 2016 135

Unified Extensible Firmware Interface Specification

If the EVT_NOTIFY SIGNAL flag is specified then the event’s notify function is queued whenever
the event is signaled.

Note: Because its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Status Codes Returned

EFI_SUCCESS The event structure was created.
EFI_INVALID PARAMETER One of the parameters has an invalid value.
EFI1_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.

EFI_INVALID_PARAMETER Type has both EVT_NOTIFY SIGNAL and
EVT NOTIFY WAIT set.

EFI_INVALID_PARAMETER Type has either EVT _NOTIFY SIGNAL or
EVT _NOTIFY WAITsetand NotifyFunctionis
NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY SIGNAL or
EVT NOTIFY WAITsetand NotifyTplisnota
supported TPL level.

EFI_OUT_OF RESOURCES The event could not be allocated.

136 January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.CreateEventEXx()

Summary
Creates an event in a group.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CREATE EVENT EX) (
IN UINT32 Type,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT NOTIFY NotifyFunction OPTIONAL,
IN CONST VOID *NotifyContext OPTIONAL,
IN CONST EFI_GUID *EventGroup OPTIONAL,
OUT EFI_EVENT *Event
)
Parameters
Type The type of event to create and its mode and attributes.
NotifyTpl The task priority level of event notifications, if needed. See
EFI BOOT SERVICES.RaiseTPL().
NotifyFunction Pointer to the event’s notification function, if any.
NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.
EventGroup Pointer to the unique identifier of the group to which this event
belongs. If this is NULL, then the function behaves as if the
parameters were passed to CreateEvent.
Event Pointer to the newly created event if the call succeeds; undefined
otherwise.
Description

The CreateEventEx function creates a new event of type Type and returns it in the specified
location indicated by Event. The event’s notification function, context and task priority are
specified by NotifyFunction, NotifyContext,and NotifyTpl,respectively. The event
will be added to the group of events identified by EventGroup.

If no group is specified by EventGroup, then this function behaves as if the same parameters had
been passed to CreateEvent.

Event groups are collections of events identified by a shared EFI_GUID where, when one member
event is signaled, all other events are signaled and their individual notification actions are taken (as
described in CreateEvent). All events are guaranteed to be signaled before the first notification
action is taken. All notification functions will be executed in the order specified by their
NotifyTpl.

Version 2.5 Errata A January, 2016 137

Unified Extensible Firmware Interface Specification

A single event can only be part of a single event group. An event may be removed from an event
group by using CloseEvent.

The Type of an event uses the same values as defined in CreateEvent except that
EVT_SIGNAL EXIT BOOT SERVICES and EVT SIGNAL VIRTUAL ADDRESS CHANGE
are not valid.

If Type has EVT_NOTIFY SIGNAL or EVT NOTIFY WAIT, then NotifyFunction must
be non- NULL and NotifyTpl must be a valid task priority level. Otherwise these parameters are
ignored.

More than one event of type EVT _TIMER may be part of a single event group. However, there is no
mechanism for determining which of the timers was signaled.

Configuration Table Groups

The GUID for a configuration table also defines a corresponding event group GUID with the same
value . If the data represented by a configuration table is changed,
InstallConfigurationTable () should be called. When
InstallConfigurationTable () is called, the corresponding event is signaled. When this
event is signaled, any components that cache information from the configuration table can optionally
update their cached state.

For example, EFI_ACPI_TABLE GUID defines a configuration table for ACPI data. When ACPI
data is changed, InstallConfigurationTable () is called. During the execution of
InstallConfigurationTable (), a corresponding event group with
EFI_ACPI_TABLE_ GUID is signaled, allowing an application to invalidate any cached ACPI
data.

Pre-Defined Event Groups
This section describes the pre-defined event groups used by the UEFI specification.
EFI_EVENT GROUP_EXIT BOOT_ SERVICES

This event group is notified by the system when ExitBootServices () is
invoked. The notification function for this event is not allowed to use the Memory
Allocation Services, or call any functions that use the Memory Allocation Services,
because these services modify the current memory map. The notification function
must not depend on timer events since timer services will be deactivated before any
notification functions are called. This is functionally equivalent to the

EVT SIGNAL EXIT BOOT_ SERVICES flag for the Type argument of
CreateEvent.

EFI_EVENT GROUP_VIRTUAL ADDRESS CHANGE

This event group is notified by the system when SetVirtualAddressMap () is
invoked. This is functionally equivalent to the

EVT_SIGNAL VIRTUAL ADDRESS CHANGE flag for the Type argument of
CreateEvent.

138 January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_EVENT GROUP MEMORY MAP CHANGE

This event group is notified by the system when the memory map has changed. The
notification function for this event should not use Memory Allocation Services to
avoid reentrancy complications.

EFI_EVENT GROUP_READY TO BOOT

This event group is notified by the system when the Boot Manager is about to load and
execute a boot option.

Related Definitions
EFI_EVENT is defined in CreateEvent.

EVT_SIGNAL EXIT BOOT SERVICES and EVT_SIGNAL VIRTUAL_ADDRESS_CHANGE
are defined in CreateEvent.
#define EFI_EVENT GROUP_EXIT BOOT SERVICES \
{0x27abf055, O0xblb8, 0x4c26, 0x80, 0x48, 0x74, 0x8f, 0x37,\
Oxba, 0xa2, 0xdf}}

#define EFI_EVENT GROUP_VIRTUAL ADDRESS CHANGE \
{0x13fa7698, 0xc831, 0x49c7, 0x87, Oxea, 0x8f, 0x43, Oxfc,\
Oxc2, 0x51, 0x96}

#define EFI_EVENT GROUP_MEMORY MAP CHANGE \
{0x78bee926, 0x692f, 0x48fd, 0x9e, Oxdb, 0x1l, 0x42, 0x2e, \
0xf0, 0xd7, Oxab}

#define EFI_EVENT GROUP_READY TO BOOT \
{0x7ce88fb3, 0x4bd7, 0x4679, 0x87, Oxa8, O0xa8, 0xd8, Oxde,\
O0xe5,0xd, 0x2b}

Status Codes Returned

EFI_SUCCESS The event structure was created.
EFI_INVALID_PARAMETER One of the parameters has an invalid value.
EFI_INVALID_PARAMETER Event is NULL.

EFI_INVALID_PARAMETER Type has an unsupported bit set.
EFI_INVALID_PARAMETER Type has both EVT_NOTIFY SIGNAL and

EVT_NOTIFY_ WAIT set.

EFI_INVALID_PARAMETER

Type has either EVT_NOTIFY SIGNAL or
EVT NOTIFY WAITsetand NotifyFunctionis
NULL.

EFI_INVALID_PARAMETER Type has either EVT_NOTIFY SIGNAL or
EVT NOTIFY WAIT setand NotifyTplisnota
supported TPL level.

Version 2.5 Errata A January, 2016 139

Unified Extensible Firmware Interface Specification

EFI_OUT_OF_RESOURCES The event could not be allocated.

