: (i n te! m Leap ahead"

Writing and Debugging
EBC Driver with Tips

Fang Hua
UEFI Development
Intel

Agenda

* A Brief History of EBC

* EBC Overview

* Pesigning and Implementing EBC Drivers
e [esting and Debugging EBC Drivers

* EBC Performance Guidelines

s SUMmMmary

A Brief History of EBC

Moitivation and Goals

* Option ROM Cost w/ Multiple Images
— For EFI 1.02 this was Itanium and IA-32
— Costs continue to Increase as EFlI adds CPU architectures

* Design Goals
— Simple instruction set
— Lightweight efficient interpreter
— Share a common call stack
— Low overhead on calls
— Share all data structures.
— No translations required on EBC <= native
transitions
— No library dependencies
— No C coding restrictions

A Brief History of EBC

Options

e JAVA and Forth
— Rejected due to large libraries
* |A-32 Interpreter
— Rejected due to the size/complexity of the interpreter
— Reguires updates for new IA-32 instructions
* Remote Procedure Call (RPC) like mechanism
— PRO: Can handle mixed CPU arch sizes
— CON: Does not support all C constructs
— CON: Function call overhead to transpose
— CON: Difficult to share data structures
— EFI System Table, Boot Services Table, Protocol Interfaces
— EFI 1.02 Specification included some support
e EBC Instruction Set with Natural Addressing
— PRO: Simple instruction set, no library dependencies
— PRO: Share common stack and data structures
— CON: Minor C coding restrictions

S
L

Agenda

* A Brief History of EBC

* EBC Overview

* Pesigning and Implementing EBC Drivers
e [esting and Debugging EBC Drivers

* EBC Performance Guidelines

s SUMmMmary

EBC Overview

Natural Addressing

typedef struct {
UIINI64° BufferlLength;

\/OID *Buffer: BufferLength
UINT16, Checksum: Buffer 8 8
1 MY _STRUCT:

Checksum 12

o All fields are fixed size except INTN, UINTN, and pointers
» Byte Offset = C + N * Size of pointer in bytes

— BufferLength: Offset = 0 + O * sizeof(VOID *) = 0 or O
— Buffer: Offset = 8 + O * sizeof(VOID *) = 8 or 8
— Checksum Offset = 8 + 1 * sizeof(VOID *) = 12 or 16

e Encode both C and N Iinto the Iinstruction
— C and N replace traditional offset field for address modes

(intel'

EBC Overview

Executing EBC Images

EBC Interpreter
— |mplemented as a UEFI Driver
— Jypically stored in system FLASH (—10 KB compressed)
Thunks
— Native code that transfers control to/from EBC functions
— Translates from native CPU ABI to EBC ABI (stack based)
— Translates from EBC ABI (stack based) to native CPU ABI
EBC executables use PE/COFF image format
EBC executables loaded with EFI Boot Service Loadlmage()
— Leadlmage() must support native and EBC images
— Thunk to image entry point created by Loadlmage()
EBC executables started with EFI Boot Service Startlmage()
— Calls entry point thunk
Thunks to exported functions created dynamically
— Startup code contains BREAK instructions to create thunks
— Function pointer references detected by compiler
— Assignment or static initialization of protocol functions

(intel'

EBC Overview

EBC Images in PCI Option ROMs

o PCI Bus Driver discovers PCl Option ROMs

o PCJ| Option ROMs support multiple UEFI Images
— UEFI Images may be compressed

 UEEI images dispatched by PCI Bus Driver
— Nen-UEFI images, including legacy, are ignored
— UEFI Drivers dispatch in the order they appear
— PCI Bus Driver calls Loadlmage() and Startimage()

* Bus Specific Driver Override Protocol
— Produced by PCI Bus Driver
— Consumed by EFI Boot Service ConnectController()
— Specifies priority order of Driver Binding Protocols

e Recommendations
— Legacy Option ROM image first
— Native UEFI Drivers next
— EBC UEFI Drivers last
— Compress driver images

