

UEFI 2.3.1
Self-Certification Test (SCT)

User Guide

August, 2012

UEFI SCT User Guide

ii

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or controlled by any of the authors or developers of

this material or to any contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law,

this information is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other warranties and conditions,

either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular

purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material and

any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." The Unified EFI

Forum, Inc. reserves any features or instructions so marked for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising

from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,

CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY

FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,

CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING

IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE

NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2007 - 2012 Unified EFI, Inc. All Rights Reserved

UEFI SCT User Guide

iii

2BRevision History
Revision Revision History Date

1.0 Initial Release May,

2010

1.1 Mantis

626 content integration

700 new features: verbose function

January,

2011

1.2 Mantis

947 UEFI 2.3.1 implementation alignment

August,

2012

UEFI SCT User Guide

iv

Contents

1 3BIntroduction .. 1

1.1 8BOverview ... 1
1.2 9BSystem Requirements ... 1
1.3 10BInstallation ... 2

2 4BUsage Model – Native Mode .. 3

2.1 11BUsing the Command Line Interface ... 3
2.2 12BUsing the Menu-Driven Interface ... 4

2.2.1 22BMain Menu .. 4
2.2.2 23BManaging Test Cases ... 6
2.2.3 24BConfiguring the Test Environment ... 8
2.2.4 25BGenerating a Test Report ... 9
2.2.5 26BLoading and Saving a Test Sequence 10

2.3 13BSample Usage Models .. 12
2.3.1 27BExecuting from the Command Line Interface 12
2.3.2 28BExecuting from the Menu-Driven Interface 12

2.4 14BFrequently Asked Questions ... 12
2.4.1 29BStopping Automatic Test Execution When the System Restarts

 ... 12
2.4.2 30BStopping SCT Execution While Tests Are Running 13
2.4.3 31BRemoving a Test Case that Always Causes the System to

Hang ... 14
2.4.4 32BWhen There Are No Test Results after Test Execution 16
2.4.5 33BWhen Test Assertion Totals Are Different on Different

Platforms .. 16

3 5B Usage Model – Passive Mode .. 19

3.1 15BConfiguring UEFI SCT Agent .. 19
3.2 16BConfiguring EMS ... 23

3.2.1 34BConfiguring the EMS Interface .. 24
3.2.2 35BConfiguring Base Information.. 24
3.2.3 36BRemoteExecution & RemoteValidation 26
3.2.4 37BReflushing the Case Tree ... 27
3.2.5 38BRunning Test Cases ... 28
3.2.6 39BLoading and Saving a Sequence File 30
3.2.7 40BGenerating Log Files .. 32
3.2.8 41BUsing the Tools Menu ... 32
3.2.9 42BUsing the Help Menu .. 33

4 6BUEFI SCT For IHV ... 35

4.1 17BIHV SCT Installation3B55B .. 35
4.1.1 44BInstalling the IHV SCT... 35

4.2 18BThe Usage of IHV SCT ... 36
4.2.1 45BUsing the Command Line Interface 36

 v

4.2.2 46BUsing the Menu-Driven Interface .. 37

5 7BUEFI SCRT .. 43

5.1 19BIntroduction ... 43
5.2 20BThe Usage of SCRT .. 43

5.2.1 47BSystem Requirement .. 43
5.2.2 48BThe location of SCRT Utility .. 43
5.2.3 49BRun SCRT Utility ... 43
5.2.4 50BConfiguration File .. 44
5.2.5 51BAnalyze SCRT Test Result ... 45
5.2.6 52BSystem Hang .. 47

5.3 21BHow to Add SCRT Test Cases .. 47
5.3.1 53BThe Framework of SCRT Utility .. 47
5.3.2 54BExample: Adding a Test Case ... 48

Appendix A Test Report Format ... 51

Appendix B Test Category .. 53

Appendix C SCRT Assertion Information 55

1BTables
Table 1. SCT Parameters .. 3
Table 2. Major Items in the Main Menu of the SCT .. 5
Table 3. User-Configurable Items for Setting Up the Test Environment 8
Table 4. Sub-Frame in the EMS OS application window 28
Table 5. Each Element in the Case Tree Sub-frame 30
Table 6. Submenus of the Tools Menu... 33
Table 7. Submenus of the Help Menu .. 34
Table 8. SCT Parameters .. 36
Table 9. Major Items in the Main Menu of the SCT 38
Table 10. The Items in the Menu of the Test Device Configuration 39
Table 11. Test Case, Port 80 Display and Log file Relationship for Each

Assertion ... 55

UEFI SCT User Guide

vi

Figures
Figure 1 SCT without parameters .. 4
Figure 2. Main Menu Screen. ... 5
Figure 3. Test Case Management Screen. ... 6
Figure 4. Run Time Services Screen. .. 7
Figure 5. Test Environment Configuration. ... 8
Figure 6. Generating a Test Report. ... 10
Figure 7. Press the <F5> Key to Load a Test Sequence. 11
Figure 8. Press the <F6> Key to Save a Test Sequence. 11
Figure 9. Press any Key within 10 Seconds to Stop the Auto Run. 13
Figure 10. System Reset Records Message: “System Hangs or Stops

Abnormally”. .. 14
Figure 11. Press any Key to Stop Auto Run. .. 15
Figure 12. Select [No] to Discontinue Execution. ... 15
Figure 13. Press <SPACE> to Deselect the Test. .. 16
Figure 14 Load Network Drivers in Internal EFI Shell. 20
Figure 15 Auto Load Network Drivers by modifying startup.nsh script. 21
Figure 16 Choose the NIC. .. 22
Figure 17 Using SCT Passive mode .. 23
Figure 18 EMS Interface Configuration window. .. 24
Figure 19 EMS Preference window. ... 25
Figure 20 EMS Preference window. ... 26
Figure 21 The Menu of Reflush Case Tree. ... 27
Figure 22 EMS OS application window running the Remote Validation test

cases. ... 28
Figure 23 EMS OS application window-Case Tree Sub-frame. 30
Figure 24 Sequence File Saving Window. .. 31
Figure 25 Sequence File Loading Window. .. 32
Figure 26 Editing File Window. .. 33
Figure 27 ENTS Case Writer’s Guide Window. .. 34
Figure 28 Main Menu of IHV SCT .. 37
Figure 29 Test Device Configuration .. 39
Figure 30 Run SCRT Utility with configure file .. 44
Figure 31 Excel® File Containing Test Report in CSV Format. 52

1

1
3BIntroduction

1.1 8BOverview

The UEFI Self-Certification Tests (SCT) is a toolset for platform firmware

developers to validate UEFI implementations on IA-32, X64, and Itanium

Architecture-based platforms for compliance to the UEFI Specification. The toolset

features a Test Harness for executing built-in EFI Compliance Tests, as well as for

integrating user-defined tests that were developed using the UEFI SCT open source

code.

The UEFI SCT Test Harness provides two different usage models as native mode

and passive mode. Please note that most network-related protocols (except SNP &

PXEBC) can be tested only in passive mode. In passive mode UEFI SCT, the

network-related protocol testing is included.

This document also provides descriptions of the IHV SCT. The IHV SCT is

designed to aid the testing of UEFI drivers that follow the UEFI Driver Model

described in the UEFI Specification. There are several different classes of UEFI

drivers, each with many variations. Also, this document provides guidelines on

testing for Independent Hardware Vendors (IHV) for UEFI Specification

Compliance.