140 January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.CloseEvent()

Summary
Closes an event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CLOSE_EVENT) (
IN EFI_EVENT Event

)

Parameters
Event The event to close. Type EFI_EVENT is defined in the
CreateEvent () function description.
Description

The CloseEvent () function removes the caller’s reference to the event, removes it from any
event group to which it belongs, and closes it. Once the event is closed, the event is no longer valid
and may not be used on any subsequent function calls. If Event was registered with
RegisterProtocolNotify () then CloseEvent () will remove the corresponding
registration. It is safe to call CloseEvent () within the corresponding notify function

Status Codes Returned

| EFI_SUCCESS | The event has been closed.

Version 2.5 Errata A January, 2016 141

Unified Extensible Firmware Interface Specification

EFI_BOOT_SERVICES.SignalEvent()

Summary

Signals an event.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIGNAL EVENT) (
IN EFI_EVENT Event
)

Parameters
Event The event to signal. Type EFI_EVENT is defined in the
EFI BOOT SERVICES.CheckEvent () function
description.
Description

The supplied Event is placed in the signaled state. If Event is already in the signaled state, then
EFI_SUCCESS isreturned. If Event is of type EVT_NOTIFY SIGNAL, then the event’s
notification function is scheduled to be invoked at the event’s notification task priority level.
SignalEvent () may be invoked from any task priority level.

If the supplied Event is a part of an event group, then all of the events in the event group are also
signaled and their notification functions are scheduled.

When signaling an event group, it is possible to create an event in the group, signal it and then close
the event to remove it from the group. For example:
EFI_EVENT Event;
EFI_GUID gMyEventGroupGuid = EFI_MY EVENT_GROUP_GUID;
gBS->CreateEventEx (
0,
0 ’
NULL,
NULL,
&gMyEventGroupGuid,
&Event

)

gBS->SignalEvent (Event);
gBS->CloseEvent (Event) ;

Status Codes Returned

| EFI_SUCCESS | The event was signaled.

142 January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.WaitForEvent()

Summary

Stops execution until an event is signaled.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WAIT FOR_EVENT) (
IN UINTN NumberOfEvents,
IN EFI_EVENT *Event,
OUT UINTN *Index
)
Parameters
NumberOfEvents The number of events in the Event array.
Event An array of EFI_EVENT. Type EFI_EVENT is defined in the
CreateEvent () function description.
Index Pointer to the index of the event which satisfied the wait
condition.
Description

This function must be called at priority level TPL._APPLICATION. Ifan attempt is made to call it
at any other priority level, EFI_UNSUPPORTED is returned.

The list of events in the Event array are evaluated in order from first to last, and this evaluation is
repeated until an event is signaled or an error is detected. The following checks are performed on
each event in the Event array.

* Ifaneventis of type EVT_NOTIFY SIGNAL, then EFI_INVALID PARAMETER is returned
and Tndex indicates the event that caused the failure.

» Ifaneventis in the signaled state, the signaled state is cleared and EFI__SUCCESS is returned,
and I'ndex indicates the event that was signaled.

« Ifan event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the event’s
notification function causes the event to be signaled, then the signaled state is cleared,
EFI_SUCCESS is returned, and Index indicates the event that was signaled.

To wait for a specified time, a timer event must be included in the Event array.

To check if an event is signaled without waiting, an already signaled event can be used as the last
event in the list being checked, or the CheckEvent () interface may be used.

Status Codes Returned

EFI_SUCCESS The event indicated by Index was signaled.
EFI_INVALID_PARAMETER NumberOfEventsisO.

Version 2.5 Errata A January, 2016 143

Unified Extensible Firmware Interface Specification

144

EFI_INVALID_PARAMETER

The event indicated by Tndex is of type
EVT _NOTIFY SIGNAL.

EFI_UNSUPPORTED

The current TPL is not TPL., APPLICATION.

January, 2016

Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.CheckEvent()

Summary
Checks whether an event is in the signaled state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CHECK_EVENT) (
IN EFI_EVENT Event
)

Parameters
Event The event to check. Type EFI_EVENT is defined in the
CreateEvent () function description.
Description

The CheckEvent () function checks to see whether Event is in the signaled state. If Event is
of type EVT_NOTIFY SIGNAL, then EFI_INVALID PARAMETER isreturned. Otherwise, there
are three possibilities:

* If Event is in the signaled state, it is cleared and EFI__SUCCESS is returned.

* If Event is not in the signaled state and has no notification function, EFI_NOT READY is
returned.

* If Event is not in the signaled state but does have a notification function, the notification
function is queued at the event’s notification task priority level. If the execution of the
notification function causes Event to be signaled, then the signaled state is cleared and
EFI_SUCCESS is returned; if the Event is not signaled, then EFI_NOT_ READY is returned.

Status Codes Returned

EFI_SUCCESS The event is in the signaled state.
EFI_NOT_READY The event is not in the signaled state.
EFI_INVALID_PARAMETER | Event is of type EVT_NOTIFY_SIGNAL.

Version 2.5 Errata A January, 2016 145

Unified Extensible Firmware Interface Specification

EFI_BOOT_SERVICES.SetTimer ()

146

Summary

Sets the type of timer and the trigger time for a timer event.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SET TIMER)
IN EFI_EVENT
IN EFI_TIMER_DELAY
IN UINT64
);
Parameters
Event
Type
TriggerTime

Related Definitions

(

Event,
Type,
TriggerTime

The timer event that is to be signaled at the specified time. Type
EFI_EVENT is defined in the CreateEvent () function
description.

The type of time that is specified in TriggerTime. See the
timer delay types in “Related Definitions.”

The number of 100ns units until the timer expires. A
TriggerTime of 0islegal. If Typeis TimerRelative and
TriggerTime is 0, then the timer event will be signaled on the
next timer tick. If Type is TimerPeriodic and
TriggerTime is 0, then the timer event will be signaled on
every timer tick.

//***

//EFI_TIMER DELAY

//***

typedef enum {
TimerCancel,
TimerPeriodic,
TimerRelative

} EFI_TIMER DELAY;

TimerCancel

TimerPeriodic

TimerRelative

The event’s timer setting is to be cancelled and no timer trigger is
to be set. TriggerTime isignored when canceling a timer.

The event is to be signaled periodically at TriggerTime
intervals from the current time. This is the only timer trigger
Type for which the event timer does not need to be reset for each
notification. All other timer trigger types are “one shot.”

The event is to be signaled in TriggerTime 100ns units.

January, 2016 Version 2.5 Errata A

Description

Services — Boot Services

The SetTimer () function cancels any previous time trigger setting for the event, and sets the new

trigger time for the event. This function can only be used on events of type EVT _TIMER.

Status Codes Returned

EFI_SUCCESS

The event has been set to be signaled at the requested time.

EFI_INVALID_PARAMETER

Event or Type is not valid.

Version 2.5 Errata A

January, 2016

147

Unified Extensible Firmware Interface Specification

EFI_BOOT_SERVICES.RaiseTPL()

148

Summary

Raises a task’s priority level and returns its previous level.

