UEFI Specification

Unified Extensible Firmware Interface
Specification

Version 2.6, Errata A
January, 2017

Version 2.6, Errata A January, 2017 i

UEFI Specification

Acknowledgements

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material
contained herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this
information is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby
disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if
any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with
regard to this material and any contribution thereto. Designers must not rely on the absence or characteristics of any
features or instructions marked "reserved” or "undefined." The Unified EFI Forum, Inc. reserves any features or
instructions so marked for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE,
QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH
REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION THERETO.

INNO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE LIABLE
TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS
OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES
WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY
OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF
THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006-2017 Unified EFI Forum, Inc. All Rights Reserved.

i January, 2017 Version 2.6, Errata A

UEFI Specification

Revision History

Revision Revision History (numbers = Mantis ticket numbers) Date
20 First release of specification. January 31,
2006
2.1 Second release January 23,
2007
2.1a UEFI 2.1 incorporating Errata through 4-27-07 April 27,2007
2.1b 51 Long physical blocks updates December 11,
2007
21b 156 SendForm API Errata December 11,
2007
2.1b 158 Errata to the UEFI 2.1 configuration sections December 11,
2007
2.1b 159 Adjust some of the #define names in the Simple Text Input Ex December 11,
protocol 2007
21b 160 Clean up references to PCIR December 11,
2007
2.1b 162 UEFI PIWG Device Path Errata December 11,
2007
2.1b 164 Update to USB2_HC_PROTOCOL Table December 11,
2007
2.1b 165 Fix EFI_GRAPHICS_OUTPUT_PIXEL December 11,
2007
2.1b 168 Remove LOAD_OPTION_GRAPHICS December 11,
2007
2.1b 170 (Addition of) Driver Family Override Protocol December 11,
2007
2.1b 172 Typo for ResetSystem() December 11,
2007
2.1b 173 Minor changes to the description of two of the fields in the Common | December 11,
Platform Error Record, in Appendix N 2007
2.1b 174 Error record addition for dma remapping units December 11,
2007
2.1b 175 Update to SendForm API December 11,
2007
2.1b 177 remove ending paragraph (editing text) in section 9.6 December 11,
2007
2.1b 181 Correct MNP GUID collision December 11,
2007
2.1b 182 Clarify EFI_MTFTP4_TOKEN December 11,
2007

Version 2.6, Errata A

January, 2017

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.1b 184 SNIA/DDF Wording Update December 11,
2007
21b 185 Change EFI term to UEFI for consistency December 11,
2007
2.1b 186 change PCIR struct to match PCI FW Spec 3.0 December 11,
2007
2.1b 187 Clarify input protocols. December 11,
2007
2.1b 190 Extensive errata form UCST including OP codes changes ro resolve December 11,
conflicts. 2007
2.1b 197 EFI Loaded Image Device Path Protocol December 11,
2007
2.1b 205 Change Loadlmage() parameter name from FilePath to DevicePath; December 11,
ends confusion with EFI_LOADED_IMAGE_PROTOCOL 2007
2.1c 52 New GUID for Driver Diagnostics and Driver Configuration Protocols | June 5, 2008
with new GUID
21c 54 ACPI Table Protocol GUID Update June 5, 2008
2.1c 55 Clarification on UpdateCapsule June 5, 2008
2.1c 56 Clarification on ResetSystem June 5, 2008
2.1c 57 Clarify text for Extended SCSI Pass Thru Protocol.GetNextTargetLun() | June 5, 2008
2.1c 58 Language update for EfiReservedMemory type usage June 5, 2008
2.1c 59 Add return code to Diagnostics Protocol June 5, 2008
2.1c 60 iSCSI Device Path Update June 5, 2008
2.1c 189 Graphics Output Protocol clarification June 5, 2008
2.1c 193 Loaded Image device paths for EFI Drivers loaded from PCI Option June 5, 2008
ROMs
2.1c 203 Platform Error Record - x64 register state errata June 5, 2008
2.1c 206 Clarify return values for extended scsi passthru protocol June 5, 2008
2.1c 207 Updated Wording for the File Path June 5, 2008
2.1c 208 Driver Protocol Names and GUIDs June 5, 2008
2.1c 209 ESP number/location clarifications June 5, 2008
21c 213 UEFI HIl Errata June 5, 2008
2.1c 214 Device_lO + typos June 5, 2008
2.1c 216 UEFI 2.1 text corrections June 5, 2008
2.1c 217 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query() | June 5,2008
Update
2.1c 218 SATA update to section 9.3.5.6 June 5, 2008
2.1c 219 |A-32 and x64 stack need to be 16-byte aligned June 5, 2008
2.1c 220 Replace references to RFC 3066 to RFC 4646 June 5, 2008
2.1c 221Image Block Structure name typos in 27.3.7.2 June 5, 2008

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.1c 244 Replace references to EFI_FIRMWARE_VOLUME_INFO_PPI with June 5, 2008
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
2.1c 245 Remove extraneous text in Chapter 29 June 5, 2008
2.1c 246 New return code June 5, 2008
2.1c 248 Correction to text in Chapter 8.2 of UEFI 2.1b June 5, 2008
2.1c 249 Latest update to UCST Errata list June 5, 2008
2.1c 266 PKCS11.5 structure does not correctly specify the portion of the June 5, 2008
cited RFC that pertains to the certificate struct/algorithm
2.1c 278 Change references to EFI_SIMPLE_INPUT_PROTOCOL into June 5, 2008
EFI_SIMPLE_TEXT_INPUT_PROTOCOL
2.1c 280 Some minor errata to keyboard related topics June 5, 2008
2.1c 281 Runtime memory allocation June 5, 2008
21c 283 Minor update to clarify a typedef/return code in Hll June 5, 2008
2.1c Re-format Revision History from bulleted lists to one row per Mantis June 5, 2008
ticket/ Engineering Change Request
2.2 157 Floating-Point ABI Changes For X86, X64 & Itanium July 25,2008
2.2 169 EFI Driver Health Protocol July 25,2008
2.2 198 GUID Partition Entry Attributes Clarification and Definition July 25,2008
22 199 FTP API July 25,2008
22 200 VLAN July 25, 2008
22 201EAP July 25,2008
22 202 EAP Management July 25,2008
22 210 UEFI HIl Animation addition July 25,2008
2.2 211UEFI Setup Question / Form Access Update July 25,2008
22 212 UEFI HII Standards Mapping July 25,2008
2.2 215 new Start() RemainingDevicePath Syntax July 25,2008
2.2 237 UEFI User Identification Proposal (from USST) July 25,2008
2.2 242 UEFI ATA Pass-Through Protocol July 25,2008
2.2 279 Firmware/OS Trusted Key Exchange and Image Validation July 25,2008
2.2 282 Updated Requirements Section For ATA Pass Through (M242) July 25,2008
2.2 288 Additional wording fixes for GPT Entry Attribute Bit 1 July 25,2008
2.2 291 Hll Errata / Update July 25,2008
2.2 294 LocateDevicePath with multi-instance device path July 25,2008
2.2 299 PIWG Firmware File/Firmware Volume Typo Errata July 25,2008
2.2 300 MTFTP errata July 25,2008
2.2 301 Errata to the Authentication Protocol July 25,2008
2.2 303 Add ability to have a capsule that initiates a reset & doesn’'t returnto | July 25, 2008
the caller
2.2 304 Errata to UpdateCapsule() July 25,2008
2.2 306 Some errata to the animation support July 25,2008

Version 2.6, Errata A

January, 2017

\Y

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.2 309 IPv6 Address display format clarification July 25,2008
2.2 310 EFI UDPv6 Protocol July 25,2008
22 311EFI DHCPv6 Protocol July 25, 2008
2.2 312 EFI IPv6 Protocol July 25,2008
22 313 EFI IPv6 Configuration Protocol July 25,2008
22 314 EFI MTFTP6 Protocol July 25,2008
22 315 EFI TCP6 Protocol July 25, 2008
22 319 UEFI IPSec protocol July 25,2008
2.2 320 Clarifcation for WIN_CERTIFICATE types & relationship with signature | July 25, 2008
database types
2.2 321Enable PCle 2.0 and beyond support in the UEFI error records July 25,2008
2.2 322 Chapter 2 updates for IP6 net stack July 25,2008
2.2 323 VLAN modification because of IPV6 July 25,2008
22 324 ATA Pass-Thru ECR Update July 25,2008
2.2 325 Minor correction 28.3.8.3.20 July 25,2008
22 327 Clarify the support in DHCP4 protocol for "Inform" (DHCPINFORM) Sept. 25, 2008
messages.
2.2 330 EFI_IFR_REF: Change cross reference to a question Sept. 25, 2008
2.2 331 Definition for EFI_BROWSER_ACTION and the related #defines were | Sept. 25, 2008
not present--Insert.
2.2 332 Correct SendForm description Type, PackageGuid and FormsetGuid | Sept. 25, 2008
parameters
2.2 333 Correct the incorrect ;' at the end of EFI_GUID #defines Sept. 25, 2008
2.2 335 User Authentication errata Sept. 25, 2008
2.2 337 Replace the EFI_CRYPT_HANDLE reference (in the IPSsec APl)witha | Sept. 25, 2008
self-contained, independent definition.
2.2 339 Update missing TPL restrictions Sept. 25, 2008
22 340 UEFI 2.2 Editorial / Formatting Issues Sept. 25, 2008
2.2 343 Correct missing parameter for User() function in Sept. 25, 2008
EFI_USER_CREDENTIAL_PROTOCOL
2.2 344 Correct missing status codes returned section for Form() in Sept. 25, 2008
EFI_USER_CREDENTIAL_PROTOCOL.
2.2 346 Nest, Sections 10.11 & 10.12 Under 10.10 Sept. 25, 2008
2.2 347 Replace first paragraph of the “Description” section for the Sept. 25,2008
ExitBootServices()
2.2 334 Standardized "Unicode" References Jan. 11, 2009
2.2 348 EFI_IFR_RESET_BUTTON is incorrectly listed as a question Jan. 11, 2009
22 350 EFI_HII_STRING_PROTOCOL Typos Jan. 11, 2009
22 351 Fix an unaligned field in a device path Jan. 11, 2009
2.2 357 Clarify EFI_IFR_DISABLE_IF behavior with regard to dynamic values Jan. 11, 2009
22 394 Omission in EFI_USB2_HC_PROTOCOL Jan. 11, 2009

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.2 397 PCI CopyMem() misspelling Jan. 11, 2009
2.2 398 Update to M348 to fix small typo Jan. 11, 2009
2.2 errata 358 Missing signature for UEFI 2.2. Feb. 12,2009
2.2 errata 359 TPL Table Feb. 12, 2009
2.2 errata 361 UEFI 2.2 Typos & Formatting Issues Feb. 12,2009
2.2 errata 362 UEFI 2.2 Typos (Next) Feb. 12,2009
2.2 errata 364 UEFI 2.2 Typos & Formatting Issues (ch. 9) Feb. 12,2009
2.2 errata 366 UEFI 2.x: Erroneous references to EFI_BOOT_SERVICES_TABLE, Feb. 12, 2009
EFI_RUNTIME_SERVICES_TABLE
2.2 errata 368 EFI_FONT_DISPLAY_INFO.Fontinfo description incorrect Feb. 12,2009
2.2 errata 370 EFI_SYSTEM_TABLE Errata (UEFI 2.1/UEFI 2.2) Feb. 12,2009
2.2 errata 371 UEFI 2.1 & UEFI 2.2 Typos (ch. 10) Feb. 12,2009
2.2 errata 372 UEFI 2.2 remove "Draft for Review” Feb. 12, 2009
2.2 errata 373 UEFI 2.2, chs. 9.5 & 9.6.2 & 9.6.3 (Device Path) Errata Feb. 12,2009
2.2 errata 374 UEFI 2.1 & UEFI 2.2 Errata (10.7-10.10) Feb. 12,2009
2.2 errata 375 Extra periods errata in UEFI 2.2 Feb. 12,2009
2.2 errata 377 Missing BLT buffer figure. Feb. 12,2009
2.2 errata 378 UEFI 2.1 & UEFI 2.2 HII Callback Clarifications Feb. 12,2009
2.2 errata 379 UEFI 2.1/UEFI 2.2 HIl-Related Errata Feb. 12, 2009
2.2 errata 384 Fix HIl package description omission. Feb. 12,2009
2.2 errata 387 UEFI 2.1/UEFI 2.2 Errata (ch. 12) Feb. 12,2009
2.2 errata 389 UEFI 2.2 HIl-Related Formatting Issues Feb. 12,2009
2.2 errata 390 UEFI 2.2 Miscellaneous Hll-related errata Feb. 12, 2009
2.2 errata 391 Polarity of INCONSISTENT_IF and NO_SUBMIT_IF IFR opcodes wrong | Feb. 12, 2009
2.2 errata 392 MBR errata in UEFI 2.2 Feb. 12, 2009
2.2 errata 393 UEFI 2.1/2.2 Boot Manager Behavior Clarification Feb. 12,2009
2.2 errata 400 FreePool() description error Feb. 12,2009
2.2 errata 404 Remove constraint form EFI_TIME.Year comment Feb. 12,2009
2.2 errata 429 EFI_HASH_SERVICE_BINDING_PROTOCOL GUID define misses Feb. 12,2009
_GUID
23 326 Add Firmware Management Protocol Feb. 12, 2009
23 376 Add ARM processor binding to UEFI Jan. 12, 2009
2.3 388 Add Hll callback types (FORM_OPEN, FORM_CLOSE) when a form is Feb. 12,2009
opened or closed.
23 394 Omission in EFI_USB2_HC_PROTOCOL Feb. 12,2009
2.3 395 New "Non-removable Media Boot Behavior" section Feb. 12, 2009
23 406 Missing EFI System Table Revision In UEFI 2.3 Draft Feb. 12,2009
2.3 408 ARM Binding corrections Feb. 12, 2009
23 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 12,2009
2.3 432 UEFI 2.3 Feb Draft: Appendix M. Feb. 12,2009

Version 2.6, Errata A

January, 2017

vii

viii

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.3 434 UEFI 2.3 Feb Draft: 28.3.8.3.58 Feb. 12,2009
2.3 435 Partition Signature clarification Feb. 12,2009
2.3 436 UEFI 2.3 split Figure 88 into 3 figures Feb. 12,2009
2.3 410 UNDI buffer usage Feb 18, 2009
23 413 Correct the definition of UEFI_CONFIG_LANG Feb 18, 2009
2.3 418 Change Appendix O from "UEFI ACPI Table" to "UEFI ACPI Data Feb 18, 2009
2.3 437 Errata to 2.3 draft material from UEFI Spec 2_3_Draft_Jan29 Feb 18, 2009
2.3 438 UEFI 2.3 Feb 13 Draft: Chapter 28 Formatting Issues Feb 18, 2009
23 439 Incorrect definitions of UEFI_CONFIG_LANG and Feb 25, 2009
UEFI_CONFIG_LANG_2 in UEFI 2.3 Feb18 draft
2.3 440 Change the defined type of EFI_STATUs from INTN to UINTN May 7, 2009
2.3 442 Section 28.3.8.3.64, EFI_IFR_SET, Prototype, lines 3-8, indent by 2 May 7, 2009
spaces
2.3 443 Section 28.3.8.3.38, EFI_IFR_MAP, Prototype, line 4, outdent 2 May 7, 2009
spaces.
2.3 444 Form Set Syntax: Section 28.2.5.1.1, section should be subheading, May 7, 2009
not heading level 5; Section 28.2.5.1, Syntax, line 3, text after := is not
aligned with other text on line 2, 4
2.3 445 Table 194. EFI_IFR_FORM_MAP_OP, 2nd column should be 0x5d May 7, 2009
(not 05xd)
2.3 446 Section 28.2.5.2 Forms, Syntax, change 3rd line to: May 7, 2009
form := EFI_IFR_FORM form-tag-list |
EFI_IFR_FORM_MAP form-tag-list
2.3 447Section 28.2.5.11.2 Moving Forms, Update line that starts with May 7, 2009
EFI_IFR_FORM to: EFI_IFR_FORM or EFI_IFR_FORM_MAP (and all
references in EFI_IFR_REF)
2.3 448 Section 28.2.5.4 Questions, Syntax, Update question-option-tag; Add | May 7, 2009
EFI_IFR_READ and EFI_IFR_WRITE in the question syntax.
2.3 449 Add missing EFI_IFR_GET, EFI_IFR_SET and EFI_IFR_MAP to the May 7, 2009
syntax.Section 28.2.5.7.
2.3 450 Missing opcode headers and formatting, section 28.3.8.3.x. May 7, 2009
2.3 452 Support to dynamically detect media errata - SNP May 7, 2009
2.3 453 Errata to support dynamic media detection - UNDI May 7, 2009
2.3 454 Dynamic support of media detection - network stack May 7, 2009
2.3 456 How to handle PXE boot w/o NIl Section 21.3 May 7, 2009
2.3 457 Change KeyData.PackedValue to 0x40000200, page 63. May 7, 2009
2.3 460 Chapter 2.6 language update May 7, 2009
2.3 4611P4 Mode Data definition update May 7, 2009
2.3 462 ExitBootServices timers deavtivation May 7, 2009
2.3 463 Update EFI_IP6_PROTOCOL.Neighbors() API May 7, 2009
23 A Sept 15, 2009

477 Text adjustment to ConfigAccess/ConfigRouting

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
23 A 478 Update to ALTCFG references Sept 15, 2009
23 A 490 Correction 28.2.5.6, Table 185. Information for Types of Storage Sept 15, 2009
23 A 505 TCP4/MTFTP4 status codeS Sept 15, 2009
23 A 506 TCP6/MTFTP6 Status Code Definition Sept 15, 2009
23 A 513 add support for gateways in ipv4 & ipv6 device path nodes Sept 15, 2009
23 A 516 User Identity Protocol bugs Sept 15, 2009
23 A 517 IP stack related protocol update Sept 15, 2009
23 A 518 typos Sept 15, 2009
23 A 522 Bugs in EFI_CERT_BLOCK_RSA 2048 SHA256, ISCSI device path, Sept 15, 2009
CHAP device path
23B 215 previously added to Device Driver (wrong), now BusDriver (correct) Dec. 15, 2009
23B 301 Errata to the Authentication Protocol Dec. 15, 2009
23B 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 24,2010
23B 454 Dynamic support of media dectection - network stack Dec. 15, 2009
23B 460 Section 2.6 language change Dec. 15, 2009
23B 476 Text adjustment to ConfigAccess & ConfigRouting Dec. 15, 2009
23B 479 TPM guideline added to section 2.6.2 Dec. 15, 2009
23B 507 Clarify ACPI Protocol’s position on checksums Dec. 15, 2009
238B 514 HIl Configuration String Syntax Clarification Feb. 24,2010
238B 515 Authenticated Variables Clarification Feb. 24,2010
23B 518 Typos in the UEFI2.3 specification Feb. 24,2010
23B 519 Add console table (chapt 11) for Dec. 15, 2009
EFI_SIMPLE_TEXST_INPUT_EX_PROTOCOL
23B 531 Clarify HIl Variable Storage Dec. 15, 2009
23B 532 “Legacy BIOS Bootable” GPT attribute Dec. 15, 2009
23B 533 GPT editorial cleanup Dec. 15, 2009
23B 534 Size of Partition Entry restriction Dec. 15, 2009
23B 536 IPSec errata Dec. 15, 2009
23B 537 Add missing ACPI ADR Device Path Representation Dec. 15, 2009
23B 539 CHAP node fix for iSCSI Dec. 15, 2009
23B 540 Register name usage Dec. 15, 2009
23B 542 Device Path Description Changes Dec. 15, 2009
23B 545 Action parameter of the Dec. 15, 2009
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack()
23B 546 typo in GOP definiton Dec. 15, 2009
23B 547 Clean-Up In HIl Sections Dec. 15, 2009
23B 549 Binary prefix change Dec. 15, 2009
23B 556 additional IPSec errata/issues Dec. 15, 2009

Version 2.6, Errata A

January, 2017

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.3B 557 Corrected Image Execution Information omission & ambiguity Dec. 15, 2009
23B 558 Clarify VLAN config publication requirements Dec. 15, 2009
23B 559 Extraneous “default” tag in EFI_IFR_SECUITY grammar Dec. 15, 2009
23B 560 Correct erroneous example in ExtractConfig() Dec. 15, 2009
23B 566 Minor update to Hll->NewString function description Dec. 15, 2009
23B 567 Various miscellaneous typos/updates Feb. 24,2010
23B 568 ATA_STATUS_BLOCK name errata Dec. 15, 2009
23B 572 EFI_IFR_SECURITY should be EFI_IFR_SECURITY_OP in Table 194 Dec. 15, 2009
23B 573 EFI_DESCRIPTION_STRING and EFI_DESCRIPTION_BUNDLE Feb. 24,2010
adjustments
238B 574 Add an "OPTIONAL" tag to a parameter in NewPackageList Dec. 15, 2009
23B 576 Clarifications in the Routing Protocol Dec. 15, 2009
23B 577 clarifications on the user identity protocol Dec. 15, 2009
23B 578 ATA Passthrough updates / questions Dec. 15, 2009
23B 580 ACPI_SUPPORT_PROTOCOL clarifications related to FADT and the Dec. 15, 2009
DSDT/FACS
23B 583 How do we know an EFI_HANDLE is Valid/Invalid Feb. 24,2010
23B 575 Machine hand-off/MP state modification Feb. 24,2010
23B 584 EFI_PXE_BASE_CODE_DHCPV6_PACKET missing for pxe bc protocol | Feb. 24,2010
23B 585 Errata to EFI_IFR_SET op-code Feb. 24,2010
23B 586 clarification of PXE2.1 specification for IPV4 interoperability issues Feb. 24,2010
23B 587 UEFI User Identity - Naming consistency Feb. 24,2010
238 588 UEFI User Identity - Return codes Feb. 24,2010
238B 589 Device path representation of IPv4/v6 text Feb. 24,2010
23B 590 Media detect clean-up Feb. 24,2010
23B 598 ARP is only an IPV4 concept. Feb. 24,2010
23B 600 Update to ConfigAccess/ConfigRouting Feb. 24,2010
23B 601 UNDI update as part of media detect changes Feb. 24,2010
23B 605 Clarify user identity Find API Feb. 24,2010
23B 608 more media detect clean-up Feb. 24,2010
23C 508 Update networking references, incl ipvé July 14,2010
23C 583 How do we know an EFI_HANDLE is Valid/Invalid July 14,2010
23C 609 Startimage return code update July 14,2010
23C 610 RSA data structure clarification July 14,2010
23C 611 Language correction requested for InstallProtocolinterface() and July 14,2010
InstallConfigurationTable(), Ref# 583
23C 613 PAUSE Key July 14, 2010
23C 620 Carification of need for Path MTU support for IPV4 and IPV6 July 14,2010

January, 2017 Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
23C 621 Typos in an EFI_HII_CONFIG_ACCESS_PROTOCOL.Callback() July 14, 2010
member
23C 622 Identify() function errata July 14,2010
23C 625 Minor typo in surrogate character description section July 14,2010
23C 632 Clarify Block 10 ReadBlocks and WriteBlocks functions handling of July 14,2010
media state change events
23C 633 Explicitly Specify ACPI Table Signature Format July 14,2010
23C 635 Missing GUID label for Config Access protocol July 14,2010
23C 636 Mistaken Reference to "Date" inside of Boolean question description | July 14,2010
23C 637 Clarification for Date/Time Question usage in IFR expressions. July 14,2010
23C 639 Callback() does not describe FORM_OPEN/FORM_CLOSE behavior July 14,2010
23C 640 String Reference Cleanup July 14,2010
23D 538 IPV6 PXE Oct. 28, 2010
23D 638 Add facility for dynamic IFR dynamic cross-references Oct. 28, 2010
23D 650 networking support errata Oct. 28, 2010
23D 651 update to IPSec for tunnel mode support Oct. 28,2010
23D 652 Clarification to the TimeZone value usage Oct. 28, 2010
23D 653 Errata to the Appendix N (Common Platform Error Record) Oct. 28, 2010
23D 659 Clarify section length definition in the error record Oct. 28, 2010
23D 662 ARM ABI errata Oct. 28, 2010
23D 663 Update ARM Platform binding to allow OS loader to assume Nov. 10, 2010
unaligned access support is enabled
23D 664 Appendix update for IPV6 network boot Oct. 28, 2010
23D 667 Clarification to the UEFI Configuration Table definition Oct. 28, 2010
231 484 Key Management Service Protocol Oct. 28, 2010
231 612 UEFI system Partition FAT32 data Region Alignment Oct. 29, 2010
231 616 Security Protocol command to support encrypted HDD Oct. 29, 2010
231 634 Forms Browser Default Behavior Oct. 29, 2010
231 645 Non-blocking interface for BLOCK oriented devices (BLOCK_IO_EX Oct. 29, 2010
transition to BLOCK_IO_2)
231 661 USB 3.0 Updates Oct. 29, 2010
231 484 Key Management Service (KMS) Protocol Oct. 29, 2010
231 616 Security Protocol Command to support encrypted HDD Jan. 17,2011
231 634 Forms Browser Default Behavior Jan. 17,2011
231 671 Errata; USB device path example is incorrect Jan. 17,2011
231 674 Section 3.2: Missing variable type for SetupMode variable Jan. 17,2011
231 677 Section 27.2.5 & 27.6.1: Typo in X509 Signature Type Jan. 17,2011

Version 2.6, Errata A

January, 2017

xi

Xii

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
231 678 Section 27.6.2: Imagehash reference needs to be removed Jan. 17,2011
231 679 UEFI Authenticated Variable & Signature Database Updates Jan. 17,2011
231 680 Netboot6 handle clarification Jan. 17,2011
231 681 Typo: Pg. 56 Jan. 17,2011
231 687 Update System Table with this new #define for 2.3.1 Jan. 17,2011
231 668 LUN implementations are not consistent Feb. 3, 2011
231 682 [UCST] Modal Form Feb. 3,2011
231 686 HII - Clarify Forms Browser 'standard’ user interfactions. Feb. 3, 2011
231 685 HIl - New op-code to enable event initiated refresh of browser Feb. 3,2011
context data
231 695 Add Port Ownership probing Feb. 3,2011
231 696 Update System Table with this new #define for Feb. 3,2011
EFI_SYSTEM_TABLE_REVISION
231 702 Clarifications on Variable Storage for Questions Feb. 3, 2011
231 704 Unload() definition is wrong Feb. 3,2011
231 705 REPC signature definition still confusing Feb. 3,2011
231 707 Errata revision in the EFI_IFR_VERSION format Feb. 3,2011
708 Errata (non-blocking BLOCK IO) April 5,2011
231 709 New Callback() Action Requests Related To Individual Forms. Feb. 3,2011
231 478 (REVISIT) Update to ALTCFG references March 11, 2011
231 711 SetVariable Update March 11, 2011
231 713 Remove the errata revision from the EFl_IFR_VERSION format. March 11, 2011
231 715 CPER Record and section field clarification March 11, 2011
231 716 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() IN OUT March 11, 2011
parameter Target input value shall be OxFFs
231 720 User Identification (UID) Errata — Credential Provider Enroll March 11, 2011
Clarification
231 721 User Identification (UID) Errata — SetIinfo Clarification March 11, 2011
231 722 User Identification (UID) Errata — Credential Provider Enroll April 5,2011
Clarification
231 723 User Identification (UID) Errata — EFI User Manager Notify & Enroll April 5,2011
Clarification
231 724 SetVariable Update 2 March 11, 2011
231 726 Errata/clean-up of EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN March 11, 2011
definition
231 727 Errata on return code for User Info Identity policy record March 11, 2011
231 728 Netboot 6 errata - DUID-UUID March 11, 2011
231 729 Errata: clarification of Microsoft references in appendix Q March 11, 2011
231 732 Amendment to Mantis 711. section 7.2.1.6 March 11, 2011
231 733 Errata: 27.6.1 signatureheadersize definition March 11, 2011

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
231 734 SecureBoot variable April 5, 2011
231 735 Clarification on Tape Header Format March 11, 2011
231 736 Insert SMM Communication ACPI Table and related data structures | April 5, 2011
to the UEFI Specification
231 740 Errata: signatureheadersize inconsistency corrections April 6,2011
231 741 Errata: corrected text for section 7.2.1.4 step 7 March 11, 2011
231 744 Processor context information structure definition not clear March 11, 2011
231 748 Clarify Standard GUID Text Representation March 11, 2011
231 749 Fix Table 10 (Global Variables) With Correct Attributes March 11, 2011
231 750 Fix section 27.2.5 "related definitions" re: RSA public key exponent March 11, 2011
231 751 Fix USB HC2 erroneous references to IsSlowDevice March 11, 2011
231 754 USB timeout parameter mismatch. April 5,2011
231 755 Errata in Legacy MBR table and Legacy MBR GUID April 5,2011
231 759 UEFI Errata - wincerts for rest of hash algorithms April 5,2011
231 760 Suggested changes to 2.3.1 final draft spec April 5,2011
231 761 Table 195. Information for Types of Storage April 5,2011
231 762 DevicePath in the Image Execution Information Table. April 5,2011
231 765 ECR to limit the hash and encryption algorithms used with PKCS April 5,2011
certificates
231A 212 (revisit) final sentence section 28.2.15 missing final words. April 21, 2011
231A 767 The ReadBlocks function for BlocklO and BlocklO2 need August 17,2011
synchronization
231A 770 Remove references to UEFI 2.1 spec August 17,2011
231A 772 Definition of EFI_IMAGE_SECURITY_DATABAE_GUID incorrect August 17,2011
231A 773 Clarify the value for opcode EFI_IFR_REFRESH_ID_OP August 17,2011
231A 774 Define EFI_BLOCK_IO_PROTOCOL_REVISION3 August 17,2011
231A 776 Clarifycomputation of EFI_VARIABLE_AUTHENTICATION_2 hash August 17,2011
value
231A 777 Specified signature sizes incorrect in Section 27.6.1 August 17,2011
231A 778 EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() Errata August 17,2011
231A 780 Errata in return code descriptions August 17,2011
231A 785 Allowing more general use of UEFI 2.3.1 Variable time-based August 17,2011
authentication
231A 786 PCI I/0 Dual Address Cycle attribute clarification August 17,2011
231A 788 SasEx entry in Table 86-Device Node Table contains optional August 17,2011
Reserved entry that does not exist in device path
231A 789 Clarify HIl opcode definition August 17,2011
231A 790 Add warning to ReadKeyStrokeEx for partial key press August 17,2011
231A 793 Inconsistent wording about RemainingDevicePath August 17,2011
231A 794 Incomplete text describing clearing of Platform Key August 17,2011
231A 795 Typo in ReadKeyStrokeEx() August 17,2011

Version 2.6, Errata A

January, 2017

Xiii

UEFI Specification

Xiv

Revision Revision History (numbers = Mantis ticket numbers) Date

231A 796 Clarify IFR Opcode Summary and Description #1 August 17,2011

231A 797 Clarify IFR Opcode Summary and Description #2 August 17,2011

231A 800 Clarify IFR Opcode Summary and Description #3 August 17,2011

231A 801 ClarifylFR Opcode Summary and Description #4 August 17,2011

231A 803 Fix AcpiExp device node text description. August 17,2011

231A 804 Clarify contraints and alternatives when enrolling PK, KeK, db or dbx | August 17,2011
keys

231A 805 Correct Wrong Palette Information in 28.3.7.2.3 example August 17,2011

231A 806 Text update to Driver Health Description - clarify role of user August 17,2011
interaction

231A 819 ECR715 was not fully implemented August 17,2011

231A 820 Driver Health Needs to have Mantis 0000169 implemented August 17,2011

231A Minor corrections in toes to tickets 772, 785, 794, 804, also formatting September 7,
correction for _WIN_CERTIFICATE_UEFI_GUID typedef's parameters 2011

231B 771 SHA1 and MD5 references April 10, 2012

2318B 807 Give specific TPL rules to Stall() boot services April 10, 2012

231B 808 Errata — Boot File URL April 10, 2012

2318B 809 Errata — Messaging Device Path Clarification April 10,2012

2318B 812 Errata — DUID-UUID usage April 10, 2012

2318B 819 Mantis 715 was not fully implemented April 10,2012

2318B 825 DMTF SM CLP errata April 10, 2012

2318B 826 Comments against Mantis 790 April 10,2012

2318B 828 Network Driver Options April 10, 2012

2318B 836 Structure comment for EFI_IFR_TYPE_VALUE references unknown April 10,2012
value type.

2318B 842 Text to explain how the UEFI revision is referred April 10, 2012

2318B 845 EFI_SCSI_PASS_THRU_PROTOCOL replacement April 10,2012

2318B 847 When enrolling a PK, the platform shall not require a reboot to leave | April 10,2012
SetupMode

2318B 848 Clarification of semantics of SecureBoot variable April 10,2012

2318B 849 IFR EFI_IFR_MODAL_TAG_OP is also valid under April 10, 2012
EFI_IFR_FORM_MAP_OP

2318B 850 Clarification of responsibility for array allocation in April 10,2012
EFI_HASH_PROTOCOL

2318B 851 For EFI_IFR_REFRESH opcode, clarify Refreshinterval = 0 means no April 10, 2012
auto-refresh.

2318B 852 Various EFI_IFR_REFRESH_ID errata. April 10,2012

2318B 853 The EFI_HASH_PROTOCOL.Hash() description needs clarification on | April 10, 2012
padding responsibilities

2318B 855 Clarification of UEFI driver signing/ code definitions April 10,2012

2318B 857 Absolute pointer typo April 10, 2012

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2318B 858 Superfluous and incorrect image hash description April 10, 2012
2318B 861 Globally Defined Variables Errata April 10,2012
2318B 862 User identity typo April 10, 2012
2318B 863 Attributes of the Globally Defined Variables April 10, 2012
2318B 864 Typo in Question-Level Validation section April 10,2012
2318B 865 Modify Protective MBR BootIndicator definition April 10, 2012
2318B 866 PK, KEK, db, dbx relations clarification April 10,2012
2318B 867 Clarify requirment for use of April 10, 2012
EFI_HASH_SERVICE_BINDING_PROTOCOL
2318B 869 Reference to FIPS 180 in Chapter 27.3 is obsolete and incorrect April 10,2012
2318B 870 Clarify FrameBufferSize definition under April 10, 2012
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE struct
23.18B 871 Typo in InstallMultipleProtocolinterfaces April 10, 2012
2318B 872 Change to SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify/ | April 10,2012
UnregisterKeyNotify
2318B 873 Section 9.3.7 incorrectly assumes that all uses of BBS device paths April 10,2012
are non-UEFI
2318B 876 To clarify EDID_OVERRIDE attribute definitions and expected April 10, 2012
operations
2318B 877 Table checksum update by the April 10,2012
ACPI_TABLE_PROTOCOL.InstallAcpiTable
2318B 878 Updated HIl "Selected Form" Behaviors to Reflect New Callback April 10, 2012
Results
2318B 879 Reference to unsupported specification in SCSI Chapter (14.1) April 10,2012
231B 880 netboot6 clarification/errata April 10, 2012
2318B 881 netboot6 - multicast versus unicast April 10,2012
23.18B 884 EFI_BOOT_KEY_DATA relies on implementation-defined behavior April 10, 2012
2318B 885 Errata in the GPT Table structure comment April 10,2012
231B 887 union is declared twice in same section April 10, 2012
2318B 888 typo in EFI_USB_HC Protocol April 10,2012
2318B 890 Drive Configuration Protocol Phantom. April 10, 2012
2318B 891 Component Name Protocol References April 10,2012
2318B 893 SMM Communication ACPI Table Update April 10, 2012
2318B 896 Startimage and ConnectController return codes April 10,2012
231C 831 PXE Boot CSA Type definition cleanup June 13,2012
231C 874 Provide a mechanism for providing keys in setup mode June 13,2012
231C 882 Indications Variable - OS/FW feature & capability communication June 13,2012
231C 907 iSCSI Device Path error June 13, 2012
231C 909 Update to return codes for AllocatePool / AllocatePages June 13,2012
231C 912 UEFI 2.3.1 Type June 13, 2012

Version 2.6, Errata A

January, 2017

XV

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
231C 913 Enum definition does not match what our current compilers June 13,2012
implement.
231C 914 Error Descriptor Reset Flag clarification June 13,2012
231C 915 For x64, Change Floating Point Default Configuration to Double- June 13,2012
Extended Precision
231C 917 UNDI drive does not need to be initialized as runtime driver June 13,2012
231C 921 Length of IPv6 Device Path is incorrect June 13, 2012
231C 882 Indications Variable - OS/FW feature & capability communication June 13,2012
231D 924 New Error Code to handle reporting of IPV4 duplicate address April 3,2013
detection
231D 926 UEFI Image Verification clarification April 3,2013
231D 928 Best Matching Language algorithm April 3,2013
231D 930 Clarify usage of EFI Variable Varstores in Hll April 3,2013
231D 934 Missing Figures and typos April 3,2013
231D 935 Clarify chaining requirements with regards to the Platform Key April 3,2013
231D 938 InstallMultipleProtocolinterface() is missing Status Code Returned April 3,2013
values
231D 941 Add OEM Status Code ranges to EFI Status Code Ranges Table April 3,2013
231D 942 ExportConfig() description does not make sense April 3,2013
231D 943 Errata - Proposed updates to required interfaces in chapter 2.6 April 3,2013
231D 944 Errata - Replace RFC reference April 3,2013
231D 949 PCI 10.GetBarAttributes needs adjustment - - Address Space April 3,2013
Granularity field
231D 950 Indeterminate behavior for attribute modifications may cause April 3,2013
security issues
231D 952 Clarification of requirements to update timestamp associated with April 3,2013
authenticated variable
231D 953 Need text definitions for Device Path Media Type Subtype 6/7 April 3,2013
231D 954 Loadlmage Errata April 3,2013
231D 955 Clearing The Platform Key Errata April 3,2013
231D 959 InstallAcpiTable() does not say what to do when an attempt is made | April 3,2013
to install a duplicate table
231D 960 Typo in netboot6 description April 3,2013
231D 962 Remove 2.3 table revision number April 3,2013
231D 965 File 10 Async extenstion April 3,2013
231D 970 Typo section 28.3.8.3.41 EFI_IFR_MODAL_TAG April 3,2013
231D 971 typo April 3,2013
231D 972 ISCSI DHCP6 boot April 3,2013
231D 973 UNDI Mem_Map() Clarification April 3,2013
231D 974 UNDI Incorrect CPB function names ECR April 3,2013
231D 975 UNDI errata to add missing memory type definitions April 3,2013

XVi

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
231D 976 BrowserCallback text update to description April 3,2013
231D 977 missing statement April 3,2013
231D 978 Error Retun Indicates Capsule requires Boot Services April 3,2013
231D 980 Errata on SNP Media detect April 3,2013
231D 987 EFI_BLOCK_I02_PROTOCOL has a copy paste bug describing the April 3,2013
Token Parameter
231D 988 EFI_BLOCK_I02_PROTOCOL blocks child from stopping while doing | April 3,2013
non-blocking I/0
231D 989 Clarify hot-remove responsibility of a Bus Driver April 3,2013
231D 990 EFI_ATA_PASS_THRU need one clarification if it supports ATAPI April 3,2013
device
231D 994 Spec typos April 3,2013
231D 995 CSA link change April 3,2013
231D 996 UEFI 2.0 version number still in the 2.3.1C spec April 3,2013
231D 1000 Clarification to the IFR_REF4 opcode April 3,2013
231D 1003 Missing “(* in section 11.7 April 3,2013
231D 1011 Typo regarding Debug Port in UEFI Spec April 3,2013
231D 1012 Touchup to text of GPT April 3,2013
231D 1013 HIl Errata April 3,2013
231D 1018 HIl Font Errata April 3,2013
231D 1019 Alignment Requirements Clarification April 3,2013
231D 1020 Clarify HIl variable store definitions. April 3,2013
231D 1021 ATA_PASS_THRU on ATAPI device handle. April 3,2013
24 905 Need more granularity in EFI_RESET_TYPE to support platform April 25,2013
specific resets
24 920 Add a variable for indicating out of band key modification April 25,2013
24 946 Forbid creation of non-spec variables in EFI_GLOBAL_VARIABLE April 25,2013
namespace
24 956 Require network drivers to return EFI_NO_MEDIA April 25,2013
24 963 Add new device path node NVM Express devices April 25,2013
24 964 Disk 10 2 Protocol to support Async 10 April 25,2013
24 966 Spec typos April 25,2013
24 968 HIl Forms op-code for displaying a warning message April 25,2013
24 991 Greater than 256 NICs support on UNDI April 25,2013
24 992 Adapter Information Protocol (AIP) April 25,2013
24 993 (original ticket--superseded by 1026)
24 997 Driver Health Protocol error codes April 25,2013
24 1002 Timestamp Protocol April 25,2013
24 1007 Create a new Security Technologies section to avoid blurring with April 25,2013
Secure Boot
24 1008 New Random Number Generator / Entropy Protocol April 25,2013

Version 2.6, Errata A

January, 2017

Xvil

Xviii

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.4 1009 Enable hashes of certificates to be used for revocation, and April 25,2013
timestamp support
2.4 1015 Interruptible driver diagnostics April 25,2013
24 1016 AIP Instance - Image Update April 25,2013
24 1017 AIP Instance - FCOE SAN MAC Address April 25,2013
24 1022 adapter information protocol for NIC iSCSI and FCoE boot April 25,2013
capabilities and current Booot Mode.
24 1023 Definition of Capsule format to deliver update image to firmware April 25,2013
management protocol
24 1024 Clarification to the NVMe Device Path text descriptions April 25,2013
24 1026 (supersedes 993) Update to the AArch64 proposed Binding Change | April 25,2013
24 1029 Method for delivery of Capsule on disk; Method for reporting April 25,2013
Capsule processing status
24 1031 NVMe subtype conflict errata April 25,2013
24 1032 HiiConfigRouting->ExtractConfig Status Codes Errata May 16, 2013
24 1033 HiiConfigAccess->ExtractConfig Status Codes Errata May 16, 2013
24 1036 Comments on April 25 Draft May 16, 2013
24 1037 Add 2.4 to the system table version May 16, 2013
24 1044 Corrections to Mantis 1015, Interruptible driver diagnostics May 16, 2013
24 1045 PCI OpROM Device List changes to section 14.2 June 28, 2013
24 1047 Comment on Feb 25th draft - fix alignment issue May 16, 2013
24 1048 Comment against UEFI 2.4 - NVMe related May 16, 2013
24 1049 2.4 Draft April 25 has missing text for ECR 1008 May 16, 2013
24 1050 2.4 Draft April 25 has missing text for ECR 1009 May 16, 2013
24 1052 UEFI 2.4 Draft April 25th - corrections to ARM sections May 16, 2013
24 A 1035 PCI Option ROM Errata (five figures) Nov. 6, 2013
24 A 1053 Reduce Name space of Capsule Result variable to increase Nov. 6, 2013
performance
24 A 1054 Deprecate 6 Hash Algorithms with inconsistent usage Nov. 6, 2013
24 A 1055 Disk 10 2 errata Nov. 6, 2013
24 A 1056 text modification to definition of Nov. 6, 2013
EFI_FIRMWARE_IMAGE_DESCRIPTOR_VERSION 2
24 A 1058 Correct mistake in the system table revision Nov. 6, 2013
24 A 1059 Clarification of a return status code of HASH protocol Nov. 6, 2013
24 A 1060 Slight Clarification to FMP Authentication Requirments Nov. 6, 2013
24 A 1061 UEFI 2.4 section 2.6.2 and 2.6.3 don't use protocol hyperlinks Nov. 6, 2013
consistently
24 A 1062 EFI_CERT_X509_GUID does not specify the certificate encoding Nov. 6, 2013
24 A 1063 Correction to GPT expression for SizeofPartitionEntry Nov. 6, 2013
24A 1064 AIP Errata Nov. 6, 2013
24 A 1066 Errata - ISCSI IPV6 Root Path Clarification Nov. 6, 2013

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
24 A 1073 Add requirement for EFI_USB_IO_PROTOCOL Nov. 6, 2013
24 A 1074 Add clarifications on DMA requirements for PCI_IO Nov. 6, 2013
24 A 1075 Clarifications to Table 88. Device Node Table (Device Node to Text Nov. 6, 2013
Conversion)
24 A 1076 typo in UEFI v2.3.1d and v2.4 Nov. 6, 2013
24A 1077 Fix wording in EVT_SIGNAL_EXIT_BOOT_SERVICES Nov. 6, 2013
24 A 1078 Adjust some text for handling EFI_BROWSER_ACTION_CHANGING Nov. 6, 2013
24 A 1079 UEFI 2.4: Remove repetitive "the" (typo) Nov. 6, 2013
24 A 1081 Update Install Table protocol to deal with duplicate tables Nov. 6, 2013
24 A 1082 Mistake in 2.3.5.1 / 2.3.6.2 Handoff State Nov. 6, 2013
24 A 1085 Issues with Interactive password Nov.14, 2013
24 A 1088 Add revision #define to EFI_FILE_PROTOCOL Nov. 6, 2013
24 A 1089 Short-term CPER Memory Section errata Nov. 14, 2013
2.4B 1014 HIl Config Access Protocol Errata April 3,2014
24B 1092 Clarification to PCI Option ROM Driver Loading Description March 27, 2014
24B 1101 Errata — ReinstallProtocolinterface March 27,2014
24B 1111 Errors in DisconnectController() return code descriptions March 27, 2014
24B 1115 Clarification on the usage of XMM/FPU instructions from within a March 27,2014
UEFI Runtime Service on an x64 processor
24B 1118 Network Performance Enhancements Concerning Volatile Variables | March 27, 2014
24B 1120 Make time stamp handling consistent around all of the networking | March 27,2014
API's
24B 1122 Correct misleading language in the UEFI 2.4a specification about March 27, 2014
the
EFI_ADAPTER_INFORMATION_PROTOCOL.EFI_ADAPTER_INFO_GET_SU
PPORTED_TYPES function
24B 1124 Adding text description for NVMe device node March 27,2014
24B 1127 USB Errata - unnecessary restriction on UEFI interrupt transfer March 27, 2014
types
24B 1128 URI device path node redux--supersedes (defunct) 1119 April 4,2014
24B 1137 Typographic errors in the 2.4 Errata B draft April 16, 2014
24B 1146 Typos and broken links April 17,2014
24B 1085 Error--added in missing text approved for 2.4A April 17,2014
24C 1042 Add Browser Action Request "reconnect” July 11, 2014
24C 1043 Ability to refresh the entire form [new content] July 11, 2014
24C 1066 Errata--reference to missing table (90) removed July 11, 2014
24C 1139 UEFI Errata on the storage security command protocol July 11, 2014
24C 1140UEFI Errata - image execution info table July 11, 2014
24C 1141 UEFI errata - ia32/x64 vector register management July 11, 2014
24C 1147 EFI_USB2_HC_PROTOCOL.AsyncInterruptTransfer() Errata July 11, 2014
24C 1150 Missing Line Break Character (HIl Errata) July 11, 2014
Version 2.6, Errata A January, 2017 XiX

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
24C 1162 Typo in ReinstallProtocolinterface() EFl 1.10 Extension section July 11, 2014
24C 1165 Option rom layout errata July 11, 2014
24C 1168 MTFTP Errata July 11, 2014
24C 1169 Errata - volatile networking variable cleanup July 11, 2014
24C 1170 Errata pxe bc api clarifiation July 11, 2014
24C 1172 EfiACPIMemoryNVS definition missing S4 July 11, 2014
24C 1173 EFI_IFR_NUMERIC Errata July 11, 2014
24C 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart January, 2015
24C 1182 Errata - UEFI URI Device path issue January, 2015
24C 1184 errata - snp mode clarification January, 2015
24C 1185 errata - tcp api January, 2015
24C 1186 AArch64 binding clarifications and errata January, 2015
24C 1192 Cleanup GUID formatting issues January, 2015
24C 1194 Add EFI_IFR_FLAG_RECONNECT_REQUIRED January, 2015
24C 1198 EFI_ATA_PASS_THRU_PROTOCOL clarification January, 2015
24C 1200 Universal Flash Storage (UFS) Device Path January, 2015
24C 1205 Errata for Hii Set item January, 2015
24C 1209 Errata - UEFI networking APl chapter 2.6 requirements January, 2015
24C 1211 EFI_LOAD_OPTION Definition January, 2015
24C 1244 sections of the spec misarranged January, 2015
24C 1257 Correct the typedef definitions for EFI_BOOT_SERVICES/ January, 2015
EFI_RUNTIME_SERVICES
24C 1287 Errata: EFI Driver Supported EFI Version not matching the spec January, 2015
revision
24C 1308 Fix typo's found in the final/published UEFI 2.4 Errata B spec January, 2015
25 1071 New EFI_HASH2_PROTOCOL February, 2015
25 1090 ESRT: EFI System Resource Table and component firmware updates | February, 2015
25 1091 Clarification of handle to host FMP February, 2015
25 1103 Longer term New CPER Memory Section February, 2015
25 1109 Smart Card Reader February, 2015
25 1121 IPV6 support from UNDI February, 2015
25 1147--REDACT February, 2015
25 1163 Inline Cryptographic Interface Protocol proposal February, 2015
25 1166 hash 2 protocol errata February, 2015
25 1158 errata - boot manager clarification February, 2015
25 1159 Proposal for System Prep Applications February, 2015
25 1167 Persistent Memory Type support February, 2015
25 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart February, 2015
25 1183 New Protocol with 2 Function for PKCS7 Signature Verification February, 2015
Services