1.2 9BSystem Requirements

The UEFI SCT must be executed on a target system that meets the following

requirements:

 The target system must have an Itanium Architecture-based platform, an X64

platform, or an IA-32 platform.

 The target system firmware must have EFI implemented per the UEFI

Specification.

 The EFI implementation on the target system must include an EFI Shell.

 The target system must have at least 1000MB of disk space in the EFI file

system to contain the SCT test and log files.

The UEFI SCT must have another host machine for passive mode usage. This

machine must the following requirements:

 Installing Microsoft Windows 2000® or Microsoft Windows XP® operating

system

 The target machine and host machine must be connected by network devices

such as a switch/hub, etc.

Refer to the latest UEFI SCT Release Notes for other possible system requirements.

Introduction

2

1.3 10BInstallation

A typical installation of the UEFI SCT involves the following:

 Ensuring that the target system is configured to boot to the EFI Shell upon

power-on/reset without user intervention.

Setting the boot options is usually done using EFI Boot Manager during the

target system’s EFI implementation.

 Copying the UEFI SCT executable files into a default directory in the EFI file

system of the target system.

The default directory is where the target system automatically boots to after

bringing up the EFI Shell. The default directory must be on a Read/Write

storage medium. In order to get better performance, a hard disk is

recommended as the storage location for the default directory.

The UEFI SCT comes in three versions: one for Itanium Architecture platforms,

one for X64 platforms and another for IA-32 platforms. In general, all three

versions bundled with each UEFI SCT release. The user must ensure that the

appropriate version of the UEFI SCT is installed on the target platform prior to use.

The above is a general description of the UEFI SCT installation process. Detailed

installation instructions are provided in the UEFI SCT Release Notes that

accompany each UEFI SCT release. The person performing the installation must

make sure that the UEFI SCT Release Notes match the UEFI SCT release being

used.

UEFI SCT User Guide

 3

2
4BUsage Model – Native Mode

The native mode is invoked as an EFI application from the EFI Shell. The

executable filename is SCT.efi. This executable provides a command line

interface (CLI) as well as a menu-driven interface. These are further described

below.

2.1 11BUsing the Command Line Interface

Syntax
SCT [-a | -c | -s <seq> | -u] | -p <MNP | IP4 |

Serial>] [-r] [-g <report>][-v]

Description of SCT Parameters

XTable 1X provides a description of SCT parameters.

Table 1. SCT Parameters

Options Description

-a Execute all test cases that are recognized by the UEFI SCT Test

Harness.

-c Continue execution of the test case in progress. This option is used to

continue execution of test cases that perform system resets as part of

their test routine.

-g

<report>

Generate test report in .CSV format. The filename of the report is

specified by report.

-r Resets the environment for a fresh execution of the tests. This option

removes results of previous test executions. Generally, it is used with

the -a or -s options.

-s <seq> Execute test cases in the sequence specified in the file seq.

-u Start the Test Harness with the menu-driven interface.

-p Passive Mode with specified communication layer

-f Force the operation execution, no confirmation from user.

-v Disables the display of test log information on the screen.

Test log display on screen is enabled by default. In command line interface, -v

option can be used both in native mode & passive mode to disable display of test

log information on the screen. It can be used combined with –a / -c / -r / -s / -p.

Parameter -v only effects until the end of this command execution.

4

Selecting SCT without parameters will produce the screen display shown in U XFigure

1XU.

Figure 1 SCT without parameters

2.2 12BUsing the Menu-Driven Interface

Syntax
SCT -u

Description

Type SCT -u to produce the Main Menu of the menu-driven interface.

2.2.1 22BMain Menu

The Main Menu (see XUFigure 2 UX) contains user-selectable items for initiating a

number of UEFI SCT actions.

 5

Figure 2. Main Menu Screen.

XTable 2X lists and describes the major items found in the Main Menu.

Table 2. Major Items in the Main Menu of the SCT

Items Description

Test Case

Management

Selects and executes specific test cases

Test

Environment

Configuration

Sets the parameters for test execution, including the maximum run

times for each test case, enabling/disabling screen output, etc.

Test Report

Generator

Generates a test report in .CSV format. This test report can be opened

by the Microsoft® Excel* or the other compatible utilities.

F4 (Reset

Results)

Resets all test results. It is equivalent to invoking “SCT –r” in the

command line.

F5 (Load

Sequence)

Loads a test sequence file from the storage device. This function

allows user to load, edit or execute an existing test sequence file.

F6 (Save

Sequence)

Saves a user-specified test sequence into a file. This function allows

the user to save selected test cases into a file, which can then be used

for later test execution via “SCT –s <seq>” from the command

line.

6

2.2.2 23BManaging Test Cases

The UEFI SCT includes a set of test cases for UEFI Specification compliance

testing. Note that in XUFigure 3 UX the list of test cases corresponds to the major elements

of EFI as described in the UEFI Specification. Note how in UXFigure 4 X Ueach test case

can have lower-level test cases in a tree-like structure.

Figure 3. Test Case Management Screen.

 7

Figure 4. Run Time Services Screen.

Appendix B describes the method to specify such a tree-like hierarchy of tests for

user-defined test cases. Refer to the UEFI SCT Test Writer’s Guide for information

on developing user-defined test cases.

In the menu-driven interface, the boxes on the left indicate the selected or

unselected status of the corresponding test category.

[X] All test cases in this test category are selected.

[x] One or more test cases in this test category are selected, but not all test

cases.

[] No test case in this test category has been selected.

The middle boxes below #Iter indicate the number of iterations to be executed

for the corresponding test category.

[N] All test cases in this test category will be executed N times.

[*] The test cases in this test category have different numbers of execution

iterations.

The summary results (result) show the execution results for the corresponding

test category.

PASS All test assertions for all test cases in this test category have passed.

FAIL One or more test assertions within the test cases for this test category has

failed.

test One test case in this test category was still executing.

8

“ ” No test case in this test category was executed.

The number of passed test assertions and the number of failed test assertions is

displayed in the lower right corner as shown in the screenshot above. Note that the

test case’s place in the order of execution is also displayed. Note also that the order

of execution of test cases is based on the user’s order of selection of test cases to

execute.

2.2.3 24BConfiguring the Test Environment

The test environment has user-configurable items for set up, as shown in the screen

display in XUFigure 5 UX.

Figure 5. Test Environment Configuration.

 XTable 3X describes the user-configurable items for setting up the test environment.

Table 3. User-Configurable Items for Setting Up the Test Environment

Items Description

Test Case Max

Run Time

Sets the maximum execution time for the specified test case. This

feature helps prevent system hangs that may occur during execution of

a particular test case from indefinitely suspending the entire SCT

execution run. Basically, a watchdog timer is set for every test case

during execution. If the timer expires, the system automatically restarts

and SCT execution automatically continues starting with the next test

case in the order of execution.

Enable Screen

Output

Enables/disables display of test log information on the screen.

 9

Bios Id A string that can be used to identify the BIOS or firmware stack of the

target system under test. This information will be included in the log

files of the test execution. Generally, Bios Id is used in conjunction with

the other strings (identified in this table) for specifying user-controlled

parameters for the test execution.

Platform

Number

A number to identify the platform under test. (e.g., 865, 915). This

information is included in the log files of the test execution. Generally,

Platform Number is used in conjunction with the other strings (identified

in this table) for specifying user-controlled parameters for the test

execution.

Configuration

Number

A number to specify the configuration under test. The numbers used to

identify different configurations are entirely up to the user. Generally, a

standard configuration is set as 0, a full configuration is set to 1, and so

on. This information will be included in the log files of the test

execution. Generally, Configuration Number is used in conjunction with

the other strings (identified in this table) for specifying user-controlled

parameters for the test execution.

