(l n te! Leap ahead"
UEFI Driver Development
Training
Events

Leon Li
UEFI Development
Intel

Agenda

System Boot Services
Event Definition
Event Types

Event Usage

Timer Usage

Task Priority Level

System Boot Services?

s System services are interfaces that all
UEFEI compliant systems offer.

s Boot Services are a subset of these that
are available only before
ExitBootServices() Is called.

* Runtime Services are the other subset
and they are available both before and
after ExitBootServices() Is called.

See 8§ 6 UEFI 2.1 Spec.

UEFI Data Structures
- EFI System Table

Active Consoles
Input Console

Output Console
Standard Error Console

EFI ~| EFlI Runtime Services Table
System Variable Services
Table Real Time Clock Services

EFI Boot Services Table

Task Priority Level Services

Memory Services

Event and Timer Services

Protocol Handler Services

Image Services

Driver Support Services

Handle Database | C

|
\, Protocol Interface

Boot Service Data Structures

Reset Services

Status Code Services

Virtual Memory Services

Version Information

EFIl Specification Version

Firmware Vendor

Firmware Revision

Runtime Data Structures

Event Definition

* A part of Boot Services

* A messaging method
—Returns control to a specific function
—\When the event is Signaled
— After a specified time lapse

— Useful for polling (i.e. Device Drivers)

—\When SignalEvent() Is called with the event
handle

— Useful for controlling order of events
—Note: special event for ExitBootServices()

Exit Boot
Services Events

Set Virtual
Address Map
Events

Signal
Events

Periodic
Timer Events

Wait
Events

Timer
Events

One Shot
Timer Events

Event Types

~ s iimer event — used to delay by a certain
time

s Runtime event — an event that will be used
aiter ExitBootServices()

o Notihy Walit event — an event whose function
IS not spontaneously called

* Notify signal event — an event whose
function Is spontaneously called

e EXIt Boot Services event — the special event
that signals that ExitBootServices() has been
called.

e A e
B

Three Elements of all Events

* [he Task Priority Level (TPL) of the event
— Priority at which the notification function is executed

e A notification function

— Is executed when the state of the event is checked or
the event is being waited upon.

— The notification function of a signal event is executed
whenever the event transitions from the waiting state to
the signaled state

e A notification context

— IS passed into the notification function each time the
notification function is executed

(intel'

Event Usage

s

S eiGreateEvent() — creates an event structure

A

15

- siCreateEventEx() — creates an event in a

group
s CloseEvent() — closes and free event
structure

e SignalEvent() — sets event to signaled state

o \WaltForkEvent() — stops execution until
signaled

 CheckEvent() — checks the state of an event

)

Eve nt U Sag e (continued)

b =
Wie =
il '5?

g,_'_--f;CaII CreateEvent() to create an event handle

'\ —Or use CreateEventEx() to make a set of events

e \Wait on or periodically check the state of the event
—Or wait for the function to be called automatically

e Signal the event

CreateEvent() | CreateEventEx() | WaitForEvent() | Calls a
function
Wait Event Yes Yes Yes
type
Signal Event | Yes Yes
type
Set of Yes
events
Single event | Yes No Effect

<

fs ;

§
..: m

Eve nt U Sag e (continued)

s CheckEvent() vs WaitForEvent()

—Use CheckEvent() for a single event
—Use WaitForEvent() for an event list

11

S
o o B
"-5.'-,.'"\. oo

Timer Usage

1. Create an event using CreateEvent()
with EVT TIMER bitmask.

2. Set the timer using SetTimer()
1. Use llimerCancel to cancel an existing timer
2. Use limerPeriodic to set a repeating timer
3. Use TimerRelative for a single event
3. If this Is a “one-shot” item close the
event with CloseEvent() immediately.

(intel'

12

// Cre
Status

imer Usage (sample code)

ate the event.
= gBS->CreateEvent (

(EFI_EVENT_NOTIFY_SIGNAL | EF1_EVENT TIMER),
EF1_TPL _NOTIFY,

EFI_EVENT _NOTIFY* FunctionToCall,

NULL,

&Event

)
// Set

off event for every ¥2 second.

Status = gBS->SetTimer (
Event,

T

imerPeriodic,

5000000

)
// note

that the time is in 100ns so 5000000 is Y2 second.

Event/Timer Examples:

s \What functions should be called in each of
these cases:

—[Drivers can use events to poll for new hot-plug
devices

—[Drivers can use events to wait for completion
—[Drivers can react to ExitBootServices event

14

Polling for new devices

s USB example
—Creates an periodic timer event in Start()
—Start the timer in Start()

—[nside timer function
— Are there any new devices on controller (or hub)
— |f the new device is a hub -> call timer function for the hub
— Install driver for new device

15

Waiting for completion

e SCSI example

— In the SCSI Passthrough protocol the
Passihru() function has an (optional) event
parameter.

— |If an event is passed in and the device

supports non-blocking 1I/0 operations then the
call will return immediately and the event will

pbe signaled when the I/O operation has
finished.

— Code can call the function and will be
notified when the operation IS complete.

(intel'

16

Reacting to ExitBootServices event

* JJo get the notification:
— Create an event in Start() with a notification function
— React when the function is called

* \When you get the notification

— Many drivers may react to this by completing
communication with devices or closing children.

— UNDI drivers can react specially

— They can call SetVirtualAddressMap() to switch from a
boot service driver into a runtime service driver.

— No other drivers can be runtime service drivers.

(intel'

17

Task Priority Levels (TPLs)

to define the priority in which
notification functions are executed

Higher priority notifications are processed
first

Notifications with higher priority can
Interrupt

To create locks

Make data access In a driver atomic by
temporarily raising the TPL

See §2.6 of EFI Driver Writer’'s Guide.

18

Task Priority Levels (TPLs)

* EEl supports 3 TPLs for use by drivers

—Note: There are other levels for use by the
firmware.

* [ascending order
—TPL_APPLICATION (default TPL) — User 1/0 must

pbe here

—TPL_ CALLBACK — can do file system and Disk
V/®)

—TPL_NOTIFY — No blocking operations, usually
low level

See 8§86.1 of UEFI 2.1 specification.

(intel'

19

TPL Functions

s RaiseTPL() — used to raise the TPL
| — Note: specifying a value lower than the current

TPL results in indeterminate behavior. Do Not
Do This!

— Returns the TPL as it was before the operation
so the driver can restore the original value after
a temporary switch.

e RestorelPL() — used to lower the TPL

— Note: specifying a value higher than the current
TPL results in indeterminate behavior. Do Not
Do This!

* No documented way to get current TPL.
e Keep track yourself

20

xample from EHCI driver

EFI_TPL OlIdTpl;
OldTpl = gBS->RaiseTPL (EFI_TPL_NOTIFY);

<check the bus>

gBS->RestoreTPL(OIdTpl);

	UEFI Driver Development Training�Events
	Agenda
	System Boot Services?
	UEFI Data Structures�- EFI System Table�
	Event Definition
	Event Types and Relationships
	Event Types
	Three Elements of all Events
	Event Usage
	Event Usage (continued)
	Event Usage (continued)
	Timer Usage
	Timer Usage (sample code)
	Event/Timer Examples:
	Polling for new devices
	Waiting for completion
	Reacting to ExitBootServices event
	Task Priority Levels (TPLs)
	Task Priority Levels (TPLs)
	TPL Functions
	TPL Example from EHCI driver