XX

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
25 1186 AArch64 binding clarifications and errata February, 2015
25 1191 Add new SMBIOS3_TABLE_GUID in EFI_CONFIGURATION_TABLE February, 2015
25 1199 Add NVM Express Pass Thru Protocol February, 2015
25 1201 Exposing Memory Redundancy to OSPM February, 2015
25 1204 new UEFI USB Function I/O Protocol addition to the UEFI spec February, 2015
25 1212 UEFI.Next feature - HTTP API February, 2015
25 1213 UEFI.Next feature - HTTP helper API February, 2015
25 1214 UEFI.Next feature - HTTP Boot February, 2015
25 1215 UEFIL.Next feature - DNS version 4 February, 2015
25 1216 UEFl.next feature - DNS version 6 February, 2015
25 1217 UEFI.Next feature - WIFI support February, 2015
25 1218 UEFI.Next feature - EAP2 Protocol February, 2015
25 1219 UEFI.Next Feature - UEFI TLS API February, 2015
25 1220 UEFI.Next feature - Bluetooth February, 2015
25 1221 UEFI.Next feature - REST Protocol February, 2015
25 1222 UEFI.Next feature - BMC/Service Processor Device Path February, 2015
25 1223 UEFIL.Next networking features - chapter 2.6 requirements February, 2015
25 1224 UEFIL.Next - Adding support for No executable data areas February, 2015
25 1227 UEFI.Next feature - Platform recovery February, 2015
25 1234 UEFI.Next feature - Smart card edge protocol February, 2015
25 1244 sections of the spec mis-arranged February, 2015
25 1251 EFI_REGULAR_EXPRESSION_PROTOCOL and EFI_IFR_MATCH2 HIl | February, 2015
op-code
25 1254 SD Device Path February, 2015
25 1255 UFS Device Path Node Length February, 2015
25 1257 Correct the typedef definitions for EFI_BOOT_SERVICES/ February, 2015
EFI_RUNTIME_SERVICES--Reiterate
25 1263 Customized Deployment of Secure Boot February, 2015
25 1266 UEFI.Next Feature - IP_CONFIG2 Protocol February, 2015
25 1268 RAM Disk UEFI Device Path Node February, 2015
25 1269 Configuration Routing Protocol and Configuration String Updates February, 2015
25 1287 Errata: EFI Driver Supported EFI Version not matching the spec February, 2015
revision
25 1288 The Macro definition conflict in February, 2015
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute() in UEFI 2.4 B
25 1303 Update the UEFI version to reflect new revision February, 2015
25 1304 Add IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE to FMP February, 2015
Check image
25 1308 Fix typo's found in the final/published UEFI 2.4 Errata B spec February, 2015
25 1309 Disallow EFI_VARIABLE_AUTHENTICATION from Secure Boot Policy | April, 2015
Variables

Version 2.6, Errata A

January, 2017

XXI

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
25 1339 Errata in section 7.2.3.2 Hardware Error Record Variables April, 2015
25 1341 DNS4 - friendly amendment to be reviewed by USWG April, 2015
25 1342 DNS6 - friendly amendment for review by USWG April, 2015
25 1345 EFI_USB2_HC_PROTOCOL Errata April, 2015
25 1346 Mantis 1288 Errata April, 2015
25 1347 Boot Manager Policy Errata April, 2015
25 1348 ERRATA - Section 10.12 EFI_ADAPTER_INFORMATION_PROTOCOL | April, 2015
Custom Types
25 1350 Keyword Strings Errata April, 2015
25 1352 Errata for 1263 and 1227
25 1353 SATA Device Path Node Errata April, 2015
25 1358 v2.5 amendment and v2.4 errata (missed implementation of Mantis | April, 2015
1089)
25 1360 Vendor Range for UEFI memory Types April, 2015
25 1362 HTTP boot typos/bugs April, 2015
25 1364 Extend supplicant data type for EAP April, 2015
2.5 Errata October, 2015
2.5 Errata 1209 UEFI networking API chapter 2.6 requirements errors October, 2015
2.5 Errata 1363 Short form URI device path October, 2015
2.5 Errata 1365 7.4 Virtual Memory Services lists Section 2.3.2 through Section October, 2015
2.3.4. incorrectly
2.5 Errata 1381 Remove informative content in 12.6.1 October, 2015
2.5 Errata 1388 Missed memory type fixes October, 2015
2.5 Errata 1398 Errata update to the runtime GetVariable operation documentation | October, 2015
2.5 Errata 1399 Clarification for EFI_BROWSER_ACTION_REQUEST_RECONNECT October, 2015
2.5 Errata 1405 Errata in table 271 in Appendix O October, 2015
2.5 Errata 1407 Networking errata - EFI_HTTP_STATUS typos October, 2015
2.5 Errata 1410 Clarifications in appendix O October, 2015
2.5 Errata 1417 Add HttpMethodMax to EFI_HTTP_METHOD enum October, 2015
2.5 Errata 1418 Inconsistent issues in DNS October, 2015
2.5 Errata 1419 Supplicant protocol using same GUID as TLS protocol October, 2015
2.5 Errata 1420 GetNextHighMonotonicCount clarification October, 2015
2.5 Errata 1421 Misc HTTP API typos October, 2015
2.5 Errata 1424 Incorrect link in Section 22.1 FMP Getlmagelnfo() October, 2015
2.5 Errata 1426 UEFI 2.5 typo October, 2015
2.5 Errata 1441 UEFI2.5 errata — UNDI Protocol Clarification October, 2015
2.5 Errata 1451 Memory Map Consistency October, 2015
2.5 Errata 1468 Errata on UEFI Supplicant protocol October, 2015
2.5 Errata 1469 UNDI Errata - add more statistics October, 2015
2.5 Errata 1472 ATA Pass Thru Errata October, 2015

xXii

January, 2017

Version 2.6, Errata A

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.5 Errata 1476 Update to Indicate that CloseEvent Unregisters Corresponding October, 2015
Protocol Notification Registrations
2.5 Errata 1477 Allow CloseEvent to be called within the Notification Function October, 2015
2.5 Errata 1481 new network config2 protocol data structure has a magic number October, 2015
2.6 1357 ARM CPER extensions November, 2015
2.6 1402 Add EFI_BROWSER_ACTION_SUBMITTED November, 2015
2.6 1471 SD/eMMC PassThru Protocol update (follow up to mantis 1376) November, 2015
2.6 1376 SD/eMMC PassThru Protocol November, 2015
2.6 1408 EFI HIl Font EX protocol and EFI HIl Font Glyph Generator protocols | November, 2015
2.6 1414 Generalisation of communication method in Appendix O November, 2015
26 1467 New API - EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL November, 2015
2.6 1480 Refine Progress description in November, 2015
EFI_KEYWORD_HANDLER_PROTOCOL
2.6 1452 Minor edits to 0001409 November, 2015
2.6 1409 EFI HIl ImageEX protocol and EFI HIl Image Decoder protocols November, 2015
2.6 1466 UEFI Ram disk protocol November, 2015
2.6 1383 Adding an EraseBlocks() function to a new protocol November, 2015
2.6 1479 UEFI Properties Table Clarification November, 2015
2.6 1491 supplicant errata November, 2015
2.6 1492 wireless mac connection protocol Il errata November, 2015
2.6 1493 Updates to the SD_MMC_PASS_THRU interface November, 2015
2.6 1494 Errata against UEFI 2.5 Properties Table November, 2015
2.6 1496 Bad table reference in 13.2 November, 2015
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()
2.6 1501 Define the usage of the "Address Space Granularity” field is defined | November, 2015
in the PCI Root IO
2.6 1502 PCI 10 Define how to use the Address Translation Offset for systems | November, 2015
that are not mapped 1:1
2.6 1507 Insufficient qualification of page attributes for AArch64 December, 2015
2.6 1508 Lack of flexibility and realism in exception level choice when calling | December, 2015
runtime services
26 1509 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL December, 2015
Response to unsupported ParameterTypeGuid
2.6 1516 Editorial comments against 2.6 Draft December, 2015
2.6 1518 Comments against 2.6 Draft December, 2015
2.6 1519 Version for the next UEFI spec is... December, 2015
2.6 1521 comment against UEFI.next draft - M1479 December, 2015
2.6 1522 AArch64 bindings Alignment bit errata December, 2015
2.6 1523 Comments against 2.6 Draft December, 2015
2.6 1533 Bugs in the HTTP usage example December, 2015
2.6 1534 Editorial comments against 2.6 Final Draft December, 2015

Version 2.6, Errata A

January, 2017

xXiii

XXiv

UEFI Specification

Revision Revision History (numbers = Mantis ticket numbers) Date
2.6 1536 UEFI 2.6 Errata : IMAGE EX Protocol and EFI HIl Image Decoder December, 2015
protocol Errata

26 1538 UEFI TLS errata December, 2015
2.6 1539 New EFI_HTTP_ERROR Status Code December, 2015
26 1542 UEFI 2.6 supplicant errata January, 2016
26 1543 ip4/6 config policy errata/2.6 update January, 2016
26 1544 DNS lookup API spelling January, 2016
2.6 1547 Clarify requirements for setting the PK variable. January, 2016
2.6 1548 Clarify boot procedure when file name is absent2. January, 2016
2.6 Errata A | Same content as version 2.6, with accessibility tags activated so PDF “read | January, 2017

out loud” (text to speech) will work.

January, 2017

Version 2.6, Errata A

UEFI Specification

Contents

ACKNOWIEAGEIMENTS ...ttt b et e sbe e benreenteenae e I
REVISION HISTOIY ...ttt bbbt bbbttt nreene s ii
(000] o1 (=] o | KSR TP PR PPN RUPTPPRTY XXV
FIQUIES .ottt b et h e e bt e st e e bt e b e e R e e ebeebe e Rt e e beenbeene e nne e e nres xli
JLIE=1 1 1= PSS xlv
L INTEFOAUCTION ..t bbb bbbttt e bbb bbb e s et 1
1.1 UEFI Driver MOAEI EXTENSIONS ..ottt sttt bbb bbbt 1

L2 OVEIVIBW ..ottt ettt bbb b8ttt 2

L3 BGOSR R b bbb 6

L4 TArQET AUGIEICE ..ottt bbb bbb bbb bbbt 8

1.5 UEF] DESIGN OVEIVIBWcouivriiiiiieieiet ettt sttt bbb bbb bbbt 8

1.6 UEFI DEIVEE IMOEN ...ttt bbbt 9
1.6.1 UEFI Driver MOAE] GOAIS.........cc.iiiiciiieiesiee ettt 10

1.6.2 Legacy OPLioN ROM ISSUES ...ttt st bbb 11

1.7 Migration REGUITEMIENTS ..ottt bbb bbb bbb bbb 11
1.7.1 Legacy Operating SYStEM SUPPOITccoiiiiiniinieii ettt sss s sssesens 11

1.7.2 Supporting the UEFI Specification on a Legacy Platform ..., 11

1.8 Conventions Used in this Document
1.8.1 Data Structure Descriptions.....
1.8.2 ProtOCOI DESCHIPLIONS ...ttt bbb
1.8.3 Procedure Descriptions
1.8.4 Instruction Descriptions
1.8.5 PSEUAO-COAE CONVENTIONS........ovuriiriiiieisiiii i
1.8.6 TypOgraphiC CONVENTIONS. ..ottt bbbt
1.8.7 Number formats
L1.8.8 BINAIY PrEfiXES ...ttt bbb bbb bbb

A O 1Y =T oV L= OSSPSR
2.1 Boot Manager
2. 1.0 UEF IMBOES.... ittt ettt b5 £ttt
2.1.2 UEF] APPIICALIONS. ..ottt s
213 UEFI OS LOAUEIS ...ttt ettt bbbt bbb bbbttt sttt
214 UEFI DIIVEIS....ooviit ettt sttt s bbbt b b s bbbt bbb bbb s sttt
2.2 Firmware Core
2.2 L UEFI SEIVICES ..ottt st ettt st b b bbb bbb bbb bbbttt
2.2.2 RUNTIME SEIVICESooovieeeeeetee ettt sttt bbb bbb bbbt bbbttt s bt tes
2.3 Calling Conventions.............
2.3.1 Data Types...........
2.3 2 TA-3B2 PIAFOIMS ..ottt bbb b bbb bbbt bbbttt

2.3.3 INtel® HANIUMT-BASEA PIALFOIMNS ...oooooooeeeee e oeeeeeeeeeee e eeesseeess e esesesssessees e s s seseessssssseeee 27
2.3.4 x64 Platforms
2.3.5 AATCN32 PIAtfOrMIS ..ottt e bbbt bbbttt 34
2.3.6 AATCNBA PlatfOrMS....c.cvcecice ettt b bbbttt bbbttt 38
2 =) (o To7 0] £ TSP 43
25 UEFI DIVEE MOAEL ...ttt bbb b bbbt bbb bbbt st 48

Version 2.6, Errata A January, 2017 XXV

Contents UEFI Specification

2.5.1 Legacy Option ROM ISSUES ..ot ssse s ssses s ssssesssssssssssssssssssssessessesssnes
2.5.2 Driver Initializationccccouevevvininineinenns
2.5.3 Host Bus Controllers ...,
2.5.4 Device Drivers
2.5.5 BUS DIIVEIS.....oooniiiiininresineieeesssieieens
2.5.6 Platform Components..........ccoeuveverenienns
2.5.7 HOU-PIUQ EVENTS ..ottt sttt
2.5.8 EFI SEIVICES BINUINGoovveiiiii ettt
2.6 REQUIrEMENTS ..o
2.6.1 ReQUITEA EIEMENTS......cooecsie sttt
2.6.2 Platform-SpecCifiCc EIBMENTS ...t
2.6.3 Driver-Specific Elements
2.6.4 Extensions to this Specification published elsewhere

3 BOOT MANAGET ...ttt b e b ettt n e
3.1 FIrmMware BOOT MABNAJETcccciviriir ettt tsstss sttt b s bbbt bbbt
3.1.1 Boot Manager Programming.................
3.1.2 Load Option Processing........ccccoeveenrene,
IO IRCH o T-To @] o] 1 o] o 00
3.1.4 Boot Manager Capabilities.....................
3.1.5 Launching Boot#### Applications
3.1.6 Launching Boot#### Load Options Using Hot Keys
3.1.7 Required System Preparation Applications............ccccoeeevviviernnns
3.2 Boot Manager PoliCy ProtOCOL.........ccccccvviiiciciiee s
EFI_BOOT_MANAGER_POLICY_PROTOCOL......ccccortmmrririnenns
3.3 Globally Defined VAri@bIES ...ttt
3.4 BOOT OPLION RECOVEIY ...ttt sstas st st 8 bbbttt
3.4.1 0S-Defined Boot Option Recovery
3.4.2 Platform-Defined BOOt OptionN RECOVEIYccoivviiinieessssss st sssssens
3.4.3 Boot Option Variables Default BOOt BENAVION ...
3.5 Boot Mechanisms
3.5.1 Boot via the SIMpPle File ProtOCOI ...t sssnens
3.5.2 Boot via the Load File ProtOCOL ...

4 EFI SYSTEM TaABIE ...
4.1 UEFI IMAQE ENTEY POINT.......coiiiicccsiss sttt sttt st st ntns
EFI_IMAGE_ENTRY_POINTccccvurmernn.
4.2 EFl Table Header ...,
EFI_TABLE_HEADER.......cccouuonsrmmrnrirnirrnrenn.
4.3 EFI System Table.........cccoovvecviinncesesseessens
EFI_SYSTEM_TABLE.......ccccoouinrmirnirniinnionn,
4.4 EFI Boot Services Table.........ccoonivnncncnnn,
EFI_BOOT_SERVICES........ccccouummmmrmninnrinn.

4.5 EFI Runtime Services Table ...,
EFI_RUNTIME_SERVICES.......cco sttt
4.6 EFI Configuration Table & Properties Table.........ccnc s ssssssssens
EFI_CONFIGURATION_TABLE
EFI_PROPERTIES _TABLEcoostiitiintieiieise et
EFI_MEMORY_ATTRIBUTES _TABLEccoooitiitinerineineinieie et ssesssssnns
4.7 Image Entry Point Examples
4.7.1 Image ENtry POINT EXAMPIES ..ottt ssss s sssssens
4.7.2 UEFI Driver Model EXAMPIE.......ccscrs sttt ssssens

XXVi January, 2017 Version 2.6, Errata A

UEFI Specification Contents

4.7.3 UEFI Driver Model Example (Unloadable)............coccsssee s sssssssnens
4.7.4 EFI Driver Model Example (Multiple Instances)

5 GUID Partition Table (GPT) DiSK LAYOUTcccoiiiiiiiiiiiiieesee e
5.1 GPT and MBR disk layOut COMPAIISON........ccccoeiiiniiieersese sttt sse s ssssens
5.2 LBA O FOIMIAL ..ot
5.2.1 Legacy Master BOOt RECOId (MBR) ..o sssssssss e sssssssesssssssses
5.2.2 OS Types
5.2.3 PrOtECHIVE IMBR ...ttt bbb bbb
5.3 GUID Partition Table (GPT) DiSK LAYOUL..........cc.ccovviieriiiinseessssss st ssssssses s s sssssssens
5.3.1 GPT overview
5.3.2 CPT HEAET ... bbb
5.3.3 GPT Partition ENTIY AITAYccoooviiiisiecssssse sttt st sse s sssnes

B SEIVICES — BOOT SEIVICES ..ottt e e e abe e s eare e e eaeeeenns
6.1 Event, Timer, and TasK PriOrity SEIVICES. ...t sse e
6.2 MeMOrY AllOCALION SEIVICES......c.iiiiieccree e sttt s ntas
6.3 ProtOCOI HANAIEE SEIVICESoucvivicicicse ettt b bbb bbb bbb
6.4 IMAQE SEIVICESc.ccvvvrecsriereesssss e sessens
EFI_IMAGE_ENTRY_POINT
6.5 MiSCEIANEOUS BOOL SEIVICESoiveiiicii ettt bbb b bbb bbb

7 SErvices — RUNTIME SEIVICEScoviiiiiiic ettt st ae et esne e

7.1 Runtime Services RUIES aNd RESIICTIONS ..ot
7.1.1 Exception for Machine Check, INIT, and NMI

7.2 VAITADIE SEIVICES ...t bbb
7.2.1 Using the EFI_VARIABLE_AUTHENTICATION_2 descriptor (Recommended).................... 247
7.2.2 Using the EFI_VARIABLE_AUTHENTICATION descriptor
7.2.3 Hardware Error Record PersiStencecovnniisineneineinns

7.3 THME SEIVICES ..ottt ettt bbb R bbb bbb

7.4 VIrtUL MEIMOIY SEIVICESvevieiciriiesit ettt sssss st st s bt

7.5 Miscellaneous Runtime Services
T.5.1 RESEE SYSTOIM ...ttt bbb bbb bbb bbb
7.5.2 Get Next HiIgh MONOtONIC COUNT ..ot nsnes
7.5.3 Update CapSUIE ...
7.5.4 Exchanging information between the OS and Firmware
7.5.5 Delivery of Capsules via file on Mass Storage deViCe ...
7.5.6 UEFI variable reporting on the Success or any Errors encountered in processing of

CAPSUIES @FLEE FESTAIT ..ottt

8 Protocols — EFI Loaded IMAQJE ...t
8.1 EFI Loaded IMage PrOtOCOI ...ttt sttt
EFI_LOADED_IMAGE_PROTOCOL
8.2 EFI Loaded Image Device Path ProtoCol...........ccovevencininnicnensssesessennens
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

9 Protocols — Device Path ProtoCOl ..ot
.1 DEVICE POt OVEIVIEW ...ttt bbb b b bbbttt e
0.2 EFI DEVICE PAtN PrOTOCO! ..ottt b b bbbt
EFI_DEVICE_PATH_PROTOCOL
0.3 DEVICE PN NOUES ...ttt b bbb bbb bbb e
9.3.1 Generic DEeVICE Path STIUCTUIES ... bbb bbb s
9.3.2 HAardware DEVICE Path ...t bbbt bbb s

Version 2.6, Errata A January, 2017 XXvii

Contents UEFI Specification

9.3.3 ACPI DEVICE PAtN.......oiiiiiiiii st bbb 294
9.3.4 ACPI _ADR DEVICE PALN ..ottt st 297
9.3.5 MeSSaging DEVICE PaAlN.........ccccooviiccsisse sttt sttt nes 297
9.3.6 Media DEVICE PAlN ..o s 324
9.3.7 BIOS Boot Specification Device Path
9.4 Device Path GENEration RUIES ... sttt sse st 330
9.4.1 HOUSEKEEPING RUIES ...ttt st 330
9.4.2 Rules With ACPI _HID @Nd _UID ..o ssssssssss st ssssssssssssssssssssssssssonss 330
9.4.3 Rules with ACPI _ADR
9.4.4 Hardware vs. Messaging Device Path RUIES ... 331
9.4.5 Media Device Path Rules
9.4.6 Other Rules.........ccoovvevviericicsssre e,
9.5 Device Path ULIlItIeS PrOTOCOL ... sttt neas
EFI_DEVICE_PATH_UTILITIES_PROTOCOLceeovtimrirnrinerinerineiissiissssssssssssssssssss s ssssssssnns 333
9.6 EFI Device Path Display Format Overview
O.6.1 DESIGN DISCUSSION......coveiieiiiiiriis ittt bbbt nes
9.6.2 Device Path t0 TeXt PrOtOCOL ...ttt snes
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.....cccccsurmrrrmrrnerrnrirnnns
9.6.3 Device Path from Text Protocol ...,
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL

10 Protocols — UEFI Driver MOdEl ..o
10.1 EFI Driver BINAING PrOTOCOL........cooicii sttt sttt neas
EFI_DRIVER_BINDING_PROTOCOL
10.2 EFI Platform Driver Override ProtoCol ...,
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.......ccccimimminrrinrinsinsinsisrssssssssssssssssssenss
10.3 EFI Bus Specific Driver OVerride ProtOCOI ...t ssssens
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL
10.4 EFI Driver DiagnOStICS PrOTOCOL. ..ottt
EFI_DRIVER_DIAGNOSTICS2_PROTOCOLceovviniirerierinerinsinsiesisss s sssssssssssss s sssssssssssssssnss
10.5 EFI Component Name Protocol
EFI_COMPONENT_NAME2_PROTOCOLcccoverimirinrimrinrineiineiinsississ s issssssssssss s sssssssssssssnns
10.6 EFIl Service BiNAING PrOTOCOL ..ottt ss s ssneas
EFI_SERVICE_BINDING_PROTOCOL
10.7 EFI Platform to Driver Configuration ProtOCOLl ... snens
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.......ccc.cuurimrmmrirmrrnnrneeneinsenienns 420
10.7.1 DMTF SM CLP ParameterTypeGuid ...
10.8 EFI Driver Supported EFI Version Protocol
EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOL
10.9 EFI Driver Family Override Protocol
10.9.1 OVEIVIBW ...ttt
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL......ccccouurrrmurrrrrnnens
10.10 EFI Driver HEaltN PrOtOCOL ...t
EFI_DRIVER_HEALTH_PROTOCOLccovvimiirerineiineiine sttt ssssssssssssssssasssssssssns
10.10.1 UEFI Boot Manager Algorithms
10.10.2 UEFI Driver AIQOITRIMS ..ottt st es s snsns
10.11 EFI Adapter INformation ProtOCOL ...t neas
EFI_ADAPTER_INFORMATION_PROTOCOL
10.12 EFI Adapter Information Protocol INformation TYPES........ccviinesnsssssesss s sesssens
10.12.1 NetWOrK MEAIA STALEccoviiieciieie st
10.12.2 NETWOIK BOOTcccouiiiiiiiiieteiti ittt bbb

XXViii January, 2017 Version 2.6, Errata A

UEFI Specification Contents

10.12.3 SAN MAC AQUAIESS ..ottt bbb bbb
10.12.4 IPV6 Support from UNDI

11 Protocols — CONSOIE SUPPOIToiiiiiiiecieee e e
11.2 CONSOIE I/O PrOTOCON oottt sttt s st
L0 0.0 OVEIVIEW ...ttt ettt £ bbbt £ bbbt n s st
11.1.2 ConsOoleln DEfiNITION ...ttt
11.2 Simple Text Input Ex Protocol
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOLccc.ovurmrirniiinriisrinniinerineiississssssss s issssssssssssssnss 460
11.3 Simple TeXt INPUL PrOTOCOL ...ttt
EFI_SIMPLE_TEXT_INPUT_PROTOCOL
11.3.1 ConsoleOut OF STANAAIAEITONcccoviririccsssesss sttt
11.4 Simple TeXt OULPUL PrOTOCOL ...ttt
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
11.5 SIMPIE POINTEN PrOTOCOL ...ttt st
EFI_SIMPLE_POINTER_PROTOCOL......cccommmiminerinerineinsissis st ssssssssssssssss s sssssssnns
11.6 EFI Simple Pointer Device Paths ..o
11.7 Absolute Pointer Protocol...........cocovvviviencninnnns
EFI_ABSOLUTE_POINTER_PROTOCOL.....
11.8 Serial I/0 Protocol ...
EFI_SERIAL_IO_PROTOCOL......ccc.nreen.
11.9 Graphics Output Protocol...........cccoevevevreirennn,
11.9.1 BIt BUFFEr ..o
EFI_GRAPHICS_OUTPUT_PROTOCOL.......
EFI_EDID_DISCOVERED_PROTOCOL
EFI_EDID_ACTIVE_PROTOCOLc.cceimimiiiniieriner sttt ssssssss st sssssssssssssss s ssesssssnns
EFI_EDID_OVERRIDE_PROTOCOLcc.cvvimiiierinniinerinei st sssssss s sssssssnns
11.20 RUIES FOIr PCI/AGP DEVICES ..ot tsstsse sttt sttt sss sttt ss s aneas

12 ProtOCOIS — MEAIA ACCESSoeeiiieiie ettt re e s aee e re e

12.1 L0Ad FIlE PrOTOCON ...

EFI_LOAD_FILE_PROTOQCOLccovtimiireiinetinerinsiinsississ ettt sssss s sssssessssssssnns

12.2 Load File 2 Protocol

EFI_LOAD_FILE2 _PROTOCOL. ..ottt ssssssssssss s ssesssssnns

12.3 File SYSTEM FOIMIAL....... .ottt ettt st

12.3.1 System Partitionccocoevvvverevenriennnns
12.3.2 Partition Discovery

12.3.3 Number and Location of System Partitions

12.3.4 Media FOrMALS.........cccoorininneesseie s

12.4 Simple File System Protocolccccoevvvevevinnnnn.

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL...

12.5 File ProtocCol ...

EFI_FILE_PROTOCOL....cccccomrrmrmrrrrerrnernn.

EFL_FILE_INFO....coooniinrrrinineineissinnenn,

EFL_FILE_SYSTEM_INFOcoiiitiittiniiniieiiet ettt sttt s

EFI_FILE_SYSTEM_VOLUME_LABELc.ccointtinttinrinineine sttt sessssssnns

12.6 Tape Boot Support

12.6.1 TAPE /O SUPPOIT ..ottt sttt n st

12.6.2 TAPE /O PrOTOCOI ...ttt sttt sttt

EFI_TAPE_IO_PROTOCOL

12.6.3 TAPe HEAAEN FOIMAL.........ccoiiiccesieiessss ettt ettt

12.7 DISK I/O PrOTOCOL ..ottt bbb

Version 2.6, Errata A January, 2017 XXIiX

Contents UEFI Specification

EFI_DISK O _PROTOCOL ..ottt sttt sssssssssssssss s ssesssssnns
12.8 Disk I/0 2 ProtocColcccoevvvviiriiinisisie s,

EFI_DISK_|02_PROTOCOL.....cccconvrrmrrrnrenn.
12.9 Block I/0 Protocol..........cocviinisicncsieneeinens

EFI_BLOCK_IO_PROTOCOL
12.10 Block I/0 2 ProtocCol.........cccccvvvverivveinenrnieinnn,

EFI_BLOCK _[O2_PROTOCOL ...ceovtriveieiniieiier ettt sssssssssssssss s ssesssssnns
12.11 Inline Cryptographic INterface ProtOCOI ... st neas

EFI_BLOCK_IO_CRYPTO_PROTOCOL ...
12.12 Erase BIOCK PrOTOCON ...ttt sttt st

EFI_ERASE_BLOCK_PROTOCOLccovtimiirierinerinsissisesss s ssssssssssssssss s ssssssessssssssssesssasssesssnssnss
12.13 ATA Pass Thru Protocol

EFI_ATA _PASS_THRU_PROTOCOL ...c.ccecimirirnrinerineiinsiis s ssssssssssssssssssssssss s ssesssssnns
12.14 Storage Security Command ProtOCOI ...t sseas

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL
12.15 NVM Express Pass Through ProtOCOL ...t ssssens

EFI_NVM_EXPRESS PASS_THRU_PROTOCOLccccceuimriniinirniiniinerissinsissssssssss s ssssssonss
12.16 SD MMC Pass Thru ProtocCol ...

EFI_SD_MMC_PASS_THRU_PROTOCOL
12.17 RAM Disk Protocol ...

EFI_RAM_DISK _PROTOCOLcevimiiimiiniieiineiineiisssississ s s sttt sssssssssssssssssasssessssssnns

13 ProtoCOlS — PCl BUS SUPPOIT.ooiiiiiiieiteriirie sttt
13.1 PCI Root Bridge I/O Support........ccocvevecvrennnn.
13.1.1 PCI Root Bridge 1/0 Overview

13.2 PCI ROOt Bridge I/O PrOtOCOI ...ttt sttt s
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.......cccisurimimrirnrinnrinesineiisssissssssssssssssssssssss s sssssssssnss

13.2.1 PCI Root Bridge Device Paths

L3 .3 PCIDIIVEI MOGEL......cooiiiiiciere e bbb
13.3.1 PCI Driver INITIAlIZATION ..ot
13.3.2 PCI Bus Drivers
13.3.3 PCI DEVICE DIIVEIS......cuiiiiiiieiieieiisiistisei sttt bbb bbb

L34 EFIPClI/O PIOTOCOL........oiiiieiire ettt bbb
EFI_PCI_IO_PROTOCOL

13.4.1 PCIDEVICE PALNS ...ttt bbb
13.4.2 PCl OPLION ROMS ..ottt et
13.4.3 Nonvolatile Storage
13.4.4 PCI Hot-Plug Events

14 Protocols — SCSI Driver Models and BUS SUPPOIT.......c.ccooveiiiiienenc e
14.1 SCSI DFIVEr MOAEI OVEIVIEW.........coiiiiciistieeie ittt bbb
14.2 SCSI BUS DIIVEISevriiiieireie sttt

14.2.1 Driver Binding Protocol for SCSI Bus Drivers
14.2.2 SCSI ENUMETATION. ..ot

14.3 SCSI DEVICE DIIVEIS ...ttt bbb bbb

14.3.1 Driver Binding Protocol for SCSI DeViCe DIIVEIS ... sssssssesssssssssssssens

14.4 EFI SCSI I/0 Protocol

EFI_SCSI_IO_PROTOCOL ...cecvtritrineintisrieiesses ettt ssssssssnns

14.5 SCSIDEVICE PALNS ... bbb

14.5.1 SCSI Device Path Example

14.5.2 ATAPI Device Path EXAMPIE ...ttt sssssssessssssns

14.5.3 Fibre Channel Device Path EXamPIe........cccovncini s ssssnsns

XXX January, 2017 Version 2.6, Errata A

UEFI Specification Contents

14.5.4 InfiniBand Device Path EXAMPIE........cc.cccciccsiecsss et sssnsns 814

14.6 SCSI Pass Thru Device Paths ...,
14.7 Extended SCSI Pass Thru Protocol
EFI_EXT_SCSI_PASS THRU_PROTOCOL

15 ProtoCOIS — ISCSI BOOTvviiiiiiiiii e
D5.1 OVEIVIEW ..ottt bbb bbb bbb bbb bR s b bbb bbb bbb b s bbbt st
15.1.1 iSCSI UEFI Driver Layering
15.2 EFLISCSI INitiator NAME PrOtOCOL ...ttt bbbt s
EFI_ISCSI_INITIATOR_NAME_PROTOCOL.....ccc.ciiminiiinrnsinsiesississsssisssesssssssessssesssssssssssssssnens 840

16 ProtoCOIS — USB SUPPOIT.....coiiiiiiiiiieie ettt 843
16.1 USB2 HOSt CONIOIEr PrOtOCON ..ottt s 843
16.1.1 USB Host Controller ProtoCOl OVEIVIEW ... 843
EFI_USB2 HC PROTOCOL
16.2 USB Driver Model ..o

D16.2.1 SCOPC....uiiiiiiitieiiesit bbb R
16.2.2 USB BUS DIIVET ...ttt bbb bbb bbb bbbt
16.2.3 USB Device Driver

16.2.4 USB I/0O Protocol.......
EFI_USB IO _PROTOCOL......ccconurrrrvrrnns
16.3 USB Function Protocolccccevevveiniicieieeinenes
EFI_USBFN_IO_PROTOCOL

17 Protocols — Debugger Support
L7. 0 OVEIVIEW ...ttt bbb bbb bbb bbb
17.2 EFl Debug SUPPOIt PrOTOCOL ..ottt sttt s

17.2.1 EFI Debug SUppOrt ProtoCOI OVEIVIEW. ..o sssssssssessssssssessssssssns 948
EFI_DEBUG_SUPPORT_PROTOCOL

17.3 EFI DEDUQGPOIt PrOTOCOL ...ttt ettt
17.3.1 EFI DEDUGPOIT OVEIVIEWcovvicicirieeicississs ettt st sss s ssssnsns
EFI_DEBUGPORT_PROTOCOL

17.3.2 Debugport DEVICE Path ...ttt
17.3.3 EFI DebugpOrt Variable ...t ssssssse s ssssesssssssssns

17.4 EFI Debug Support Table
L7.4.1 OVEIVIBW ...ttt bbb
17.4.2 EFI System Table LOCAtION.........c.ccceiiii sttt ssssssessssnsns

17. 4.3 EFIIMAGE INTO ..ottt sttt

18 Protocols — Compression Algorithm Specification ..o, 977
18.1 Algorithm Overview.........
18.2 Data Format..........cc.ccecevnee.

18.2.1 Bit Order.........c.c.......
18.2.2 Overall Structure.......
18.2.3 Block Structure
18.3 COMIPIESSOE DESIGNcvviriicicieieiessissiese ettt E bbbt s st et
18.3.1 OVEIAII PIOCESS ..ottt bbb
18.3.2 String Info Log
18.3.3 HUffMaN COdE GENEIALION ..o 987
18.4 DECOMPIESSON DESIGN ...oviiiivicieieie sttt st 989
18.5 Decompress Protocol
EFI_DECOMPRESS_PROTOQCOL ...ttt ettt sssssss e sssssssssessessssssssessss 990

Version 2.6, Errata A January, 2017 XXXI

Contents UEFI Specification

1O PrOtOCOIS —— ACP] PrOTOCOIS ...t ee e e eeeeeeeeeeneees
EF1_ACPI_TABLE_PROTOCOL.......ccoioooimieeeeeeeecsssssssssseeeeeeseeoesssssssssesessssseesssssssssssssssssssessssssssssssss e

20 ProtoCOIS — STrNG SEIVICESc.ciiiiiiiiiiiieiee et
20.1 Unicode Collation ProtOCOL.........cccoviiiese s
EFI_UNICODE_COLLATION_PROTOCOL ...c.ostiiirmiieiinsiineisseiiesissssessssssssssssssssssssssssssesssssons
20.2 Regular EXPression PrOTOCOI ...ttt sttt
EFI_REGULAR_EXPRESSION_PROTOCOL
20.2.1 EFI Regular Expression Syntax Type Definitions.........cccinnncninene s 1014

21 EFI Byte Code Virtual Machinge ...
201 OVEIVIEW ...ttt
21.1.1 Processor Architecture Independence.........ccccnneinineneneennns
21.1.2 OS INAEPENUENT ...
21. 1.3 EFlI COMPEANT ..ottt
21.1.4 Coexistence of Legacy Option ROMS ...
21.1.5 Relocatable IMage ...
21.1.6 Size Restrictions Based on Memory Available
21.2 MEMOIY OFUEIING ...ttt ss bbb bbb bbb bbbt
21.3 Virtual Machine Registers
21.4 Natural Indexingcccocoveenee
2040 SIGN Bl et
21.4.2 Bits Assigned tO Natural UNItS ...t
21.4.3 Constant
2044 NATUFAT UNTES ..o
21.5 EBC INSTIUCTION OPEIANGAScvuiiieiiiireiet ittt bbb bbb bbbt
21.5.1 Direct Operands
21.5.2 INAIFECT OPBIANTUS ..ottt bbb bbb bbb
21.5.3 Indirect With INAeX OPEIANGScccoeviiinii ettt
21.5.4 Immediate Operands...........ccccovvirinenne.
21.6 EBC Instruction Syntax
21.7 Instruction ENCOAING.......c.cocnureineininineneiisineineineenns
21.7.1 Instruction Opcode Byte Encoding
21.7.2 Instruction Operands Byte Encoding
21.7.3 Index/Immediate Data Encoding.............
21.8 EBC INStruction Set.........ccoocvveviveviveencenerineriseireniens
21.9 Runtime and Software Conventions.................
21.9.1 Calling Outside VM........cccccovrenininenenenns
21.9.2 CalliNg INSIAE VM.t
21.9.3 PArameter PASSINGccouriuiieiiiiiieiei ittt
21.9.4 Return Values

21.9.5 Binary Format
21.10 ArchiteCtural REQUIFEMENTS ..ottt
21.10.1 EBC Image Requirements
21.10.2 EBC Execution Interfacing REQUIFEMENTS ...t sstseseessees
21.10.3 Interfacing Function Parameters REQUIFEMENTS ... 1072
21.10.4 Function Return Requirements
21.10.5 Function Return Values REQUIFEMENTS ..ottt eesees 1072
21.11 EBC INTErPreter PrOTOCON. ...ttt bbb 1073
EFI_EBC_PROTOCOLoootiiriiieieieeseiei st 1073
2112 EBC TOOIS. oottt 1078
21.12.1 EBC C COMPIIET ...ttt 1078

XXXii January, 2017 Version 2.6, Errata A

UEFI Specification Contents

21.12.2 C COAING CONVENTION........coovivieiiissieieisssiss sttt sss ettt e 1078
21.12.3 EBC Interface Assembly INSTFUCLIONS.........cc.ccocvverninrininss s ssens 1079
21.12.4 Stack Maintenance and Argument PaSSiNg..........cccovininssssssssessssssssesessens 1079

21.12.5 Native to EBC Arguments Calling CONVENTLION...........cccovvivinencnseecssss e 1079
21.12.6 EBC to Native Arguments Calling CONVENION. ..o 1079
21.12.7 EBC to EBC Arguments Calling CoONVENTLION..........ccccoovviniecreieesssss s 1080
21.12.8 FUNCLION RETUINS ..ottt bbb bbb 1080
21.12.9 FUNCLION RETUIN VAIUES ...ttt 1080
21.12.10 Thunking

21,012,170 EBC LINKEN ...ttt bbb
21.12.12 IMAQJE LOAUET ...ttt st bbbttt
21.12.13 Debug Support
21.13 VM EXCEePtiON HANAIING.......ccciviiiiieicccsis ettt nsns
21.13.1 Divide BY O EXCEPLIONcviiieiccsieie sttt sttt
21.13.2 Debug Break Exception
21.13.3 Invalid OpCOdE EXCEPLION.......coveieciciereris ettt neas
21.13.4 StaCk FAUIt EXCEPLIONc..cviicccse sttt
21.13.5 Alignment Exception.........cccoeeevrnnnnen.
21.13.6 Instruction Encoding Exception.......
21.13.7 Bad Break Exception..........ccccoevvnuene.
21.13.8 Undefined Exception.........cccccevvvnene.
21.14 Option ROM FOrmats.......c..cccocovvvrivrerreensnsiennnnns
21.14.1 EFI Drivers for PCI Add-in Cards
21.14.2 NON-PCI BUS SUPPOIT ..ottt

22 Firmware Update and REPOITINGccooiieiiiiieien e
22.1 Firmware Management PrOTOCOL ...ttt ssssnsens
EFI_FIRMWARE_MANAGEMENT_PROTOCOL
22.2 Delivering Capsules Containing Updates to Firmware Management Protocol ..., 1106
22.2.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID......c.ccccconmiimimrmrrmirnininsinssnssnseesenns 1106
22.2.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE STRUCTURE.......1107
22.2.3 Firmware Processing of the Capsule Identified by
EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID
22.3 EFI System Resource Table........ccssss s sssnens

EFI_SYSTEM_RESOURCE_TABLEc.coouiiiiinineiineissississens

22.3.1 Adding and Removing Devices from the ESRT ... ssennens

22.3.2 ESRT and Firmware Management ProtOCOL...........cccoeeiiniiniiccnssse s
22.3.3 Mapping Firmware Management Protocol Descriptors to ESRT Entriesccccvunee. 1117

23 Network Protocols — SNP, PXE, BIS and HTTP Boot
23.1 SIMPIE NETWOIK PrOTOCOI ...ttt nens
EFI_SIMPLE_NETWORK_PROTOCOL ...