Prototype

typedef

EFI_TPL

(EFIAPI *EFI_RAISE TPL) (
IN EFI_TPL NewTpl
)

Parameters

NewTpl The new task priority level. It must be greater than or equal to the
current task priority level. See “Related Definitions.”

Related Definitions

//***

// EFI TPL
[/ % % e e e ke e e ke e ke e e ok ke e ok ke e ok ke e ok ke e ok ke e ok e e ok ke e ok ok e ok ok e ok ok ok ok ok ok ok ok ok ok ok ok ok

typedef UINTN EFI_TPL

//***

// Task Priority Levels
[/ kxR ke ok kkkkkkkkkkkkhhhkhhkkhkkhkkkkhkkhhrkhkkkhkhkkkkkkhhk*

#define TPL_APPLICATION 4

#define TPL_CALLBACK 8

#define TPL_NOTIFY 16

#define TPL_HIGH_ LEVEL 31
Description

The EFI BOOT SERVICES.RaiseTPL () function raises the priority of the currently executing
task and returns its previous priority level.

Only three task priority levels are exposed outside of the firmware during boot services execution.
The first is TPL. APPLICATION where all normal execution occurs. That level may be interrupted
to perform various asynchronous interrupt style notifications, which occur at the TPL._CALLBACK
or TPL NOTIFY level. By raising the task priority level to TPL._NOTIFY such notifications are
masked until the task priority level is restored, thereby synchronizing execution with such
notifications. Synchronous blocking I/O functions execute at TPL_NOTIFY. TPL CALLBACKis
the typically used for application level notification functions. Device drivers will typically use
TPL_CALLBACK or TPL_ NOTIFY for their notification functions. Applications and drivers may
also use TPL_NOTIFY to protect data structures in critical sections of code.

The caller must restore the task priority level with EFI_BOOT SERVICES.RestoreTPL() to
the previous level before returning.

January, 2016 Version 2.5 Errata A

Services — Boot Services

Note: If NewTpl is below the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL. APPLICATION, TPL CALLBACK, TPL NOTIFY, and TPL HIGH LEVEL may be
used. Allother values are reserved for use by the firmware; using them will resulfin unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL._APPLICATION must be minimized. Executing at
TPL levels above TPL APPLICATION for extended periods of time may also result in
unpredictable behavior.

Status Codes Returned

Unlike other UEFI interface functions, EFI BOOT SERVICES.RaiseTPL () does notreturn a
status code. Instead, it returns the previous task priority level, which is to be restored later with a
matching call to RestoreTPL ().

Version 2.5 Errata A January, 2016 149

Unified Extensible Firmware Interface Specification

EFI_BOOT_SERVICES.RestoreTPL()

Summary
Restores a task’s priority level to its previous value.

Prototype

typedef

VOID

(EFIAPI *EFI_RESTORE TPL) (
IN EFI_TPL 01dTpl
)

Parameters
01dTpl The previous task priority level to restore (the value from a
previous, matching call to
EFI BOOT SERVICES.RaiseTPL()). Type EFI_TPL is
defined in the RaiseTPL () function description.
Description

The RestoreTPL () function restores a task’s priority level to its previous value. Calls to
RestoreTPL () are matched with calls to RaiseTPL ().

Note: If 01dTpl is above the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL. APPLICATION, TPL CALLBACK, TPL NOTIFY, and TPL HIGH LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at
TPL levels above TPL APPLICATION for extended periods of time may also result in
unpredictable behavior.

Status Codes Returned

None.

6.2 Memory Allocation Services

The functions that make up Memory Allocation Services are used during preboot to allocate and free
memory, and to obtain the system’s memory map. See Table 24.

Table 24. Memory Allocation Functions

Name Type | Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory map key.
AllocatePool Boot Allocates a pool of a particular type.

150 January, 2016 Version 2.5 Errata A

Services — Boot Services

Name Type | Description

FreePool Boot Frees allocated pool.

The way in which these functions are used is directly related to an important feature of UEFI
memory design. This feature, which stipulates that EFI firmware owns the system’s memory map
during preboot, has three major consequences:

* During preboot, all components (including executing EFI images) must cooperate with the
firmware by allocating and freeing memory from the system with the functions
EFI BOOT SERVICES.AllocatePages(),
EFI BOOT SERVICES.AllocatePool (), EFI BOOT SERVICES.FreePages(),
and EFI BOOT SERVICES.FreePool (). The firmware dynamically maintains the
memory map as these functions are called.

* During preboot, an executing EFI Image must only use the memory it has allocated.

» Before an executing EFI image exits and returns control to the firmware, it must free all
resources it has explicitly allocated. This includes all memory pages, pool allocations, open file
handles, etc. Memory allocated by the firmware to load an image is freed by the firmware when
the image is unloaded.

When memory is allocated, it is “typed” according to the values in EFI_MEMORY TYPE (see the
description for EFI BOOT SERVICES.AllocatePages ()). Some of the types have a
different usage before EFI_BOOT SERVICES.ExitBootServices () is called than they do
afterwards. Table 25 lists each type and its usage before the call; Table 26 lists each type and its
usage after the call. The system firmware must follow the processor-specific rules outlined in
Section 2.3.2 and Section 2.3.4 in the layout of the EFI memory map to enable the OS to make the
required virtual mappings.

Table 25. Memory Type Usage before ExitBootServices ()

Mnemonic Description

EfiReservedMemoryType Not usable.

EfiLoaderCode The code portions of a loaded application. (Note that UEFI OS loaders
are UEFI applications.)

EfiLoaderData The data portions of a loaded application and the default data allocation

EfiBootServicesCode
EfiBootServicesData

EfiRuntimeServicesCode
EfiRuntimeServicesData

EfiConventionalMemory
EfiUnusableMemory
EfiACPIReclaimMemory
EfiACPIMemoryNVS

type used by an application to allocate pool memory.
The code portions of a loaded Boot Services Driver.

The data portions of a loaded Boot Serves Driver, and the default data
allocation type used by a Boot Services Driver to allocate pool memory.

The code portions of a loaded Runtime Services Driver.

The data portions of a loaded Runtime Services Driver and the default
data allocation type used by a Runtime Services Driver to allocate pool
memory.

Free (unallocated) memory.

Memory in which errors have been detected.
Memory that holds the ACPI tables.

Address space reserved for use by the firmware.

Version

2.5 Errata A

January, 2016 151

Unified Extensible Firmware Interface Specification

Mnemonic Description

Used by system firmware to request that a memory-mapped 10 region
be mapped by the OS to a virtual address so it can be accessed by EFI
runtime services.

EfiMemoryMappedIO

EfiMemoryMappedIOPortSpace System memory-mapped 10 region that is used to translate memory

cycles to 10 cycles by the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the
processor.
EfiPersistentMemory A memory region that operates as EfiConventionalMemory.

However, it happens to also support byte-addressable non-volatility.

