
UEFI Driver Development UEFI Driver Development
TrainingTraining

ProtocolsProtocols

Leon LiLeon Li
UEFI DevelopmentUEFI Development

Intel Intel

2

AgendaAgenda

What is a protocol?What is a protocol?
Protocol vs. C++ classProtocol vs. C++ class
The The ““corecore”” protocolsprotocols
Producing protocolsProducing protocols
Consuming protocolsConsuming protocols
Custom protocolsCustom protocols

3

What is a protocol?What is a protocol?

An interfaceAn interface
Must be Produced by a driverMust be Produced by a driver
May be Consumed by anyoneMay be Consumed by anyone
A set of related functions and their A set of related functions and their
associated dataassociated data

Examples:Examples:
––Device Path, PCI I/O, Disk I/O, GOP, UNDIDevice Path, PCI I/O, Disk I/O, GOP, UNDI

4

PCI IO Protocol PCI IO Protocol -- ExampleExample

GUID
#define EFI_PCI_IO_PROTOCOL_GUID \
{0x4cf5b200,0x68b8,0x4ca5,0x9e,0xec,0xb2,0x3e,0x3f,0x50,
0x2,0x9a}
Protocol Interface Structure
typedef struct _EFI_PCI_IO_PROTOCOL {

EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollMem;
EFI_PCI_IO_PROTOCOL_POLL_IO_MEM PollIo;
EFI_PCI_IO_PROTOCOL_ACCESS Mem;
EFI_PCI_IO_PROTOCOL_ACCESS Io;
EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci;
EFI_PCI_IO_PROTOCOL_COPY_MEM CopyMem;
EFI_PCI_IO_PROTOCOL_MAP Map;
EFI_PCI_IO_PROTOCOL_UNMAP Unmap;
EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER AllocateBuffer;
EFI_PCI_IO_PROTOCOL_FREE_BUFFER FreeBuffer;
EFI_PCI_IO_PROTOCOL_FLUSH Flush;
EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation;
EFI_PCI_IO_PROTOCOL_ATTRIBUTES Attributes;
EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes;
EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes;
UINT64 RomSize;
VOID *RomImage;

} EFI_PCI_IO_PROTOCOL

See § 13.4 UEFI 2.1 Spec.

5

Disk IO Protocol Disk IO Protocol -- ExampleExample

GUID
#define EFI_DISK_IO_PROTOCOL_GUID \
{0xCE345171,0xBA0B,0x11d2,0x8e,0x4F,0x00,0xa0,0xc9
,0x69,0x72,

0x3b}
Revision Number
#define EFI_DISK_IO_PROTOCOL_REVISION 0x00010000
Protocol Interface Structure
typedef struct _EFI_DISK_IO_PROTOCOL {
UINT64 Revision;
EFI_DISK_READ ReadDisk;
EFI_DISK_WRITE WriteDisk;
} EFI_DISK_IO_PROTOCOL;

See § 12.6 UEFI 2.1 Spec.

6

Device Path Protocol Device Path Protocol -- ExampleExample

GUID
#define EFI_DEVICE_PATH_PROTOCOL_GUID \
{0x09576e91,0x6d3f,0x11d2,0x8e,0x39,0x00,0xa0,0xc9,0x69,0x72,
0x3b}

Protocol Interface Structure
typedef struct _EFI_DEVICE_PATH_PROTOCOL {
UINT8 Type;
UINT8 SubType;
UINT8 Length[2];
} EFI_DEVICE_PATH_PROTOCOL;

The device path describes the location of the
device the handle is for
A UEFI driver may access only a physical
device for which it provides functionality.

See § 9.2 UEFI 2.1 Spec.