23.2 Network Interface ldentifier Protocol.............ccoovevviieinicenccneennn,
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL

23.3 PXE BASE COUE PrOLOCOccviciiicce ettt sttt
EFI_PXE BASE _CODE_PROTOCOLccecisiineiirinrnrieseiesisssssssssessesesssssssssessssssssssssssessssesssssssssesses

23.3.1 Netbootb..........cccccoevvveveiecirce e

23.4 PXE Base Code Callback Protocol
EFI_PXE BASE _CODE_CALLBACK PROTOCOL ...cccoviiiirrrisrnenerissnsienssssssssssessssssssssssnesens

23.5 Boot Integrity Services Protocol
EFI_BIS_PROTOCOL ...ttt sss st sssssssssssssssss s sssssssssssnsssns

23.6 DHCP 0ptions fOr ISCSI ON IPVB ..o ssssa st sessasssssssans

Version 2.6, Errata A January, 2017 XXXiil

Contents UEFI Specification

237 HTTP BOOT ...ttt ettt
23.7.1 Boot from URL
23.7.2 Concept configuration for a typical HTTP Boot scenario
23.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical HTTP

BOOT SCENATIO ... 1240
23.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in Corporate

ENVIFONMENT) ..ot st s bbbt ntns 1243
23.7.5 Concept of Message Exchange in HTTP Boot scenario (IPV6).......c.cccccvivienenisnreinnennen, 1247
24 Network Protocols — Managed NetworK ... 1249
24.1 EFl Managed NetWOIrK PrOtOCON ...ttt ssnsns 1249
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOLcoermrrrmrirmrererierreersneerneens 1249

EFI_MANAGED_NETWORK_PROTOCOLcvciviiriiririeeiinssens

25 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant
25.1 VLAN Configuration PrOtOCOIccccciiieiecsis ettt st sessassssnsans
EFI_VLAN_CONFIG_PROTOCOLcecostrrriririririeiinessaissessens
25,2 EAP PFOTOCON ...ttt bbb
EFI_EAP_PROTOCOL ...cocvtiniiviiieiriesssiseisssssssssssssssssssssssssssssssssssssasens
25.2.1 EAPManagement ProtocCol..........ccovenninccinssse e
EFI_EAP_MANAGEMENT_PROTOCOL.......cccccomurmirmiririnnernrernsernnens
25.2.2 EFI EAP Management2 ProtoColcccvviviviinnicncnesienessnennns
EFI_EAP_MANAGEMENT2_PROTOCOL.....cccoccorminrmrnnernrerneerseerieens
25.2.3 EFI EAP Configuration ProtocCol ...
EFI_EAP_CONFIGURATION_PROTOCOL......coccimiiiiinirisensssssssssssssssesssssssssssssssssssssssssssssens
25.3 EFI Wireless MAC CONNECLION PrOTOCON ...
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL
25.4 EFI Wireless MAC CoNNECtioN 11 PrOTOCON ...t
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL......ccccovurrmrrrrrrmrreernsemesrssssessesssssesssens
25.5 EFI Supplicant Protocol
25.5.1 Supplicant Service Binding ProtOCOl ... ssssens
EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL.......ccceimrimrimiimrrnrrrisesesssssesesssesssssssens
25.5.2 Supplicant Protocol
EFI_SUPPLICANT _PROTOGCOL ...covviiiiiriiineeiseisesssssssssssss st sssassssens

26 Network Protocols — BIUETOOTNocvviiiiiiiee e

26.1 EFI Bluetooth HOSt CONroller ProtOCOI ... bbb
EFI_ BLUETOOTH_HC_PROTOCOL

26.2 EFI Bluetooth Bus Protocol.........cccccecevviiininnnnn.
EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL
EFI_ BLUETOOTH_IO_PROTOCOL......cccooimininerinrineineissiesissssensnnns

26.3 EFI Bluetooth Configuration ProtocCol ...
EFI_ BLUETOOTH_CONFIG_PROTOCOL....c.ccisireiirinrinsisiesssissinssessssssssssssssssssssssessssssssssssnesees

27 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations 1407
271 EFI TCPVA PIOTOCOL.......coiiiiiiiei sttt bbb
27.1.1 TCP4 Service BINAING ProtOCOL ...t ssssens
EFI_TCP4_SERVICE_BINDING_PROTOCOL
27.1.2 TCPA PrOTOCONoceuiiiiiiiseit ettt
EFI_TCPA_PROTOQCOLceivtiriirierniieeieinsissssssssesssessss sttt st sssssssssssssssssssssssssassssssssssssssassssens
27.2 EFI TCPV6 ProtoCol.........cccooovnineinininenesinineineins
27.2.1 TCPv6 Service Binding Protocol
EFI_TCP6_SERVICE_BINDING_PROTOCOL

XXXIV January, 2017 Version 2.6, Errata A

UEFI Specification Contents

27.2.2 TCPVB PIrOTOCOLot 1436
EFI_TCPG_PROTOQCOLcoviviiiiiiiiii s 1436
27 .3 EFTIPVA PIOTOCON ..ottt et 1460

27.3.1 IP4 Service BiNAIiNG ProtOCOI ...ttt sssnens 1461
EFI_IP4_SERVICE_BINDING_PROTOCOLcccvintiiiiinirireieisiineiei s
27.3.2 IPA ProtocCol.........cccoovevninininienesise s
EFI_IPA_PROTOQCOL ...coititiiieieieie it bbb
27.4 EFI IPv4 Configuration PrOtOCOI ...ttt ssnsns
EFI_IP4_CONFIG_PROTOCOL
Related DefiNItIONS........ccooviiiieccsin sttt
27.5 EFI IPv4 Configuration 1l PrOTOCOL ...t ssnsns
EFI_IP4_CONFIG2_PROTOCOL
27.6 EFIIPVE PrOTOCOI ...ttt sttt tnn
27.6.1 IPv6 Service Binding Protocol
EFI_IP6_SERVICE_BINDING_PROTOCOL
27.6.2 IPVB PIOTOCOI ..ottt sttt sttt
EFI_IPB_PROTOCOL ..ottt bbb
27.7 EFIIPv6 Configuration Protocolc.ccc.......
EFI_IP6_CONFIG_PROTOCOL............
27 .8 IPSEC....ciiiiiiciieiiien s
27.8.1 IPSEC OVEIVIEW.....coevvrcererereisseeseiens
27.8.2 EFI IPsec Configuration Protocol
EFI_IPSEC_CONFIG_PROTOCOL...........
27.8.3 EFIIPSEC PrOtOCON ...ttt sttt
EFI_IPSEC_PROTOCOL ..ottt
27.8.4 EFI IPsec2 Protocol
EFI_IPSEC2_PROTOQCOLottt s
27.9 Network Protocol - EFI FTP ProtOCOI ...ttt ssssssns
27.10 EFI TLS ProtocColS ...
27.10.1 EFI TLS Service Binding Protocol
EFI_TLS_SERVICE_BINDING_PROTOCOLc.ovuntiiiniinireireieiseineiei s sssssssessenessns 1588
27.10.2 EFI TLS Protocol
EFI_TLS _PROTOCOL......ttiiiriireiieiisiiseie st 1589
27.10.3 EFI TLS Configuration PrOtOCOL.........cccccoviviiviiiesreessisss st ssssssse e 1601
EFI_TLS_CONFIGURATION_PROTOQCOL ...c.eosiririiineineireieissineiei i 1601

28 Network Protocols — ARP, DHCP, DNS, HTTP and RESTccoocoiviiiee i 1607
28.1 ARP PIrOLOCOL ..ottt bbb bbb bbb bbbttt e
EFI_ARP_SERVICE_BINDING_PROTOCOL....
EFI_ARP_PROTOCOLccccocovrimrrrrinrnrnsinesesssennns
Related Definitions
28.2 EFI DHCPVA ProtOCOL ... bbb
EFI_DHCP4_SERVICE_BINDING_PROTOCOLc.ccovuimrieinrisrinsiesissssssssssssssssssessssssssssssnesens 1621
EFI_DHCP4 PROTOCOLciiiiieisrssie st sssssesssssssssssssssssssssessssssssssnssssssessns
28.3 EFI DHCP6 Protocol........ccovvviiiniccnicennnnns
28.3.1 DHCP6 Service Binding Protocol
EFI_DHCP6_ SERVICE_BINDING_PROTOCOLc.ccoviimiernrissinsiesississssssssssssssssesssssssssssssesens 1647
28.3.2 DHCP6 Protocol
EFI_DHCPB _PROTOCOL ...t esssss s ssssss s ssssssssssssssesssssssssssssssssssns 1648
28.4 EFI DNSVA PrOTOCOL ...ttt ettt bbb bbb bbbt bbb bbb bns 1676
EFI_DNS4 SERVICE_BINDING_PROTOCOL ...cccccoviivinriersrissinsiesssssssessssssssssssessssssssssssnesens 1676

Version 2.6, Errata A January, 2017 XXXV

Contents UEFI Specification

EFI_DNS4 PROTOCOL ..o sssss st s sssssssssssssssssssse s ssessssssssasssns

28.5 EFI DNSV6 Protocol ...
28.5.1 DNS6 Service Binding Protocol
EFI_DNS6_SERVICE_BINDING_PROTOCOL
28.5.2 DNS6 ProtoCOl.........cccvvvvveineinnicenienninn,
EFI_DNS6 PROTOCOL.....ccccconerivrimrrerrernnns
28.6 EFI HTTP PrOTOCOIS ..ottt bbbt bbb bbb bbb
28.6.1 HTTP Service BiNdiNG ProtOCOL. ...t ssssens
EFI_HTTP_SERVICE_BINDING_PROTOCOL
28.6.2 EFI HTTP Protocol Specific DefiNitioNS ...
EFI_HTTP_PROTOCOL ...ttt et sss st sssssssssss st ssesssssssssnssns
28.6.3 HTTP Utilities Protocol
EFI_HTTP_UTILITIES PROTOCOLoosisieisrisrse st s sssssssssss st ses s ssesssssssssessns
28.7 EFI REST PrOTOCOI ..ottt b bbb bbb bbb bbbt s e
28.7.1 EFI REST Protocol Definitions
EFI_REST _PROTOCOL ..ottt ssssssss st ssssssessssssssssss s ssessssssssnsssns

29 Network Protocols — UDP and MTFTP.......cocviiiiiiiie e
29.1 EFI UDP PrOTOCOL ..ottt bbb bbb bbbt bbbt
29.1.1 UDP4 Service Binding ProtoCol ...
EFI_UDP4_SERVICE_BINDING_PROTOCOL
29.1.2 UDP4 ProtOCOL.....ccccoieiicetieeee s
EFI_UDP4 _PROTOCOL.......cccconurvrrmrvrirererns
29.2 EFlI UDPV6 ProtocCol.........ccvvvveevicncncenes
29.2.1 UDP6 Service Binding Protocol
EFI_UDP6_SERVICE_BINDING_PROTOCOL
29.2.2 EFIUDPB PrOtOCOLciiiiccss bbbt sttt bbb
EFI_UDP6_PROTOCOL
29.3 EFI MTETPVA PIrOTOCOIcvivviiiiitee ettt bbbttt bbbt bns
EFI_MTFTP4_SERVICE_BINDING_PROTOCOLcccosuiriinierinrineierssssiesssssssssssesssssssssssssesees 1779
EFI_MTFTP4_PROTOCOL
29.4 EFI MTETPVE PrOTOCOLcovviiiiii ettt bbb bbb bbbt bns
29.4.1 MTFTPG6 Service BINAiNG ProtOCOL ... sssnens
EFI_MTFTP6_SERVICE_BINDING_PROTOCOL
29.4.2 MTFTPB PrOtOCOL ...ttt bbb bbb bbb bbb
EFI._MTFTPB _PROTOGCOLcoviiiirneicisiesssse sttt ssssss s sssessesss s ssessssssssnssses

30 Secure Boot and Driver SIgNING ...
30,1 SECUIE BOOL ...
EFI_AUTHENTICATION_INFO_PROTOCOL
30.2 UEFI Driver Signing OVEIVIEWccoveinrnrieicessessissssssssssssssssessessssssssees
30.2.1 Digital Signatures..........ccccooevevvrrerrennenns
30.2.2 Embedded Signaturesccocoeeveerrennes
30.2.3 Creating Image Digests from Images
30.2.4 COAE DETINITIONSocuieriiiiiiiirei et bbb bbb
WIN_CERTIFICATE ..ottt ettt bbb s
WIN_CERTIFICATE_EFI_PKCS1_15
WIN_CERTIFICATE_UEFI_GUIDc.ovtviiiiniinrineiinstinsessisessesss s ssssssse s sssssssssssessssssssssssssssessssssees
30.3 Firmware/OS Key Exchange: creating trust relationships ... 1849
30.3.1 Enrolling The Platform Key
30.3.2 Clearing The PIAtfOrmm KEY ...t ssssssssssssssans
30.3.3 Transitioning t0 AUt MOTE ... nens 1852

XXXVi January, 2017 Version 2.6, Errata A

UEFI Specification Contents

30.3.4 Transitioning to Deployed MOUE ... sssens 1852
30.3.5 Enrolling Key EXChaNQe KEYS.........coiiniciss st ssssssse s ssssssssssssessssnssns 1852
30.3.6 Platform Firmware Key Storage REQUIrEMENLScccccoovvvieriiriencnsssieessssssesesssessesssnsens 1853
30.4 Firmware/OS Key Exchange: passing PUBIIC KEYS.......ccviicsssessssns s 1853

30.4.1 SIgNALUIe DAtADASEc.ccvcverciccse st 1854
EFI_SIGNATURE_DATA ..ottt bbb bbb 1854

30.4.2 Image Execution INformation Table...........ccccooininncs s 1859
30.5 UEFI IMAge ValIAAtIONccooviiiiecess ettt tnsns

30.5.1 Overview.........ccc.....

30.5.2 Authorized User

30.5.3 Signature Database UPAAte.........ccovrininicicss st sessssssssesssssssns 1862
30.6 Code Definitions

30.6.1 UEFI Image Variable GUID & Variable Name. ... 1868

31 Human Interface INfrastructure OVEIVIEW...........cccccvviiveiie i

BT GOAIS ..o bR R
31.2 Design DISCUSSIONcccovvveeinrnrieieisessesseenens
31.2.1 Drivers And Applications...........cc.co......
31.2.2 Localization ...
31.2.3 USEr INPUL.....ooiiiriirieeses s
31.2.4 Keyboard Layout..........cccccovivrvrerenriennnnns
BL25 FOIMS .oooircseeee s
31.2.6 StHNGS ..o ssenes
BL.2.7 FONTS. ..o
31.2.8 IMAJES...ciiiviiiie e
BL.2.9 HIE DAADASE ...ttt bbb
312,20 FOIMS BIOWSEL ..ottt bbb
31.2.11 Configuration Settings
31.2.12 FOrm CallDACK LOQIC.......cccoviviiiiiieiieisissiese sttt ssssssa s sssessssnnsans
31.2.13 Driver MOdel INTEIACHIONccoiiiiieeieiiscreie bbb
31.2.14 Human Interface Component Interactions
31.2.15 Standards MaP FOMMS ... sttt st essessssssans
31.3 COAER DEFINITIONS ...t bbb bbb bbb
31.3.1 Package Lists and Package Headers
EFI_HIL_PACKAGE_HEADERc.ootiitt ettt s
31.3.2 SIMPIified FONT PACKAGE ..ottt sttt ssesssnsns
31.3.3Font Package.........cccoveienerninrennennnens
31.3.4 Device Path Package.........ccccoouevivrnnnnnn.
31.3.5 GUID Packageccccooeevrivrerreneenssneneennnns
31.3.6 String Package........
31.3.7 Image Package........
31.3.8 Forms Package...........cccvvvvrnenrerrennenns
31.3.9 Keyboard Package
31.3.10 ANIMAtIONS PACKAQGE.........ccoiiiiieicircesis sttt

Y o 1 I o) (0 10 £
B2. L FONT PIOTOCOL ...ttt bbb bbb bbb bbbttt b b e
EFI_HII_FONT _PROTOCOL ..o st sssssssssessssssssssssssssesssssesssssessssssssnssses
32.2 EFTHITFONT EX PrOTOCOL ...ttt bbb bbb bbb
EFI_HIl_FONT_EX PROTOCOL
32.2.1 COAE DEIINITIONS ..ottt st bbb bbb bbbt
EFI_FONT _DISPLAY _INFO ..ottt ittt sssssssssssesssssss s s ssesssssssssesses

Version 2.6, Errata A January, 2017 XXXVil

Contents UEFI Specification

EFL_IMAGE_OUTPUTovttiiiriteiseiesssisi sttt sttt ssssssens
32.3 String ProtoCOol ...

EFI_HII_STRING_PROTOCOL
32.4 Image ProtocCol ...

EFI_HII_IMAGE_PROTOCOL........ccc.nneen.
32.5 EFI HIl Image Ex Protocolccc.ccoevvivierennens

EFI_HII_IMAGE_EX_PROTOCOLccoviririniriieinieineiessssesssassssens
32.6 EFI HIl Image Decoder PrOtOCON ...ttt st ssss s

EFI_HII_IMAGE_DECODER_PROTOCOL....
32.7 FoNnt Glyph Generator PrOTOCOL..........ccciccs sttt snsns

EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOLccocosturmirrmriieeinersesesssssssssessssnessssesssens 2137
32.8 Database Protocol

EFI_HII_DATABASE_PROTOCOL......cstmtiiriierieresesnsinsissessassssens 2140

32.8.1 DAtADASE STIIUCTUIES ... bbb
EFI_HII_DATABASE_NOTIFY
EFI_HII_DATABASE_NOTIFY_TYPE ..ottt sssssssssssssssssssssssssens 2165

33 HIl Configuration Processing and Browser Protocolccccccvvieniiincicnenn, 2167

BB L INTFOAUCTION ..ot bbb bbb
33.1.1 Common Configuration Data Format....
33.1.2 Data Flow..............

33.2 Configuration Strings
33.2.1 String Syntax
33.2.2 StHNG TYPES .ocvvvceevreiessssns s

33.3 EFI Configuration Keyword Handler Protocol............ccccccovivcviiviinnencnnnen,

EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL.....ccccsumtimiririieiiessessessssssssessssessssssssens 2174

33.4 EFI HIl Configuration Routing Protocol

EFI_HII_CONFIG_ROUTING_PROTOCOL...
33.5 EFI HIl Configuration ACCESS PrOTOCOIcc.ccciviiiiccrsee sttt ss st ssssssns
EFI_HII_CONFIG_ACCESS_PROTOCOL

33.6 Form Browser Protocol..........cooinineninnininenennn,

EFI_FORM_BROWSER2_PROTOCOLcecstimiimiieereinesesssinssasssssens

17 W LY gl [0 =T 0 i [07= 1 A [0 o HFUR

34.1 USer 1dentifiCatiON OVEIVIEWcccccevieiiiii ettt st bbb bbb a et ne

34.1.1 User Identify

34.1.2 User Profiles

34.1.3 Credential Providers.......ccoooeevviinrennn,

34.1.4 Security Considerations........cccccovvne...

34.1.5 Deferred Execution.........c.ccoeoevvevrivnenennn,

34.2 User Identification Process.........cceevvvivininnns

34.2.1 User Identification Process...................

34.2.2 Changing The Current User Profile
34.2.3 Ready TO BOOL........ccccoevvivinivririnieresnenns

34.3 COAE DEFINITIONS ...t b bbb bbbt b s bbb e

34.3.1 User Manager PrOtOCOL ...ttt e snsns

EFI_USER_MANAGER_PROTOCOL

34.3.2 Credential Provider PrOtOCOIS ...

EFI_USER_CREDENTIAL2_PROTOCOL

34.3.3 Deferred Image Load Protocol

EFI_DEFERRED _IMAGE_LOAD_PROTOCOL.....cccouimimrinisrissinsiesississssssssssssssssessssssssssssnesens 2251

34,4 USEN INTOIMALION ..ot bbb b bbb bbb bbb bbb 2254

XXXViil January, 2017 Version 2.6, Errata A

UEFI Specification Contents

34.4.1 EFI_USER_INFO_ACCESS_POLICY_RECORD........cccovuminiiniisssisssisssssns 2255
34.4.2 EFI_USER_INFO_CBEFF_RECORD........cccostitiiiiniiii s, 2260
34.4.3 EFI_USER_INFO_CREATE_DATE_RECORD ..o, 2260

34.4.4 EFI_USER_INFO_CREDENTIAL_PROVIDER_RECORD.....cc.ccccsuinirimrimrnnneiiesissnsessssssessssesnns 2260
34.4.5 EFI_USER_INFO_CREDENTIAL_PROVIDER_NAME_RECORD......ccccosmmmrimrimmnnrinrinsnsinsinennns 2260
34.4.6 EFI_USER_INFO_CREDENTIAL_TYPE_RECORD......ccccsosimmimiimesinrinssisse s sssssssssnesens 2261
34.4.7 EFI_USER_INFO_CREDENTIAL_TYPE_NAME_RECORD.......cccoeisimmnriinrissnsnesississsessessennns 2261
34.4.8 EFI_USER_INFO_GUID_RECORDccooimiiinmiinsinsinsisesissssssssesesesssssssssssssssessssssssssssssssssssesens 2261
34.4.9 EFI_USER_INFO_FAR_RECORD
34.4.10 EFI_USER_INFO_IDENTIFIER_RECORD......cccccosiiniiirinineieieissssinsss s ssssessssssessessesens 2262
34.4.11 EFlI_USER_INFO_IDENTITY_POLICY_RECORDccccsosmmmrimrimnerssinsnsissiessssssssssssssssssnesens 2263
34.4.12 EFI_USER_INFO_NAME_RECORD
34.4.13 EFl_USER_INFO_PKCS11 RECORDcccccosimimirerisrinsinsiseses s ssssssssssssssssssssssssssssssssssessns
34.4.14 EFI_USER_INFO_RETRY_RECORDcccceeiitiimiinrnrineiessssissinsse s iessessssssssssssssssssssss s ssssssssssssessns
34.4.15 EFlI_USER_INFO_USAGE_DATE_RECORD
34.4.16 EFlI_USER_INFO_USAGE_COUNT_RECORDc.cccovimimreriirinsnesiissssinsiesssssssssssssssessessssans 2266

34.5 User INFOrmMation TabIE........cccoiiicc bbb bbb bbbt

35 Secure TEChNOIOGIES ..o s
3B5.1 HASH OVEIVIEW.......oocviii et bbb bbb bbb bbb bbb bbb bbbt e

35.1.1 Hash References
EFI_HASH_SERVICE_BINDING_PROTOCOL
EFI_HASH PROTOCOL......cooiniirnrnrrnees st ssssesssssssseses

35.1.2 Other Code Definitions
EFI_SHA1 HASH, EFI_SHA224 HASH, EFI_SHA256 HASH, EFI_SHA384 HASH,

EFI_SHAS512HASH, EFI_MD5 _HASH.......c.ocinieiinrcce s sssssssssssnes 2274
35.2 HASNZ2 PrOLOCOIScviii bbbt bbb bbb bbb bbbt
35.2.1 EFI Hash2 Service Binding Protocol
EFI_HASH2_ SERVICE_BINDING_PROTOCOLc.cccoimriirnrinrinsiesssssissssssssssssessssssssssssssesees 2276
35.2.2 EFI HASN2 ProtOCOL ...t bbbt bbb

EFI_HASH2_PROTOCOL
35.2.3 Other Code Definitions
EFI_HASH2Z2 OUTPUT ..ottt
35.3 Key Management Service
EFI_KEY_MANAGEMENT_SERVICE_PROTOCOLccccstviirininirisineireieisissiseies e,
35.4 PKCST7 VEIIfY PrOtOCOI ..ottt sttt nsnn
EFI_PKCS7_VERIFY_PROTOCOL
35.5 Random Number Generator Protocol..............
EFI_RNG_PROTOCOL......cccccosurinerrirrinnns
35.5.1 EFI RNG Algorithm Definitions............
35.5.2 RNG REFEIENCES ...ttt bbbt ntns
35.6
Smart Card Reader and Smart Card EAge ProtOCOIS ...
35.6.1 Smart Card Reader PrOtOCOI ... ssneans
EFI_SMART_CARD_READER_PROTOCOL Summary
35.6.2 Smart Card EAQe ProtOCOI ...t snsans
EFI_SMART_CARD_EDGE_PROTOCOL ..ottt

36 Protocols— Timestamp ProtOCOlccooviiiiiiiiiieeeee s
36.1 EFI TIMESTAMP PrOtOCOI ..ottt enn
EFI_TIMESTAMP_PROTOQCOL ..ot sesnsses

Version 2.6, Errata A January, 2017 XXXIX

Contents UEFI Specification

GUID and TimMeE FOIMATLSooiiiiieieiiee ettt 2387
CONSOIE ..t 2389
Device Path EXAMPIESc.ooiiiice ettt sra e 2393
STATUS COUES ...ttt bbbt bbbt b e e enes 2401
Universal Network Driver INtErfacCes ... 2405
Using the Simple Pointer ProtoCol ... 2489
Using the EFI Extended SCSI Pass Thru ProtocColccccceveiiiieiiiie e 2491
ComMPressioN SOUICE COURooiiiiiiiiieieee ettt es 2495
DecompresSion SOUICE COUEociiiiiieiiee ettt sra e 2523
EFI Byte Code Virtual Machine Opcode LiStcccooiiiiiiiiiiiiinieceese e 2539
Alphabetic FUNCTION LISTS ..o 2543
EFI 1.10 Protocol Changes and Deprecation LiStc.cccccvvveiiieiiiie v 2545
Formats — Language Codes and Language COde Arraysccccoceverenenenenesieninns 2549
Common Platform Error RECOI ... 2551
UEFI ACPI Data TabIeccooiiiiiee et 2599
Hardware Error Record PersSiStence USAJEccceieiiiiniriniiniesesieiee e 2603
RETEIEINCES ...ttt bbbt bt e e ane s 2605
(€] [1S TT= 1 PSSR 2613

x| January, 2017 Version 2.6, Errata A

UEFI Specification

Figures
Figure 1. UEFI CONCEPLUAL OVEIVIEW.......c.cvvivirierississieis s ssiesis et sssssssssssss s ssessess s ssesssssssssessasssssenes 9
Figure 2. BOOTING SEOUEBNCE ...t ssses sttt sttt sttt ansnnns 17
Figure 3. Stack after AddressSOfENtryPoint Called, A= 32 ... 27
Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based SYStEMS.........ccoc.vcmrreinrreeinnnninns 30

Figure 5. Construction of a Protocol

Figure 6. Desktop SYStemMcccvvcvrviinrienenesieeinenns
FIGQUIE 7. SEIVEE SYSTEIM ..ottt bbb s bbbt
FIQUIE 8. IMage HANMIE ..ottt bbbt

Figure 9. Driver Image Handle
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

HOSE BUS CONTIOIIEIS ...t bbb bbb
PCI RoOt Bridge DeVviCe HanAIE...........ccoociiiiccsccsssse st sssnes
Connecting Device Drivers
Connecting Bus Drivers.........coocoveveniins

Child Device Handle with a Bus Specific Override
Software Service RelatioNShips ...

MBRDisk Layout with legacy MBR example............cccocovuvvrrnnns

GPT disk layout with protective MBR @XamMPIe ... ssssssssssseens
GPT disk layout with protective MBR on a disk with capacity exceeding LBA OxFFFFFFFF

EXAMPIE....icceiecce e 119

Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.

GUID Partition Table (GPT) example

Device Handle to Protocol Handler Mapping 165
HaNAIE DAtaDASE ..o bbb 167
Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures.........cccccovvvvvrvnnnn. 276
TeXt 10 BINArY CONVEISION ..ottt s sssnsans
BiNary tO TEXE CONVEISION.......ccciviiirieieisisss ettt ettt s s nsnes
Device Path Text Representation

TeXt DEVICE NOAE NAIMES ..o bbb
Device NOde OPLION NAIMES ...ttt snens
Driver Health Status States

SOFEWAIE BLT BUFTEI ...t
Nesting of Legacy MBR Partition RECOIS ... ssssssssssssssssns 541
HOSE BUS CONTIOIIEIS ... 694
Device Handle for a PCI Root Bridge Controller 695
Desktop System with One PCI RoOt Bridge...........coccvvivvivnenneieineinns 696
Server System with Four PCI Root Bridges 697
Server System with Two PCI Segments........ 698
Server System with Two PCI Host Buses...... 699
IMAQGE HANAIE.........coce sttt tns 736
PCIDriver Image HaNAIE...........ccrsisccss sttt ssssnes 737
PCl Host Bus Controller

Device Handle for a PCl HOSt BUS CONTIOIIET ... 739
PRySICal PCl BUS STIUCTUIE ..ottt bttt nsnes
Connecting a PCI Bus Driver

Child Handle Created by @ PCI BUS DFIVENcc.ccinieininininiiseissessssesssess s sessssssessessssssssens 741
ConNNECtiNg @ PCI DEVICE DIIVET ..ottt ssssssas s ssssessssssssens 744
Unsigned PCI Driver IMage LAYOUL..........ccccoviniiessssses st sssssssssssssessssssssssesssssssnses 790

Version 2.6, Errata A January, 2017 xli

Figures

xlii

Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.

UEFI Specification

Signed and Compressed PCI Driver IMage FIOW ... ssssnens 790
Signed and Compressed PCI Driver Image LayOUL............cccovnincnsnniesnssse s sssenens 791
Signed but not Compressed PCI Driver Image FIOW ..., 792
Signed and Uncompressed PCI Driver Image LayOuUL ... sssssenens 793
Device Handle for a SCSI Bus Controller.....

Child Handle Created by a SCSI Bus Driver

Software Triggered State Transitions of a USB Host Controller..........ccccoivivicncnieneinnnn, 852
USB BUS CONErOlEr HANAIE ...t 880
Sequence of Operations with Endpoint Policy Changes.........ccccivccncnsinicnesssssenens 945
Debug Support Table Indirection and POINtEr USAQE..........ccoccvvuermninieiensisseessssesesssnsenns 974
Bit Sequence of COMPIresSSed Data ... snes 979
ComMPressed Data STTUCTUIE. ...ttt nees 979
BIOCK STIUCTUIE ...t bbb 980
Block Body

StriNG INFO LOQ SEAICH TIE ...ttt e 985
NOAE SPHIL ..o E bbbt tns 987
Firmware Image with no Authentication SUPPOIt ... 1094
Firmware Image with Authentication SUPPOIt ... 1094
Optional Scatter-Gather Construction of Capsule Submitted to UpdateCapsule()......... 1107
Capsule Header and Firmware Management Capsule Headercccccocovvvivivienennsnnennnns 1108
Firmware Management and Firmware Image Management headers.............ccovevrvrennenn. 1109
IPVB-DASEA PXE DOOL ...t 1189
netboot6 (DHCP6 and ProxyDHCPG6 reside on the SAme SErver)......... e, 1192
IPv6-based PXE boot (DHCP6 and ProxyDHCP6 reside on the different server)............. 1193
HTTP Boot Network Topology Concept — Corporate Environment.............cccocooevvcvvvncnnen, 1239
HTTP Boot Network Topology Concept2 — Home environmentscccocovvvevennieneinnennns 1240
UEFI HTTP BOOt ProtOCOI LAYOUL..........cciiviiricicicisieee sttt ssnens 1241
HTTP BOOT OVEIall TIOW ...t 1244
Creating A DIgital SIQNAtUIE ...t ntns 1843
Verifying a Digital SIgNATUIE..........cc.ceecr s ntnes 1844
Embedded Digital CertifiCates.........omiee s sssees 1845
Secure Boot Modes

SIGNATUIE LISTS ... s bbb s ettt s
Process for adding a new signature by the OS ... 1865
Platform Configuration OVEIVIEW ... ssssens 1872
HIl Resources IN Drivers & APPHCALIONS. ... sssnes 1873
Creating Ul Resources With RESOUICE FIlES.........cccvvcciniieiccsrsessnssse s 1874
Creating Ul Resources With Intermediate Source Representationccccocovvvveierinnens 1875
The Platform and Standard User INTEractions ... 1876
User and Platform Component INTEraCtioN..........ccoeeiivinccninsiscsssss e 1876
User Interface COMPONENTS ...ttt e 1877
Connected FOrmMS BrOWSEI/PIOCESSO ...t sbssss s 1878
Disconnected FOIrmMS BrOWSEI/PIrOCESSO ..ot 1878
O/S-Present FOrmMS BroOWSEI/PIOCESSO ..ot ssssssssssesseses 1879
Platform Data STOrAQ0Ecccvvvvciisee sttt 1879
KEYDOAIT LAYOUL........ocvevriciiciesesse ettt 1882
Forms-based Interface EXamMPIE ...ttt snens 1885
Platform Configuration OVEIVIEW ..ot ssssens 1886
QUESTEION Value REIIHEVAI PrOCESS......coccvsisr sttt ssssssns 1895
Question Value Change Process

STHNG TAENTITIEIS ... bbbt ntns

January, 2017 Version 2.6, Errata A

UEFI Specification Figures

FIGUIE O7. FONTS ..ot ettt
Figure 98. Font Description Termscccccocovvevvvnnnnn.

Figure 99. 16 x 19 Font Parameters

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124,
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144,
Figure 145.
Figure 146.

FONT STruCtUre LayOUL ...

Proportional Font Parameters and Byte Padding..........ccccccoeuu....

AlIgNING GIYPRNS ...

HIEDALADASE ... bbb
SETUD BIOWSET ..ottt bbb bbbttt
Storing Configuration Settings
OS RUNTIME ULHIZATION ...t
Standard Application Obtaining Setting Example
Typical Forms Processor Decisions Necessitating a Callback (1)
Typical Forms Processor Decisions Necessitating a Callback (2)
Typical Forms Processor Decisions Necessitating a Callback (3)
Driver Model Interactions
Managing Human Interface COMPONENTS.........cc.ccvvieierninsn s
EFI IFR FOrm set configuUration ...t ssss s sssnes
EFI IFR Form Set question changes.........
Glyph Information Encoded in Blocks ...
Glyph BIOCK ProCESSING......ccovveieireriniinieisssssseesssissses s sssssssees
EFI_HIl_GIBT_GLYPH_VARIABLITY Glyph Drawing Processing.........cccoiivneneniseneennns
String Information Encoded in Blocks............

String Block Processing: Base Processing
String Block Processing: SCSU Processing
String Block Processing: UTF Processing
Image Information Encoded in Blocks
Palette Structure of a Black & White, ONne-Bit IMagecccccv v 1994
Palette Structure of @ FOUr-Bit IMAge ...
Palette Structure of a Four-Bit, Six-Color Image
SIMPIE BINAry ODJECT.......c.ccrs s
Password FIOWCHhArt (PArt ONE) ... s ssnes
Password Flowchart (part two)...........ccccevenennne
Animation Information Encoded in Blocks
GIYPRN EXAMPIE ..ottt

How EFI_HII_IMAGE_EX_PROTOCOL uses EFI_HII_IMAGE_DECODER_PROTOCOL ...2130
Keyboard Layout
User Identity.............
Hash Workflow...........ccoocininenininnn,
Example Computer System

Partial ACPI Name Space for Example System 2394
EFI Device Path Displayed As a Name Space..........ccoovvverreuneinnen, 2398
Network Stacks with Three Classes of Drivers 2409
IPXE Structures for H/W and S/W UNDIcccooovivninnnienennennns 2411
ISSUING UNDI COMIMANAS ... sttt st ssssnsans 2415
UNDI Command Descriptor BIOCK (CDB)........cccuvininiecnsnsss s sssssssssesssssnes 2416
Storage Types

UNDI States, Transitions & Valid COmMMAaNS ..o ssssnes 2440
LINKEA CDBS ...ttt bbbt

Queued CDBS.......cccovivvvrecrsseeessesseenens
Error Record Format

Version 2.6, Errata A January, 2017 xliii

Figures UEFI Specification

xliv January, 2017 Version 2.6, Errata A

UEFI Specification

Tables

Table 1. Organization of the UEFI SPECITICALIONcccovviriiisncesssse s st ssssessesssssns 2
TADIE 2. Sl PIEIIXES ... st s e R bR
TabIE 3. BINAIY PrEFIXES ..ottt st s st ns
Table 4. UEFI Image Memory Types

Table 5. UEF] RUNTIME SEIVICES. ...t ssssesse s ssss st ss sttt sissens
Table 6. COMMON UEFI DAta TYPEScvovieriiiririssiesississsesssssssssssssssssssesssssssssesssssassssssessessassssssessassassssssessessasssssnssens
Table 7. Modifiers for Common UEFI Data TYPEScccovvmrneuevnrnsnneneeirinsens

Table 8. Map: EFI memory types to AArch64 memory types

Table 9. UEFI ProtOCOIS. ..ot sssssssssssssssssens

Table 10. Required UEFI Implementation Elements

Table 11. Global Variables......

Table 12. UEFI Image Types

Table 13. Usage of Memory Attribute DefinitioNS..........ccoocisssse s sssssssssssnns
TaADIE 14. LEGACY MBR ..ottt a8t n s
Table 15. Legacy MBR Partition Record

TabIe 16. ProteCIVE IMBR ...t
Table 17. Protective MBR Partition Record protecting the entire disk ..., 118
Table 18. GPT Header

Table 19. GPT PartitionN ENTIY . ..ot sssssssss st ssessssssessassesssssessessessassansnnns 124
Table 20. Defined GPT Partition Entry - Partition TYpe GUIDS........cccccoumneninsnsssssssssssssesssnns 126
Table 21. Defined GPT Partition Entry - Attributes

Table 22. Event, Timer, and Task Priority FUNCHIONS. ... sssssssssssnns 128
QI Lo (T2 T I I U T Vo = OSSO 129
TADIE 24, TPL RESIIICHIONS ...ttt 129
Table 25. Memory AHIOCAtION FUNCLIONS. ..o ssisssssss st ssesssssessssssssssssessessessessnssns 149
Table 26. Memory Type Usage before EXitBOOLSEIVICES() ..., 150
Table 27. Memory Type Usage after EXitBOOTSEIrVICES()......coocvivviiniiinsiisssiissessisssssssssssssissssinns 151
Table 28. Protocol INtErface FUNCLIONS.........coiiie st st 163
Table 29. Image Type DIfferenCes SUMMIATY ..o s ssssssssssesssssessssssssssssessesssssnens 212
Table 30. IMAGE FUNCHIONS ..ottt ettt st 213
Table 31. Miscellaneous BOOt SErviCeS FUNCLIONS ... 225
Table 32. Rules for Reentry INt0 RUNTIME SEIVICES ...t ssssssssssssssssssssnns 236
Table 33. Functions that may be called after Machine Check ,INIT and NMIc.ccccooeviinervriveinisninninns 237
Table 34. Variable SErviCes FUNCLIONS ...t
Table 35. Hardware Error Record Persistence Variables

Table 36
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.

. TIME SEIVICES FUNCLIONS ...ttt bbbt s b bbbt b ettt bbbt s

Virtual MemOIrY FUNCLIONSccoviesissis sttt st ssss s ssassesssesssssssasssnsnns
Miscellaneous Runtime Services
Flag FIrMWare BERAVIOT ...t ssssssssss s sssess st ssesssssssssessessassssssnsss
Variables Using EFI_CAPSULE_REPORT_GUIDcccouiniininiiminnneeesssssnssessssssssssssessssssssssesnns 282
Generic Device Path Node Structure
DEViICE PAth ENA STIUCTUIEcocvivi et ssb st bbb
PCIDEVICE PAN ..ottt bbb bbb nee
PCCARD Device Path.........c.cccocoveviverierninnn,

Memory Mapped Device Path
Vendor-Defined DEVICE Path ...ttt sstns

Version 2.6, Errata A January, 2017 xlv

Tables

xIvi

UEFI Specification

Table 47. Controller DEVICE Path..........c st
Table 48. BMC Device Path

Table 49. ACPI Device Path

Table 50. Expanded ACPI Device Path

Table 51. ACPI _ADR Device Pathccoocovrvrenninnnn,

Table 52. ATAPI Device Pathcccoovvvivicinicccniienn,

Table 53. SCSIDEVICE PALN ...t b bbbt bbbt bbbt
Table 54. Fibre Channel DEVICE Path ... b
Table 55. Fibre Channel Ex Device Path

Table 56. Fibre Channel Ex Device Path EXamMPIe ... ssssnens 299
Table 57. 1394 DEVICE PN ...ttt sttt bbb 300
Table 58. USB Device Path

Table 59. USB Device Path EXAMPIES........cccircssrsse sttt sssss s ssesssssssssns 301
Table 60. Another USB Device Path EXAMPIE ...t sssssssns 302
Table 61. SATA Device Path

Table 62. USB WWID DEVICE PaAth..........coooviiiec sttt eb bbb
Table 63. DeVICE LOGICAI UNIT.......cccciiiiiicissessss ettt sttt ss s ssssnsans
Table 64. USB Class Device Path.........cccooevivvieviennnen,

Table 65. 120 Device Path ...

Table 66. MAC Address Device Path

Table 67. IPv4 Device Path

Table 68. IPv6 Device Path

Table 69. InfiniBand Device Path...........ccccccovvvrniinnnnnn,

Table 70. UART DEVICE PAN ...ttt bbbt bbb bbb bbb e
Table 71. Vendor-Defined Messaging Device Path ... sssssssssssssssns
Table 72. UART Flow Control Messaging Device Path

Table 73. Messaging Device Path STFUCLUIE ...ttt sssssns
Table 74. Messaging Device Path STFUCLUIE ...t ssssssns
Table 75. iSCSI Device Path Node (Base Information)

Table 76. IPVA CONFIQUIALION ..ot st
Table 77. IPV6 CONFIQUIALION ..ot st
Table 78. NVM Express Namespace Device Path

Table 79. URIDEVICE PAtN........cociiciis ettt st bbb bbb bbb e
Table 80. UFS DEVICE PN ...ttt bbb bbb bbb bbb
Table 81. SD Device Path........iiicnceneenns

Table 82. Bluetooth Device Path ..o,

Table 83. Wi-Fi Device Path.........cccccocovvnviiniccniennn,

Table 84. eMMC Device Path.........cccccoovvvvviveinieninnnnnn,

Table 85. Hard Drive Media Device Path...................

Table 86. CD-ROM Media Device Path......................

Table 87. Vendor-Defined Media Device Path

Table 88. File Path Media Device Path..............ccccc.......

Table 89. Media Protocol Media Device Path..........

Table 90. PIWG Firmware Volume DeVICE Path ... s
Table 91. PIWG Firmware Volume DeVICE Path ...
Table 92. Relative Offset Range

Table 93. RAM DiSK DEVICE PALN ..ottt bbb bbb
Table 94. BIOS Boot Specification DeVvice Path.............cccoccini s ssssssns
Table 95. ACPI _CRS to EFI Device Path Mapping

Table 96. ACPI _ADR to EFI Device Path Mapping ... ssssssssssssssssssssssssssssns
Table 97. EFI Device Path Option Parameter VAIUES ...t sssssssns

January, 2017 Version 2.6, Errata A

UEFI Specification Tables

Table 98. DEVICE NOTE TABIE ... bbb 346
Table 99. Supported Unicode Control CharaClers..........c..cceiviininicesss s sssssssns 458

Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
. TAPE HEAUEN FOMMALS ..ottt st ntns
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.

Table 108

Table 117

Table 120

Table 126

Table 129

Table 135

Table 147

. PCI Root Bridge Device Path for Bridge #2 in a Server System
Table 118.
Table 119.

. SCSI Device Path Examplesccccovuvvrnnnee.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
. Channel #3 of a PCI SCSI Controller behind a PCI Bridge............
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.

EFI Scan Codes for EFl_SIMPLE_TEXT _INPUT_PROTOCOL......cccccouimnimmnnrinrnenerissnsissinesenes 458
EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX PROTOCOLcccccrmmrrmmrrnrirnnrenne, 459
EFI Cursor Location/Advance Rules
PS/2 Mouse Device Path..........ccccccovvvvnnnnee,

Serial MOUSE DEVICE PAth ...t
USB MOUSE DEVICE PAN ...ttt bbb bbb s
Blt Operation Table
ALtributes DefiNition TaABIE. ...

PATA device mapping to ports and port multiplier ports
Special programming CONSIAEIALIONS........ccccviviiiieeire s
PCl CoNfIQUIatioN AGUIESScovvviccrerscssss ettt st
ACPI 2.0 QWORD Address Space Descriptor
ACPT 2.0 ENA TAQG c1tttvrtviieeieeieisseses sttt sttt 511160
PCI Root Bridge Device Path for a Desktop SYStEM ... eesssesssssens
PCI Root Bridge Device Path for Bridge #0 in a Server System
PCI Root Bridge Device Path for Bridge #1 in a Server System

PCI Root Bridge Device Path for Bridge #3 in a Server System
PCI Root Bridge Device Path Using Expanded ACPI Device Path

. ACPI 2.0 QWORD Address Space DesCriptor.........covmrinrierensnsinnienns
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.

ACPT 2.0 ENA TAQG c1tttvrtvrieiiieeieeiseses st ssss sttt 61650
PCI Device 7, Function 0 on PCI ROOt Bridge 0. sssssssessesssnnens
PCI Device 7, Function 0 behind PCI to PCl Bridge......cccccooviviviecnseesssssee s
Standard PCI Expansion ROM Header (Example from PCI Firmware Specification 3.0) 787
PCI Expansion ROM Code Types (Example from PCI Firmware Specification 3.0)........... 787

. EFI PCI EXpansion ROM HEAUET ... sssssisssssses s ssssessessssssssssssesssssssssessssssns 787
Table 127.
Table 128.

Device Path for an EFI Driver loaded from PCI Option ROM........cccovvniniiniiniinicneenssseeennens 788
Recommended PCI Device Driver Layout

ATAPI Device Path EXAMPIES ...ttt sssnens
Fibre Channel Device Path EXamMPIES ... sssssens
InfiniBand Device Path Examples..............
Single Channel PCI SCSI Controller
Single Channel PCI SCSI Controller behind a PCI Bridge

USB Hub Port Status Bitmap.......cccceeevnne. 873
Hub Port Change Status Bitmap
USB POIt FEALUIES ... 877
Payload-associated Messages and Descriptions............c.ccceveunn,
Debugport Messaging Device Path..........cccccocvivinincnennenieneinnen,
BIOCK HEAAET FIEIAS.......c.. i 980
General PUrPOSE VIM REQISTEISc.cirieiciisieinesississssss st sssss s sssss s ssssassesssssens 1017
Dedicated VM Registers
VM FIAQS REGISTETcvivivciciceie ettt bbbttt
[T 1= =1 ot Yo T Vo 0PSRN
Index Size in Index Encoding

. OPCOAE BYLE ENCOUINGvviciiiciir ettt nsnes
Table 148.

Operand BYLe ENCOING ..ottt ettt ssssens

Version 2.6, Errata A January, 2017 xIvii

Tables

xlviii

UEFI Specification

Table 149. ADD INStruCtion ENCOTINGccovvivviicrisreissssns st sssss s ssssssss s ssssssssessssssanes 1025
Table 150. AND INStruCtion ENCOTING ...cccovivviiciisinecsssse ettt sss st sssnes 1026
Table 151. ASHR INStruction ENCOQINGcccovevciiieieicsse st sss s sssssss s esssssse s snsnes 1027
Table 152. VIM VEISION FOIMAL. ...t bbb 1028
Table 153. BREAK INStrUCtioON ENCOINGc.cvciirieiicsi st sssss s sssnes 1028
Table 154. CALL INStruCtion ENCOAINGcccovviiivieicccssns sttt sssnes 1031
Table 155. CMP INStruCtion ENCOQINGccccovviiiiiininisssns st sssssssse s ssssssses s sssssssessessssanes 1032
Table 156. CMPI INStruCtion ENCOQINGccccvvciirieccsss sttt sssnes 1034
Table 157. DIV Instruction Encoding

Table 158. DIVU INSTruction ENCOTING ...ccoovviiciieiercsssse sttt sssss s sssssssessssssnes
Table 159. EXTNDB Instruction Encoding

Table 160.
Table 161.

Table 162

Table 177

Table 180

Table 183

Table 186

Table 192

Table 195

. JMP Instruction Encoding
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
. OR Instruction Encoding
Table 178.
Table 179.
. PUSH Instruction Encoding
Table 181.
Table 182.
. SHL Instruction Encodingcc.ccocveunvennn,
Table 184.
Table 185.
. SUB Instruction Encodingccccocvuenee,
Table 187.
Table 188.
Table 189.
Table 190.
Table 191.

EXTNDD Instruction Encoding
EXTNDW INSEruCtion ENCOTING ..ottt ssssessesssnes 1040

JMP8 Instruction Encoding
LOADSP Instruction Encoding
MOD INStruCtionN ENCOAINGc.oviiiiirieeccsss sttt ssssans
MODU Instruction Encoding..........ccccccvvene.
MOV Instruction Encodingcccocovevvvene.
MOVI Instruction Encoding..........cccccovevvvene.
MOVIn Instruction Encoding
MOVn Instruction Encodingcccoe......
MOVREL Instruction Encoding
MOVSN INSTrUCLION ENCOQING ..ottt ssnsans
MUL INSErUCtiON ENCOTINGcoooviveiiiessieis sttt et sssse st ssssessessssssans
MULU Instruction Encoding
NEG INStruction ENCOTING ..oovvvciccsres sttt ss st sssessssssssans
NOT INSErUCtiON ENCOTING ..ovoviicicicsie sttt st ssnsans

POP INSTruCtion ENCOINGccovvviiiiiiirsisesssse sttt ssse st sssssessesssssans
POPnN Instruction Encoding

PUSHN INSrUCtioN ENCOAING ..ottt ssssessssssans
RET INStruCtion ENCOAINGcocoviviccsisecsse sttt nsnes

SHR Instruction Encoding........ccccoevevinnnnn.
STORESP Instruction Encoding

XOR Instruction Encodingc..cc.ocvevvnnnnn
ESRT and FMP Fields........cc.ccovnnniiininenn.
PXE Tag Definitions for EFIcccccev.....
Destination IP Filter Operation...................
Destination UDP Port Filter Operation....

. SOUICE IP FIlter OPEratiON........ccovvvvcicirieieiesse et nsnes
Table 193.
Table 194.

Source UDP POrt Filter OPEeratioN.........ccccciviiiiiiinssseessissss s sssessessssssessesesssssssssessssnsens
DHCP4 Enumerations

FIEIA DESCIIPUIONS. ... bbbt
Table 196.
Table 197.
Table 198.
Table 199.

CallDACK RETUIN VAIUBS ...t
Descriptions of Parameters in MTFTPv4 Packet Structures
Descriptions of Parameters in MTFTPv6 Packet Structures
MTFTP Packet OpCode DESCIIPLIONSc.ccovvivieiciieisieiessssisss s ssssssssssse s sssssssesssssssns

January, 2017 Version 2.6, Errata A

UEFI Specification Tables

Table 200.
Table 201.
Table 202.
Table 203.
Table 204.
Table 205.
Table 206.
Table 207.
Table 208.
Table 209.

Table 210

Table 213

Table 216

Table 219

Table 228

Table 237

Table 243

Table 246

Table 249

. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOL
Table 229.
Table 230.
Table 231.
Table 232.
Table 233.
Table 234.
Table 235.
Table 236.

MTFTP ERROR Packet ErrorCode DeSCriPLiONS........cccciviviirivieneisinsssissssssisesssssssessssssnsenns 1822
Generic Authentication Node StruCture ...,
CHAP Authentication Node Structure using RADIUS
CHAP Authentication Node Structure using Local Databasec.cccccocevvcenisiiecssennnn, 1841
PE/COFF Certificates Types and UEFI Signature Database Certificate Types............. 1847
AUthOriZation ProCesS fIOW ...t

LOCAHZATION ISSUBS ..ottt bbb

Information for TYPES Of STOFAQE ...

Common Control Codes for Font Display Information
Guidelines for UEFI SYStEM FONTS. ...t sssesse s ssssssssesssssens

. Truth table: Mapping a single question to three configuration settings............cccccccvevveue. 1944
Table 211.
Table 212.
 PACKAGE TYPES ..o Rt
Table 214.
Table 215.

Multiple configuration settings EXample H2...........cooiivininiciesnsssessssse s 1944
VAIUEBS: ... 1945

Block Types
IFR OPCOUES ...ttt

. VarStoreTYPe DESCHPLIONSccovv ittt nsnes
Table 217.
Table 218.
. Record values and descriptions
Table 220.
Table 221.
Table 222.
Table 223.
Table 224.
Table 225.
Table 226.
Table 227.

Animation Block TYPesS........ccccovvvrerenrnnnns
Callback Behavior.........cccovevivinicneninnnns

Standard values for access to configure the platform..................
EFI Hash Algorithms........

Identical hash results
Algorithms that may be used with EFI_HASH2_PROTOCOL
Encryption algorithim Properties. ... nsnes 2297
Details of Supported Signature Format.
EFT GUID FOIMAL ...t s
Text representation relatioNShIPS ... s

EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL......cccccconurmirmenrrernrerneeneens 2390
Control Sequences to Implement EFI_SIMPLE_TEXT_INPUT_PROTOCOL 2392
Legacy FIOPPY DEVICE Path ...ttt sssssans 2395
IDE DiSK DEVICE PALN ...t bbb 2396
Secondary Root PCI Bus with PCI to PCI Bridge Device Path
EFI_STATUS COdE RANQGES.......ccovivvvrivicrerssieessississ e ssssens 2401
EFI_STATUS Success Codes (High Bit Clear)...........ccccovuevvvrreniennnn, 2401
EFI_STATUS Error Codes (High Bit Set)........ccccoovvvivvvninesisreneinnn, 2401

. EFI_STATUS Warning Codes (High Bit Clear)...........cccoocevrvrrerrirnnnn,
Table 238.
Table 239.
Table 240.
Table 241.
Table 242.
. EBC Virtual Machine Opcode Summary
Table 244.
Table 245.

DefiNitioNS ...
Referenced Specifications..............cccccvveeee.
Driver Types: Pros and Cons..........ccce......
IPXE Structure Field Definitions.................
UNDI CDB Field Definitions...........ccccovuvviivinnnns

ProtoCol NAME CHANQES ..ottt nes
Revision Identifier Name Changes

. Alias codes supported in addition t0 RFC 4646 ... snsssssssssssessssnnes 2549
Table 247.
Table 248.

[o] g g=ToTo] fo [N g =T= o [T oo SO RRST
Error Record Header Flags

. SECHION DESCIIPTON ..ot bbbt n et nes
Table 250.

Processor GENEIIC EITOr SECHION ...ttt 2561

Version 2.6, Errata A January, 2017 xlix

Tables

Table 251.
Table 252.
Table 253.
Table 254.
Table 255.
Table 256.
Table 257.
Table 258.
Table 259.
Table 260.

Table 261

Table 262.

Table 263
Table 264

Table 265.
Table 266.

Table 267

Table 268.
Table 269.

