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UEFI Goals

Open (UEFI)
« Clear specification of the boot environment allows 3 party

drivers and 3" party applications, as long as they followi the
interface.

» Extensible (UEFI)

* New interfaces and capabilities can be added & prototyped,
even w/o changing the UEFI specification.

e Industry Controlled (UEFI)

* Provides balance between OS vendors, OEMs, firmware
providers and 3" party developers

 Modular
« Can be created and delivered separately.
« Scalable

* Applicable to a wide variety of platforms, from embedded
and special purpose, up through multi-node servers.
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Trend #1: Innovation Speeding Up
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UEFI Trend - Compatibility
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Trend #2: Monolithic To Modular

 BIOS will be a mix of drivers and applications
provided by Phoenix, silicon vendors, OS vendors,
3'd party ISVs, OEMs and ODMs.

 Tiano, UEFI 2.0, etc.

e Drivers and applications are delivered separately
rather than a single deliverable.

* Drivers and applications are installed separately
* Even after the system is shipped!

Many Pieces Plug Into BIOS (Integration)
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UEFI Trend - Integration
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Trend #3: Product To Platform

o Stable, standards-based platforms allow value-add
development with assurance of longevity.

e Testing insures compatibility

 Every BIOS vendor and major system vendor either
has or is planning UEFI-capable systems.

e Features and applications can be moved from
platform to platform.

It's Not How You Build Your BIOS
But How You Build Your Feature (Development
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UEFI Trend - Configuration
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UEFI Specification
Overview




What Is The UEFI Specification?

o Standard boot process
e Method for finding drivers
* Method for finding an OS loader
* Method for launching an OS loader
« Standard boot and runtime services

 On PC/AT systems, replaces BIOS real-mode
Interface

« Works alongside of ACPI and SMBIOS

 Manages initial program load (IPL) devices
e Boot devices, video devices and input devices

 Managed by the UEFI Specification Working Group
e Current Version s 2.1
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Key ldea #1: In UEFI, Everything Is An EXE

UEFI Drivers, Applications, OS Loaders Are EXEs
« Called images in UEFI
« Same file format used by Windows (PE32+)

e Three new subsystem types:
 EFI RUNTIME, EFI BOOT SERVICE, EFI APPLICATION

 UEFI Images Can Be 32-Bit or 64-Bit
* Flat mode. If paged, then 1-to-1 linear/virtual mapping

 UEFI Images Can Be For EBC, x86-32, Itanium &
X86-64

 EFI Byte Code (EBC) is interpreted assembly language
 UEFI Images Have A Single Entry Point (Not Many)
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Key ldea #2: Globally Unique Identifier (GUID)

GUIDs are identifiers
 Sometimes called UUIDs
 UEFI uses for interfaces and data structures
 GUIDs are unique
« Extremely difficult to generate two duplicate GUIDs
e Easy to create your own GUID
* Run UUIDGEN or GUIDGEN from Microsoft or Linux

* If you create your own GUID, you can create your own interface
or data structure in UEFI.

 GUID1 = UEFI Specification
 GUID2 = Phoenix Specification
 GUID3 = OEM Defined
 GUID4 = ODM Defined
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Key ldea #3: Drivers Communicate Using Protocols

* Protocols consist of an interface data structure and a GUID
 If you know the GUID, you know the data structure
* Interface data structures contain data or function pointers
» Drivers can produce an interface
e Using InstallIProtocolInterface()
 Maximum: one of each type per handle
* Drivers can consume an interface
* Using HandleProtocol () or OpenProtocol ()

» Drivers can be notified when a new interface is produced
* Using RegisterProtocolNotify()
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Key ldea #4: Protocols Are Installed On Handles

 UEFI supports an object model with runtime binding
 Each object is called a handle (EFI _HANDLE)

 Each handle can have up to one of each interface

 Handles can be created in two ways:

 LoadImage() creates a new handle for the image and
installs EF1_LOADED_ IMAGE_PROTOCOL on it.

» Called an image handle

 InstallProtocolInterface() creates a new
handle if it is passed a NULL handle as an input
parameter.

* Protocols can be installed on a handle by the UEFI
core, a parent driver or by the driver itself.
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Where Do Protocols Come From?
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Key Idea #5: Device Paths Match Hardware With Handles

« Device paths are variable-length binary data
structures which describe how to get to a device
(software perspective)

e Consists of one or more device nodes

e Hardware — PCIl, Memory Mapped

« ACPI - HID/CID, UID

 Messaging — ATAPI, SCSI, USB, IPv4, UART
 Media — Partition, File Path

* BIOS Boot Specification

e |nstalled on a handle as
(EF1_DEVICE_PATH PROTOCOL)

 There are GUIDed device nodes for vendor usage
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Device Path Examples

 Example #1: IDE Hard Drive
« /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)

« Example #2: Legacy Floppy
« /Floppy(0)

 Example #3: Partition On IDE Hard Drive

e /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)/Mbr(ET
1Guid,guid)

« Example #4: File On IDE Hard Drive Partition

« /PciRootBridge(0)/Pci1(0x1F,1)/Ata(Primary, Master)/Mbr(EFf
1Guid,guid)/EfiLoader.efi

« Example #5: ISCSI

« /PciRootBridge(0)/PCI(2,0)/MAC(.)/I1PvA(.)/1SCSI(aSCSITar
getName,PortalGroupTag, LUN)
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Summary

 UEFI Forum Controls The UEFI Specification

 There Are 5 Key Ideas For Understanding UEFI
e EXES
 GUIDs
* Protocols
 Handles
e Device Paths

« UEFI Driver Model Creates Robust, Re-usable
Drivers
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Where To Find More Information...

 Phoenix’s BIOS Developer Blog
 http://blogs.phoenix.com
 UEFI Site
e www.uefi.org
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