Scenario String A string to provide additional information about or further description of

the test scenario for the next test execution. This information is

included in the log files of the test execution. Generally, this is used in

conjunction with the other strings (identified in this table) for specifying

user-controlled parameters for the test execution.

2.2.4 25BGenerating a Test Report

As shown in XUFigure 6 UX below, the user specifies the file name of the test report to be

generated for the test execution. The test report file is created in the same directory

where the SCT was invoked.

10

Figure 6. Generating a Test Report.

Note: The <F2> key is used to move the cursor between the list box and the edit box.
The <TAB> key is used in the EFI Shell to pause execution of an EFI application.

2.2.5 26BLoading and Saving a Test Sequence

To load a test sequence file, press the <F5> key (see XUFigure 7 UX). To save a test

sequence file, press the <F6> key (see XUFigure 8 UX). The test sequence file is created in

the same directory where the SCT was started.

 11

Figure 7. Press the <F5> Key to Load a Test Sequence.

Figure 8. Press the <F6> Key to Save a Test Sequence.

12

2.3 13BSample Usage Models

2.3.1 27BExecuting from the Command Line Interface
1. To select the test cases to execute, invoke SCT –r –u from the EFI Shell.

2. To save the test case selection into a test sequence file, press <F6>.

3. To start the test execution, return to the EFI Shell and invoke SCT –s

<seq>.

4. When test execution completes, invoke SCT –g <report> to generate the

test report.

Note: If the same test execution is to be repeated, Steps 1 and 2 can be skipped.

2.3.2 28BExecuting from the Menu-Driven Interface
1. Invoke SCT –r –u from the EFI Shell; select the test cases to execute.

2. Press <F9> to start test execution.

3. When test execution completes, select “Test Report Generator” to generate the

test report.

2.4 14BFrequently Asked Questions

2.4.1 29BStopping Automatic Test Execution When the System
Restarts

The UEFI SCT Test Harness uses a startup script to continue test execution

automatically when the system restarts. As shown in XUFigure 9 UX, the startup script

prompts the user to stop the Auto Run by pressing any key. (The user is given only

a few seconds to press any key.) After canceling an Auto Run, the user can

manually restart the test execution by typing startup.nsh or sct –c.

 13

Figure 9. Press any Key within 10 Seconds to Stop the Auto Run.

2.4.2 30BStopping SCT Execution While Tests Are Running

The user can manually reset the system to force a test execution to stop. In this case,

a message of “system hangs or stops abnormally” is recorded for the interrupted test

(see XUFigure 10UX), and the interrupted test is skipped and continued in the next restart

of test execution.

14

Figure 10. System Reset Records Message: “System Hangs or Stops

Abnormally”.

2.4.3 31BRemoving a Test Case that Always Causes the System
to Hang

A test case can be disabled using the menu-driven interface. This is useful when the

user needs to disable, or to re-enable, test cases after manually stopping an Auto

Run that was causing the system hang. If the test case has been executed after being

disabled, there will be no effect on the test execution or to the test results. If the

execution of the test case to be disabled is incomplete, or is waiting its turn in the

order of execution, the test case is skipped when test execution is continued.

The following are screenshots showing the steps to removing a test case:

1. Press any key to stop Auto Run.

 15

Figure 11. Press any Key to Stop Auto Run.

2. Type Sct –u to bring up the Menu-driven interface. Select [No] to

discontinue execution.

Figure 12. Select [No] to Discontinue Execution.

16

3. Remove the test using Test Case Management. Press <F8> to continue

execution. Press <SPACE> to deselect the test. This effectively removes the

test from the execution run.

Figure 13. Press <SPACE> to Deselect the Test.

2.4.4 32BWhen There Are No Test Results after Test Execution

Some tests may not have results in the menu-driven interface or in the test report

even after execution. There are two possible reasons for this.

1. The test is unable to execute at all. For example, the “Network Support Test”

will not execute on a platform that has no network devices.

2. The test case does not record results in conformance to the UEFI SCT Test

Development Kit. A user-defined test case can generate its own test output

independent of the UEFI SCT test output format.

2.4.5 33BWhen Test Assertion Totals Are Different on Different
Platforms

The total numbers in the UEFI SCT test reports show the total number of passed

test assertions as well as failed test assertions. The number of applicable test

assertions depends on the results of checkpoints in the tests. Platforms of different

configuration or devices will cause different results for these checkpoints, and thus

different sets of applicable test assertions. For example, the Block I/O test will

verify the Read-Only capability when there is a CD in the CD-ROM drive. Another

 17

example is when the PCI test verifies resource allocation only if a PCI device

requires memory-mapped IO space.

18

 19

3 5B

Usage Model – Passive Mode

The UEFI SCT Agent runs in the passive mode. All the test cases can be run on the

UEFI Management Side (EMS) with the UEFI SCT Agent running in the passive

mode.

Note: The following description assumes the user has built the environment on both
UEFI SCT Agent side and EMS side.

3.1 15BConfiguring UEFI SCT Agent

This section describes the steps that are necessary to configure the UEFI SCT

Agent side.

The following descriptions show the steps to configure the UEFI SCT Agent run in

the passive mode. If all of the network drivers are built-in, skip the operation

following immediately below:

1. Install UEFI SCT Agent. Refer to Chapter 5 in the "UEFI SCT Getting Started"

document.

2. Switch to the EFI shell.

3. Put all network drivers under the "NetworkDrivers" folder of the installation

disk of SCT. In this example, we assume the folder is "NetworkDrivers". You

can choose any location you like.

4. Open startup.nsh under the installation disk of SCT.

5. Go to the line "if exist FS%i:\Sct\.passive.mode then", insert the following lines

after it:

load \NetworkDrivers\Undi.efi

load \NetworkDrivers\Snp.efi

load \NetworkDrivers\Mnp.efi

load \NetworkDrivers\Arp.efi

load \NetworkDrivers\Ip4.efi

load \NetworkDrivers\Ip4Config.efi

load \NetworkDrivers\Udp4.efi

load \NetworkDrivers\Dhcp4.efi

load \NetworkDrivers\Mtftp4.efi

load \NetworkDrivers\Tcp4.efi

load \NetworkDrivers\Ip6.efi

load \NetworkDrivers\Ip6Config.efi

load \NetworkDrivers\Udp6.efi

load \NetworkDrivers\Dhcp6.efi

load \NetworkDrivers\Mtftp6.efi

load \NetworkDrivers\Tcp6.efi

20

Use the following steps below to enter SCT passive mode.

1. Assume all network drivers are under the "NetworkDrivers" folder of the

installation disk of SCT.

2. In the EFI shell environment, load all network drivers as shown in U XXUFigure

14Figure 14 and Figure 15Figure 15X. (One may also write an nsh script to load

the network drives.)

Figure 14 Load Network Drivers in Internal EFI Shell.

 21

Figure 15 Auto Load Network Drivers by modifying startup.nsh script.

3. Enter the SCT folder and type sct -p mnp to run the SCT passive mode and

choose the NIC as shown in HUFigure 16Figure 16UH that will be used for

communication between test machine and host machine.

4. Choose the NIC as shown in HFigure 17Figure 17H that will be used for

communication between test machine and host machine.

5. Type cd sct and sct to show all the SCT commands as shown below:

22

Figure 16 Choose the NIC.

 23

 Figure 17 Using SCT Passive mode

Note: Systems without network drivers cannot use SCT passive mode, but you can use
the compatible usage as EFI SCT. Refer to Chapter 2.