Table 270

Table 271.
Table 272.

Table 273

Table 274.
Table 275.
Table 276.
Table 277.
Table 278.

Table 279

Table 280.
Table 281.
Table 282.
Table 283.
Table 284.

Table 285

Table 286.
Table 287.

UEFI Specification

ProCeSSOr EFFOr RECOINT........coiiviiciciiississe sttt sttt sttt nens 2563
IA32/X64 Processor Error Information Structure.............ccoeenneee,
IA32/X64 Cache Check StruCture.........coovenenreiesesessisesessesnens
IA32/X64 TLB Check Structure...................
IA32/X64 Bus Check Structure...................
IA32/X64 MS Check Field Description
IA32/X64 Processor Context INFOrmation ... ssssssssseseens 2569
IAS2 REQISTEE STALEcovvcvcciccie ettt

X64 Register Statecccovvvvvvieveisenrinninnnns

ARM Processor Error Section
. ARM Processor Error INnformation STrUCTUIE ... sssnes 2574
ARM Cache Error Structure
. ARM TLB EFTOr STIUCTUIE. ...t bbb
. ARM BUS EFTOF STIUCTUIE ..ot
ARM Processor Error Context Information Header Structure....
ARMV8 AAICN32 GPRS (TYPE O) ..o sisstsssssis st sssssssessssssssses s ssssssessesssssens
. ARM AArch32 EL1 Context System Registers (TYPE 1)....ccccccvrninrensnsinrineesssssesssennes
ARM AArch32 EL2 Context System Registers (Type 2).......co......

ARM AArch32 secure Context System Registers (Type 3)
. ARMV8 AAICh64 GPRS (TYPE 4)...ccviivieresreesssssrieessssessessssssssens

ARM AArch64 EL1 Context System Registers (Type 5).....ccccoueue.

ARM AArch64 EL2 Context System Registers (Type 6).................

. ARM AArch64 EL3 Context System RegiSters (TYPE 7). nrinesnsnsieneessssssessssnnes

ARM Misc. Context System Register (Type 8) — Single Register ENtry.........ccccoocovvvreriinnnn, 2585
MEMOTY EFTOr RECOIU ...ttt sttt
Memory Error Record 2
PCIEXPress ErrOr RECOIUcoviiviicicsisieesse sttt nsnes
PCI/PCI-X BUS EFTOF SECLIONcooiviicicseiesssss ettt snsnes
. PCI/PCI-X Component Error Section
Firmware Error ReCOrd REFEIENCE ...
DIMAT GENEFIC EFTOIS .ottt sttt bbbttt
Intel® VT for Directed 1/0 specific DMAr Errors
IOMMU SPECITIC DIMAT EFTOIS......viicieiisieisiseissiesss e sessstssse s sssssses s sssssse s ssssessasssssssssssessssssans
Error STAtUS FIEIAS. ...t
.Error Types......ovvvi.
UEFI Table Structure
SMM Communication ACPI TabBIE. ...t neas 2599

January, 2017 Version 2.6, Errata A

UEFI Specification

1 Introduction

This Unified Extensible Firmware Interface (hereafter known as UEFI) Specification
describes an interface between the operating system (OS) and the platform firmware.
UEFI was preceded by the Extensible Firmware Interface Specification 1.10 (EFI). As a
result, some code and certain protocol names retain the EFI designation. Unless
otherwise noted, EFI designations in this specification may be assumed to be part of UEFI.

The interface is in the form of data tables that contain platform-related information, and
boot and runtime service calls that are available to the OS loader and the OS. Together,
these provide a standard environment for booting an OS. This specification is designed as
a pure interface specification. As such, the specification defines the set of interfaces and
structures that platform firmware must implement. Similarly, the specification defines the
set of interfaces and structures that the OS may use in booting. How either the firmware
developer chooses to implement the required elements or the OS developer chooses to
make use of those interfaces and structures is an implementation decision left for the
developer.

The intent of this specification is to define a way for the OS and platform firmware to
communicate only information necessary to support the OS boot process. This is
accomplished through a formal and complete abstract specification of the software-
visible interface presented to the OS by the platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on platforms compatible
with supported processor specifications will be able to boot on a variety of system
designs without further platform or OS customization. The definition will also allow for
platform innovation to introduce new features and functionality that enhance platform
capability without requiring new code to be written in the OS boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and
firmware code over time. New device types and associated code can provide equivalent
functionality through the same defined abstract interface, again without impact on the OS
boot support code.

The specification is applicable to a full range of hardware platforms from mobile systems
to servers. The specification provides a core set of services along with a selection of
protocol interfaces. The selection of protocol interfaces can evolve over time to be
optimized for various platform market segments. At the same time, the specification
allows maximum extensibility and customization abilities for OEMs to allow
differentiation. In this, the purpose of UEFI is to define an evolutionary path from the
traditional “PC-AT”-style boot world into a legacy-API free environment.

1.1 UEFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. One purpose of
the UEFI Driver Model is to provide a replacement for “PC-AT”-style option ROMs. It is
important to point out that drivers written to the UEFI Driver Model are designed to

Version 2.6, Errata A January, 2017 1

Introduction UEFI Specification

access boot devices in the preboot environment. They are not designed to replace the
high-performance, OS-specific drivers.

The UEFI Driver Model is designed to support the execution of modular pieces of code,
also known as drivers, that run in the preboot environment. These drivers may manage or
control hardware buses and devices on the platform, or they may provide some software-
derived, platform-specific service.

The UEFI Driver Model also contains information required by UEFI driver writers to design
and implement any combination of bus drivers and device drivers that a platform might
need to boot a UEFI-compliant OS.

The UEFI Driver Model is designed to be generic and can be adapted to any type of bus or
device. The UEFI Specification describes how to write PCI bus drivers, PCI device drivers,
USB bus drivers, USB device drivers, and SCSI drivers. Additional details are provided that
allow UEFI drivers to be stored in PCI option ROMs, while maintaining compatibility with
legacy option ROM images.

One of the design goals in the UEFI Specification is keeping the driver images as small as
possible. However, if a driver is required to support multiple processor architectures, a
driver object file would also be required to be shipped for each supported processor
architecture. To address this space issue, this specification also defines the EFI Byte Code
Virtual Machine. A UEFI driver can be compiled into a single EFI Byte Code obiject file.
UEFI Specification-complaint firmware must contain an EFI Byte Code interpreter. This
allows a single EFI Byte Code object file that supports multiple processor architectures to
be shipped. Another space saving technique is the use of compression. This specification
defines compression and decompression algorithms that may be used to reduce the size
of UEFI Drivers, and thus reduce the overhead when UEFI Drivers are stored in ROM
devices.

The information contained in the UEFI Specification can be used by OSVs, IHVs, OEMs,
and firmware vendors to design and implement firmware conforming to this specification,
drivers that produce standard protocol interfaces, and operating system loaders that can
be used to boot UEFI-compliant operating systems.

1.2 Overview

The UEFI Specification is organized as listed in Table 1.

Table 1. Organization of the UEFI Specification

Section/Appendix Description
1. Introduction Introduces the UEFI Specification and topics related to using the
specification.

2. Overview Describes the major components of UEFI, including the boot
manager, firmware core, calling conventions, protocols, and
requirements.

3. Boot Manager Describes the boot manager, which is used to load drivers and
applications written to this specification.

2 January, 2017 Version 2.6, Errata A

UEFI Specification

Introduction

Section/Appendix
4. EFl System Table

5. GUID Partition Table (GPT) Format

6. Services — Boot Services

7. Services — Runtime Services

8. Protocols — EFI Loaded Image

9 Protocols — Device Path Protocol

10. Protocols — UEFI Driver Model

11. Protocols — Console Support

12. Protocols—Media Access

13. Protocols — PCI Bus Support

14. Protocols — SCSI Driver Models and
Bus Support

15. Protocols —iSCSI Boot
16. Protocols — USB Support

17. Protocols — Debugger Support

Description

Describes the EFI System Table that is passed to every
compliant driver and application.

Defines a new partitioning scheme that must be supported by
firmware conforming to this specification.

Contains the definitions of the fundamental services that are
present in a UEFI-compliant system before an OS is booted.

Contains definitions for the fundamental services that are
present in a compliant system before and after an OS is booted.

Defines the EFI Loaded Image Protocol that describes a UEFI
Image that has been loaded into memory.

Defines the device path protocol and provides the information
needed to construct and manage device paths in the UEFI
environment.

Describes a generic driver model for UEFI. This includes the set
of services and protocols that apply to every bus and device
type, including the Driver Binding Protocol, the Platform Driver
Override Protocol, the Bus Specific Driver Override Protocol, the
Driver Diagnostics Protocol, the Driver Configuration Protocol,
and the Component Name Protocol.

Defines the Console 1/0 protocols, which handle input and
output of text-based information intended for the system user
while executing in the boot services environment. These
protocols include the Simple Input Protocol, the Simple Text
Output Protocol, the Graphics Output Protocol, the Simple
Pointer Protocol, and the Serial /0 Protocol.

Defines the Load File protocol, file system format and media
formats for handling removable media.

Defines PCI Bus Drivers, PCI Device Drivers, and PCI Option ROM
layouts. The protocols described include the PCI Root Bridge I1/0
Protocol and the PCI I/O Protocol.

Defines the SCSI I/0 Protocol and the Extended SCSI Pass Thru
Protocol that is used to abstract access to a SCSI channel that is
produced by a SCSI host controller.

The iSCSI protocol defines a transport for SCSI data over TCP/IP.

Defines USB Bus Drivers and USB Device Drivers. The protocols
described include the USB2 Host Controller Protocol and the
USB I/0 Protocol.

An optional set of protocols that provide the services required
to implement a source-level debugger for the UEFI environment.
The EFI Debug Port Protocol provides services to communicate
with a remote debug host. The Debug Support Protocol
provides services to hook processor exceptions, save the
processor context, and restore the processor context. These
protocols can be used in the implementation of a debug agent
on the target system that interacts with the remote debug host.

Version 2.6, Errata A

January, 2017 3

Introduction

UEFI Specification

Section/Appendix

18. Protocols — Compression
Algorithm Specification

19. Protocols — ACPI Protocols

20. EFI Byte Code Virtual Machine

21. Network Protocols—SNP, PXE, and
BIS

22. Network Protocols—Managed
Network

23. Network Protocols—VLAN and
EAP

24. Network Protocols—TCP, IP, IPsec,
FTP and Configuration
25. Network Protocols—ARP and DHCP

26. Network Protocols—UDPv4 and
MTFPv4

27. Secure Boot and Driver Signing

28. Human Interface Infrastructure

Overview

29. HIl Protocols

30. HIl Configuration Processing and
Browser Protocol

Description

Describes in detail the compression/decompression algorithm,
as well as the EFI Decompress Protocol. The EFI Decompress
Protocol provides a standard decompression interface for use at
boot time. The EFI Decompress Protocol is used by a PCI Bus
Driver to decompress UEFI drivers stored in PCI Option ROMs.

Defines a protocol that may be used to install or remove an ACPI
table from a platform.

Defines the EFI Byte Code virtual processor and its instruction
set. It also defines how EBC object files are loaded into memory,
and the mechanism for transitioning from native code to EBC
code and back to native code. The information in this document
is sufficient to implement an EFI Byte Code interpreter, an EFI
Byte Code compiler, and an EFI Byte Code linker.

Defines the protocols that provide access to network devices
while executing in the UEFI boot services environment. These
protocols include the Simple Network Protocol, the PXE Base
Code Protocol, and the Boot Integrity services (BIS) Protocol.

Defines the EFI Managed Network Protocol, which provides raw
(unformatted) asynchronous network packet I/0 services and
Managed Network Service Binding Protocol, which is used to
locate communication devices that are supported by an MNP
driver.

Defines a protocol is to provide a manageability interface for
VLAN configurations.

Defines the EFI TCPv4 (Transmission Control Protocol version 4)
Protocol and the EFI IPv4 (Internet Protocol version 4) Protocol
interface.

Defines the EFI Address Resolution Protocol (ARP) Protocol
interface and the EFI DHCPv4 Protocol.

Defines the EFI UDPv4 (User Datagram Protocol version 4)
Protocol that interfaces over the EFI IPv4 Protocol and defines
the EFI MTFTPv4 Protocol interface that is built on the EFI
UDPvV4 Protocol.

Describes Secure Boot and a means of generating a digital
signature for UEFI.

Defines the core code and services that are required for an
implementation of the Human Interface Infrastructure (Hll),
including basic mechanisms for managing user input and code
definitions for related protocols.

Provides code definitions for the Hll-related protocols,
functions, and type definitions, including management of font,
strings, images and databases.

Describes the data and APIs used to manage the system’s
configuration: the actual data that describes the knobs and
settings.

January, 2017 Version 2.6, Errata A

UEFI Specification

Introduction

Section/Appendix
31. User Identification

32. Firmware Management Protocol

33. Secure Technologies

34 Protocols - Timestamp Protocol

A. GUID and Time Formats
B. Console

C. Device Path Examples

D. Status Codes

E. Universal Network Driver Interfaces

F. Using the Simple Pointer Protocol

G. Using the EFI Extended SCSI Pass
Thru Protocol

H. Compression Source Code

|. Decompression Source Code

J. EFI Byte Code Virtual Machine
Opcode Lists

K. Alphabetic Function List

L. EFI 1.10 Protocol Changes and
Deprecation Lists

M. Formats—Language Codes and
Language Code Arrays

N. Common Platform Error Record

O. UEFI ACPI Table

P. Hardware Error Record Persistence
Usage

Q. References

R. Glossary

Index

Description

Describes services which describe the current user of the
platform.

Provides an abstraction for devices to provide firmware
management support.

Describes the protocols for utilizing security technologies
including cryptographic hashing and key management.

Provides a platform independent interface for retrieving a high
resolution timestamp counter.

Explains the GUID (Guaranteed Unique Identifier) format.

Describes the requirements for a basic text-based console
required by EFI-conformant systems to provide communication
capabilities.

Examples of use of the data structures that define various
hardware devices to the boot services.

Lists success, error, and warning codes returned by UEFI
interfaces.

Defines the 32/64-bit hardware and software Universal Network
Driver Interfaces (UNDIS).

Provides the suggested usage of the Simple Pointer Protocol.

Provides an example of how the SCSI Pass Thru Protocol can be
used.

The C source code to an implementation of the Compression
Algorithm.

The C source code to an implementation of the EFI
Decompression Algorithm.

A summary of the opcodes in the instruction set of the EFI Byte
Code Virtual Machine.

Lists all UEFI interface functions alphabetically.

Lists the Protocol, GUID, and revision identifier name changes
and the deprecated protocols compared to the EFI Specification
1.10.

Lists the formats for language codes and language code arrays.

Describes the common platform error record format for
representing platform hardware errors.

Defines the UEFI ACPI table format.

Defines Hardware Error Record Persistence usage.

Lists all necessary or useful specifications, web sites, and other
documentation that is referenced in this UEFI specification.

Briefly describes terms defined or referenced by this
specification.

Provides an index to the key terms and concepts in the
specification.

Version 2.6, Errata A

January, 2017 5

Introduction UEFI Specification

1.3 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the
industry. Each new platform capability or hardware innovation requires firmware
developers to craft increasingly complex solutions, and often requires OS developers to
make changes to their boot code before customers can benefit from the innovation. This
can be a time-consuming process requiring a significant investment of resources.

The primary goal of the UEFI specification is to define an alternative boot environment
that can alleviate some of these considerations. In this goal, the specification is similar to
other existing boot specifications. The main properties of this specification can be
summarized by these attributes:

Coherent, scalable platform environment. The specification defines a complete
solution for the firmware to describe all platform features and surface platform
capabilities to the OS during the boot process. The definitions are rich enough to
cover a range of contemporary processor designs.

Abstraction of the OS from the firmware. The specification defines interfaces to
platform capabilities. Through the use of abstract interfaces, the specification allows
the OS loader to be constructed with far less knowledge of the platform and firmware
that underlie those interfaces. The interfaces represent a well-defined and stable
boundary between the underlying platform and firmware implementation and the OS
loader. Such a boundary allows the underlying firmware and the OS loader to change
provided both limit their interactions to the defined interfaces.

Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces
require the OS loader to have specific knowledge of the workings of certain hardware
devices. This specification provides OS loader developers with something different:
abstract interfaces that make it possible to build code that works on a range of
underlying hardware devices without having explicit knowledge of the specifics for
each device in the range.

Abstraction of Option ROMs from the firmware. This specification defines interfaces
to platform capabilities including standard bus types such as PCI, USB, and SCSI. The
list of supported bus types may grow over time, so a mechanism to extend to future
bus types is included. These defined interfaces, and the ability to extend to future bus
types, are components of the UEFI Driver Model. One purpose of the UEFI Driver
Model is to solve a wide range of issues that are present in existing “PC-AT” option
ROMs. Like OS loaders, drivers use the abstract interfaces so device drivers and bus
drivers can be constructed with far less knowledge of the platform and firmware that
underlie those interfaces.

Architecturally shareable system partition. Initiatives to expand platform
capabilities and add new devices often require software support. In many cases, when
these platform innovations are activated before the OS takes control of the platform,
they must be supported by code that is specific to the platform rather than to the
customer’s choice of OS. The traditional approach to this problem has been to embed
code in the platform during manufacturing (for example, in flash memory devices).
Demand for such persistent storage is increasing at a rapid rate. This specification
defines persistent store on large mass storage media types for use by platform

January, 2017 Version 2.6, Errata A

UEFI Specification Introduction

support code extensions to supplement the traditional approach. The definition of
how this works is made clear in the specification to ensure that firmware developers,
OEMs, operating system vendors, and perhaps even third parties can share the space
safely while adding to platform capability.

Defining a boot environment that delivers these attributes could be accomplished in
many ways. Indeed, several alternatives, perhaps viable from an academic point of view,
already existed at the time this specification was written. These alternatives, however,
typically presented high barriers to entry given the current infrastructure capabilities
surrounding supported processor platforms. This specification is intended to deliver the
attributes listed above, while also recognizing the unigue needs of an industry that has
considerable investment in compatibility and a large installed base of systems that
cannot be abandoned summarily. These needs drive the requirements for the additional
attributes embodied in this specification:

» Evolutionary, not revolutionary. The interfaces and structures in the specification are
designed to reduce the burden of an initial implementation as much as possible.
While care has been taken to ensure that appropriate abstractions are maintained in
the interfaces themselves, the design also ensures that reuse of BIOS code to
implement the interfaces is possible with a minimum of additional coding effort. In
other words, on PC-AT platforms the specification can be implemented initially as a
thin interface layer over an underlying implementation based on existing code. At the
same time, introduction of the abstract interfaces provides for migration away from
legacy code in the future. Once the abstraction is established as the means for the
firmware and OS loader to interact during boot, developers are free to replace legacy
code underneath the abstract interfaces at leisure. A similar migration for hardware
legacy is also possible. Since the abstractions hide the specifics of devices, it is
possible to remove underlying hardware, and replace it with new hardware that
provides improved functionality, reduced cost, or both. Clearly this requires that new
platform firmware be written to support the device and present it to the OS loader via
the abstract interfaces. However, without the interface abstraction, removal of the
legacy device might not be possible at all.

» Compatibility by design. The design of the system partition structures also preserves
all the structures that are currently used in the “PC-AT” boot environment. Thus, itis a
simple matter to construct a single system that is capable of booting a legacy OS or an
EFl-aware OS from the same disk.

» Simplifies addition of OS-neutral platform value-add. The specification defines an
open, extensible interface that lends itself to the creation of platform “drivers.” These
may be analogous to OS drivers, providing support for new device types during the
boot process, or they may be used to implement enhanced platform capabilities, such
as fault tolerance or security. Furthermore, this ability to extend platform capability is
designed into the specification from the outset. This is intended to help developers
avoid many of the frustrations inherent in trying to squeeze new code into the
traditional BIOS environment. As a result of the inclusion of interfaces to add new
protocols, OEMs or firmware developers have an infrastructure to add capability to
the platform in a modular way. Such drivers may potentially be implemented using
high-level coding languages because of the calling conventions and environment
defined in the specification. This in turn may help to reduce the difficulty and cost of

Version 2.6, Errata A January, 2017 7

Introduction UEFI Specification

innovation. The option of a system partition provides an alternative to nonvolatile
memory storage for such extensions.

Built on existing investment. Where possible, the specification avoids redefining
interfaces and structures in areas where existing industry specifications provide
adequate coverage. For example, the ACPI specification provides the OS with all the
information necessary to discover and configure platform resources. Again, this
philosophical choice for the design of the specification is intended to keep barriers to
its adoption as low as possible.

1.4 Target Audience

This document is intended for the following readers:

IHVs and OEMs who will be implementing UEFI drivers.

OEMs who will be creating supported processor platforms intended to boot shrink-
wrap operating systems.

BIOS developers, either those who create general-purpose BIOS and other firmware
products or those who modify these products for use in supported processor-based
products.

Operating system developers who will be adapting their shrink-wrap operating
system products to run on supported processor-based platforms.

1.5 UEFI Design Overview

The design of UEFI is based on the following fundamental elements:

Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing
specifications that are commonly implemented on platforms compatible with
supported processor specifications must be implemented on platforms wishing to
comply with the UEFI specification. (For additional information, see Appendix Q.)

System partition. The System partition defines a partition and file system that are
designed to allow safe sharing between multiple vendors, and for different purposes.
The ability to include a separate, sharable system partition presents an opportunity to
increase platform value-add without significantly growing the need for nonvolatile
platform memory.

Boot services. Boot services provide interfaces for devices and system functionality
that can be used during boot time. Device access is abstracted through “handles” and
“protocols.” This facilitates reuse of investment in existing BIOS code by keeping
underlying implementation requirements out of the specification without burdening
the consumer accessing the device.

Runtime services. A minimal set of runtime services is presented to ensure
appropriate abstraction of base platform hardware resources that may be needed by
the OS during its normal operations.

January, 2017 Version 2.6, Errata A

UEFI Specification Introduction

Figure 1 shows the principal components of UEFI and their relationship to platform
hardware and OS software.

OPERATING SYSTEM

EFI OS LOADER

EFI BOOT SERVICES EFI RUNTIME
SERVICES

INTERFACES
FROM
OTHER
REQUIRED
SPECS

PLATFORM HARDWARE

EFI SYSTEM PARTITION
EFI OS
LOADER

OM13141

Figure 1. UEFI Conceptual Overview

Figure 1 illustrates the interactions of the various components of an UEFI specification-
compliant system that are used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the System Partition.
The specification provides for a variety of mass storage device types including disk, CD-
ROM, and DVD as well as remote boot via a network. Through the extensible protocol
interfaces, it is possible to add other boot media types, although these may require OS
loader modifications if they require use of protocols other than those defined in this
document.

Once started, the OS loader continues to boot the complete operating system. To do so, it
may use the EFIl boot services and interfaces defined by this or other required
specifications to survey, comprehend, and initialize the various platform components and
the OS software that manages them. EFI runtime services are also available to the OS
loader during the boot phase.

1.6 UEFI Driver Model

This section describes the goals of a driver model for firmware conforming to this
specification. The goal is for this driver model to provide a mechanism for implementing
bus drivers and device drivers for all types of buses and devices. At the time of writing,
supported bus types include PCI, USB, and so on.

As hardware architectures continue to evolve, the number and types of buses present in
platforms are increasing. This trend is especially true in high-end servers. However, a

Version 2.6, Errata A January, 2017 9

Introduction UEFI Specification

more diverse set of bus types is being designed into desktop and mobile systems and
even some embedded systems. This increasing complexity means that a simple method
for describing and managing all the buses and devices in a platform is required in the
preboot environment. The UEFI Driver Model provides this simple method in the form of
protocols services and boot services.

1.6.1 UEFI Driver Model Goals

10

The UEFI Driver Model has the following goals:

» Compatible — Drivers conforming to this specification must maintain compatibility
with the EFI 1.10 Specification and the UEFI Specification. This means that the UEFI
Driver Model takes advantage of the extensibility mechanisms in the UEFI 2. 0
Specification to add the required functionality.

» Simple - Drivers that conform to this specification must be simple to implement and
simple to maintain. The UEFI Driver Model must allow a driver writer to concentrate on
the specific device for which the driver is being developed. A driver should not be
concerned with platform policy or platform management issues. These
considerations should be left to the system firmware.

» Scalable — The UEFI Driver Model must be able to adapt to all types of platforms.
These platforms include embedded systems, mobile, and desktop systems, as well as
workstations and servers.

» Flexible — The UEFI Driver Model must support the ability to enumerate all the
devices, or to enumerate only those devices required to boot the required OS. The
minimum device enumeration provides support for more rapid boot capability, and
the full device enumeration provides the ability to perform OS installations, system
maintenance, or system diagnostics on any boot device present in the system.

» Extensible — The UEFI Driver Model must be able to extend to future bus types as they
are defined.

» Portable - Drivers written to the UEFI Driver Model must be portable between
platforms and between supported processor architectures.

» Interoperable - Drivers must coexist with other drivers and system firmware and
must do so without generating resource conflicts.

» Describe complex bus hierarchies — The UEFI Driver Model must be able to describe a
variety of bus topologies from very simple single bus platforms to very complex
platforms containing many buses of various types.

» Small driver footprint — The size of executables produced by the UEFI Driver Model
must be minimized to reduce the overall platform cost. While flexibility and
extensibility are goals, the additional overhead required to support these must be
kept to a minimum to prevent the size of firmware components from becoming
unmanageable.

» Address legacy option rom issues — The UEFI Driver Model must directly address and
solve the constraints and limitations of legacy option ROMs. Specifically, it must be
possible to build add-in cards that support both UEFI drivers and legacy option ROMs,
where such cards can execute in both legacy BIOS systems and UEFI-conforming

January, 2017 Version 2.6, Errata A

UEFI Specification Introduction

platforms, without modifications to the code carried on the card. The solution must
provide an evolutionary path to migrate from legacy option ROMs driver to UEFI
drivers.

1.6.2 Legacy Option ROM lIssues

This idea of supporting a driver model came from feedback on the UEFI Specification that
provided a clear, market-driven requirement for an alternative to the legacy option ROM
(sometimes also referred to as an expansion ROM). The perception is that the advent of
the UEFI Specification represents a chance to escape the limitations implicit in the
construction and operation of legacy option ROM images by replacing them with an
alternative mechanism that works within the framework of the UEFI Specification.

1.7 Migration Requirements

Migration requirements cover the transition period from initial implementation of this
specification to a future time when all platforms and operating systems implement to this
specification. During this period, two major compatibility considerations are important:

* The ability to continue booting legacy operating systems;

e The ability to implement UEFI on existing platforms by reusing as much existing
firmware code to keep development resource and time requirements to a minimum.

1.7.1 Legacy Operating System Support

The UEFI specification represents the preferred means for a shrink-wrap OS and firmware
to communicate during the boot process. However, choosing to make a platform that
complies with this specification in no way precludes a platform from also supporting
existing legacy OS binaries that have no knowledge of the UEFI specification.

The UEFI specification does not restrict a platform designer who chooses to support both
the UEFI specification and a more traditional “PC-AT” boot infrastructure. If such a legacy
infrastructure is to be implemented, it should be developed in accordance with existing
industry practice that is defined outside the scope of this specification. The choice of
legacy operating systems that are supported on any given platform is left to the
manufacturer of that platform.

1.7.2 Supporting the UEFI Specification on a Legacy Platform

The UEFI specification has been carefully designed to allow for existing systems to be
extended to support it with a minimum of development effort. In particular, the abstract
structures and services defined in the UEFI specification can all be supported on legacy
platforms.

For example, to accomplish such support on an existing and supported 32-bit-based
platform that uses traditional BIOS to support operating system boot, an additional layer
of firmware code would need to be provided. This extra code would be required to
translate existing interfaces for services and devices into support for the abstractions
defined in this specification.

Version 2.6, Errata A January, 2017 11

Introduction UEFI Specification

1.8 Conventions Used in this Document

This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-
order byte of a multibyte data item in memory is at the lowest address, while the high-
order byte is at the highest address. Some supported 64-bit processors may be
configured for both “little endian” and “big endian” operation. All implementations
designed to conform to this specification use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must
initialize such fields to zero and ignore them when read. On an update operation,
software must preserve any reserved field.

1.8.2 Protocol Descriptions
A protocol description generally has the following format:

Protocol Name: The formal name of the protocol interface.
Summary: A brief description of the protocol interface.
GUID: The 128-bit Globally Unique Identifier (GUID) for the

protocol interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the
procedures and data fields produced by this protocol

interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the

interface, including any limitations and caveats of which
the caller should be aware.

Related Definitions: The type declarations and constants that are used in the
protocol interface structure or any of its procedures.

1.8.3 Procedure Descriptions
A procedure description generally has the following format:

ProcedureN ame() . The formal name of the procedure.

Summary: A brief description of the procedure.

12 January, 2017 Version 2.6, Errata A

UEFI Specification Introduction

Prototype: A “C-style” procedure header defining the calling
sequence.

Parameters: A brief description of each field in the procedure
prototype.

Description: A description of the functionality provided by the

interface, including any limitations and caveats of which
the caller should be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes
listed in this table. Additional error codes may be
returned, but they will not be tested by standard
compliance tests, and any software that uses the
procedure cannot depend on any of the extended error
codes that an implementation may provide.

1.8.4 Instruction Descriptions
An instruction description for EBC instructions generally has the following format:

InstructionName The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the
instruction accompanied by a table that details the
instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each
operand involved in the instruction and any restrictions
that apply to the operands or the instruction.

1.8.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the
algorithms in this document are intended to be compiled directly. The code is presented
at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue
is an ordered list of homogeneous objects. Unless otherwise noted, the ordering is
assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The
coding style, particularly the indentation style, is used for readability and does not
necessarily comply with an implementation of the UEFI Specification.

Version 2.6, Errata A January, 2017 13

Introduction

UEFI Specification

1.8.6 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text

Plain text (blue)

Bold

Italic

BOLD Monospace

Bold Monospace

The normal text typeface is used for the vast majority of
the descriptive text in a specification.

Any plain text that is underlined and in blue indicates an
active link to the cross-reference. Click on the word to
follow the hyperlink.

In text, a Bold typeface identifies a processor register
name. In other instances, a Bold typeface can be used as a
running head within a paragraph.

In text, an Italic typeface can be used as emphasis to
introduce a new term or to indicate a manual or
specification name.

Computer code, example code segments, and all
prototype code segments use a BOLD Monospace
typeface with a dark red color. These code listings
normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a
normal text paragraph.

Words in a Bold Monospace typeface that is underlined
and in blue indicate an active hyperlink to the code
definition for that function or type definition. Click on the
word to follow the hyperlink.

Note: Due to management and file size considerations, only the first occurrence of the reference on
each page is an active link. Subsequent references on the same page will not be actively linked to
the definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the
first instance of the name (in the underlined BOLD Monospace typeface) on the page and click
on the word to jump to the function or type definition.

Italic Monospace

1.8.7 Number formats

In code or in text, words in Italic Monospace indicate
placeholder names for variable information that must be
supplied (i.e., arguments).

A binary number is represented in this standard by any sequence of digits consisting of
only the Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g.,

0101b).

Underscores or spaces may be included between characters in binary number
representations to increase readability or delineate field boundaries (e.g., 0 0101 1010b

or 0_0101_1010b).

1.8.7.1 Hexadecimal

A hexadecimal number is represented in this standard by Ox preceding any sequence of
digits consisting of only the Western-Arabic numerals O through 9 and/or the upper-case
English letters A through F (e.g., OXFA23).

14

January, 2017 Version 2.6, Errata A

UEFI Specification Introduction

Underscores or spaces may be included between characters in hexadecimal number
representations to increase readability or delineate field boundaries (e.g., 0xB FD8C FA23
or OxB_FD8C_FA23).

1.8.7.2 Decimal

A decimal number is represented in this standard by any sequence of digits consisting of
only the Arabic numerals O through 9 not immediately followed by a lower-case b or
lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

* the decimal separator (i.e., separating the integer and fractional portions of the
number) is a period,;

* the thousands separator (i.e., separating groups of three digits in a portion of the
number) is a comma;

* the thousands separator is used in the integer portion and is not used in the fraction
portion of a number.

1.8.8 Binary prefixes

This standard uses the prefixes defined in the International System of Units (SI) for values
that are powers of ten. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under
the heading "SI Binary Prefixes”.

Table 2. Sl prefixes

103 1,000 kilo K
106 1,000,000 mega M
10° 1,000,000,000 giga G

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -
- Part 13: Information science and technology and IEEE 1514 Standard for Prefixes for
Binary Multiples for values that are powers of two.

Table 3. Binary prefixes

Factor Factor Name Symbol
210 1,024 kibi Ki
220 1,048,576 mebi Mi
230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

Version 2.6, Errata A January, 2017 15

Introduction UEFI Specification

16 January, 2017 Version 2.6, Errata A

UEFI Specification

2 Overview

UEFI allows the extension of platform firmware by loading UEFI driver and UEFI
application images. When UEFI drivers and UEFI applications are loaded they have access
to all UEFI-defined runtime and boot services. See Figure 2.

EFI _
Application kg OS Loader
i i EFI API
Platform EFl Image
Init Load

Standard Drivers and Boot from Operation
firmware applications ordered list handed off

platform loaded of EFIOS to OS loader
initialization iteratively loaders
— APl specified =---Value add implementation

I:l Boot Manager - EFI binaries

OM13144

Figure 2. Booting Sequence

UEFI allows the consolidation of boot menus from the OS loader and platform firmware
into a single platform firmware menu. These platform firmware menus will allow the
selection of any UEFI OS loader from any partition on any boot medium that is supported
by UEFI boot services. An UEFI OS loader can support multiple options that can appear
on the user interface. It is also possible to include legacy boot options, such as booting
from the A: or C: drive in the platform firmware boot menus.

UEFI supports booting from media that contain an UEFI OS loader or an UEFI-defined
System Partition. An UEFI-defined System Partition is required by UEFI to boot from a
block device. UEFI does not require any change to the first sector of a partition, so it is
possible to build media that will boot on both legacy architectures and UEFI platforms.

2.1 Boot Manager

UEFI contains a boot manager that allows the loading of applications written to this
specification (including OS 1st stage loader) or UEFI drivers from any file on an UEFI-
defined file system or through the use of an UEFI-defined image loading service. UEFI
defines NVRAM variables that are used to point to the file to be loaded. These variables
also contain application-specific data that are passed directly to the UEFI application. The

Version 2.6, Errata A January, 2017 17

Overview UEFI Specification

variables also contain a human readable string that can be displayed in a menu to the
user.

The variables defined by UEFI allow the system firmware to contain a boot menu that can
point to all of the operating systems, and even multiple versions of the same operating
systems. The design goal of UEFI was to have one set of boot menus that could live in
platform firmware. UEFI specifies only the NVRAM variables used in selecting boot
options. UEFI leaves the implementation of the menu system as value added
implementation space.

UEFI greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first
floppy, hard drive, CD-ROM, USB keys, or network card attached to the system. Booting
from a common hard drive can cause many interoperability problems between operating
systems, and different versions of operating systems from the same vendor.

2.1.1 UEFI Images

UEFI Images are a class of files defined by UEFI that contain executable code. The most
distinguishing feature of UEFI Images is that the first set of bytes in the UEFI Image file
contains an image header that defines the encoding of the executable image.

UEFI uses a subset of the PE32+ image format with a modified header signature. The
modification to the signature value in the PE32+ image is done to distinguish UEFI images
from normal PE32 executables. The “+” addition to PE32 provides the 64-bit relocation
fix-up extensions to standard PE32 format.

For images with the UEFI image signature, the Subsystem values in the PE image header
are defined below. The major differences between image types are the memory type that
the firmware will load the image into, and the action taken when the image’s entry point
exits or returns. A UEFI application image is always unloaded when control is returned
from the image’s entry point. A UEFI driver image is only unloaded if control is passed
back with a UEFI error code.

// PE32+ Subsystem type for EFl images

#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10

#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11

#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

// PE32+ Machine type for EFI images

#define EFI_IMAGE_MACHINE_IA32 0x014c

#define EFI_IMAGE_MACHINE_IA64 0x0200

#define EFI_IMAGE_MACHINE_EBC Ox0EBC

#define EFI_IMAGE_MACHINE_x64 0x8664

#define EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2
#define EFI_IMAGE_MACHINE_AARCH64 OxAA64

Note: This image type is chosen to enable UEFI images to contain Thumb and Thumb2 instructions

18

while defining the EFI interfaces themselves to be in ARM mode.

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

Table 4. UEFI Image Memory Types

Subsystem Type Code Memory Type Data Memory Type
EFI_IMAGE_SUSBSYTEM_EFI_APPLICATION EfiLoaderCode EfiLoaderData
EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_D | EfiBootServicesCode EfiBootServicesData
RIVER

EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER | EfiRuntimeServicesCode EfiRuntimeServicesData

The Machine value that is found in the PE image file header is used to indicate the
machine code type of the image. The machine code types for images with the UEFI image
signature are defined below. A given platform must implement the image type native to
that platform and the image type for EFI Byte Code (EBC). Support for other machine
code types is optional to the platform.

A UEFI image is loaded into memory through the EF1_BOOT SERVICES.Loadlmage()
Boot Service. This service loads an image with a PE32+ format into memory. This PE32+
loader is required to load all sections of the PE32+ image into memory. Once the image is
loaded into memory, and the appropriate fix-ups have been performed, control is
transferred to a loaded image at the AddressOfEntryPoint reference according to the
normal indirect calling conventions of applications based on supported 32-bit or
supported 64-bit processors. All other linkage to and from an UEFI image is done
programmatically.

2.1.2 UEFI Applications

Applications written to this specification are loaded by the Boot Manager or by other UEFI
applications. To load a UEFI application the firmware allocates enough memory to hold
the image, copies the sections within the UEFI application image to the allocated memory,
and applies the relocation fix-ups needed. Once done, the allocated memory is set to be
the proper type for code and data for the image. Control is then transferred to the UEFI
application’s entry point. When the application returns from its entry point, or when it
calls the Boot Service EF1_BOOT SERVICES.Exit(), the UEFI application is unloaded
from memory and control is returned to the UEFI component that loaded the UEFI
application.

When the Boot Manager loads a UEFI application, the image handle may be used to locate
the “load options” for the UEFI application. The load options are stored in nonvolatile
storage and are associated with the UEFI application being loaded and executed by the
Boot Manager.

2.1.3 UEFI OS Loaders

A UEFI OS loader is a special type of UEFI application that normally takes over control of
the system from firmware conforming to this specification. When loaded, the UEFI OS
loader behaves like any other UEFI application in that it must only use memory it has
allocated from the firmware and can only use UEFI services and protocols to access the
devices that the firmware exposes. If the UEFI OS loader includes any boot service style
driver functions, it must use the proper UEFI interfaces to obtain access to the bus

Version 2.6, Errata A January, 2017 19

Overview UEFI Specification

specific-resources. That is, I/0 and memory-mapped device registers must be accessed
through the proper bus specific I/0 calls like those that a UEFI driver would perform.

If the UEFI OS loader experiences a problem and cannot load its operating system
correctly, it can release all allocated resources and return control back to the firmware via
the Boot Service Exit() call. The Exit() call allows both an error code and ExitData to be
returned. The ExitData contains both a string and OS loader-specific data to be returned.

If the UEFI OS loader successfully loads its operating system, it can take control of the
system by using the Boot Service EF1_BOOT SERVICES.ExitBootServices(). After
successfully calling ExitBootServices(), all boot services in the system are terminated,
including memory management, and the UEFI OS loader is responsible for the continued
operation of the system.

2.1.4 UEFI Drivers

UEFI drivers are loaded by the Boot Manager, firmware conforming to this specification,
or by other UEFI applications. To load a UEFI driver the firmware allocates enough
memory to hold the image, copies the sections within the UEFI driver image to the
allocated memory and applies the relocation fix-ups needed. Once done, the allocated
memory is set to be the proper type for code and data for the image. Control is then
transferred to the UEFI driver’s entry point. When the UEFI driver returns from its entry
point, or when it calls the Boot Service EFI_BOOT SERVICES.Exit(), the UEFI driver is
optionally unloaded from memory and control is returned to the component that loaded
the UEFI driver. A UEFI driver is not unloaded from memory if it returns a status code of
EFI_SUCCESS. If the UEFI driver’s return code is an error status code, then the driver is
unloaded from memory.

There are two types of UEFI drivers: boot service drivers and runtime drivers. The only
difference between these two driver types is that UEFI runtime drivers are available after
a UEFI OS loader has taken control of the platform with the Boot Service

EFI1_BOOT _SERVICES.ExitBootServices().

UEFI boot service drivers are terminated when ExitBootServices() is called, and all the
memory resources consumed by the UEFI boot service drivers are released for use in the
operating system environment.

A runtime driver of type EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER gets fixed up
with virtual mappings when the OS calls SetVirtualAddressMap ().

2.2 Firmware Core

This section provides an overview of the services defined by UEFI. These include boot
services and runtime services.

2.2.1 UEFI Services

20

The purpose of the UEFI interfaces is to define a common boot environment abstraction
for use by loaded UEFI images, which include UEFI drivers, UEFI applications, and UEFI OS
loaders. The calls are defined with a full 64-bit interface, so that there is headroom for

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

future growth. The goal of this set of abstracted platform calls is to allow the platform
and OS to evolve and innovate independently of one another. Also, a standard set of
primitive runtime services may be used by operating systems.

Platform interfaces defined in this section allow the use of standard Plug and Play Option
ROMs as the underlying implementation methodology for the boot services. The
interfaces have been designed in such as way as to map back into legacy interfaces. These
interfaces have in no way been burdened with any restrictions inherent to legacy Option
ROMs.

The UEFI platform interfaces are intended to provide an abstraction between the
platform and the OS that is to boot on the platform. The UEFI specification also provides
abstraction between diagnostics or utility programs and the platform; however, it does
not attempt to implement a full diagnostic OS environment. It is envisioned that a small
diagnostic OS-like environment can be easily built on top of an UEFI system. Such a
diagnostic environment is not described by this specification.

Interfaces added by this specification are divided into the following categories and are
detailed later in this document:

* Runtime services

» Boot services interfaces, with the following subcategories:
— Global boot service interfaces
— Device handle-based boot service interfaces
— Device protocols
— Protocol services

2.2.2 Runtime Services

This section describes UEFI runtime service functions. The primary purpose of the
runtime services is to abstract minor parts of the hardware implementation of the
platform from the OS. Runtime service functions are available during the boot process
and also at runtime provided the OS switches into flat physical addressing mode to make
the runtime call. However, if the OS loader or OS uses the Runtime Service
SetVirtualAddressMap () service, the OS will only be able to call runtime servicesin a
virtual addressing mode. All runtime interfaces are non-blocking interfaces and can be
called with interrupts disabled if desired.To ensure maximum compatibility with existing
platforms it is recommended that all UEFI modules that comprise the Runtime Services
be represented in the MemoryMap as a single EFI_ MEMORY_DESCRIPTOR of Type
EfiRuntimeServicesCode.

In all cases memory used by the runtime services must be reserved and not used by the
OS. runtime services memory is always available to an UEFI function and will never be
directly manipulated by the OS or its components. UEFI is responsible for defining the
hardware resources used by runtime services, so the OS can synchronize with those
resources when runtime service calls are made, or guarantee that the OS never uses
those resources.

Table 5 lists the Runtime Services functions.

Version 2.6, Errata A January, 2017 21

Overview

Table 5. UEFI Runtime Services

UEFI Specification

Name

GetTime()

SetTime()
GetWakeupTime()

SetWakeupTime()
GetVariable()
GetNextVariableName()
SetVariable()
SetVirtualAddressMap()

ConvertPointer()

GetNextHighMonotonicCount()

ResetSystem()

UpdateCapsule()

QueryCapsuleCapabilities()

QueryVariablelnfo()

Description

Returns the current time, time context, and time keeping

capabilities.

Sets the current time and time context.

Returns the current wakeup alarm settings.

Sets the current wakeup alarm settings.

Returns the value of a named variable.

Enumerates variable names.

Sets, and if needed creates, a variable.

Switches all runtime functions from physical to virtual
addressing.

Used to convert a pointer from physical to virtual
addressing.

Subsumes the platform's monotonic counter
functionality.

Resets all processors and devices and reboots the
system.

Passes capsules to the firmware with both virtual and
physical mapping.
Returns if the capsule can be supported via

UpdateCapsule().

Returns information about the EFI variable store.

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the UEFI specification are called through
pointers in common, architecturally defined, calling conventions found in C compilers.
Pointers to the various global UEFI functions are found in the EFI_RUNTIME_SERVICES
and EFI_BOOT_SERVICES tables that are located via the system table. Pointers to other
functions defined in this specification are located dynamically through device handles. In
all cases, all pointers to UEFI functions are cast with the word EFIAPI. This allows the
compiler for each architecture to supply the proper compiler keywords to achieve the
needed calling conventions. When passing pointer arguments to Boot Services, Runtime
Services, and Protocol Interfaces, the caller has the following responsibilities:

» Itis the caller’s responsibility to pass pointer parameters that reference physical
memory locations. If a pointer is passed that does not point to a physical memory
location (i.e., a memory mapped I/0 region), the results are unpredictable and the
system may halt.

» Itis the caller’'s responsibility to pass pointer parameters with correct alignment. If an
unaligned pointer is passed to a function, the results are unpredictable and the
system may halt.

22 January, 2017 Version 2.6, Errata A

UEFI Specification Overview

» Itisthe caller’'s responsibility to not pass in a NULL parameter to a function unless itis
explicitly allowed. If a NULL pointer is passed to a function, the results are
unpredictable and the system may hang.

* Unless otherwise stated, a caller should not make any assumptions regarding the
state of pointer parameters if the function returns with an error.

» Acaller may not pass structures that are larger than native size by value and these
structures must be passed by reference (via a pointer) by the caller. Passing a
structure larger than native width (4 bytes on supported 32-bit processors; 8 bytes on
supported 64-bit processor instructions) on the stack will produce undefined results.

Calling conventions for supported 32-bit and supported 64-bit applications are
described in more detail below. Any function or protocol may return any valid return
code.

All public interfaces of a UEFI module must follow the UEFI calling convention. Public
interfaces include the image entry point, UEFI event handlers, and protocol member
functions. The type EFIAPI is used to indicate conformance to the calling conventions
defined in this section. Non public interfaces, such as private functions and static library
calls, are not required to follow the UEFI calling conventions and may be optimized by the
compiler.

2.3.1 Data Types

Table 6 lists the common data types that are used in the interface definitions, and Table 7
lists their modifiers. Unless otherwise specified all data types are naturally aligned.
Structures are aligned on boundaries equal to the largest internal datum of the structure
and internal data are implicitly padded to achieve natural alignment.

The values of the pointers passed into or returned by the UEFI interfaces must provide
natural alignment for the underlying types.

Table 6. Common UEFI Data Types

Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other
values are undefined.

INTN Signed value of native width. (4 bytes on supported 32-bit processor instructions, 8
bytes on supported 64-bit processor instructions)

UINTN Unsigned value of native width. (4 bytes on supported 32-bit processor instructions,
8 bytes on supported 64-bit processor instructions)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.

Version 2.6, Errata A January, 2017 23

Overview

UEFI Specification

Mnemonic
UINT64
CHARS

CHAR16

VOID
EFI_GUID

EFI_STATUS
EFI_HANDLE
EFI_EVENT
EFI_LBA

EFI_TPL
EFI_MAC_ADDRESS
EFI_IPv4_ADDRESS
EFI_IPv6_ADDRESS
EFI_IP_ADDRESS

<Enumerated Type>

sizeof (VOID *)

Bitfields

Description
8-byte unsigned value.

1-byte character. Unless otherwise specified, all 1-byte or ASCII characters and
strings are stored in 8-bit ASCII encoding format, using the ISO-Latin-1 character
set.

2-byte Character. Unless otherwise specified all characters and strings are stored in
the UCS-2 encoding format as defined by Unicode 2.1 and ISO/IEC 10646
standards.

Undeclared type.

128-bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64-bit boundary.

Status code. Type UINTN.

A collection of related interfaces. Type VOID *.

Handle to an event structure. Type VOID *.

Logical block address. Type UINT64.

Task priority level. Type UINTN.

32-byte buffer containing a network Media Access Control address.
4-byte buffer. An IPv4 internet protocol address.

16-byte buffer. An IPv6 internet protocol address.

16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol
address.

Element of a standard ANSI C enum type declaration. Type INT32.or UINT32.
ANSI C does not define the size of sign of an enum so they should never be used in
structures. ANSI C integer promotion rules make INT32 or UINT32 interchangeable
when passed as an argument to a function.