Agenda

oA Brief History of EBC
* EBC Overview
s Designing and Implementing EBC Drivers
s [esting and Debugging EBC Drivers
* EBC Performance Guidelines
s SUmMmmary

Designing and Implementing EFI Drivers

When to use EBC

| s’Add-In Video Adapters
s Add-1n Disk Controllers

s Not used for NICs (UNDI)
—UNDI I1s runtime which must be native.

s Reduce driver image footprint

— Adapters supporting multiple CPU types
— JA-32 and IA-64
— JA-32 and Intel® 64
— Intel® 64 and 1A-64
—[A-32, Intel® 64 and IA-64
— Reduce adapter SKUs

10

Designing and Implementing EFI Drivers

EBC Development Checklist

* Implement and Test Native Driver
s EBC Development Environments

* EBC Target Environments

* Driver Design Steps

* Driver Implementation Steps

e Portability Considerations

11

Designing and Implementing EFI Drivers

EBC Development Environments

 EDIl on EFI and Framework Open source Community Website
[ittps:c//edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-
20061228.Zip
— Config.env: EFI_GENERATE_INTERMEDIATE_FILE = YES

* |ntel® C Compiler for EFI Byte Code Version 1.2 Build 20040123
— Common Flags:
— /W3 /WX /FAcs /Fa
— Pittps//swww3. intel. com/cd/software/products/asmo-
na/ena/compilers/efibc/219678.htm
e Microsoft* Linker Version 7.10.3077 and above
— Common Flags:
— /MACHINE:EBC /OPT:REF /ENTRY:EfiStart
— /SUBSYSTEM:EFI_BOOT_SERVICE_ DRIVER
— EbcLib.lib
— Microsoft* Visual Studio .NET 2003
— Microsoft* Visual Studio 2005
— Windows* DDK 3790.1830

*Other names and brands may be claimed as the property of others. (|nt9|

12

https://edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-20061228.zip
https://edk.tianocore.org/files/documents/16/313/Edk-Dev-Snapshot-20061228.zip
http://www3.intel.com/cd/software/products/asmo-na/eng/compilers/efibc/219678.htm
http://www3.intel.com/cd/software/products/asmo-na/eng/compilers/efibc/219678.htm

Designing and Implementing EFI Drivers

EBC Target Environments

e UEFI Compliant Platforms

e EDK — DUET Platform
— Boots UEFI environment on legacy platform

e EDK — NT32 Platform

— UEFI Emulation environment for Windows
— Not useful for drivers that touch hardware

K]

Designing and Implementing EFI Drivers

Priver Implementation Steps

e Create Driver Directory

¢ [Design Private Context Data Structure
e Add Source Files to Driver Directory

e Add .INF File to Driver Directory

e Add .INF file to .DSC file in Build
Directory

e Run nmake to build driver

DEMO: Build EBC SampleDriver
DEMO: Build EBC HelloeWorld

14

Designing and Implementing EFI Drivers

Pertability Considerations

¢ Do Not Assume Max Number of Children
¢ Do Not Use Fixed Memory Addresses

e Do Not Use Assembly

e Do Not Use Floating Point Arithmetic

e Some Minor EBC Porting Considerations

e Bus Drivers Should Support Producing 1
Child at a time If possible (Improves
boot performance)

(intel'

15

Designing and Implementing EFI Drivers

Common EBC Source Porting Issues

¢ EfMain() and EfiStart() are reserved words
e Function Declarations
— Must match Function Prototype If present
— All parameter types and return types
e Pre-Init Data Structures
— Function pointer fields must match declaration

— Data fields can not reference sizeof()
— EFI_STATUS indirectly references sizeof() for EBC

e case statement can not reference sizeof()
— EFI_STATUS indirectly references sizeof() for EBC

DEMO: PortDemol PortDemo?2

(intel'

16

Designing and Implementing EFI Drivers

Common EBC Execution Issues

 Incorrect result of op between variable and
Immediate data
— Workaround: Type convert immediate data to UINTN