Note: When running UEFI SCT Remote Validation, it is important to keep the test
topology environment clean. For example, use one switch (hub) to connect the EFI
target machine and the management host machine, but don't connect the switch (hub)
to a public network or other LANs.

Note: To run UEFI SCT with local execution usage, make sure the "\Sct\.passive.mode"
file is removed.

3.2 16BConfiguring EMS

The EMS side provides a Graphic User Interface (GUI) to run all the test cases.

This section describes the steps that are necessary to configure the EMS side and all

the menu functions in the EMS OS application window.

24

3.2.1 34BConfiguring the EMS Interface

Run the Visual Studio .NET 2003 Command Prompt to go to the command line

environment. Use the following commands to run the EMS OS application.

1. cd \test\ems\bin

2. Ems Main.Tcl

When the EMS OS application starts, two windows open. Before the main window

is available, choose the host interface in the EMS Interface Configuration window.

If there are more than one Network Interface cards on your local host, you need to

specify the one connected to the EFI target machine. XFigure 18Figure 18 shows the

EMS Interface Configuration window.

Figure 18 EMS Interface Configuration window.

3.2.2 35BConfiguring Base Information

If you are starting the EMS OS application for the first time, configure the base

information. Select the menu “File->Preference…”. The “EMS Preference”

window opens. The following list describes each item in the window. The “EMS

Preference” window is shown inU XFigure 19Figure 19X.

 25

 Figure 19 EMS Preference window.

 ENTS Testcase Root Dir...

This item refers to the root directory of all the Remote Validation test cases.

Press the Browse button on the right to choose the root directory of the Remote

Validation test cases.

 Communication Type

This item refers to the communication type between the EMS side and the

UEFI SCT Agent side. Currently, MNP is the only supported communication

type.

 New Target MAC

This item refers to the target host MAC address you want to configure. You can

type dh –p net in the EFI Shell to get the target host MAC address as

shown inU XFigure 20Figure 20X.

26

Figure 20 EMS Preference window.

After configuring, click “OK” to confirm the configurations, or click “Cancel” to

abort. Clicking “OK” saves the configurations as the default settings.

3.2.3 36BRemoteExecution & RemoteValidation

There are two methods to validate the EFI-based machine in UEFI SCT passive

mode. One is Remote Execution, and the other is Remote Validation.

 All Remote Execution test case files are located on the UEFI SCT Agent side.

All cases are executed on the EFI side. The EMS performs case management

tasks.

 All Remote Validation test case files are in Tcl scripts stored on the EMS side.

All Remote Validation test cases use Remote Procedure Call (RPC) to perform

the validation.

When the user selects the menu Windows-> RemoteExecution, the EMS side will

download the CaseTree information file from the target host and generate the

remote case tree by parsing the file.

When the user selects the menu Windows-> RemoteValidation, the EMS side will

traverse all subdirectories under the test case root directory and generate the local

case tree.

 27

3.2.4 37BReflushing the Case Tree

The case tree can change after the EMS application starts. So you must reflush the

case tree when it changes. Select the menu Windows->Reflush Case Tree to

regenerate the case tree.U XFigure 21Figure 21 shows the menu in the EMS OS

application window.

Note: When reflushing case tree, the case tree GUI will be re-generated so current case
selection and running result will be cleaned up on GUI.

Note: For Remote Execution, the EMS side will download the file CaseTree.ini from the
target host again and then regenerate a remote case tree by reading the file.

Note: For Remote Validation, the EMS side will traverse all the subdirectories of the
test case root directory again and then regenerate a local case tree. (Refer to
section XU3.2.2UX.)

Figure 21 The Menu of Reflush Case Tree.

28

3.2.5 38BRunning Test Cases

When the EMS configuration is complete and the UEFI SCT Agent is running in

the passive mode, run the test cases. XUFigure 22Figure 22UX shows the EMS OS

application window running the Remote Validation test cases.

Figure 22 EMS OS application window running the Remote Validation test

cases.

Table 4 describes the sub-frames in the EMS OS application window.

Table 4. Sub-Frame in the EMS OS application window

Items Description

Case Tree Both the RemoteExecution and the RemoteValidation case tree will be

generated in this sub-frame. Select the menu Windows->

RemoteExecution or Windows-> RemoteValidation to switch the case

tree.

 29

Items Description

Case File List Lists all the case files in the selected case tree directory.

Each case file has 3 elements:

Case Name: Case name.

Count: Running iteration of the corresponding test case.

Result: The result of running the selected test case. If the test case is

not selected, it will show “Not started”. If the test case is still running, it

will show “Running”. If error occurs, it will show “Case Error”. If the test

case has been run, it will show the record assertion number of passes,

warnings, and failures as shown in XFigure 23 X.

Output Shows the running log for the test cases. There are two kinds of log

files: [Case Name].log and [Case Name].ekl. The log files are

generated under the directory \bin\log\[Case Directory Name].

In the Case Tree sub-frame, each case directory has 3 elements: an icon, a check

box, and a directory name text.U Figure 23Figure 23shows each element and the

status of each element.

30

Figure 23 EMS OS application window-Case Tree Sub-frame.

XTable 5X describes the usage and the different status meanings of each element for

the Case Tree directory.

Table 5. Each Element in the Case Tree Sub-frame

Items Description

Icon You can click the Icon of a case directory to change the current

directory.

Status meanings:

Green Color: no case file was selected.

Black Color: one or more case files were selected.

Check Box You can click the Check Box to select all the case files in the case

directory.

Status meanings:

Unchecked: no case file was selected.

Checked: one or more case files were selected.

Directory Name

Text

Status meanings

Bold: Current case directory.

Regular: Not current case directory.

After selecting the cases to run, select the menu Run->Start to run the test cases.

Status meanings

To stop the case when running, click the menu Run->Stop, and the test will stop

after the current running test case has finished. This is to make sure the case

running context is clean and that test cases won’t affect each other.

3.2.6 39BLoading and Saving a Sequence File

Selected test cases can be saved as a sequence file. Sometimes it is more convenient

to run some test cases more than one time, and this function allows one selection,

rather than reselecting all the test cases again. Select all the test cases the first time,

save the selection as a sequence file, and when running those test cases again, one

can load the sequence file to select test cases automatically. The test sequence file is

created in the same directory where the SCT was invoked.

To save a sequence file, select one or more test cases, and then select the menu

“File->Save sequence file as…” XUFigure 24Figure 24UX shows the sequence file Save

As window.

 31

 Figure 24 Sequence File Saving Window.

To load a sequence file, select the test case, then select the menu “File->Load

sequence file”. XUFigure 25Figure 25 UX shows the sequence file loading window.

32

Figure 25 Sequence File Loading Window.

3.2.7 40BGenerating Log Files

For Remote Validation, the test report file is created in the “Report” subdirectory

where the EMS was invoked. Two kinds of reports are generated: one is in case-

level and the other is in assertion-level.

For Remote Execution, the test report is created remotely on the EFI target machine

and the test report file is transferred back to the report subdirectory where the EMS

was invoked.

Note: The report file is in CSV format and the report file is named by date and time.

3.2.8 41BUsing the Tools Menu

XTable 6X describes each submenu function of the Tools menu.

 33

Table 6. Submenus of the Tools Menu

Items Description

Edit Opens an editing window. This is a simple text editor and it provides

highlighting display for UEFI SCT remote validation test

cases. XFigure 26X shows the functions in detail.