4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit
processor instructions.

Bitfields are ordered such that bit 0 is the least significant bit.

Table 7. Modifiers for Common UEFI Data Types

Mnemonic
IN

ouT
OPTIONAL

CONST
EFIAPI

Description

Datum is passed to the function.

Datum is returned from the function.

Passing the datum to the function is optional, and a NULL may be
passed if the value is not supplied.

Datum is read-only.

Defines the calling convention for UEFI interfaces.

2.3.2 IA-32 Platforms

All functions are called with the C language calling convention. The general-purpose
registers that are volatile across function calls are eax, ecx, and edx. All other general-

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

purpose registers are nonvolatile and are preserved by the target function. In addition,
unless otherwise specified by the function definition, all other registers are preserved.

Firmware boot services and runtime services run in the following processor execution
mode prior to the OS calling ExitBootServices():
* Uniprocessor, as described in chapter 8.4 of:
— Intel 64 and IA-32 Architectures Software Developer's Manual
— Volume 3, System Programming Guide, Part 1
— Order Number: 253668-033US, December 2009
— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
"Intel Processor Manuals.
* Protected mode

» Paging mode may be enabled. If paging mode is enabled, PAE (Physical Address
Extensions) mode is recommended. If paging mode is enabled, any memory space
defined by the UEFI memory map is identity mapped (virtual address equals physical
address). The mappings to other regions are undefined and may vary from
implementation to implementation.

e Selectors are set to be flat and are otherwise not used

* Interrupts are enabled-though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling.”)

» Direction flag in EFLAGs is clear
* Other general purpose flag registers are undefined
« 128 KiB, or more, of available stack space

» The stack must be 16-byte aligned. Stack may be marked as non-executable in
identity mapped page tables.

» Floating-point control word must be initialized to 0x027F (all exceptions masked,
double-precision, round-to-nearest)

» Multimedia-extensions control word (if supported) must be initialized to Ox1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow).

e CRO.EM must be zero
e CRO.TS must be zero

An application written to this specification may alter the processor execution mode, but
the UEFI image must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime
services are still available and may be called with paging enabled and virtual address
pointers if SetVirtualAddressMap() has been called describing all virtual address ranges
used by the firmware runtime service.

For an operating system to use any UEFI runtime services, it must:
* Preserve all memory in the memory map marked as runtime code and runtime data

Version 2.6, Errata A January, 2017 25

Overview

26

UEFI Specification

Call the runtime service functions, with the following conditions:
— In protected mode

— Paging may or may not be enabled, however if paging is enabled and
SetVirtualAddressMap() has not been called, any memory space defined by the
UEFI memory map is identity mapped (virtual address equals physical address).
The mappings to other regions are undefined and may vary from implementation
to implementation. See description of SetVirtualAddressMap() for details of
memory map after this function has been called.

— Direction flag in EFLAGS clear
— 4 KiB, or more, of available stack space
— The stack must be 16-byte aligned

— Floating-point control word must be initialized to 0x027F (all exceptions masked,
double-precision, round-to-nearest)

— Multimedia-extensions control word (if supported) must be initialized to 0x1F80
(all exceptions masked, round-to-nearest, flush to zero for masked underflow)

— CRO.EM must be zero

— CRO.TS must be zero

— Interrupts disabled or enabled at the discretion of the caller

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the system memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiIACPIMemoryNVS. Tables loaded at runtime must be

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

contained in memory of type EfiRuntimeServicesData (recommended) or
EfiIACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used for the storage of any EFI
Configuration Tables. Also, only OSes conforming to the UEFI Specification are guaranteed to
handle SMBIOS table in memory of type EfiBootServicesData.

2.3.2.1 Handoff State

When a 32-bit UEFI OS is loaded, the system firmware hands off control to the OS in flat
32-bit mode. All descriptors are set to their 4GiB limits so that all of memory is accessible
from all segments.

Figure 3 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has
been called on supported 32-bit systems. All UEFI image entry points take two
parameters. These are the image handle of the UEFI image, and a pointer to the EFI
System Table.

Stack Location

EFI_SYSTEM_TABLE * ESP + 8
EFI_HANDLE ESP + 4
<return address> ESP

OM13145

Figure 3. Stack after AddressOfEntryPoint Called, I1A- 32

2.3.2.2 Calling Convention

All functions are called with the C language calling convention. The general-purpose
registers that are volatile across function calls are eax, ecx, and edx. All other general-
purpose registers are nonvolatile and are preserved by the target function.

In addition, unless otherwise specified by the function definition, all other CPU registers
(including MMX and XMM) are preserved.

The floating point status register is not preserved by the target function. The floating
point control register and MMX control register are saved by the target function.

If the return value is a float or a double, the value is returned in ST(O).

2.3.3 Intel® Itanium®-Based Platforms

UEFI executes as an extension to the SAL execution environment with the same rules as
laid out by the SAL specification.

During boot services time the processor is in the following execution mode:

* Uniprocessor, as detailed in chapter 13.1.2 of:
— Intel Itanium Architecture Software Developer's Manual

Version 2.6, Errata A January, 2017 27

Overview UEFI Specification

28

— Volume 2: System Architecture
— Revision 2.2
— January 2006

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Intel Itanium Documentation”.

— Document Number: 245318-005
e Physical mode
e 128 KiB, or more, of available stack space
» 16 KiB, or more, of available backing store space

— FPSR.traps:Set to all 1's (all exceptions disabled)
— FPSR.sfO:

* .pc:Precision Control - 11b (extended precision)
» .rc:Rounding Control - O (round to nearest)
* .wre:Widest Range Exponent - O (IEEE mode)

o ftz:Flush-To-Zero mode - O (off)
— FPSR.sfl:

* td:Traps Disable = 1 (traps disabled)
» .pc:Precision Control - 11b (extended precision)
* .rc:Rounding Control - O (round to nearest)
» wreWidest Range Exponent - 1 (full register exponent range)
o ftzFlush-To-Zero mode - O (off)
— FPSR.sf2,3:
e .tdTraps Disable = 1 (traps disabled)
* pc:Precision Control - 11b (extended precision)
* .rc:Rounding Control - O (round to nearest)
» .wre:Widest Range Exponent - O (IEEE mode)
o ftz:Flush-To-Zero mode - O (off)
An application written to this specification may alter the processor execution mode, but

the UEFI image must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime
services are still available When calling runtime services, paging may or may not be
enabled, however if paging is enabled and SetVirtualAddressMap() has not been called,
any memory space defined by the UEFI memory map is identity mapped (virtual address
equals physical address). The mappings to other regions are undefined and may vary
from implementation to implementation. See description of
SetVirtualAddressMap () for details of memory map after this function has been
called. After ExitBootServices(), runtime service functions may be called with interrupts
disabled or enabled at the discretion of the caller.

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

» ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiIACPIMemoryNVS.

» The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS.
must be aligned on an 8 KiB boundary and must be a multiple of 8 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on an 8 KiB boundary and must be a multiple of 8 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the system memory map does not contain cacheability attributes the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

» ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

Refer to the IA-64 System Abstraction Layer Specification (see Appendix Q) for details.

UEFI procedures are invoked using the P64 C calling conventions defined for Intel®

ltanium®-based applications. Refer to the document 64 Bit Runtime Architecture and
Software Conventions for IA-64 (seeAppendix Q) for more information.

2.3.3.1 Handoff State

UEFI uses the standard P64 C calling conventions that are defined for Itanium-based
operating systems. Figure 4 shows the stack after ImageEntryPoint has been called on
Itanium-based systems. The arguments are also stored in registers: outO contains
EFI_HANDLE and outl contains the address of the EFI_SYSTEM_TABLE. The gp for the
UEFI Image will have been loaded from the plabel pointed to by the AddressOfEntryPoint

Version 2.6, Errata A January, 2017 29

Overview UEFI Specification

in the image’s PE32+ header. All UEFI image entry points take two parameters. These are
the image handle of the image, and a pointer to the System Table.

Stack Location Register

EFI_SYSTEM_TABLE * SP +8 outl
EFI_HANDLE SP out0

OM13146

Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see Appendix Q) defines the state of the system registers at boot
handoff. The SAL specification also defines which system registers can only be used after
UEFI boot services have been properly terminated.

2.3.3.2 Calling Convention

30

UEFI executes as an extension to the SAL execution environment with the same rules as
laid out by

the SAL specification. UEFI procedures are invoked using the P64 C calling conventions
defined for Intel® Itanium@-based applications. Refer to the document 64 Bit Runtime
Architecture and Software Conventions for IA-64 (see Glossary for more information.

For floating point, functions may only use the lower 32 floating point registers Return
values appear in f8-f15 registers. Single, double, and extended values are all returned
using the appropriate format. Registers f6-f7 are local registers and are not preserved for
the caller. All other floating point registers are preserved. Note that, when compiling UEFI
programs, a special switch will likely need to be specified to guarantee that the compiler
does not use f32-f127, which are not normally preserved in the regular calling
convention for Itanium. A procedure using one of the preserved floating point registers
must save and restore the caller's original contents without generating a NaT
consumption fault.

Floating point arguments are passed in f8-f15 registers when possible. Parameters
beyond the registers appear in memory, as explained in Section 8.5 of the Itanium
Software Conventions and Runtime Architecture Guide. Within the called function, these
are local registers and are not preserved for the caller. Registers f6-f7 are local registers
and are not preserved for the caller. All other floating point registers are preserved. Note
that, when compiling UEFI programs, a special switch will likely need to be specified to
guarantee that the compiler does not use f32-f127, which are not normally preserved in
the regular calling convention for Itanium. A procedure using one of the preserved
floating point registers must save and restore the caller's original contents without
generating a NaT consumption fault.

The floating point status register must be preserved across calls to a target function.
Flags fields in SF1,2,3 are not preserved for the caller. Flags fields in SFO upon return will
reflect the value passed in, and with bits set to 1 corresponding to any IEEE exceptions
detected on non-speculative floating-point operations executed as part of the callee.

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

Floating-point operations executed by the callee may require software emulation. The
caller must be prepared to handle FP Software Assist (FPSWA) interruptions. Callees
should not raise IEEE traps by changing FPSR.traps bits to O and then executing floating-
point operations that raise such traps.

2.3.4 x64 Platforms

All functions are called with the C language calling convention. See Section 2.3.4.2 for
more detail.

During boot services time the processor is in the following execution mode:

Uniprocessor, as described in chapter 8.4 of:

— Intel 64 and |A-32 Architectures Software Developer's Manual, Volume 3, System
Programming Guide, Part 1, Order Number: 253668-033US, December 2009

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Intel Processor Manuals”.

Long mode, in 64-bit mode

Paging mode is enabled and any memory space defined by the UEFI memory map is
identity mapped (virtual address equals physical address). The mappings to other
regions are undefined and may vary from implementation to implementation.

Selectors are set to be flat and are otherwise not used.

Interrupts are enabled-though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling.”)

Direction flag in EFLAGs is clear
Other general purpose flag registers are undefined
128 KiB, or more, of available stack space

The stack must be 16-byte aligned. Stack may be marked as non-executable in
identity mapped page tables.

Floating-point control word must be initialized to Ox037F (all exceptions masked,
double-extended-precision, round-to-nearest)

Multimedia-extensions control word (if supported) must be initialized to Ox1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow).

CRO.EM must be zero
CRO.TS must be zero

For an operating system to use any UEFI runtime services, it must:

Preserve all memory in the memory map marked as runtime code and runtime data
Call the runtime service functions, with the following conditions:

In long mode, in 64-bit mode

Paging enabled

All selectors set to be flat with virtual = physical address. If the UEFI OS loader or OS
used SetVirtualAddressMap() to relocate the runtime services in a virtual address

Version 2.6, Errata A January, 2017 31

Overview

UEFI Specification

space, then this condition does not have to be met. See description of
SetVirtualAddressMap() for details of memory map after this function has been
called.

Direction flag in EFLAGS clear
4 KiB, or more, of available stack space
The stack must be 16-byte aligned

Floating-point control word must be initialized to Ox037F (all exceptions masked,
double-extended-precision, round-to-nearest)

Multimedia-extensions control word (if supported) must be initialized to Ox1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow)

CRO.EM must be zero
CRO.TS must be zero
Interrupts may be disabled or enabled at the discretion of the caller.

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the system memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be nhon-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiIACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration

32

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.4.1 Handoff State
Rcx — EFI_HANDLE
Rdx — EFI_SYSTEM_TABLE *
RSP - <return address>

2.3.4.2 Detailed Calling Conventions

The caller passes the first four integer arguments in registers. The integer values are
passed from left to right in Rcx, Rdx, R8, and R9 registers. The caller passes arguments
five and above onto the stack. All arguments must be right-justified in the register in
which they are passed. This ensures the callee can process only the bits in the register
that are required.

The caller passes arrays and strings via a pointer to memory allocated by the caller. The
caller passes structures and unions of size 8, 16, 32, or 64 bits as if they were integers of
the same size. The caller is not allowed to pass structures and unions of other than these
sizes and must pass these unions and structures via a pointer.

The callee must dump the register parameters into their shadow space if required. The
most common requirement is to take the address of an argument.

If the parameters are passed through varargs then essentially the typical parameter
passing applies, including spilling the fifth and subsequent arguments onto the stack. The
callee must dump the arguments that have their address taken.

Return values that fix into 64-bits are returned in the Rax register. If the return value does
not fit within 64-bits, then the caller must allocate and pass a pointer for the return value
as the first argument, Rcx. Subsequent arguments are then shifted one argument to the
right, so for example argument one would be passed in Rdx. User-defined types to be
returned must be 1,2,4,8,16,32, or 64 bits in length.

The registers Rax, Rex Rdx R8, R9, R10, R11, and XMMO-XMMS5 are volatile and are,
therefore, destroyed on function calls.

The registers RBX, RBP, RDI, RSI, R12, R13, R14, R15, and XMM6-XMM15 are considered
nonvolatile and must be saved and restored by a function that uses them.

Function pointers are pointers to the label of the respective function and don’t require
special treatment.

A caller must always call with the stack 16-byte aligned.

For MMX, XMM and floating-point values, return values that can fit into 64-bits are
returned through RAX (including MMX types). However, XMM 128-bit types, floats, and
doubles are returned in XMMO. The floating point status register is not saved by the
target function. Floating-point and double-precision arguments are passed in XMMO -
XMM3 (up to 4) with the integer slot (RCX, RDX, R8, and R9) that would normally be used
for that cardinal slot being ignored (see example) and vice versa. XMM types are never
passed by immediate value but rather a pointer will be passed to memory allocated by

Version 2.6, Errata A January, 2017 33

Overview UEFI Specification

the caller. MMX types will be passed as if they were integers of the same size. Callees
must not unmask exceptions without providing correct exception handlers.

In addition, unless otherwise specified by the function definition, all other CPU registers
(including MMX and XMM) are preserved.

2.3.4.3 Enabling Paging or Alternate Translations in an Application

Boot Services define an execution environment where paging is not enabled (supported
32-bit) or where translations are enabled but mapped virtual equal physical (x64) and this
section will describe how to write an application with alternate translations or with paging
enabled. Some Operating Systems require the OS Loader to be able to enable OS
required translations at Boot Services time.

If a UEFI application uses its own page tables, GDT or IDT, the application must ensure
that the firmware executes with each supplanted data structure. There are two ways that
firmware conforming to this specification can execute when the application has paging
enabled.

» Explicit firmware call
» Firmware preemption of application via timer event

An application with translations enabled can restore firmware required mapping before
each UEFI call. However the possibility of preemption may require the translation
enabled application to disable interrupts while alternate translations are enabled. It's
legal for the translation enabled application to enable interrupts if the application
catches the interrupt and restores the EFI firmware environment prior to calling the UEFI
interrupt ISR. After the UEFI ISR context is executed it will return to the translation
enabled application context and restore any mappings required by the application.

2.3.5 AArch32 Platforms

34

All functions are called with the C language calling convention specified in
Section 2.3.5.3. In addition, the invoking OSs can assume that unaligned access support
is enabled if it is present in the processor.

During boot services time the processor is in the following execution mode:

» Unaligned access should be enabled if supported; Alignment faults are
enabled otherwise.

* Uniprocessor.
* Aprivileged mode.

 The MMU is enabled (CP15 c1 System Control Register (SCTLR) SCTLR.M=1) and any
RAM defined by the UEFI memory map is identity mapped (virtual address equals
physical address). The mappings to other regions are undefined and may vary from
implementation to implementation

* The core will be configured as follows (common across all processor architecture
revisions):

« MMU enabled
* Instruction and Data caches enabled

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

» Access flag disabled
» Translation remap disabled
» Little endian mode

» Domain access control mechanism (if supported) will be configured to check
access permission bits in the page descriptor

» Fast Context Switch Extension (FCSE) must be disabled

This will be achieved by:

» Configuring the CP15 c1 System Control Register (SCTLR) as follows: I=1, C=1,
B=0, TRE=0, AFE=0, M=1

» Configuring the CP15 ¢3 Domain Access Control Register (DACR) to 0x33333333.

» Configuring the CP15 c1 System Control Register (SCTLR), A=1 on ARMv4 and
ARMV5, A=0, U=1 on ARMv6 and ARMv7.

The state of other system control register bits is not dictated by this specification.

» Implementations of boot services will enable architecturally manageable caches and
TLBs i.e., those that can be managed directly using CP15 operations using
mechanisms and procedures defined in the ARM Architecture Reference Manual. They
should not enable caches requiring platform information to manage or invoke non-
architectural cache/TLB lockdown mechanisms

* MMU configuration--Implementations must use only 4k pages and a single translation
base register. On devices supporting multiple translation base registers, TTBRO must
be used solely. The binding does not mandate whether page tables are cached or un-
cached.

* On processors implementing the ARMv4 through ARMv6K architecture
definitions, the core is additionally configured to disable extended page tables
support, if present.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR)
as follows: XP=0

* On processors implementing the ARMv7 and later architecture definitions, the
core will be configured to enable the extended page table format and disable the
TEX remap mechanism.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR)
as follows: XP=1, TRE=0

* Interrupts are enabled-though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling.”)

* 128 KiB or more of available stack space
For an operating system to use any runtime services, it must;
* Preserve all memory in the memory map marked as runtime code and runtime data
» Call the runtime service functions, with the following conditions:
* Inaprivileged mode.

* The system address regions described by all the entries in the EFl memory map
that have the EFI_MEMORY_RUNTIME bit set must be identity mapped as they

Version 2.6, Errata A January, 2017 35

Overview UEFI Specification

were for the EFI boot environment. If the OS Loader or OS used
SetVirtualAddressMap() to relocate the runtime services in a virtual address space,
then this condition does not have to be met. See description of
SetVirtualAddressMap() for details of memory map after this function has been
called.

» The processor must be in a mode in which it has access to the system address
regions specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

* 4 KiB, or more, of available stack space
* Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but
the invoking OS must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

If ACPI is supported :

» ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS

* The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

» EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the systermn memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPl name
space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiIACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

36

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.5.1 Handoff State
RO - EFI_HANDLE
R1-EFI_SYSTEM_ TABLE *
R14 - Return Address

2.3.5.2 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to
write an application that creates an alternative execution environment. Some Operating
Systems require the OS Loader to be able to enable OS required translations at Boot
Services time, and make other changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application
must ensure that the firmware executes with each supplanted functionality. There are two
ways that firmware conforming to this specification can execute in this alternate
execution environment:

» Explicit firmware call
» Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware
environment before each UEFI call. However the possibility of preemption may require
the alternate execution-enabled application to disable interrupts while the alternate
execution environment is active. It's legal for the alternate execution environment
enabled application to enable interrupts if the application catches the interrupt and
restores the EFI firmware environment prior to calling the UEFI interrupt ISR. After the
UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the
semantics or behavior of the MMU configuration created by the UEFI firmware prior to
invoking ExitBootServices(), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception
vector to point to appropriate code.

2.3.5.3 Detailed Calling Convention
The base calling convention for the ARM binding is defined here:;

Procedure Call Standard for the ARM Architecture V2.06 (or later)
See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Arm
Architecture Base Calling Convention”.

This binding further constrains the calling convention in these ways:

» Calls to UEFI defined interfaces must be done assuming that the target code requires
the ARM instruction set state. Images are free to use other instruction set states
except when invoking UEFI interfaces.

Version 2.6, Errata A January, 2017 37

Overview

UEFI Specification

Floating point, SIMD, vector operations and other instruction set extensions must not
be used.

Only little endian operation is supported.

The stack will maintain 8 byte alignment as described in the AAPCS for public
interfaces.

Use of coprocessor registers for passing call arguments must not be used

Structures (or other types larger than 64-bits) must be passed by reference and not
by value

The EFI ARM platform binding defines register r9 as an additional callee-saved
variable register.

2.3.6 AArch64 Platforms

AArch64 UEFI will only execute 64-bit ARM code, as the ARMv8 architecture does not
allow for the mixing of 32-bit and 64-bit code at the same privilege level.

38

All functions are called with the C language calling convention specified in Detailed
calling Convention section below. During boot services only a single processor is used for
execution. All secondary processors must be either powered off or held in a quiescent
state.

The primary processor is in the following execution mode:

Unaligned access must be enabled.

Use the highest 64 bit non secure privilege level available; Non-secure EL2 (Hyp) or
Non-secure EL1(Kernel).

The MMU is enabled and any RAM defined by the UEFI memory map is identity
mapped (virtual address equals physical address). The mappings to other regions are
undefined and may vary from implementation to implementation

The core will be configured as follows:

e MMU enabled

» Instruction and Data caches enabled
e Little endian mode

» Stack Alignment Enforced

* NOT Top Byte Ignored

* Valid Physical Address Space

* 4K Translation Granule

This will be achieved by:

1.

2.

Configuring the System Control Register SCTLR_EL2 or SCTLR_EL1:
EE=0, I=1, SA=1, C=1, A=0, M=1

Configuring the appropriate Translation Control Register:

TCR_EL2

« TBI=O

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

* PSS must contain the valid Physical Address Space Size.

« TG0=00
TCR_EL1
« TBIO=0

» IPS must contain the valid Intermediate Physical Address Space Size.
e« TGO=00

Note: The state of other system control register bits is not dictated by this specification.

All floating point traps and exceptions will be disabled at the relevant exception levels
(FPCR=0, CPACR_EL1.FPEN=11, CPTR_EL2.TFP=0). This implies that the FP unit will
be enabled by default.

Implementations of boot services will enable architecturally manageable caches and
TLBs i.e., those that can be managed directly using implementation independent
registers using mechanisms and procedures defined in the ARM Architecture
Reference Manual. They should not enable caches requiring platform information to
manage or invoke non-architectural cache/TLB lockdown mechanisms.

MMU configuration: Implementations must use only 4k pages and a single translation
base register. On devices supporting multiple translation base registers, TTBRO must
be used solely. The binding does not mandate whether page tables are cached or un-
cached.

Interrupts are enabled, though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling”). All UEFI interrupts must be routed to the IRQ vector only.

The architecture generic timer must be initialized and enabled. The Counter
Frequency register (CNTFRQ) must be programmed with the timer frequency. Timer
access must be provided to non-secure EL1 and ELO by setting bits ELLPCTEN and
EL1PCEN in register CNTHCTL_EL2.

128 KiB or more of available stack space

The ARM architecture allows mapping pages at a variety of granularities, including
4KiB and 64KiB. If a 64KiB physical page contains any 4KiB page with any of the
following types listed below, then all 4KiB pages in the 64KiB page must use identical
ARM Memory Page Attributes (as described in Table 8):

— EfiRuntimeServicesCode

— EfiRuntimeServicesData

— EfiReserved

— EfiACPIMemoryNVS

Mixed attribute mappings within a larger page are not allowed.

Note: This constraint allows a 64K paged based Operating System to safely map runtime services

memory.

For an operating system to use any runtime services, Runtime services must:

Support calls from either the EL1 or the EL2 exception levels.

Version 2.6, Errata A January, 2017 39

Overview

UEFI Specification

* Once called, simultaneous or nested calls from EL1 and EL2 are not permitted.

Note: Sequential, non-overlapping, calls from EL1 and EL2 are permitted.

Runtime services are permitted to make synchronous SMC and HVC calls into higher
exception levels.

Note: These rules allow Boot Services to start at EL2, and Runtime services to be assigned to an EL1
Operating System. In this case a call to SetVirtualAddressMap()is expected to provided an
EL1 appropriate set of mappings.

40

For an operating system to use any runtime services, it must;

* Enable unaligned access support.

* Preserve all memory in the memory map marked as runtime code and runtime data

» Call the runtime service functions, with the following conditions:

From either EL1 or EL2 exception levels.

Consistently call runtime services from the same exception level. Sharing of
runtime services between different exception levels is not permitted.

Runtime services must only be assigned to a single operating system or
hypervisor. They must not be shared between multiple guest operating systems.

The system address regions described by all the entries in the EFI memory map
that have the EFI_ MEMORY_RUNTIME bit set must be identity mapped as they
were for the EFI boot environment. If the OS Loader or OS used
SetVirtualAddressMap() to relocate the runtime services in a virtual address
space, then this condition does not have to be met. See description of
SetVirtualAddressMap() for details of memory map after this function has been
called.

The processor must be in a mode in which it has access to the system address
regions specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

8 KiB, or more, of available stack space.
The stack must be 16-byte aligned (128-bit).
Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but
the invoking OS must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

If ACPI is supported :

» ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS.

e ACPI FACS must be contained in memory of type EfiACPIMemoryNVS. The system
firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiIACPIMemoryNVS.

» EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

January, 2017 Version 2.6, Errata A

UEFI Specification

Overview

* Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the systermn memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

» ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesdata,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or

EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 clarified the
situation moving forward. Also, only OSes conforming to UEFI Specification are guaranteed to
handle SMBIOS table in memory of type EfiBootServiceData.

2.3.6.1 Memory types

Table 8. Map: EFI memory types to AArch64 memory types

EFl Memory Type

ARM Memory Type:
MAIR attribute encoding
Attr<n> [7:4] [3:0]

ARM Memory Type:

Meaning

EFI_MEMORY_UC (Not

Device-nGnRnE

combine)

cacheable) 0000 0000 (Device non-Gathering,
non-Reordering,
no Early Write Acknowledgement)
EFI_MEMORY_WC (Write 0100 0100 Normal Memory

Outer non-cacheable
Inner non-cacheable

EFI_MEMORY_WT (Write
through)

1011 1011

Normal Memory
Outer Write-through non-transient
Inner Write-through non-transient

Version 2.6, Errata A

January, 2017

41

Overview UEFI Specification

EFI_MEMORY_WB (Write back) | 1111 1111 Normal Memory
Outer Write-back non-transient
Inner Write-back non-transient

EFI_MEMORY_XP, Not used or defined
EFI_MEMORY_WP,
EFI_MEMORY_RP,

EFI_MEMORY_UCE

2.3.6.2 Handoff State

X0 - EFI_HANDLE
X1 -EFI_SYSTEM_TABLE *
X30 - Return Address

2.3.6.3 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to
write an application that creates an alternative execution environment. Some Operating
Systems require the OS Loader to be able to enable OS required translations at Boot
Services time, and make other changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application
must ensure that the firmware executes with each supplanted functionality. There are two
ways that firmware conforming to this specification can execute in this alternate
execution environment:

» Explicit firmware call
* Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware
environment before each UEFI call. However the possibility of preemption may require
the alternate execution-enabled application to disable interrupts while the alternate
execution environment is active. It's legal for the alternate execution environment
enabled application to enable interrupts if the application catches the interrupt and
restores the EFI firmware environment prior to calling the UEFI interrupt ISR. After the
UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the
semantics or behavior of the MMU configuration created by the UEFI firmware prior to
invoking ExitBootServices(), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception
vector to point to appropriate code.

2.3.6.4 Detailed Calling Convention

42

The base calling convention for the AArch64 binding is defined in the document
Procedure Call Standard for the ARM 64-bit Architecture Version A-0.06 (or later):

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ARM 64-
bit Base Calling Convention”

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

This binding further constrains the calling convention in these ways:

* The AArch64 execution state must not be modified by the callee.

» All code exits, normal and exceptional, must be from the A64 instruction set.

* Floating point and SIMD instructions may be used.

» Optional vector operations and other instruction set extensions may only be used:
» After dynamically checking for their existence.
» Saving and then later restoring any additional execution state context.

* Additional feature enablement or control, such as power, must be explicitly
managed.

* Only little endian operation is supported.
» The stack will maintain 16 byte alignment.

e Structures (or other types larger than 64-bits) must be passed by reference and not
by value.

* The EFI AArch64 platform binding defines the platform register (r18) as “do not use”.
Avoiding use of r18 in firmware makes the code compatible with both a fixed role for
r18 defined by the OS platform ABI and the use of r18 by the OS and its applications
as a temporary register.

2.4 Protocols

The protocols that a device handle supports are discovered through the

EFI1 BOOT SERVICES.HandleProtocol () Boot Service or the

EF1 BOOT SERVICES.OpenProtocol () Boot Service. Each protocol has a
specification that includes the following:

» The protocol’s globally unique ID (GUID)
* The Protocol Interface structure
* The Protocol Services

Unless otherwise specified a protocol’s interface structure is not allocated from runtime
memory and the protocol member functions should not be called at runtime. If not
explicitly specified a protocol member function can be called at a TPL level of less than or
equal to TPL_NOTIFY (see Section 6.1). Unless otherwise specified a protocol’s member
function is not reentrant or MP safe.

Any status codes defined by the protocol member function definition are required to be
implemented, Additional error codes may be returned, but they will not be tested by
standard compliance tests, and any software that uses the procedure cannot depend on
any of the extended error codes that an implementation may provide.

To determine if the handle supports any given protocol, the protocol’'s GUID is passed to
HandleProtocol() or OpenProtocol(). If the device supports the requested protocol, a
pointer to the defined Protocol Interface structure is returned. The Protocol Interface
structure links the caller to the protocol-specific services to use for this device.

Version 2.6, Errata A January, 2017 43

Overview UEFI Specification

Figure 5 shows the construction of a protocol. The UEFI driver contains functions specific
to one or more protocol implementations, and registers them with the Boot Service

EFI BOOT SERVICES. InstallProtocolInterface(). The firmware returns the
Protocol Interface for the protocol that is then used to invoke the protocol specific
services. The UEFI driver keeps private, device-specific context with protocol interfaces.

HandleProtocol (GUID, ...)

D Sammm— Handle

EFI Driver

. cup1 N
[
Protocol Interface Protocol

g - specific
Function Pointer fL?nctions
Function Pointer

Invoking one of
the protocol ——
services

v

}

Device, or

next Driver

Protocol
specific
functions

OM13147

Figure 5. Construction of a Protocol

The following C code fragment illustrates the use of protocols:

January, 2017 Version 2.6, Errata A

UEFI Specification

Overview

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;

Status = HandleProtocol (
EffectsDevice.EFIHandle,
&lllustrationProtocolGuid,

&EffectsDevice.lllustrationProtocol

)i

// Use the EffectsDevice illustration protocol’s “MakeEffects”

// service to make flashy and noisy effects.

Status = EffectsDevice.lllustrationProtocol->MakeEffects (
EffectsDevice.lllustrationProtocol,

TheFlashyAndNoisyEffect
);

Table 9 lists the UEFI protocols defined by this specification.

Table 9. UEFI Protocols

Protocol

EF1_LOADED

EF1_LOADED
OCOL

EFI
EFI

IMAGE_PROTOCOL
IMAGE_DEVICE_PATH PROT

DEVICE_PATH PROTOCOL
DRIVER_BINDING _PROTOCOL

EFI
oL
EFI
ocoL

EF1_BUS_SPECIFIC _DRIVER_OVERRIDE
PROTOCOL

EF1_DRIVER _DIAGNOSTICS2 PROTOCOL

DRIVER_FAMILY OVERRIDE PROTOC

PLATFORM_DRIVER_OVERRIDE_PROT

EF1_COMPONENT NAME2 PROTOCOL

EF1_SIMPLE _TEXT INPUT_PROTOCOL

Description
Provides information on the image.

Specifies the device path that was used when a PE/COFF
image was loaded through the EFI Boot Service Loadlmage().

Provides the location of the device.

Provides services to determine if an UEFI driver supports a
given controller, and services to start and stop a given
controller.

Provides a the Driver Family Override mechanism for selecting
the best driver for a given controller.

Provide a platform specific override mechanism for the
selection of the best driver for a given controller.

Provides a bus specific override mechanism for the selection of
the best driver for a given controller.

Provides diagnostics services for the controllers that UEFI
drivers are managing.

Provides human readable names for UEFI Drivers and the
controllers that the drivers are managing.

Protocol interfaces for devices that support simple console
style text input.

Version 2.6, Errata A

January, 2017

45

Overview UEFI Specification

Protocol Description

EF1 SIMPLE TEXT OUTPUT PROTOCOL Protocol interfaces for devices that support console style text
displaying.

EF1 SIMPLE POINTER PROTOCOL Protocol interfaces for devices such as mice and trackballs.

EFI SERIAL 10 PROTOCOL Protocol interfaces for devices that support serial character
transfer.

EFI LOAD FILE PROTOCOL Protocol interface for reading a file from an arbitrary device.

EFI LOAD FILE2 PROTOCOL Protocol interface for reading a non-boot option file from an
arbitrary device

EFI SIMPLE FILE SYSTEM PROTOCOL Protocol interfaces for opening disk volume containing a UEFI
file system.

EF1 FILE PROTOCOL Provides access to supported file systems.

EFI DISK 10 PROTOCOL A protocol interface that layers onto any BLOCK_IO or
BLOCK 10 _EX interface.

EFI BLOCK 10 PROTOCOL Protocol interfaces for devices that support block 1/0O style
accesses.

EF1 BLOCK 102 PROTOCOL Protocol interfaces for devices that support block 1/0 style
accesses. This interface is capable of non-blocking
transactions.

EF1 UNICODE COLLATION PROTOCOL Protocol interfaces for string comparison operations.

EF1 PCI ROOT BRIDGE 10 PROTOCOL Protocol interfaces to abstract memory, 1/0, PCI configuration,
and DMA accesses to a PClI root bridge controller.

EF1I PCI 10 PROTOCOL Protocol interfaces to abstract memory, 1/0, PCI configuration,
and DMA accesses to a PCl controller on a PCI bus.

EFI USB 10 PROTOCOL Protocol interfaces to abstract access to a USB controller.

EFI SIMPLE NETWORK PROTOCOL Provides interface for devices that support packet based
transfers.

EFI PXE BASE CODE PROTOCOL Protocol interfaces for devices that support network booting.

EF1 BIS PROTOCOL Protocol interfaces to validate boot images before they are
loaded and invoked.

EF1I DEBUG SUPPORT PROTOCOL Protocol interfaces to save and restore processor context and
hook processor exceptions.

EF1 DEBUGPORT PROTOCOL Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.

EF1 DECOMPRESS PROTOCOL Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

EFI EBC PROTOCOL Protocols interfaces required to support an EFI Byte Code
interpreter.

EFI GRAPHICS OUTPUT PROTOCOL Protocol interfaces for devices that support graphical output.

EF1 NVM EXPRESS PASS THRU PROTOCO @ Protocol interfaces that allow NVM Express commands to be

L issued to an NVM Express controller.

EFI EXT SCSI PASS THRU PROTOCOL Protocol interfaces for a SCSI channel that allows SCSI

Request Packets to be sent to SCSI devices.

46 January, 2017

Version 2.6, Errata A

UEFI Specification

Overview

Protocol

EFI USB2 HC PROTOCOL

EF1 AUTHENTICATION INFO PROTOCOL
EF1 DEVICE PATH UTILITIES PROTOCO
L

EFI DEVICE PATH TO TEXT PROTOCOL
EF1 DEVICE PATH FROM TEXT PROTOCO
L

EFI EDID DISCOVERED PROTOCOL

EF1 EDID ACTIVE PROTOCOL

EF1 EDID OVERRIDE PROTOCOL

EFI 1SCSI INITIATOR NAME PROTOCOL
EF1 TAPE 10 PROTOCOL

EF1 MANAGED NETWORK PROTOCOL

EFI ARP SERVICE BINDING PROTOCOL
EF1 ARP PROTOCOL

EFI DHCP4 SERVICE BINDING PROTOCO
L

EF1 DHCP4 PROTOCOL

EFI TCP4 SERVICE BINDING PROTOCOL
EF1 TCP4 PROTOCOL

EF1 1P4 SERVICE BINDING PROTOCOL
EFI 1P4 PROTOCOL

Description

Protocol interfaces to abstract access to a USB Host
Controller.

Provides access for generic authentication information
associated with specific device paths

Aids in creating and manipulating device paths.

Converts device nodes and paths to text.

Converts text to device paths and device nodes.

Contains the EDID information retrieved from a video output
device.

Contains the EDID information for an active video output
device.

Produced by the platform to allow the platform to provide EDID
information to the producer of the Graphics Output protocol

Sets and obtains the iSCSI Initiator Name.
Provides services to control and access a tape drive.

Used to locate communication devices that are supported by
an MNP driver and create and destroy instances of the MNP
child protocol driver that can use the underlying
communications devices.

Used to locate communications devices that are supported by
an ARP driver and to create and destroy instances of the ARP
child protocol driver.

Used to resolve local network protocol addresses into network
hardware addresses.

Used to locate communication devices that are supported by
an EFlI DHCPv4 Protocol driver and to create and destroy EFI
DHCPv4 Protocol child driver instances that can use the
underlying communications devices.

Used to collect configuration information for the EFI IPv4
Protocol drivers and to provide DHCPv4 server and PXE boot
server discovery services.

Used to locate EFI TCPv4Protocol drivers to create and
destroy child of the driver to communicate with other host using
TCP protocol.

Provides services to send and receive data stream.
Used to locate communication devices that are supported by
an EFI IPv4 Protocol Driver and to create and destroy

instances of the EFI IPv4 Protocol child protocol driver that can
use the underlying communication device.

Provides basic network IPv4 packet 1/O services.

Version 2.6, Errata A

January, 2017

47

Overview UEFI Specification

Protocol Description

EF1 1P4 CONFIG PROTOCOL The EFI IPv4 Config Protocol driver performs platform- and
policy-dependent configuration of the EFI IPv4 Protocol driver.

EF1 1P4 CONFIG2 PROTOCOL The EFI IPv4 Configuration Il Protocol driver performs
platform- and policy-dependent configuration of the EFI IPv4
Protocol driver.

EF1 UDP4 SERVICE BINDING PROTOCOL | Used tolocate communication devices that are supported by
an EFI UDPv4 Protocol driver and to create and destroy
instances of the EFI UDPv4 Protocol child protocol driver that
can use the underlying communication device.

EF1 UDP4 PROTOCOL Provides simple packet-oriented services to transmit and
receive UDP packets.

EF1 MTFTP4 SERVICE BINDING PROTOC @ Used tolocate communication devices that are supported by

oL an EFI MTFTPv4 Protocol driver and to create and destroy

- instances of the EFI MTFTPv4 Protocol child protocol driver
that can use the underlying communication device.

EFI MTFTP4 PROTOCOL Provides basic services for client-side unicast or multicast
TFTP operations.

EF1 HASH PROTOCOL Allows creating a hash of an arbitrary message digest using
one or more hash algorithms.

EF1 HASH SERVICE BINDING PROTOCOL | Used tolocate hashing services support provided by a driver
and create and destroy instances of the EFI Hash Protocol so
that a multiple drivers can use the underlying hashing services.

EFlI SD MMC PASS THRU PROTOCOL Protocol interface that allows SD/eMMC commands to be sent

to an SD/eMMC controller.

2.5 UEFI Driver Model

The UEFI Driver Model is intended to simplify the design and implementation of device
drivers, and produce small executable image sizes. As a result, some complexity has been
moved into bus drivers and in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image
handle on which the driver was loaded. It then waits for the system firmware to connect
the driver to a controller. When that occurs, the device driver is responsible for producing
a protocol on the controller’s device handle that abstracts the 1/0 operations that the
controller supports. A bus driver performs these exact same tasks. In addition, a bus

48

driver is also responsible for discovering any child controllers on the bus, and creating a
device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more
processors connected to one or more core chipsets. The core chipsets are responsible for
producing one or more I/0 buses. The UEFI Driver Model does not attempt to describe the
processors or the core chipsets. Instead, the UEFI Driver Model describes the set of I/0
buses produced by the core chipsets, and any children of these I/0 buses. These children
can either be devices or additional I/0O buses. This can be viewed as a tree of buses and
devices with the core chipsets at the root of that tree.

January, 2017 Version 2.6, Errata A

UEFI Specification

Overview

The leaf nodes in this tree structure are peripherals that perform some type of I/0. This
could include keyboards, displays, disks, network, etc. The nonleaf nodes are the buses
that move data between devices and buses, or between different bus types. Figure 6
shows a sample desktop system with four buses and six devices.

CPU

North
Bridge

-

PClI Bus

~a-

!

VGA

ATA

'ﬂ USB Bus

Keyboard

}

Hard
Drive

CD-ROM

Mouse

!

Bus Controller

| Device Controller

OM13142

Figure 6. Desktop System

Figure 7 is an example of a more complex server system. The idea is to make the UEFI
Driver Model simple and extensible so more complex systems like the one below can be
described and managed in the preboot environment. This system contains six buses and

eight devices.

PCl Bus

USB Bus

KBD

MOUSE

SCSI

PCl Bus A
Hard
Drive [
Hard
Drive [
Hard
Drive [
Hard
Drive [

OM13143

Figure 7. Server System

The combination of firmware services, bus drivers, and device drivers in any given
platform is likely to be produced by a wide variety of vendors including OEMs, IBVs, and

Version 2.6, Errata A

January, 2017

49

Overview UEFI Specification

IHVs. These different components from different vendors are required to work together
to produce a protocol for an I/0 device than can be used to boot a UEFI compliant
operating system. As a result, the UEFI Driver Model is described in great detail in order to
increase the interoperability of these components.

This remainder of this section is a brief overview of the UEFI Driver Model. It describes the
legacy option ROM issues that the UEFI Driver Model is designed to address, the entry
point of a driver, host bus controllers, properties of device drivers, properties of bus
drivers, and how the UEFI Driver Model can accommodate hot-plug events.

2.5.1 Legacy Option ROM lIssues

Legacy option ROMs have a number of constraints and limitations that restrict innovation
on the part of platform designers and adapter vendors. At the time of writing, both ISA
and PCl adapters use legacy option ROMs. For the purposes of this discussion, only PCI
option ROMs will be considered; legacy ISA option ROMs are not supported as part of the
UEFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For
each issue, the design considerations that went into the design of the UEFI Driver Model
are also listed. Thus, the design of the UEFI Driver Model directly addresses the
requirements for a solution to overcome the limitations implicit to PC-AT-style legacy
option ROMs.

2.5.1.1 32-bit/16-Bit Real Mode Binaries

Legacy option ROMs typically contain 16-bit real mode code for an 1A-32 processor. This
means that the legacy option ROM on a PCI card cannot be used in platforms that do not
support the execution of I1A-32 real mode binaries. Also, 16-bit real mode only allows the
driver to access directly the lower 1 MiB of system memory. It is possible for the driver to
switch the processor into modes other than real mode in order to access resources above
1 MiB, but this requires a lot of additional code, and causes interoperability issues with
other option ROMs and the system BIOS. Also, option ROMs that switch the processor
into to alternate execution modes are not compatible with Itanium Processors.

UEFI Driver Model design considerations:
» Drivers need flat memory mode with full access to system components.
» Drivers need to be written in C so they are portable between processor architectures.

» Drivers may be compiled into a virtual machine executable, allowing a single binary
driver to work on machines using different processor architectures.

2.5.1.2 Fixed Resources for Working with Option ROMs

50

Since legacy option ROMs can only directly address the lower 1 MiB of system memory,
this means that the code from the legacy option ROM must exist below 1 MiB. In a PC-AT
platform, memory from 0x00000-0x9FFFF is system memory. Memory from OxA0000-
OXBFFFF is VGA memory, and memory from OxFOO00-0OxFFFFF is reserved for the system
BIOS. Also, since system BIOS has become more complex over the years, many platforms
also use OXEOO00-OxEFFFF for system BIOS. This leaves 128 KiB of memory from

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

0xC0O000-0xDFFFF for legacy option ROMs. This limits how many legacy option ROMs can
be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are
to allocate memory from Extended BIOS Data Area (EBDA), allocate memory through a
Post Memory Manager (PMM), or search for free memory based on a heuristic. Of these,
only EBDA is standard, and the others are not used consistently between adapters, or
between BIOS vendors, which adds complexity and the potential for conflicts.

UEFI Driver Model design considerations:
» Drivers need flat memory mode with full access to system components.

» Drivers need to be capable of being relocated so that they can be loaded anywhere in
memory (PE/COFF Images)

» Drivers should allocate memory through the boot services. These are well-specified
interfaces, and can be guaranteed to function as expected across a wide variety of
platform implementations.

2.5.1.3 Matching Option ROMs to their Devices

It is not clear which controller may be managed by a particular legacy option ROM. Some
legacy option ROMs search the entire system for controllers to manage. This can be a
lengthy process depending on the size and complexity of the platform. Also, due to
limitation in BIOS design, all the legacy option ROMs must be executed, and they must
scan for all the peripheral devices before an operating system can be booted. This can
also be a lengthy process, especially if SCSI buses must be scanned for SCSI devices. This
means that legacy option ROMs are making policy decision about how the platform is
being initialized, and which controllers are managed by which legacy option ROMs. This
makes it very difficult for a system designer to predict how legacy option ROMs will
interact with each other. This can also cause issues with on-board controllers, because a
legacy option ROM may incorrectly choose to manage the on-board controller.

UEFI Driver Model design considerations:
e Driver to controller matching must be deterministic

» Give OEMs more control through Platform Driver Override Protocol and Driver
Configuration Protocol

* It must be possible to start only the drivers and controllers required to boot an
operating system.

2.5.1.4 Ties to PC-AT System Design

Legacy option ROMs assume a PC-AT-like system architecture. Many of them include
code that directly touches hardware registers. This can make them incompatible on
legacy-free and headless platforms. Legacy option ROMs may also contain setup
programs that assume a PC-AT-like system architecture to interact with a keyboard or
video display. This makes the setup application incompatible on legacy-free and headless
platforms.

UEFI Driver Model design considerations:

Version 2.6, Errata A January, 2017 51

Overview UEFI Specification

» Drivers should use well-defined protocols to interact with system hardware, system
input devices, and system output devices.

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience

Many legacy option ROMs and BIOS code contain workarounds because of
incompatibilities between legacy option ROMs and system BIOS. These incompatibilities
exist in part because there are no clear specifications on how to write a legacy option
ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs.
It is not always clear which device will be the boot device for the OS.

UEFI Driver Model design considerations:

» Drivers and firmware are written to follow this specification. Since both components
have a clearly defined specification, compliance tests can be developed to prove that
drivers and system firmware are compliant. This should eliminate the need to build
workarounds into either drivers or system firmware (other than those that might be
required to address specific hardware issues).

» Give OEMs more control through Platform Driver Override Protocol and Driver
Configuration Protocol and other OEM value-add components to manage the boot
device selection process.

2.5.2 Driver Initialization

The file for a driver image must be loaded from some type of media. This could include
ROM, FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a
driver image has been found, it can be loaded into system memory with the boot service
EF1 BOOT SERVICES.Loadlmage(). Loadlmage() loads a PE/COFF formatted image
into system memory. A handle is created for the driver, and a Loaded Image Protocol
instance is placed on that handle. A handle that contains a Loaded Image Protocol
instance is called an Image Handle. At this point, the driver has not been started. It is just
sitting in memory waiting to be started. Figure 8 shows the state of an image handle for a
driver after Loadlmage() has been called.

Image Handle

’ BA_LOADED_IMAGE PROTOCOL H

’ EF_LOADED_IMAGE _DEVICE PATH_PROTOCOL m

OoM13148

52

Figure 8. Image Handle

After a driver has been loaded with the boot service Loadlmage(), it must be started with
the boot service EF1_BOOT_SERVICES.StartlImage(). This is true of all types of UEFI
Applications and UEFI Drivers that can be loaded and started on an UEFI-compliant

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

system. The entry point for a driver that follows the UEFI Driver Model must follow some
strict rules. First, it is not allowed to touch any hardware. Instead, the driver is only
allowed to install protocol instances onto its own Image Handle. A driver that follows the
UEFI Driver Model is required to install an instance of the Driver Binding Protocol onto its
own Image Handle. It may optionally install the Driver Configuration Protocol, the Driver
Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver wishes to
be unloadable it may optionally update the Loaded Image Protocol (see Section 8) to
provide its own Unload() function. Finally, if a driver needs to perform any special
operations when the boot service EFI_BOOT SERVICES.ExitBootServices() is
called, it may optionally create an event with a notification function that is triggered when
the boot service ExitBootServices() is called. An Image Handle that contains a Driver
Binding Protocol instance is known as a Driver Image Handle. Figure 9 shows a possible

configuration for the Image Handle from Figure 8 after the boot service Startimage() has
been called.

