(l n te! Leap ahead"
UEFI Driver Development
Training
Protocols

Leon Li
UEFI Development
Intel

Agenda

What Is a protocol?
Protocol vs. C++ class
TThe “core” protocols
Producing protocols
Consuming protocols
Custom protocols

What iIs a protocol?

sAnl Interface
s Viust be Produced by a driver
s [Viay: be Consumed by anyone

e A set of related functions and their
assoclated data

o Examples:
—Device Path, PCI 1/0, Disk 1/0, GOP, UNDI

<

Qf 3

GUID

EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI
EFI

Q

i

PCI

e

PCI

e
Bz

PCI

e
“PCI_

PCI

PCI

PCI

PCI
e

PCI_

PCI
UINT64 RomSize;
VOID *Romlmage;

} EFI_PCI _

PCI 10 Protocol - Example

#define EFI_PCI_10 _PROTOCOL _GUID \
{0x4cf5b200,0x68b8, 0x4ca5, 0x9e ,0xec,0xb2,0x3e,0x3F,0x50,
M CEY S

Protocol Interface Structure
typedef struct EFI_PCI_10 PROTOCOL {

10 PROTOCOL_POLL_10_MEM PolIMem;
10_PROTOCOL_POLL_10_MEM Polllo;
10_PROTOCOL_ACCESS Mem;

10_PROTOCOL_ACCESS lo0;

IO_PROTOCOL_CONFIG_ACCESS Pci;
10_PROTOCOL_COPY_MEM CopyMem;

10 PROTOCOL_MAP Map;

10 PROTOCOL_UNMAP Unmap;
10_PROTOCOL_ALLOCATE BUFFER AllocateBuffer;
10_PROTOCOL_FREE_BUFFER FreeBuffer;
I0_PROTOCOL_FLUSH Flush;

10_PROTOCOL_GET_ LOCATION GetLocation;
10_PROTOCOL_ATTRIBUTES Attributes;
10_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttrlbutes
10 PROTOCOL_SET BAR_ATTRIBUTES SetBarAttributes;

10_PROTOCOL

See § 13.4 UEFI 2.1 Spec. |

10 Protocol - Example

GUID
#define EF1_DISK_ 10 PROTOCOL GUID \

{OxCE345171,0xBAOB,0x11d2,0x8e,0x4F,0x00,0xa0,0xc9
,0x69,0x72,

Ox3b}

Revision Number
#define EFI _DISK 10 PROTOCOL REVISION 0x00010000

Protocol Interface Structure
typedef struct EFI DISK 10 PROTOCOL {
UINT64 Revision;

EFI_DISK READ ReadDisk;
EFI_DISK WRITE WriteDisk;
} EF1_DISK 10 PROTOCOL;

oA el R
1 .
q 'y

See § 12.6 UEFI 2.1 Sp

P .
™
.

A

| :
) ".‘-

Ice Path Protocol - Example

GUID
#define EFI1_DEVICE_PATH_PROTOCOL_GUID \

{0x09576€91 ,0x6d3f,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,
Ox3b}

Protocol Interface Structure

typedef struct _EFI_DEVICE_PATH_PROTOCOL {
UINT8 Type;

UINT8 SubType;
UINT8 Length[2];
} EFI1_DEVICE_PATH_PROTOCOL;

* The device path describes the location of the

- device the handle is for

~« A UEFI driver may access only a physical
device for which it provides functionality. :

See § 9.2 UEFI 2.1 Spe

6

Protocol example

UEFI application

UEFI bgot services

:Simple File Systemj
" Disk I/O driver
Block 1/0

A

SCSI 1/0

Application Consumes I/Ojorotocol

The Application
has to determine
which top level
handle to call into

firmware uses correct lower level protocols
Consumes Extended SCSI Passthrough protocol
SCSI card driver Produces Extended SCSI Passthrough protocol

SCSI card driver will talk directly to the SCSI drive

<

)

Protocol vs. C++ class

* Am UEFI protocol is logically similar to a
C++ class

—\With lower memory overhead
— No virtual function table

—IHas private member variables
—Has exposed functions

—[Has private functions

—Has a “This’ pointer

— | ook/feel very different

What 1/0 Protocols are
Consumed?

 PCI Adapters
| —PcClI 1/0 Protocol
| —Device Path Protocol

el
11

I —

« USB Peripherals
—USB 1/0 Protocol
—Device Path Protocol ‘

)

What 1/0 Protocols are Produced?

e Simple Input Protocol

 Simple Pointer

‘@\' Protocol

e Block I/0O Protocol

10

- What 170 Protocols are Produced?

Video Adapter

s UULI
0T

e UGA Draw Protocol and UGA I/0
Protocol
or

 Simple Text Output Protocol

&

What 1/0 Protocols are Produced?

s UOUL
i

e SCSI Pass Thru
Protocol

and
* Block I/0 Protocol

12

SCSI
SCSI RAID
Fiber Channel

What 1/0 Protocols are Produced?