¢ |ncorrect result of arithmetic calculations
— INTN and UINTS
— INTN and UINT16
— INTN and UINT32
— UINTN and INT64
— Workaround: Type convert fixed size to natural

e Incorrect CMP Instruction generation
— Workaround: Not an issue iff UEFI base types are used

DEMO: PortDemo3 (intel')

17

Agenda

* A Brief History of EBC

* EBC Overview

* Pesigning and Implementing EBC Drivers
e [esting and Debugging EBC Drivers

* EBC Performance Guidelines

s SUMmMmary

18

Testing and Debugging EFI Drivers
lesting Recommendations

s UEFI Self Certification Tests (SCTs)

s [est Functions with EFI Shell Commands
* Check for Leaks with EFI Shell Commands
e Install EFI Compliant Operating System

* Boot EFIl Compliant Operating System

e Debug Macros ldentify Critical Failures

e Use Same Techniques on all CPU Types

—lA-32, Itanium® Processor Family(l1A-64),
Intel® 64, EBC

(intel'

19

Testing and Debugging EFI Drivers

Pebug Methods

* DEBUG()/ASSERT() Macros
e POST Card

* UART Serial Port

*\/GA Display

* EBC Debugger

20

Testing and Debugging EFI Drivers

. Debug Macros

U’1,. 4

-i'-'l _.._:'. -

WASSERT (Expression)

.~ _If Expression is FALSE, then print file name and
line number and halt.

s ASSERT EFI ERROR (Status)

—[iff Status Is not EFI_SUCCESS, then print file
name and line number and halt.

*CR (Record, Type, Field, Signature)

—ASSERT()s If Data Structure Signature does not
match

s EEI BREAKPOINT
—Generate a CPU break point instruction

21

Testing and Debugging EFI Drivers

EFI_D ERROR 0x80000000
*EFI D INIT 0x00000001
*EFI_D WARN 0x00000002
*EFI_ D INFO 0x00000040
*EFI_D BLKIO 0x00001000

*EFI_D _UNDI 0x00010000

22

Testing and Debugging EFI Drivers

When DEBUG() 1s not Avallable

e POST Card (1/0 0x80)
— PCI Root Bridge 1/0 Protocol
— PCI 1/0O Protocol

Value = 0x03;

Status = Pcilo->lo.Write (
Pcilo, // This
EfiPciloWidthuint8, // Width
EFI_PCI_10_PASS THROUGH_BAR, // BAR

0x80, // Offset
1, // Count
&Value // Buffer

);

May not work on all platforms
May produce unpredictable results '
Must be removed from production drivers (intel

23

Testing and Debugging EFI Drivers

S When DEBUG() 1s not Available

Hello World e UART (COM1 I/0 Ox3F8-0x3FF)
Check Point 1 * UART (Platform Specific MMIO)
Check Point 2 — PCI Root Bridge 1/0 Protocol
Check Point 3 — PCI 1/0O Protocol

Status = Pcilo->Polllo (Pcilo, EfiPciloWidthUints,
EF1_PCI_10_PASS THROUGH_ BAR,

Ox3FD, 0x20, 0x20, 1000000, &Lsr);
Status = Pcilo->lo.Write (Pcilo, EfiPciloWidthUints8,
EF1_PCI1_10_PASS THROUGH_BAR,

Ox3F8, 1, &Data);

May not work on all platforms
May produce unpredictable results

Must be removed from production drivers (intel'

24

Testing and Debugging EFI Drivers

When DEBUG() i1s not Avallable

e VGA (MMIO OxB800O0O-0xBFFFF)
— PCI Root Bridge 1/0 Protocol
— PCI 1/0O Protocol

Hello World
Check Point 1
Check Point 2
Check Point_3

VideoAddress = 0xB8000 + (Row * 80 + Column) * 2;
VideoCharacter = 0x0700 | Character;

Status = Pcilo->Mem.Write (Pcilo, EfiPciloWidthuintlé6,
EF1_PCI_10_PASS THROUGH_BAR,
VideoAddress, 1, &VideoCharacter);

May not work on all platforms
May produce unpredictable results

Must be removed from production drivers (intel'