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional E> EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL

Optional > EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

Optional [—> EFI_COMPONENT_NAME2_PROTOCOL

Figure 9. Driver Image Handle

2.5.3 Host Bus Controllers

Drivers are not allowed to touch any hardware in the driver’s entry point. As a result,
drivers will be loaded and started, but they will all be waiting to be told to manage one or
more controllers in the system. A platform component, like the Boot Manager, is
responsible for managing the connection of drivers to controllers. However, before even
the first connection can be made, there has to be some initial collection of controllers for
the drivers to manage. This initial collection of controllers is known as the Host Bus
Controllers. The I/0 abstractions that the Host Bus Controllers provide are produced by
firmware components that are outside the scope of the UEFI Driver Model. The device
handles for the Host Bus Controllers and the I/O abstraction for each one must be

Version 2.6, Errata A January, 2017 53

Overview

UEFI Specification

produced by the core firmware on the platform, or a driver that may not follow the UEFI
Driver Model. See the PCI Root Bridge I/0 Protocol Specification for an example of an 1/0

abstraction for PCIl buses.

A platform can be viewed as a set of processors and a set of core chipset components
that may produce one or more host buses. Figure 10 shows a platform with n processors
(CPUSs), and a set of core chipset components that produce m host bridges.

CPU1 CPU 2

10

CPUn

L

Front Side Bus

J L

Core Chipset Components

HB 1 HB 2 - HB m
é P . _~ . _~

OM13150

54

Figure 10. Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains a Device Path
Protocol instance, and a protocol instance that abstracts the 1/0O operations that the host
bus can perform. For example, a PCl Host Bus Controller supports one or more PCl Root
Bridges that are abstracted by the PCI Root Bridge I/0 Protocol. Figure 11 shows an

example device handle for a PCI Root Bridge.

January, 2017

Version 2.6, Errata A

UEFI Specification Overview

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

OM13151

Figure 11. PCI Root Bridge Device Handle

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each
of the PCI devices in the system. PCI Device Drivers should then be connected to these
child handles, and produce I/0 abstractions that may be used to boot a UEFI compliant
0OS. The following section describes the different types of drivers that can be
implemented within the UEFI Driver Model. The UEFI Driver Model is very flexible, so all
the possible types of drivers will not be discussed here. Instead, the major types will be
covered that can be used as a starting point for designing and implementing additional
driver types.

2.5.4 Device Drivers

A device driver is not allowed to create any new device handles. Instead, it installs
additional protocol interfaces on an existing device handle. The most common type of
device driver will attach an 1/0 abstraction to a device handle that was created by a bus
driver. This I/0O abstraction may be used to boot a UEFI compliant OS. Some example 1/0
abstractions would include Simple Text Output, Simple Input, Block I/0, and Simple
Network Protocol. Eigure 12 shows a device handle before and after a device driver is
connected to it. In this example, the device handle is a child of the XYZ Bus, so it contains
an XYZ 1/0 Protocol for the 1/0 services that the XYZ bus supports. It also contains a
Device Path Protocol that was placed there by the XYZ Bus Driver. The Device Path
Protocol is not required for all device handles. It is only required for device handles that
represent physical devices in the system. Handles for virtual devices will not contain a
Device Path Protocol.

Version 2.6, Errata A January, 2017 55

Overview UEFI Specification

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_l/O_PROTOCOL

Stop() Start()

Device Handle

EFlI_DEVICE_PATH_PROTOCOL

=~ | EFI_XYZ_I/O_PROTOCOL

Installed by Start() _)'
Uninstalled by Stop() EFI_BLOCK_I/O_PROTOCOL

OM13152

56

Figure 12. Connecting Device Drivers

The device driver that connects to the device handle in Eigure 12 must have installed a
Driver Binding Protocol on its own image handle. The Driver Binding Protocol (see
Section 10.1) contains three functions called Supported(), Start(), and Stop(). The
Supported() function tests to see if the driver supports a given controller. In this example,
the driver will check to see if the device handle supports the Device Path Protocol and the
XYZ 1/0 Protocol. If a driver's Supported() function passes, then the driver can be
connected to the controller by calling the driver’s Start() function. The Start() function is
what actually adds the additional I1/0 protocols to a device handle. In this example, the
Block I/0O Protocol is being installed. To provide symmetry, the Driver Binding Protocol
also has a Stop() function that forces the driver to stop managing a device handle. This
will cause the device driver to uninstall any protocol interfaces that were installed in
Start().

The Supported(), Start(), and Stop() functions of the EFI Driver Binding Protocol are
required to make use of the boot service EF1_BOOT SERVICES.OpenProtocol () to
get a protocol interface and the boot service EF1 BOOT SERVICES.CloseProtocol ()
to release a protocol interface. OpenProtocol() and CloseProtocol() update the handle
database maintained by the system firmware to track which drivers are consuming
protocol interfaces. The information in the handle database can be used to retrieve
information about both drivers and controllers. The new boot service

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

EF1 BOOT SERVICES.OpenProtocol Information() can be used to get the list of
components that are currently consuming a specific protocol interface.

2.5.5 Bus Drivers

Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s point of
view. The only difference is that a bus driver creates new device handles for the child
controllers that the bus driver discovers on its bus. As a result, bus drivers are slightly
more complex than device drivers, but this in turn simplifies the design and
implementation of device drivers. There are two major types of bus drivers. The first
creates handles for all child controllers on the first call to Start(). The other type allows
the handles for the child controllers to be created across multiple calls to Start(). This
second type of bus driver is very useful in supporting a rapid boot capability. It allows a
few child handles or even one child handle to be created. On buses that take a long time
to enumerate all of their children (e.g. SCSI), this can lead to a very large timesaving in
booting a platform. Figure 13 shows the tree structure of a bus controller before and after
Start() is called. The dashed line coming into the bus controller node represents a link to
the bus controller’s parent controller. If the bus controller is a Host Bus Controller, then it
will not have a parent controller. Nodes A, B, C D, and E represent the child controllers of
the bus controller.

4
y'a
Qs ControlD Bus Controller
Start()
swpo g %

Figure 13. Connecting Bus Drivers

OM13153

A bus driver that supports creating one child on each call to Start() might choose to
create child C first, and then child E, and then the remaining children A, B, and D. The
Supported(), Start(), and Stop() functions of the Driver Binding Protocol are flexible
enough to allow this type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a

minimum, it must install a protocol interface that provides an 1/0 abstraction of the bus’s
services to the child controllers. If the bus driver creates a child handle that represents a
physical device, then the bus driver must also install a Device Path Protocol instance onto

Version 2.6, Errata A January, 2017 57

Overview UEFI Specification

the child handle. A bus driver may optionally install a Bus Specific Driver Override
Protocol onto each child handle. This protocol is used when drivers are connected to the
child controllers. The boot service EFI BOOT SERVICES.ConnectController() uses
architecturally defined precedence rules to choose the best set of drivers for a given
controller. The Bus Specific Driver Override Protocol has higher precedence than a
general driver search algorithm, and lower precedence than platform overrides. An
example of a bus specific driver selection occurs with PCI. A PCI Bus Driver gives a driver
stored in a PCI controller’s option ROM a higher precedence than drivers stored
elsewhere in the platform. Figure 14 shows an example child device handle that was
created by the XYZ Bus Driver that supports a bus specific driver override mechanism.

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_l/O_PROTOCOL

Optional I::>

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

OM13154

Figure 14. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components

58

Under the UEFI Driver Model, the act of connecting and disconnecting drivers from
controllers in a platform is under the platform firmware’s control. This will typically be
implemented as part of the UEFI Boot Manager, but other implementations are possible.
The boot services EFI BOOT SERVICES.ConnectController() and

EF1 BOOT SERVICES.DisconnectController() can be used by the platform
firmware to determine which controllers get started and which ones do not. If the
platform wishes to perform system diagnostics or install an operating system, then it may
choose to connect drivers to all possible boot devices. If a platform wishes to boot a
preinstalled operating system, it may choose to only connect drivers to the devices that
are required to boot the selected operating system. The UEFI Driver Model supports both
these modes of operation through the boot services ConnectController() and
DisconnectController(). In addition, since the platform component that is in charge of
booting the platform has to work with device paths for console devices and boot options,
all of the services and protocols involved in the UEFI Driver Model are optimized with
device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce
consoles and gain access to a boot device, the OS present device drivers cannot assume

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

that a UEFI driver for a device has been executed. The presence of a UEFI driver in the
system firmware or in an option ROM does not guarantee that the UEFI driver will be
loaded, executed, or allowed to manage any devices in a platform. All OS present device
drivers must be able to handle devices that have been managed by a UEFI driver and
devices that have not been managed by an UEFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override
Protocol. This is similar to the Bus Specific Driver Override Protocol, but it has higher
priority. This gives the platform firmware the highest priority when deciding which drivers
are connected to which controllers. The Platform Driver Override Protocol is attached to a
handle in the system. The boot service ConnectController() will make use of this protocol
if itis present in the system.

2.5.7 Hot-Plug Events

In the past, system firmware has not had to deal with hot-plug events in the preboot
environment. However, with the advent of buses like USB, where the end user can add
and remove devices at any time, it is important to make sure that it is possible to describe
these types of buses in the UEFI Driver Model. It is up to the bus driver of a bus that
supports the hot adding and removing of devices to provide support for such events. For
these types of buses, some of the platform management is going to have to move into the
bus drivers. For example, when a keyboard is hot added to a USB bus on a platform, the
end user would expect the keyboard to be active. A USB Bus driver could detect the hot-
add event and create a child handle for the keyboard device. However, because drivers
are not connected to controllers unless EF1 BOOT SERVICES.ConnectController()
is called, the keyboard would not become an active input device. Making the keyboard
driver active requires the USB Bus driver to call ConnectController() when a hot-add
event occurs. In addition, the USB Bus Driver would have to call

EFI BOOT SERVICES.DisconnectController(Qwhen a hot-remove event occurs. If
EFI BOOT SERVICES.DisconnectController() returns an error the USB Bus Driver
needs to retry the EF1_BOOT SERVICES.DisconnectController() from atimer
event until it succeeds.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can
be removed without any notice. This means that the Stop() functions of USB device
drivers will have to deal with shutting down a driver for a device that is no longer present
in the system. As a result, any outstanding 1/0 requests will have to be flushed without
actually being able to touch the device hardware.

In general, adding support for hot-plug events greatly increases the complexity of both
bus drivers and device drivers. Adding this support is up to the driver writer, so the extra
complexity and size of the driver will need to be weighed against the need for the feature
in the preboot environment.

2.5.8 EFI Services Binding

The UEFI Driver Model maps well onto hardware devices, hardware bus controllers, and
simple combinations of software services that layer on top of hardware devices. However,
the UEFI driver Model does not map well onto complex combinations of software

Version 2.6, Errata A January, 2017 59

Overview UEFI Specification

services. As a result, an additional set of complementary protocols are required for more
complex combinations of software services.

Figure 15 contains three examples showing the different ways that software services
relate to each other. In the first two cases, each service consumes one or more other
services, and at most one other service consumes all of the services. Case #3 differs
because two different services consume service A. The
EFI_DRIVER_BINDING_PROTOCOL can be used to model cases #1 and #2, but it cannot
be used to model case #3 because of the way that the UEFI Boot Service
OpenProtocol()behaves. When used with the BY_DRIVER open mode,
OpenProtocol()allows each protocol to have only at most one consumer. This feature is
very useful and prevents multiple drivers from attempting to manage the same controller.
However, it makes it difficult to produce sets of software services that look like case #3.

Case #2: Multiple Dependencies

Case #1: Linear Stack

Case #3: Multiple Consumers

Figure 15. Software Service Relationships

The EFI_SERVICE_BINDING_PROTOCOL provides the mechanism that allows protocols
to have more than one consumer. The EFl_SERVICE_BINDING_PROTOCOL is used with
the EFI_DRIVER_BINDING_PROTOCOL. A UEFI driver that produces protocols that need
to be available to more than one consumer at the same time will produce both the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL. This
type of driver is a hybrid driver that will produce the EFI_DRIVER_BINDING_PROTOCOL
in its driver entry point.

When the driver receives a request to start managing a controller, it will produce the
EFI_SERVICE_BINDING_PROTOCOL on the handle of the controller that is being started.
The EFI_SERVICE_BINDING_PROTOCOL is slightly different from other protocols
defined in the UEFI Specification. It does not have a GUID associated with it. Instead, this
protocol instance structure actually represents a family of protocols. Each software
service driver that requires an EFI_SERVICE_BINDING_PROTOCOL instance will be
required to generate a new GUID for its own type of EFI_SERVICE_BINDING_PROTOCOL.
This requirement is why the various network protocols in this specification contain two

60 January, 2017 Version 2.6, Errata A

UEFI Specification Overview

GUIDs. One is the EFI_SERVICE_BINDING_PROTOCOL GUID for that network protocol,
and the other GUID is for the protocol that contains the specific member services
produced by the network driver. The mechanism defined here is not limited to network
protocol drivers. It can be applied to any set of protocols that the
EFI_DRIVER_BINDING_PROTOCOL cannot directly map because the protocols contain
one or more relationships like case #3 in Eigure 15.

Neither the EFI_DRIVER_BINDING_PROTOCOL nor the combination of the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL can
handle circular dependencies. There are methods to allow circular references, but they
require that the circular link be present for short periods of time. When the protocols
across the circular link are used, these methods also require that the protocol must be
opened with an open mode of EXCLUSIVE, so that any attempts to deconstruct the set of
protocols with a call to DisconnectController() will fail. As soon as the driver is finished
with the protocol across the circular link, the protocol should be closed.

2.6 Requirements

This document is an architectural specification. As such, care has been taken to specify
architecture in ways that allow maximum flexibility in implementation. However, there are
certain requirements on which elements of this specification must be implemented to
ensure that operating system loaders and other code designed to run with UEFI boot
services can rely upon a consistent environment.

For the purposes of describing these requirements, the specification is broken up into
required and optional elements. In general, an optional element is completely defined in
the section that matches the element name. For required elements however, the
definition may in a few cases not be entirely self contained in the section that is named
for the particular element. In implementing required elements, care should be taken to
cover all the semantics defined in this specification that relate to the particular element.

2.6.1 Required Elements

Table 10 lists the required elements. Any system that is designed to conform to this
specification must provide a complete implementation of all these elements. This means
that all the required service functions and protocols must be present and the
implementation must deliver the full semantics defined in the specification for all
combinations of calls and parameters. Implementers of applications, drivers or operating
system loaders that are designed to run on a broad range of systems conforming to the
UEFI specification may assume that all such systems implement all the required
elements.

A system vendor may choose not to implement all the required elements, for example on
specialized system configurations that do not support all the services and functionality
implied by the required elements. However, since most applications, drivers and
operating system loaders are written assuming all the required elements are present on a
system that implements the UEFI specification; any such code is likely to require explicit
customization to run on a less than complete implementation of the required elements in
this specification.

Version 2.6, Errata A January, 2017 61

Overview UEFI Specification

Table 10. Required UEFI Implementation Elements

Element Description

EF1 SYSTEM TABLE Provides access to UEFI Boot Services, UEFI Runtime Services,
consoles, firmware vendor information, and the system
configuration tables.

EF1 BOOT SERVICES All functions defined as boot services.

EFI RUNTIME SERVICES All functions defined as runtime services.

EF1 LOADED IMAGE PROTOCO | Provides information on the image.

L

EFI LOADED IMAGE DEVICE Specifies the device path that was used when a PE/COFF image
PATH PROTOCOL was loaded through the EFI Boot Service Loadlmage().

EF1 DEVICE PATH PROTOCOL @ Provides the location of the device.

EFI DECOMPRESS PROTOCOL Protocol interfaces to decompress an image that was compressed
using the EFI Compression Algorithm.

EFI DEVICE PATH UTILITIE @ Protocol interfaces to create and manipulate UEFI device paths
S PROTOCOL and UEFI device path nodes.

2.6.2 Platform-Specific Elements

62

There are a number of elements that can be added or removed depending on the specific
features that a platform requires. Platform firmware developers are required to
implement UEFI elements based upon the features included. The following is a list of
potential platform features and the elements that are required for each feature type:

1. If a platform includes console devices, the EFI_SIMPLE TEXT INPUT PROTOCOL,
EFI1_SIMPLE TEXT INPUT_EX PROTOCOL, and
EF1 _SIMPLE TEXT OUTPUT PROTOCOL must be implemented.

2. Ifaplatform includes a configuration infrastructure, then the
EFI_HI1 _DATABASE PROTOCOL,EF1_HI1_STRING_PROTOCOL,
EFI_HI1_CONFIG_ROUTING PROTOCOL, and
EF1 _HI1 CONFIG ACCESS PROTOCOL are required. If you support bitmapped
fonts, you must support EF1_HI1 FONT PROTOCOL.

3. If a platform includes graphical console devices, then the
EFI GRAPHICS OUTPUT PROTOCOL,EF1 EDID DISCOVERED PROTOCOL, and
EF1 EDID ACTIVE PROTOCOL must be implemented. In order to support the
EF1 GRAPHICS OUTPUT PROTOCOL, a platform must contain a driver to consume
EFI _GRAPHICS OUTPUT PROTOCOL and produce
EFI SIMPLE TEXT OUTPUT PROTOCOL even if the
EF1 GRAPHICS OUTPUT PROTOCOL is produced by an external driver.

4. If a platform includes a pointer device as part of its console support, the
EF1 _SIMPLE POINTER PROTOCOL must be implemented.

5. If a platform includes the ability to boot from a disk device, then the
EF1_BLOCK 10 PROTOCOL, the EFlI_DISK 10 _PROTOCOL, the
EFI_SIMPLE _FILE_SYSTEM PROTOCOL, and the
EF1_UNICODE COLLATION PROTOCOL are required. In addition, partition support

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

for MBR, GPT, and EI Torito must be implemented. For disk devices supporting the
security commands of the SPC-4 or ATA8-ACS command set, the

EF1 STORAGE SECURITY COMMAND PROTOCOL is also required._An external driver
may produce the Block I/0 Protocol and the

EF1 STORAGE SECURITY COMMAND PROTOCOL. All other protocols required to
boot from a disk device must be carried as part of the platform.

6. Ifaplatform includes the ability to perform a TFTP-based boot from a network device,
then the EFI_PXE BASE CODE PROTOCOL is required. The platform must be
prepared to produce this protocol on any of
EF1 _NETWORK INTERFACE IDENTIFIER PROTOCOL (UNDI),

EFI SIMPLE NETWORK PROTOCOL, or the EFI MANAGED NETWORK PROTOCOL Ifa
platform includes the ability to validate a boot image received through a network
device, it is also required that image verification be supported, including SetupMode
equal zero and the boot image hash or a verification certificate corresponding to the
image exist in the 'db' variable and not in the 'dbx’ variable. An external driver may
produce the UNDI interface. All other protocols required to boot from a network
device must be carried by the platform.

7. If a platform supports UEFI general purpose network applications, then the
EF1_MANAGED NETWORK_ PROTOCOL,
EF1_MANAGED NETWORK_ SERVICE_BINDING _PROTOCOL, EF1_ARP_PROTOCOL,
EF1_ARP_SERVICE_BINDING _PROTOCOL, EF1_DHCP4 PROTOCOL,
EF1_DHCP4 SERVICE _BINDING PROTOCOL, EFI_TCP4 PROTOCOL,
EF1_TCP4 SERVICE BINDING PROTOCOL, 1P4 Protocol,
EF1_1P4 SERVICE BINDING _PROTOCOL,EF1_1P4 CONFIG2_ PROTOCOL,
EF1_UDP4 PROTOCOL,and EFI_UDP4 SERVICE_BINDING PROTOCOL are required.
If additional IPv6 support is needed for the platform, then EF1_DHCP6 PROTOCOL,
EF1_DHCP6_SERVICE BINDING PROTOCOL, EFl_TCP6 PROTOCOL,
EF1_TCP6_SERVICE BINDING PROTOCOL, EFI_1P6 PROTOCOL,
EF1_1P6_SERVICE BINDING_PROTOCOL, EFI_1P6_CONFIG_PROTOCOL,
EF1_UDP6_PROTOCOL,and EF1_UDP6_SERVICE BINDING_ PROTOCOL are
additionally required. If the network application requires DNS capability,
EF1_DNS4 SERVICE BINDING PROTOCOL and EFI_DNS4 PROTOCOL are required
for the IPv4 stack. EF1_DNS6 SERVICE BINDING PROTOCOL and
EF1_DNS6 PROTOCOL are required for the IPv6 stack. If the network environment
requires TLS features,
EFI_TLS SERVICE _BINDING PROTOCOL,EFI_TLS PROTOCOL and
EF1 _TLS CONFIGURATION PROTOCOL are required. If the network environment
requires IPSEC feature, EF1_1PSEC _CONFIG_PROTOCOL and
EF1 _1PSEC2 PROTOCOL are required. If the network environment requires VLAN
features, EF1_VLAN CONFIG PROTOCOL is required.

8. Ifaplatform includes a byte-stream device such as a UART, then the
EF1 _SERIAL 10 PROTOCOL must be implemented.

9. If aplatform includes PCI bus support, then the
EF1 PCI ROOT BRIDGE 10 PROTOCOL,the EFI PCl 10 PROTOCOL, must be
implemented.

10. If a platform includes USB bus support, then the EF1_USB2_HC PROTOCOL and the
EF1 _USB 10 PROTOCOL must be implemented. An external device can support USB
by producing a USB Host Controller Protocol.

Version 2.6, Errata A January, 2017 63

Overview

64

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

UEFI Specification

. If a platform includes an NVM Express controller, then the
EF1 NVM EXPRESS PASS THRU PROTOCOL must be implemented.

If a platform supports booting from a block-oriented NVM Express controller, then
the EF1_BLOCK 10 _PROTOCOL must be implemented. An external driver may
produce the EF1_NVM_EXPRESS_PASS_THRU_PROTOCOL . All other protocols
required to boot from an NVM Express subsystem must be carried by the platform.

If a platform includes an I/0 subsystem that utilizes SCSI command packets, then the
EFI_EXT _SCSI_PASS THRU PROTOCOL must be implemented.

If a platform supports booting from a block oriented SCSI peripheral, then the

EF1 SCSI 10 PROTOCOL and EF1 _BLOCK 10 PROTOCOL must be implemented.
An external driver may produce the EFI_EXT SCS1 PASS THRU PROTOCOL. All
other protocols required to boot from a SCSI I/0 subsystem must be carried by the
platform.

If a platform supports booting from an iSCSI peripheral, then the
EF1 _1SCSI _INITIATOR NAME PROTOCOL and the
EF1 _AUTHENTICATION INFO PROTOCOL must be implemented.

If a platform includes debugging capabilities, then the
EFI DEBUG SUPPORT PROTOCOL,the EFlI DEBUGPORT PROTOCOL, and the EEL
Image Info Table must be implemented.

If a platform includes the ability to override the default driver to the controller
matching algorithm provided by the UEFI Driver Model, then the
EF1 PLATFORM DRIVER OVERRIDE PROTOCOL must be implemented.

If a platform includes an 1/0 subsystem that utilizes ATA command packets, then the
EF1 _ATA PASS THRU PROTOCOL must be implemented

If a platform supports option ROMs from devices not permanently attached to the
platform and it supports the ability to authenticate those option ROMs, then it must
support the option ROM validation methods described in Network Protocols — UDP
and MTFTP and the authenticated EFI variables described in Section 7.2.

If a platform includes the ability to authenticate UEFI images and the platform
potentially supports more than one OS loader, it must support the methods
described in Network Protocols — UDP and MTFTP and the authenticated UEFI
variables described in Section 7.2.

If a platform policy supports the inclusion or addition of any device that provides a
container for one or more UEFI Drivers that are required for initialization of that
device then an EBC interpreter must be implemented. If an EBC interpreter is
implemented, then it must produce the EF1_EBC_PROTOCOL interface.

If a platform includes the ability to perform a HTTP-based boot from a network
device, then the EFI_HTTP_SERVICE_BINDING_PROTOCOL, EFI_HTTP_PROTOCOL
and EF1_HTTP_UTILITIES PROTOCOL are required. If it includes the ability to
perform a HTTPS-based boot from network device, besides above protocols,
EFI_TLS SERVICE_BINDING PROTOCOL,EF1_TLS PROTOCOL and

EF1_TLS CONFIGURATION PROTOCOL are also required. If it includes the ability to
perform a HTTP(S)-based boot with DNS feature, then

EF1_DNS4 SERVICE BINDING PROTOCOL, EFI_DNS4 PROTOCOL are required for
the IPv4 stack; EF1_DNS6_SERVICE_BINDING_PROTOCOL and

EF1_DNS6 PROTOCOL are required for the IPv6 stack.

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

23. If a platform includes the ability to perform a wireless boot from a network device
with EAP feature, and if this platform provides a standalone wireless EAP driver, then
EF1 EAP PROTOCOL,EFI EAP CONFIGURATION PROTOCOL, and
EF1 _EAP MANAGEMENT2 PROTOCOL are required; if the platform provides a
standalone wireless supplicant, then EF1 _SUPPLICANT PROTOCOL and
EF1 _EAP CONFIGURATION PROTOCOL are required. If it includes the ability to
perform a wireless boot with TLS feature, then
EFI TLS SERVICE BINDING PROTOCOL, EFI TLS PROTOCOL and
EF1 TLS CONFIGURATION PROTOCOL are required.

24. If a platform supports classic Bluetooth, then EFI_BLUETOOTH_HC PROTOCOL,
EF1 BLUETOOTH 10 PROTOCOL, and EFI_BLUETOOTH CONFIG PROTOCOL must
be implemented. If a platform support Bluetooth Smart (Bluetooth Low Energy), then
EF1 BLUETOOTH HC PROTOCOL, EF1 BLUETOOTH 10 PROTOCOL and
EF1 BLUETOOTH CONFIG PROTOCOL may be implemented.

25. 24. If a platform supports RESTful communication over HTTP or over an in-band path
to a BMC, then the EFI REST PROTOCOL must be implemented.

26. If a platform includes the ability to use a hardware feature to create high quality
random numbers, this capability should be exposed by instance of
EF1 _RNG PROTOCOL with at least one EFI RNG Algorithm supported.

27.If a platform permits the installation of Load Option Variables, (Boot####, or
Driver####, or SysPrep###i), the platform must support and recognize all defined
values for Attributes within the variable and report these capabilities in
BootOptionSupport. If a platform supports installation of Load Option Variables of
type Driver####, all installed Driver#### variables must be processed and the
indicated driver loaded and initialized during every boot. And all installed
SysPrep### options must be processed prior to processing Boot#### options.

28. If the platform supports UEFI secure boot as described in Secure Boot and Driver
Signing , the platform must provide the PKCS verification functions described in
Section 35.4.

29. If a platform includes an 1/0 subsystem that utilizes SD or eMMC command packets,
thenthe EF1_SD MMC PASS THRU PROTOCOL must be implemented.

30. If a platform includes the ability to create/destroy a specified RAM disk, the
EF1 _RAM DISK PROTOCOL must be implemented and only one instance of this
protocol exists.

31. If a platform includes a mass storage device which supports hardware-based erase on
a specified range, then the EF1_ERASE BLOCK PROTOCOL must be implemented.

2.6.3 Driver-Specific Elements

There are a number of UEFI elements that can be added or removed depending on the
features that a specific driver requires. Drivers can be implemented by platform firmware
developers to support buses and devices in a specific platform. Drivers can also be
implemented by add-in card vendors for devices that might be integrated into the
platform hardware or added to a platform through an expansion slot.

The following list includes possible driver features, and the UEFI elements that are
required for each feature type:

Version 2.6, Errata A January, 2017 65

Overview

66

10.

11.

UEFI Specification

If a driver follows the driver model of this specification, the

EF1 DRIVER BINDING PROTOCOL must be implemented. It is strongly
recommended that all drivers that follow the driver model of this specification also
implement the EF1 _COMPONENT NAME2 PROTOCOL.

If a driver requires configuration information, the driver must use the
EF1 _HI1 DATABASE PROTOCOL. A driver should not otherwise display information
to the user or request information from the user.

If a driver requires diagnostics, the EF1_DRIVER DIAGNOSTICS2 PROTOCOL must
be implemented. In order to support low boot times, limit diagnostics during normal
boots. Time consuming diagnostics should be deferred until the

EFI_DRIVER DIAGNOSTICS2 PROTOCOL is invoked.

If a bus supports devices that are able to provide containers for drivers (e.g. option
ROMSs), then the bus driver for that bus type must implement the
EF1 BUS SPECIFIC DRIVER OVERRIDE PROTOCOL.

If a driver is written for a console output device, then the
EF1 _SIMPLE TEXT OUTPUT PROTOCOL must be implemented.

If a driver is written for a graphical console output device, then the
EFlI _GRAPHICS OUTPUT PROTOCOL,EFI EDID DISCOVERED PROTOCOL and
EF1_EDID ACTIVE PROTOCOL must be implemented.

If a driver is written for a console input device, then the
EFI SIMPLE TEXT INPUT PROTOCOL and
EF1 _SIMPLE TEXT INPUT EX PROTOCOL must be implemented.

If a driver is written for a pointer device, then the EF1_SIMPLE_POINTER_PROTOCOL
must be implemented.

If a driver is written for a network device, then the

EF1_NETWORK INTERFACE IDENTIFIER_PROTOCOL,

EF1_SIMPLE _NETWORK PROTOCOL or EFI_MANAGED NETWORK_ PROTOCOL must be
implemented. If VLAN is supported in hardware, then driver for the network device
may implement the EF1_VLAN CONFIG PROTOCOL. If a network device chooses to
only produce the EF1_MANAGED NETWORK PROTOCOL, then the driver for the
network device must implement the EFl_VLAN CONFIG PROTOCOL. If a driver is
written for a network device to supply wireless feature, besides above protocols,
EF1_ADAPTER INFORMATION PROTOCOL must be implemented. If the wireless
driver does not provide user configuration capability,

EF1 _WIRELESS MAC CONNECTION 11 PROTOCOL must be implemented. If the
wireless driver is written for a platform which provides a standalone wireless EAP
driver, EF1_EAP_ PROTOCOL must be implemented.

If a driver is written for a disk device, then the EF1_BLOCK 10 _PROTOCOL and the
EF1 BLOCK 102 PROTOCOL must be implemented. In addition, the

EF1 STORAGE SECURITY COMMAND PROTOCOL must be implemented for disk
devices supporting the security commands of the SPC-4 or ATA8-ACS command set.
In addition, for devices that support incline encryption in the host storage controller,
the EF1_BLOCK 10 CRYPTO PROTOCOL must be supported.

If a driver is written for a disk device, then the EFI_BLOCK 10 PROTOCOL and the
EF1 BLOCK 102 PROTOCOL must be implemented. In addition, the

EF1 _STORAGE SECURITY COMMAND PROTOCOL must be implemented for disk
devices supporting the security commands of the SPC-4 or ATA8-ACS command set.

January, 2017 Version 2.6, Errata A

UEFI Specification Overview

12. If a driver is written for a device that is not a block oriented device but one that can
provide afile system-like interface, thenthe EF1_SIMPLE FILE SYSTEM PROTOCOL
must be implemented.

13. If a driver is written for a PCI root bridge, then the
EF1 _PCI ROOT BRIDGE 10 PROTOCOL andthe EFI_PCI 10 PROTOCOL must be
implemented.

14. If a driver is written for an NVM Express controller, then the
EF1 NVM EXPRESS PASS THRU PROTOCOL must be implemented.

15. If adriver is written for a USB host controller, then the EF1_USB2 HC PROTOCOL
and the EF1_USB 10 PROTOCOL must be implemented.If a driver is written for a USB
host controller, then the must be implemented.

16. If a driver is written for a SCSI controller, then the
EF1 _EXT SCS1 PASS THRU PROTOCOL must be implemented.

17. If adriver is digitally signed, it must embed the digital signature in the PE/COFF image
as described in “Embedded Signatures” on page 1844,

18. If a driver is written for a boot device that is not a block-oriented device, a file system-
based device, or a console device, then the EF1 _LOAD FILE PROTOCOL must be
implemented.

19. If a driver follows the driver model of this specification, and the driver wants to
produce warning or error messages for the user, then the
EF1 DRIVER HEALTH PROTOCOL must be used to produce those messages. The
Boot Manager may optionally display the messages to the user.

20. If a driver follows the driver model of this specification, and the driver needs to
perform a repair operation that is not part of the normal initialization sequence, and
that repair operation requires an extended period of time, then the
EF1 DRIVER HEALTH PROTOCOL must be used to provide the repair feature. If the
Boot Manager detects a boot device that requires a repair operation, then the Boot
Manager must use the EF1_DRIVER HEALTH PROTOCOL to perform the repair
operation. The Boot Manager can optionally display progress indicators as the repair
operation is performed by the driver.

21. If a driver follows the driver model of this specification, and the driver requires the
user to make software and/or hardware configuration changes before the boot
devices that the driver manages can be used, then the
EF1 DRIVER HEALTH PROTOCOL must be produced. If the Boot Manager detects a
boot device that requires software and/or hardware configuration changes to make
the boot device usable, then the Boot Manager may optionally allow the user to make
those configuration changes.

22. If adriver is written for an ATA controller, then the EFI ATA PASS THRU PROTOCOL
must be implemented.

23. If a driver follows the driver model of this specification, and the driver wants to be
used with higher priority than the Bus Specific Driver Override Protocol when
selecting the best driver for controller, then the
EF1 DRIVER FAMILY OVERRIDE PROTOCOL must be produced on the same
handle as the EFI DRIVER BINDING PROTOCOL.

24. If a driver supports firmware management by an external agent or application, then
the EF1_FIRMWARE MANAGEMENT PROTOCOL must be used to support firmware
management.

Version 2.6, Errata A January, 2017 67

Overview UEFI Specification

25. If a driver follows the driver model of this specification and a driver is a device driver
as defined in Section 2.5, it must perform bus transactions via the bus abstraction
protocol produced by a parent bus driver. Thus a driver for a device that conforms to
the PCI specification must use EF1_PCI1 10 PROTOCOL for all PCI memory space,
PCI 1/0, PCI configuration space, and DMA operations.

26. If a driver is written for a classic Bluetooth controller, then
EF1 BLUETOOTH HC PROTOCOL, EFI BLUETOOTH 10 PROTOCOL and
EF1 BLUETOOTH CONFIG PROTOCOL must be implemented. If a driver written for a
Bluetooth Smart (Bluetooth Low Energy) controller, then
EF1 BLUETOOTH HC PROTOCOL, EFI BLUETOOTH 10 PROTOCOL and
EF1 BLUETOOTH CONFIG PROTOCOL may be implemented.

27. If adriver is written for an SD controller or eMMC controller, then the
EF1 _SD MMC PASS THRU PROTOCOL must be implemented.

2.6.4 Extensions to this Specification published elsewhere

68

This specification has been extended over time to include support for new devices and
technologies. As the name of the specification implies, the original intent in its definition
was to create a baseline for firmware interfaces that is extensible without the need to
include extensions in the main body of this specification.

Readers of this specification may find that a feature or type of device is not treated by the
specification. This does not necessarily mean that there is no agreed "standard" way to
support the feature or device in implementations that claim conformance to this
Specification. On occasion, it may be more appropriate for other standards organizations
to publish their own extensions that are designed to be used in concert with the
definitions presented here. This may for example allow support for new features in a
more timely fashion than would be accomplished by waiting for a revision to this
specification or perhaps that such support is defined by a group with a specific expertise
in the subject area. Readers looking for means to access features or devices that are not
treated in this document are therefore recommended to inquire of appropriate standards
groups to ascertain if appropriate extension publications already exist before creating
their own extensions.

By way of examples, at the time of writing the UEFI Forum is aware of a number of
extension publications that are compatible with and designed for use with this
specification. Such extensions include:

Developers Interface Guide for Itanium@ Architecture Based Servers:
published and hosted by the DIG64 group (See “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “Developers Interface
Guide for Itanium® Architecture Based Servers”). This document is a set of
technical guidelines that define hardware, firmware, and operating system
compatibility for Itanium™-based servers;

TCG EFI Platform Specification: published and hosted by the Trusted
Computing Group (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “TCG EFI Platform Specification”). This document is
about the processes that boot an EFI platform and boot an OS on that
platform. Specifically, this specification contains the requirements for

January, 2017 Version 2.6, Errata A

UEFI Specification

Overview

measuring boot events into TPM PCRs and adding boot event entries into
the Event Log.

TCG EFI Protocol Specification: published and hosted by the Trusted
Computing Group (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “TCG EFI Protocol Specification”). This document
defines a standard interface to the TPM on an EFI platform.

Other extension documents may exist outside the view of the UEFI Forum or may have
been created since the last revision of this document.

Version 2.6, Errata A

January, 2017 69

Overview UEFI Specification

70 January, 2017 Version 2.6, Errata A

UEFI Specification

3 Boot Manager

The UEFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load
UEFI drivers and UEFI applications (including UEFI OS boot loaders) in an order defined
by the global NVRAM variables. The platform firmware must use the boot order specified
in the global NVRAM variables for normal boot. The platform firmware may add extra
boot options or remove invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if
an exceptional condition is discovered in the firmware boot process. One example of a
value added feature would be not loading a UEFI driver if booting failed the first time the
driver was loaded. Another example would be booting to an OEM-defined diagnostic
environment if a critical error was discovered in the boot process.

The boot sequence for UEFI consists of the following:

* The boot order list is read from a globally defined NVRAM variable. Modifications to
this variable are only guaranteed to take effect after the next platform reset. The boot
order list defines a list of NVRAM variables that contain information about what is to
be booted. Each NVRAM variable defines a name for the boot option that can be
displayed to a user.

» The variable also contains a pointer to the hardware device and to a file on that
hardware device that contains the UEFI image to be loaded.

» The variable might also contain paths to the OS partition and directory along with
other configuration specific directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The
platform firmware has no knowledge of what is contained in the load options. The load
options are set by higher level software when it writes to a global NVRAM variable to set
the platform firmware boot policy. This information could be used to define the location
of the OS kernel if it was different than the location of the UEFI OS loader.

3.1 Firmware Boot Manager

The boot manager is a component in firmware conforming to this specification that
determines which drivers and applications should be explicitly loaded and when. Once
compliant firmware is initialized, it passes control to the boot manager. The boot
manager is then responsible for determining what to load and any interactions with the
user that may be required to make such a decision.

The actions taken by the boot manager depend upon the system type and the policies set
by the system designer. For systems that allow the installation of new Boot Variables
(Section 3.4), the Boot Manager must automatically or upon the request of the loaded
item, initialize at least one system console, as well as perform all required initialization of
the device indicated within the primary boot target. For such systems, the Boot Manager
is also required to honor the priorities set in BootOrder variable.

Version 2.6, Errata A January, 2017 69

Boot Manager UEFI Specification

In particular, likely implementation options might include any console interface
concerning boot, integrated platform management of boot selections, and possible
knowledge of other internal applications or recovery drivers that may be integrated into
the system through the boot manager.

3.1.1 Boot Manager Programming

70

Programmatic interaction with the boot manager is accomplished through globally
defined variables. On initialization the boot manager reads the values which comprise all
of the published load options among the UEFI environment variables. By using the
SetVariable() function the data that contain these environment variables can be
modified. Such modifications are guaranteed to take effect after the next system boot
commences. However, boot manager implementations may choose to improve on this
guarantee and have changes take immediate effect for all subsequent accesses to the
variables that affect boot manager behavior without requiring any form of system reset

Each load option entry resides in a Boot####, Driver####, SysPrep###i#, OsRecovery####
or PlatformRecovery#### variable where #### is replaced by a unique option number in
printable hexadecimal representation using the digits 0-9, and the upper case versions of
the characters A-F (OOO0-FFFF).

The #### must always be four digits, so small numbers must use leading zeros. The load
options are then logically ordered by an array of option numbers listed in the desired
order. There are two such option ordering lists when booting normally. The first is
DriverOrder that orders the Driver#### load option variables into their load order. The
second is BootOrder that orders the Boot#### load options variables into their load
order.

For example, to add a new boot option, a new Boot#### variable would be added. Then
the option number of the new Boot#### variable would be added to the BootOrder
ordered list and the BootOrder variable would be rewritten. To change boot option on an
existing Boot###+#, only the Boot#### variable would need to be rewritten. A similar
operation would be done to add, remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS, platform firmware
supports boot manager menu, and if firmware is configured to boot in an interactive
mode, the boot manager will stop processing the BootOrder variable and present a boot
manager menu to the user. If any of the above-mentioned conditions is not satisfied, the
next Boot#### in the BootOrder variable will be tried until all possibilities are exhausted.
In this case, boot option recovery must be performed (see Section 3.4).

The boot manager may perform automatic maintenance of the database variables. For
example, it may remove unreferenced load option variables or any load option variables
that cannot be parsed, and it may rewrite any ordered list to remove any load options that
do not have corresponding load option variables. The boot manager can also, at its own
discretion, provide an administrator with the ability to invoke manual maintenance
operations as well. Examples include choosing the order of any or all load options,
activating or deactivating load options, initiating OS-defined or platform-defined
recovery, etc. In addition, if a platform intends to create PlatformRecovery####, before
attempting to load and execute any DriverOrder or BootOrder entries, the firmware must

January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

create any and all PlatformRecovery###+# variables (see Section 3.4.2). The firmware
should not, under normal operation, automatically remove any correctly formed
Boot#### variable currently referenced by the BootOrder or BootNext variables. Such
removal should be limited to scenarios where the firmware is guided by direct user
interaction.

The contents of PlatformRecovery#### represent the final recovery options the firmware
would have attempted had recovery been initiated during the current boot, and need not
include entries to reflect contingencies such as significant hardware reconfiguration, or
entries corresponding to specific hardware that the firmware is not yet aware of.

The behavior of the UEFI Boot Manager is impacted when Secure Boot is enabled, See
Section 30.4.

3.1.2 Load Option Processing

The boot manager is required to process the Driver load option entries before the Boot
load option entries. If the EFI_OS_INDICATIONS _START_OS_RECOVERY bit has been
set in OsIndications, the firmware shall attempt OS-defined recovery (see Section 3.4.1)
rather than normal boot processing. If the
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit has been set in
Oslndications, the firmware shall attempt platform-defined recovery (see Section 3.4.2)
rather than normal boot processing or handling of the

EFI_OS_INDICATIONS START_OS_RECOVERY bit. In either case, both bits should be
cleared.

Otherwise, the boot manager is also required to initiate a boot of the boot option
specified by the BootNext variable as the first boot option on the next boot, and only on
the next boot. The boot manager removes the BootNext variable before transferring
control to the BootNext boot option. After the BootNext boot option is tried, the normal
BootOrder list is used. To prevent loops, the boot manager deletes BootNext before
transferring control to the preselected boot option.

If all entries of BootNext and BootOrder have been exhausted without success, or if the
firmware has been instructed to attempt boot order recovery, the firmware must attempt
boot option recovery (see Section 3.4).

The boot manager must call EFI BOOT SERVICES.LoadlImage() which supports at
leastEFI SIMPLE FILE SYSTEM PROTOCOL and EFI LOAD FILE PROTOCOL for
resolving load options. If Loadlmage() succeeds, the boot manager must enable the
watchdog timer for 5 minutes by using the

EF1 BOOT SERVICES.SetWatchdogTimer () boot service prior to calling

EF1 BOOT SERVICES.Startlmage(). If a boot option returns control to the boot
manager, the boot manager must disable the watchdog timer with an additional call to
the SetWatchdogTimer() boot service.

If the boot image is not loaded via EF1 BOOT SERVICES.LoadlImage() the boot
manager is required to check for a default application to boot. Searching for a default
application to boot happens on both removable and fixed media types. This search
occurs when the device path of the boot image listed in any boot option points directly to
an EFl_SIMPLE_FILE_SYSTEM_PROTOCOL device and does not specify the exact file to

Version 2.6, Errata A January, 2017 71

Boot Manager UEFI Specification

72

load. The file discovery method is explained in Section 3.4. The default media boot case
of a protocol other than EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is handled by the

EFI _LOAD FILE PROTOCOL for the target device path and does not need to be handled
by the boot manager.

The UEFI boot manager must support booting from a short-form device path that starts
with the first element being a USB WWID (see Table 62) or a USB Class (see Table 64)
device path. For USB WWID, the boot manager must use the device vendor ID, device
product id, and serial number, and must match any USB device in the system that
contains this information. If more than one device matches the USB WWID device path,
the boot manager will pick one arbitrarily. For USB Class, the boot manager must use the
vendor ID, Product ID, Device Class, Device Subclass, and Device Protocol, and must
match any USB device in the system that contains this information. If any of the ID,
Product ID, Device Class, Device Subclass, or Device Protocol contain all F's (OXFFFF or
OxFF), this element is skipped for the purpose of matching. If more than one device
matches the USB Class device path, the boot manager will pick one arbitrarily.

The boot manager must also support booting from a short-form device path that starts
with the first element being a hard drive media device path (see Table 85). The boot
manager must use the GUID or signature and partition number in the hard drive device
path to match it to a device in the system. If the drive supports the GPT partitioning
scheme the GUID in the hard drive media device path is compared with the
UniquePartitionGuid field of the GUID Partition Entry (see Table 19). If the drive supports
the PC-AT MBR scheme the signature in the hard drive media device path is compared
with the UniqueMBRSignature in the Legacy Master Boot Record (see Table 14). If a
signature match is made, then the partition number must also be matched. The hard drive
device path can be appended to the matching hardware device path and normal boot
behavior can then be used. If more than one device matches the hard drive device path,
the boot manager will pick one arbitrarily. Thus the operating system must ensure the
uniqueness of the signatures on hard drives to guarantee deterministic boot behavior.

The boot manager must also support booting from a short-form device path that starts
with the first element being a File Path Media Device Path (see Table 88). When the boot
manager attempts to boot a short-form File Path Media Device Path, it will enumerate all
removable media devices, followed by all fixed media devices, creating boot options for
each device. The boot option FilePathList[0] is constructed by appending short-form File
Path Media Device Path to the device path of a media. The order within each group is
undefined. These new boot options must not be saved to non volatile storage, and may
not be added to BootOrder. The boot manager will then attempt to boot from each boot
option. If a device does not support the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but
supports the EFI_BLOCK 10_PROTOCOL protocol, then the EFI Boot Service
ConnectController must be called for this device with DriverimageHandle and
RemainingDevicePath set to NULL and the Recursive flag is set to TRUE. The firmware will
then attempt to boot from any child handles produced using the algorithms outlined
above.

The boot manager must also support booting from a short-form device path that starts
with the first element being a URI Device Path (see Table 79). When the boot manager
attempts to boot a short-form URI Device Path, it could attempt to connect any device
which will produce a device path protocol including a URI device path node until it

January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

matches a device, or fail to match any device. The boot manager will enumerate all
LoadFile protocol instances, and invoke LoadFile protocol with FilePath set to the short-
form device path during the matching process.

3.1.3 Load Options

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte
packed buffer of variable length fields.
typedef struct _EFI_ LOAD_OPTION {

UINT32 Attributes;

UINT16 FilePathListLength;

// CHAR16 Description([];

// EFI_DEVICE_PATH_PROTOCOL FilePathList[];
// UINT8 OptionalData[];

} EFI_LOAD_OPTION;

Parameters

Attributes The attributes for this load option entry. All unused bits
must be zero and are reserved by the UEFI specification
for future growth. See “Related Definitions.”

FilePathListLength Length in bytes of the FilePathList. OptionalData starts at
offset sizeof(UINT32) + sizeof(UINT16) +
StrSize(Description) + FilePathListLength of the
EFI_LOAD_OPTION descriptor.

Description The user readable description for the load option. This
field ends with a Null character.
FilePathList A packed array of UEFI device paths. The first element of

the array is a device path that describes the device and
location of the Image for this load option. The
FilePathList[O] is specific to the device type. Other device
paths may optionally exist in the FilePathList, but their
usage is OSV specific. Each element in the array is variable
length, and ends at the device path end structure.
Because the size of Description is arbitrary, this data
structure is not guaranteed to be aligned on a natural
boundary. This data structure may have to be copied to
an aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a
binary data buffer that is passed to the loaded image. If
the field is zero bytes long, a NULL pointer is passed to the
loaded image. The number of bytes in OptionalData can
be computed by subtracting the starting offset of
OptionalData from total size in bytes of the
EFI_LOAD_OPTION.