Note: There is only one region of type EfiMemoryMappedIoPortSpace defined in the
architecture for Itanium-based platforms. As a result, there should be one and only one region of
type EfiMemoryMappedIoPortSpace in the EFI memory map of an ltanium-based platform.

Table 26. Memory Type Usage after ExitBootServices ()

152

Mnemonic Description

EfiReservedMemoryType Not usable.

EfiLoaderCode The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called
EFI BOOT SERVICES.ExitBootServices () is utilizing
one or more EfiL.oaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the

EfiBootServicesCode
EfiBootServicesData
EfiRuntimeServicesCode

EfiRuntimeServicesData

EfiConventionalMemory
EfiUnusableMemory
EfiACPIReclaimMemory
EfiACPIMemoryNVS

EfiMemoryMappedIO

EfiMemoryMappedIOPortSpace

OS loader that called ExitBootServices () is utilizing one or
more EfiLoaderData ranges.

Memory available for general use.

Memory available for general use.

The memory in this range is to be preserved by the loader and OS in
the working and ACP| S1-S3 states.

The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1-S3 states.

Memory available for general use.
Memory that contains errors and is not to be used.

This memory is to be preserved by the loader and OS until ACPI is
enabled. Once ACPI is enabled, the memory in this range is available
for general use.

This memory is to be preserved by the loader and OS in the working
and ACPI S1-S3 states.

This memory is not used by the OS. All system memory-mapped IO
information should come from ACPI tables.

This memory is not used by the OS. All system memory-mapped 10
port space information should come from ACPI tables.

January, 2016

Version 2.5 Errata A

Services — Boot Services

EfiPalCode This memory is to be preserved by the loader and OS in the working
and ACPI S1-S4 states. This memory may also have other attributes
that are defined by the processor implementation.

EfiPersistentMemory

A memory region that operates as FfiConventionalMemory.
However, it happens to also support byte-addressable non-volatility.

Note: Animage that calls ExitBootServices () first calls

EFI BOOT SERVICES.GetMemoryMap () fo obtain the current memory map. Following the
ExitBootServices () call, the image implicitly owns all unused memory in the map. This
includes memory types EfiLoaderCode, EfiLoaderData, EfiBootServicesCode,
EfiBootServicesData, and EfiConventionalMemory. An EFl-compatible loader and

operating system must preserve the memory marked as EfiRuntimeServicesCode and
EfiRuntimeServicesData.

Version 2.5 Errata A January, 2016 153

Unified Extensible Firmware Interface Specification

EFI_BOOT_SERVICES.AllocatePages()

Summary

Allocates memory pages from the system.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_ALLOCATE PAGES) (
IN EFI_ALLOCATE TYPE Type,
IN EFI_MEMORY TYPE MemoryType,

IN UINTN

Pages,

IN OUT EFI_PHYSICAL ADDRESS *Memory

)

Parameters
Type
MemoryType

Pages

Memory

The type of allocation to perform. See “Related Definitions.”

The type of memory to allocate. The type EFI_MEMORY TYPE
is defined in “Related Definitions” below. These memory types
are also described in more detail in Table 25 and Table 26.
Normal allocations (that is, allocations by any UEFI application)
are of type EfiLoaderData. MemoryType values in the
range 0x70000000..0x7FFFFFFF are reserved for OEM use.
MemoryType values in the range 0x80000000..0xFFFFFFFF
are reserved for use by UEFI OS loaders that are provided by
operating system vendors. The only illegal memory type values
are those in the range Ef iMaxMemoryType..0x6FFFFFFF.

The number of contiguous 4 KiB pages to allocate.

Pointer to a physical address. On input, the way in which the
address is used depends on the value of Type. See “Description”
for more information. On output the address is set to the base of
the page range that was allocated. See “Related Definitions.”

Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate memory of type

EfiReservedMemoryType.

Related Definitions

//***

//EF I ALLOCATE TYPE

//***

// These types are discussed in the “Description” section below.

typedef enum {

AllocateAnyPages,
AllocateMaxAddress,

AllocateAddress,
MaxAllocateType

154

January, 2016 Version 2.5 Errata A

Services — Boot Services

} EFI_ALLOCATE TYPE;

//***

//EFI_MEMORY TYPE

A R L T T

// These type values are discussed in Table 25 and Table 26.

typedef enum {
EfiReservedMemoryType,
EfiLoaderCode,
EfilLoaderData,
EfiBootServicesCode,
EfiBootServicesData,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiConventionalMemory,
EfiUnusableMemory,
EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiMemoryMappedIO,
EfiMemoryMappedIOPortSpace,
EfiPalCode,
EfiPersistentMemory
EfiMaxMemoryType

} EFI_MEMORY TYPE;

//***

//EFI_PHYSICAL_ADDRESS
[/% % % 3 e e ke ok ke ok e ok

typedef UINT64 EFI_PHYSICAL ADDRESS;

Description

The AllocatePages () function allocates the requested number of pages and returns a pointer to
the base address of the page range in the location referenced by Memory. The function scans the
memory map to locate free pages. When it finds a physically contiguous block of pages that is large
enough and also satisfies the allocation requirements of Type, it changes the memory map to
indicate that the pages are now of type MemoryType.

In general, UEFI OS loaders and applications should allocate memory (and pool) of type
EfiLoaderData. Boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. Runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot services
time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages whose
uppermost address is less than or equal to the address pointed to by Memory on input.

Version 2.5 Errata A January, 2016 155

Unified Extensible Firmware Interface Specification

Allocation requests of Type AllocateAddress allocate pages at the address pointed to by
Memory on input.

Allocation requests of MemoryType EfiPersistentMemory will result in the
AllocatePages () service returning EFI_INVALID PARAMETER.

Note: UEFI drivers and applications that are not targeted for a specific implementation must perform
memory allocations for the following runtime types using AllocateAnyPages address mode:

EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,

EfiReservedMemoryType.

Status Codes Returned

EFI_SUCCESS The requested pages were allocated.
EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Typeis notAllocateAnyPages or
AllocateMaxAddress orAllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range
EfiMaxMemoryType..0OX6FFFFFFF.
EFI_INVALID_PARAMETER MemoryType was EfiPersistentMemory.
EFI_INVALID_PARAMETER PoolType was EfiPersistentMemory.
EFI_INVALID_PARAMETER Memory was NULL.

EFI_NOT_FOUND The requested pages could not be found.

156 January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.FreePages()

Summary
Frees memory pages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FREE PAGES) (
IN EFI_PHYSICAL ADDRESS Memory,
IN UINTN Pages
)
Parameters
Memory The base physical address of the pages to be freed. Type
EFI_PHYSICAL ADDRESS is defined in the
EFI BOOT SERVICES.AllocatePages () function
description.
Pages The number of contiguous 4 KiB pages to free.
Description

The FreePages () function returns memory allocated by AllocatePages () to the firmware.

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages ().

EFI_INVALID_PARAMETER | Memory is not a page-aligned address or Pages is invalid.