Clear Output Clears current records in the Output sub-frame of the EMS OS

application window.

Figure 26 Editing File Window.

3.2.9 42BUsing the Help Menu

XTable 7X describes each submenu function of the Help menu.

34

Table 7. Submenus of the Help Menu

Items Description

Index Provides a quick reference on Remote Validation Tcl commands for

case developers. Find detailed usage information about the

commands used in the Tcl script. Figure 27shows the functions in

detail.

About ENTS… Provides the version and copyright information about EMS.

 Figure 27 ENTS Case Writer’s Guide Window.

35

4
6BUEFI SCT For IHV

4.1 17BIHV SCT Installation 3B55B

4.1.1 44BInstalling the IHV SCT

The IHV SCT agent is a shell application, so the EFI Shell environment is a must to

run IHV SCT agent. in case you don’t have built-in shell for UEFI sample code or a

Tiano implementation, setup the shell environment by following the steps given

below:

1. Copy the shell.efi to the target machine.

2. Add a boot option to the shell.efi just added.

3. Boot to the specified shell environment, and do the following installation steps,

according to different target platforms.

The UEFI SCT Agent can be installed on the following platforms:

 IA32 Platform

 Itanium-Based Platform

 EM64T-Based Platform

4.1.1.1 61BInstalling the IHV SCT Agent on an IA32 Platform
1. Copy the contents of the IA32 build directory SctPackage to a USB device or

IDE-CD.

2. Put the USB or IDE-CD into the USB port or the IDE-CD drive and boot the

system to the EFI Shell environment.

3. In EFI Shell environment, change the current drive and directory to the

installation CD or USB device drive and root directory.

4. Run installIA32.efi and follow the instructions on the screen.

4.1.1.2 62BInstalling the IHV SCT Agent on an Itanium-Based
Platform

1. Copy the contents of the x64 build directory SctPackage to a USB device or

IDE-CD.

2. Put the USB or IDE-CD into the USB port or the IDE-CD drive and boot the

system to the EFI Shell environment.

3. In EFI Shell environment, change the current drive and directory to the

installation CD or USB device drive and root directory.

4. Run install64.efi and follow the instructions on the screen.

36

4.1.1.3 63BInstalling the IHV SCT Agent on an EM64T-Based
Platform

1. Copy the contents of the IPF build directory SctPackage to a USB device or

IDE-CD.

2. Put the USB or IDE-CD into the USB port or the IDE-CD drive and boot the

system to the EFI Shell environment.

3. In EFI Shell environment, change the current drive and directory to the

installation CD or USB device drive and root directory.

4. Run installX64.efi and follow the instructions on the screen.

4.2 18BThe Usage of IHV SCT

4.2.1 45BUsing the Command Line Interface

The command line interface of the IHV SCT agent is similar to the UEFI SCT’s

(see the “UEFI SCT User Guide”), but the IHV SCT does not support the passive

mode. The syntax of the IHV SCT’s command line is:

SCT [-a | -c | -s <seq> | -u][-r] [-g <report>][-v]

XTable 8X provides a description of SCT parameters.

Table 8. SCT Parameters

Options Description

-a Execute all test cases that are recognized by the IHV SCT Test

Harness.

-c Continue execution of the test case in progress. This option is used to

continue execution of test cases that perform system resets as part of

their test routine.

-g

<report>

Generate test report in .CSV format. The filename of the report is

specified by report.

-r Resets the environment for a fresh execution of the tests. This option

removes results of previous test executions. Generally, it is used with

the -a or -s options.

-s <seq> Execute test cases in the sequence specified in the file seq.

-u Start the Test Harness with the menu-driven interface.

-v Disables the display of test log information on the screen.

Test log display on the screen is enabled by default. In command line interface, -v

option can be used both in native mode & passive mode to disable display of test

log information on the screen. It can be used combined with –a / -c / -r / -s / -p.

Parameter -v only effects until the end of this command execution.

 37

4.2.2 46BUsing the Menu-Driven Interface

Syntax
SCT -u

Description

Type SCT -u to produce the Main Menu of the menu-driven interface.

4.2.2.1 64BMain Menu

The Main Menu (Figure 28Figure 28H) contains user selectable items for initiating a

number of IHV SCT actions.

Figure 28 Main Menu of IHV SCT

XTable 9X lists and describes the major items found in the Main Menu.

38

Table 9. Major Items in the Main Menu of the SCT

Items Description

Test Case

Management

Selects and executes specific test cases

Test

Environment

Configuration

Sets the parameters for test execution, including the maximum run

times for each test case, enabling/disabling screen output, etc.

Test Device

Configuration

Selects the devices that should be tested.

Test Report

Generator

Generates a test report in .CSV format. This test report can be opened

by the Microsoft® Excel* or the other compatible utilities.

F4 (Reset

Results)

Resets all test results. It is equivalent to invoking “SCT –r” in the

command line.

F5 (Load

Sequence)

Loads a test sequence file from the storage device. This function

allows user to load, edit or execute an existing test sequence file.

F6 (Save

Sequence)

Saves a user-specified test sequence into a file. This function allows

the user to save selected test cases into a file that can then be used for

later test execution via “SCT –s <seq>” from the command line.

4.2.2.2 65BManaging Test Cases

The UEFI compliance IHV SCT includes a set of test cases for UEFI Specification

compliance testing. The method to manage the test cases and to specify test cases in

the tree-like hierarchy is described in “UEFI SCT User Guide”.

In IHV SCT, only selecting the test cases in the tree-like menu is not enough to test.

Selecting cases in tree-like menu just tells IHV SCT which cases should be run, in

IHV SCT, users must choose which devices they want to test through “Test Device

Configuration”(see section X4.2.2.3X).

4.2.2.3 66BTest Device Configuration

The IHV SCT provides the utility of Test Device Configuration. This allows users

to choose the devices for testing. The IHV SCT uses a configuration file to save a

list of devices that users have chosen. During IHV SCT testing, it will only test the

supported devices listed in the configuration file instead of all the supported devices

in the system. In other words if the users only select the test cases through the tree-

like menu but do not choose any device though the “Test Device configuration”, no

checkpoints in the cases will be tested.

In the IHV SCT, selecting cases in tree-like menu tells IHV SCT which cases

should be run; and choosing devices through the “Test Device Configuration” tells

the IHV SCT which devices should be test. The usage of Test Device Configuration

is shown in HUFigure 29Figure 29UH:

 39

Figure 29 Test Device Configuration

Table 10. The Items in the Menu of the Test Device Configuration

Items Description

H Print the help information

I <Handle> Insert one device into the configuration file

L List all devices in the configuration file

R <Index> Remove one device from the configuration file

S <Type> Scan devices in the system

(Type 0: All, Type 1: With Option ROM)

V <Index> List one device in the configuration file in verbose mode

In the IHV SCT, the usual way to test an add-in card as follows: The first thing

users should do is let the SCT scan devices in the system by typing the command

line “S 0” or “S 1” in the Test Device Configuration’s window. “S 0” means scan

all devices, “S 1” means scan devices with option ROM. See Table 10.

40

After SCT scan, the “Handle” of the device sought can be known, so users can

insert the device sought into SCT’s configuration file by typing the command

line ”I <Handle>”;

 41

42

At this time, users can select test cases in the tree-like menu. The SCT can run the

test only if all the operations of test device configuration are done.

Note: If users want to start a new test because the test device configuration has been
changed, the “SCT -r” operation is suggested.

 43

5
7BUEFI SCRT

5.1 19BIntroduction

This chapter introduces the Self-Certification Runtime Test (SCRT) Utility and

focuses on how to use it.

