Advanced Configuration and
Power Interface Specification

Compag Computer Corporation
Intel Corporation

Microsoft Corporation

Phoenix Technologies Ltd.
Toshiba Corporation

Revision 2.0
July 27, 2000

Copyright © 1996, 1997, 1998, 1999, 2000 Compag Computer Corporation, Intel Corporation, Micr osoft
Corporation, Phoenix Technologies Ltd., Toshiba Corporation
All rightsreserved.

INTELLECTUAL PROPERTY DISCLAIMER

THISSPECIFICATION ISPROVIDED “ASIS” WITH NO WARRANTIESWHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESSFOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESSOR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTSISGRANTED OR INTENDED HEREBY.

COMPAQ, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. COMPAQ, INTEL, MICROSOFT, PHOENIX, AND
TOSHIBA DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT
INFRINGE SUCH RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Affected

Revision Change Description Sections
Aug. 2000 | Major specification revision. 64-bit addressing support added. Processor and
20 device performance state support added. Numerous multiprocessor workstation
' and server-related enhancements. Consistency and readability enhancements
throughout.
Feb. 1999 | Fixed previous erratathat deleted wrong paragraph inthe RTC_EN description. | 4.7.3.1.2
1.0b
Clarified P_BLK requirements on multiprocessor systems. 4.7.2.6.3
Changed definition of SCI_INT pinin Table 5-5. 5.2.5
Replaced section 5.2.8, adding new structures and clarifications to support 5.2.8
multi processor configurations.
Expanded Name Space description—clarified the name search rules, added 5.3
Parent operator to operator list, described name padding.
Expanded ASL definition—defined global objects, clarification that OpRegion | 5.5.3
accesses may block, added description of the scope and life of variablesin
control methods.
Changed notify values. 5.6.3
Added \ PIC method to Table 5-33 and new section 5.8. 5.6.5& 5.8
Added USB _ADR valuesto Table 6-1. 6.1.1
ACPI Control Method added for floppy enumeration (FDE). 10.8
ASL Grammar clarifications—initial and default SyncLevel values, ObjectType | 15.2.3
behavior for specific objects, usage of the RefOf operator and behavior of non-
package method evaluation.
Added top-level AML definition. 16.2
Changed concat argumentsto be TermArgs resolving to data. 16.2.4.4
Added the _GLK object and referenced it in the Smart Battery and the Control 6.5.6 &
Method Battery sections. 1114&
11.2.2& 138
& 13.9
&13.12
Added Video Extensions as an Appendix. Appendix A
1.0a Added PRT requirement for PCI root bridges. 1.7
Clarification H/W behavior—PM timer may be stopped when not in the GO/S0 | 4.7.2.1
state, Lid Switch behavior and correction of the RTC_EN bit in Table 4-10.
Clarification of tables—trailing blank required in signature in Table 5-1, 5.2.x
FLUSH_SIZE and FLUSH_STRIDE clarification Table 5-5.
Clarified placement of APIC-related structures and general clean up, added 5.2.8

Interrupt source overrides.

Various removals—Figure 54, DCK_CAP flag from Table 5-6, _SBC and
SBS methods from Table 5-33.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

(continued)
Affected
Revision Change Description Sections
Various additions—AC device PnP ID to Table 5-32, _DDN (logical name 56.4
association) to Table6-1, ADR valuesfor floppy, FDI—floppy configuration
info, requirements for _CRS used with bus devices, battery presence hit to
_ STA definition, QWORD to Large Resource datatype, INI Method.
Wake/Sleep clarifications—_ PTS not executed for S5 and SCI cannot occur 9.1&93
before enabled.
Rewrote the IDE Controller Device section. 10.8
Corrected the passive cooling equation for TC1 and TC2. 12.3.7 (&8)
Removed requirement that PRx contain numeric lowest state. 7.2.x(0-2)
Removed Duplicate Section “ General -Purpose Register Blocks.” 4.7.4.3
Clarified that Clisrequired and C2 & C3 are optional and reiterate requirement | 4.7.2.6 &
for C1 processor statein Table 5-6. 5.2.5
Clarified the Passive Cooling Equation. 12.1.5
Numerous grammar updates and corrections. 15& 16
Added SxD objects. 7.287.2.X

1.0

Origina Release.

Contents
L INTRODUCTION. ..o sieerteireieinreeesesesesessesesssessssesessesessssssssssessssssssssssssssssassessssssssssssssssssssssssssssssssessssessssesssesssesnes
1.1 Principal Goals
1.2 Power Management RAtIONAIE ... seans
G T I =0 Toa VRS U1 o] o Lo FU S
1.4 OEM IMplementation SEEatEgY......ccoierereririrerinisesesisesessssssesssnens
1.5 POWEr and SIEEP BUILONSccviviireecrieetrie ettt
1.6 ACPI Specification and the Structure Of ACPI
1.70S and Platfor M COMPIIANCE. ...t
1.7.1 Platform Implementations of ACPI-defined INterfaces.........cocevvircnnecsesseses e 5
1.7.2 OSPM IMPIEMENLALIONS......cocueieieiireieieieieieiereieiete ettt sess st ss st sesesstesesesssesesesesesesesssesesesesasesesnsasesass 9
1.7.3 OS REGUITEMENES.....curveurerereeeceeisesesesesasesssssesessssssssesssssesssssssssssssssssessssssssessssssssesssssssesssssssssssssssssessssssssess 10
RS =T o = N U o 1= oo TRRRT 10
1.9 DOCUMENT OF QANTZALIONvvuveveeieerreeeireses sttt 10
L.O. 1 ACPI OVEIVIBIV ...ttt ses s es s bbb bbb bbbttt 11
1.9.2 Programming MOTELScceiieiiee e 11
1.9.3 IMpPIementation DELAISccccvriieirrerer sttt s et se s snsnsee 11
1.9.4 TEChNICEl REFEIEINCE......ce ettt bbb bbbttt
1.10 REIGLEA DOCUMENES......oiereeereererireeesee s sessesesesessssesessssesssesessssssesessssssesesssessssenssessesssssesssenssssessensssssessnssnsesns
2 DEFINITION OF TERMS ...ttt bbbt bbb bbb
2.1 General ACPI TeIrMINOIOQY.....courrreeereeerieeirtieessseesssesss e ssse st essssssesssssnns
2.2 Global System State DEfiNITiONS......ccvicereerrere st s s s e sssssnsesnsens
2.3 Device POWEr State DEfiNITIONS.......coiiieririeeeireeiei sttt b bbb bbb

2.4 Sleeping State DefiNitioNSccovcerrenresreeerress e
2.5 Processor Power State Definitions
2.6 Device and Processor Performance State DefinitionS.......cccocevrennenrenneee s 23
BOVERVIEW ..ottt ettt £t bbbttt 24
3.1 System Power M anagemMENT ... s s 25
.2 POWET SEALESovueueeerrerisceereeseesessesessse e ss s e s s R Rt R e st R R r et E e e s s ne e r e 26
3.2.1 New Meanings for the POWEr BULLON ..ottt ss bt ses s sssssss s s 27
3.2.2 Platform Power Management CharaCteriStiCS sses s 27
3.3 DeVice POWEr MaNAQEMENLc.cccceveiieieeieirice et s et ss s s s st s st s s s sesessansesesnns
3.3.1 Power Management Standards
3.3.2 DEVICE POWES SEALES........ceveeieerireereeiseee ettt bbbt bbbt bbbt
3.3.3 Device POWEr State DEfiNItIONS........cccveieriririricieirireeieiseseet ettt bbb
3.4 Controlling DeViCE POWES ... sesessesesessenens
3.4.1 Getting Device Power Capabilities
3.4.2 Setting DEViCe POWES SLALEScoierieerieeireieesi et
3.4.3 Getting Device POWEr StatUS........cccceeevereeeiereriseesesesessesesssssssensens
3.4.4WaKiNG the COMPULEScoiuiiierireerieeriee sttt
3.4.5 Example: M odem Device POWEr ManagemMent...........cvweeererernenisensseesesesssssesessssssssessssssssesssssessssens 32
3.5 Processor Power Managementccceennnsnnnesssssssssssessssssnens
3.6 Device and Processor Performance States

Compag/I ntel/Microsoft/Phoenix/T oshiba

vi

G = 10T 1= U o I = - OO
3.7.1 Example: Configuring the MOGEM..........ccrirercee ettt

3.8 System Eventsccc.......

3.9 Battery Management
3.9.1 Battery COMMUNICATONS.......c.uuieiereerrireeriesesseessssessr s ss e sss e ssssenns
3.9.2 BAENY CAPBCILY ...cucvevreeeceeiresecisiessesssssssessstsssessss e ssessssssssesssssessssesssssessssssssessesssssessesssnsesasssssesssnsssesssnnss
3.0.3 BAENY GAS GGAUGEveeeerirteeririeieseses ettt e se st s et be etk e e st s et st et e b e et s b e b et se et e s e et ens
3.9.4 LOW BEIErY LEVEIS......coieciieees ettt

3.10 Thermal ManagEMENT ...ttt b s bbb bbb s s st s s st s s s
3.10.1 Active and PassiVe COOlING MOUES.........coocieieriinereerree e
3.10.2 Performance VS. ENErgy CONSEIVELION.........ccveurerreeerreesseisesesssssssessssssssessssssssesssssesssssssssssssssssesssssnss
3.10.3 ACOUSEICS ..ueeeereueereseeaste st e s e s st et b e e e e s s s e se b e st A b £ e s e b e e s e bbb b b e b e e b e b et e nn bt s renas 12
3.10.4 MUILIPIE TREIMEl ZONES ..ot sesessse st asesssssesessssssssesssssesssssssnssenssssesssens 12

4 ACPl HARDWARE SPECIFICATION ..ttt s ses s ss s st sssnas 43

4.1 Fixed Hardware Programming MOGE] ... ssessssessessssesssessssssennes 43
4.1.1 FUNCLIONEl FiXEA HBIOWEIE ...ttt bbb 4

4.2 Generic Hardware Programming MOGE! ... ssessssesssssssessssssssnesesns 45

A =Yoo= T g T = = o o R a7

e S = = T V0] = LA o] o OO a7

A5 The ACPI HardWar @ MOUE ...t ssss e s ssssssesssssssesssssssssssssssssessnssnsssssnssnes 48
4.5.1 Hardware RESEIVEA BiLS........c.ocururiirieirieireisineieese ittt ettt 51
4.5.2 Hardware [gNOred BilSccviierirrieinieeieesi ettt 52
4.5.3 Hardware Write-OnNlY BilS........cceiererreceeiisisiesisssssssessssse st ssssssssssessssssssssssssessssssssssssssssesssnsnss 52
4.5.4 CroSS DeviCe DEPENUENCIES ...ttt 52

4.6 ACPI Hardware Features

N O I =0T = Gl 1Y/ oo =TT
4.7.1 ACPI REGISIEr SUMMIBIY ...oocevrieeeereeeriseenessesseessss st sses ettt sss s sssssnns
4.7.2 Fixed Hardware FEALUIES........c.oocurieerieerrerenesireeiseis e eessenes
4.7.3 Fixed Hardware Registers.
4.7.4 GeneriC HardWare REQISLEIS.......cvrerrerreeririsissiesesesssesesssssssesessssssssessssssssssssssssesssssesssssssssssssssssesssssnss

5 ACPlI SOFTWARE PROGRAMMING MODELcoootnrneeneneereneenenees

5.1 Overview of the System Description Table Architecture
5.1.1 Address SPace TranSIatioN........cccecrreecinierise sttt s s ss st s s ssse s ssssssssssssssesssnns

5.2 ACPI System Description Tables
5.2.1 ReServed BitS and FIlUS........coucuiueirieeirnreirereeiree ettt
L2 @0 1410 = 11 o1 11
5.2.3 AAArESS FOMMELcovueuiieireeeireesesee ettt sttt bbbt bbbt 89
5.2.4 Root System Description POINtEr (RSDP) ..ot ssssesssssssssssssesssssssessssssssesssssnss 0
5.2.5 System Description Table HEAAET ... 92
5.2.6 Root System Description Table (RSDT) ..ot sssssssssssessssssssssssssesssssssssssssssssesssnsnss %}
5.2.7 Extended System Description Table (XSDT) ..o ssesessssssessesenns 95
5.2.8 Fixed ACPI DesCription Table (FADT) w.ccirererereererssseesesesssesesessssssesessssssssssssssssssssssssssssssssessssenes 9%
5.2.9 Firmware ACPI Control StrUCLUIE (FACS) ...ttt sssssssesssans 106
5.2.10 DEfiNItION BIOCKScoiureeireriieririsesssseresesessisesesessesesesessssssesessssssssessssssssessssssssesssssessssssssesesssnssssssssnssssesnen 109

Compag/I ntel/Micr osoft/Phoenix/T oshiba

Vii

5.2.11 Global SYSteM INTEITUPLS.cceurerreeererereesieiresesseesesessssesesessssssesessssssesessssssssesssssessssssssessssssssessssssssesesen
5.2.12 Smart Battery Table (SBST) ..ottt ssssses st st ssssesssssssssssnen
5.2.13 Embedded Controller Boot Resources Table

e I AN O o I N F= g = o = Lot
5.3.1 Defined ROOE NBMESPACES..........cccuieerieceriieeriieetieessreese s sese s sessesessesssssss st sss s st essssssassssans
TG T @ o= o £ TN

5.4 Definition BIOCK ENCOUING ...cciiiiiriieeisse s ssssssss s sssnns

5.5 Using the ACPI Control Method Source LangUAagE.........couvreerreeureeiniesensesesisesesessesesessssessesenens 128
B.5. 1 ASL SEALEIMENLS......cueureiurueirereteeieeseeasiseseeas et sess bbb s bbb s se e b b et b et ne bt en s 128
5.5.2 ASL MBETOS.....uiuiuiiiieieieiete ettt et bbb bbbk bbbk bbb bbbk bbb bbb bbb bbb bbb bbb bbb enee 129
5.5.3 Control MethOO EXECULTONc.cuieeirierieirieiseeiree it 129
5.5.4 Control Method Arguments, Local Variables, and Return Values..........cccccevvcennenccnencnccinenes 130

5.6 ACPI Event Programming MOGE] ...t asesss e sessssssessssssssesssssesens 130
5.6.1 ACPI Event Programming Model COMPONENES........ccccvuveereirieieeininensesesesesssessssessesssssssesesssssssseses 131
5.6.2 TYPES OFf ACPI EVENES....cocviverireerireresereseessssessssessssesssessssessssesnssesssssssssssns 132
5.6.3 Device ObJECt NOLITiCALIONS.......ccuererrireecieresccie sttt s s en s senaen 136
5.6.4 Device Class-SPECifiC ODJECES........ocieieiitiee et 138
5.6.5 Defined Generic Objects and Control MEethOOS..........cc.cvvcriencniesseee e 139

5.7 Operating System-Defined ODjeCt NAMES........cccciiiiiiinincrcre s 145
5.7.1_GL (GIOD@l LOCK IMULEX) ...vveerrererrereseessseessseessssessssessssssssssssssssssssssssssssssssesssssssssssssssessssesnssesssssssssssss 145
B5.7.2_OS (OSNAME ODJECL) ..vviiecieirieeriresee ettt ssss e s st s s s st s s anaetenaen 145
5.7.3_REV (ReViSiON Data ODJECL)c.eeeieceiieeiieitieisisese e sess s s ssssssenns 145

5.8 System Configuration ODjECES.......ccoviierrecee sttt sens 145
5.8.1_PIC Method

6 CONFIGURATION........cceu...

6.1 Device [dentifiCation ODjECLS ...t
6.1.1 ADR (AUUIESS)....coreeerrererrirersireseiressesssssssssessssesssssssssssesssssssssssssssssssssssssssessssssssssssssssssssssssssessssesssesnsseses
6.1.2 _CID (CompatibIE ID) ...ccceueereirieiresesereses e
6.1.3 _DDN (DEVICE NAIME).......corierieerererrereiserses ettt sese s ses st
6.1.4 HID (HArdWare ID) ..c.coceeceereiecietresesieseeste st ssesssssssessss s ssssssssessssssssessssssssesssssnssssesssnssssssnsnssnses
6.1.5 STR (SUNQG).eiereiiririreririrereririsesesesisesssesesesssssesesssssesesssssesesssssssssssssssees
6.1.6 _SUN (Slot User Number)

6.1.7 _UID (UNIQUE ID) w.ueeeeeeeeeectereieste sttt s s sttt se sttt s ssassesessnssnsas