Version 2.5 Errata A January, 2016 157

Unified Extensible Firmware Interface Specification

EFI_BOOT_SERVICES.GetMemoryMap()

158

Summary
Returns the current memory map.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_GET MEMORY MAP) (

IN OUT UINTN

*MemoryMapSize,

IN OUT EFI_MEMORY DESCRIPTOR *MemoryMap,

OUT UINTN
OUT UINTN
OUT UINT32
)

Parameters

MemoryMapSize

MemoryMap

MapKey
DescriptorSize

DescriptorVersion

Related Definitions

*MapKey,
*DescriptorSize,
*DescriptorVersion

A pointer to the size, in bytes, of the MemoryMap buffer. On
input, this is the size of the buffer allocated by the caller. On
output, it is the size of the buffer returned by the firmware if the
buffer was large enough, or the size of the buffer needed to
contain the map if the buffer was too small.

A pointer to the buffer in which firmware places the current
memory map. The map is an array of
EFI_MEMORY DESCRIPTORs. See “Related Definitions.”

A pointer to the location in which firmware returns the key for the
current memory map.

A pointer to the location in which firmware returns the size, in
bytes, of an individual EFI_MEMORY DESCRIPTOR.

A pointer to the location in which firmware returns the version
number associated with the EFI_MEMORY DESCRIPTOR. See
“Related Definitions.”

//***

//EFI_MEMORY DESCRIPTOR
[/% % % 3 e e e ke ok ke ke ok ok ok ok ok o ok

typedef struct {
UINT32

Type;

EFI_PHYSICAL ADDRESS PhysicalStart;
EFI_VIRTUAL ADDRESS VirtualStart;

UINT64
UINT64

NumberOfPages;
Attribute;

} EFI_MEMORY DESCRIPTOR;

January, 2016 Version 2.5 Errata A

Type

PhysicalStart

VirtualStart

NumberOfPages
Attribute

Services — Boot Services

Type of the memory region. Type EFI_MEMORY TYPE is
defined in the AllocatePages () function description.

Physical address of the first byte in the memory region. Physical
start must be aligned on a 4 KiB boundary. Type
EFI_PHYSICAL ADDRESS is defined in the
AllocatePages () function description.

Virtual address of the first byte in the memory region. Virtual
start must be aligned on a 4 KiB boundary. Type
EFI_VIRTUAL ADDRESS is defined in “Related Definitions.”

Number of 4 KiB pages in the memory region.

Attributes of the memory region that describe the bit mask of
capabilities for that memory region, and not necessarily the
current settings for that memory region. See the following
“Memory Attribute Definitions.”

//***

// Memory Attribute Definitions
//***

// These types can be “ORed” together as needed.

#define EFI_MEMORY UC 0x0000000000000001
#define EFI_MEMORY WC 0x0000000000000002
#define EFI_MEMORY WT 0x0000000000000004
#define EFI_MEMORY WB 0x0000000000000008
#define EFI_MEMORY UCE 0x0000000000000010
#define EFI_MEMORY WP 0x0000000000001000
#define EFI_MEMORY RP 0x0000000000002000
#define EFI_MEMORY XP 0x0000000000004000
#define EFI_MEMORY NV 0x0000000000008000
#define EFI_MEMORY MORE RELIABLE 0x0000000000010000
#define EFI_MEMORY RO 0x0000000000020000
#define EFI_MEMORY RUNTIME 0x8000000000000000

EFI_MEMORY UC
EFI_MEMORY_ WC

EFI_MEMORY_WT

EFI_MEMORY_WB

EFI_MEMORY_ UCE

Version 2.5 Errata A

Memory cacheability attribute: The memory region supports
being configured as not cacheable.

Memory cacheability attribute: The memory region supports
being configured as write combining.

Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write through” policy.
Writes that hit in the cache will also be written to main memory.

Memory cacheability attribute: The memory region supports
being configured as cacheable with a “write back” policy. Reads
and writes that hit in the cache do not propagate to main memory.
Dirty data is written back to main memory when a new cache line
is allocated.

Memory cacheability attribute: The memory region supports
being configured as not cacheable, exported, and supports the
“fetch and add” semaphore mechanism.

January, 2016 159

Unified Extensible Firmware Interface Specification

EFI_MEMORY WP Physical memory protection attribute: The memory region
supports being configured as write-protected by system hardware.
This is typically used as a cacheability attribute today. The
memory region supports being configured as cacheable with a
"write protected" policy. Reads come from cache lines when
possible, and read misses cause cache fills. Writes are propagated
to the system bus and cause corresponding cache lines on all
processors on the bus to be invalidated.

Note: UEFI spec 2.5 and following: use EFI_MEMORY_RO as write-protected physical memory

160

protection attribute. Also, EFI_MEMORY_ WP means cacheability attribute.

EFI_MEMORY RP Physical memory protection attribute: The memory region
supports being configured as read-protected by system hardware.

EFI_MEMORY XP Physical memory protection attribute: The memory region
supports being configured so it is protected by system hardware
from executing code.

EFI_MEMORY NV Runtime memory attribute: The memory region refers to
persistent memory

EFI_MEMORY MORE RELIABLE

The memory region provides higher reliability relative to other
memory in the system. If all memory has the same reliability,
then this bit is not used.

EFI_MEMORY RO Physical memory protection attribute: The memory region
supports making this memory range read-only by system
hardware.

EFI_MEMORY RUNTIME Runtime memory attribute: The memory region needs to be
given a virtual mapping by the operating system when
SetVirtualAddressMap () is called (described in
Section 7.4.

//***

/ /EFI_VIRTUAL_ADDRESS
[/% % K 3 e e sk e ok e ok e ok e ok ok e ok ok e ok ok ok ok o ok ok ke o ok ok ok ke ok ok ok ok ok ok ok o ok ok ok ok o ok e ok ok

typedef UINT64 EFI_VIRTUAL ADDRESS;

//***

// Memory Descriptor Version Number
//***

#define EFI_MEMORY DESCRIPTOR VERSION 1

Description

The GetMemoryMap () function returns a copy of the current memory map. The map is an array of
memory descriptors, each of which describes a contiguous block of memory. The map describes all
of memory, no matter how it is being used. That is, it includes blocks allocated by

EFI BOOT SERVICES.AllocatePages () and

January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI BOOT SERVICES.AllocatePool (), as well as blocks that the firmware is using for its
own purposes. The memory map is only used to describe memory that is present in the system. The
firmware does not return a range description for address space regions that are not backed by
physical hardware. Regions that are backed by physical hardware, but are not supposed to be
accessed by the OS, must be returned as reserved. Herein, 'reserved' is the definition of the term as
noted by the UEFI Specification as Ef iReservedMemoryType in the UEFI memory map. The
OS may use addresses of memory ranges that are not described in the memory map at its own
discretion.

Until EFI BOOT SERVICES.ExitBootServices () is called, the memory map is owned by
the firmware and the currently executing EFI Image should only use memory pages it has explicitly
allocated.