Related Definitions

[FRERR IR AR KRR KA RFIHEIAFRKERFIIEIAFHKAAFIKARFIK AR

Version 2.6, Errata A January, 2017 73

Boot Manager UEFI Specification

// Attributes

//***

#define LOAD_OPTION_ACTIVE 0x00000001
#define LOAD_OPTION_FORCE_RECONNECT 0x00000002
#define LOAD_OPTION_HIDDEN 0x00000008

#define LOAD_OPTION_CATEGORY 0x00001F00

#define LOAD_OPTION_CATEGORY_BOOT 0x00000000
#define LOAD_OPTION_CATEGORY_APP 0x00000100
// All values 0x00000200-0x00001F00 are reserved

Description

Calling SetVariable() creates a load option. The size of the load option is the same as
the size of the DataSize argument to the SetVariable() call that created the variable.
When creating a new load option, all undefined attribute bits must be written as zero.
When updating a load option, all undefined attribute bits must be preserved.

If a load option is marked as LOAD_OPTION_ACTIVE, the boot manager will attempt to
boot automatically using the device path information in the load option. This provides an
easy way to disable or enable load options without needing to delete and re-add them.

If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT, then all
of the UEFI drivers in the system will be disconnected and reconnected after the last
Driver#### load option is processed. This allows a UEFI driver loaded with a Driver####
load option to override a UEFI driver that was loaded prior to the execution of the UEFI
Boot Manager.

The executable indicated by FilePathList[O] in Driver#### load option must be of type
EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER or
EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER otherwise the indicated executable will
not be entered for initialization.

The executable indicated by FilePathList[0] in SysPrep###, Boot####, or
OsRecovery#### load option must be of type
EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION, otherwise the indicated executable will not
be entered.

The LOAD_OPTION_CATEGORY is a sub-field of Attributes that provides details to the
boot manager to describe how it should group the Boot#### load options. This field is
ignored for variables of the form Driver####, SysPrep####,0r OsRecovery###.

Boot#### load options with LOAD_OPTION_CATEGORY set to
LOAD_OPTION_CATEGORY_BOOT are meant to be part of the normal boot processing.

Boot#### load options with LOAD_OPTION_CATEGORY setto
LOAD_OPTION_CATEGORY_APP are executables which are not part of the normal boot
processing but can be optionally chosen for execution if boot menu is provided, or via
Hot Keys. See Section 3.1.6 for details.

Boot options with reserved category values, will be ignored by the boot manager.

74 January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

If any Boot#### load option is marked as LOAD_OPTION_HIDDEN, then the load option
will not appear in the menu (if any) provided by the boot manager for load option
selection.

3.1.4 Boot Manager Capabilities

The boot manager can report its capabilities through the global variable
BootOptionSupport. If the global variable is not present, then an installer or application
must act as if a value of O was returned.

#define EFI_BOOT_OPTION_SUPPORT_KEY 0x00000001

#define EFI_BOOT_OPTION_SUPPORT_APP 0x00000002

#define EFI_BOOT_OPTION_SUPPORT_SYSPREP 0x00000010

#define EFI_BOOT_OPTION_SUPPORT COUNT 0x00000300

If EFI_BOOT_OPTION_SUPPORT _KEY is set then the boot manager supports launching
of Boot#### load options using key presses. If EFI_BOOT_OPTION_SUPPORT_APP is set
then the boot manager supports boot options with LOAD_OPTION_CATEGORY_APP. If
EFI_BOOT_OPTION_SUPPORT_SYSPREP is set then the boot manager supports boot
options of form SysPrep####.

The value specified in EFI_BOOT_OPTION_SUPPORT_COUNT describes the maximum
number of key presses which the boot manager supports in the
EFI_KEY_OPTION.KeyData.InputKeyCount. This value is only valid if
EFI_BOOT_OPTION_SUPPORT_KEY is set. Key sequences with more keys specified are
ignored.

3.1.5 Launching Boot#### Applications

The boot manager may support a separate category of Boot#### load option for
applications. The boot manager indicates that it supports this separate category by
setting the EFI_BOOT_OPTION_SUPPORT_APP in the BootOptionSupport global
variable.

When an application’s Boot#### option is being added to the BootOrder, the installer
should clear LOAD_OPTION_ACTIVE so that the boot manager does not attempt to
automatically “boot” the application. If the boot manager indicates that it supports a
separate application category, as described above, the installer should set
LOAD_OPTION_CATEGORY_APP. If not, it should set
LOAD_OPTION_CATEGORY_BOOT.

3.1.6 Launching Boot#### Load Options Using Hot Keys

The boot manager may support launching a Boot#### load option using a special key
press. If so, the boot manager reports this capability by setting
EFI_BOOT_OPTION_SUPPORT_KEY in the BootOptionSupport global variable.

A boot manager which supports key press launch reads the current key information from
the console. Then, if there was a key press, it compares the key returned against zero or
more Key#### global variables. If it finds a match, it verifies that the Boot#### load
option specified is valid and, if so, attempts to launch it immediately. The #### in the

Version 2.6, Errata A January, 2017 75

Boot Manager UEFI Specification

Key###t is a printable hexadecimal number (‘0’-'9’, ‘A’-'F’) with leading zeroes. The order
which the Key#### variables are checked is implementation-specific.

The boot manager may ignore Key#### variables where the hot keys specified overlap
with those used for internal boot manager functions. It is recommended that the boot
manager delete these keys.

The Key###+# variables have the following format:

Prototype
typedef struct _EFI_KEY_OPTION {
EFI_BOOT_KEY_DATA KeyData;
UINT32 BootOptionCrc;
UINT16 BootOption;
// EFI_INPUT_KEY Keys[];
} EFI_KEY_OPTION,;

Parameters

KeyData
Specifies options about how the key will be processed. Type
EFI_BOOT_KEY_DATA is defined in “Related Definitions” below.

BootOptionCrc
The CRC-32 which should match the CRC-32 of the entire
EFI_LOAD_OPTION to which BootOption refers. If the CRC-32s do not match
this value, then this key option is ignored.

BootOption
The Boot#### option which will be invoked if this key is pressed and the
boot option is active (LOAD_OPTION_ACTIVE is set).

Keys
The key codes to compare against those returned by the
EFI_SIMPLE_TEXT_INPUT and EFl_SIMPLE_TEXT_INPUT_EX protocols.
The number of key codes (0-3) is specified by the EFI_KEY_CODE_COUNT
field in KeyOptions.

76 January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

Related Definitions

typedef union {
struct {
UINT32 Revision : 8;
UINT32 ShiftPressed : 1;
UINT32 ControlPressed : 1;
UINT32 AltPressed : 1;
UINT32 LogoPressed : 1;
UINT32 MenuPressed : 1;
UINT32 SysReqPressed : 1;
UINT32 Reserved : 16;
UINT32 InputKeyCount : 2;
} Options;
UINT32 PackedValue;
} EFI_BOOT_KEY_DATA;

Revision

Indicates the revision of the EFI_KEY_OPTION structure. This revision level
should be 0.

ShiftPressed

Either the left or right Shift keys must be pressed (1) or must not be pressed
0.
ControlPressed

Either the left or right Control keys must be pressed (1) or must not be
pressed (0O).

AltPressed

Either the left or right Alt keys must be pressed (1) or must not be pressed
(0).
LogoPressed
Either the left or right Logo keys must be pressed (1) or must not be pressed
(0).
MenuPressed
The Menu key must be pressed (1) or must not be pressed (0).
SysReqPressed
The SysReq key must be pressed (1) or must not be pressed (0).
InputKeyCount

Specifies the actual number of entries in EFI_KEY_OPTION.Keys, from 0-3. If
zero, then only the shift state is considered. If more than one, then the boot
option will only be launched if all of the specified keys are pressed with the

same shift state.

Example #1: ALT is the hot key. KeyData.PackedValue = 0x00000400.

Version 2.6, Errata A January, 2017 77

Boot Manager UEFI Specification

Example #2: CTRL-ALT-P-R. KeyData.PackedValue = 0x80000600.
Example #3: CTRL-F1. KeyData.PackedValue = 0x40000200.

3.1.7 Required System Preparation Applications

A load option of the form SysPrep#### is intended to designate a UEFI application that is
required to execute in order to complete system preparation prior to processing of any
Boot###+# variables. The execution order of SysPrep#### applications is determined by
the contents of the variable SysPrepOrder in a way directly analogous to the ordering of
Boot#### options by BootOrder.

The platform is required to examine all SysPrep###+# variables referenced in
SysPrepOrder. If Attributes bit LOAD_OPTION_ACTIVE is set, and the application
referenced by FilePathList[0] is present, the UEFI Applications thus identified must be
loaded and launched in the order they appear in SysPrepOrder and prior to the launch of
any load options of type Boot####.

When launched, the platform is required to provide the application loaded by
SysPrep####, with the same services such as console and network as are normally
provided at launch to applications referenced by a Boot#### variable. SysPrep####
application must exit and may not call ExitBootServices(). Processing of any Error Code
returned at exit is according to system policy and does not necessarily change processing
of following boot options. Any driver portion of the feature supported by SysPrep####
boot option that is required to remain resident should be loaded by use of Driver####
variable.

The Attributes option LOAD_OPTION_FORCE_RECONNECT is ignored for SysPrep####
variables, and in the event that an application so launched performs some action that
adds to the available hardware or drivers, the system preparation application shall itself
utilize appropriate calls to ConnectController() or DisconnectController() to revise
connections between drivers and hardware.

After all SysPrep###+# variables have been launched and exited, the platform shall notify
EFI_EVENT_GROUP_READY_TO_BOOT event group and begin to evaluate Boot####
variables with Attributes set to LOAD_OPTION_CATEGORY_BOOT according to the
order defined by BootOrder. The FilePathList of variables marked
LOAD_OPTION_CATEGORY_BOOT shall not be evaluated prior to the completion of
EFI_EVENT_GROUP_READY_TO_BOOT event group processing.

3.2 Boot Manager Policy Protocol

EFI_ BOOT_MANAGER_POLICY _PROTOCOL
Summary

This protocol is used by EFI Applications to request the UEFI Boot Manager to connect
devices using platform policy.

78 January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

GUID
#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_GUID \
{ OXFEDF8EOC, OxE147, Ox11E3,\
{ 0x99, 0x03, 0xB8, OXE8, 0x56, 0x2C, OXxBA, OxFA } }

Protocol Interface Structure
typedef struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL
EFI_BOOT_MANAGER_POLICY_PROTOCOL;
struct _EFI_BOOT_MANAGER_POLICY PROTOCOL {

UINT64 Revision;
EFI BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH ConnectDevicePath;

EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS ConnectDeviceClass;

¥
ConnectDevicePath Connect a Device Path following the platforms EFI Boot
Manager policy.
ConnectDeviceClass Connect a class of devices, named by EFI_GUID, following
the platforms UEFI Boot Manager policy.
Description

The EFI_BOOT_MANAGER_PROTOCOL is produced by the platform firmware to expose

Boot Manager policy and platform specific
EFI BOOT SERVICES.ConnectController() behavior.

Related Definitions
#define EFI_BOOT_MANAGER_POLICY PROTOCOL_REVISION 0x00010000

Version 2.6, Errata A January, 2017 79

Boot Manager UEFI Specification

EFI BOOT_MANAGER_PROTOCOL.ConnectDevicePath()

Summary

Connect a device path following the platform’s EFl Boot Manager policy.
Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH)(
IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,

IN EFI_DEVICE_PATH *DevicePath,
IN BOOLEAN Recursive
)i
Parameters
This A pointer to the

EFI_BOOT_MANAGER_POLICY_PROTOCOL instance.
Type EFI_BOOT_MANAGER_POLICY_PROTOCOL defined
above.

DevicePath Points to the start of the EFI device path to connect. If
DevicePath is NULL then all the controllers in the system
will be connected using the platform’s EFl Boot Manager
policy.

Recursive If TRUE, then ConnectController() is called recursively
until the entire tree of controllers below the controller
specified by DevicePath have been created. If FALSE, then
the tree of controllers is only expanded one level. If
DevicePath is NULL then Recursive is ignored.

Description
The ConnectDevicePath() function allows the caller to connect a DevicePath using the
same policy as the EFI Boot Manager.

If Recursive is TRUE, then ConnectController() is called recursively until the entire tree of
controllers below the controller specified by DevicePath have been created. If Recursive is
FALSE, then the tree of controllers is only expanded one level. If DevicePath is NULL then
Recursive is ignored.

Status Codes Returned

EFI_SUCCESS The DevicePath was connected

EFI_NOT_FOUND The DevicePath was not found

EFI_NOT_FOUND No driver was connected to DevicePath.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the
DevicePath.

EFI_UNSUPPORTED The current TPL is not TPL_APPL ICATION.

80 January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

EFI BOOT_MANAGER_PROTOCOL.ConnectDeviceClass()

Summary
Connect a class of devices using the platform Boot Manager policy.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS)(
IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,

IN EFI_GUID *Class
);
Parameters
This A pointer to the

EFI_BOOT_MANAGER_POLICY_PROTOCOL instance.
Type EFI_BOOT_MANAGER_POLICY_PROTOCOL is
defined above.

Class A pointer to an EFI_GUID that represents a class of
devices that will be connected using the Boot Manager's
platform policy.

Description

The ConnectDeviceClass() function allows the caller to request that the Boot Manager
connect a class of devices.

If Class is EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID then the Boot Manager will
use platform policy to connect consoles. Some platforms may restrict the number of
consoles connected as they attempt to fast boot, and calling ConnectDeviceClass() with a
Class value of EFI_ BOOT_MANAGER_POLICY_CONSOLE_GUID must connect the set of
consoles that follow the Boot Manager platform policy, and the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL, EFl_SIMPLE_TEXT_INPUT_EX_PROTOCOL,and
the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL are produced on the connected handles.
The Boot Manager may restrict which consoles get connect due to platform policy, for
example a security policy may require that a given console is not connected.

If Class is EFI_BOOT_MANAGER_POLICY_NETWORK_GUID then the Boot Manager will
connect the protocols the platform supports for UEFI general purpose network
applications on one or more handles. The protocols associated with UEFI general
purpose network applications are defined in Section 2.6.2, list item number 7. If more
than one network controller is available a platform will connect, one, many, or all of the
networks based on platform policy. Connecting UEFI networking protocols, like
EFI_DHCP4_PROTOCOL, does not establish connections on the network. The UEFI
general purpose network application that called ConnectDeviceClass() may need to use
the published protocols to establish the network connection. The Boot Manager can
optionally have a policy to establish a network connection.

Version 2.6, Errata A January, 2017 81

Boot Manager UEFI Specification

If Class is EFI._ BOOT_MANAGER_POLICY_CONNECT_ALL_GUID then the Boot Manager
will connect all UEFI drivers using the UEFI Boot Service

EF1 BOOT SERVICES.ConnectController(). If the Boot Manager has policy
associated with connect all UEFI drivers this policy will be used.

A platform can also define platform specific Class values as a properly generated
EFI_GUID would never conflict with this specification.

Related Definitions
#define EFI_ BOOT_MANAGER_POLICY_CONSOLE_GUID\
{ OXCABOE94C, OXE15F, OXx11E3\
{ 0x91, 0x8D, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT_MANAGER_POLICY_NETWORK_GUID \
{0xD04159DC, OXE15F, Ox11E3\
{0xB2, 0x61, 0xB8, OXE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT_MANAGER_POLICY_CONNECT_ALL _GUID\
{0x113B2126, OXFC8A, Ox11E3\
{ OxBD, Ox6C, 0xB8, OxXE8, 0x56, 0x2C, OXBA, OxFA } }

Status Codes Returned

EFI_SUCCESS At least one devices of the Class was connected.
EFI_DEVICE_ERROR Devices were not connected due to an error.
EFI_NOT_FOUND The Class is not supported by the platform.
EFI_UNSUPPORTED The current TPL is not TPL APPLICATION.

3.3 Globally Defined Variables

82

This section defines a set of variables that have architecturally defined meanings. In
addition to the defined data content, each such variable has an architecturally defined
attribute that indicates when the data variable may be accessed. The variables with an
attribute of NV are nonvolatile. This means that their values are persistent across resets
and power cycles. The value of any environment variable that does not have this attribute
will be lost when power is removed from the system and the state of firmware reserved
memory is not otherwise preserved. The variables with an attribute of BS are only
available before EFI BOOT SERVICES.ExitBootServices() is called. This means
that these environment variables can only be retrieved or modified in the preboot
environment. They are not visible to an operating system. Environment variables with an
attribute of RT are available before and after ExitBootServices() is called. Environment
variables of this type can be retrieved and modified in the preboot environment, and
from an operating system. The variables with an attribute of AT are variables with a time-
based authenticated write access defined in Section 7.2.1. All architecturally defined
variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \
{Ox8BE4DF61,0x93CA,0x11d2\

January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

{OxAA,0x0D,0x00,0xE0,0x98,0x03,0x2B,0x8C}}

To prevent name collisions with possible future globally defined variables, other internal
firmware data variables that are not defined here must be saved with a unique
VendorGuid other than EFI_GLOBAL_VARIABLE or any other GUID defined by the UEFI
Specification. Implementations must only permit the creation of variables with a UEFI
Specification-defined VendorGuid when these variables are documented in the UEFI
Specification.

Table 11. Global Variables

Variable Name Attribute Description

AuditMode BS, RT Whether the system is operating in Audit Mode (1) or not
(0). All other values are reserved. Should be treated as
read-only except when DeployedMode is 0. Always
becomes read-only after ExitBootServices() is called.

Boot##tt NV, BS, RT A boot load option. #### is a printed hex value. No 0x or
h is included in the hex value.

BootCurrent BS, RT The boot option that was selected for the current boot.

BootNext NV, BS, RT The boot option for the next boot only.

BootOrder NV, BS, RT The ordered boot option load list.

BootOptionSupport BS,RT, The types of boot options supported by the boot
manager. Should be treated as read-only.

Conlin NV, BS, RT The device path of the default input console.

ConinDev BS, RT The device path of all possible console input devices.

ConOut NV, BS, RT The device path of the default output console.

ConOQOutDev BS, RT The device path of all possible console output devices.

dbDefault BS, RT The OEM's default secure boot signature store. Should
be treated as read-only.

dbrDefault BS, RT The OEM's default OS Recovery signature store. Should
be treated as read-only.

dbtDefault BS, RT The OEM's default secure boot timestamp signature
store. Should be treated as read-only.

dbxDefault BS, RT The OEM's default secure boot blacklist signature store.

Should be treated as read-only.

DeployedMode BS, RT Whether the system is operating in Deployed Mode (1) or
not (0). All other values are reserved. Should be treated
as read-only when its value is 1. Always becomes read-
only after ExitBootServices() is called.

Driver#tt# NV, BS, RT A driver load option. #### is a printed hex value.
DriverOrder NV, BS, RT The ordered driver load option list.

ErrOut NV, BS, RT The device path of the default error output device.
ErrOutDev BS, RT The device path of all possible error output devices.
HwErrRecSupport NV, BS, RT Identifies the level of hardware error record persistence

support implemented by the platform. This variable is
only modified by firmware and is read-only to the OS.

Version 2.6, Errata A January, 2017 83

Boot Manager

UEFI Specification

Variable Name
KEK
KEKDefault

Key#t

Lang

LangCodes

Oslndications

OslIndicationsSupported

OsRecoveryOrder
PK
PKDefault

PlatformLangCodes
PlatformLang
PlatformRecovery###

SignatureSupport

SecureBoot

SetupMode

SysPrep##Hi

SysPrepOrder
Timeout

VendorKeys

Attribute
NV, BS, RT,AT
BS, RT

NV, BS, RT

NV, BS, RT

BS, RT

NV, BS, RT

BS, RT

BS,RT,NV,AT
NV, BS, RT,AT
BS, RT

BS, RT
NV, BS, RT
BS, RT

BS, RT

BS, RT

BS, RT

NV, BS, RT

NV, BS, RT
NV, BS, RT

BS, RT

Description
The Key Exchange Key Signature Database.

The OEM's default Key Exchange Key Signature
Database. Should be treated as read-only.

Describes hot key relationship with a Boot#### load
option.

The language code that the system is configured for. This
value is deprecated.

The language codes that the firmware supports. This
value is deprecated.

Allows the OS to request the firmware to enable certain
features and to take certain actions.

Allows the firmware to indicate supported features and
actions to the OS.

OS-specified recovery options.

The public Platform Key.

The OEM's default public Platform Key. Should be treated
as read-only.

The language codes that the firmware supports.

The language code that the system is configured for.
Platform-specified recovery options. These variables are
only modified by firmware and are read-only to the OS.

Array of GUIDs representing the type of signatures
supported by the platform firmware. Should be treated as
read-only.

Whether the platform firmware is operating in Secure boot
mode (1) or not (0). All other values are reserved. Should
be treated as read-only.

Whether the system should require authentication on
SetVariable() requests to Secure Boot policy variables (0)
or not (1). Should be treated as read-only.

The system is in "Setup Mode" when SetupMode==1,
AuditMode==0, and DeployedMode==0.

A System Prep application load option containing a
EFI_LOAD_OPT ION descriptor. #### is a printed hex
value.

The ordered System Prep Application load option list.

The firmware’s boot managers timeout, in seconds,
before initiating the default boot selection.

Whether the system is configured to use only vendor-
provided keys or not. Should be treated as read-only.

The PlatformLangCodes variable contains a null- terminated ASCII string representing
the language codes that the firmware can support. At initialization time the firmware
computes the supported languages and creates this data variable. Since the firmware

January, 2017

Version 2.6, Errata A

UEFI Specification Boot Manager

creates this value on each initialization, its contents are not stored in nonvolatile
memory. This value is considered read-only. PlatformLangCodes is specified in Native
RFC 4646 format. See Appendix M. LangCodes is deprecated and may be provided for
backwards compatibility.

The PlatformLang variable contains a null- terminated ASCII string language code that
the machine has been configured for. This value may be changed to any value supported
by PlatformLangCodes. If this change is made in the preboot environment, then the
change will take effectimmediately. If this change is made at OS runtime, then the change
does not take effect until the next boot. If the language code is set to an unsupported
value, the firmware will choose a supported default at initialization and set PlatformLang
to a supported value. PlatformLang is specified in Native RFC 4646 array format. See
Appendix M. Lang is deprecated and may be provided for backwards compatibility.

Lang has been deprecated. If the platform supports this variable, it must map any
changes in the Lang variable into PlatformLang in the appropriate format.

Langcodes has been deprecated. If the platform supports this variable, it must map any
changes in the Langcodes variable into PlatformLang in the appropriate format.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that
the firmware will wait before initiating the original default boot selection. A value of O
indicates that the default boot selection is to be initiated immediately on boot. If the
value is not present, or contains the value of OxFFFF then firmware will wait for user input
before booting. This means the default boot selection is not automatically started by the
firmware.

The Conlin, ConOut, and ErrOut variables each contain an EF1_DEVICE PATH PROTOCOL
descriptor that defines the default device to use on boot. Changes to these values made
in the preboot environment take effect immediately. Changes to these values at OS
runtime do not take effect until the next boot. If the firmware cannot resolve the device
path, it is allowed to automatically replace the values, as needed, to provide a console for
the system. If the device path starts with a USB Class device path (see Table 64), then any
input or output device that matches the device path must be used as a console if it is
supported by the firmware.

The ConlInDev, ConOutDev, and ErrOutDev variables each contain an
EFI_DEVICE_PATH_PROTOCOL descriptor that defines all the possible default devices to
use on boot. These variables are volatile, and are set dynamically on every boot. Conln,
ConOut, and ErrOut are always proper subsets of ConIinDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four digit hexadecimal number. For example,
Boot0001, Boot0002, BootOAO2, etc.

The OsRecoveryOrder variable contains an array of EFI_GUID structures. Each EFI_GUID
structure specifies a namespace for variables containing OS-defined recovery entries (see
Section 3.4.1). Write access to this variable is controlled by the security key database dbr
(see Section 7.2.1).

PlatformRecovery#### variables share the same structure as Boot#### variables. These
variables are processed when the system is performing recovery of boot options

Version 2.6, Errata A January, 2017 85

Boot Manager UEFI Specification

86

The BootOrder variable contains an array of UINT16'’s that make up an ordered list of the
Boot###+# options. The first element in the array is the value for the first logical boot
option, the second element is the value for the second logical boot option, etc. The
BootOrder order list is used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be
tried first on the next boot. After the BootNext boot option is tried the normal BootOrder
listis used. To prevent loops, the boot manager deletes this variable before transferring
control to the preselected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was
selected on the current boot.

The BootOptionSupport variable is a UINT32 that defines the types of boot options
supported by the boot manager.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is
appended with a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of
the Driver#### variable. The first element in the array is the value for the first logical
driver load option, the second element is the value for the second logical driver load
option, etc. The DriverOrder list is used by the firmware’s boot manager as the default
load order for UEFI drivers that it should explicitly load.

The Key###+# variable associates a key press with a single boot option. Each Key####
variable is the name "Key" appended with a unique four digit hexadecimal number. For
example, Key0001, Key0002, KeyOOAOQ, etc.

The HwErrRecSupport variable contains a binary UINT16 that supplies the level of
support for Hardware Error Record Persistence (see Section 7.2.3) that is implemented by
the platform. If the value is not present, then the platform implements no support for
Hardware Error Record Persistence. A value of zero indicates that the platform
implements no support for Hardware Error Record Persistence. A value of 1 indicates that
the platform implements Hardware Error Record Persistence as defined in Section 7.2.3.
Firmware initializes this variable. All other values are reserved for future use.

The SetupMode variable is an 8-bit unsigned integer that defines whether the system is
should require authentication (0) or not (1) on SetVariable() requests to Secure Boot
Policy Variables. Secure Boot Policy Variables include:

* The global variables PK, KEK, and OsRecoveryOrder
» All variables named OsRecovery#### under all VendorGuids
» All variables with the VendorGuid EFI_IMAGE_SECURITY_DATABASE_GUID.

Secure Boot Policy Variables must be created using the
EFI_VARIABLE_AUTHENTICATION_Z2 structure.

The AuditMode variable is an 8-bit unsigned integer that defines whether the system is
currently operating in Audit Mode.

The DeployedMode variable is an 8-bit unsigned integer that defines whether the system
is currently operating in Deployed Mode.

The KEK variable contains the current Key Exchange Key database.

January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

The PK variable contains the current Platform Key.

The VendorKeys variable is an 8-bit unsigned integer that defines whether the Security
Boot Policy Variables have been modified by anyone other than the platform vendor or a
holder of the vendor-provided keys. A value of O indicates that someone other than the
platform vendor or a holder of the vendor-provided keys has modified the Secure Boot
Policy Variables Otherwise, the value will be 1.

The KEKDefault variable, if present, contains the platform-defined Key Exchange Key
database. This is not used at runtime but is provided in order to allow the OS to recover
the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION or EFI_VARIABLE_AUTHENTICATIONZ structure.

The PKDefault variable, if present, contains the platform-defined Platform Key. This is not
used at runtime but is provided in order to allow the OS to recover the OEM's default key
setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATIONZ structure.

The dbDefault variable, if present, contains the platform-defined secure boot signature
database. This is not used at runtime but is provided in order to allow the OS to recover
the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATIONZ structure.

The dbrDefault variable, if present, contains the platform-defined secure boot authorized
recovery signature database. This is not used at runtime but is provided in order to allow
the OS to recover the OEM's default key setup. The contents of this variable do not
include an EFI_VARIABLE _AUTHENTICATIONZ structure.

The dbtDefault variable, if present, contains the platform-defined secure boot timestamp
signature database. This is not used at runtime but is provided in order to allow the OS to
recover the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATIONZ structure.

The dbxDefault variable, if present, contains the platform-defined secure boot blacklist
signature database. This is not used at runtime but is provided in order to allow the OS to
recover the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATIONZ structure.

The SignatureSupport variable returns an array of GUIDs, with each GUID representing a
type of signature which the platform firmware supports for images and other data. The
different signature types are described in "Signature Database".

The SecureBoot variable is an 8-bit unsigned integer that defines if the platform firmware
is operating in secure boot mode. A value of 1 indicates that platform firmware performs
driver and boot application signature verification as specified in Section 30.5 during the
current boot. A value of 0 indicates that driver and boot application signature verification
is not active during the current boot. The platform firmware is operating in secure boot
mode if the value of the SetupMode variable is 0 and the SecureBoot variable is setto 1. A
platform cannot operate in secure boot mode if the SetupMode variable is set to 1. The
SecureBoot variable should be treated as read-only.

The OslndicationsSupported variable indicates which of the OS indication features and
actions that the firmware supports. This variable is recreated by firmware every boot, and

Version 2.6, Errata A January, 2017 87

Boot Manager UEFI Specification

cannot be modified by the OS (see SetVariable()Attributes usage rules once
ExitBootServices() is performed).

The Oslndications variable is used to indicate which features the OS wants firmware to
enable or which actions the OS wants the firmware to take. The OS will supply this data
with a SetVariable() call. See Section 7.5.4 for the variable definition.

3.4 Boot Option Recovery

Boot option recovery consists of two independent parts, operating system-defined
recovery and platform-defined recovery. OS-defined recovery is an attempt to allow
installed operating systems to recover any needed boot options, or to launch full
operating system recovery. Platform-defined recovery includes any remedial actions
performed by the platform as a last resort when no operating system is found, such as the
Default Boot Behavior (see Section 3.4.3). This could include behaviors such as warranty
service reconfiguration or diagnostic options.

In the event that boot option recovery must be performed, the boot manager must first
attempt OS-defined recovery, re-attempt normal booting via Boot#### and BootOrder
variables, and finally attempt platform-defined recovery if no options have succeeded.

3.4.1 OS-Defined Boot Option Recovery

88

If the EFI_OS_INDICATIONS _START_OS_RECOVERY bit is set in OsIndications, or if
processing of BootOrder does not result in success, the platform must process OS-
defined recovery options. In the case where OS-defined recovery is entered due to
Oslindications, SysPrepOrder and SysPrep###+# variables should not be processed. Note
that in order to avoid ambiguity in intent, this bit is ignored in OsIndications if
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY is set.

0OS-defined recovery uses the OsRecoveryOrder variable, as well as variables created with
vendor specific VendorGuid values and a name following the pattern OsRecovery####.
Each of these variables must be an authenticated variable with the

EFI_VARIABLE _TIME_BASED AUTHENTICATED WRITE_ACCESS attribute set.

To process these variables, the boot manager iterates over the array of EFI_GUID
structures in the OsRecoveryOrder variable, and each GUID specified is treated as a
VendorGuid associated with a series of variable names. For each GUID, the firmware
attempts to load and execute, in hexadecimal sort order, every variable with that GUID
and a name following the pattern OsRecovery####. These variables have the same
format as Boot#### variables, and the boot manager must verify that each variable it
attempts to load was created with a public key that is associated with a certificate
chaining to one listed in the authorized recovery signature database dbr or the Key
Exchange Key database KEK, or by the current Platform Key PK.

If the boot manager finishes processing OsRecovery#### options without

EF1 BOOT SERVICES.ExitBootServices() or ResetSystem() having been called,
it must attempt to process BootOrder a second time. If booting does not succeed during
that process, OS-defined recovery has failed, and the boot manager must attempt
platform-based recovery.

January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

If, while processing OsRecovery#### variables, the boot manager encounters an entry
which cannot be loaded or executed due to a security policy violation, it must ignore that
variable.

3.4.2 Platform-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS_START _PLATFORM_RECOVERY bit is set in OsIndications,
or if OS-defined recovery has failed, the system firmware must commence with platform-
specific recovery by iterating its PlatformRecovery#### variables in the same manner as
OsRecovery####, but must stop processing if any entry is successful. In the case where
platform-specific recovery is entered due to OsIndications, SysPrepOrder and
SysPrep###+# variables should not be processed.

3.4.3 Boot Option Variables Default Boot Behavior

The default state of globally-defined variables is firmware vendor specific. However the
boot options require a standard default behavior in the exceptional case that valid boot
options are not present on a platform. The default behavior must be invoked any time the
BootOrder variable does not exist or only points to nonexistent boot options, or if no
entry in BootOrder can successfully be executed.

If system firmware supports boot option recovery as described in Section 3.4, system
firmware must include a PlatformRecovery#### variable specifying a short-form File Path
Media Device Path (see Section 3.1.2) containing the platform default file path for
removable media (see Table 12). It is recommended for maximal compatibility with prior
versions of this specification that this entry be the first such variable, though it may be at
any position within the list.

It is expected that this default boot will load an operating system or a maintenance utility.
If this is an operating system setup program it is then responsible for setting the requisite
environment variables for subsequent boots. The platform firmware may also decide to
recover or set to a known set of boot options.

3.5 Boot Mechanisms

EFI can boot from a device using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or the
EFI_LOAD_FILE_PROTOCOL. A device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL must materialize a file system protocol for that
device to be bootable. If a device does not wish to support a complete file system it may
produce an EFI_LOAD_FILE_PROTOCOL which allows it to materialize an image directly.
The Boot Manager will attempt to boot using the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL first. If that fails, then the
EFI_LOAD_FILE_PROTOCOL will be used.

3.5.1 Boot via the Simple File Protocol

When booting via the EFI_SIMPLE_FILE_ SYSTEM_PROTOCOL, the FilePath will start
with a device path that points to the device that implements the

Version 2.6, Errata A January, 2017 89

Boot Manager UEFI Specification

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or the EFI_ BLOCK _I0_PROTOCOL. The next
part of the FilePath may point to the file name, including subdirectories, which contain
the bootable image. If the file name is a null device path, the file name must be generated
from the rules defined below.

If the FilePathList[0] device does not support the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but supports the EFI_BLOCK_IO_PROTOCOL
protocol, then the EFI Boot Service EF1_BOOT _SERVICES.ConnectController()
must be called for FilePathList[0] with DriverimageHandle and RemainingDevicePath set
to NULL and the Recursive flag is set to TRUE.The firmware will then attempt to boot from
any child handles produced using the algorithms outlined below.

The format of the file system specified is contained in Section 12.3. While the firmware
must produce an EFl_SIMPLE_FILE_SYSTEM_PROTOCOL that understands the UEFI file
system, any file system can be abstracted with the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL interface.

3.5.1.1 Removable Media Boot Behavior

To generate a file name when none is present in the FilePath, the firmware must append a
default file name in the form \EFNBOOT\BOOT{machine type short-name}.EFl where
machine type short-name defines a PE32+ image format architecture. Each file only
contains one UEFI image type, and a system may support booting from one or more
images types. Table 12 lists the UEFI image types.

Table 12. UEFI Image Types

File Name Convention PE Executable Machine Type *
32-bit BOOTIA32.EFI Ox14c
x64 BOOTx64.EFI 0x8664
Itanium architecture BOOTIA64.EFI 0x200
AArch32 architecture BOOTARM.EFI 0x01c2
AArch64 architecture BOOTAAG64.EFI 0xAAG4

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0

Media may support multiple architectures by simply having a \EFNBOOT\BOOT{machine
type short-name}.EFI file of each possible machine type.

3.5.2 Boot via the Load File Protocol

90

When booting viathe EF1_LOAD FILE PROTOCOL protocol, the FilePath is a device path
that points to a device that “speaks” the EFI_LOAD_FILE PROTOCOL. The image is
loaded directly from the device that supports the EFI_LOAD_FILE_ PROTOCOL. The
remainder of the FilePath will contain information that is specific to the device. Firmware
passes this device-specific data to the loaded image, but does not use it to load the
image. If the remainder of the FilePath is a null device path it is the loaded image's
responsibility to implement a policy to find the correct boot device.

January, 2017 Version 2.6, Errata A

UEFI Specification Boot Manager

The EFI_LOAD_FILE_PROTOCOL is used for devices that do not directly support file
systems. Network devices commonly boot in this model where the image is materialized
without the need of a file system.

3.5.2.1 Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE
specifies UDP, DHCP, and TFTP network protocols that a booting platform can use to
interact with an intelligent system load server. UEFI defines special interfaces that are
used to implement PXE. These interfaces are contained in the
EFI_PXE_BASE_CODE_PROTOCOL (see Section 23.3).

3.5.2.2 Future Boot Media

Since UEFI defines an abstraction between the platform and the OS and its loader it
should be possible to add new types of boot media as technology evolves. The OS loader
will not necessarily have to change to support new types of boot. The implementation of
the UEFI platform services may change, but the interface will remain constant. The OS
will require a driver to support the new type of boot media so that it can make the
transition from UEFI boot services to OS control of the boot media.

Version 2.6, Errata A January, 2017 91

Boot Manager UEFI Specification

92 January, 2017 Version 2.6, Errata A

UEFI Specification

4 EFI System Table

This section describes the entry point to a UEFI image and the parameters that are passed
to that entry point. There are three types of UEFI images that can be loaded and executed
by firmware conforming to this specification. These are UEFI applications (see

Section 2.1.2), UEFI boot service drivers (see Section 2.1.4), and UEFI runtime drivers (see
Section 2.1.4). UEFI applications include UEFI OS loaders (see Section 2.1.3). There are no
differences in the entry point for these three image types.

4.1 UEFI Image Entry Point

The most significant parameter that is passed to an image is a pointer to the System
Table. This pointer is EFI_IMAGE ENTRY_ POINT (see definition immediately below), the
main entry point for a UEFI Image. The System Table contains pointers to the active
console devices, a pointer to the Boot Services Table, a pointer to the Runtime Services
Table, and a pointer to the list of system configuration tables such as ACPI, SMBIOS, and
the SAL System Table. This section describes the System Table in detail.

EFI_IMAGE_ENTRY_POINT

Summary

This is the main entry point for a UEFI Image. This entry point is the same for UEFI
applications and UEFI drivers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
IN EFI_HANDLE ImageHandle,

IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters
ImageHandle The firmware allocated handle for the UEFI image.
SystemTable A pointer to the EFI System Table.

Description

This function is the entry point to an EFl image. An EFl image is loaded and relocated in
system memory by the EFI Boot Service EFI_BOOT SERVICES.LoadlImage(). An EFI
image is invoked through the EFI Boot Service EF1 BOOT SERVICES.Startlmage().

The first argument is the image’s image handle. The second argument is a pointer to the
image’s system table. The system table contains the standard output and input handles,

Version 2.6, Errata A December, 2016 93

EFIl System Table UEFI Specification

94

plus pointers to the EFI_BOOT SERVICES and EFI_RUNTIME SERVICES tables. The
service tables contain the entry points in the firmware for accessing the core EFI system
functionality. The handles in the system table are used to obtain basic access to the
console. In addition, the System Table contains pointers to other standard tables that a
loaded image may use if the associated pointers are initialized to nonzero values.
Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on
various functions. The handle also supports one or more protocols that the image can
use. All images support the EFI_LOADED IMAGE_PROTOCOL and the

EFI_LOADED_ IMAGE_DEVICE_PATH_PROTOCOL that returns the source location of the
image, the memory location of the image, the load options for the image, etc. The exact
EFI_LOADED IMAGE_PROTOCOL and
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL structures are defined in Section 8.

If the UEFI image is a UEFI application that is not a UEFI OS loader, then the application
executes and either returns or calls the EFI Boot Services

EF1 BOOT SERVICES.Exit(). A UEFI application is always unloaded from memory
when it exits, and its return status is returned to the component that started the UEFI
application.

If the UEFI image is a UEFI OS Loader, then the UEFI OS Loader executes and either
returns, calls the EFI Boot Service Exit(), or calls the EFI Boot Service

EFI BOOT SERVICES.ExitBootServices(). If the EFI OS Loader returns or calls
Exit(), then the load of the OS has failed, and the EFI OS Loader is unloaded from memory
and control is returned to the component that attempted to boot the UEFI OS Loader. If
ExitBootServices() is called, then the UEFI OS Loader has taken control of the platform,
and EFI will not regain control of the system until the platform is reset. One method of
resetting the platform is through the EFI Runtime Service ResetSystem().

If the UEFI image is a UEFI Driver, then the UEFI driver executes and either returns or calls
the Boot Service Exit(). If the UEFI driver returns an error, then the driver is unloaded from
memory. If the UEFI driver returns EFI_SUCCESS, then it stays resident in memory. If the
UEFI driver does not follow the UEFI Driver Model, then it performs any required
initialization and installs its protocol services before returning. If the driver does follow
the UEFI Driver Model, then the entry point is not allowed to touch any device hardware.
Instead, the entry point is required to create and install the

EF1 DRIVER BINDING PROTOCOL (see Section 10.1) on the ImageHandle of the UEFI
driver. If this process is completed, then EFI_SUCCESS is returned. If the resources are
not available to complete the UEFI driver initialization, then EFI_OUT_OF_RESOURCES
is returned.

December, 2016 Version 2.6, Errata A

UEFI Specification

Status Codes Returned

EFI System Table

EFI_SUCCESS

The driver was initialized.

EFI_OUT_OF RESOURCES

The request could not be completed due to a lack of resources.

4.2 EFl Table Header

The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard
EFI table types. Itincludes a signature that is unique for each table type, a revision of the
table that may be updated as extensions are added to the EFI table types, and a 32-bit
CRC so a consumer of an EFI table type can validate the contents of the EFI table.

EFI_TABLE_HEADER

Summary

Data structure that precedes all of the standard EFI table types.

Related Definitions

typedef struct {
UINT64 Signature;
UINT32 Revision;
UINT32 HeaderSize;
UINT32 CRC32;
UINT32 Reserved,

} EFI_TABLE_HEADER;

Parameters
Signature

Revision

Version 2.6, Errata A

A 64-bit signature that identifies the type of table that
follows. Unique signatures have been generated for the
EFI System Table, the EFI Boot Services Table, and the EFI
Runtime Services Table.

The revision of the EFI Specification to which this table
conforms. The upper 16 bits of this field contain the
major revision value, and the lower 16 bits contain the
minor revision value. The minor revision values are binary
coded decimals and are limited to the range of 00..99.

When printed or displayed UEFI spec revision is referred
as (Major revision).(Minor revision upper decimal).(Minor
revision lower decimal) or (Major revision).(Minor revision
upper decimal) in case Minor revision lower decimal is set
to 0. For example:

A specification with the revision value ((2<<16) | (30))
would be referred as 2.3;

A specification with the revision value ((2<<16) | (31))
would be referred as 2.3.1

December, 2016 95

EFIl System Table

HeaderSize

CRC32

Reserved

UEFI Specification

The size, in bytes, of the entire table including the
EFlI_TABLE_HEADER.

The 32-bit CRC for the entire table. This value is
computed by setting this field to 0, and computing the 32-
bit CRC for HeaderSize bytes.

Reserved field that must be set to O.

Note: The capabilities found in the EFI system table, runtime table and boot services table may change
over time. The first field in each of these tables is an EFI_TABLE_HEADER. This header’s Revision
field is incremented when new capabilities and functions are added to the functions in the table.
When checking for capabilities, code should verify that Revision is greater than or equal to the
revision level of the table at the point when the capabilities were added to the UEFI specification.

Note:

Note:

4.3 EFI System Table

Unless otherwise specified, UEFI uses a standard CCITT32 CRC algorithm with a seed polynomial

value of 0x04c11db7 for its CRC calculations.

The size of the system table, runtime services table, and boot services table may increase over

time. Itis very important to always use the HeaderSize field of the EFI_TABLE_HEADER to
determine the size of these tables.

UEFI uses the EFI System Table, which contains pointers to the runtime and boot services
tables. The definition for this table is shown in the following code fragments. Except for

the table header, all elements in the service tables are pointers to functions as defined in
Section 6 and Section 7. Prior to a call to

EF1 BOOT SERVICES.ExitBootServices(), all of the fields of the EFI System Table

are valid. After an operating system has taken control of the platform with a call to
ExitBootServices(), only the Hdr, FirmwareVendor, FirmwareRevision, RuntimeServices,
NumberOfTableEntries, and ConfigurationTable fields are valid.

EFI_SYSTEM_TABLE

96

Summary

Contains pointers to the runtime and boot services tables.

Related Definitions

#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_2_60_SYSTEM_TABLE_REVISION ((2<<16) | (60))
#define EFI_2_50_SYSTEM_TABLE_REVISION ((2<<16) | (50))
#define EFI_2_40_SYSTEM_TABLE_REVISION ((2<<16) | (40))
#define EFI_2_31_SYSTEM_TABLE_REVISION ((2<<16) | (31))
#define EFI_2_30_SYSTEM_TABLE_REVISION ((2<<16) | (30))
#define EFI_2_20 SYSTEM_TABLE_REVISION ((2<<16) | (20))
#define EFI_2_10_SYSTEM_TABLE_REVISION ((2<<16) | (10))
#define EFI_2_00_SYSTEM_TABLE_REVISION ((2<<16) | (00))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))

December, 2016 Version 2.6, Errata A

UEFI Specification EFI System Table

#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION
#define EFI_SYSTEM_TABLE_REVISION EFI_2_60_SYSTEM_TABLE_REVISION

typedef struct {

EFI_TABLE_HEADER Hdr;

CHAR16 *FirmwareVendor;
UINT32 FirmwareRevision;
EFI_HANDLE ConsolelnHandle;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *Conlin;
EFI_HANDLE ConsoleOutHandle;
EFI_SIMPLE_TEXT _OUTPUT PROTOCOL *ConOut;
EFI_HANDLE StandardErrorHandle;
EFI_SIMPLE_TEXT _OUTPUT_PROTOCOL *StdErr;
EFI_RUNTIME_SERVICES *RuntimeServices;
EFI_BOOT_SERVICES *BootServices;
UINTN NumberOfTableEntries:
EFI_CONFIGURATION _TABLE *ConfigurationTable;

} EFI_SYSTEM_TABLE;

Parameters

Hdr The table header for the EFI System Table. This header
contains the EFI_SYSTEM_TABLE_SIGNATURE and
EFI_SYSTEM_TABLE_REVISION values along with the size
of the EFI_SYSTEM_TABLE structure and a 32-bit CRC to
verify that the contents of the EFI System Table are valid.

FirmwareVendor A pointer to a null terminated string that identifies the
vendor that produces the system firmware for the
platform.

FirmwareRevision A firmware vendor specific value that identifies the
revision of the system firmware for the platform.

ConsolelnHandle The handle for the active console input device. This
handle must support
EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

Conln A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
interface that is associated with ConsolelnHandle.
ConsoleOutHandle The handle for the active console output device. This
handle must support the
EFI_SIMPLE_TEXT_OUTPUT_ PROTOCOL.

ConOut A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with ConsoleOutHandle.

StandardErrorHandle The handle for the active standard error console device.
This handle must support the
EFI_SIMPLE_TEXT OUTPUT_PROTOCOL.

Version 2.6, Errata A December, 2016 97

EFIl System Table

StdErr
RuntimeServices

BootServices
NumberOfTableEntries

ConfigurationTable

UEFI Specification

A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with StandardErrorHandle.

A pointer to the EFI Runtime Services Table. See
Section 4.5.

A pointer to the EFI Boot Services Table. See Section 4.4.

The number of system configuration tables in the buffer
ConfigurationTable.

A pointer to the system configuration tables. The number
of entries in the table is NumberOfTableEntries.

4.4 EF| Boot Services Table

UEFI uses the EFI Boot Services Table, which contains a table header and pointers to all of
the boot services. The definition for this table is shown in the following code fragments.
Except for the table header, all elements in the EFI Boot Services Tables are prototypes of
function pointers to functions as defined in Section 6. The function pointers in this table
are not valid after the operating system has taken control of the platform with a call to
EFI BOOT SERVICES.ExitBootServices().

EFI_BOOT_SERVICES

98

Summary

Contains a table header and pointers to all of the boot services.

Related Definitions

#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4142

#define EFI_BOOT_SERVICES_REVISION

typedef struct {
EFI_TABLE_HEADER

/!

// Task Priority Services
/!

EFI_RAISE_TPL
EFI_RESTORE_TPL

//

// Memory Services

//
EFI_ALLOCATE_PAGES
EFl_FREE_PAGES
EFI_GET_MEMORY_MAP

RaiseTPL;
RestoreTPL;

AllocatePages;
FreePages;

EFI_SPECIFICATION_VERSION

Hdr;

/1 EFI 1.0+
// EFI 1.0+

// EFI 1.0+
// EFI 1.0+

GetMemoryMap; //EFI 1.0+

December, 2016 Version 2.6, Errata A

UEFI Specification EFI System Table

EFI_ALLOCATE_POOL AllocatePool; //EFI 1.0+

EFI_FREE_POOL FreePool; // EF1 1.0+

//

// Event & Timer Services

/!