25

Testing and Debugging EFI Drivers

EBC Debugger Demo

* Compile with /FAcs and /Fa
— Generates .COD files with mixed source/asm

o Link with /MAP:mapfile
— Generate .MAP file of functions in EBC driver

e Config.env
— EFI_GENERATE_INTERMEDIATE_FILE = YES

DEMO: EBC Debugger

26

Agenda

* A Brief History of EBC

* EBC Overview

* Pesigning and Implementing EBC Drivers
e [esting and Debugging EBC Drivers

s EBC Performance Guidelines

s SUMmMmary

27

EBC Performance Guidelines

EBC Performance Guidelines

* Do as little work in EBC driver as possible
—Use EFI Boot Services
—Use EFI Runtime Services
—Use Protocols produced by other drivers

s Perform operations at largest size possible

28

EBC Performance Guidelines

EBC Performance Guidelines

* EEI Boot Services
— CopyMem(), SetMem()
 PCI 1I/O Services
— PoliIMem() and Polllo()
— Mem.Read(), Mem.Write(), lo.Read(), l1o.Write()
— Supports Buffer, FIFO, and Fill operations
— EfiPciloWidthUintX, EfiPciloWidthFifoUnitX, EfiPciloWidthFillUintx
— Pci.Read() and Pci.Write()
— Use buffer to perform many PCI cycles at once
— CopyMem()
— Video scroll operations when HW engine no available
— Map(), UnMap()
— Perform double buffering as required in native code

S
L

29

PCIl Device Drivers

s Always Call Pcilo-=Attributes()
— Advertises Dual Address Cycle Capability

—Save and Enable Attributes in Start()
— Disable Attributes in Stop()
* DMA — Bus Master Write Operations
— Must call Pcilo-=Flush()
* DMA — Setting Up with Pcilo-=Map()
— Do Not Use Returned DeviceAddress
— Not all chipsets have 1:1 bus/system mappings

(intel'

30

PCI Device Drivers — Start()

Status = Pcilo->Attributes(
Pcilo,
EfiPciloAttributeOperationGet,
0,
&ControllerContext->0OriginalPciloAttributes
);
1T (EFI_ERROR (Status)) {/* Error Handling */}
Status = Pcilo->Attributes(
Pcilo,
EfiPciloAttributeOperationEnable,
(EF1_PCI1_10_ATTRIBUTE_10 |
EFI_PCI1_10_ATTRIBUTE_MEMORY |
EFI_PCI1_10_ATTRIBUTE_BUS_MASTER |
EFI_PC1_10 ATTRIBUTE DUAL_ADDRESS CYCLE),
0,
NULL
)
1T (EFI_ERROR (Status)) {/* Error Handling */}

Save Original and Enable

31

PCI Device Drivers — Stop()

Status = Pcilo->Attributes(
Pcilo,
EfiPciloAttributeOperationSet,
&ControllerContext->0OriginalPciloAttributes

NULL

);

1T (EF1_ERROR (Status)) {

// Error Handling

}

Restore Original

32

S
L

Memory Tips

e Use Aligned Memory

—Framework functions will frequently handle all
alignment issues for you.

* Free all the memory you allocate

33

Demo and Driver Guidelines

Preventing Alignment Faults

VOID
ScsiDeviceNodelnit (

IN OUT SCSI_DEVICE_PATH *ScsiDeviceNode,
IN UINT16 Pun,

IN UINT16 Lun

)

{

ScsiDeviceNode->Scsi .Header.Type
ScsiDeviceNode->Scsi .Header .SubType

SetDevicePathNodelLength (&ScsiDeviceNode->Scsi .Header,
sizeof(SCSI_DEVICE_PATH));

ScsiDeviceNode->Scsi - Pun
ScsiDeviceNode->Scsi - Lun

MESSAGING_DEVICE PATH;
MSG_SCS1_DP:

Pun;
Lun;

34

ScsiDeviceNode may not be aligned

S
L

Preventing Alignment Faults

VOID
ScsiDeviceNodelnit (
IN OUT SCS1_DEVICE_PATH *ScsiDeviceNode,
IN UINT16 Pun,
IN UINT16 Lun
))