7

UEFI boot services

UEFI application

Simple File System

Extended
SCSI Passthrough

(PCI OpRom driver)

Protocol example
Application Consumes I/O protocol

firmware Produces protocol
(exposed through BS)

firmware uses correct lower level protocols
Consumes Extended SCSI Passthrough protocol

SCSI card driver Produces Extended SCSI Passthrough protocol

SCSI card driver will talk directly to the SCSI drive

The Application
has to determine
which top level

handle to call into

Disk I/O driver

Block I/O

SCSI I/O

8

Protocol vs. C++ classProtocol vs. C++ class

An UEFI protocol is logically similar to a An UEFI protocol is logically similar to a
C++ classC++ class
––With lower memory overheadWith lower memory overhead

–– No virtual function tableNo virtual function table
––Has private member variablesHas private member variables
––Has exposed functionsHas exposed functions
––Has private functionsHas private functions
––Has a Has a ‘‘ThisThis’’ pointerpointer

––Look/feel very differentLook/feel very different

9

What I/O Protocols are What I/O Protocols are
Consumed?Consumed?

PCI AdaptersPCI Adapters
––PCI I/O ProtocolPCI I/O Protocol
––Device Path ProtocolDevice Path Protocol

USB PeripheralsUSB Peripherals
––USB I/O ProtocolUSB I/O Protocol
––Device Path ProtocolDevice Path Protocol

FLASH

10

What I/O Protocols are Produced?What I/O Protocols are Produced?

Simple Input ProtocolSimple Input Protocol

Simple Pointer Simple Pointer
ProtocolProtocol

Block I/O ProtocolBlock I/O Protocol

11

What I/O Protocols are Produced?What I/O Protocols are Produced?

Video Adapter

UGA Draw Protocol and UGA I/O UGA Draw Protocol and UGA I/O
ProtocolProtocol

oror
Simple Text Output ProtocolSimple Text Output Protocol

FLASH

12

What I/O Protocols are Produced?What I/O Protocols are Produced?

SCSI
SCSI RAID
Fiber Channel

SCSI Pass Thru SCSI Pass Thru
ProtocolProtocol

andand
Block I/O ProtocolBlock I/O Protocol

FLASH

13

What I/O Protocols are Produced?What I/O Protocols are Produced?

Network
Interface
Controller
(NIC)

UNDIUNDI
andand

Network Interface Identifier ProtocolNetwork Interface Identifier Protocol

FLASH

14

What I/O Protocols are Produced?What I/O Protocols are Produced?

Serial Adapter
Single UART
Multi-Port UART
Modem

Byte Stream Device

Serial I/O ProtocolSerial I/O Protocol
Debug Port ProtocolDebug Port Protocol

FLASH

15

What I/O Protocols are Produced?What I/O Protocols are Produced?

USB Host Controller ProtocolUSB Host Controller Protocol

USB Host USB Host
ControllerController
UHCIUHCI
OHCIOHCI
EHCIEHCI

FLASH

16

What I/O Protocols are Produced?What I/O Protocols are Produced?

Other Boot Other Boot
DevicesDevices
FLASHFLASH
ROMROM
Tape DrivesTape Drives

Load File ProtocolLoad File Protocol

17

The The ““corecore”” protocolsprotocols

Device Path protocolDevice Path protocol
––UEFI Chapter 9UEFI Chapter 9
Driver Binding protocolDriver Binding protocol
––UEFI Chapter 10.1UEFI Chapter 10.1
Other UEFI Driver Model protocolsOther UEFI Driver Model protocols
––UEFI Chapter 10.2 onwardsUEFI Chapter 10.2 onwards
LoadedImage protocolLoadedImage protocol

18

Device path protocolDevice path protocol

Description of location of the deviceDescription of location of the device
Required for boot devices, logical devices Required for boot devices, logical devices
and imagesand images
6 types:6 types:
––HardwareHardware
––ACPI ACPI –– UID/HID of device in AMLUID/HID of device in AML
––Messaging Messaging –– LAN, Fiber Channel, ATAPI, SCSI, LAN, Fiber Channel, ATAPI, SCSI,

USB, and Vendor defined (like terminal type in USB, and Vendor defined (like terminal type in
console)console)

––Media Media –– ieie HDD, FDD or CDHDD, FDD or CD--ROMROM
––EDD 3.0 boot device EDD 3.0 boot device –– see EDD 3.0 spec int13 48see EDD 3.0 spec int13 48
––End of hardware End of hardware –– marks end of device pathmarks end of device path

19

Device pathsDevice paths

Definition of where devices are physically Definition of where devices are physically
LocatedLocated
––Utilize full UEFI device path to boot deviceUtilize full UEFI device path to boot device

–– E.g. ACPI E.g. ACPI -- PCI PCI -- SCSI SCSI -- partition(SIG) partition(SIG) –– FilenameFilename
–– E.g. ACPI E.g. ACPI -- PCI PCI -- MAC(MAC address)MAC(MAC address)

––Hard disk Hard disk
–– short path option which only consists of partition ID short path option which only consists of partition ID

and filename or:and filename or:
–– GPT version is safer since it is unique.GPT version is safer since it is unique.