EFI_CREATE_EVENT CreateEvent; // EF1 1.0+
EFI_SET TIMER SetTimer,; // EFI 1.0+
EFI_WAIT_FOR_EVENT WaitForEvent; // EFI 1.0+
EFI_SIGNAL_EVENT SignalEvent; // EFI 1.0+
EFI_CLOSE_EVENT CloseEvent; // EF1 1.0+
EFI_CHECK_EVENT CheckEvent; // EFI 1.0+
/l

// Protocol Handler Services

//

EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolinterface; // EFI 1.0+
EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolinterface; // EFI 1.0+
EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolinterface; // EFI 1.0+
EFI_HANDLE_PROTOCOL HandleProtocol; //EFI 1.0+

VOID* Reserved; // EFI 1.0+

EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; //EFI 1.0+
EFI_LOCATE_HANDLE LocateHandle; //EFI 1.0+
EFI_LOCATE_DEVICE_PATH LocateDevicePath; // EFI 1.0+
EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; // EFI 1.0+

//

// Image Services

//

EFI_IMAGE_LOAD Loadlmage; // EFI 1.0+
EFI_IMAGE_START Startimage; // EFI 1.0+
EFI_EXIT Exit; // EFI 1.0+
EFl_IMAGE_UNLOAD Unloadimage; //EFI 1.0+

EFI_EXIT_BOOT_SERVICES ExitBootServices; // EFI 1.0+

//

// Miscellaneous Services

//

EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount; // EFI 1.0+
EFI_STALL Stall; // EF1 1.0+

EFI_SET WATCHDOG_TIMER SetWatchdogTimer; //EFI 1.0+

Version 2.6, Errata A December, 2016 99

EFIl System Table UEFI Specification

100

//

// DriverSupport Services

//

EFI_CONNECT_CONTROLLER ConnectController; //EFI 1.1
EFI_DISCONNECT_CONTROLLER DisconnectController;// EFI 1.1+

//

// Open and Close Protocol Services

//

EFI_OPEN_PROTOCOL OpenProtocol; //EFI 1.1+
EFI_CLOSE_PROTOCOL CloseProtocol; // EFI 1.1+

EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolinformation; // EFI 1.1+

//

// Library Services

//

EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle; //EFI 1.1+
EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; //EFI 1.1+
EFI_LOCATE_PROTOCOL LocateProtocol; // EFI 1.1+

EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES InstallMultipleProtocolinterfaces;
// EFl 1.1+

EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES UninstallMultipleProtocolinterfaces
. [/ EFI 1.1+

1/
// 32-bit CRC Services
//

EFI_CALCULATE_CRC32 CalculateCrc32; // EFI 1.1+
//
// Miscellaneous Services
//
EFI_COPY_MEM CopyMem; // EFI 1.1+
EFI_SET_MEM SetMem; // EFI 1.1+
EFI_CREATE_EVENT_EX CreateEventEx; // UEFI 2.0+

} EFI_BOOT_SERVICES;

Parameters
Hdr The table header for the EFI Boot Services Table. This
header contains the EFI_ BOOT_SERVICES_SIGNATURE
and EFI_BOOT_SERVICES_REVISION values along with
the size of the EFI_BOOT_SERVICES structure and a
December, 2016 Version 2.6, Errata A

UEFI Specification

RaiseTPL
RestoreTPL
AllocatePages
FreePages
GetMemoryMap

AllocatePool
FreePool
CreateEvent
SetTimer
WaitForEvent
SignalEvent
CloseEvent
CheckEvent

InstallProtocolinterface

EFI System Table

32-bit CRC to verify that the contents of the EFI Boot
Services Table are valid.

Raises the task priority level.
Restores/lowers the task priority level.
Allocates pages of a particular type.
Frees allocated pages.

Returns the current boot services memory map and
memory map key.

Allocates a pool of a particular type.

Frees allocated pool.

Creates a general-purpose event structure.

Sets an event to be signaled at a particular time.
Stops execution until an event is signaled.
Signals an event.

Closes and frees an event structure.

Checks whether an event is in the signaled state.

Installs a protocol interface on a device handle.

ReinstallProtocolinterface

Reinstalls a protocol interface on a device handle.

UninstallProtocolinterface

HandleProtocol

Reserved

RegisterProtocolNotify

LocateHandle

LocateDevicePath

Removes a protocol interface from a device handle.

Queries a handle to determine if it supports a specified
protocol.

Reserved. Must be NULL.

Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

Returns an array of handles that support a specified
protocol.

Locates all devices on a device path that support a
specified protocol and returns the handle to the device
that is closest to the path.

InstallConfigurationTable
Adds, updates, or removes a configuration table from the

Loadimage
Startimage

Exit
Unloadimage
ExitBootServices

Version 2.6, Errata A

EFI System Table.

Loads an EFl image into memory.

Transfers control to a loaded image’s entry point.
Exits the image’s entry point.

Unloads an image.

Terminates boot services.

December, 2016

101

EFIl System Table UEFI Specification

GetNextMonotonicCount
Returns a monotonically increasing count for the platform.

Stall Stalls the processor.

SetWatchdogTimer Resets and sets a watchdog timer used during boot
services time.

ConnectController Uses a set of precedence rules to find the best set of

drivers to manage a controller.

DisconnectController
Informs a set of drivers to stop managing a controller.

OpenProtocol Adds elements to the list of agents consuming a protocol
interface.
CloseProtocol Removes elements from the list of agents consuming a

protocol interface.

OpenProtocolinformation
Retrieve the list of agents that are currently consuming a
protocol interface.

ProtocolsPerHandle Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

LocateHandleBuffer Retrieves the list of handles from the handle database that
meet the search criteria. The return buffer is automatically
allocated.

LocateProtocol Finds the first handle in the handle database the supports

the requested protocol.

InstallMultipleProtocolinterfaces
Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolinterfaces
Uninstalls one or more protocol interfaces from a handle.

CalculateCrc32 Computes and returns a 32-bit CRC for a data buffer.
CopyMem Copies the contents of one buffer to another buffer.
SetMem Fills a buffer with a specified value.

CreateEventEx Creates an event structure as part of an event group.

4.5 EFl Runtime Services Table

102

UEFI uses the EFI Runtime Services Table, which contains a table header and pointers to
all of the runtime services. The definition for this table is shown in the following code
fragments. Except for the table header, all elements in the EFI Runtime Services Tables
are prototypes of function pointers to functions as defined in Section 7. Unlike the EFI
Boot Services Table, this table, and the function pointers it contains are valid after the
UEFI OS loader and OS have taken control of the platform with a call to

EFI BOOT SERVICES.ExitBootServices(). IfacalltoSetVirtualAddressMap()
is made by the OS, then the function pointers in this table are fixed up to point to the new
virtually mapped entry points.

December, 2016 Version 2.6, Errata A

UEFI Specification EFI System Table

EFI_RUNTIME_SERVICES

Summary
Contains a table header and pointers to all of the runtime services.

Related Definitions
#define EFI_RUNTIME_SERVICES SIGNATURE 0x56524553544€5552
#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION
typedef struct {
EFI_TABLE_HEADER Hdr;

//

// Time Services

//

EFI_GET_TIME GetTime;

EFI_SET_TIME SetTime;
EFI_GET_WAKEUP_TIME GetWakeupTime;
EFI_SET_WAKEUP_TIME SetWakeupTime;

//

// Virtual Memory Services

//

EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;
EFI_CONVERT_POINTER ConvertPointer;

//

// Variable Services

//

EFI_GET_VARIABLE GetVariable;
EFlI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
EFI_SET_VARIABLE SetVariable;

//

// Miscellaneous Services

//

EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;
EFI_RESET _SYSTEM ResetSystem;

//

// UEFI 2.0 Capsule Services

//

EFI_UPDATE_CAPSULE UpdateCapsule;
EFI_QUERY_CAPSULE_CAPABILITIES QueryCapsuleCapabilities;

Version 2.6, Errata A December, 2016 103

EFIl System Table

/1

UEFI Specification

// Miscellaneous UEFI 2.0 Service

/!

EFI_QUERY_VARIABLE_INFO

} EFI_RUNTIME_SERVICES;

Parameters
Hdr

GetTime

SetTime
GetWakeupTime
SetWakeupTime
SetVirtualAddressMap

ConvertPointer

GetVariable
GetNextVariableName
SetVariable

QueryVariablelnfo;

The table header for the EFI Runtime Services Table. This
header contains the

EFI_RUNTIME_SERVICES SIGNATURE and
EFI_RUNTIME_SERVICES_REVISION values along with
the size of the EFI_RUNTIME_SERVICES structure and a
32-bit CRC to verify that the contents of the EFI Runtime
Services Table are valid.

Returns the current time and date, and the time-keeping
capabilities of the platform.

Sets the current local time and date information.
Returns the current wakeup alarm clock setting.
Sets the system wakeup alarm clock time.

Used by a UEFI OS loader to convert from physical
addressing to virtual addressing.

Used by EFI components to convert internal pointers
when switching to virtual addressing.

Returns the value of a variable.
Enumerates the current variable names.
Sets the value of a variable.

GetNextHighMonotonicCount

ResetSystem
UpdateCapsule

Returns the next high 32 bits of the platform’s monotonic
counter.

Resets the entire platform.

Passes capsules to the firmware with both virtual and
physical mapping.

QueryCapsuleCapabilities

QueryVariablelnfo

Returns if the capsule can be supported via
UpdateCapsule().

Returns information about the EFI variable store.

4.6 EFI Configuration Table & Properties Table

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by the
EFI_CONFIGURATION_TABLE structure below. The number of types of configuration
tables is expected to grow over time. This is why a GUID is used to identify the

104

December, 2016 Version 2.6, Errata A

UEFI Specification EFI System Table

configuration table type. The EFI Configuration Table may contain at most once instance
of each table type.

EFI_CONFIGURATION_TABLE

Summary

Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI
System Table.

Related Definitions

typedef struct{
EFI_GUID VendorGuid;
VOID *VendorTable;

} EFI_CONFIGURATION_TABLE;

Parameters

The following list shows the GUIDs for tables defined in some of the industry standards.
These industry standards define tables accessed as UEFI Configuration Tables on UEFI-
based systems. This list is not exhaustive and does not show GUIDS for all possible UEFI
Configuration tables.

VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.
VendorTable A pointer to the table associated with

VendorGuid.Whether this pointer is a physical address or a
virtual address during runtime is determined by the
VendorGuid. The VendorGuid associated with a given
VendorTable pointer defines whether or not a particular
address reported in the table gets fixed up when a call to
SetVirtualAddressMap() is made. It is the
responsibility of the specification defining the
VendorTable to specify whether to convert the addresses
reported in the table.

The following list shows the GUIDs for tables defined in some of the industry standards.
These industry standards define tables accessed as UEFI Configuration Tables on UEFI-
based systems. All the addresses reported in these table entries will be referenced as
physical and will not be fixed up when transition from preboot to runtime phase. This list
is not exhaustive and does not show GUIDs for all possible UEFI Configuration tables.

Version 2.6, Errata A December, 2016 105

EFIl System Table

#define EFI_ACPI_20 TABLE GUID \
{0x8868e871,0xe4f1,0x11d3,\
{Oxbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_TABLE_GUID \
{Oxeb9d2d30,0x2d88,0x11d3\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SAL_SYSTEM_TABLE_GUID \
{Oxeb9d2d32,0x2d88,0x11d3\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS_TABLE_GUID \
{0xeb9d2d31,0x2d88,0x11d3\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS3 TABLE _GUID \
{0xf2fd1544, 0x9794, Ox4a2c,\
{0x99,0x2e,0xe5,0xbb,0xcf,0x20,0xe3,0x94})

#define MPS_TABLE_GUID \
{Oxeb9d2d2f,0x2d88,0x11d3\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}
//

// ACPI 2.0 or newer tables should use EFI_ACPI_TABLE_GUID

//

#define EFI_ACPI_TABLE_GUID \
{0x8868e871,0xe4f1,0x11d3,\
{Oxbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_10 TABLE GUID\
{0xeb9d2d30,0x2d88,0x11d3\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define EFI_PROPERTIES TABLE _GUID \
{0x880aaca3, Ox4adc, 0x4a04 \
{0x90,0x79,0xb7,0x47,0x34,0x8,0x25,0xe5}}

EFI_PROPERTIES_TABLE

106

December, 2016

UEFI Specification

This table is published if the platform meets some of the construction requirements
listed in the MemoryProtectionAttributes.

Version 2.6, Errata A

UEFI Specification EFI System Table

typedef struct {

UINT32 Version;

UINT32 Length;

UINT64 MemoryProtectionAttribute;
} EFI_PROPERTIES_TABLE;

Version This is revision of the table. Successive version may
populate additional bits and growth the table length. In
the case of the latter, the Length field will be adjusted
appropriately

#define EFI_PROPERTIES_TABLE_VERSION 0x00010000

Length This is the size of the entire EFI_PROPERTIES TABLE
structure, including the version. The initial version will be
of length 16.

MemoryProtectionAttribute

This field is a bit mask. Any bits not defined shall be
considered reserved. A set bit means that the underlying
firmware has been constructed responsive to the given

property.
//
// Memory attribute (Not defined bits are reserved)
//
#define
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE DAT
A Ox1\

// BIT 0 — description — implies the runtime data is separated from the code

This bit implies that the UEFI runtime code and data sections of the executable image are
separate and must be aligned as specified in Section 2.3. This bit also implies that the
data pages do not have any executable code.

Itis recommended not to use this attribute, especially for implementations that broke the
runtime code memory map descriptors into the underlying code and data sections within
UEFI modules. This splitting causes interoperability issues with operating systems that
invoke SetVirtualAddress() without realizing that there is a relationship between these
runtime descriptors.

EFI_MEMORY_ATTRIBUTES_TABLE

Summary

When published by the system firmware, the EFI_MEMORY_ATTRIBUTES _TABLE
provides additional information about regions within the run-time memory blocks
defined in the EFI_MEMORY_DESCRIPTOR entries returned from
EFI_BOOT_SERVICES.GetMemoryMap() function. The Memory Attributes Table is

Version 2.6, Errata A December, 2016 107

EFIl System Table UEFI Specification

108

currently used to describe memory protections that may be applied to the EFI Runtime
code and data by an operating system or hypervisor. Consumers of this table must
currently ignore entries containing any values for Type except for EfiRuntimeServicesData
and EfiRuntimeServicesCode to ensure compatibility with future uses of this table. The
Memory Attributes Table may define multiple entries to describe sub-regions that
comprise a single entry returned by GetMemoryMap() however the sub-regions must
total to completely describe the larger region and may not cross boundaries between
entries reported by GetMemoryMap(). If a run-time region returned in GetMemoryMap()
entry is not described within the Memory Attributes Table, this region is assumed to not
be compatible with any memory protections.

Only entire EFI._ MEMORY_DESCRIPTOR entries as returned by GetMemoryMap() may be
passed to SetVirtualAddressMap().

Prototype

#define EFI_MEMORY_ATTRIBUTES_TABLE_GUID \
{ Oxdcfa911d, 0x26eb, 0x469f, \
{Oxa2, 0x20, 0x38, Oxb7, Oxdc, 0x46, 0x12, 0x20}}

With the following data structure

/**

/* EFI_MEMORY_ATTRIBUTES_TABLE

/**

typedef struct {
UINT32 Version ;
UINT32 NumberOfEntries ;
UINT32 DescriptorSize ;
UINT32 Reserved;

// EFI_MEMORY_DESCRIPTOR Entry [1];
} EFI_MEMORY_ATTRIBUTES_TABLE;

Version The version of this table. Present version is 0x00000001

NumberOfEntries Count of EFI_MEMORY_DESCRIPTOR entries provided.
This is typically the total number of PE/COFF sections
within all UEFI modules that comprise the UEFI Runtime
and all UEFI Runtime Data regions (e.g. runtime heap).

Entry Array of Entries of type EFI_MEMORY_DESCRIPTOR.
DescriptorSize Size of the memory descriptor.
Reserved Reserved bytes.

Description

For each array entry, the EFI_ MEMORY_DESCRIPTOR Attribute field can inform
a runtime agency, such as operating system or hypervisor, as to what class of
protection settings can be made in the memory management unit for the

December, 2016 Version 2.6, Errata A

UEFI Specification EFI System Table

memory defined by this entry. The only valid bits for Attribute field currently are
EFI_MEMORY_RO, EFI_MEMORY_XP, plus EFl_MEMORY_RUNTIME.
Irrespective of the memory protections implied by Attribute, the
EFI_MEMORY_DESCRIPTOR.Type field should match the type of the memory in
enclosing SetMemoryMap() entry. PhysicalStart must be aligned as specified in
Section 2.3. The list must be sorted by physical start address in ascending order.
VirtualStart field must be zero and ignored by the OS since it has no purpose for
this table. NumPages must cover the entire memory region for the protection
mapping. Each Descriptor in the EFI_MEMORY_ATTRIBUTES_TABLE with
attribute EFI_MEMORY_RUNTIME must not overlap any other Descriptor in the
EFI_MEMORY_ATTRIBUTES_TABLE with attribute EFI_MEMORY_RUNTIME.
Additionally, every memory region described by a Descriptor in
EFI_MEMORY_ATTRIBUTES_TABLE must be a sub-region of, or equal to, a
descriptor in the table produced by GetMemoryMap().

Table 13. Usage of Memory Attribute Definitions

EFI_MEMORY_RO EFI_MEMORY_XP EFI_MEMORY_RUNTIME
No memory access 0 0 1
protection is possible
for Entry
Write-protected Code 1 0 1
Read/Write Data 0 1 1
Read-only Data 1 1 1

4.7 Image Entry Point Examples

The examples in the following sections show how the various table examples are
presented in the UEFI environment.

4.7.1 Image Entry Point Examples

The following example shows the image entry point for a UEFI Application. This
application makes use of the EFI System Table, the EFI Boot Services Table, and the EFI
Runtime Services Table.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiApplicationEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)
{

Version 2.6, Errata A December, 2016 109

EFIl System Table

110

EFI_STATUS Status;
EFI_TIME *Time;

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

/l
// Use EFI System Table to print “Hello World” to the active console output
// device.
/l
Status = gST->ConOut->OutputString (gST->ConOut, L"Hello World\n\r”);
if (EFI_ERROR (Status)) {

return Status;

}

//
// Use EFI Boot Services Table to allocate a buffer to store the current time
// and date.
//
Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time

)
if (EFI_ERROR (Status)) {
return Status;

}

/1
// Use the EFI Runtime Services Table to get the current time and date.
1l
Status = gRT->GetTime (Time, NULL)
if (EFI_ERROR (Status)) {
return Status;

}

return Status;

}

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *0BS;
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)

{
gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

//
// Implement driver initialization here.

December, 2016

UEFI Specification

The following example shows the UEFI image entry point for a driver that does not follow
the UEFI Driver Model. Since this driver returns EFI_SUCCESS, it will stay resident in
memory after it exits.

Version 2.6, Errata A

UEFI Specification EFI System Table

1/

return EFI_SUCCESS;
}

The following example shows the UEFI image entry point for a driver that also does not
follow the UEFI Driver Model. Since this driver returns EFI_DEVICE_ERROR, it will not stay
resident in memory after it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

1l
// Implement driver initialization here.
/l

return EFI_DEVICE_ERROR;
}

4.7.2 UEFI Driver Model Example

The following is an UEFI Driver Model example that shows the driver initialization routine
for the ABC device controller that is on the XYZ bus. The

EF1 DRIVER BINDING PROTOCOL and the function prototypes for AbcSupported(),
AbcStart(), and AbcStop() are defined in Section 10.1.This function saves the driver’s
image handle and a pointer to the EFI boot services table in global variables, so the other
functions in the same driver can have access to these values. It then creates an instance
of the EFI_DRIVER_BINDING_PROTOCOL and installs it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
1,
NULL,
NULL
h
AbcEntryPoint(

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)
{

Version 2.6, Errata A December, 2016 111

EFIl System Table UEFI Specification

EFI_STATUS Status;
gBS = SystemTable->BootServices;

mAbcDriverBinding->ImageHandle = ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolinterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
);

return Status;

}

4.7.3 UEFI Driver Model Example (Unloadable)

112

The following is the same UEFI Driver Model example as above, except it also includes the
code required to allow the driver to be unloaded through the boot service Unload(). Any
protocols installed or memory allocated in AbcEntryPoint() must be uninstalled or freed
in the AbcUnload().
extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid,;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
AbcSupported,
AbcStart,
AbcStop,
1,
NULL,
NULL
h

EFI_STATUS
AbcUnload (
IN EFI_HANDLE ImageHandle

)

AbcEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)

{
EFI_STATUS Status;
EFI_LOADED_IMAGE_PROTOCOL *Loadedlmage;

gBS = SystemTable->BootServices;

Status = gBS->OpenProtocol (
ImageHandle,
&gEfiLoadedImageProtocolGuid,
&LoadedImage,
ImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL

if (EFI_ERROR (Status)) {
return Status;

December, 2016 Version 2.6, Errata A

UEFI Specification EFI System Table

}
LoadedIlmage->Unload = AbcUnload;

mAbcDriverBinding->ImageHandle = ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocollnterfaces(
&mAbcDriverBinding->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL

);

return Status;

}

EFI_STATUS
AbcUnload (
IN EFI_HANDLE ImageHandle

)

EFI_STATUS Status;

Status = gBS->UninstallMultipleProtocolinterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL

return Status;

}

4.7.4 EFI Driver Model Example (Multiple Instances)

The following is the same as the first UEFI Driver Model example, except it produces three
EF1_DRIVER BINDING PROTOCOL instances. The first one is installed onto the driver’s
image handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
AbcSupportedA,
AbcStartA,
AbcStopA,
1,
NULL,
NULL
h

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
AbcSupportedB,
AbcStartB,
AbcStopB,
1,
NULL,
NULL
h

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {

Version 2.6, Errata A December, 2016 113

EFIl System Table

114

AbcSupportedC,
AbcStartC,
AbcStopC,
1
NULL,
NULL

h

AbcEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)

{
EFI_STATUS Status;
gBS = SystemTable->BootServices;

//

// Install mAbcDriverBindingA onto ImageHandle

/1

mAbcDriverBindingA->ImageHandle =ImageHandle;
mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocollnterfaces(
&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
NULL

if (EFI_ERROR (Status)) {
return Status;

}

//

// Install mAbcDriverBindingB onto a newly created handle
/1

mAbcDriverBindingB->ImageHandle = ImageHandle;
mAbcDriverBindingB->DriverBindingHandle = NULL;

Status = gBS->InstallMultipleProtocollnterfaces(
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL

);
if (EFI_ERROR (Status)) {
return Status;

}

//

// Install mAbcDriverBindingC onto a newly created handle
/1

mAbcDriverBindingC->ImageHandle =ImageHandle;
mAbcDriverBindingC->DriverBindingHandle = NULL,;

Status = gBS->InstallMultipleProtocolinterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL

);

return Status;

December, 2016

UEFI Specification

Version 2.6, Errata A

UEFI Specification

5 GUID Partition Table (GPT) Disk Layout

5.1 GPT and MBR disk layout comparison

This specification defines the GUID Partition table (GPT) disk layout (i.e., partitioning
scheme). The following list outlines the advantages of using the GPT disk layout over the
legacy Master Boot Record (MBR) disk layout:

Logical Block Addresses (LBAs) are 64 bits (rather than 32 bits).
Supports many partitions (rather than just four primary partitions).
Provides both a primary and backup partition table for redundancy.

Uses version number and size fields for future expansion.

Uses CRC32 fields for improved data integrity.

Defines a GUID for uniquely identifying each partition.
Uses a GUID and attributes to define partition content type.
Each partition contains a 36 character human readable name.

5.2 LBA O Format
LBA O (i.e., the first logical block) of the hard disk contains either

a legacy Master Boot Record (MBR) (see Section 5.2.1)
or a protective MBR (see Section 5.2.3).

5.2.1 Legacy Master Boot Record (MBR)

A legacy MBR may be located at LBA O (i.e., the first logical block) of the disk if it is not
using the GPT disk layout (i.e., if it is using the MBR disk layout). The boot code on the
MBR is not executed by UEFI firmware.

Table 14. Legacy MBR

Version

Byte Byte

Mnemonic Offset Length Description

BootCode 0 424 x86 code used on a non-UEFI system to select
an MBR partition record and load the first
logical block of that partition . This code shall
not be executed on UEFI systems.

UniqueMBRDiskSigna | 440 4 Unique Disk Signature This may be used by

ture the OS to identify the disk from other disks in
the system. This value is always written by the
OS and is never written by EFI firmware.

Unknown 444 2 Unknown. This field shall not be used by UEFI
firmware.

2.6, Errata A January, 2017 115

GUID Partition Table (GPT) Disk Layout

116

PartitionRecord
Signature

Reserved

446

510

512

UEFI Specification

16*4 Array of four legacy MBR partition records (see

Table 15).

Set to OxAA5S (i.e., byte 510 contains 0x55 and
byte 5 11 contains OxAA).

Logical The rest of the logical block, if any, is reserved.
BlockSize - 512

The MBR contains four partition records (see Table 11) that each define the beginning
and ending LBAs that a partition consumes on a disk.

Table 15. Legacy MBR Partition Record

Byte
Mnemonic Offset

BootIndicator 0
StartingCHS 1

OSType 4
EndingCHS

()}

StartingLBA 8

SizelnLBA 12

Byte
Length
1

Description

0x80 indicates that this is the bootable legacy partition. Other
values indicate that this is not a bootable legacy partition.
This field shall not be used by UEFI firmware.

Start of partition in CHS address format. This field shall not
be used by UEFI firmware.

Type of partition. See Section 5.2.2.

End of partition in CHS address format. This field shall not be
used by UEFI firmware.

Starting LBA of the partition on the disk. This field is used by
UEFI firmware to determine the start of the partition.

Size of the partition in LBA units of logical blocks. This field is
used by UEFI firmware to determine the size of the partition.

If an MBR partition has an OSType field of OxEF (i.e., UEFI System Partition), then the
firmware must add the UEFI System Partition GUID to the handle for the MBR partition
using InstallProtocolinterface(). This allows drivers and applications, including OS
loaders, to easily search for handles that represent UEFI System Partitions.The following
test must be performed to determine if a legacy MBR is valid:

e The Signature must be Oxaa55.
» A Partition Record that contains an OSType value of zero or a SizelnLBA value of zero

may be ignored.
Otherwise:

* The partition defined by each MBR Partition Record must physically reside on the disk
(i.e., not exceed the capacity of the disk).

» Each partition must not overlap with other partitions.
Figure 16 shows an example of an MBR disk layout with four partitions.

January, 2017 Version 2.6, Errata A

UEFI Specification GUID Partition Table (GPT) Disk Layout

/Le/gaé Partition Paﬁition Pa}ition "artition
MBR

LBA O LBAz

Figure 16. MBRDisk Layout with legacy MBR example

5.2.2 OS Types

Unique types defined by this specification (other values are not defined by this
specification):
» OXxEF (i.e., UEFI System Partition) defines a UEFI system patrtition.

» OxEE (i.e., GPT Protective) is used by a protective MBR (see 5.2.2) to define a fake
partition covering the entire disk.

Other values are used by legacy operating systems, and are allocated independently of
the UEFI specification.

Note: “Partition types” by Andries Brouwer: See “Links to UEFI-Related Documents” (http.//uefi.org/
uefi) under the heading “OS Type values used in the MBR disk layout”.

5.2.3 Protective MBR

A Protective MBR may be located at LBA O (i.e., the first logical block) of the disk if it is
using the GPT disk layout. The Protective MBR precedes the GUID Partition Table Header
to maintain compatibility with existing tools that do not understand GPT partition
structures.

Table 16. Protective MBR

Mnemonic Byte Byte Contents
Offset | Length
Boot Code 0 440 Unused by UEFI systems.
Unique MBR 440 4 Unused. Set to zero.
Disk Signature
Unknown 444 2 Unused. Set to zero.
Partition 446 16*4 Array of four MBR partition records. Contains:
Record » one partition record as defined Table 17; and
« three partition records each set to zero.

Version 2.6, Errata A January, 2017 117

GUID Partition Table (GPT) Disk Layout UEFI Specification

Mnemonic Byte Byte Contents
Offset | Length
Signature 510 2 Set to OXAA55 (i.e., byte 510 contains 0x55 and byte 511 contains
O0xAA).
Reserved 512 Logical The rest of the logical block, if any, is reserved. Set to zero.
Block Size
-512

One of the Partition Records shall be as defined in table 12, reserving the entire space on
the disk after the Protective MBR itself for the GPT disk layout.

Table 17. Protective MBR Partition Record protecting the entire disk

Byte Byte

Mnemonic Offset Length Description

BootIndicator O 1 Set to 0x00 to indicate a non-bootable partition. If set to
any value other than 0x00 the behavior of this flag on
non-UEFI systems is undefined. Must be ignored by
UEFI implementations.

StartingCHS 1 3 Set to 0x000200, corresponding to the Starting LBA
field.

OSType 4 1 Set to OXEE (i.e., GPT Protective)

EndingCHS 5 3 Set to the CHS address of the last logical block on the
disk. Set to OXFFFFFF if it is not possible to represent
the value in this field.

StartingLBA 8 4 Set to 0x00000001 (i.e., the LBA of the GPT Partition
Header).

SizelnLBA 12 4 Set to the size of the disk minus one. Set to

OxFFFFFFFF if the size of the disk is too large to be
represented in this field.

The remaining Partition Records shall each be set to zeros.

Figure 17 shows an example of a GPT disk layout with four partitions with a protective
MBR.

118 January, 2017 Version 2.6, Errata A

UEFI Specification GUID Partition Table (GPT) Disk Layout

Protective Erﬁné U]?FI Pa&tion P%ition ParTition Backup GPT
MBR GPT system
partition
GPT Protective partition
\ A

LBAO __ LBA z

Figure 17. GPT disk layout with protective MBR example

Figure 18 shows an example of a GPT disk layout with four partitions with a protective
MBR, where the disk capacity exceeds LBA OxFFFFFFFF.

Protective érﬁna/ UQFI Par[%ion Pa}tion P%ti on Backup
MBR GPT system GPT
partition
GPT Protective partition

\ A
LBM LBA OxFFFFFFFF LBAz

Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA
OXFFFFFFFF example.

5.3 GUID Partition Table (GPT) Disk Layout

5.3.1 GPT overview

The GPT partitioning scheme is depicted in Figure 19. The GPT Header (see Section 5.3.2)
includes a signature and a revision number that specifies the format of the data bytes in
the partition header. The GUID Partition Table Header contains a header size field that is
used in calculating the CRC32 that confirms the integrity of the GPT Header. While the
GPT Header's size may increase in the future it cannot span more than one logical block
on the device.

Version 2.6, Errata A January, 2017 119

GUID Partition Table (GPT) Disk Layout UEFI Specification

LBA O (i.e., the first logical block) contains a protective MBR (see Section 5.2.3).

Two GPT Header structures are stored on the device: the primary and the backup. The
primary GPT Header must be located in LBA 1 (i.e., the second logical block), and the
backup GPT Header must be located in the last LBA of the device. Within the GPT Header
the My LBA field contains the LBA of the GPT Header itself, and the Alternate LBA field
contains the LBA of the other GPT Header. For example, the primary GPT Header's My LBA
value would be 1 and its Alternate LBA would be the value for the last LBA of the device.
The backup GPT Header's fields would be reversed.

The GPT Header defines the range of LBAs that are usable by GPT Partition Entries. This
range is defined to be inclusive of First Usable LBA through Last Usable LBA on the logical
device. All data stored on the volume must be stored between the First Usable LBA
through Last Usable LBA, and only the data structures defined by UEFI to manage
partitions may reside outside of the usable space. The value of Disk GUID is a GUID that
uniquely identifies the entire GPT Header and all its associated storage. This value can be
used to uniquely identify the disk. The start of the GPT Partition Entry Array is located at
the LBA indicated by the Partition Entry LBA field. The size of a GUID Partition Entry
element is defined in the Size Of Partition Entry field. There is a 32-bit CRC of the GPT
Partition Entry Array that is stored in the GPT Header in Partition Entry Array CRC32 field.
The size of the GPT Partition Entry Array is Size Of Partition Entry multiplied by Number
Of Partition Entries. If the size of the GUID Partition Entry Array is not an even multiple of
the logical block size, then any space left over in the last logical block is Reserved and not
covered by the Partition Entry Array CRC32 field. When a GUID Partition Entry is updated,
the Partition Entry Array CRC32 must be updated. When the Partition Entry Array CRC32
is updated, the GPT Header CRC must also be updated, since the Partition Entry Array
CRC32 is stored in the GPT Header.

First useable block Start partition
End partition
LBAO LBA1 LBAN
v
; - 0|1 n ; 5
T||2 S
= = Partition 1 =
® |2 Lo
1|05 o5
Py 0 Py
11| n
4
Start partition End partition [
ast useable block
—_— —
Primary Partition Backup Partition
Table Table

OM13160

Figure 19. GUID Partition Table (GPT) example

120 January, 2017 Version 2.6, Errata A

UEFI Specification GUID Partition Table (GPT) Disk Layout

The primary GPT Partition Entry Array must be located after the primary GPT Header and
end before the First Usable LBA. The backup GPT Partition Entry Array must be located
after the Last Usable LBA and end before the backup GPT Header.

Therefore the primary and backup GPT Partition EntryArrays are stored in separate
locations on the disk. Each GPT Partition Entry defines a partition that is contained in a
range that is within the usable space declared by the GPT Header. Zero or more GPT
Partition Entries may be in use in the GPT Partition Entry Array. Each defined partition
must not overlap with any other defined partition. If all the fields of a GUID Partition Entry
are zero, the entry is not in use. A minimum of 16,384 bytes of space must be reserved for
the GPT Partition Entry Array.

If the block size is 512, the First Usable LBA must be greater than or equal to 34 (allowing
1 block for the Protective MBR, 1 block for the Partition Table Header, and 32 blocks for

the GPT Partition Entry Array); if the logical block size is 4096, the First Useable LBA must
be greater than or equal to 6 (allowing 1 block for the Protective MBR, 1 block for the GPT
Header, and 4 blocks for the GPT Partition Entry Array).

The device may present a logical block size that is not 512 bytes long. In ATA, this is
called the Long Logical Sector feature set; an ATA device reports support for this feature
set in IDENTIFY DEVICE data word 106 bit 12 and reports the number of words (i.e., 2
bytes) per logical sector in IDENTIFY DEVICE data words 117-118 (see ATA8-ACS). A SCSI
device reports its logical block size in the READ CAPACITY parameter data Block Length
In Bytes field (see SBC-3).

The device may present a logical block size that is smaller than the physical block size
(e.g., present a logical block size of 512 bytes but implement a physical block size of
4,096 bytes). In ATA, this is called the Long Physical Sector feature set; an ATA device
reports support for this feature set in IDENTIFY DEVICE data word 106 bit 13 and reports
the Physical Sector Size/Logical Sector Size exponential ratio in IDENTIFY DEVICE data
word 106 bits 3-0 (See ATA8-ACS). A SCSI device reports its logical block size/physical
block exponential ratio in the READ CAPACITY (16) parameter data Logical Blocks Per

Physical Block Exponent field (see SBC-3).These fields return 2* logical sectors per
physical sector (e.g., 3 means 23=8 logical sectors per physical sector).

A device implementing long physical blocks may present logical blocks that are not
aligned to the underlying physical block boundaries. An ATA device reports the alignment
of logical blocks within a physical block in IDENTIFY DEVICE data word 209 (see ATA8-
ACS). A SCSI device reports its alignment in the READ CAPACITY (16) parameter data
Lowest Aligned Logical Block Address field (see SBC-3). Note that the ATA and SCSI
fields are defined differently (e.g., to make LBA 63 aligned, ATA returns a value of 1 while
SCSI returns a value of 7).

In SCSI devices, the Block Limits VPD page Optimal Transfer Length Granularity field (see
SBC-3) may also report a granularity that is important for alignment purposes (e.g., RAID
controllers may return their RAID stripe depth in that field)

GPT partitions should be aligned to the larger of:
a the physical block boundary, if any
b the optimal transfer length granularity, if any.

Version 2.6, Errata A January, 2017 121

GUID Partition Table (GPT) Disk Layout UEFI Specification

For example

a Ifthe logical block size is 512 bytes, the physical block size is 4,096 bytes (i.e., 512
bytes x 8 logical blocks), there is no optimal transfer length granularity, and logical
block 0 is aligned to a physical block boundary, then each GPT partition should
start at an LBA that is a multiple of 8.

b If the logical block size is 512 bytes, the physical block size is 8,192 bytes (i.e., 512
bytes x 16 logical blocks), the optimal transfer length granularity is 65,536 bytes
(i.e., 512 bytes x 128 logical blocks), and logical block O is aligned to a physical
block boundary, then each GPT partition should start at an LBA that is a multiple
of 128.

To avoid the need to determine the physical block size and the optimal transfer length
granularity, software may align GPT partitions at significantly larger boundaries. For
example, assuming logical block O is aligned, it may use LBAs that are multiples of 2,048
to align to 1,048,576 byte (1 MiB) boundaries, which supports most common physical
block sizes and RAID stripe sizes.

References are as follows:

ISO/IEC 24739-200 [ANSI INCITS 452-2008] AT Attachment 8 - ATA/ATAPI Command
Set (ATA8-ACS). By the INCITS T13 technical committee. (See “Links to UEFI-Related
Documents” (http://uefi.org/uefi under the headings “InterNational Committee on
Information Technology Standards (INCITS)” and “INCITs T13 technical committee”).

ISO/IEC 14776-323 [T10/1799-D] SCSI Block Commands - 3 (SBC-3). Available from
www.incits.org. By the INCITS T10 technical committee (See “Links to UEFI-Related
Documents” (http://uefi.org/uefi under the headings “InterNational Committee on
Information Technology Standards (INCITS)” and “SCSI Block Commands”).

5.3.2 GPT Header

122

Table 18 defines the GPT Header.

Table 18. GPT Header

Byte Byte
Mnemonic Offset | Length Description
Signature 0 8 Identifies EFI-compatible partition table

header. This value must contain the ASCII
string “EFI PART”, encoded as the 64-bit
constant 0x5452415020494645.

Revision 8 4 The revision number for this header. This
revision value is not related to the UEFI
Specification version. This header is version
1.0, so the correct value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GPT Header. The
HeaderSize must be greater than or
equal to 92 and must be less than or equal to
the logical block size.

January, 2017 Version 2.6, Errata A

UEFI Specification

GUID Partition Table (GPT) Disk Layout

Mnemonic

HeaderCRC32

Reserved

MyLBA
AlternatelLBA
FirstUsablelLBA

LastUsablelLBA

DiskGUID
PartitionEntryLBA

NumberOfPartitionEntrie
S

SizeOfPartitionEntry

PartitionEntryArrayCRC3
2

Reserved

Byte
Offset

16

20
24
32
40

48

56

72

80

84

88

92

Byte
Length

© 0 o0 H

16

BlockSi
ze — 92

Description

CRC32 checksum for the GPT Header
structure. This value is computed by

setting this field to 0, and computing the 32-bit
CRC for HeaderSize bytes.

Must be zero.
The LBA that contains this data structure.
LBA address of the alternate GPT Header.

The first usable logical block that may be used
by a partition described by a GUID Partition
Entry.

The last usable logical block that may be used
by a partition described by a GUID Partition
Entry.

GUID that can be used to uniquely identify the
disk.

The starting LBA of the GUID Partition Entry
array.

The number of Partition Entries in the GUID
Partition Entry array.

The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry
array. This field shall be set to a value of 128 x

2" where n is an integer greater than or equal
to zero (e.g., 128, 256, 512, etc.).

NOTE: Previous versions of this specification
allowed any multiple of 8..

The CRC32 of the GUID Partition Entry array.
Starts at PartitionEntryLBA andis
computed over a byte length of
NumberOfPartitionEntries *
SizeOfPartitionEntry.

The rest of the block is reserved by UEFI and
must be zero.

The following test must be performed to determine if a GPT is valid:

» Check the Signature
* Check the Header CRC

» Check that the MyLBA entry points to the LBA that contains the GUID Partition Table
* Check the CRC of the GUID Partition Entry Array

If the GPT is the primary table, stored at LBA 1.
* Check the AlternateLBA to see if it is a valid GPT

Version 2.6, Errata A

January, 2017

123

GUID Partition Table (GPT) Disk Layout UEFI Specification

If the primary GPT is corrupt, software must check the last LBA of the device to see if it
has a valid GPT Header and point to a valid GPT Partition Entry Array. If it points to a valid
GPT Partition Entry Array, then software should restore the primary GPT if allowed by
platform policy settings (e.g. a platform may require a user to provide confirmation
before restoring the table, or may allow the table to be restored automatically). Software
must report whenever it restores a GPT.

Software should ask a user for confirmation before restoring the primary GPT and must
report whenever it does modify the media to restore a GPT. If a GPT formatted disk is
reformatted to the legacy MBR format by legacy software, the last logical block might not
be overwritten and might still contain a stale GPT. If GPT-cognizant software then
accesses the disk and honors the stale GPT, it will misinterpret the contents of the disk.
Software may detect this scenario if the legacy MBR contains valid partitions rather than a
protective MBR (see Section 5.2.1).

Any software that updates the primary GPT must also update the backup GPT. Software
may update the GPT Header and GPT Partition Entry Array in any order, since all the CRCs
are stored in the GPT Header. Software must update the backup GPT before the primary
GPT, so if the size of device has changed (e.g. volume expansion) and the update is
interrupted, the backup GPT is in the proper location on the disk

If the primary GPT is invalid, the backup GPT is used instead and it is located on the last
logical block on the disk. If the backup GPT is valid it must be used to restore the primary
GPT. If the primary GPT is valid and the backup GPT is invalid software must restore the
backup GPT. If both the primary and backup GPTs are corrupted this block device is
defined as not having a valid GUID Partition Header.

Both the primary and backup GPTs must be valid before an attempt is made to grow the
size of a physical volume. This is due to the GPT recovery scheme depending on locating
the backup GPT at the end of the device. A volume may grow in size when disks are
added to a RAID device. As soon as the volume size is increased the backup GPT must be
moved to the end of the volume and the primary and backup GPT Headers must be
updated to reflect the new volume size.

5.3.3 GPT Partition Entry Array

124

The GPT Partition Entry Array contains an array of GPT Partition Entries. Table 19 defines
the GPT Partition Entry.

Table 19. GPT Partition Entry

Byte Byte
Mnemonic Offset Length Description
PartitionTypeGUID 0 16 Unique ID that defines the purpose

and type of this Partition. A value of
zero defines that this partition entry
is not being used.

January, 2017 Version 2.6, Errata A

UEFI Specification GUID Partition Table (GPT) Disk Layout

UniquePartitionGUlD 16 16 GUID that is unique for every
partition entry. Every partition ever
created will have a unique GUID.
This GUID must be assigned when
the GPT Partition Entry is created.
The GPT Partition Entry is created
whenever the
NumberOfPartitionEntr

1eSinthe GPT Headeris
increased to include a larger range

of addresses.

StartingLBA 32 8 Starting LBA of the partition defined
by this entry.

EndingLBA 40 8 Ending LBA of the partition defined
by this entry.

Attributes 48 8 Attribute bits, all bits reserved by
UEFI (see Table 20).

PartitionName 56 72 Null-terminated string containing a
human-readable name of the
partition.

Reserved 128 SizeOfPartiti @ Therestof the GPT Partition Entry,

onEntry - 128 if any, is reserved by UEFI and

must be zero.

The SizeOfPartitionEntry variable in the GPT Header defines the size of each GUID
Partition Entry. Each partition entry contains a Unique Partition GUID value that uniquely
identifies every partition that will ever be created. Any time a new partition entry is
created a new GUID must be generated for that partition, and every partition is
guaranteed to have a unique GUID. The partition is defined as all the logical blocks
inclusive of the StartingLBA and EndingLBA.

The PartitionTypeGUID field identifies the contents of the partition. This GUID is similar
to the OS Type field in the MBR. Each filesystem must publish its unique GUID. The
Attributes field can be used by utilities to make broad inferences about the usage of a
partition and is defined in Table 20.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition
using EF1_BOOT SERVICES. InstallProtocol Interface(). This will allow drivers
and applications, including OS loaders, to easily search for handles that represent EFI
System Partitions or vendor specific partition types.

Software that makes copies of GPT-formatted disks and partitions must generate new
Disk GUID values in the GPT Headers and new Unique Partition GUID values in each GPT
Partition Entry. If GPT-cognizant software encounters two disks or partitions with
identical GUIDs, results will be indeterminate.

Version 2.6, Errata A January, 2017 125

GUID Partition Table (GPT) Disk Layout UEFI Specification

Table 20. Defined GPT Partition Entry - Partition Type GUIDs

Description
Unused Entry

EFI System Partition
Partition containing a legacy MBR 024DEE41-33E7-11D3-9D69-0008C781F39F

GUID Value
00000000-0000-0000-0000-000000000000
C12A7328-F81F-11D2-BA4B-00A0C93EC93B

OS vendors need to generate their own Partition Type GUIDs to identify their partition

types.

Table 21. Defined GPT Partition Entry - Attributes

Bits
Bit 0

Bit 1

Bit 2

Bits 3-47

Bits 48-63

Name

Required
Partition

No Block 10
Protocol

Legacy
BIOS
Bootable

Description

If this bit is set, the partition is required for the platform to function. The owner/
creator of the partition indicates that deletion or modification of the contents
can result in loss of platform features or failure for the platform to boot or
operate. The system cannot function normally if this partition is removed, and it
should be considered part of the hardware of the system. Actions such as
running diagnostics, system recovery, or even OS install or boot could
potentially stop working if this partition is removed. Unless OS software or
firmware recognizes this partition, it should never be removed or modified as
the UEFI firmware or platform hardware may become non-functional.

If this bit is set, then firmware must not produce an
EF1_BLOCK_10_PROTOCOL device for this partition. See Section 12.3.2
for more details. By not producing an EFI_BLOCK _10_PROTOCOL
partition, file system mappings will not be created for this partition in UEFI.
This bit is set aside by this specification to let systems with traditional PC-AT
BIOS firmware implementations inform certain limited, special-purpose
software running on these systems that a GPT partition may be bootable. For
systems with firmware implementations conforming to this specification, the
UEFI boot manager (see chapter 3) must ignore this bit when selecting a UEFI-
compliant application, e.g., an OS loader (see 2.1.3). Therefore there is no
need for this specification to define the exact meaning of this bit.

Undefined and must be zero. Reserved for expansion by future versions of the
UEFI specification.

Reserved for GUID specific use. The use of these bits will vary depending on
the PartitionTypeGUID. Only the owner of the
PartitionTypeGUID is allowed to modify these bits. They must be
preserved if Bits 0—47 are modified.

126

January, 2017 Version 2.6, Errata A

UEFI Specification

6 Services — Boot Services

This section discusses the fundamental boot services that are present in a compliant
system. The services are defined by interface functions that may be used by code running
in the UEFI environment. Such code may include protocols that manage device access or
extend platform capability, as well as applications running in the preboot environment,
and OS loaders.

Two types of services apply in an compliant system;

Boot Services Functions that are available before a successful call to
EF1 BOOT SERVICES.ExitBootServices(). These
functions are described in this section.

Runtime Services Functions that are available before and after any call to
ExitBootServices(). These functions are described in
Section 7.

During boot, system resources are owned by the firmware and are controlled through
boot services interface functions. These functions can be characterized as “global” or
“handle-based.” The term “global” simply means that a function accesses system services
and is available on all platforms (since all platforms support all system services). The term
“handle-based” means that the function accesses a specific device or device functionality
and may not be available on some platforms (since some devices are not available on
some platforms). Protocols are created dynamically. This section discusses the “global”
functions and runtime functions; subsequent sections discuss the “handle-based.”

UEFI applications (including UEFI OS loaders) must use boot services functions to access
devices and allocate memory. On entry, an Image is provided a pointer to a system table
which contains the Boot Services dispatch table and the default handles for accessing the
console. All boot services functionality is available until a UEFI OS loader loads enough of
its own environment to take control of the system’s continued operation and then
terminates boot services with a call to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform
resource management. Thus boot services are available up to this point to assist the UEFI
OS loader in preparing to boot the operating system. Once the UEFI OS loader takes
control of the system and completes the operating system boot process, only runtime
services may be called. Code other than th