As a supplement to SCT, SCRT is invoked under the EFI shell environment and

used to validate UEFI Runtime Services implementations for compliance to the

UEFI Specification. The source code of SCRT has been included in UEFI SCT

release package and the binary of SCRT utility is generated automatically in the

build process of UEFI SCT. Please refer to the instructions in the document UEFI

SCT Getting Started. This document is included in the UEFI SCT release package

to build the UEFI SCT Agent.

5.2 20BThe Usage of SCRT

5.2.1 47BSystem Requirement

To ensure SCRT runs in the runtime environment without unexpected behavior, for

targeted platforms the physical memory on the target machine is limited to the

following rules:

 IA32 architecture-based platform: Physical memory <= 4G.

 EM64T architecture-based platform: Physical memory <= 32G.

 IPF architecture-based platform: Physical memory <= 4096T

5.2.2 48BThe location of SCRT Utility

After UEFI SCT is built successfully, the SCRT Utility is generated automatically

and located at specified path below, including SCRTDRIVER.efi,

SCRTAPP.efi, SCRT.conf:

UefiSct\Build\UefiSct\DEBUG_VS2005\SctPackageIA32\IA32

\SCRT IA32 Version

UefiSct\Build\UefiSct\DEBUG_VS2005\SctPackageX64\X64\S

CRT X64 Version

UefiSct\Build\UefiSct\DEBUG_VS2005\SctPackageIPF\IPF\S

CRT IPF Version

5.2.3 49BRun SCRT Utility

SCRT is invoked under the EFI shell environment:

1. Copy SCRT Utility into discretionary directory in EFI shell environment.

44

2. Change execution path to the directory that SCRT Utility is located.

3. type ‘Load SCRTDRIVER.efi’

4. type ‘SCRTAPP –f SCRT.conf’

Figure 30 Run SCRT Utility with configure file

5.2.4 50BConfiguration File

Following is an example for the usage model of the configuration file named

SCRT.conf. SCRT check points are divided into five groups, Variable Service,

Time Service, Capsule Service, MonotonicCount Service, and Reset Service.

In SCRT.conf, FALSE means to disable a runtime service test, and TRUE means

to enable a runtime service test.

With the help of this configuration file, SCRT obtains information regarding which

runtime services are needed to test in the runtime environment.

 45

UEFI 2.1 Runtime Test Utility SCRT Configuration

file.

[variable]

SetVariable = TRUE

GetVariable = TRUE

GetNextVariableName = TRUE

QueryVariableInfo = FALSE

[time]

GetTime = TRUE

SetTime = TRUE

SetWakeupTime = TRUE

GetWakeupTime = TRUE

[capsule]

QueryCapsuleCapabilities = FALSE

UpdateCapsule = FALSE

[monotonicCount]

GetNextHighMonotonicCount = TRUE

[reset]

ColdReset = TRUE

WarmReset = FALSE

ShutDown = FALSE

Note: For three reset sub-items, only one item is allowed at a time.

5.2.5 51BAnalyze SCRT Test Result

Unlike SCT, SCRT cannot create a test log file automatically in a runtime

environment because it lacks certain boot services. To solve this issue, SCRT

records the results in a variable. After runtime test, user can run “SCRTAPP.efi

–g SCRT.log” in shell environment to analyze the variable and generate a log

file which is named as ‘SCRT.log’. It lists all requested test points and separate

test results. From these messages, users can easily find which test point fails.

Besides this method, SCRT can send debug messages to Port 80 at the execution

time. Using these messages, the user can analyze the failure reason.

5.2.5.1 67BLog File Overview

SCRT log file is divided into several groups:

46

Variable Services Test

Time Services Test

Capsule Service Test

Misc Services Test

Reset Services Test

The following is an example of the log file:

Note: Sometimes the result of Reset Services Test is not correct. Please note the
platform behavior to judge

********************Variable Test

Group*******************

SetVariable Requested

SetVariable Pass

GetVariable Requested

GetVariable Pass

GetNextVariable Requested

GetNextVariable Pass

********************Time Test Group*******************

GetTime Requested

GetTime Pass

SetTime Requested

SetTime Pass

SetWakeupTime Requested

SetWakeupTime Pass

GetWakeupTime Requested

GetWakeupTime Fail

********************Capsule Test

Group*******************

********************Misc Test Group*******************

GetNextCount Requested

GetNextCount Not Test

********************Reset Test

Group*******************

ColdReset Requested

ColdReset Not Test

Please note the following”

 47

 Requested means this test point is requested to test in runtime environment.

 Pass means this test point is tested successfully in runtime environment.

 Fail means this test point is failed during runtime test, usually it causes

system hang.

 Not Test means this test point is not tested because some test point prior to it

causes system hang.

5.2.5.2 68BPort 80 Display

If the target machine under test has Port 80, the hex number displayed with Port80

can be used to trace the test case workflow. For every checkpoint, Port 80 will

display a unique hex number. Please refer to Appendix C for more details.

5.2.6 52BSystem Hang

SCRT validates the Runtime Services implementation in the runtime environment.

If some pointers are not converted, the system hangs. If the system hangs at Nth

checkpoint, the SCRT records the (N-1)th information in the test log file and

displays the corresponding hex number in Port 80. Using this relationship with the

enabled checkpoint sequences, users can find which checkpoint hangs.

5.3 21BHow to Add SCRT Test Cases

SCRT is used to validate Runtime Services in a runtime environment. If a more

detailed test case for runtime services is needed, users may develop the required test

case, and add it to the SCRT infrastructure.

5.3.1 53BThe Framework of SCRT Utility

SCRTDriver in the SCRT utility is responsible for performing the test cases. In

SCRTDriver module, GUID definition for the checkpoints is declared in

Guid.h and Guid.c, and test cases are located in TestCase.c.

To extend the test coverage, the user can add the test cases in TestCase.c and

add the new GUID definitions in Guid.h/Guid.c.

48

SCRTDriver\

 |----Guid.h

 |----Guid.c

 |----TestCase.c

 |----Debug.c

 |----Print.c

 |----SCRTDriver.c

 |----SCRTDriver.h

 |----SCRTDriver.inf

 |----ia32

 |----Dump.c

 |----Io.c

 |----Io.h

 |----IoAccess.asm

 |----Port80.asm

 |----ipf

 |----Dump.c

 |----Io.c

 |----Io.h

 |----Port80.c

 |----x64

 |----Dump.c

 |----Io.c

 |----Io.h

 |----IoAccess.asm

 |----Port80.asm

Note: Guid.h/Guid.c declares GUID definition.

Note: TestCase.c consists of the test cases.

In TestCase.c, we allow for adding more checkpoints. For each new checkpoint,

the user needs to create a new GUID for it and declare it in Guid.h/Guid.c.

5.3.2 54BExample: Adding a Test Case

Because the call Runtime Service UpdateCapsule behaves differently for

different platforms—for example, a system reset—this checkpoint is not included in

TestCase.c as a common test case. Users can add a case in TestCase.c to

verify the service, per the example shown below.