{
SCS1_DEVICE_PATH MyDeviceNode;

MyDeviceNode.Scsi .Header .Type MESSAGING_DEVICE_PATH;

MyDeviceNode.Scsi .Header .SubType MSG_SCSI_DP;

SetDevicePathNodeLength (&MyDeviceNode.Scsi .Header,
sizeof(SCSI_DEVICE_PATH));

Pun;

Lun;

MyDeviceNode.Scsi .Pun
MyDeviceNode.Scsi .Lun

gBS->CopyMem (ScsiDeviceNode,
&MyDeviceNode,
sizeof(SCSI_DEVICE_PATH));

gBS->CopyMem() handles all alignments
MyDeviceNode Is aligned

35

S
L

Tips for existing functions

* There are many existing utility functions
that you should use.
—UEFI 2.0 has many DevicePath utilities
— Framework has many utility libs

36

Use EFI Driver Library Functions

CHILD_DEVICE Child;

Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (CHILD DEVICE),
&Child
);

iIT (EF1_ERROR (Status)) {

return Status;

}
gBS->SetMem (Child, sizeof (CHILD_DEVICE), O);

OK

CHILD_DEVICE Child;

Child = EfiLibAllocateZeroPool (sizeof (CHILD DEVICE));
1T (Child == NULL) {

return EFI_OUT_OF_ RESOURCES;
+

Library Functions Simplify Source Code
Library Functions May Reduce Size

37

S
L

Compression

s EFI has built In decompression that can
help anyone save space Iin their OpROM.

* e PCI bus driver will automatically
decompress any compressed drivers

* [he EFI Decompress protocol
decompresses Images into memory for
running

e Uses LZ/7 7 and Huffman Coding

See 819 of UEFI Specification

38

Portability

* Design for portability from the beginning:

—[DPon’t assume what platform the driver will run
on

—[DPon’t assume what OS will load
—Avoid assembly language
—[Don’t directly access any chipset resources

—All of these may seem to be ways to shorten
and ease Initial EFI device driver development,
but in the long run they will limit the portability
of the driver.

39

More Portability Tips

* Do Not Assume Max Number of Children
* Do Not Use Fixed Memory Addresses
* Do Not Use Assembly

* Do Not Use Floating Point Arithmetic
—|A-64 does not always have it available.

e Some Minor EBC Porting Considerations
 Bus Drivers Should Support Producing 1

Child at a time Iff possible (iImproves boot
performance)

(intel'

40

Sharing Code between OS driver and EFI
driver

e Definitions

— Share identifiers and register information
* |nterfaces

— Use identical function prototypes
e Intermediate functions

— Call into appropriate lower level functions
e Library

— Set of functions compiled per environment

(intel'

41

Sharing Files Example

* [ntel network cards
—lattp://sourceforge.net/projects/e1000

e [he el000 hw.c/.h files are shared
petween multiple environments including
OS and firmware.

e This uses shared definitions and shared
Intermediate functions, with the lower
level function added in the build process.

(intel'

42

http://sourceforge.net/projects/e1000

summary

o Use EFI Driver Writer’'s Guide for UEFI 2.0
— Draft Version 0.94

s Implement and Test Native Driver First

* Be aware of EBC Source Portability Issues
— No assembly or floating point support

o Call External Services for Performance
— UEFI Boot Services
— UEEI Protocols

e Use EBC Debug Methods and EBC Debugger

o \/alidate with SCTs, EFI Shell, and OS
Install/Boot

e Follow EBC Option ROM Recommendations
— EBC Images Last
— Use UEFI Compression to reduce size

43

Definitions

o EEI Image
— Executable Image in a PE32 Image Format

o E-I Driver

— EFI Image that Typically Manages Physical Devices
— Many Types are Possible

e [Handle
— Object Containing One or More Protocols

* Protocol
— Object Containing Functions and Data

e Controller
— Physical Device that is Managed by an EFI Driver

e Fvent

— Object that may be Signaled or Waited Upon
— Synchronous and Asynchronous Notifications

