UEFI Overview

Tim Lewis

6 June 2007

confidential

Agenda

« UEFI Organization

« How UEFI Changes BIOS
 UEFI Key ldeas

e Summary

phoenix ’)’ '

UEFI Forum Organization

UEFI Board
of Directors

, Platform :
UEEkSpec Working Initialization Working UI(EBI?(I)ISSEEJV'IY\(I)\;E;I g

Group (PIWG)

Group (USWG)

UEFI Configuration
Sub-Team (UCST)

UEFI Security Sub-
Team (USST)

UEFI Networking
Sub-Team (UNST)

.,. 1 .
phogdﬁllchu ® 2006 Phoenix Technologies Lid.

|
Industry
Communication
Working Group (ICWG)

UEFI Goals

Open (UEFI)
« Clear specification of the boot environment allows 3 party

drivers and 3" party applications, as long as they followi the
interface.

» Extensible (UEFI)

* New interfaces and capabilities can be added & prototyped,
even w/o changing the UEFI specification.

e Industry Controlled (UEFI)

* Provides balance between OS vendors, OEMs, firmware
providers and 3" party developers

 Modular
« Can be created and delivered separately.
« Scalable

* Applicable to a wide variety of platforms, from embedded
and special purpose, up through multi-node servers.

.,. } .
pho%w.. ; ® 2006 Phoenix Technologies Lid.

Trend #1: Innovation Speeding Up

19‘99 20‘02 20?5 20‘06 20‘07
EFI 1.0 EFI 1.10 Unified EFI (UEFI) UEFI 2.0 UEFI 2.1
Released for Released forum created Released Released
ltanium. (Intel, w/AMD, AMI, Dell, Apple
HP, LSI, HP, IBM, Insyde, PRIe,
i | Lenovo
Phoenix, Intel, Microsoft,
) . added to
Microsoft) Phoenix.
board
UEFI PI 1.0
Released

BIOS and UEFI Coexist For A Long Time (Compatibility)

.,. } .
pho%w.. ; ® 2006 Phoenix Technologies Lid.

UEFI Trend - Compatibility

UEFI 2.0

PI1.0
Standard
model for
flirmware
drvers

DXE
[DrIVeEr;
Execution
ERvirenment

19ALQ IXA

PEI
Platfierm
Envirenment
Inrtialization

phoenix ”

® 2006 Phoenix Technologies Lid.

SEcorecore
Pheenix's PC
fHrmware

PSIV
Makes
PReEmIX
BIOS Appear
As DXE

| } Driver.
Intel Support

Kiit
SuUpport
Iatel-enly,
APls anadl pre-
1.0 APIs

Trend #2: Monolithic To Modular

 BIOS will be a mix of drivers and applications
provided by Phoenix, silicon vendors, OS vendors,
3'd party ISVs, OEMs and ODMs.

 Tiano, UEFI 2.0, etc.

e Drivers and applications are delivered separately
rather than a single deliverable.

* Drivers and applications are installed separately
* Even after the system is shipped!

Many Pieces Plug Into BIOS (Integration)

phoenix ’)’ '

UEFI Trend - Integration

Do have: all off the
drivers lhneed?:

POST
Service
Manager

Conven-
tional
BIOS

DE I hiave the rnaght
VENSIONS?

IS It coniiguired foxr
my/ platierm:?

What It hwant te
make a change?

Arch Protocol \

Core PEI &
DXE e
Dispatcher,

phoenix ’)’ '

Trend #3: Product To Platform

o Stable, standards-based platforms allow value-add
development with assurance of longevity.

e Testing insures compatibility

 Every BIOS vendor and major system vendor either
has or is planning UEFI-capable systems.

e Features and applications can be moved from
platform to platform.

It's Not How You Build Your BIOS
But How You Build Your Feature (Development

phoenix ’)’ '

UEFI Trend - Configuration

S/PD»Add ress
/}> BriVer for

oy /) Memory SIMM each oifthe
/| Controller W components
QA
BUt drVers
3 |38 |3 need torne
SE R confiigued
Presence » /O Bridge
Detect e
= Routin .
9 How! te; dio) 17
> ' s&zz'
c

Wireless

.,. } .
pho%w.. ; ® 2006 Phoenix Technologies Lid.

UEFI Specification
Overview

What Is The UEFI Specification?

o Standard boot process
e Method for finding drivers
* Method for finding an OS loader
* Method for launching an OS loader
« Standard boot and runtime services

 On PC/AT systems, replaces BIOS real-mode
Interface

« Works alongside of ACPI and SMBIOS

 Manages initial program load (IPL) devices
e Boot devices, video devices and input devices

 Managed by the UEFI Specification Working Group
e Current Version s 2.1

phoenix ’)’ '

Key ldea #1: In UEFI, Everything Is An EXE

UEFI Drivers, Applications, OS Loaders Are EXEs
« Called images in UEFI
« Same file format used by Windows (PE32+)

e Three new subsystem types:
 EFI RUNTIME, EFI BOOT SERVICE, EFI APPLICATION

 UEFI Images Can Be 32-Bit or 64-Bit
* Flat mode. If paged, then 1-to-1 linear/virtual mapping