6.2 Device Configuration Objects
6.2.1 _CRS (CUurrent RESOUICE SELLINGS)......cccvuerrerriririeisirisssessesessssssssssssssessssssssessssssssessssssssessssssssssssssssess 150
6.2.2 DIS (DISADIE) ...cuieeuiererririeireneireee ettt sttt se s e e s sttt 150
6.2.3 _DMA (Dir€Ct MEMOIY ACCESS)...coueurerereerreetrerisssnssesesssessesssssssssssssssessssssssessesssssessssssssesessssssssssssssseses 150
6.2.4 FIX (Fixed Register RESOUICE PrOVIAEL)ccccueieireeeeeereseie st sssssss s sssssssssesssssessssssssnses 151
6.2.5 _HPP (HOt PlUQ Parameters)........cccvueierrieiricrieinieessieesises s sssss s sssses s ssssenssseens 153
6.2.6 _MAT (MUltiple APIC Tabl€ ENLIY) cuueveeeeeseccrresie sttt se sttt sssssnssnsns 155
6.2.7 _PRS (POSSi bl € RESOUICE SELLINGS)......eueverereacerieerrieeestieesieessrsess s sess s ssssesssseens 156
6.2.8 _PRT (PCl ROULING TADIE)ccccieetrierieireesietresesistsssessssssssessssssssssssssessssssssessssssssessssssssessssssssssssssssnses 157
6.2.9 PXM (PrOXIMITY) coeoeeiiirireririsesisisisesestsesesesesesesesesssesese s e e s s e ssss s s s ssssssssnsssssssssssssssnsssssssnsssssssnsnsssasaen 159
6.2.10 SRS (Set RESOUICE SEIINGS)....ruerrerrrerereererrerissesssressssessssessssessssessssssssssssssssssssssssssssssssssssssesssesnsseses 159

Compag/I ntel/Microsoft/Phoenix/T oshiba

viii

6.3 Device Insertion and RemMOVal ODJECES ...t ssssssessssssssesssssesens

6.3.1 EDL (EJECE DEVICE LISt) ucveuiiiecierrieciesiee ettt ssse e sse st ss st es s sss st sesessasssssnsssanses
6.3.2 _EJD (Ejection Dependent DeViCe).......c.cvereenieeenrieenseeenessnnerneens
6.3.3 _EJIX (BJECL) ettt sttt st ses s
B.3.4 _LCK (LOCK) ...cuereretrerreesetsteeeieeieeseeee ettt sttt ses s ees ettt et
6.3.5 _RMV (REMOVE)......coeeireieeteiririssietsessssessesessse s sessssssssssssssssssssssessssssssessssssssesssssssesssssnssesessssssessssssssases
B.3.6 _STA (SEBLUS) ..ceuereerrerreereeeeeeeseeseeses st s bt see st essees e bbb bbb bbb bbbt b bbbt

6.4 ReSOUrCe Data TYPES FOr ACPI ...t

6.4.1 ASL Macros fOr RESOUICE DESCIIPLOIS.......ccccuviiiiiereiesieieesesse et sess s sse st sssssssesesssssesesssssseses
6.4.2 SMall RESOUICE DEIA TYPEveereeirereeretriesseesrtses sttt sese s
6.4.3 Large RESOUICE Dala TYPR ...ttt

6.5 Other Objects and Control MEthOUS ...

B.5. 1 IINT (TNE) 1ottt et
B.5.2 DCK (DOCK) ..urueverrieuereireetetessesssstesssssssesssssssse s sssssssessssssesessssssesessssssssesassssssessssssssesssssnssesasssssesssssnssess
6.5.3 _BDN (BIOS DOCK NBME)......cceurueeerrerirrererseresessssessssessssessssesssesssesssseses
o A L R (=T o o) IR
6.5.5 _BBN (Base BUS NUMDEL)cccvuimirrrieneinieneiensieesisesss s ssse s ssses s sssessssssssseees
B.5.6 _SEG (SEOMENL).....cieeeeereieeteirisisstetsesesssessesessse e s ssssssssesssssssessssssssssssssessssssssessssssnsesssenssesessnssesssnssssnss
B.5.7 _GLK (GIODEl LOCK) ..euveurereurereueireueireesesesseessesesessesesssssssessssessssessssesssssssssssssssssssssssssssssssssssssssessssesnssncas

7POWER AND PERFORMANCE MANAGEMENT ..o eseseessssessssessssessessssssssssssssssssesnnes
7.1 Declaring a Power RESOUICE ODJECL ...t

7.1.1 Defined Child Objects for @ POWEN RESOUICE ..o sesssesessesessssesssesssseens
T.0.2 _OFF ..ottt

7.2.1_PSO (Power State 0)
7.2.2 _PS1 (Power State 1)
7.2.3 _PS2 (Power State 2)
7.2.4 _PS3 (Power State 3)
7.2.5 PSC (Power State CUITENt).......ooeeevererererereresesesesesssesesesssesesesssssesees
7.2.6 _PRO (Power Resources for DO)
7.2.7 _PR1 (Power Resources for D1)
7.2.8 _PR2 (Power ReSoUrces for D2)cccveneenieenniennseesesseesseens
7.2.9 _PRW (Power Resources for Wake)
7.2.10 _PSW (POWEN SEALE WEKE)coevrirrerrierrieiriiesneiesnsseessessss s sssse s sess s sssesssssssssseas
7.2.11 _IRC (1IN RUSH CUITENL) ..ottt sesssesesesssssesessssssssesssssessssssssessesssssessssssssssessssssssesssssnss
7.2.12 S1ID (S1 DEVICE SEALE)cvevveiecretreeeierseee et se st ssse s sss s st ss st s st sss st sessssssesessassessssnssnses
7.2.13 _S2D (S2 DEVICE SEALE)cecveereeerrersiserreessesesseses st sssseesss s ssse bbbttt enas
7.2.14 S3D (S3 DEVICE SEALE)cvevieierieireeeieereses ettt ssessse s s st ss st ss s s s sss s st sssssssesessassessssnssases
7.2.15 _SAD (S4 DEVICE SEALE)cecveereerrerererseesrees ettt nes st

7.3 OEM-Supplied System-Level Control Methodscoceecnnerccnsersseseses s sessesssssesens

7.3.1_BFS (BACK FrOmM SIEED) ..ottt sttt
7.3.2_PTS (Prepare TO SIEED)cccveerreeerrereserseeiseetseses st sssssesss s ssse st eeas

Compag/I ntel/Micr osoft/Phoenix/T oshiba

7.3.3_GTS (GOING TO SIEED) .uevrereriereeerererseeeresesseisesessssssesesssssesessssssssssssssessssssssessesssssessssssssesessssssessesssssnses
7.3.4 SYSLEM _SK SLALES ...ttt ettt bbbt s s st s e nnaetas
7.3.5_ WAK (SYStEM WaKE)cecvrreeereerereereeerersesesessssesssssssssasssssssesesssnennes
8 PROCESSOR CONTROLttiitiriiriireeiseieireisestisessisesse s s bbbttt sssesaes
8.1 PrOCESSOI POWELN SEALES.......ccuiuiueiiirieieitirieeeie et
8.1.1 Processor POWES SEAEE COc.cuvureeuerrereeeereeresisseesesessssssesessse st ssssessss s ssssesssesssssassesssnes
8.1.2 Processor POWES SEALE CL........c.cciiirieieieieieieieieie ettt enes
8.1.3 ProCessor POWES SLALE C2........c.ccuiueieirieieieieirie ettt bbbt bbbt
8.1.4 Process0or POWES SEALE C3.........curuieeeerireeieieireneitie e esesessse bbbt es s teses
8.1.5 Additional ProCESSOr POWES SEALESccovucurererieceeirereeieereresee et esessssssesessssss s ssssessssssssnsassesnen
ST LU T o = Tox =T
8.3 Declaring a ProCessor ODJECL ...t
8.3.1 _PTC (Processor Throttling CONLIOL)ccvireirerirrerereseessessesisesessssssesessssssssesessssssssesssssssssssssesnes
8.3.2 _CST (€ SEBLES).....cuueeusereerereereretsesesessesesseseseeseseeseseessssessbesss b sesessesessessssessssssessssessbassebssessssesastassstasasssans
8.3.3 Processor Performance CONLIOL ...t ssssssesessssss s ssesesssssesessassenen
OWAKING AND SLEEPING ..ottt sttt bbbt
0.1 SIEEPING SLALESvueeirtertreeer et
O.1.1 S1 SIEEPING SEALE....ceeveeeereeirericec ettt s s s e st e s s s e sn s s e e s st es s s sesesnanansnsaen
9.1.2 S2 SIEEPING SLALE.....cucueueiereieieieree ettt bttt bbb st bbb bbb e s bbb bbbt st et nenne
9.1.3 S3 SIEEPING SEALE.......cereeeeeereet sttt es s
9.1.4 SA SIEEPING SEALE......cveececeetrrece et b bbb s ettt n e a et n e aeten s
9.1.5 S5 SOft OFff SEALE ...eveeerreeireerereereseireseresese et sess s s sssss et snssessssessssssessnsessnsesnssesnssssnsssnnns
9.1.6 Transitioning from the Working to the Sleeping State
9.1.7 Transitioning from the Working to the Soft Off State............cccoverrenenenneneeeeeseeeeeens
9.2 Flushing Caches
O.3 I NITTAIIZALTON ..ottt bbb bbbt bbbttt
9.3.1 Placing the System iN ACPI MOUE........c..ccieieeieeeiee st ssseseaes
9.3.2 BIOS Initialization of Memory
0.3.3 OS LOBTING ...oucuvrieerieeestinisersese e sese st es bbb
9.3.4 EXItING ACPI IMOUE.......cccireriiecieirinssisesessss e tse st sesess s ssssss s e ssss s s s ssssssssssessssssssesssssnssssessssssssesnen
10 ACPI-SPECIFIC DEVICE OBJECTS
10.1_SI SYSLEM INOICALON S...euviuieeaireerseer ettt ese st
10.1.1 _SST (SYSLEM SEALUS)....coeveeererriincieiesseissessssesss s sssstesssssssesssssssessssssssesesssssessssssssesessssssssesssnssessssnses
10.1.2 _MSG (Message)
O 2T 1 = Y I L=V ot OO
10.3 CoNtrol Method Lid DEVICE.......ccrriererirecieirisertisisisesis ettt bbb bbb
FO.3.1 LD ottt e bbb
10.4 Control Method Power and Sleep BUtton DEVICES.........cccceviccnenese et
10.5 Embedded Controller DEVICE ..ottt ettt ssas s sssnsessens
10.6 FBN DEVICE....coeieeuceriieireieintie ettt s b bbbttt et
10.7 GENENIC I SA BUSDEVICE......uiieeererecesirer ettt bbbt bbbttt
10.8 I DE CONtIOHEr DEVICE......ceceieeeetreeiriei ettt bbbttt
10.8.1 _GTF (GEE TASK FIlE) ..eueeuiereucereerireee ettt sttt sttt sttt
10.8.2 _GTM (Get TiMiNG MOUE)cucriuerreeeirireireereressesesess st

Compag/I ntel/Microsoft/Phoenix/T oshiba

10.8.3 _STM (St TiMING MOUE).........oureeererirreeeriresesiresessssesesessssssesesssssssesssssssssssssssssssssssesssssnssssesssssssssssnses
10.9 Floppy Controller DEVICE ODJECLS......co ettt
10.9.1 _FDE (Floppy Disk ENUMEIALE).........cereurrrerrereereeeriseereseenseeenseenns
10.9.2 _FDI (Floppy Disk INfOrMELioN)........cccccrurieeeiririscisieiressstssesss e sessssesssssssessssssssesssssssssssssssssessssssees
10.9.3_FDM (Floppy Disk Drive Mode)
10.10 GPE BIOCK DEVICE.....cecuieeetieieirieiseei sttt s ses bbbttt
10.10.1 Matching Control Methods for General-Purpose Events in a GPE Block Device................... 250
0 0 I oo [T = =Y o TP 250
10.12 MEMOIY DEVICES.....cocueireiectetiiiesiets ettt as s as bbbttt s st b s s bt s s an bt 252
10.12.1 AAAreSS DECOAING.....vurveurererrrreeereserese s ssessesessessssesss s sss e s et eeas 252
10.12.2 EXaMPlEe: MEMOIY DEVICEvvvcirirececiriseses st tsesssasasesss s ssssssssasssssssss st sssssssessssssssssnnes 252
11 POWER SOURCE DEVICES......ooririeirieirte s esessessteesasess s tsess s sssssssssssesssssssessssssssssssssssssssesssesanes 253
11.1 Smart Battery SUDSYSIEIMS ...ttt snsnsessens 253
11.1.1 ACPI Smart Battery Status Change Notification REQUIrEMENLS..........ccccevevecrernnvenseseseseeseerenns 255
11.1.2 Smart Battery OBJECES ...c.ovvririreerireeenrie e ssesessssessssessssesssssssssssessssssssssssssssssssssssssssssssssssessssesnssesssseees 257
11.1.3 Smart Battery Subsystem Control MethOds...........ccceerericeiniseseseses s sessesees 258
11.2 CoONtrol MEthOO BaltEr i€S.......cciueeeererererirecie ettt sttt 260
11.2.1 BATEIY BEVENLS ...ocvieiiiccce s s s 260
11.2.2 Battery Control MELNOUS........cccociiiriienccse s snsn s 261
11.3 AC Adapters and POWer SOUrCE ODJECES ..ot enaens 265
11.3.1 PSR (POWEE SOUICE)cucvreiueretierisssetesssssessssssssstesssssssessssssssssssssssessssssssesessssssessssssssesssssnssssesssnssessssnses 265
11.3.2 PCL (POWEr CONSUMEY LiSE) ..o euireeereeerrererreenereeseeesesssessssesesssse e ssss e sessessssssssessssnens 265
11.4 Example: POWer SOUrCE NAME SPACE.......ccccvirrereresesresesssssessesssessssssssessens 266
12 THERMAL MANAGEMENT
12.1 Thermal Controlccovevreeeneeeeneeennees
12.1.1 Active, Passive, and Critical Policies
12.1.2 Dynamically Changing Cooling TEMPErEIUIESocveeerieernererireeerseesseesseessesessessesssessssessseens 268
12.1.3 Detecting Temperature Changes
12. 1.4 ACHVE COOIING wecvrieerieririiristiressieee e sese s st
12.1.5 PaSSIVE COOIING ..c.cururirerererisieirerisseesssesssesesessssssssessssssssessssssssesssssessssssssessssssssssssssssessssesssnsessssssesssssnnes
12.1.6 Critical Shutdown
12.2 COO0IING PreEfer NCES.ce ettt bbb
12.2.1 Evaluating Thermal DEVICE LiStS......cccucrriicieiicsieiresssissesss e ssssssssessssssssessssssssssssssssssssnnes 273
12.3 Thermal ODJECES......cvirerrecireict et
12.3.1 ACx (Active Cooling)
12.3.2 ALK (ACHVE LISE) cieeiereeericereneieeestreas et seas ettt sttt sttt
12.3.3 CRT (CritiCal TEMPEIBIUIE)ovveeerereeeeerereseeiresessssesasessssssssesssssssssssssssssssssssssssssssessssenssssesssssssssssnses 275
12.3.4 HOT (HOt TEMPEIBLUIE)c.cvcvveerieteieeietessesas e ssstesssssssssssssss e ssss st essassessssssssesessssssssesssassesssssnnes 275
12.3.5 PSL (PASSIVE LiSt)...vererererrerersireesireseinessessssessssessssessesessesesssssssssssesssessssssnssssnssssssssssssssssssssessssesnssesnssnees 275
12.3.6 PSV (PASSIVE)ceuiuiriereriirirtiressiseasisea st seas bbb bbbttt 276
12.3.7 SCP (Set COO0liNG POIICY) ..vvuireeereeerieeeiereseesesessesssesssessssses s ssssssssseses 276
12.3.8 TCL (Thermal CONSEANE L)cvvueureeerrieerreeeireeseseesesesees et ssss e ssb s eeas 276
12.3.9 TC2 (Thermal CONSLANE 2)cuovurureurireueireerireeseseesessesesesessesessssesessesesssss st ess st seass et sesessssesssssssssncas 276
12.3.10 TMP (TEMPEIGLUIE).....coevureeurereeerreserresessesessessesessessssessssesssssssssss e st s s s s s e s ensssenassenas 277