~ Network
S|) e
UV:, N/ 1000 Sont
N
* UNDI
and

e Network Interface ldentifier Protocol

What 1/0 Protocols are Produced?

FLASH

I) E—
I) E—
I) —
I) —

Serial Adapter
Single UART
Multi-Port UART
Modem

Byte Stream Device

e Serial 1/0 Protocol
* Debug Port Protocol

14

What 1/0 Protocols are Produced?

1 USB Host
- D D D D . SSQIU’OHGI’
T ..
e EHCI

e USB Host Controller Protocol

(intel'

What 1/0 Protocols are Produced?

Other Boot
Devices

o | ASH

e ROM

* Tape Drives

| oad File Protocol

The “core” protocols

* Device Path protocol
—UEFI Chapter 9

* Driver Binding protocol
—UEFI Chapter 10.1

* Other UEFI Driver Model protocols
—UEFI Chapter 10.2 onwards

s | oadedlmage protocol

17

Device path protocol

sipescription of location of the device

s Reguired for boot devices, logical devices
and Images

* 6 Lypes:
— Hardware
—ACPI — UID/HID of device in AML

—Messaging — LAN, Fiber Channel, ATAPI, SCSI,
USB, and Vendor defined (like terminal type in
console)

—Media — ie HDD, EFDD or CD-ROM
—EDD 3.0 boot device — see EDD 3.0 spec intl3 48
—End of hardware — marks end of device path

18

Device paths

e Pefinition of where devices are physically
focated

—Utihize full UEFI device path to boot device
—E.g. ACPI - PCI - SCSI - partition(SIG) — Filename
—E.g. ACPI - PCI - MAC(MAC address)

—Hard disk

—short path option which only consists of partition 1D
and filename or:

— GPT version Is safer since it Is unigue.
—Removable media (CDROM and LS120)
—\EFIN\BOOT\BOOTIAG4.EFI or BOOTIA32.EFI

—Required for locating console, boot device, etc...

19

Device path examples

o AcpI(PNPOAO3,0)/Pci(3]|1)/Ata(Primary,Master)
— Device path pointing to primary master Atapi device
e AcpIi(PNPOAO3,1)/Pci(0]0)/Scsi(Pun6,Lun0)/HD(Partl1,Sigl9
772100-1DD2-100)
— Device path pointing to partl or a SCSI hard drive
e AcpI(PNPOAO3,1)/Pci(0]0)/Scsi(Pun6,Lun0)/HD(Part2,Sig25
62E300-1DD2-100)
 AcpIi(PNPOAO3,0)/Pci(3]|1)/Ata(Secondary,Master)

20

Example

OS Loader wants to display choices for boot
devices that it gets from Device Path protocol.

Use Device Path and find OS Loader+—— Device Path
all devices that Produce it i

Use Simple Text and _ _
Simple_Output > Simple_text_in
to interact with the user. USB Driver }

Loader Consumes protocols I
Framework Produces the protocols

USB Keyboard

21

Driver Binding protocol

* 3 functions

—Supported()
—Start()

—Stop()

5 data blocks
—\ersion
— ImageHandle
—DriverBindingHandle

22

DriverBinding.Supported()

o Parameters:

— Current Controller

— Child (optional)
 Checks to see If a driver supports a controller
e Must not change hardware state of controller

e Minimize execution time, move complex 1/0
to Start()

* May be called for controller that Is already
managed

e Child 1s optionally specified

23

DriverBinding.Start()

sParameters:
—Current Controller
—Child (optional)

s Starts the device specified by
Controller

* Child 1s optionally specified
—If NULL bus driver will start all children

— |t exists than starts that child of the child
device

<

Qf n

DriverBinding.Stop()

sParameters:
—Current Controller
—Child Count
—ChildHandleBuffer (optional)

o [Child Count Is Zero or this Is not a bus
controller, stop the controller

e Otherwise stops Child Count number of
children whose handles are in the buffer.

e Should be In reverse order from Start()

25

DriverBinding information

Drivers cannot search for their hardware
TThey only react to firmware questions
for finding hardware

Firmware makes all decisions about
what driver controls what hardware.

26

Connect/Disconnect Controller
Interaction with DriverBinding

e \When UEFI ConnectController() is called it will
perform 2 actions.
1. Create an ordered list of driver handles
— DriverBinding->=Supported()
2. Connect drivers to controllers
— DriverBinding->Start()
e \When UEFI DisconnectController() is called it will
perform 1 action.
1. Disconnect drivers to controllers
— DriverBinding-=>Stop()
e This can also be made to happen manually with
UEFI shell using connect, disconnect, reconnect

27

EFI Services Binding
-UEFI Driver Model

* Maps well - Hardware devices, Hardware bus
controllers, Simple combinations of software
services that layer on top of hardware devices

e NOT well - complex combinations of software
services.