If the MemoryMap buffer is too small, the EFI_BUFFER_TOO_SMALL error code is returned and
the MemoryMapSi ze value contains the size of the buffer needed to contain the current

memory map. The actual size of the buffer allocated for the consequent call to Ge tMemoryMap ()
should be bigger then the value returned in MemoryMapSi ze, since allocation of the new buffer
may potentially increase memory map size.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is
changed every time something in the memory map changes. In order to successfully invoke

EFI BOOT SERVICES.ExitBootServices () the caller must provide the current memory
map key.

The GetMemoryMap () function also returns the size and revision number of the

EFI_MEMORY DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY DESCRIPTOR array element returned in MemoryMap. The size is returned to
allow for future expansion of the EFI_MEMORY DESCRIPTOR in response to hardware
innovation. The structure of the EFI_MEMORY DESCRIPTOR may be extended in the future but it
will remain backwards compatible with the current definition. Thus OS software must use the
DescriptorSize to find the start of each EFI_MEMORY DESCRIPTOR in the MemoryMap
array.

Status Codes Returned

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL | The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER | MemoryMapSi ze is NULL.

EFI_INVALID_PARAMETER | The MemoryMap buffer is not too small and MemoryMap is
NULL.

Version 2.5 Errata A January, 2016 161

Unified Extensible Firmware Interface Specification

EFI_BOOT_SERVICES.AllocatePool()

Summary
Allocates pool memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE POOL) (
IN EFI_MEMORY TYPE PoolType,

IN UINTN Size,
OUT VOID **Buffer
)i
Parameters
PoolType The type of pool to allocate. Type EFI_MEMORY TYPE is

defined in the EFI BOOT SERVICES.AllocatePages ()
function description. PooI Type values in the range
0x70000000..0x7FFFFFFF are reserved for OEM use.
PoolType values in the range 0x80000000..0xFFFFFFFF are
reserved for use by UEFI OS loaders that are provided by
operating system vendors. The only illegal memory type values
are those in the range Ef iMaxMemoryType..0x6FFFFFFF.

Size The number of bytes to allocate from the pool.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate memory of type
EfiReservedMemoryType.

Description

The AllocatePool () function allocates a memory region of Size bytes from memory of type
PoolType and returns the address of the allocated memory in the location referenced by Buffer.
This function allocates pages from EfiConventionalMemory as needed to grow the requested
pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the
EFI BOOT SERVICES.FreePool () function.

Status Codes Returned

EFI_SUCCESS The requested number of bytes was allocated.
EFI_OUT_OF RESOURCES | The pool requested could not be allocated.
EFI_INVALID_PARAMETER | PoolType was invalid.

EFI_INVALID_PARAMETER | Buffer was NULL.

162 January, 2016 Version 2.5 Errata A

Version 2.5 Errata A

EFI_BOOT_SERVICES.FreePool()

Summary
Returns pool memory to the system.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_FREE POOL) (
IN VOID *Buffer
)

Parameters

Services — Boot Services

Buffer Pointer to the buffer to free.

Description

The FreePool () function returns the memory specified by Buf fer to the system. On return, the
memory’s type is EfiConventionalMemory. The Buffer thatis freed must have been

allocated by AllocatePool ().

Status Codes Returned

EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER | Buffer was invalid.

6.3 Protocol Handler Services

In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a Protocol

Interface structure. The structure contains the functions and instance data that are used to access a
device. The functions that make up Protocol Handler Services allow applications to install a
protocol on a handle, identify the handles that support a given protocol, determine whether a handle
supports a given protocol, and so forth. See Table 27.

Table 27. Protocol Interface Functions

Name Type
InstallProtocolinterface Boot
UninstallProtocolinterface Boot
ReinstallProtocollnterface Boot
RegisterProtocolNotify Boot
LocateHandle Boot

Description

Installs a protocol interface on a device handle.
Removes a protocol interface from a device handle.
Reinstalls a protocol interface on a device handle.

Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

Returns an array of handles that support a specified
protocol.

January, 2016

163

Unified Extensible Firmware Interface Specification

164

Name Type Description

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

LocateDevicePath Boot Locates all devices on a device path that support a

specified protocol and returns the handle to the device
that is closest to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a protocol
interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocollnformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The

return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Boot Finds the first handle in the handle database the supports
the requested protocol.

InstallMultipleProtocollnterfaces Boot Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolinterfaces Boot Uninstalls one or more protocol interfaces from a handle.

The Protocol Handler boot services have been modified to take advantage of the information that is
now being tracked with the EFI _BOOT SERVICES.OpenProtocol () and

EFI BOOT SERVICES.CloseProtocol () boot services. Since the usage of protocol
interfaces is being tracked with these new boot services, it is now possible to safely uninstall and
reinstall protocol interfaces that are being consumed by UEFI drivers.

As depicted in Figure 20, the firmware is responsible for maintaining a “data base” that shows which
protocols are attached to each device handle. (The figure depicts the “data base” as a linked list, but
the choice of data structure is implementation-dependent.) The “data base” is built dynamically by
calling the EFI BOOT SERVICES.InstallProtocolInterface () function. Protocols
can only be installed by UEFI drivers or the firmware itself. In the figure, a device handle
(EFI_HANDLE) refers to a list of one or more registered protocol interfaces for that handle. The
first handle in the system has four attached protocols, and the second handle has two attached
protocols. Each attached protocol is represented as a GUID/Interface pointer pair. The GUID is the
name of the protocol, and Interface points to a protocol instance. This data structure will typically
contain a list of interface functions, and some amount of instance data.

Access to devices is initiated by calling the EFI BOOT SERVICES.HandleProtocol ()
function, which determines whether a handle supports a given protocol. If it does, a pointer to the
matching Protocol Interface structure is returned.

January, 2016 Version 2.5 Errata A

Services — Boot Services

When a protocol is added to the system, it may either be added to an existing device handle or it may
be added to create a new device handle. Figure 20 shows that protocol handlers are listed for each
device handle and that each protocol handler is logically a UEFI driver.

First Handle ~

Device Handle

4 2 v v
GUID GUID GUID GUID
Interface Interface Interface Interface
Protocol Protocol Protocol Protocol
Interface Interface Interface Interface
Instance Instance Instance Instance
Data Data Data Data

y
Device Handle

v

GUID GUID
Interface Interface
Protocol Protocol
Interface Interface
Instance Instance
Data Data

OM13155

Figure 20. Device Handle to Protocol Handler Mapping

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces
provides great flexibility. Layering makes it possible to add a new protocol that builds on a device’s
basic protocols. An example of this might be to layer on a

EFI SIMPLE TEXT OUTPUT PROTOCOL support that would build on the handle’s underlying
EFI SERIAL IO PROTOCOL.

The ability to add new handles can be used to generate new devices as they are found, or even to

generate abstract devices. An example of this might be to add a multiplexing device that replaces
ConsoleOut with a virtual device that multiplexes the

EFI_SIMPLE TEXT OUTPUT PROTOCOL protocol onto multiple underlying device handles.