Compag/I ntel/Micr osoft/Phoenix/T oshiba

Xi

12.3.11 TSP (Thermal Sampling Period).......ccccvrirerirniririrrerssessesssissesssesesesssssssessssssssssessssssssssssssssssnees
12.3.12 TZD (Thermal ZONE DEVICES)ccvueeerririeeeteisesistetsesssesssssssss e ssssssssssssssssessssssssessssssssssessssssesssssnses
12.3.13 TZP (Thermal Zone POIliNg)ccvuverrerrenerrneereneerieneeenseeensiens
12.4 Thermal Zone Object REQUITEMENES........ccccvvircieireccererse sttt
125 Thermal Zone EXAMPIES ...ttt es et
12.5.1 Example: The BasiC ThErMal ZONE ...t ssessssse s sesssssssssssssssenses
12.5.2 Example: MUItiple-Speed FanS........cccciirrieeiresssssssss s ssaes
13 ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATION ...ccoovvrrerereeseneeeesseeessenenees
13.1 Embedded Controller Interface DESCIiPLiONccccceveecerrece et
13.2 Embedded Controller Register DESCriPLIONScciureerreeerneeeereneree e essssensens
13.2.1 Embedded Controller Status, EC_SC (R).....cccevurrrerrerrserrersesiesesssssesesssssssessssssssssssssssssssssssssssnses
13.2.2 Embedded Controller Command, EC_SC (W)coccureneermiemiremsreeereerseessesesseeesssessssessssssssssens
13.2.3 Embedded Controller Data, EC_DATA (R/IW) ...ovrrerrreceerisesessesesssesesessesssssesssssessssssssssesees
13.3 Embedded Controller COMMANd SEL.......coeuririreiineireeires et esaes
13.3.1 Read Embedded Controller, RD_EC (0X80)ccverreuernieeeriiemneeemssseesseessesessesessesessessssssessssessssnens
13.3.2 Write Embedded Controller, WR_EC (OX8L)ccccovrrremrereeiererssieessssssessesssssesssssssssssssssessssesees
13.3.3 Burst Enable Embedded Controller, BE_EC (0X82)ccoueutrerirrnernenerreerneeneesneeemsesesseesseens
13.3.4 Burst Disable Embedded Controller, BD_EC (OX83).....cccvvvereiririreeereresseenesessesssssessssssesssssssssenees
13.3.5 Query Embedded Controller, QR _EC (OX84)ccccvieerirrinsissssssssesssssssssssssssssssssssssnes
13.4 SMBus Host Controller Notification Header (Optional), OS_ SMB_EVT
13.5 Embedded Controller Fil MWAr €. s sess st st
L1368 INTEMTUPE MO ...t s
13.6.1 EVENt INLEITUPL MOTEL ...ttt a s
13.6.2 Command INLErTUPE MOEL........c.coiierieeiireresrere e
13.7 Embedded Controller Interfacing Algorithmscccoeeevvevvcennnen.
13.8 Embedded Controller Description Information
13.9 SMBus Host Controller Interface via Embedded Controller
13.9.1 Register Description
13.9.2 Protocol Description
13.9.3 SMBUS REQISLEN SEL.....cocvreeeeeiriricreeriresseesesessssesessssssssessssssesessssss s sesssssssssssssssesssssessssesssnsessssssssssssnses
13.10 SMBUSDEVICES ...ttt
13.10.1 SMBUS DeViCe ACCESS RESLIICLIONS........cveeereririrerirereeeresesssis s esesesss e sessee e sesssssesessssssesenees
13.10.2 SMBus Device Command ACCESS RESLITCLION..........occuriererierireieieirenei e
13.11 Defining an Embedded Controller Devicein ACPI Namespace
13.11.1 Example: EC DEfinition ASL COUE.........ccveurireiririreestsesessssissessssssssessssssssesssssesssssssssssssssssssssssnses
13.12 Definingan EC SMBusHost Controller in ACPlI NameSPaCe.......covvveveveveresesevesesesesesesesesesens
13.12.1 Example: EC SMBuUs Host Controller ASL-COE.......cccvuverrinirenerereseneseseeesesessssesesssssssesenees
14 ACPI SYSTEM MANAGEMENT BUSINTERFACE SPECIFICATION...cconnnrireeeireeeereieens
LA, 1 SMBUS OVEN VIBW....cuetrieeertetresesieesesesssesesessae s ssssssssesssssessessssessssesssssesssssssssssenssesessessssessessssessesssnsessens 305
14.1.1 SMBUS SIAVE AQUIESSES.......cueeeiree ittt sttt 305
14.1.2 SMBUS PIOLOCOIS. ... ettt bbb bbbttt ae e 305
14.1.3 SMBUS SEALUS COUESeeuereeieeireie it sessess ettt 306
14.1.4 SMBUS COMMENT VEIUES ..ottt ase sttt 306
14.2 Declaring SMBUS HOSt CONtroller ODJECLS ..o s 307

Compag/I ntel/Microsoft/Phoenix/T oshiba

Xii

14.3 DEClaring SMBUS DEVICES........cccveurirererererisiesisessssasesessssssssessssssssesssssssssssssssssssssssessssssssssessssssssesssssssessens
14.4 Declaring SMBUSOPEratian REJIONScouiicieireceereseie ettt sssssssessssssssesenns
14.5 Declaring SMBUS FI@ldS ...
14.6 Declaring an SMBUSData BUTEr ..ottt
14.7 USING the SMBUS PIOLOCOIS ...ttt ese s st saes
14.7.1 Read/Write QUICK (SMBQUICK)cccuiireeeririseeiriresesistsesssssssesssss s ssenses
14.7.2 Send/Receive Byte (SMBSENARECEIVE)cccirerrrerrsessse s s ssssssssssssssssssnes
14.7.3 Read/WTit€ BYE (SMBBYLE)......cvucirieeereerirrerersesesesesesesssssssssssessssssssssssssessssssssssssssssssssssssssesssssssssesns
14.7.4 Read/Write Word (SMBWOI)c.ccuceeeiiceciesecse et sse et se st sss s sesssssessssnes
14.7.5 Read/Write BIOCK (SMBBIOCK)cvvueurireiiereriereeeressseseisee e ssssssssssssssssssssssssens
14.7.6 Process Call (SMBPIrOCESSCA)ccvuvicriririeinirincsisiressstsssesss s sssssssssssessssssssssssssssssssssssssssnses
14.7.7 Block Write-Read Block Process Call (SMBBIlockProcessCall)
15 SYSTEM ADDRESS MAP INTERFACES ...ttt saes
15.1 INT 15H, E820H - Query System AddreSS M apccccveecrennesienenese st ssssssssssssssessssssssesens
15.2 E820 AsSUMPLioNS @and LiMITALIONScoveuieeeiereiieerinessisese e sss s
15.3 EFI GetMemoryMap() BOOt ServiceS FUNCLIONccueiieeccrcceeesese et
15.4 EFl Assumptions and LimitationsSccoccerinieseee s sssessssssesessens
15.5 EXaMPIE AQUINESS M APcuiveiiiirieirisesieesesesie s sssesss s ssessss e ssssssssssssssssssssesesssssssssssssssssesssnssnsesens
15.6 Example: Operating SYStemM USAQE.......cvvuveiirerererireseseiesesesssesesssssesesssssssessns
16 ACPI SOURCE LANGUAGE (ASL) REFERENCE.......cocotimneneersesnsesessesessesesssssssesssssssssssssssssssnnes
16.1 ASL LangUage Gl aMIMATcovverereresereseresesesesesesesesesesssssesesssssesessnsssssssnses
16.1.1 ASL Gramimar NOBLION.......c.cvuriieeererereeeerireeesisesessssesesesessssesesssee e sessssssessssssssesesssessssesssssessensssssssenees
L16.1.2 ASL INGIMIES ...ttt
16.1.3 ASL Language and TEIMIS......cccccciiemrieesssnsssssssnes
16.2 Full ASL Reference
L16.2.1 ASL INBITIES.......ciuieirieneieerertieie ettt a bbb bbbt b bbb ettt s s
16.2.2 ASL DBEA TYPES...cecuiererrererreresseressesessssssssssssssssssssssessssessesssssssssssssesssessssssnssssnsssssssssssssssssssessssesnssesnssases
16.2.3ASL Terms
16.2.4 ASL Macros for Resource Descriptors
17 ACPI MACHINE LANGUAGE (AML) SPECIFICATION
17.1 Notation CONVENTIONSc.cureererereeieie et
17.2 AML Grammar DEfiNITION ..o sesss s sss et snsssesnens
17.2.1 Name ObjECS ENCOUINGccvrvirririririsieiriseses st sssstetsesssssssesss s sssssessssssssessssssssessssssssssessssssessssnees
17.2.2 Data ObjeCtS ENCOAING.......corverreecrreeerireirereesersesessesesresesnesessssessssennns
17.2.3 Package Length ENCOAING.........cccerurirrerresiessescistsssessssasssesss s sssssssessssssssssssssssssssssssssssesssssssssssnses
17.2.4 Term ObJECIS ENCOUINGcucvuiiieriiiessiiessssssssssssssssssssss s ssnes
17.2.5 Miscellaneous ObjECtS ENCOUINGuovueeririreeiririririeeressssesesesssesssessssssssessssssssessssssssssesssssssssssssssssnees
17.3 AML BYte Stream BYLE VAIUES ...ttt et
17.4 AML Encoding of Namesin the NamMESPACE ..o esssesaens
A DEVICE CLASSPM SPECIFICATIONS ...ttt sess s sess s sssss st
E N R O 1< T OOV 416
A2 DEVICE POWES SLALES.......ceriiereueireictrtietstie ettt e b bbbttt 416
A.2.1 BUSPOWEr MENAGEMENT ..ottt bsbe et enanens 417
A.2.2 Display POWEr MANAQEMENTccoiureirreerreeeireeesesee s ssssss et ssssesnssnes 417

Compag/I ntel/Micr osoft/Phoenix/T oshiba

A.2.3 PCMCIA/PCCARD/CardBus Power Management
A.2.4 PCl POWEr MANAGEMENTccoveuiiririeeriiisesisisesesesesesesssssesesssssesesssssssssssssessnssnns
A.2.5 USB Power Managementcooeeerereeerrmreseersenenessssenesssessenensens
A 2.6 DEVICE ClBSSES.....eeueueriaeireieireie ettt eas s sea bbbttt bbb bbbttt
A.3 DEfAUIL DEVICE ClaSS... .ottt as bbb s s bbbt eae bttt ees
A.3.1 Default POWer State DEfiNitiONS........ccocureiureeireeeireieireire sttt seaees
A.3.2 Default Power Management POIICY ...t sssssssssssssssssssssssssnns
A.3.3 DEfaUIt WaEKE EVENLS.......cooreeeeeersrrie st esesessss et ss s ssss st sssssnssenssssnen
A.3.4 Minimum Power CapabilitiESccccvirerericeirisse sttt as s senaes
AL AUCIO DEVICE ClaSS....cicurerereeiririreicie sttt se st as s ssse et s s st s s st et se e snsessenassessesannsees
A4 1 POWer State DEfiNITIONS.......crieiieeetirieireet et bbb
A.4.2 Power Management POIICY ... ssses
AL43 WEKE EVENLS ..ottt s bbbt
A.4.4 Minimum Power CapabilitiESccccmviireriricerisese ettt as s senaen
A5 COM POrt DEVICE ClASS....ciiireriieririrereeeriressesissesesseesesessssssessssssssssessssssssessssssssesssssessssssssessssssssessssssssess
A.5.1 Power State DEfiNITIONS.......cvirerieeiiirieireeiree ettt
A.5.2 Power Management POIICY ...t ssses
AL5.3 WEKE EVENLS ...ttt ettt
A.5.4 Minimum Power Capabiliti€Scccoviveriirrsririss sttt ss s e
AL DiSPlay DEVICE ClASS.....criirriuiirieerrieeitieses ettt ees e e bbb
A.6.1 Power State DEfiNITIONS.......cviueeiereriricireeiree ettt bbbt
A.6.2 Power Management POIICY ..ot sssses
ALB.3 WEKE EVENLS ..ottt ettt
A.6.4 Minimum POWer Capabilitiescooeiriiriecrieeree e eses
A7 INPUL DEVICE ClaSS....cceererececierisssieresesssesesesste s sssssssssesesssssesnens
A.7.1 Power State Definitions
A.7.2 Power Management POIICY ..o ssees
A.T7.3 WEKE EVENLS ...ttt sess e
A.7.4 Minimum Power Capabilities
A8 MOUEM DEVICE CIASS.....coriiereuireieireieirtie ettt bbb bbbttt
A.8.1 Technology OVEIVIEWccceeviverieiniririeisiseeisisiseses s ssssssesseseens
A.8.2 Power State Definitions
A.8.3 Power ManagemMeNt POICY ..ottt sss s sss st ssssssssessassssesaen
A 8.4 WaKE EVENLS ...ttt
A.8.5 Minimum Power Capabilities
A9 NELWOI K DEVICE ClASS.....cuiiieciririreieieireeeie sttt et bbb b et se bt et ees
A.9.1 Power State DEfINITIONS.......crieeieeitiriireet et
A.9.2 Power ManagemMeNt POIICY ..ottt ss s ss st ssssssssessassssesaes
AL9.3 WEKE EVENES ...ttt s sttt s et et n et ne e nnsntesnen
A.9.4 Minimum Power CapabilitiESccccvviirereicerisese sttt sss s ssesesaes
A.10 PC Card Controller DEVICE ClasS.....ccciriririiieirireeieisenesis s isesesss st ssssssssesssssssessssses
A.10.1 Power State DEfiNitiONS........ccciueeiieiiireeiree ettt eaees
A.10.2 Power ManagemeENnt POIICYcooeviiiiisisisesisese st sess s ss s ssss s s ssssssssssssssssnsnns
A.L0.3 WEKE EVENES....cueceeeirieereeereeessssest et sess s ssess s snsse st sessssssssssssssssessssessssessssssssssesesnsesnsessnsees

Compag/I ntel/Microsoft/Phoenix/T oshiba

Xiv

A.10.4 Minimum POwer Capabiliti€S......ccccvrrrrririeririsesesessssesssses s esessssssesssssssesessssessesssssssssssssseses
A 1L StOrage DEVICE ClASS.....coiicieiiececieisiee et b e st a ettt as b s s anteee
A.11.1 Power State Definitions........cccovrvrerereneeerreneecsseseseseseseesenesennens
A.11.2 Power ManagemeNt POIICYcccocerrieereicie et sesesse st sssssssssesssss st sssssssssssssssesesaes
ALLL3 WEKE EVENLS.....oiiieieeceeireceie ettt bbb bbbtk b bbb s s
A.11.4 Minimum Power CapabilitiES......ccocvirererisierisisieisesesss s sessssssessssssssssessssessessssssssssssssesnes

B ACPI EXTENSIONS FOR DISPLAY ADAPTERS. ...ttt sessese e ssess e sssesaees
2300 O I 01 T LT f o o T
B2 DEFINITIONS ..ottt bbb bbb bbbttt
B.3 ACPI NAMESPACE.......coimeiecreirerieieereeereereesse s s s
B.4 Display-SpeCifiC MELNOUScccceirereccrrise sttt a ettt sens
B.4.1 _DOS (Enable/Disable Output SWItChING)oouereeerieeenieerniiemeierereeersee e ssesesseesesssssssssssseens
B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter)
B.4.3 ROM (GEt ROM DEL)ccurureeiriuireueireeeiseusessesessesessssessssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssseas
B.4.4 _GPD (GEt POST DEVICE)....viveurrrereirrerermeressesessesesesessssssssssssssssessssssssssssssssssssssssssssssssssssessssessssesssseses
B.4.5 _SPD (Set POST DEVICE) ...ccvuriieeieirisietrisesissssesssstssssssssssssssssse s ssssssssssssssessssssssssssssnssssessssssesssssnses
B.4.6 _VPO (VideO POST OPLIONS)......cuerrieerrirerirrirerressresssisssssesssssesssesssesessssessssessssessssssssssssssssssesssseees
B.5 Output Device-SPECITiC MEINOUScccvvececirrcccetrece st
B.5.1 _ADR (Returnthe Unique ID for thiSDEVICE)......cccuuvrrieieireiscsessseesssssssssssssssssssenes
B.5.2 _BCL (Query List of Brightness Control Levels SUPPOIted).......ovrerrercrreemneeeneeeeneeeeseeesenens
B.5.3 _BCM (Set the BrightNESS LEVEL)ccccuviicecercctctreees sttt s ssaes
B.5.4 _DDC (Return the EDID fOr thiS DEVICE)ccovuureeericerieerniiereieeereses e sesessssssssessssessseens
B.5.5 _DCS (Return the Status of OULPUL DEVICE)ccceuvereeerrerireiniresessieisesessessessssssssssessssssssssssssssenses
B.5.6 _DGS (QUErY GraphiCs SLALE)........ccvuurrrererrirririrrierreesreissneee e ssssssssssssseees
B.5.7 _DSS- Device Set State
B.6 NOLEON StALE CHANGES......cciicicietrieete ettt bbbt s b

Compag/I ntel/Micr osoft/Phoenix/T oshiba

Introduction 1

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was devel oped to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration and
power management of both devices and entire systems. ACPI isthe key element in Operating System-
directed configuration and Power Management (OSPM).