––Removable media (CDROM and LS120)Removable media (CDROM and LS120)
–– \\EFIEFI\\BOOTBOOT\\BOOTIA64.EFI or BOOTIA32.EFIBOOTIA64.EFI or BOOTIA32.EFI

––Required for locating console, boot device, etcRequired for locating console, boot device, etc……

20

Device path examplesDevice path examples

Acpi(PNP0A03,0)/Pci(3|1)/Ata(Primary,Master)Acpi(PNP0A03,0)/Pci(3|1)/Ata(Primary,Master)
–– Device path pointing to primary master Device path pointing to primary master AtapiAtapi devicedevice

Acpi(PNP0A03,1)/Pci(0|0)/Scsi(Pun6,Lun0)/HD(Part1,Sig19Acpi(PNP0A03,1)/Pci(0|0)/Scsi(Pun6,Lun0)/HD(Part1,Sig19
772100772100--1DD21DD2--100)100)
–– Device path pointing to part1 or a SCSI hard driveDevice path pointing to part1 or a SCSI hard drive

Acpi(PNP0A03,1)/Pci(0|0)/Scsi(Pun6,Lun0)/HD(Part2,Sig25Acpi(PNP0A03,1)/Pci(0|0)/Scsi(Pun6,Lun0)/HD(Part2,Sig25
62E30062E300--1DD21DD2--100)100)
Acpi(PNP0A03,0)/Pci(3|1)/Ata(Secondary,Master)Acpi(PNP0A03,0)/Pci(3|1)/Ata(Secondary,Master)

21

ExampleExample

OS Loader

Simple_text_in

Loader Consumes protocols
Framework Produces the protocols

USB Keyboard

USB Driver

OS Loader wants to display choices for boot
devices that it gets from Device Path protocol.

Use Device Path and find
all devices that Produce it

Use Simple_Text and
Simple_Output

to interact with the user.

Device Path

22

Driver Binding protocolDriver Binding protocol

3 functions3 functions
––Supported()Supported()
––Start()Start()
––Stop()Stop()
3 data blocks3 data blocks
––VersionVersion
––ImageHandleImageHandle
––DriverBindingHandleDriverBindingHandle

23

DriverBinding.Supported()DriverBinding.Supported()

Parameters:Parameters:
–– Current ControllerCurrent Controller
–– Child (optional) Child (optional)

Checks to see if a driver supports a controllerChecks to see if a driver supports a controller
Must not change hardware state of controller Must not change hardware state of controller
Minimize execution time, move complex I/O Minimize execution time, move complex I/O
to Start()to Start()
May be called for controller that is already May be called for controller that is already
managedmanaged
Child is optionally specifiedChild is optionally specified

24

DriverBinding.StartDriverBinding.Start()()

Parameters:Parameters:
––Current ControllerCurrent Controller
––Child (optional)Child (optional)
Starts the device specified by Starts the device specified by
ControllerController
Child is optionally specifiedChild is optionally specified
––If NULL bus driver will start all childrenIf NULL bus driver will start all children
––If exists than starts that child of the child If exists than starts that child of the child

devicedevice

25

DriverBinding.StopDriverBinding.Stop()()

Parameters:Parameters:
––Current ControllerCurrent Controller
––Child CountChild Count
––ChildHandleBufferChildHandleBuffer (optional) (optional)
If Child Count is Zero or this is not a bus If Child Count is Zero or this is not a bus
controller, stop the controllercontroller, stop the controller
Otherwise stops Child Count number of Otherwise stops Child Count number of
children whose handles are in the buffer.children whose handles are in the buffer.
Should be in reverse order from Start()Should be in reverse order from Start()

26

DriverBinding informationDriverBinding information

Drivers cannot search for their hardwareDrivers cannot search for their hardware
They only react to firmware questions They only react to firmware questions
for finding hardwarefor finding hardware
Firmware makes all decisions about Firmware makes all decisions about
what driver controls what hardware.what driver controls what hardware.