Driver Model Boot Services
Following is a detailed description of the new UEFI boot services that are required by the UEFI
Driver Model. These boot services are being added to reduce the size and complexity of the bus
drivers and device drivers. This, in turn, will reduce the amount of ROM space required by drivers
that are programmed into ROMs on adapters or into system FLASH, and reduce the development
and testing time required by driver writers.

Version 2.5 Errata A January, 2016 165

Unified Extensible Firmware Interface Specification

166

These new services fall into two categories. The first group is used to track the usage of protocol
interfaces by different agents in the system. Protocol interfaces are stored in a handle database. The
handle database consists of a list of handles, and on each handle there is a list of one or more
protocol interfaces. The boot services

EFI BOOT SERVICES.InstallProtocolInterface(),

EFI BOOT SERVICES.UninstallProtocollInterface (), and

EFI BOOT SERVICES.ReinstallProtocolInterface () are used to add, remove, and
replace protocol interfaces in the handle database. The boot service

EFI BOOT SERVICES.HandleProtocol () is used to look up a protocol interface in the
handle database. However, agents that call HandleProtocol () are not tracked, so it is not safe
to call UninstallProtocolInterface () or ReinstallProtocolInterface ()
because an agent may be using the protocol interface that is being removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To accomplish
this, each protocol interface includes a list of agents that are consuming the protocol interface.
Figure 21 shows an example handle database with these new agent lists. An agent consists of an
image handle, a controller handle, and some attributes. The image handle identifies the driver or
application that is consuming the protocol interface. The controller handle identifies the controller
that is consuming the protocol interface. Since a driver may manage more than one controller, the
combination of a driver's image handle and a controller's controller handle uniquely identifies the
agent that is consuming the protocol interface. The attributes show how the protocol interface is
being used.

January, 2016 Version 2.5 Errata A

Services — Boot Services

First Handle
\
Device Handle
+ + e o o
GUID GUID
Interface * Interface \
Image Handle Image Handle
Protocol Controller Handle Controller Handle
Interface Attributes Protocol Attributes
Instance v Interface 7
Data Image Handle Instance oo
Controller Handle Data
] Attributes
) 7
Device Handle Image Handle
J Controller Handle
GUID Attributes
C Interface '\
Protocol Image Handle
Interface Controller Handle
Instance Attributes
Data y
Image Handle
Controller Handle
Attributes

OM13156

Figure 21. Handle Database

In order to maintain these agent lists in the handle database, some new boot services are required.
These are EFI BOOT SERVICES.OpenProtocol (),

EFI BOOT SERVICES.CloseProtocol (), and

EFI BOOT SERVICES.OpenProtocolInformation(). OpenProtocol () adds
elements to the list of agents consuming a protocol interface. CloseProtocol () removes
elements from the list of agents consuming a protocol interface, and

EFI BOOT SERVICES.OpenProtocolInformation () retrieves the entire list of agents
that are currently using a protocol interface.

The second group of boot services is used to deterministically connect and disconnect drivers to
controllers. The boot services in this group are

EFI BOOT SERVICES.ConnectController ()) and

EFI BOOT SERVICES.DisconnectController (). These services take advantage of the
new features of the handle database along with the new protocols described in this document to
manage the drivers and controllers present in the system. ConnectController () uses a set of
strict precedence rules to find the best set of drivers for a controller. This provides a deterministic
matching of drivers to controllers with extensibility mechanisms for OEMs, IBVs, and IHVs.
DisconnectController () allows drivers to be disconnected from controllers in a controlled
manner, and by using the new features of the handle database it is possible to fail a disconnect
request because a protocol interface cannot be released at the time of the disconnect request.

Version 2.5 Errata A January, 2016 167

Unified Extensible Firmware Interface Specification

168

The third group of boot services is designed to help simplify the implementation of drivers, and
produce drivers with smaller executable footprints. The

EFI BOOT SERVICES.LocateHandleBuffer () is a new version of

EFI BOOT SERVICES.LocateHandle () thatallocates the required buffer for the caller. This
eliminates two calls to LocateHandle () and a call to

EFI BOOT SERVICES.AllocatePool () from the caller's code.

EFI BOOT SERVICES.LocateProtocol () searches the handle database for the first
protocol instance that matches the search criteria. The

EFI BOOT SERVICES.InstallMultipleProtocolInterfaces () and

EFI BOOT SERVICES.UninstallMultipleProtocolInterfaces () are very useful
to driver writers. These boot services allow one or more protocol interfaces to be added or removed
from a handle. In addition, InstallMultipleProtocolInterfaces () guarantees thata
duplicate device path is never added to the handle database. This is very useful to bus drivers that
can create one child handle at a time, because it guarantees that the bus driver will not inadvertently
create two instances of the same child handle.

January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.InstallProtocolinterface()

Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created and added
to the list of handles in the system. InstallMultipleProtocolInterfaces () performs
more error checking than InstallProtocolInterface (), so it is recommended that
InstallMultipleProtocolInterfaces () be used in place of
InstallProtocolInterface ()

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_INSTALL PROTOCOL INTERFACE) (
IN OUT EFI_HANDLE *Handle,

IN EFI_GUID

*Protocol,

IN EFI_INTERFACE TYPE InterfaceType,

IN VOID
)

Parameters
Handle

Protocol

InterfaceType

Interface

Related Definitions

*Interface

A pointer to the EFI_HANDLE on which the interface is to be
installed. If *Handle is NULL on input, a new handle is created
and returned on output. If *Handle is not NULL on input, the
protocol is added to the handle, and the handle is returned
unmodified. The type EFI_HANDLE is defined in “Related
Definitions.” If *Handle is not a valid handle, then
EFI_INVALID PARAMETER is returned.

The numeric ID of the protocol interface. The type EFI_GUID
is defined in “Related Definitions.” It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID values.

Indicates whether Tnterface is supplied in native form. This
value indicates the original execution environment of the request.
See “Related Definitions.”

A pointer to the protocol interface. The Tnterface must
adhere to the structure defined by Protocol. NULL can be
used if a structure is not associated with Protocol.

//***

//EFI_HANDLE

[/% % % 3 e e sk e ok ok ke ok
typedef VOID *EFI HANDLE;

Version 2.5 Errata A

January, 2016 169

Unified Extensible Firmware Interface Specification

170

//***

//EFI_GUID
//***
typedef struct {

UINT32 Datal;

UINT16 DataZ2;

UINT16 Data3;

UINTS Data4/[8];
} EFI_GUID;

//***

//EFI_INTERFACE TYPE
//***
typedef enum ({

EFI_NATIVE INTERFACE
} EFI_INTERFACE TYPE;

Description

The InstallProtocolInterface () function installs a protocol interface (a GUID/Protocol
Interface structure pair) on a device handle. The same GUID cannot be installed more than once

onto the same handle. If installation of a duplicate GUID on a handle is attempted, an
EFI_INVALID PARAMETER will result.