ACPI evolves the existing collection of power management BIOS code, Advanced Power Management
(APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor Specification (MPS)
tables and so on into awell -defined power management and configuration interface specification. ACPI
provides the means for an orderly transition from existing (Ilegacy) hardware to ACPI hardware, and it
allows for both ACPI and legacy mechanisms to exist in a single machine and to be used asneeded.

Further, new system architectures are being built that stretch the limits of current Plug and Play interfaces.
ACPI evolves the existing motherboard configuration interfaces to support these advanced architecturesin
amore robust, and potentially more efficient manner.

Theinterfaces and OSPM concepts defined within this specification are suitable to all classes of computers
including (but not limited to) desktop, mobile, workstation, and server machines. From a power
management perspective, OSPM/ACPI promotes the concept that systems should conserve energy by
transitioning unused devicesinto lower power statesincluding placing the entire system in alowpower
state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI isthe key element in implementing OSPM. ACPI -defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI -compatible (and, thus, OSPM -compatible)
implementations.

The principal goals of ACPI and OSPM are to:
1. Enableall computer systems to implement motherboard configuration and power management
functions, using appropriate cost/function tradeoffs.

Computer systemsinclude (but are not limited to) desktop, mobile, workstation, and server
machines.
Machine implementers have the freedom to i mplement a wide range of solutions, from the very
simple to the very aggressive, while still maintaining full OS support.
Wide implementation of power management will make it practical and compelling for applications
to support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.

- Power management policies too complicated to implement in aROM BIOS can be implemented
and supported in the OS, allowing inexpensive power managed hardware to support very elaborate
power management policies.

Gathering power management information from users, applications, and the hardware together
into the OS will enable better power management decisions and execution.

Unification of power management algorithmsin the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

Compag/I ntel/Microsoft/Phoenix/T oshiba

2 Advanced Configuration and Power Interface Specification

3. Facilitate and accelerate industry -wide implementation of power management.
OSPM and ACPI will reduce the amount of redundant investment in power management
throughout the industry, as thisinvestment and function will be gathered into the OS. This will
alow industry participants to focus their efforts and investments on innovation rather than simple
parity.
The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to
gain the benefits of OS improvements and innovations.

4. Create arobust interface for configuring motherboard devices.
Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the
OS and the hardware to achieve the principal goals set forth above.

Minimal support for power management inhibits application vendors from supporting or exploiting it.
Moving power management functionality into the OS makes it available on every machine on
which the OSisinstalled. Thelevel of functionality (power savings, and so on) varies from
machine to machine, but users and applications will see the same power interfaces and semantics
on all OSPM machines.

Thiswill enable application vendors to invest in adding power management functionality to their
products.

Legacy power management algorithms were restricted by the information available to the BIOS that

implemented them. Thislimited the functionality that could be implemented.

- Centralizing power management information and directives from the user, applications, and
hardware in the OS allows the implementation of more powerful functionality. For example, an
OS can have apolicy of dividing /O operationsinto normal and lazy. Lazy 1/O operations (such
as aword processor saving filesin the background) would be gathered up into clumps and done
only when therequired 1/0O device is powered up for some other reason. A non-lazy /0 request
made when the required device was powered down would cause the device to be powered up
immediately, the non-lazy 1/0 request to be carried out, and any pending lazy 1/0 operationsto be
done. Such a policy requires knowing when /O devices are powered up, knowing which
application I/O requests are lazy, and being able to assure that such lazy I/O operations do not
starve.

Appliance functions, such as answering machines, require globally coherent power decisions. For
example, atelephone-answering application could call the OS and assert, “| am waiting for
incoming phone calls; any sleep state the system enters must allow me to wake and answer the
telephonein 1 second.” Then, when the user presses the “off” button, the system would pick the
deepest sleep state consistent with the needs of the phone answering service.

B1OS code has become very complex to deal with power management. It is difficult to make work

with an OS and islimited to static configurations of the hardware.

Thereis much less state information for the BIOS to retain and manage (because the OS manages
it).

Power management algorithms are unified in the OS, yielding much better integration between the
OS and the hardware.

Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a mobile
system docks, the OS can deal with dynamic machine configurations.

Because the BIOS has fewer functions and they are simpler, it is much easier (and therefore
cheaper) to implement and support.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Introduction 3

The existing structure of the PC platform constrains OS and hardware designs.
Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the
hardware from the OS.
ACPI is by nature more portable across operating systems and processors. ACPI control methods
alow for very flexible implementations of particular features.

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanismsto exist in a single machine and be used as needed.

Tablel-1 Hardware Typevs. OS Type Interaction

Har dwar e\OS

Legacy OS

OSPM/ACPI OS

Legacy hardware

A legacy OS on legacy hardware
doeswhat it alwaysdid.

If the OS lacks legacy support, legacy
support is completely contained within the
hardware functions.

Legacy and ACPI hardware
support in machine

It worksjust like a legacy OS on
legacy hardware.

During boot, the OS tells the hardware to
switch from legacy to OSPM/ACPI mode
and from then on, the system has full
OSPM/ACPI support.

ACPI -only hardware

Thereis no power management.

Thereisfull OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they seefit. Given the existence of the ACPI

speC|f|cat|on two general implementation strategies are possible:

An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM software
and implement the hardware part of the ACPI specification (for agiven platform) in one of many

possible ways.

An OEM can develop adriver and hardware that are not ACPI-compatible. This strategy opens up
even more hardware implementation possibilities. However, OEMs who implement hardware that is
OSPM -compatible but not ACPI-compatible will bear the cost of developing, testing, and distributing
driversfor their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that isa
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep
and one for putting the machinein soft off.

This gives the OEM two different ways to implement machines: A one-button model or atwo-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine off or resets it without OS
consent is also needed to deal with various rare, but problematic, situations.

Compag/I ntel/Microsoft/Phoenix/T oshiba

4 Advanced Configuration and Power Interface Specification

1.6 ACPI Specification and the Structure Of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate to
each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than anativeinstruction APl).

ACPI isnot a software specification; it isnot a hardware specification, although it addresses both software
and hardware and how they must behave. ACPI is, instead, an interface specification comprised of both
software and hardware elements.

o oS
Applications Dependent
Application
APIs

Kernel OSPM System Code

OS Specific
Device ACPI Driver/ technologies,

Driver AML Interpreter interfaces, and code.
))))))) T Tos '
A(.:Pl ACPI Table Independent
. Register Interface technologies,
Interface interfaces, ’
ACPI BIOS code, and
o ' Interface hardware.
Existing .
industry
standard
register B ACPI Registers ACPI BIOS ACPI Tables
interfaces to: '
CMOS, PIC,
PITs, ... -

- ACPI Spec Covers this area.
- OS specific technology, not part of ACPI.
- Hardware/Platform specific technology, not part of ACPI.

Figurel-1 OSPM/ACPI Global System

Compag/I ntel/Microsoft/Phoenix/Toshiba

Introduction 5

There are three run-time components to ACPI:
ACPI System Description Tables. Describe the interfaces to the hardware. Some descriptions limit
what can be built (for example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be built in
arbitrary ways and can describe arbitrary operation sequences needed to make the hardware function.
ACPI Tables containing “ Definition Blocks” can make use of a pseudocode type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter that
executes procedures encoded in the pseudocode language and stored in the ACPI tables containing
“Definition Blocks.” The pseudocode language, known as ACPI Machine Language (AML), isa
compact, tokenized, abstract type of machine language.
ACPI Registers. The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.
ACPI System Firmware. Refersto the portion of the firmware that is compatible with the ACPI
specifications. Typically, thisisthe code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely, compared to a
legacy BIOS. The ACPI Description Tables are also provided by the ACPI System Firmware.

1.7 OS and Platform Compliance

The ACPI 2.0 specification contains only interface specifications. ACPI 2.0 does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference A CPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces viathe platform hardware and ACPI -
defined software interfaces and system description tables viathe ACPI system firmware. Specific ACPI -
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, amobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It isbeyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI -defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI -defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

Compag/I ntel/Microsoft/Phoenix/T oshiba

6 Advanced Configuration and Power Interface Specification

1.7.1.1 Recommended Features and Interface Descriptions for Design
Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI 2.0 specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category namesto be used to describe the features,
concepts, and interfaces defined by ACPI 2.0.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces specified
below are generally spread throughout the ACPI specification. The ACPI specification defines:

System address map reporting interfaces (Section 15)

ACPI System Description Tables (Section 5.2):
Root System Description Pointer (RSDP)
System Description Table Header
Root System Description Table (RSDT)
Fixed ACPI Description Table (FADT)
Firmware ACPI Control Structure (FACS
Differentiated System Description Table (DSDT)
Secondary System Description Table (SSDT)
Multiple APIC Description Table (MADT)
Smart Battery Table (SBST)

Extended System Description Table (XSDT)
Embedded Controller Boot Resources Table

ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.8):
Power management timer control/status
Power or sleep button with S5 override (also possible in generic space)
Real time clock wakeup alarm control/status
SCI /SMI routing control/status for Power Management and Gener al-pur pose events
System power state controls (sl eeping/wake control) (Section 9)
Processor power state control (c states) (Section 8)
Processor throttling control/status (Section 8)
Processor performance state control/status (Section 8)
General-purpose event control/status
Global Lock control/status
System Reset control (Section 4.7.3.6)
Embedded Controller control/status (Section 13)
SMBus Host Controller (HC) control/status (Section 14)
Smart Battery Subsystem (Section 11)

Compag/I ntel/Microsoft/Phoenix/Toshiba

Introduction

ACPI-defined Generic Register Interfaces and object definitionsin the ACPI Namespace (Section 4.2,
Section 5.6.5):
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 12)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
Systemindicators (Section 10.1)
Devices and device controls (Section 10):
Processor (Section 8)
Control Method Battery (Section 11)
Smart Battery Subsystem (Section 11)
MobileLid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 13)
Fan
Generic Bus Bridge
IDE Controller
Floppy Controller
GPE Block
Module
Memory
Global Lock related interfaces

ACPI Event programming model (Section 5.6)
ACPI-defined System BIOS Responsibilities (Section 9)

ACPI-defined State Definitions (Section 2):
Global system power states (G-states, 0, Sb)
System sleeping states (S-states S1-4) (Section 9)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following provides an example of how a client platform design guide, whose goal isto require robust
configuration and power management for the system class, could use the recommended terminology to
define ACPI requirements.

Important: Thisexampleis provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI 2.0 defined
system features, concepts, and interfaces, along with their associated event models:

System address map reporting interfaces
ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:
Power management timer control/status
Power or sleep button with S5 override (may also be implemented in generic register space)
Real time clock wakeup alarm control/status
General-purpose event control/status
SCI /SMI routing control/status for Power Management and General-pur pose events
(control required only if system supports legacy mode)
System power state controls (sleeping/wake control)

Compag/I ntel/Microsoft/Phoenix/T oshiba

8 Advanced Configuration and Power Interface Specification

Processor power state control (for C1)
Global Lock control/status (if Global Lock interfaces are required by the system)

ACPI-defined Generic Register Interfaces and object definitionsin the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (ACPI 2.0 Section 6)
System power state control (ACPI 2.0 Section 7.3)
Devices and device controls:

Processor

Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register space)
Global Lock related interfaces when a logical register in the hardware is shared between OSand
firmware environments

ACPI Event programming model (ACPI 2.0 Section 5.6)
ACPI-defined System BIOS Responsibilities (ACPI 2.0 Section 9)

ACPI-defined State Definitions:
System sleeping states (At least one system sleeping state, S1-$4, must be implemented)
Device power states (D-states must be implemented in accordance with device class specifications)
Processor power states (All processors must support the C1 Power State)

The following provides an example of how a design guide for systems that execute multiple OS instances,
whose goal isto require robust configuration and continuous availability for the system class, could use the
recommended terminology to define ACPI related requirements.

Important: Thisexampleis provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI 2.0 defined
system features and interfaces, along with their associated event models:

System address map reporting interfaces
ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:
Power management timer control/status
General-purpose event control/status
SCI /SMI routing control/status for Power Management and Gener al-pur pose events
(control required only if system supports legacy mode)
System power state controls (sleeping/wake control)
Processor power state control (for C1)
Global Lock control/status (if Global Lock interfaces are required by the system)

ACPI-defined Generic Register Interfaces and object definitionsin the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (ACPI 2.0 Section 6)
System power state control (ACPI 2.0 Section 7.3)
Systemindicators
Devices and device controls:
Processor
Global Lock related interfaces when a logical register in the hardware is shared between OSand
firmware environments

ACPI Event programming model (ACPI 2.0 Section 5.6)
ACPI-defined System BIOS Responsihilities (ACPI 2.0 Section 9)

ACPI-defined State Definitions:
Processor power states (All processors must support the C1 Power State)

Compag/I ntel/Microsoft/Phoenix/Toshiba

Introduction 9

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with their
associated event modelsappropriate to the system platform class upon which the OS executes. Thisisthe
implementation of OSPM. The following outlines the OS enhancements and el ements necessary to support
all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needsto be
modified to:
- Use system address map reporting interfaces.

Find and consume the ACPI System Description Tables.

Interpret ACPI machine language (AML).

Enumerate and configure motherboard devices described in the ACPI Namespace.

Interface with the power management timer.

Interface with the real-time clock wake alarm.

Enter ACPI mode (on legacy hardware systems).

Implement device power management policy.

Implement power resource management.

Implement processor power statesin the scheduler idle handlers.

Control processor and device performance states.

Implement the ACPI thermal model.

Support the ACPI Event programming model including handling SCI interrupts, managing fixed

events, general-purpose events, embedded controller interrupts, and dynamic device support.

Support acquisition and release of the Global Lock.

Use the reset register to reset the system.

Provide APIsto influence power management policy.

Implement driver support for ACPI-defined devices.

Implement APIs supporting the system indicators.

Support all system states S1-S5.

Compag/I ntel/Microsoft/Phoenix/T oshiba

10 Advanced Configuration and Power Interface Specification

1.7.3 OS Requirements

The following list describes the minimum requirements for an OSPM/A CPI-compatible OS:

- Use system address map reporting interfaces to get the system address map on Intel Architecture (1A)
platforms:
INT 15H, E820H - Query System Address Map interface (see section 15, “ System Address Map

Interfaces”)

EFI GetMemoryMap() Boot Services Function (see section 15, “ System Address Map Interfaces”)
Find and consume the ACPI System Description Tables (see section 5, “ ACPI Software Programming
Model").
Implementation of an AML interpreter supporting all defined AML grammar elements (see section 17,
ACPI Machine Language Specification”).
Support for the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.
Enumerate and configure motherboard devices described in the ACPI Namespace.
Implement support for the following ACPI devices defined within this specification:
Embedded Controller Device (see section 13, “ACPlI Embedded Controller Interface Specification™)
GPE Block Device (see section 10.10, “GPE Block Device")
Module Device (see section 10.11, “Module Device”)
Implementation of the ACPI thermal model (see section 12, “ Thermal Management”).
Support acquisition and release of the Global Lock.
OS-directed power management support (device drivers are responsible for maintaining device context
as described by the Device Power Management Class Specifications described in Appendix A).

1.8 Target Audience

This specification isintended for the following users:
OEM s building hardware containing ACPI-compatible interfaces
Operating system and device driver developers
BIOS and ACPI system firmware devel opers
CPU and chip set vendors
Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

- Thefirst part of the specification (sections 1 through 3) introduces ACPI and provides an executive
overview.
The second part (sections 4 and 5) defines the ACPI hardware and software programming models.
Thethird part (sections 6 through 15) specifiesthe ACPI implementation details; this part of the
specification is primarily for developers.
The fourth part (sections 16 and 17) istechnical reference material; section 16 isthe ACPI Source
Language (ASL) reference, parts of which are referred to by most of the other sectionsin the
document.
Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Introduction 11

1.9.1 ACPIOverview

Thefirst three sections of the specification provide an executive overview of ACPI.
Section 1: Introduction. Discusses the purpose and goals of the specification, presents an overview of
the ACPI-compatible system architecture, specifies the minimum requirements for an ACPI -
compatible system, and provides referencesto related specifications.
Section 2: Definition of Terms. Defines the key terminology used in this specification. In particular,
the global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are
defined in this section, along with the device power state definitions: Off (D3), D2, D1, and Fully-On
(DO0). Device and processor performance states (PO, P1, ...Pn) are also discussed.
Section 3: Overview. Gives an overview of the ACPI specification in terms of the functional areas
covered by the specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal
management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, devel opers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and 5.
These sections are the heart of the ACPI specification. There are extensive cross-references between the
two sections.
Section 4: ACPI Hardwar e Specification. Defines a set of hardware interfaces that meet the goals of
this specification.
Section 5: ACPI Softwar e Programming Model. Defines a set of software interfaces that meet the
goals of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation detail s necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily for
developers.