27

Connect/Disconnect Controller Connect/Disconnect Controller
interaction with DriverBindinginteraction with DriverBinding

When UEFI ConnectController() is called it will When UEFI ConnectController() is called it will
perform 2 actions.perform 2 actions.

1.1. Create an ordered list of driver handlesCreate an ordered list of driver handles
–– DriverBindingDriverBinding-->Supported()>Supported()

2.2. Connect drivers to controllersConnect drivers to controllers
–– DriverBindingDriverBinding-->Start()>Start()

When UEFI DisconnectController() is called it will When UEFI DisconnectController() is called it will
perform 1 action.perform 1 action.

1.1. Disconnect drivers to controllersDisconnect drivers to controllers
–– DriverBindingDriverBinding-->Stop()>Stop()

This can also be made to happen manually with This can also be made to happen manually with
UEFI shell using connect, disconnect, reconnectUEFI shell using connect, disconnect, reconnect

28

EFI Services Binding
-UEFI Driver Model

Maps well - Hardware devices, Hardware bus
controllers, Simple combinations of software
services that layer on top of hardware devices
NOT well - complex combinations of software
services.

A

B C

A

B

C

A B

C

#1 Liner Stack #2 Mult. Dependencies #3 Mult. Consumers

See § 2.5.8 UEFI 2.1 Spec.

29

UEFI Driver Model ProtocolsUEFI Driver Model Protocols

(Driver Binding protocol)(Driver Binding protocol)
Platform Driver Override protocolPlatform Driver Override protocol
Bus Specific Driver Override protocolBus Specific Driver Override protocol
Driver Configuration protocolDriver Configuration protocol
Driver Diagnostics protocolDriver Diagnostics protocol
Component Name protocolComponent Name protocol
Service Binding protocolService Binding protocol

30

How are drivers selected?How are drivers selected?

Precedence Rules for Driver SelectionPrecedence Rules for Driver Selection
––Context OverrideContext Override

–– Person (normally using shell) forces a specific driverPerson (normally using shell) forces a specific driver
––Platform Driver Override ProtocolPlatform Driver Override Protocol

–– Platform firmware specifies one driver over anotherPlatform firmware specifies one driver over another
––Bus Specific Driver Override ProtocolBus Specific Driver Override Protocol

–– The bus controller will help determine which driver The bus controller will help determine which driver
to useto use

––VersionVersion
–– Uses Driver Binding Protocol Version fieldUses Driver Binding Protocol Version field
–– Always usedAlways used

31

Platform Driver Override protocolPlatform Driver Override protocol

Maps Controllers to DriversMaps Controllers to Drivers
OEM Value Add OEM Value Add -- Platform ManagementPlatform Management
Used by UEFI Boot Manager to Load Used by UEFI Boot Manager to Load
DriversDrivers
Provides Ordered List to Provides Ordered List to
ConnectController()ConnectController()
Higher than Bus Specific Driver OverridesHigher than Bus Specific Driver Overrides

––If 2 add in cards appear identical but have If 2 add in cards appear identical but have
different driver versions this could be used to different driver versions this could be used to
specify which driver to use for each card.specify which driver to use for each card.

32

Bus Specific Driver Override Bus Specific Driver Override
protocolprotocol

Optional Optional -- Not supported by all bus typesNot supported by all bus types
––Supported by PCI, ISA, etc.Supported by PCI, ISA, etc.
––Not supported by USB, SCSI, etc.Not supported by USB, SCSI, etc.
Maps Controllers to DriversMaps Controllers to Drivers
Attached to Controller Handle by Bus DriverAttached to Controller Handle by Bus Driver
Provides an Ordered List to Provides an Ordered List to
ConnectConrollerConnectConroller()()
Overrides Driver Binding Protocol SearchOverrides Driver Binding Protocol Search

––The PCI bus driver will Produce this protocol for The PCI bus driver will Produce this protocol for
each peripheral card with a driver.each peripheral card with a driver.