Following is sample code to add the checkpoint in
EfiCapsuleTestVirtual(), TestCase.c:

 49

Port80(xxx);

Status = VRT->UpdateCapsule (

 xxxxx,

 xxxxx,

 xxxxx

);

RecordAssertion (

 Status,

 gSCRTAssertionGuidxxx,

 "RT. UpdateCapsule – should be EFI_SUCCESS",

 "%a:%d:Status - %r, Expected - %r",

 __FILE__,

 __LINE__,

 Status,

 EFI_SUCCESS

);

In addition, define gSCRTAssertionGuidxxx in Guide.h and Guide.c as

shown below:

In Guide.c:

EFI_GUID gSCRTAssertionGuidxxx =

EFI_TEST_SCRT_ASSERTION_xxx_GUID;

In Guide.h:

#define EFI_TEST_SCRT_ASSERTION_xxx_GUID \

{ xxxxxxxx, xxxx, xxxx, { xx, xx, xx, xx, xx, xx, xx,

xx } }

extern EFI_GUID gSCRTAssertionGuidxxx;

50

 51

Appendix A
Test Report Format

A summary of SCT test results is recorded into a test report file in CSV format. The

output information includes the number of passed and failed test assertions for each

executed test category, as well as detailed information for each executed test

assertion, passed or failed.

Below are the contents of a sample test report file:

“Self Certification Test Report”

“Service/Protocol Name”,“Total”,“Failed”,“Passed”

“Boot Services Test\Event, Timer, and Task Priority

Services Test”,“16”,“0”,“16”

“Boot Services Test\Image Services

Test”,“121”,“1”,“120”

“Driver Model Test\Driver Binding Protocol

Test”,“15”,“1”,“14”

“Total”,“152”,“2”,“150”

“Index”,“Instance”,“Iteration”,“Guid”,“Result”,“Title”

,“Runtime Information”,“Case Revision”,“Case Guid”

“3.1.2.1”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-

C38AFE2BBDEB”,“FAIL”,“BS.LoadImage() – Load image fail

via LOAD_FILE protocol”,“Status – Unsupported, TPL –

4”,“0x00010000”,“256456BC-D9E1-476c-B4AD-BE37E53F7940”

“3.1.2.2”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-

C38AFE2BBDEC”,“FAIL”,“BS.LoadImage() – Load image fail

via Device and File path”,“Status – Not found, TPL –

8”,“0x00010000”,“256456BC-D9E1-476c-B4AD-BE37E53F7940”

“Index”,“Instance”,“Iteration”,“Guid”,“Result”,“Title”

,“Runtime Information”,“Case Revision”,“Case Guid”

“3.1.1.1”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-

C38AFE2BBDEA”,“PASS”,“BS.CreateEvent() – Create event

with invalid event type”,“Status – Invalid

parameter”,“0x00010000”,“75634025-6B30-4cc4-AC5C-

6D031AE4D74C”

When viewed in Microsoft Excel ®, the contents of the report file appear as shown

in Figure 31Figure 31X.

52

Figure 31 Excel® File Containing Test Report in CSV Format.

 53

Appendix B
Test Category

Information on each test category that the EFI SCT Test Harness will need for

execution is provided using a category file in INI format. This file is created in the

Data subdirectory.

Below are the contents of a sample category file:

[Category Data]

Revision = 0x00010000

CategoryGuid = 7AB1E93F-B439-4e2e-B773-CA540CEBCFEF

InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC

Name = Boot Services Test\Event, Timer,

and Priority Services Test

Description = Event, Timer, and Priority Services

Test. Related to EFI Spec 5.1.

[Category Data]

Revision = 0x00010000

CategoryGuid = CC129459-A197-4c8f-9422-2441E88C559A

InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC

Name = Boot Services Test\Memory

Allocation Services Test

Description = Memory Allocation Services Test.

Related to EFI Spec 5.2.

The CategoryGuid is the GUID of a corresponding test file. For user-defined

test cases, the GUID is defined when using the Black-Box or White-Box test

interface. The InterfaceGuid is made up of EFI Protocol GUIDs that are

currently in testing. For example, there are three GUIDs specially defined in the

EFI 1.10 Specification for the EFI services.

Boot Services: E9EF7553-F833-4e56-96E8-38AE679523CC

Runtime Services: AFF115FB-387B-4c18-8C41-6AFC7F03BB90

Generic Services: 71652D04-BF38-434a-BCB8-6547D7FD8384

Using the category file, the list of test categories can be changed to suit your

requirements. For example, the current UEFI SCT release provides test cases for

testing protocol interfaces defined in the UEFI Specification. You can integrate

additional test cases for these depending on the EFI implementation on the target

platform. A sample category file is shown below. The highlighting marks the places

where the file can be modified.

54

[Category Data]

Revision = 0x00010000

CategoryGuid = 7AB1E93F-B439-4e2e-B773-CA540CEBCFEF

InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC

Name = EFI Spec\Boot Services

Test\Event, Timer, and Priority Services Test

Description = Event, Timer, and Priority Services

Test. Related to EFI Spec 5.1.

[Category Data]

Revision = 0x00010000

CategoryGuid = CC129459-A197-4c8f-9422-2441E88C559A

InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC

Name = EFI Spec\Boot Services

Test\Memory Allocation Services Test

Description = Memory Allocation Services Test.

Related to EFI Spec 5.2.

[Category Data]

Revision = 0x00010000

CategoryGuid = {GUID of user-defined test}

InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC

Name = User-defined\Boot Services

Test\Event, Timer, and Priority Services Test

Description = Event, Timer, and Priority Services

Test. Related to XXX design document.

[Category Data]

Revision = 0x00010000

CategoryGuid = {GUID of user-defined test}

InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC

Name = User-defined\Boot Services

Test\Memory Allocation Services Test

Description = Memory Allocation Services Test.

Related to XXX design document.

 55

Appendix C
SCRT Assertion Information

To accomplish a runtime service test, sometimes more than one step is required. For

example, to test GetVariable service, set a certain variable first, and then get it

to test. Encode the Port 80 number as XY. Here X stands for the runtime service

sequence and Y stands for the step sequence in this service test. Corresponding to a

unique Port 80 hex number, a unique GUID and the test description are printed out

to COM1/COM2.The relationship is shown in XTable 11X.

XTable 11X shows the detailed information for each assertion in the UEFI SCRT tests.

It can be used by UEFI SCRT users as a case assertion reference.

Table 11. Test Case, Port 80 Display and Log file Relationship for Each
Assertion

Test Case Port80

Display

GUID Assertion Test Description

SetVariable 11 0xbff7e548,

0xf13a,

0x497c,

0x8e, 0x21,

0xae, 0xc2,

0x37, 0xa6,

0xcc, 0xe3

RT.SetVaria

ble - Set a test

variable named

UEFIRuntime

Variable,

should be

EFI_SUCCESS

Call RT.SetVariable

with the special name and

Guid. And the variable is set

with 8 Bytes data size. The

return status should be

EFI_SUCCESS.

12 0xf556b5ad,

0xaace,

0x4bf0,

0xb7, 0x24,

0xe1, 0x29,

0xee, 0x0,

0xea, 0x37

RT.SetVaria

ble - Clear a test

variable named

UEFIRuntime

Variable,

should be

EFI_SUCCESS

Call RT.SetVariable

to clear the test variable. The

return status should be

EFI_SUCCESS.

GetVariable 21 0xd66e4a7f,

0x6d54,

0x4cc0,

0xb9, 0x3b,

0xf6, 0x2f,

0x48, 0x57,

0xa6, 0xff

RT.SetVaria

ble - Set a test

variable named

UEFIRuntime

Variable,

should be

EFI_SUCCESS

Call RT.SetVariable

with the special name and

Guid. And the variable is set

with 8 Bytes data size. The

return status should be

EFI_SUCCESS.