- Section 6: Configuration. Defines the reserved Plug and Play objects used to configure and assign
resources to devices, and share resources and the reserved objects used to track device insertion and
removal. Also defines the format of ACPI-compatible resource descriptors.

Section 7: Power and Performance M anagement. Definesthe reserved device power-management
objects and the reserved-system power-management objects.

Section 8: Processor Control. Defines how the OS manages the processors' power consumption and
other controls while the system isin the working state.

Section 9: Waking and Sleeping. Defines in detail the transitions between system working and
sleeping states and their relationship to wake events. Refers to the reserved objects defined in sections
6, 7,and 8.

Section 10: ACPI-Specific Device Objects. Liststhe integrated devices that need support for some
device-specific ACPI controls, along with the device-specific ACPI controls that can be provided.
Most device objects are controlled through generic objects and control methods and have generic
device IDs; this section discusses the exceptions.

Section 11: Power Source Devices. Defines the reserved battery device and AC adapter objects.
Section 12: Thermal Management. Defines the reserved thermal management objects.

Section 13: ACPI Embedded Controller Interface Specification. Defines the interfaces between an
ACPI-compatible OS and an embedded controller.

Section 14: ACPI System Management Bus | nter face Specification. Defines the interfaces between
an ACPI -compatible OS and a System Management Bus (SMBus host controller.

Compag/I ntel/Microsoft/Phoenix/T oshiba

12 Advanced Configuration and Power Interface Specification

1.9.4 Technical Reference

The fourth part of the specification contains reference material for developers.
Section 15: System Address Map I nterfaces. Explains the special INT 15 call for usein
ISA/EISA/PCI bus-based systems and for EFI -defined GetMemoryMap() function. These calls supply
the OS with a clean memory map indicating address ranges that are reserved and ranges that are
available on the motherboard. Also describes memory devices.
Section 16: ACPI Source Language Reference. Defines the syntax of all the ASL statements that can
be used to write ACPI control methods, along with example syntax usage.
Section 17: ACPI Machine L anguage Specification. Defines the grammar of the language of the
ACPI virtual machine language. An ASL translator (compiler) outputs AML.
Appendix A: Device class specifications. Describes device-specific power management behavior on a
per device-class basis.
Appendix B: Video Extensions. Contains video device class-specific ACPI interfaces.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforns are the following,
available from http://www.microsoft.com/hwdev/specy:

Advanced Power Management (APM) BIOS Specification, Revision 1.2.

Plug and Play BIOS Specification, Version 1.0a

Intel Architecture specifications are available from http://devel oper.intel.com:

Intel 1A-64 Architecture Software Developer’s Manual, Volumes 1-4, Revision 1.0, Intel Corporation,
January 2000.

Intel |A-64 System Abstraction Layer Specification, Revision 2.9, Intel Corporation, July 2000.
Extensible Firmware Interface Specification, Version 0.91, July 1999.

Documentation and specifications for the Smart Battery System components and the SMBus are available
from http://www.sbs-forum.org:
- Smart Battery Charger Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.
Smart Battery Data Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.
Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.
Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.
System Management Bus Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Definition of Terms 13

2 Definition of Terms
This specification uses a particular set of terminology, defined in this section. This section has three parts:
General ACPI terms are defined and presented al phabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as awholeisin the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power | nterface (ACPI)
As defined in this document, ACPI is a method for describing hardware interfaces in terms abstract
enough to alow flexible and innovative hardware implementations and concrete enough to allow
shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware

Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace
A hierarchical tree structure in OS-controlled memory that contains named objects. These objects may
be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading and/or unloading definition blocks from
the ACPI Tablesthat residein the ACPI BIOS. All the information in the ACPI Namespace comes
from the Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)
Pseudocode for a virtual machine supported by an ACPI-compatible OS and in which ACPI control
methods and objects are written. The AML encoding definition is provided in section 17, “ACPI
Machine Language (AML) Specification.”

Advanced Programmable I nterrupt Controller (APIC)
Aninterrupt controller architecture commonly found on Intel Architecture-based 32-bit PC systems.
The APIC architecture supports multiprocessor interrupt management (with symmetric interrupt
distribution across all processors), multiple 1/0O subsystem support, 8259A compatibility, and inter-
processor interrupt support. The architecture consists of local APICscommonly attached directly to
processors and I/O APICs commonly in chip sets.

ACPI SourceLanguage (ASL)
The programming language equivalent for AML. ASL iscompiled into AML images. The ASL
statements are defined in section 16, “ACPI Source Language (ASL) Reference.”

Compag/I ntel/Microsoft/Phoenix/T oshiba

14 Advanced Configuration and Power Interface Specification

Control Method
A control method is adefinition of how the OS can perform a simple hardware task. For example, the
OS invokes control methods to read the temperature of athermal zone. Control methods are written in
an encoded language called AML that can be interpreted and executed by the ACPI-compatible OS.
An ACPI-compatible system must provide aminimal set of control methods in the ACPI tables. The
OS provides a set of well-defined control methods that ACPI table developers can reference in their
control methods. OEM s can support different revisions of chip sets with one BIOS by either including
control methods in the BIOS that test configurations and respond as needed or including a different set
of control methods for each chip set revision.

Central Processing Unit (CPU) or processor
The part of aplatform that executes the instructions that do the work. An ACPI-compatible OS can
balance processor performance against power consumption and thermal states by manipulating the
processor performance controls. The ACPI specification defines aworking state, labeled GO (S0), in
which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the sleeping states, the processor executes no instructions, thus reducing power

consumption and, potentially, operating temperatures. For more information, see section 8, “Processor
Control.”

Definition Block
A definition block contains information about hardware implementation and configuration detailsin
the form of data and control methods, encoded in AML. An OEM can provide one or more definition
blocksin the ACPI Tables. One definition block must be provided: the Differentiated Definition Block,
which describes the base system. Upon loading the Differentiated Definition Block, the OSinserts the
contents of the Differentiated Definition Block into the ACPlI Namespace. Other definition blocks,
which the OS can dynamically insert and remove from the active ACPI Namespace, can contain

references to the Differentiated Definition Block. For more information, see section 5.2.10, “Device
Power States.”

Device
Hardware component outside the core chip set of aplatform. Examples of devices are liquid crystal
display (LCD) panels, video adapters, Intergrated Drive Electronics (IDE) CD-ROM and hard disk
controllers, COM ports, and so on. In the ACPI scheme of power management, buses are devices. For
more information, see section 3.3.2, “Device Power States.”

Device Context
The variable data held by the device; it is usually volatile. The device might forget thisinformation
when entering or leaving certain states (for more information, see section 2.3, “Device Power State
Definitions.”), in which case the OS softwareis responsible for saving and restoring the information.
Device Context refersto small amounts of information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)
An OEM must supply aDSDT to an ACPI -compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the base

system. The OS always inserts the DSDT information into the ACPlI Namespace at system boot time
and never removesit.

Extensible Firmware I nterface (EF1)
Aninterface between the OS and the platform firmware, which is required on |A-64 platforms. The
interfaceisin the form of data tables that contain platform related information, and boot and run-time

service callsthat are available to the OS and loader. Together, these provide a standard environment
for booting an OS.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Definition of Terms 15

Embedded Controller
The general class of microcontrollers used to support OEM -specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllersin any platform design,
aslong as the microcontroller conforms to one of the models described in this section. The embedded
controller performs complex low-level functions through asimple interface to the host
Mi Croprocessor(s).

Embedded Controller I nterface
A standard hardware and software communications interface between an OS driver and an embedded
controller. Thisallows any OSto provide a standard driver that can directly communicate with an
embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code).
Thisin turn enables the OEM to provide platform features that the OS and applications can use.

Firmware ACPI Control Structure (FACS)
A structure in read/write memory that the BIOS uses for handshaking between the firmware and the
OS. FACS s passed to an ACPI-compatible OS viathe Fixed ACPI Description Table (FADT). The
FACS containsthe system’ s hardware signature at last boot, the firmware waking vector, and the
Global Lock.

Fixed ACPI Description Table (FADT)
A table that contains the ACPI Hardware Register Block implementation and configuration details the
OS needs to direct management of the ACPI Hardware Register Blocks, as well as the physical address
of the DSDT that contains other platform implementation and configuration details. An OEM must
providean FADT to an ACPI -compatible OSin the RSDT/XSDT. The OS always inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removesit.

Fixed Features
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events

A set of eventsthat occur at the ACPI interface when a paired set of status and event bitsin the fixed
feature registers are set at the same time. When afixed feature event occurs, a system control interrupt
(SCl israised. For ACPI fixed feature events, OSPM (or an ACPl-aware driver) acts as the event
handler.

Fixed Feature Registers
A set of hardware registersin fixed feature register space at specific address locations in system 1/0
address space. ACPI definesregister blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers
The general-purpose event registers contain the event programming model for generic features. All
generic events generate SCIs.

Generic Feature

A generic feature of aplatform is value-added hardware implemented through control methods and
general-purpose events.

Compag/I ntel/Microsoft/Phoenix/T oshiba

16 Advanced Configuration and Power Interface Specification

Global System States
Global system states apply to the entire system, and are visible to the user. The various global system
states are labeled GO through G3 in the ACPI specification. For more information, see section 2.2,
“Global System State Definitions.”

Ignored Bits
Some unused bitsin ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return
zero). Software ignoresignored bitsin ACPI hardware registers on reads and preserves ignored bits on
writes.

I ntel Architecture-Personal Computer (IA-PC)
A general descriptive term for computers built with processors conforming to the architecture defined
by the Intel processor family based on the Intel Architecture instruction set and having an industry -
standard PC architecture.

[/OAPIC

An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devicesto the
processor’slocal APIC.

/O SAPIC

An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from
devicesto the processor’slocal APIC.

Legacy
A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in today’s
systems are used to support power management in a system that uses alegacy OS that does not support
the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPI or OSPM power management support.

Legacy OS
An OSthat is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the 1/O APIC.

Local SAPIC

A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the 1/0
SAPIC.

Multiple APIC Description Table (MADT)

The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT isalist of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Object
The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in
the system definition tables. These objects can be data objects, package objects, control method
objects, and so on. Package objects refer to other objects. Objects also have type, size, and relative
name.

Object name
Part of the ACPI Namespace. Thereis a set of rules for naming objects.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Definition of Terms 17

Operating System-directed Power Management (OSPM)
A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Package
A set of objects.

Power Button
A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working
state.

Power Management
Mechanismsin software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power consumption.
Power management is required for some system functions, such as appliance (for example, answering
machine, furnace control) operations.

Power Resources
Resources (for example, power planes and clock sources) that a device requires to operatein agiven
power state.

Power Sources
The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to aplatform.

Register Grouping
Consists of two register blocks (it has two pointersto two different blocks of registers). The fixed-
position bits within aregister grouping can be split between the two register blocks. This allowsthe
bits within aregister grouping to be split between two chips.

Reserved Bits
Some unused bitsin ACPI hardware registers are designated as “ Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them
have no side effects. OSPM implementations must write zeros to all reserved bitsin enable and status
registers and preserve bitsin control registers.

Root System Description Pointer (RSDP)
An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’ s only purpose isto provide the physical address of the RSDT.

Root System Description Table (RSDT)
A tablewith the signature ‘RSDT,’ followed by an array of physical pointersto other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Secondary System Description Table (SSDT)
SSDTs are acontinuation of the DSDT. Multiple SSDTs can be used as part of a platform description.
After the DSDT isloaded into the ACPI Namespace, each secondary description table with a unique
OEM Table ID isloaded. This allows the OEM to provide the base support in one table, while adding
smaller system optionsin other tables.
Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button
A user push button that switches the system from the sleeping/soft off state to the working state, and
signals the OSto transition to a sleeping state from the working state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

18 Advanced Configuration and Power Interface Specification

Smart Battery Subsystem
A battery subsystem that conformsto the following specifications: Smart Battery and either Smart

Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Smart Battery Table
An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the energy-
level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

System Management Bus (SMBuSs)
A two-wire interface based upon the I2C protocol. The SMBusis alow-speed bus that provides
positive addressing for devices, aswell as bus arbitration.

SMBus I nterface

A standard hardware and software communications interface between an OS bus driver and an SMBus
controller.

Streamlined Advanced Programmable I nterrupt Controller (SAPIC)
An advanced APIC commonly found on Intel Architecture-based 64-bit systems.

System Context
Thevolatile datain the system that is not saved by adevice driver.

System Control Interrupt (SCI)
A system interrupt used by hardware to notify the OS of ACPI events. The SCI isan active, low,
shareable, level interrupt.

System Management I nterrupt (SM1I)
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will
not work). Hardware platforms that want to support both legacy operating systems and ACPI systems
must support away of re-mapping the interrupt events between SMIs and SCls when switching
between ACPI and legacy models.

Thermal States
Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space
around a particular temperature-sensing device. The transitions from one thermal state to another are
marked by trip points, which are implemented to generate an SCI when the temperature in athermal
zone moves above or below the trip point temperature.

Extended Root System Description Table (XSDT)
The XSDT providesidentical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Definition of Terms 19

2.2 Global System State Definitions
Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:
Does application software run?
What isthe latency from external events to application response?
What is the power consumption?
Isan OS reboot required to return to aworking state?
Isit safe to disassembl e the computer?
Can the state be entered and exited electronically?

Following isalist of the system states:

G3 Mechanical Off
A computer state that is entered and left by a mechanical means (for example, turning off the system’s
power through the movement of alarge red switch). Various government agencies and countries
reguire this operating mode. It isimplied by the entry of this off state through a mechanical means that
no electrical current is running through the circuitry and that it can be worked on without damaging the
hardware or endangering service personnel. The OS must be restarted to return to the Working state.
No hardware context is retained. Except for the real-time clock, power consumption is zero.

G2/S5 Soft Off
A computer state where the comp uter consumes a minimal amount of power. No user mode or system
mode code isrun. This state requires alarge latency in order to return to the Working state. The
system’s context will not be preserved by the hardware. The system must be restarted to return to the
Working state. It is not safe to disassemble the machinein this state.

G1 Sleeping
A computer state where the computer consumes a small amount of power, user mode threads are not
being executed, and the system “appears’ to be off (from an end user’ s perspective, the display is off,
and so on). Latency for returning to the Working state varies on the wake environment selected prior to
entry of this state (for example, whether the system should answer phone calls). Work can be resumed
without rebooting the OS because large elements of system context are saved by the hardware and the
rest by system software. It is not safe to disassemble the machine in this state.

GO Working

A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can
select, through some U, various performance/power characteristics of the system to have the software
optimize for performance or battery life. The system responds to external eventsinreal time. It is not
safe to disassemble the machine in this state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

20 Advanced Configuration and Power Interface Specification

$4 Non-Volatile Sleep

A special global system state that allows system context to be saved and restored (relatively slowly)
when power islost to the motherboard. If the system has been commanded to enter $4, the OS will
write al system context to afile on non-volatile storage media and |eave appropriate context markers.
The machine will then enter the S4 state. When the system |leaves the Soft Off or Mechanical Off state,
transitioning to Working (GO) and restarting the OS, arestore from aNV Sfile can occur. Thiswill

only happen if avalid non-volatile sleep data set is found, certain aspects of the configuration of the
machine have not changed, and the user has not manually aborted the restore. If all these conditions are
met, as part of the OSrestarting, it will reload the system context and activate it. The net effect for the
user iswhat looks like aresume from a Sleeping (G1) state (albeit slower). The aspects of the machine

configuration that must not change include, but are not limited to, disk layout and memory size. It
might be possible for the user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to $4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or BIOS can save the system context takes too long from the user’ s point of view. The

transition from Mechanical Off to $4 islikely to be done when the user is not there to seeit.

Because the $4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table2-1 Summary of Global Power States

Safeto
Power OSrestart | disassemble | Exit state

Global system state | Softwareruns | Latency | consumption | required computer electronically
GO Working Yes 0 Large No No Yes
GL1 Sleeping No >0, varies | Smaller No No Yes

with sleep

state
G2/S5 Soft Off No Long Very near 0 Yes No Yes
G3 Mechanical Off | No Long RTC battery Yes Yes No

Compag/I ntel/Microsoft/Phoenix/Toshiba

Definition of Terms 21

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” Thisimplies
that a platform designed to give the user the appearance of “instant-on,” similar to a home appliance device,
will use the GO and G1 states aimost exclusively (the G3 state may be used for moving the machine or

repairing it).

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as awhole isin the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:
Power consumption. How much power the device uses.
Device context. How much of the context of the deviceis retained by the hardware. The OSis
responsible for restoring any lost device context (this may be done by resetting the device).
Device driver. What the device driver must do to restore the deviceto full on.
Restoretime. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference included in Appendix A of this specification, describe which of these power states
are defined for agiven type (class) of device and define the specific details of each power state for that
deviceclass. For alist of the available Device Class Power Management Specifications see“ Appendix A:
Device Class Specifications.”