33

Driver Configuration protocolDriver Configuration protocol

3 functions3 functions
––SetOptionsSetOptions –– allows driver to control the allows driver to control the

screen to display options and get choices from screen to display options and get choices from
the userthe user

––OptionsValidOptionsValid –– validate whether the current validate whether the current
options are validoptions are valid

––ForceDefaultsForceDefaults –– sets the default optionssets the default options
1 data structure1 data structure
––SupportedLanguagesSupportedLanguages

Note: Deprecated in UEFI 2.1 and replaced with Platform to Note: Deprecated in UEFI 2.1 and replaced with Platform to
Driver Configuration Protocol.Driver Configuration Protocol.

34

Driver Diagnostics protocolDriver Diagnostics protocol

1 function1 function
––RunDiagnosticsRunDiagnostics –– when this function gets when this function gets

called the driver will run the diagnostics on the called the driver will run the diagnostics on the
child (represented by a device path) passed in.child (represented by a device path) passed in.

1 data structure1 data structure
––SupportedLanguagesSupportedLanguages

35

ComponentName protocolComponentName protocol
ComponentName2 protocolComponentName2 protocol

2 functions2 functions
––GetDriverNameGetDriverName() () –– returns the name of the returns the name of the

driver producing the protocoldriver producing the protocol
––GetControllerNameGetControllerName() () –– returns the name of the returns the name of the

device being manageddevice being managed
1 data structure1 data structure
––SupportedLanguagesSupportedLanguages

Note errata for change of Note errata for change of SupportedLanguagesSupportedLanguages format (and format (and
GUID)GUID)
–– ““engeng”” vs. vs. ““enen--USUS””

36

ComponentName protocolComponentName protocol
Limit Lengths of Names to 40 Unicode CharactersLimit Lengths of Names to 40 Unicode Characters
Include Driver Name and Version NumberInclude Driver Name and Version Number
UNDI Driver (Network Interface Controller)UNDI Driver (Network Interface Controller)
–– Typically the Name of the PCI ControllerTypically the Name of the PCI Controller

MAC Node Produced by an UNDI DriverMAC Node Produced by an UNDI Driver
–– Identify Location of Physical Connector on NICIdentify Location of Physical Connector on NIC

PCI SlotsPCI Slots
–– Identify Physical Location of PCI Slots in the SystemIdentify Physical Location of PCI Slots in the System

SCSI / SCSI RAID / Fiber ChannelSCSI / SCSI RAID / Fiber Channel
–– Controller Controller -- Typically name of the PCI ControllerTypically name of the PCI Controller
–– Channel Channel -- Identify Physical Location of the SCSI ChannelIdentify Physical Location of the SCSI Channel
–– Disk Disk -- Use Results from INQUIRY CommandUse Results from INQUIRY Command

37

Service Binding protocolService Binding protocol

This protocol is used to create and destroy This protocol is used to create and destroy
children that have protocols installed on their children that have protocols installed on their
handles.handles.
––CreateChildCreateChild()()
––DestroyChildDestroyChild()()
––The driver is responsible for adding and removing The driver is responsible for adding and removing

the protocols.the protocols.
This is used when a single driver wants to This is used when a single driver wants to
exclusively Consume a specific protocol. So exclusively Consume a specific protocol. So
a given driver Produces one of these to give a given driver Produces one of these to give
a fake exclusive access to a protocol.a fake exclusive access to a protocol.

38

PXEBC

SNP

UNDI

TCP/IP
Stack

APP APP
PXEBC

SNP

UNDI

APP APP

ARP Service Binding IP Service Binding

UDP Service Binding

MNP Service Binding

Notice the
concurrent
usage in new
solution set. SNP is
used exclusively by
MNP, and MNP acts
as a multiplex for
incoming use of the
SNP.

Primarily External Interfaces

Primarily Internal Interfaces

MTFTP Service Binding

TCP Service Binding

39

LoadedImage protocolLoadedImage protocol

Protocol that handles loading and Protocol that handles loading and
unloading of imagesunloading of images
Device drivers generally do not use Device drivers generally do not use
LoadImageLoadImage()(), , StartImageStartImage()(), or , or Exit()Exit()
They do use They do use UnloadImageUnloadImage()()

–– Allows for control when driver unloadsAllows for control when driver unloads
–– Verifies that driver is disconnected (like Verifies that driver is disconnected (like

Stop()Stop()))
–– Releases all events and memory allocatedReleases all events and memory allocated

See §7.1.2 of Driver Writers Guide.