56

Test Case Port80

Display

GUID Assertion Test Description

22 0xaa5c5763,

0x36cd,

0x4f00,

0x84, 0x36,

0xf4, 0xa9,

0xd5, 0xaf,

0x12, 0xfb

RT.GetVaria

ble - Get the test

variable named

UEFIRuntime

Variable,

should be

EFI_SUCCESS

Call RT.GetVariable

to get the test variable. The

return status should be

EFI_SUCCESS

23 0xbac20972,

0x9662,

0x4f24,

0x8a, 0xac,

0x66, 0x41,

0x42, 0xb5,

0x6d, 0xde

RT.SetVaria

ble - Clear a test

variable named

UEFIRuntime

Variable,

should be

EFI_SUCCESS

Call RT.SetVariable

to clear the test variable. The

return status should be

EFI_SUCCESS.

GetNextVari

ableName

31 0x8bcda7a3,

0x2848,

0x413d,

0xbf, 0x5, 0x7,

0xe1, 0x9,

0x8d, 0x42,

0xd2

RT.SetVaria

ble - Set a test

variable named

UEFIRuntime

Variable,

should be

EFI_SUCCESS

Call RT.SetVariable

with the special name and

Guid. And the variable is set

with 8 Bytes data size. The

return status should be

EFI_SUCCESS.

32 0x67b4e72a,

0xc792,

0x4f74,

0x92, 0x1d,

0xea, 0xb3,

0x66, 0x4f,

0x95, 0x3b

RT.GetNextV

ariableName

- Get the next

variable name

should be

EFI_SUCCESS

/EFI_NOT_FO

UND

Loop call

RT.GetNextVariabl

eName get the next

variable. The return status

should be

EFI_SUCCESS/EFI_N

OT_FOUND.

33 0xdbb5195f,

0x3584,

0x427d,

0xa1, 0x68,

0x3f, 0x5e,

0x1d, 0x24,

0x3b, 0xb9

RT.SetVaria

ble - Clear a test

variable named

UEFIRuntime

Variable,

should be

EFI_SUCCESS

Call RT.SetVariable

to clear the test variable. The

return status should be

EFI_SUCCESS.

 57

Test Case Port80

Display

GUID Assertion Test Description

QueryVariabl

eInfo

41 0x8e75d9a9,

0x3c14,

0x4095,

0xbe, 0x76,

0xad, 0xcf,

0x55, 0xab,

0x8e, 0x6c

RT.QueryVar

iableInfo -

Query Variable

Information of the

platform should be

EFI_SUCCESS

.

Call

RT.QueryVariableI

nfo to query variable

information. The return status

should be EFI_SUCCESS.

GetTime 51 0xe8cd357a,

0xd254,

0x4f7b,

0x92, 0xc3,

0x23, 0xfd,

0x4d, 0xd6,

0xc0, 0xa3

RT.GetTime -

Get the current

time and date

information should

be

EFI_SUCCESS

Call RT.GetTime with

NULL capabilities. The

return status should be

EFI_SUCCESS.

SetTime 61 0x6417f479,

0xa174,

0x4614,

0x80, 0xcd,

0xe6, 0x96,

0x85, 0x8c,

0xd9, 0xfa

RT.GetTime -

Get the current

time and date

information should

be

EFI_SUCCESS

Call RT.GetTime with

NULL capabilities. The

return status should be

EFI_SUCCESS.

62 0xd6a3c41a,

0xe6cf,

0x42fc,

0xa0, 0x39,

0x68, 0xf8,

0x39, 0xbb,

0xbf, 0xe3

RT.SetTime –

set the same time

as just got. should

be

EFI_SUCCESS

Set time. The return status

should be EFI_SUCCESS.

SetWakeupT

ime

71 0xd6b952a9,

0x3d54,

0x4277,

0xbf, 0x60,

0xab, 0xfb,

0x3, 0x71, 0x5,

0xd5

RT.GetTime -

Get the current

time and date

information should

be

EFI_SUCCESS

Call RT.GetTime with

NULL capabilities. The

return status should be

EFI_SUCCESS.

58

Test Case Port80

Display

GUID Assertion Test Description

72 0x3f65c680,

0xae51,

0x4830,

0xb3, 0xd1,

0xd7, 0xc9,

0x2a, 0xcd,

0x14, 0x8a

RT.SetWakeu

pTime - Set

wakeup time in 1

hour later from

now on, should be

EFI_SUCCESS

Call

RT.SetWakeupTime to

set wake up time, the time is

1 hour later from now on.

The return status should be

EFI_SUCCESS.

GetWakeupT

ime

81 0x4611524b,

0xbfd2,

0x42d4,

0x85, 0xa8,

0x9b, 0xf,

0xd1, 0xc6,

0x27, 0xd3

RT.GetWakeu

pTime - Get the

current wakeup

alarm clock setting

information, should

be

EFI_SUCCESS

.

Call

RT.GetWakeupTime to

get the current wake up time.

The return status should be

EFI_SUCCESS.

QueryCapsul

eCapabilities

91 0x5c2cbd54,

0x1388,

0x4e87,

0xab, 0x11,

0x2c, 0x12,

0x3d, 0x24,

0x5, 0xbd

RT.QueryCap

suleCapabil

ities - Query

the capsule

capabilities with a

NULL

MaxCapsuleS

ize, should be

EFI_INVALID

_PARAMETER.

Call

RT.QueryCapsuleCa

pabilities to query the

capsule capabilities with a

NULL

MaxCapsuleSize. The

return status should be

EFI_INVALID_PARAM

ETER.

UpdateCaps

ule

A1 0x9e39a3e3,

0xcbb6,

0x4fcc,

0xb2, 0x21,

0x73, 0x24,

0x79, 0xf1,

0x21, 0x77

RT.UpdateCa

psule – Update

Capsules with 0

CapsuleCoun

t, should be

EFI_INVALID

_PARAMETER.

Because this case

brings on some

reset or update

flash behavior, it is

recommended

disable as default.

Users can

enhance this test

case for their own

test platform.

Call

RT.UpdateCapsule

with 0 CapsuleCount.

The return status should be

EFI_INVALID_PARAM

ETER.

 59

Test Case Port80

Display

GUID Assertion Test Description

GetNextHigh

MonotonicCo

unt

B1 0xda790c1e,

0xdcbf,

0x4c0e,

0xaf, 0xf7,

0x46, 0x3a,

0xc4, 0x47,

0xb0, 0x6e

RT.GetNextH

ighMonotoni

cCount - First

get next high

monotonic

counter, should be

EFI_SUCCESS

.

Call

RT.GetNextHighMon

otonicCount to get

next high monotonic counter.

The return status should be

EFI_SUCCESS.

ResetSyste

m

C1 0x1bc049bb,

0xc371,

0x46cc,

0x8d, 0x98

0xef, 0x56

0xc, 0x35

0x7f, 0x1

RT.ResetSys

tem - Machine

should have code

reset! We should

never come here.

RT.ResetSystem -

Machine should have code

reset! We should never come

here.

C2 0x11a541a4,

0xf75d,

0x42e0,

0xa8, 0x97,

0xe7, 0x92,

0xd4, 0x37,

0xc2, 0xfc

RT.ResetSys

tem - Machine

should have warm

reset! We should

never come here

RT.ResetSystem -

Machine should have warm

reset! We should never come

here

C3 0xe5818568,

0x4723,

0x473f,

0xbc, 0x8f,

0xb5, 0x86,

0x2e, 0xd2,

0x5e, 0xb1

RT.ResetSys

tem - Machine

should have shut

down! We should

never come here

RT.ResetSystem -

Machine should have shut

down! We should never

come here