D3 Off
Power has been fully removed from the device. The device context islost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
arelost, devicesin this state do not decode their address lines. Devicesin this state have the longest
restoretimes. All classes of devices define this state.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
DO. Busesin D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

DO Fully-On
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

Compag/I ntel/Microsoft/Phoenix/T oshiba

22 Advanced Configuration and Power Interface Specification

Table2-2 Summary of Device Power States

Power Device Context
Device State | Consumption Retained Driver Restoration
DO - Fully- Asneeded for All None
On operation
D1 D0>D1>D2>D3 | >D2 <D2
D2 D0>D1>D2>D3 | <D1 >D1
D3 - Off 0 None Full initialization and |oad

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rulesfor the current Dx state the deviceisin. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

2.4 Sleeping State Definitions

Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section
7.3.4,“System _Sx States.” For adetailed definition of the transitions between each of the Sx states, see
section 9.1, “ Sleeping States.”

S1 Sleeping State
The S1 sleeping state is alow wake latency sleeping state. In this state, no system context is lost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 sleeping stateis alow wake latency sleeping state. This state is similar to the S1 sleeping state
except that the CPU and system cache context islost (the OS is responsible for maintaining the caches
and CPU context). Control starts from the processor’ s reset vector after the wake event.

S3 Sleeping State
The S3 slegping state is alow wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory
context and restores some CPU and L 2 configuration context. Control starts from the processor’ s reset
vector after the wake event.

4 Sleeping State
The $4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Platform context is maintained.

S5 Soft Off State
The S5 stateis similar to the S4 state except that the OS does not save any context. The systemisin
the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the $4 state to allow for initial boot operations within the BIOS to
distinguish whether or not the boot is going to wake from a saved memory image.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Definition of Terms 23

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states within
the global working state, GO. The Cx states possess specific entry and exist semantics and are briefly
defined below. For amore detailed definition of each Cx state, see section 8.1, “Processor Power States.”

CO Processor Power State
While the processor isin this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency. The hardware latency in this state must be low
enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no
other software-visible effects.

C2 Processor Power State
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for
this state is provided viathe ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting
the processor in a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State
The C3 state offersimproved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided viathe ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. Whilein the C3
state, the processor’ s caches maintain state but ignore any snoops. The operating softwareis
responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within the
active/executing states, CO for processors and DO for devices. The Px states are briefly defined below. For a
more detailed definition of each Px state from a processor perspective, see section 8.3.3, “Declaring a
Processor Object.” For amore detailed definition of each Px state from a device perspective see section 3.6,
“Device and Processor Performance States,” and the device class specificationsin Appendix A.

PO Performance State
While adevice or processor isin this state, it uses its maximum performance capability and may
consume maximum power.

P1 Performance State
In this performance power state, the performance capability of adevice or processor islimited below
its maximum and consumes | ess than maximum power.

Pn Performance State
In this performance state, the performance capability of a device or processor is at its minimum level and
consumes minimal power while remaining in an active state. State n isamaximum number and is processor

or device dependent. Processors and devices may define support for an arbitrary number of performance
states not to exceed 16.

Compag/I ntel/Microsoft/Phoenix/T oshiba

24 Advanced Configuration and Power Interface Specification

3 Overview

ACPI provides OSPM with direct and exclusive control over the power management and motherboard
device configuration functions of acomputer. When it starts, OSPM takes over these functions from legacy
BlOS interfaces such asthe APM BIOS and the PNPBIOS. Having done this, OSPM isresponsible for
handling motherboard device configuration events as well as controlling the power, performance, and
thermal status of the system based on user preference and application requests. ACPI provides low-level
interfaces that allow OSPM to perform these functions. The functional areas covered by the ACPI
specification are:
System power management. ACPI defines mechanisms for putting the computer as awhole in and
out of system sleeping states. It also provides a general mechanism for any device to wake the
computer.
Device power management. ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enablesthe OS to put devicesinto low-power states based on application usage.
Processor power management. While the OSisidle but not sleeping, it will use commands described
by ACPI to put processorsin low-power states.
Device and processor performance management. While the system is active, OSPM will transition
devices and processors into different performance states, defined by ACPI, to achieve adesirable
balance between performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).
Plug and Play. ACPI specifiesinformation used to enumerate and configure motherboard devices.
Thisinformation is arranged hierarchically so when events such as docking and undocking take place,
the OS has precise, a priori knowledge of which devices are affected by the event.
System Events. ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, and so on. This
mechanism isvery flexible in that it does not define specifically how events are routed to the core logic
chip set.
Battery management. Battery management policy moves from the APM BIOSto the ACPI OS. An
ACPI -compatible battery device needs either a Smart Battery subsystem interface, which is controlled
by the OS directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an OEM to
choose any type of the battery and any kind of communication interface supported by ACPI. The
battery must comply with the requirements of itsinterface, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by adjusting
the Low Battery or Battery Warning trip point. When there are multiple batteries present, the battery
subsystem is not required to perform any synthesis of a“composite battery” from the data of the
separate batteries. In cases where the battery subsystem does not synthesize a“ composite battery”
from the separate battery’ s data, the OS must provide that synthesis.
Thermal management. Since the OS controls the power states of devices and processors, ACPI also
addresses system thermal management. It provides a simple, scaleable model that allows OEMs to
define thermal zones, thermal indicators, and methods for cooling thermal zones.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 25

Embedded Controller. ACPI defines a standard hardware and software communicationsinterface
between an OS bus enumerator and an embedded controller. This allows any OSto provide a standard
bus enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. Thisin turn enables the OEM to provide platform features that the OS and
applications can use.

SMBus Controller. ACPI defines a standard hardware and software communications interface
between an OS bus driver and an SMBus Controller. This allows any OSto provide a standard bus
driver that can directly communicate with SMBus devicesin the system. Thisin turn enables the OEM
to provide platform features that the OS and applications can use.

Oncein ACPI mode, system firmware or other software must not manipulate the platform’s configuration,
power, performance, and thermal control interfaces (if implemented) independently of OSPM. OSPM alone
is responsible for coordinating the configuration, power management, performance management, and
thermal control policy of the system. Manipulation of these interfaces independently of OSPM undermines
the purpose of OSPM/ACPI and may adversely impact the system’s configuration, power, performance,
and thermal policy goals. However, in the case of the possibility of damage to system from excessive
thermal conditions where OSPM latency isinsufficient to remedy an adverse thermal condition, the
platform may exercise afailsafe thermal control mechanism that reduces the performance of a system
component to avoid damage. In this case, the platform should notify OSPM of the performance reduction if
the reduction is of significant duration (in other words, if the duration of reduced performance could
adversely impact OSPM’ s power or performance control policy).

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences and
knowledge of how devices are being used by applications, the OS puts devicesin and out of |ow-power
states. Devicesthat are not being used can be turned off. Similarly, the OS usesinformation from
applications and user settings to put the system as awholeinto alow- power state. The OS uses ACPI to
control power state transitionsin hardware.

Compag/I ntel/Microsoft/Phoenix/T oshiba

26 Advanced Configuration and Power Interface Specification

3.2 Power States

From auser-visible level, the system can be thought of as being in one of the states in the following
diagram:

Power
Failure

BIOS
Routine

GO (SO0) -
Working

G2 (S5) -
Soft Off

Figure3-1 Global System Power Statesand Tr ansitions
See section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to doing work. User-mode application threads are dispatched and running. Individual
devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not
being used. Any device the system turns off becauseit is not actively in use can be turned on with short
latency. (What “short” means depends on the device. An LCD display needsto come on in sub-second
times, whileit is generally acceptable to wait afew seconds for a printer to wake.)

The net effect of thisisthat the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 27

When the computer isidle or the user has pressed the power button, the OS will put the computer into one
of the sleeping (Sx) states. No user-visible computation occursin a sleeping state. The sleeping sub-states
differ in what events can arouse the system to a Working state, and how long this takes. When the machine
must awaken to all possible events or do so very quickly, it can enter only the sub-states that achieve a
partial reduction of system power consumption. However, if the only event of interest is a user pushing on
aswitch and alatency of minutesis allowed, the OS could save all system context into an NV Sfile and
transition the hardware into the $4 sleeping state. In this state, the machine draws almost zero power and
retains system context for an arbitrary period of time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OSloads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Userstypically put computersinto the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 New Meanings for the Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off or,
on alaptop, forcesit to some sleeping state. No allowance is made for user policy (such as the user wants
the machineto “comeon” in less than 1 second with all context asit was when the user turned the machine
“off"), system alert functions (such as the system being used as an answering machine or fax machine), or
application function (such as saving auser file).

In an OSPM system, there are two switches. Oneisto transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other isthe “main” power button. Thisisin some obvious place (for example,
beside the keyboard on alaptop). Unlike legacy on/off buttons, all it doesis send arequest to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
alow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see section
12, “Therma Management”) and the embedded controller interface (see section 13, “ACPI Embedded
Controller Interface Specification”).

Compag/I ntel/Microsoft/Phoenix/T oshiba

28 Advanced Configuration and Power Interface Specification

3.2.2.2 Desktop PCs

Pow

er-managed desktops will be of two types, though the first type will migrate to the second over time.
Ordinary “Green PC.” Here, new appliance functions are not the issue. The machineisreally only
used for productivity computations. At least initially, such machines can get by with very minimal
function. In particular, they need the normal ACPI timers and controls, but don’t need to support

€l aborate sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, asindependently as possible (to
allow for maximum compute speed with minimum power wasted on unused devices). Such PCs will
also need to support wake from the sleeping state by means of atimer, because this allows
administratorsto force them to turn on just before people are to show up for work.

Home PC. Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it hasall of the ACPI power functionality of alaptop except for docking
and lid events (and need not have any legacy power management).

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’ s not practical for somebody to hit the off switch

whe

3.3

n they leave at night.

Day Mode. In day mode, servers are power-managed much like a corporate ordinary green PC, staying
in the Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power management can
result in large savings. OSPM allows careful tuning of when to do this, thus making it workable.

Night Mode. In night mode, servers look like home PCs. They sleep as deeply as they can and are still
able to wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might gointo deep sleep until it receives aprint job
at 3A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and then goes back to
sleep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

Device Power Management

Thi's section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power

man,

agement are discussed, the wake operation devices use to wake the comp uter from a sleeping stateis

described, and an example of ACPI-compatible device management using a modem is given.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 29

3.3.1 Power Management Standards

To manage power of all the devicesin the system, the OS needs standard methods for sending commands
to adevice. These standards define the operations used to manage power of devices on a particular bus and
the power states that devices can be put into. Defining these standards for each bus creates a baseline level
of power management support the OS can utilize. Independent Hardware Vendors (IHVs) do not have to
spend extratime writing software to manage power of their hardware, because simply adhering to the
standard gains them direct OS support. For OS vendors, the bus standards allow the power management
code to be centralized in each bus driver. Finally, bus-driven power management allows the OS to track the
states of all deviceson agiven bus. When all the devices arein agiven state (or example, D3 - off), the OS
can put the entire businto the power supply mode appropriate for that state (for example, D3 - off).

Bus-level power management specifications are written for the following buses:
PCI
CardBus
USB
|IEEE 1394

3.3.2 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generally, these states are defined in terms of the following criteria:

Power consumption. How much power the device uses.

Device context. How much of the context of the deviceisretained by the hardware.

Device driver. What the device driver must do to restore the device to fully on.

Restorelatency. How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See section 2.3, “Device Power State Definitions,” for the detailed description of the four general
device power states (DO-D3).

3.3.3 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on abus must support
some consistent set of power-related characteristics. For example, when the bus-specific mechanism to set
the device power state to agiven level isinvoked, the actions a device might take and the specific sorts of
behaviors the OS can assume while the deviceisin that state will vary from device type to device type. For
afully integrated device power management system, these class-specific power characteristics must also be
standardized:

Device Power State Characteristics. Each class of device has a standard definition of target power

consumption levels, state-change latencies, and context | oss.

Minimum Device Power Capabilities. Each class of device has a minimum standard set of power

capabilities.

Device Functional Characteristics. Each class of device has a standard definition of what subset of

device functionality or featuresis available in each power state (for example, the net card can receive,

but cannot transmit; the sound card is fully functional except that the power amps are off, and so on).

Device Wakeup Characteristics. Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state characteristics for
each class of device.

Compag/I ntel/Microsoft/Phoenix/T oshiba

30 Advanced Configuration and Power Interface Specification

3.4 Controlling Device Power

ACPI provides the OS the controls and informati on needed to perform device power management. ACPI
describes to the OS the capabilities of all the devicesit controls. It also gives the OS the control methods
used to set the power state or get the power status for each device. Finally, it has ageneral scheme for
devices to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. The ACPI table lists legacy devices that cannot be
reported through their own bus specification, the root of each busin the system, and devices that have
additional power management or configuration options not covered by their own bus specification. Power
management of these devicesis handled through their own bus specification (in this case, PCI). All other
devices are handled through ACPI.

For more detailed information see section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

Asthe OS enumerates devices in the system, it gets information about the power management features that
the device supports. The Differentiated Definition Block given to the OS by the BIOS describes every
device handled by ACPI. This description contains the following information:
A description of what power resources (power planes and clock sources) the device needsin each
power state that the device supports. For example, a device might need a high power bus and aclock in
the DO state but only alow-power bus and no clock in the D2 state.
A description of what power resources a device needs in order to wake the machine (or none to
indicate that the device does not support wake). The OS can use thisinformation to infer what device
and system power states from which the device can support wake.
The optional control method the OS can use to set the power state of the device and to get and set
resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States
OSPM uses the Set Power State operation to put a device into one of the four power states.

When adeviceisput in alower power state, it configuresitself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the busin the best power state based
on the current device requirements on that bus. For example, if all devices on abus areinthe D3 state, the
OS will send acommand to the bus control chip set to remove power from the bus (thus putting the busin
the D3 state). If aparticular bus supports alow-power supply state, the OS puts the busin that stateif all
devicesareinthe D1 or D2 state. Whatever power state adeviceisin, the OS must be able to issue a Set
Power State command to can resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device before
it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in section 7, “Power and Performance Management.”).

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 31

When adeviceisto be set in a particular power state using the ACPI interface, the OS first decides which
power resources will be used and which can be turned off. The OS tracks all the devices on a given power
resource. When all the devices on aresource have been turned off, the OS turns off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needs to
be turned on, the OSfirst turns on the power resource using a control method and then signals the deviceto
turn on. The time that the OS must wait for the power resource to stabilize after turning it on or off is
described in the description table. The OS uses the time base provided by the Power Management Timer to
measure these timeintervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the
devicein that power state. Notice that this might not mean that power is removed from the device. If other
active devices are sharing a power resource, the power resourceswill remain on.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), aswell asthe status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changesin power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model (see below) to signal power status changes (battery status changes, for
example), the ACPI chip set signals the OS viathe SCI interrupt. An SCI interrupt status bit is set to
indicate the event to the OS. The OS runs the control method associated with the event. This control
method signal s to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery statusinformation (such astotal capacity and remaining capacity),
the OS uses control methods from the battery’ s description table to read thisinformation. To read status
information for Smart Batteries, the OS can use a standard Smart Battery driver that directly interfaces to
Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer

The wake operation enables devices to wake the computer from a sleeping power state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the machine, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake
the machine based on application requests, and then enables wake on those devices.

The OS enables the wake feature on devices by setting that device’ s SCI Enable bit. The location of this bit
islisted in the device's entry in the description table. Only devices that have their wake feature enabled can
wake the machine. The OS keeps track of the power states that the wake devices support, and keeps the
machine in a power state in which the wake can still wake the machine® (based on capabilities reported in
the description table).

! Some OS policies may require the OS to put the machine into aglobal system state for which the device
can no longer wake the system. Such as when a system has very low battery power.

Compag/I ntel/Microsoft/Phoenix/T oshiba

32 Advanced Configuration and Power Interface Specification

When the computer isin the Sleeping state and a wake device decides to wake the machine, it signals to the
ACPI chip set. The SCI status bit corresponding to the device waking the machineis set, and the ACPI chip
set resumes the machine. After the OSis running again, it clears the bit and handles the event that caused
the wake. The control method for this event then uses the Notify command to tell the OS which device
caused the wake.