(A0 (A @
@ (c) (¢

#1 Liner Stack #2 Mult. Dependencies #3 Mult. Consumers

Qoﬁ See § 2.5.8 UEFI 2.1 Spec. (intel')

28

oL JO

UEFI Driver Model Protocols

(Driver Binding protocol)

Platform Driver Override protocol
Bus Specific Driver Override protocol
Driver Configuration protocol

Driver Diagnostics protocol
Component Name protocol

Service Binding protocol

29

How are drivers selected?

s Precedence Rules for Driver Selection
—Context Override
— Person (normally using shell) forces a specific driver
—Platform Driver Override Protocol
— Platform firmware specifies one driver over another
— Bus Specific Driver Override Protocol

— The bus controller will help determine which driver
to use

—\Version
—Uses Driver Binding Protocol Version field
— Always used

30

Platform Driver Override protocol

s Maps Controllers to Drivers
* OEM Value Add - Platform Management

* Used by UEFI Boot Manager to Load
Drivers

* Provides Ordered List to
ConnectController()

* Higher than Bus Specific Driver Overrides

—If 2 add In cards appear identical but have
different driver versions this could be used to
specify which driver to use for each card.

31

Bus Specific Driver Override
protocol

s @ptional - Not supported by all bus types
—Supported by PCI, ISA, etc.
—Not supported by USB, SCSI, etc.

s Maps Controllers to Drivers
o Attached to Controller Handle by Bus Driver

* Provides an Ordered List to
ConnectConroller()

» Overrides Driver Binding Protocol Search

—The PCI bus driver will Produce this protocol for
each peripheral card with a driver.

32

Driver Configuration protocol

* 3 functions

—SetOptions — allows driver to control the
screen to display options and get choices from
the user

—OptionsValid — validate whether the current
options are valid

—ForceDefaults — sets the default options

e 1 data structure
—SupportedLanguages

* Note: Deprecated in UEFI 2.1 and replaced with Platform to
Driver Configuration Protocol.

33

Driver Diagnhostics protocol

*] function

—RunbDiagnostics — when this function gets
called the driver will run the diagnostics on the
child (represented by a device path) passed In.

e 1 data structure
—SupportedlLanguages

34

ComponentName protocol
ComponentName2 protocol

e 2 functions

—GetDriverName() — returns the name of the
driver producing the protocol

—GetControllerName() — returns the name of the
device being managed
e 1 data structure
—SupportedlLanguages

« Note errata for change of SupportedLanguages format (and
GUID)

— “eng” vs. “en-US”

35

ComponentName protocol

e limit Lengths of Names to 40 Unicode Characters
o [nclude Driver Name and Version Number

o« UNDI Driver (Network Interface Controller)
— Jypically the Name of the PCI Controller

* MJAC Node Produced by an UNDI Driver
— |dentify Location of Physical Connector on NIC

* PCI Slots
— |dentify Physical Location of PCI Slots in the System

e SCSI / SCSI RAID / Fiber Channel

— Controller - Typically name of the PCI Controller
— Channel - ldentify Physical Location of the SCSI Channel
— Disk - Use Results from INQUIRY Command

36

Service Binding protocol

e RIS protocol Is used to create and destroy
chnldren that have protocols installed on their
Randles.

—CreateChild()

—[DestroyChild()

—Tihe driver Is responsible for adding and removing
the protocols.

* [his Is used when a single driver wants to
exclusively Consume a specific protocol. So
a given driver Produces one of these to give
a fake exclusive access to a protocol.

37

APP APP

A
AP AP y
A A
PXEBC
A 4 N >
T MTFTP Service Binding
PXEBC TCP/IP Primarily External Interfaces
Stack ¢ TCP | Service Binding UDP | Service Binding
T ARP Service Binding IP Service Binding
Primarily Internal Interfaces \/‘
MNP | Service Binding
—————————— y
A
SNP Notice the
7y concurrent
v usage in new
UNDI solution set. SNP is
used exclusively by
MNP, and MNP acts
as a multiplex for
T e ;
Fre incoming use of the
I:JL
| NIC | s\
e I
A

i i 38

Loadedlmage protocol

s Protocol that handles loading and
unloading of iImages

* [Device drivers generally do not use
: , OF
e They do use

— Allows for control when driver unloads
— Verifies that driver Is disconnected (like

)

— Releases all events and memory allocated

See §7.1.2 of Driver Writers Guide.