40

Producing ProtocolsProducing Protocols

Drivers Produce protocolsDrivers Produce protocols
In your driver header:In your driver header:
––Include the header from the protocol directoryInclude the header from the protocol directory

–– #include EFI_PROTOCOL_DEFINITION (DriverBinding)#include EFI_PROTOCOL_DEFINITION (DriverBinding)

––Add the protocol your driver structureAdd the protocol your driver structure
––Add a handle to your driver structureAdd a handle to your driver structure
––Add function prototypes to the fileAdd function prototypes to the file
In your driver implementation fileIn your driver implementation file
––Set all the pointers to your function bodiesSet all the pointers to your function bodies
––Install the protocols on the handlesInstall the protocols on the handles

41

Consuming protocolsConsuming protocols

Drivers and applications Consume Drivers and applications Consume
protocolsprotocols
In your header:In your header:
––Include the header from the protocol directoryInclude the header from the protocol directory

–– #include EFI_PROTOCOL_CONSUMER (DriverBinding)#include EFI_PROTOCOL_CONSUMER (DriverBinding)

––Add the protocol pointer your driver structureAdd the protocol pointer your driver structure
In your driver implementation fileIn your driver implementation file
––Open the protocolOpen the protocol
––Call the protocol functionsCall the protocol functions

42

Custom ProtocolsCustom Protocols

1.1. Producing custom protocolsProducing custom protocols
–– See See §§ ““Using the EDKUsing the EDK”” for information on for information on

creating custom protocolscreating custom protocols
2.2. Publishing custom protocolsPublishing custom protocols

–– Send all files to consumersSend all files to consumers

43

Tips and Tricks for protocolsTips and Tricks for protocols
DevicePath protocol has a lot of utility functions to DevicePath protocol has a lot of utility functions to
help with DevicePath manipulationshelp with DevicePath manipulations
You can restrict consumers to a single oneYou can restrict consumers to a single one
––Certain Certain ‘‘bitbit--bangingbanging’’ operations require thisoperations require this
––Ex. UNDI or SNP (see the service binding Ex. UNDI or SNP (see the service binding

flowchart)flowchart)
Produce a custom debug protocolProduce a custom debug protocol
––Your custom protocol can be protectedYour custom protocol can be protected

––DonDon’’t publish its interfacet publish its interface
––Only Produce it under specific conditionsOnly Produce it under specific conditions

Write an UEFI application to test your driverWrite an UEFI application to test your driver

44

Driver Design ChecklistDriver Design Checklist

Driver TypeDriver Type

I/O Protocols Consumed I/O Protocols Consumed

I/O Protocols ProducedI/O Protocols Produced

Driver BindingDriver Binding

Component NameComponent Name

Driver ConfigurationDriver Configuration

Driver DiagnosticsDriver Diagnostics

UnloadableUnloadable

Exit Boot Services EventExit Boot Services Event

RuntimeRuntime

Set Virtual Address Map EventSet Virtual Address Map EventSet Virtual Address Map Event

UGA DrawUGA Draw
UGA I/OUGA I/O

SCSI Pass ThruSCSI Pass Thru
Block I/OBlock I/O

PCI I/OPCI I/O PCI I/OPCI I/O
Device PathDevice Path

BusBusBusDeviceDevice HybridHybrid

PCIPCI
NICNIC

PCI PCI
VideoVideo

PCIPCI
RAIDRAID

PCI I/O
Device Path

PCI I/OPCI I/O
Device PathDevice Path

UNDI, NIIUNDI, NIIUNDI, NII

46

SCSI Driver StackSCSI Driver Stack

Usable by any device that utilizes SCSI Usable by any device that utilizes SCSI
commandscommands
––SCSI devicesSCSI devices
––ATAPI devicesATAPI devices
––FibreChannel devicesFibreChannel devices
Abstracts the implementation from UEFIAbstracts the implementation from UEFI
––SCSI versionSCSI version
––ProtocolProtocol
CompatibilityCompatibility