3.45 Example: Modem Device Power Management

Toillustrate how these power management methods function in ACPI, consider an integrated modem.
(Thisexampleis greatly simplified for the purposes of this discussion.) The power states of amodem are
defined asfollows (thisis an excerpt fromthe Modem Device Class Power Management Specification):

DO Modem controller on
Phone interface on

Speaker on

Can be on hook or off hook
Can be waiting for answer

D1 Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode

Speaker off

Must be on hook

D2 SameasD3

D3 Modem controller off (context lost)
Phone interface powered by phoneline or off
Speaker off

On hook

The power policy for the modem is defined as follows:

D3-> DO COM port opened

DO, D1-> D3 COM port closed

D0O-> D1 Modem put in answer mode

D1-> DO Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 33

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware

asshown in Figure 3-2. Thisisjust an example for illustrating features of ACPI. This exampleis not
intended to describe how OEMs should build hardware.

power

Switched %

PWR1_EN

Switched F
power

PWR2_EN I

TLC

MDM_D3
MDM D1
COM_D3 |

ACPI core /o /o Vo
chip set COM port Modem Phone Phone

(UART) controller Control interface line
RI

WAKE

A

Figure3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part isisolated
when power isremoved from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.45.1 Getting the Modem’s Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the modem'’s
entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports DO, D1, and D3:

DO requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine from DO,
D1, and D3)

Control methods for setting power state and resources

Compag/I ntel/Microsoft/Phoenix/T oshiba

34 Advanced Configuration and Power Interface Specification

3.4.5.2 Setting the Modem’s Power State

While the OSisrunning (GO state), it switches the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state. Then if
the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In
this case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use
of the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _OFF control method
associated with that power resourcein the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop asserting the
PWR2_EN line. Then, OSPM runs a control method (_PS1) provided in the modem’s entry to put the
devicein the D1 state. This control method assertsthe MDM_D1 signal that tells the modem controller to
go into alow-power mode.

OSPM does not always turn off power resources when agiven deviceis put in alower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). Asaways, OSPM checks to see which power resources are no longer
needed. Because the LPT port is still active, PWR1 isin use. OSPM does not turn off the PWR1 resource.
It continues the state transition process by running the modem’s control method to switch the deviceto the
D3 power state. The control method causes the MDM_D3 line to be asserted. The modem controller now
turns off al its major functions so that it draws little power, if any, from the PWR1 line. Because the COM
port is closed, the same sequence of eventswill take place to put it in the D3 state. Notice that these
registers might not be in the deviceitself. For example, the control method could read the register that
controlsMDM_Da3.

3.45.3 Getting the Modem’s Power Status

Integrated mo dems have no batteries; the only power status information for the deviceis the power state of
the modem. To determine the modem’ s current power state (DO-D3), OSPM runs a control method (_PSC)
supplied in the modem’ s entry in the Differentiated Definition Block. This control method reads from the
necessary registersto determine the modem’s power state.

3.4.5.4 Waking the Computer

Asindicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the computer in a sleep state, the OS enables wake on any devices that applications have
requested to be able to wake the machine. Then, it chooses the lowest sleeping state that can still provide
the power resources necessary to allow all enabled wake devices to wake the machine. Next, the OS puts
each of those devicesin the appropriate power state, and puts all other devicesin the D3 state. In this case,
the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS saves a
resume vector and puts the machine into a sleep state through an ACPI register.

Waking the computer via modem starts with the modem’ s phone interface asserting its ring indicate (RI)
line when it detects aring on the phone line. Thisline is routed to the core chip set to generate awake
event. The chip set then wakes the system and the hardware will eventually passes control back to the OS
(the wake mechanism differs depending on the sleeping state). After the OSisrunning, it putsthe devicein
the DO state and begins handling interrupts from the modem to process the event.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 35

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OSisidle. In these low-power states, the CPU does not run any instructions, and wakes when an
interrupt, such as the OS scheduler’ s timer interrupt, occurs.

The OS determines how much timeis being spent in itsidle loop by reading the ACPI Power Management
Timer. Thistimer runs at aknown, fixed frequency and allows the OS to precisely determine idle time.
Depending on thisidle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it entersitsidle loop.

The CPU states are defined in detail in section 8, “ Processor Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, CO for processors and DO for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest impact
when the states invoke different device and processor efficiency levels as opposed to alinear scaling of
performance and energy consumption. Since performance state transitions occur in the active/executing
device states, care must be taken to ensure that performance state transitions do not adversely impact the
system.

Examples of device performance statesinclude:

- A hard drive that provideslevels of maximum throughput that correspond to levels of power
consumption.
An LCD panel that supports multiple brightness levels that correspond to levels of power consumption.
A graphics component that scales performance between 2D and 3D drawing modes that correspondsto
levels of power consumption.
An audio subsystem that provides multiple levels of maximum volume that correspond to levels of
maximum power consumption.
A Direct-RDRAM ™ controller that provides multiple levels of memory throughput performance,
corresponding to multiple levels of power consumption, by adjusting the maximum bandwidth
throttles.

Processor performance states are described in Section 8, “Processor Control.”

3.7 Plug and Play

In addition to power management, ACPI provides controls and information so that the OS can direct Plug
and Play on the motherboard. The Differentiated Description Table describes the motherboard devices. The
OS enumerates motherboard devices simply by reading through the Differentiated Description Table
looking for devices with hardware IDs.

Each device enumerated by ACPI includes control methods that report the hardware resources the device
could occupy and those that are currently used, and a control method for configuring those resources. The
information is used by the Plug and Play system to configure the devices.

Compag/I ntel/Microsoft/Phoenix/T oshiba

36 Advanced Configuration and Power Interface Specification

ACPI isused only to enumerate and configure motherboard devices that do not have other hardware
standards for enumeration and configuration. For example, PCI devices on the motherboard must not be
enumerated by ACPI; therefore Plug and Play information for these devicesis not included in the
Differentiated Description Table. However, power management information for these devices can still
appear in the tableif the devices' power management is to be controlled through ACPI.

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. Thisincludes
boot devices described in the ACPI system description tables as well as devices that are controlled through
other standards.

3.7.1 Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OSfindsit inthe DSDT. Thistable will have control methods that give the OS the following
information:

The device can use IRQ 3, 1/0 3F8-3FF or IRQ 4, 1/0 2E8-2EF

The deviceiscurrently using IRQ 3, 1/0 3F8-3FF

The OS configures the modem’ s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the device
for those resources by running a control method supplied in the modem'’s section of the Differentiated
Definition Block. This control method will write to any 1/0 ports or memory addresses necessary to
configure the device to the given resources.

3.8 System Events

ACPI includes ageneral event model usedfor Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable register.

When an event occurs, the core logic sets abit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives thisinterrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commandsto tell the OS what event occurred.

For example, assume a machine has al of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enabl e registers would only have
one bit each: the bit corresponding to the event pin.

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the
status bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 37

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three status
bits (and three enable bits). Y et another design might have every individual event wired to its own pin and
status bit. Thisdesign, at the opposite extreme from the single pin design, allows very complex hardware,
yet very simple control methods. Countless variations in wiring up events are possible.

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem is
not required to perform any synthesis of a*“composite battery” from the data of the separate batteries. In
cases where the battery subsystem does not synthesize a*“composite battery” from the separate battery's
data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method

Battery interface.

- Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see section 13.9, “SMBus Host
Controller Interface via Embedded Controller.” For additional information about the Smart Battery
subsystem interface, see section 11.1, “Smart Battery Subsystems.”

Control Method Battery is completely accessed by AML code control methods, allowing the OEM to
choose any type of battery and any kind of communication interface supported by ACPI. For more
information about the Control Method Battery Interface, see section 11.2, “Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’ s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’ s condition. All battery system
types must provide notification to the OS when there is a change such as inserting or removing a battery, or
when a battery starts or stops discharging. Smart Batteries and some Control Method Batteries are also able
to give notifications based on changes in capacity. Smart batteries provide extra information such as
estimated run-time, information about how much power the battery is able to provide, and what the run-
time would be at a predetermined rate of consumption.

Compag/I ntel/Microsoft/Phoenix/T oshiba

38 Advanced Configuration and Power Interface Specification

3.9.2 Battery Capacity

Each battery must report its designed capacity, |atest full-charged capacity, and present remaining capacity.
Remaining capacity decreases during usage, and it also changes depending on the environment. Therefore,
the OS must use latest full-charged capacity to calculate the battery percentage. In addition the battery
system must report warning and low battery levels at which the user must be notified and the system
transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

4------- - - Designed capacity
! 1 D R Last full charged capacity
----- <4+—— Present remaining capacity
-- --| 4--------OEM designed initial capacity for warning
-- _ --| &--------OEM designed initial capacity for low

Figure3-3 Reporting Battery Capacity
3.9.3 Battery Gas Gauge
At the most basic level, the OS cal culates Remaining Battery Percentage [%] using the following formula:

- Batt R ining C it Ah/mWh
Remaining Battery Percentage[%] = attery Remaining Capacity [mAh/mWh] * 100

Last Full Charged Capacity [mMAh/mWh]

Control Method Battery also reports the Present Drain Rate [mA or mW] for cal culating the remaining
battery life. At the most basic level, Remaining Battery lifeis calculated by following formula:

Battery Remaining Capacity [mMAh/mWh]
Battery Present Rate [mMA/mW]

Remaining Battery Life [h]=

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 39

3.9.4 Low Battery Levels

A system has an OEM -designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed by
the system to take certain actions. The critical battery level or flag is used to indicate when the batteriesin
the system are completely drained. OSPM can determine independent warning and low battery capacity
values based on the OEM -designed levels, but cannot set these values |ower than the OEM -designed
values, as shown in Figure 3-4.

Full _

Last full charged capacity

OSPM-selected low battery warning capacity

Warning

OSPM-selected low battery

<
<
<
ﬂ OEM-designed initial capacity for warning (minimum)

OEM-designed initial capacity for low (minimum)

critical N OEM-defined Battery Critical flag

Figure3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM -designed initial warning capacity and OEM -
designed initial low capacity aswell as aflag to report when that battery has reached or is below its critical
energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one particular
machine type, so the OEM -designed warning, low, and critical levels are reported separately in a Smart
Battery Table described in section 5.2.12.

Compag/I ntel/Microsoft/Phoenix/T oshiba

40 Advanced Configuration and Power Interface Specification

Table 3-1 described how these values should be set by the OEM and interpreted by the OS.

Table3-1 Low Battery Levels

Leve

Description

Warning

When the total available energy (mWh) or capacity (mAh) in the batteries falls below

thislevel, the OS will notify the user through the Ul. This value should allow for a few
minutes of run-time before the “Low” level is encountered so the user has time to wrap
up any important work, change the battery, or find a power outlet to plug the systemin.

Low

Thisvalueisan estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity islessthan thisvalue, it will transition the system to a user
defined system state (S1-S5). In most situations this should be $S4 so that system stateis
not lost if the battery eventually becomes completely empty. The design of the OS
should consider that users of a multiple battery system may remove one or more of the
batteriesin an attempt replace or charge it. This might result in the remaining capacity
falling below the“Low” level not leaving sufficient battery capacity for the OSto safely
transition the system into the sleeping state. Therefore, if the batteries are discharging
simultaneously, the action might need to be initiated at the point when both batteries
reach thislevel.

Critical

The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the
OS must attempt to perform an emergency shutdown as described below.

For asmart battery system, thiswould typically occur when all batteries reach a capacity
of 0, but an OEM may choose to put alarger value in the Smart Battery Table to provide
an extramargin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per
battery. If any battery in the systemisin acritically low state andis still providing
power to the system (in other words, the battery is discharging), the system is considered
tobein acritical energy state. The_BST control method is required to return the

Critical flag on adischarging battery only when all batteries have reached a critical

state; the ACPI BIOS is otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteriesin a system are critical is not asituation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this does
occur, the OS should take steps to minimize any damage to system integrity. The emergency shutdown
procedure should be designed to minimize bad effects based on the assumption that power may belost at
any time. For example, if ahard disk is spun down, the OS should not try to spin it up to write any data,
since spinning up the disk and attempting to write data could potentially corrupt filesif the write were not
completed. Evenif adisk is spun up, the decision to attempt to save even system settings data before
shutting down would have to be evaluated since reverting to previous settings might be less harmful than
having the potential to corrupt the settingsif power was lost halfway through the write operation.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Overview 41

3.10 Thermal Management

ACPI allowsthe OSto play arolein the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU aswell as the thermal heuristics of the system.
OSPM can aso gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal-coupled device. In this example, the whole notebook is covered as one large thermal zone. This
notebook uses one fan for active cooling and the CPU for passive cooling.

Thermalr ——— "1 | cru
assive Cooling Memory/ R
Zone CPU & e PCIBridge | L
‘ |
Fan tD: : :PC!/PQW
0| (Active Cooling) Y Bridge
- . agll Lcp
R le»| Graphics
v «—»(>D CRT
$ 8 UsB
~ Port1

Docking

Momentary | |
‘[= 4.>| Keyboard

FO: PIC, PITs, F2: Embedded

DMA, RTC, EIO, |USB Controller PS/2
> pons
(= Mouse

F1: BM
IDE

orRo v sio: | j > _Fbb
EPROM | | COMs, DPR1
LPT, 4—»04—»@ com

FDC
' —) LPT
ACPI

Figure3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of acomputer.
For some thermal implementation examples on an ACPI platform, see section 12.4, “Thermal Zone Object
Requirements.”

Compag/I ntel/Microsoft/Phoenix/T oshiba

42 Advanced Configuration and Power Interface Specification

3.10.1 Active and Passive Cooling Modes

ACPI definestwo cooling modes, Active and Passive:
Passive cooling. OS reduces the power consumption of devices at the cost of system performance to
reduce the temperature of the machine.
Active cooling. OSincreases the power consumption of the system (for example, by turning on afan)
to reduce the temperature of the machine.

These two cooling modes are inversely related to each other. Active cooling requires increased power to
reduce the heat within the system while Passive cooling requires reduced power to decrease the
temperature. The effect of this relationship isthat Active cooling allows maximum system performance,
but it may create undesirable fan noise, while Passive cooling reduces system performance, but is
inherently quiet.

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or a
level of preference) for either performance or energy conservation. Allowing the end user to choose this
preference is most critical to mobile system userswhere maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance.

A user’ s preference for performance corresponds to the Active cooling mode while a user’ s preference for
energy conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey the
cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal policy
intervention. For example, the platform indicates through thermal zone parameters that crossing athermal
trip point requires afan to be turned on. Passive cooling requires OSPM thermal policy to manipulate
device interfaces that reduce performance to reduce thermal zone temperature.

3.10.3 Acoustics

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient noise
environment. In this case, the end user’ s physical requirement for fan silence may override the preference
for either performance or energy conservation.

A user’sdesire for fan silence corresponds to the Passive cooling mode. Accordingly, auser’sdesire for fan
silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive
cooling, see section 12, “Thermal Management.”

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended thermal
control in acomplex system, ACPI specifies a multiple thermal zone implementation. Under a multiple
thermal zone model, OSPM will independently manage several thermal-coupled devices and a designated
thermal zone for each thermal-coupled device, using Active and/or Passive cooling methods available to
each thermal zone. Each thermal zone can have more than one Passive and Active cooling device.
Furthermore, each zone might have unique or shared cooling resources. In amultiple thermal zone
configuration, if one zone reaches a critical state then OSPM must shut down the entire system.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 43

4 ACPI Hardware Specification

ACPI defines standard interface mechanismsthat allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. This section describes the hardware aspects of
ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the
existing legacy programming model the same; however, to meet certain feature goals, designated features
conform to a specific addressing and programming scheme. Hardware that falls within this category is
referred to as“fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to
understand the changes needed to convert alegacy-only hardware model to an ACPI/Legacy hardware
model or an ACPI -only hardware model.

ACPI classifies hardware into two categories. Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within the
generic category has awide degree of flexibility in itsimplementation.

4.1 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limitsthe
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:
Performance sensitive features
Features that drivers require during wake
Features that enabl e catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management
timer are defined as fixed hardware to reduce the performance impact of accessing this hardware, which
will result in more quickly reducing athermal condition or extending battery life. If thislogic were allowed
toreside in PCI configuration space, for example, several layers of driverswould be called to access this
address space. Thistakes along time and will either adversely affect the power of the system (when trying
to enter alow-power state) or the accuracy of the event (when trying to get atime stamp value).

Accessto fixed hardware by OSPM allows OSPM to control the wake process without having to load the
entire OS. For example, if PCI configuration space access is needed, the bus enumerator isloaded with all
drivers used by the enumerator. Defining these interfaces in fixed hardware at addresses with which OSPM
can communicate without any other driver’s assistance, allows OSPM to gather information prior to
making a decision as to whether it continues |oading the entire OS or putsit back to sleep.