 UEFI Images Can Be For EBC, x86-32, Itanium &
X86-64

 EFI Byte Code (EBC) is interpreted assembly language
 UEFI Images Have A Single Entry Point (Not Many)

phoenix ’)’ '

Key ldea #2: Globally Unique Identifier (GUID)

GUIDs are identifiers
 Sometimes called UUIDs
 UEFI uses for interfaces and data structures
 GUIDs are unique
« Extremely difficult to generate two duplicate GUIDs
e Easy to create your own GUID
* Run UUIDGEN or GUIDGEN from Microsoft or Linux

* If you create your own GUID, you can create your own interface
or data structure in UEFI.

 GUID1 = UEFI Specification
 GUID2 = Phoenix Specification
 GUID3 = OEM Defined
 GUID4 = ODM Defined

.,. } .
pho%w.. ; ® 2006 Phoenix Technologies Lid.

Key ldea #3: Drivers Communicate Using Protocols

* Protocols consist of an interface data structure and a GUID
 If you know the GUID, you know the data structure
* Interface data structures contain data or function pointers
» Drivers can produce an interface
e Using InstallIProtocolInterface()
 Maximum: one of each type per handle
* Drivers can consume an interface
* Using HandleProtocol () or OpenProtocol ()

» Drivers can be notified when a new interface is produced
* Using RegisterProtocolNotify()

.,. } .
pho%w.. ; ® 2006 Phoenix Technologies Lid.

Key ldea #4: Protocols Are Installed On Handles

 UEFI supports an object model with runtime binding
 Each object is called a handle (EFI _HANDLE)

 Each handle can have up to one of each interface

 Handles can be created in two ways:

 LoadImage() creates a new handle for the image and
installs EF1_LOADED_ IMAGE_PROTOCOL on it.

» Called an image handle

 InstallProtocolInterface() creates a new
handle if it is passed a NULL handle as an input
parameter.

* Protocols can be installed on a handle by the UEFI
core, a parent driver or by the driver itself.

phoenix ’)’ '

Where Do Protocols Come From?

phoenix ’)’ '

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_DIAGNOSTIC_PROTOCOL

v

EFI_COMPONENT_NAME2_PROTOCOL

Installed By
UEFI Core

Installed By
Parent Driver

Installed By
Driver During
Initialization

Installed By
Driver Once
Started

Key Idea #5: Device Paths Match Hardware With Handles

« Device paths are variable-length binary data
structures which describe how to get to a device
(software perspective)

e Consists of one or more device nodes

e Hardware — PCIl, Memory Mapped

« ACPI - HID/CID, UID

 Messaging — ATAPI, SCSI, USB, IPv4, UART
 Media — Partition, File Path

* BIOS Boot Specification

e |nstalled on a handle as
(EF1_DEVICE_PATH PROTOCOL)

 There are GUIDed device nodes for vendor usage

phoenix ’)’ '

Device Path Examples

 Example #1: IDE Hard Drive
« /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)

« Example #2: Legacy Floppy
« /Floppy(0)

 Example #3: Partition On IDE Hard Drive

e /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)/Mbr(ET
1Guid,guid)

« Example #4: File On IDE Hard Drive Partition

« /PciRootBridge(0)/Pci1(0x1F,1)/Ata(Primary, Master)/Mbr(EFf
1Guid,guid)/EfiLoader.efi

« Example #5: ISCSI

« /PciRootBridge(0)/PCI(2,0)/MAC(.)/I1PvA(.)/1SCSI(aSCSITar
getName,PortalGroupTag, LUN)

rm°ﬂﬁ£’v

Summary

 UEFI Forum Controls The UEFI Specification

 There Are 5 Key Ideas For Understanding UEFI
e EXES
 GUIDs
* Protocols
 Handles
e Device Paths

« UEFI Driver Model Creates Robust, Re-usable
Drivers

phoenix ’)’ '

Where To Find More Information...

 Phoenix’s BIOS Developer Blog
 http://blogs.phoenix.com
 UEFI Site
e www.uefi.org

phoenix ’)’ '

http://blogs.phoenix.com/
http://www.uefi.org/

	UEFI Overview
	Agenda
	UEFI Forum Organization
	UEFI Goals
	Trend #1: Innovation Speeding Up
	UEFI Trend - Compatibility
	Trend #2: Monolithic To Modular
	UEFI Trend - Integration
	Trend #3: Product To Platform
	UEFI Trend - Configuration
	What Is The UEFI Specification?
	Key Idea #1: In UEFI, Everything Is An EXE
	Key Idea #2: Globally Unique Identifier (GUID)
	Key Idea #3: Drivers Communicate Using Protocols
	Key Idea #4: Protocols Are Installed On Handles
	Where Do Protocols Come From?
	Key Idea #5: Device Paths Match Hardware With Handles
	Device Path Examples
	Summary
	Where To Find More Information…