45

S
L

Designing and Implementing EFI Drivers

UEFI Driver Types

EFIl Images

Drivers

EFI Driver Model

Initializing Drivers

Bus Hybrid vice °
Drive. Drivers vers 5

Root Bridge
Drivers

Applications

46

S
D

Designing and Implementing EFI Drivers

Drivers

Device Driver

EFI Driver Mode

Bus Hybrid Device
Drivers Drivers Drivers

s Mlanages a Controller or Peripheral Device
e Start() Does Not Create Any Child Handles

e Start() Produces One or More 1/0

Protocols
— Installed onto the Device’s Cantroller Handle
Examples:

PCI Video Adapters

USB Host Controllers

USB Keyboards / USB Mice

PS/2 Keyboards / PS/2 Mice

(intel'

47

Designing and Implementing EFI Drivers

Drivers

B u S D r i Ve r EFI Driver Mode

Initializing Drivers

Root Bridge
Drivers

s Vlanages and Enumerates a Bus Controller
s Start() Creates One or More Child Handles

o Start() Produces Bus Specific 1/0 Protocols
— Installed onto the Bus’s Child Handles

Bus Hybrid Device
Drivers Drivers Drivers

Examples:
PCIl Network Interface Controllers
Serial UART Controllers

48

Designing and Implementing EFI Drivers

Drivers

Hyb rid Driver EFI Driver Mode

Initializing Drivers

Root Bridge
Drivers

s Vlanages and Enumerates a Bus Controller
s Start() Creates One or More Child Handles

o Start() Produces Bus Specific 1/0 Protocols
— |nstalled onto the Bus’s Controller Handle
— |nstalled onto Bus’s Child Handles

Bus Hybrid Device
Drivers Drivers Drivers

Examples:
PCI| SCSI Host Controllers
PCIl Fiber Channel Controllers

49

Designing and Implementing EFI Drivers

Priver Design Steps

* Determine Driver Type

* [dentify Consumed I/0 Protocols

o [dentify Produced 1/0 Protocols

o [dentify EFI Driver Model Protocols
o [dentify Additional Driver Features

 [dentify Target Platforms
—JA-32
— Intel® 64
— [tanium Processor Family (1A-64)
—EFI Byte Code (EBC)

10

Designing and Implementing EFI Drivers

Priver Design Checklist

PCI PCI
Video RAID

Driver Type Device Hybrid
/0O Protocols Consumed PC_' 170 PC.I 170

Device Path Device Path
1/0O Protocols Produced GOp | 565} Pass Thd
Driver Binding v v
Component Name v v
Driver Configuration v
Driver Diagnostics v v
Unloadable v v
Exit Boot Services Event sometimes sometimes
Runtime
Set Virtual Address Map Event

(intel'

51

	Writing and Debugging EBC Driver with Tips
	Agenda
	Motivation and Goals
	Options
	Agenda
	Natural Addressing
	Executing EBC Images
	EBC Images in PCI Option ROMs
	Agenda
	When to use EBC
	EBC Development Checklist
	EBC Development Environments
	EBC Target Environments
	Driver Implementation Steps
	Portability Considerations
	Common EBC Source Porting Issues
	Common EBC Execution Issues
	Agenda
	Testing Recommendations
	Debug Methods
	Debug Macros
	Debug Macros
	When DEBUG() is not Available
	When DEBUG() is not Available
	When DEBUG() is not Available
	EBC Debugger Demo
	Agenda
	EBC Performance Guidelines
	EBC Performance Guidelines
	PCI Device Drivers�
	PCI Device Drivers – Start()�
	PCI Device Drivers – Stop()�
	Memory Tips
	Preventing Alignment Faults�
	Preventing Alignment Faults�
	Tips for existing functions
	Use EFI Driver Library Functions�
	Compression
	Portability
	More Portability Tips
	Sharing Code between OS driver and EFI driver
	Sharing Files Example
	Summary
	Definitions
	UEFI Driver Types
	Device Driver
	Bus Driver
	Hybrid Driver
	Driver Design Steps
	Driver Design Checklist