47

SCSI Driver StackSCSI Driver Stack

Why Hybrid DriverWhy Hybrid Driver
–– Produce protocols on child handles AND onto Produce protocols on child handles AND onto

own handleown handle
–– On child channel handlesOn child channel handles

–– Produce Ext SCSI Pass ThruProduce Ext SCSI Pass Thru
–– Produces DevicePathProduces DevicePath

–– On selfOn self
–– Produces DevicePathProduces DevicePath

48

SCSI Driver StackSCSI Driver Stack

SCSI Host Controller

SCSI Bus 0 SCSI Bus 1

SCSI
Device

Controller 0

SCSI
Device

Controller 1

SCSI Pass Thru Driver manages the host controller.
Creates child handles for each bus

• Produces SCSI Pass Thru on bus handles
• Produces Device Path on bus handles

SCSI Bus Driver manages the bus (Firmware)
• Creates child handles for each device
• Passes commands down to devices
• Produces SCSI I/O on devices
• Produces Device Path on devices

SCSI Device Driver manages the device (Firmware)
• Responds to its 2 protocols

SCSI Bus 2

49

SCSI Driver StackSCSI Driver Stack
SCSI Host Controller

SCSI Bus 0 SCSI Bus 1

SCSI
Device

Controller 0

SCSI
Device

Controller 1

SCSI Bus 2

SCSI
Device

Controller 2

OS Loader calls into Block I/O
SCSI Device Driver translates to SCSI IO
SCSI Bus Driver translates to Ext SCSI Pass Thru
SCSI HC Passes along SCSI Bus

How does the OS Loader know which drive?

DevicePath

50

SCSI Protocol ChartSCSI Protocol Chart

Protocol Name Producer
(on which handle)

Consumer

Block I/O System Firmware
(Device Handle)

System Firmware

SCSI I/O
and DevicePath

System Firmware
(Device Child Handle)

System Firmware
(SCSI Device Driver)

Ext SCSI Pass Thru
and DevicePath

Host Controller Driver
(Channel Child Handle)

System Firmware
(SCSI Bus Driver)

Host Controller driver talks to its firmware

Each driver produces DriverBinding itselfEach driver produces DriverBinding itself

51

SCSI Driver StackSCSI Driver Stack

PassThruPassThru() function (in Extended SCSI () function (in Extended SCSI
Pass Thru Protocol) maps to the Execute() Pass Thru Protocol) maps to the Execute()
function (in SCSI I/O Protocol) by the Bus function (in SCSI I/O Protocol) by the Bus
driver.driver.
SCSI I/O is functionally identical to USB SCSI I/O is functionally identical to USB
I/O or Disk I/O, etcI/O or Disk I/O, etc……
Example drivers in EDKExample drivers in EDK

	UEFI Driver Development Training�Protocols
	Agenda
	What is a protocol?
	PCI IO Protocol - Example
	Disk IO Protocol - Example
	Device Path Protocol - Example
	Protocol vs. C++ class
	What I/O Protocols are Consumed?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	What I/O Protocols are Produced?
	The “core” protocols
	Device path protocol
	Device paths
	Device path examples
	Example
	Driver Binding protocol
	DriverBinding.Supported()
	DriverBinding.Start()
	DriverBinding.Stop()
	DriverBinding information
	Connect/Disconnect Controller interaction with DriverBinding
	EFI Services Binding �-UEFI Driver Model �
	UEFI Driver Model Protocols
	How are drivers selected?
	Platform Driver Override protocol
	Bus Specific Driver Override protocol
	Driver Configuration protocol
	Driver Diagnostics protocol
	ComponentName protocol�ComponentName2 protocol
	ComponentName protocol
	Service Binding protocol
	LoadedImage protocol�
	Producing Protocols
	Consuming protocols
	Custom Protocols
	Tips and Tricks for protocols
	Driver Design Checklist�
	SCSI Driver Stack
	SCSI Driver Stack
	SCSI Driver Stack
	SCSI Driver Stack
	SCSI Protocol Chart
	SCSI Driver Stack