Installing a protocol interface allows other components to locate the Hand1e, and the interfaces

installed on it.

When a protocol interface is installed, the firmware calls all notification functions that have
registered to wait for the installation of Protocol. For more information, see the
EFI BOOT SERVICES.RegisterProtocolNotify () function description.

Status Codes Returned

EFI_SUCCESS The protocol interface was installed.
EFI_OUT_OF RESOURCES Space for a new handle could not be allocated.
EFI_INVALID_PARAMETER Handleis NULL
EFI_INVALID_PARAMETER Protocol is NULL.
EFI_INVALID_PARAMETER InterfaceType is not

EFI_NATIVE INTERFACE.
EFI_INVALID_PARAMETER Protocol is already installed on the handle

specified by Handle.

January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.UninstallProtocolinterface()

Summary

Removes a protocol interface from a device handle. It is recommended that
UninstallMultipleProtocolInterfaces () be used in place of
UninstallProtocolInterface ().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UNINSTALL_PROTOCOL_INTERFACE) (
IN EFI_HANDLE Handle,

IN EFI_GUID *Protocol,
IN VOID *Interface
)
Parameters
Handle The handle on which the interface was installed. If Handle is

not a valid handle, then EFI_INVALID PARAMETER is
returned. Type EFI HANDLE is defined in the

EFI BOOT SERVICES.InstallProtocolInterface (
) function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to
pass in a valid GUID. See “Wired For Management Baseline”
for a description of valid GUID values. Type EFI_GUID is
defined in the InstallProtocolInterface () function
description.

Interface A pointer to the interface. NULL can be used if a structure is not
associated with Protocol.

Description

The UninstallProtocolInterface () function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has been
removed. In some cases, outstanding reference information is not available in the protocol, so the
protocol, once added, cannot be removed. Examples include Console 1/0, Block 1/0, Disk 1/0, and
(in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above. There
may be some drivers that are currently consuming the protocol interface that needs to be uninstalled,
so it may be dangerous to just blindly remove a protocol interface from the system. Since the usage
of protocol interfaces is now being tracked for components that use the

Version 2.5 Errata A January, 2016 171

Unified Extensible Firmware Interface Specification

172

EFI BOOT SERVICES.OpenProtocol () and

EFI BOOT SERVICES.CloseProtocol () boot services, a safe version of this function can
be implemented. Before the protocol interface is removed, an attempt is made to force all the drivers
that are consuming the protocol interface to stop consuming that protocol interface. This is done by
calling the boot service EFI BOOT SERVICES.DisconnectController () for the driver
that currently have the protocol interface open with an attribute of

EFI_OPEN_ PROTOCOL BY DRIVER or EFI_OPEN PROTOCOL BY DRIVER |

EFI_OPEN PROTOCOL EXCLUSIVE.

If the disconnect succeeds, then those agents will have called the boot service

EFI BOOT SERVICES.CloseProtocol () to release the protocol interface. Lastly, all of the
agents that have the protocol interface open with an attribute of

EFI_OPEN_PROTOCOL BY HANDLE PROTOCOL,

EFI_OPEN_PROTOCOL_ GET PROTOCOL or EFI_OPEN_ PROTOCOL_TEST PROTOCOL are
closed. If there are any agents remaining that still have the protocol interface open, the protocol
interface is not removed from the handle and EFI_ACCESS_DENIED is returned. In addition, all
of the drivers that were disconnected with the boot service DisconnectController () earlier,
are reconnected with the boot service EFI BOOT SERVICES.ConnectController (). If
there are no agents remaining that are consuming the protocol interface, then the protocol interface is
removed from the handle as described above.

Status Codes Returned

EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS DENIED The interface was not removed because the interface is
still being used by a driver.

EFI1_INVALID_PARAMETER Handleis NULL.

EFI1_INVALID_PARAMETER Protocol is NULL.

January, 2016 Version 2.5 Errata A

Services — Boot Services

EFI_BOOT_SERVICES.ReinstallProtocolinterface()

Summary
Reinstalls a protocol interface on a device handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REINSTALL PROTOCOL INTERFACE) (
IN EFI_HANDLE Handle,

IN EFI GUID *Protocol,
IN VOIB *OldInterface,
IN VOID *NewInterface
)
Parameters
Handle Handle on which the interface is to be reinstalled. If Handle is

not a valid handle, then EFI_INVALID PARAMETER is
returned. Type EFI HANDLE is defined in the

EFI BOOT SERVICES.InstallProtocolInterface (
) function description.

Protocol The numeric ID of the interface. It is the caller’s responsibility to
pass in a valid GUID. See “Wired For Management Baseline” for
a description of valid GUID values. Type EFI_GUID is defined
in the InstallProtocolInterface () function
description.

OldInterface A pointer to the old interface. NULL can be used if a structure is
not associated with Protocol.

NewInterface A pointer to the new interface. NULL can be used if a structure is
not associated with Protocol.

Description

The ReinstallProtocolInterface () function reinstalls a protocol interface on a device
handle. The Ol1dInterface for Protocol is replaced by the NewInterface.
NewInterface may be the same as OldInterface. Ifitis, the registered protocol notifies
occur for the handle without replacing the interface on the handle.

As with InstallProtocolInterface (), any process that has registered to wait for the
installation of the interface is notified.

The caller is responsible for ensuring that there are no references to the OIdInterface thatis
being removed.

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section above. There
may be some number of drivers currently consuming the protocol interface that is being reinstalled.
In this case, it may be dangerous to replace a protocol interface in the system. It could result in an

Version 2.5 Errata A January, 2016 173

Unified Extensible Firmware Interface Specification

174

unstable state, because a driver may attempt to use the old protocol interface after a new one has
been reinstalled. Since the usage of protocol interfaces is now being tracked for components that use
the EFI BOOT SERVICES.OpenProtocol () and

EFI BOOT SERVICES.CloseProtocol () boot services, a safe version of this function can
be implemented.

When this function is called, a call is first made to the boot service
UninstallProtocolInterface (). This will guarantee that all of the agents are currently
consuming the protocol interface O1dInterface will stop using OldInterface. If
UninstallProtocolInterface () returns EFI_ACCESS_ DENIED, then this function
returns EFI_ACCESS_DENIED, OldInterface remains on Handle, and the protocol notifies
are not processed because NewInterface was never installed.

IfUninstallProtocolInterface () succeeds, then a call is made to the boot service
EFI BOOT SERVICES.InstallProtocollInterface () toputthe NewInterface onto
Handle.

Finally, the boot service EFI BOOT SERVICES.ConnectController () is called so all
agents that were forced to release O1dInterface with UninstallProtocolInterface ()
can now consume the protocol interface NewInterface that was installed with
InstallProtocolInterface (). After OldInterface has been replaced with
NewInterface, any process that has registered to wait for the installation of the interface is
notified.

Status Codes Returned

EFI_SUCCESS The protocol interface was reinstalled.
EFI_NOT_FOUND The O1ldInte