39

Producing Protocols

* Drivers Produce protocols

* In your driver header:
—Include the header from the protocol directory

—Add the protocol your driver structure
—Add a handle to your driver structure
—Add function prototypes to the file

* [n your driver implementation file
—Set all the pointers to your function bodies
—Install the protocols on the handles

40

<

)

Consuming protocols

* Drivers and applications Consume
protocols

* In your header:
—Include the header from the protocol directory

—Add the protocol pointer your driver structure

* [n your driver implementation file
—Open the protocol
—Call the protocol functions

41

Custom Protocols

1. Preducing custom protocols

— See 8§ “Using the EDK” for information on
creating custom protocols

2. Publishing custom protocols
— Send all files to consumers

42

T1ps and Tricks for protocols

S sipevicePath protocol has a lot of utility functions to
help with DevicePath manipulations

* YOul can restrict consumers to a single one
—Certain ‘bit-banging’ operations require this
—EX. UNDI or SNP (see the service binding

flewchart)

* Produce a custom debug protocol
—Your custom protocol can be protected

—Don’t publish its interface
—Only Produce It under specific conditions
* Write an UEFI application to test your driver

43

Driver Design Checklist

PCI PCI PCI

Video RAID NIC

Driver Type Device Hybrid Bus
PCI 1/0 PCI 1/0

I/0 Protocols Consumed PCI 1/0 Device Path | Device path
1/0 Protocols Produced USéA‘ADI;%W SCSB'IOF;T(SIS/(T)N“ UNDI, NII
Driver Binding v v v
Component Name v v/ v
Driver Configuration v/
Driver Diagnostics v v v
Unloadable v v/ v
Exit Boot Services Event v’
Runtime v
Set Virtual Address Map Event v,

(A

Qf n

S
D

<

)

SCSI Driver Stack

e Usable by any device that utilizes SCSI
commands
—SCSI devices
—ATAPI devices
—FibreChannel devices

* Abstracts the implementation from UEFI
—SCSI version
—Protocol

e Compatibility

46

SCSI Driver Stack

Why Hybrid Driver

Produce protocols on child handles AND onto
own handle

— On child channel handles
— Produce Ext SCSI Pass Thru

— Produces DevicePath
— On self

— Produces DevicePath

47

SCSI Driver Stack

SCSI Host Conticller

SCSI Bus O SCSI Bus 1

sScsi SCSI Bus Driver manages the bus (Firmware)
Creates child handles for each device
Passes commands down to devices
Produces SCSI I/O on devices

scsl sc<i@flices Device Path on devices

Device
Controller 1

Device
Controller 0 °

SCSI Device Driver manages thﬁ_:' P
) Responds to its 2 protocols

48

SCSI
Device
Controller 1

SCSI
Device
Controller 2

<

i

Q

SCSI Bus 2

OS Loader calls into Block 1/O

SCSI Device Driver translates to SCSI 10

SCSI Bus Driver translates to Ext SCSI Pass Thru
SCSI HC Passes along SCSI Bus

DevicePath

49

SCSI1 Protocol Chart

3 'Protocol NElE Producer Consumer
' (on which handle)

Block 1/0 System Firmware System Firmware
(Device Handle)

SCSI I/O System Firmware System Firmware
and DevicePath (Device Child Handle) (SCSI Device Driver)
Ext SCSI Pass Thru Host Controller Driver System Firmware
and DevicePath (Channel Child Handle) (SCSI Bus Driver)

Host Controller driver talks to its firmware

e Each driver produces DriverBinding itself

10

SCSI Driver Stack

e PassThru() function (in Extended SCSI
Pass Thru Protocol) maps to the Execute()
function (in SCSI 1/0 Protocol) by the Bus
driver.

e SCSI 1/0 is functionally identical to USB
/70 or Disk I/0O, etc...

s Example drivers in EDK

51

	UEFI Driver Development Training�Protocols
	Agenda
	What is a protocol?
	PCI IO Protocol - Example
	Disk IO Protocol - Example
	Device Path Protocol - Example
	Protocol vs. C++ class
	What I/O Protocols are Consumed?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	The “core” protocols
	Device path protocol
	Device paths
	Device path examples
	Example
	Driver Binding protocol
	DriverBinding.Supported()
	DriverBinding.Start()
	DriverBinding.Stop()
	DriverBinding information
	Connect/Disconnect Controller interaction with DriverBinding
	EFI Services Binding �-UEFI Driver Model �
	UEFI Driver Model Protocols
	How are drivers selected?
	Platform Driver Override protocol
	Bus Specific Driver Override protocol
	Driver Configuration protocol
	Driver Diagnostics protocol
	ComponentName protocol�ComponentName2 protocol
	ComponentName protocol
	Service Binding protocol
	LoadedImage protocol�
	Producing Protocols
	Consuming protocols
	Custom Protocols
	Tips and Tricks for protocols
	Driver Design Checklist�
	SCSI Driver Stack
	SCSI Driver Stack
	SCSI Driver Stack
	SCSI Driver Stack
	SCSI Protocol Chart
	SCSI Driver Stack