If elements of the OSfail, it may be possible for OSPM to access address spaces that need no driver
support. In such asituation, OSPM will attempt to honor fixed power button requests to transition the
system to the G2 state. In the case where OSPM event handler is no longer able to respond to power button
events, the power button override feature provides a back-up mechanism to unconditionally transition the
system to the soft-off state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

44 Advanced Configuration and Power Interface Specification

4.1.1 Functional Fixed Hardware

ACPI defines the fixed hardware low-level interfaces as ameans to convey to the system OEM the
minimum interfaces necessary to achieve alevel of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, aswell as others defined in
this specification, conveysto OS Vendors (OSVs) devel oping ACPI -compatible operating systems, the
necessary interfaces that operating systems must manipul ate to provide robust support for system
configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model asthey can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer through
an equivalent combination of both hardware and software and is defined by ACPI 2.0 as Functional Fixed
Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by
using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based
code makes this type of OS independent implementation difficult if not impossible to debug. As such, this
implementation approach isnot recommended. In some cases, Functional Fixed Hardware implementations
may require coordination with other OS components. As such, an OS independent implementation may not
beviable.

OS-specific implementations of functional fixed hardware can be implemented using technical information
supplied by the CPU manufacturer. The downside of this approach is that functional fixed hardware
support must be developed for each OS. In some cases, the CPU manufacturer may provide a software
component providing this support. In other cases support for the functional fixed hardware may be
developed directly by the OS vendor.

In ACPI 2.0, the hardware register definition has been expanded to allow registersto exist in address spaces
other than the System 1/O address space. Thisis accomplished through the specification of an address space
ID in the register definition (see section 5.2.3.1, “Generic Address Structure,” for more information). To
define an interface as functional fixed hardware, the system firmware supplies a special address space
identifier, FfixedHW (0x7F), in the address space I D field for register definitionsin the ACPI system
firmware asindicated by the CPU Manufacturer for affected interfaces.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs are
cautioned not to anticipate that functional fixed hardware support will be provided by OSPM differently on
a system-by-system basis. The use of functional fixed hardware carries with it areliance on OS specific
software that must be considered. OEMs should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 45

4.2 Generic Hardware Programming Model

Although the fi xed hardware programming model requires hardware registers to be defined at specific
address locations, the generic hardware programming model allows hardware registers to reside in most
address spaces and provide system OEM s with awide degree of flexibility in the implementation of
specific functionsin hardware. OSPM directly accesses the fixed hardware registers, but relies on OEM -
provided ACPI Machine Language (AML) code to access generic hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s control
and event logic.

Section 16, “ ACPI Source Language Reference,” describes the ACPI Source Language (ASL)—a
programming language that OEMs use to create AML. The ASL language provides many of the operators
found in common object-oriented programming languages, but it has been optimized to enable the
description of platform power management and configuration hardware. An ASL compiler converts ASL
source code to AML, which is avery compact machine language that the ACPI AML code interpreter
executes.

AML doestwo things:
Abstracts the hardware from OSPM
Buffers OEM code from the different OS implementations

Onegoal of ACPI isto allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware isthat it isall implemented differently. To enable
OSPM to execute properly on different types of value added hardware, ACPI defines higher level “control
methods” that it calls to perform an action. The OEM provides AML code, which is associated with control
methods, to be executed by OSPM. By providing AML code, generic hardware can take on almost any
form.

Another important goal of ACPI isto provide OS independence. To do this, the OEM AML code hasto
execute the same under any ACPI -compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues specific to
each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic feature
is described to OSPM through AML code. This description takes the form of an object that sitsin the ACPI
Namespace associated with the hardware to which it is adding value.

ACPI Driver

and AML-
Interpreter

;ontr ol
vents

GP Event Status

Generic Child
Event Status e

Generic Event
Logic

Figure4-1 Generic Hardware Feature Model

Compag/I ntel/Microsoft/Phoenix/T oshiba

46 Advanced Configuration and Power Interface Specification

As an example of ageneric hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would then
have areferenceto the AML Power Resour ce object (which controls the value added power plane) in its
namespace, and associated with that object would be control methods that OSPM invokes to control the D3
state of the drive:

_PS0. A control method to sequence the IDE drive to the DO state.

_PS3. A control method to sequence the IDE drive to the D3 state.

_PSC. A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the hardware.
OSPM understands how to control power planes (turn them on or off or to get their status) through its
defined Power Resour ce object, while the hardware has platform-specific AML code (contained in the
appropriate control methods) to perform the desired function. In this example, the platform would describe
its hardware to the ACPI OS by writing and placing the AML code to turn the hardware off within the
_PS3 control method. This enables the following sequence:

When OSPM decidesto place the IDE drivein the D3 state, it callsthe IDE driver and tellsit to place the
driveinto the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drivein the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “ generic” hardware to
place the HDD into an even lower power state.

Asan example of ageneric event feature, a platform might have a docking capability. In this case, it will
want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any
shareable system interrupt. In the case of docking, the event is generated when a docking has been detected
or when the user requests to undock the system. This enables the following sequence:

OSPM respondsto the SCI and callsthe AML code event handler associated with that generic event. The
ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable
areader to understand the following:
-+ Which hardware registers are required or optional when an ACPI feature, concept or interfaceis
required by adesign guide for a platform class
How to design fixed hardware features
How to design generic hardware features
The ACPI Event Model

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 47

4.3 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are
implemented. The following symbols are used in the logic diagrams to represent programming bits.

@ Write-only control bit
&® Enable, control or status bit
X Sticky status bit

Query value

The half round symbol with an inverted “V” represents awrite-only control bit. This bit has the behavior
that it generatesits control function when it is set. Readsto write-only bits are treated as ignore by software
(the bit position is masked off and ignored).

The round symbol with an“X” represents a programming bit. As an enable or control bit, software setting
or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As astatus bit it
directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit isonly cleared by software writing a“1” to its bit
position.

The rectangular symbol represents a query value from the embedded controller. Thisisthe value the
embedded controller returns to the system software upon a query command in response to an SCI event.
The query value is associated with the event control method that is scheduled to execute upon an embedded
controller event.

4.4 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a
notation that easily references the register name and bit position. The notation is asfollows:

Registername.Bit
Registername contains the name of the register asit appearsin this specification
Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit residesin the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PMLX_CNT. 13

Compag/I ntel/Microsoft/Phoenix/T oshiba

48 Advanced Configuration and Power Interface Specification

45 The ACPI Hardware Model

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (GO-G3) asillustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” This stateis
defined as one where power consumption is very close to zero—the power plug has been removed,;
however, the real-time clock device still runs off a battery. The G3 stateis entered by any power failure,
defined as accidental or user-initiated power |oss.

The G3 state transitions into either the GO working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the GO
working state by always returning the status bit SCI_EN set (1) (for more information, see section 4.7.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(whichis necessary for supporting anon-ACPI OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, atransition out of the G3 state requires atotal
boot of OSPM.

The Legacy system stateis the global state where anon-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “ Soft Off,” or the GO “Working” states only if the hardware
supports both Legacy and A CPI modes. In the Legacy state, the ACPI event model is disabled (no SCls are
generated) and the hardware uses legacy power management and configuration mechanisms. Whilein the
Legacy state, an ACPI-compliant OS can request a transition into the GO working state by performing an
ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE valueto the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPI mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. Whilein the
GO “working state,” OSPM can request atransition to Legacy mode by writing the ACPI_DISABLE value
to the SMI1_CMD register, which results in the hardware going into legacy mode and resetting the SCI_EN
bit LOW (for more information, see section 4.7.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The GO “Working” stateisthe normal operating environment of an ACPl machine. In this state different
devices are dynamically transitioning between their respective power states (DO, D1, D2 or D3) and
processors are dynamically transitioning between their respective power states (C0O, C1, C2 or C3). In this
state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state. The
platform can only enter asingle sleeping state at atime (referred to asthe global G1 state); however, the
hardware can provide up to four system sleeping states that have different power and exit latencies
represented by the S1, S2, S3, or $4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled wake
events and what sleeping state these support). OSPM initiates the sleeping transition by enabling the
appropriate wake events and then programming the SLP_TY Px field with the desired sleeping state and
then setting the SLP_ENX bit. The system will then enter a sleeping state; when one of the enabled wake
events occurs, it will transition the system back to the working state (for more information, see section 9,
“Waking and Sleeping”).

Another global state transition option whileinthe GO “working” state isto enter the G2 “soft off” or the G3
“mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring the
system down in an orderly fashion (unloading applications, closing files, and so on). The policy for these
types of transitions can be associated with the ACPI power button, which when pressed generates an event
to the power button driver. When OSPM is finished preparing the operating environment for a power loss,
it will either generate a pop-up message to indicate to the user to remove power, in order to enter the G3
“Mechanical Off” state, or it will initiate a G2 “ soft-off” transition by writing the value of the S5 “ soft of f”
system state to the SLP_TY Px register and setting the SLP_EN bit.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 49

The G1 sleeping state is represented by five possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The sleeping state differsfrom the
working state in that the user’ s operating environment is frozen in alow-power state until awakened by an
enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context and
wake sequences (for more information, see section 9, Waking and Sleeping”).

The G2 “soft off” stateisan OSinitiated system shutdown. This state isinitiated similar tothe sleeping
state transition (SLP_TY Px is set to the S5 value and setting the SLP_EN bit initiates the sequence).
Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI -only machine will re-enter
the GO state directly (hardware returns the SCI_EN bit set), while an ACPI/L egacy machine transitions to
the Legacy state (SCI_EN bit isclear).

Power
Failure

Legacy
Boot
(SCI_EN=0)

ACPI
Boot
(SCI_EN=1)

S4BIOS_F BIOS
S4BIOS R:Q Routine

ACPI_ENABLE

(SCI_EN=1) \

GO (S0) - SLP TYPre(s189
Working N v
\ACPI_DISABLE _

(SCI_EN=0)

ACPI

Boot
Legacy (SCI_EN=1)
Boot
(SCLEN-0) SLP_TYPx=S5
and
SLP_EN
or
PWRBTN_OR

Figure4-2 Global Statesand Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control |ogic to implement
this behavior model. Events are used to notify OSPM that some action is needed, and control logic is used
by OSPM to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events. A
hardware event is one that causes the hardware to unconditionally perform some operation. For example,
any wake event will sequence the system from a sleeping state (S1, S2, S3, and $4 in the global G1 state) to
the GO working state (see Figure 9-1).

Aninterrupt event causes the execution of an event handler (AML code or an ACPl-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or
an ACPI -aware driver acts as the event handler. For generic logic events OSPM will schedule the execution
of an OEM -supplied AML control method associated with the event.

Compag/I ntel/Microsoft/Phoenix/T oshiba

50 Advanced Configuration and Power Interface Specification

For legacy systems, an event normally generates an OS-transparent interrupt, such asa System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible
interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want to support
both legacy operating systems and ACPI systems support away of re-mapping the interrupt events between
SMIsand SCIswhen switching between ACPI and legacy models. Thisisillustrated in the following block
diagram.

Legacy Only Event Logic

D?I_\{ice ldle ACPIl/Legacy Event Logic
Imers ACPI Only Event Logic

Device _ ACPIl/Legacy Generic Control Features
Traps ACPIl/Legacy Fixed Control Features
GLBL STBY
Timer

SCI_EN SMI Arbiter SMI#
PWRBTN

User ﬁ _
LID Interface SCI Arbiter SCl#
SICEIAVEUG
Thermal
THRM Logic State machine

Power Plane

pock Hardware —— SMI Event Control
STS_CHG vents

Events Generic Space
SCI/SMI Events

— Wake-up Events CPU Clock
Control

RI

Figure4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model

This examplelogic illustrates the event model for a sample platform that supports both legacy and ACPI
event models. This example platform supports anumber of external eventsthat are power-related (power
button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The logic
represents the three different types of events:
- OSTransparent Events. These events represent OEM -specific functions that have no OS support and
use software that can be operated in an OS-transparent fashion (that is, SMIs).
Interrupt Events. These eventsrepresent features supported by ACPI-compatible operating systems,
but are not supported by legacy operating systems. When alegacy OSisloaded, these events are
mapped to the transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped
to an OS-visible shareable interrupt (SCI#). Thislogic is represented by routing the event logic through
the decoder that routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI#
arbiter when the SCI_EN bit is set.
Har dwar e events. These events are used to trigger the hardware to initiate some hardware sequence
such as waking, resetting, or putting the machine to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power management
models use the idle timers to determine when a device should be placed in alow-power state becauseit is
ide—that is, the device has not been accessed for the programmed amount of time. The devicetraps are
used to indicate when adevice in alowpower state is being accessed by OSPM. The global standby timer
is used to determine when the system should be allowed to go into a sleeping state because it isidle—that
is, the user interface has not been used for the programmed amount of time.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 51

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI mode.
Thiswork is now handled by different software structuresin an ACPI -compatible OS. For example, the
driver model of an ACPI-compatible OSis responsible for placing its device into alow-power state (D1,
D2, or D3) and transitioning it back to the On state (D0) when needed. And OSPM is responsible for
determining when the system isidle by profiling the system (using the PM Timer) and other knowledge it
gains through its operating structure environment (which will vary from OS to OS). When the systemis
placed into the ACPI mode, these events no longer generate SMIs, as drivers now handle this function.
These events are disabled through some OEM -proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and |legacy models (docking,
the power button, and so on) and this type of interrupt event changes to an SCI event when enabled for
ACPI. The ACPI OSwill generate arequest to the platform’s hardware (BIOS) to enter into the ACPI
mode. The BIOS setsthe SCI_EN bhit to indicate that the system has successfully entered into the ACPI
mode, so thisis a convenient mechanism to map the desired interrupt (SMI or SCI) for these events (as
shownin Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the
power management timer (PM Timer). Thisisafree running timer that the ACPI OS usesto profile system
activity. The frequency of thistimer is explicitly defined in this specification and must be implemented as
described.

Although the ACPI architecture reuses most legacy hardware asis, it does place restrictions on where and
how the programming model is generated. If used, all fixed hardware features are implemented as
described in this specification so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace.
These interfaces can be very flexible; however, their useis limited by the defined ACPI control methods
(for more information, see section 10, “ ACPI-Specific Device Objects’). Generic hardware usually controls
power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt status bits can be
accessed via generic hardware interfaces; however, they have a*“ parent” interrupt status bit in the GP_STS
register. ACPI defines five address spaces where generic hardware may exist. These include:
- System /O space

System memory space

PCI configuration space

Embedded controller space

System Management Bus (SMBus) space

Generic hardware power management features can be implemented using spare |/O portsresiding in any of
these I/O spaces. The ACPI specification defines an optional embedded controller and SMBus interfaces
needed to communicate with these associated 1/0 spaces.

45.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and datawritesto them
have no side affects. OSPM implementations must write zeros to reserved bits in enable and status registers
and preserve bitsin control registers, and they will treat these bits asignored.

Compag/I ntel/Microsoft/Phoenix/T oshiba

52 Advanced Configuration and Power Interface Specification

4.5.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks off
ignored bits prior to operating on the result. When software writes to aregister with ignored bit fields, it
preserves theignored bit fields.

4.5.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by softwarewritingal
to their bit position. Reads to write-only bit positions generate undefined results. Upon reads to registers
with write-only bits, software masks out all write-only bits.

4.5.4 Cross Device Dependencies

Cross Device Dependency is acondition in which an operation to a device interferes with the operation of
other unrelated devices, or allows other unrelated devices to interfere with its behavior. This conditionis
not supportable and can cause platform failures. ACPI provides no support for cross device dependencies
and suggests that devices be designed to not exhibit this behavior. The following two examples describe
cross device dependencies:

45.4.1 Example 1: Related Device Interference

This exampleillustrates a cross device dependency where adevice interferes with the proper operation of
other unrelated devices. Device A has a dependency that when it is being configured it blocks all accesses
that would normally be targeted for Device B. Thus, the device driver for Device B cannot access Device B
while Device A is being configured; therefore, it would need to synchronize access with the driver for
Device A. High performance, multithreaded operating systems cannot perform this kind of synchronization
without seriously impacting performance.

To further illustrate the point, assume that device A isaserial port and device B isahard drive controller.

If these devices demonstrate this behavior, then when a software driver configures the serial port, accesses
to the hard drive need to block. This can only be doneif the hard disk driver synchronizes access to the disk
controller with the serial driver. Without this synchronization, hard drive datawill be lost when the serial
port is being configured.

45.4.2 Example 2: Unrelated Device Interference

This exampleillustrates a cross-device dependency where a device demonstrates a behavior that allows
other unrelated devicesto interfere with its proper operation. Device A exhibits a programming behavior
that requires atomic back-to-back write accesses to successfully writeto itsregisters; if any other platform
accessis ableto break between the back-to-back accesses, then the write to device A isunsuccessful. If the
device A driver is unableto generate atomic back-to-back accessesto its device, then it relies on software
to synchronize accessesto its device with every other driver in the system; then a device cross dependency
is created and the platform is prone to device A failure.

Compag/I ntel/Microsoft/Phoenix/Toshiba

4.6 ACPI Hardware Features
This section describes the different hardware features defined by the ACPI interface. These features are

categorized as the following:
Fixed Hardware Features

Generic Hardware Features

ACPI Hardware Specification 53

Fixed hardware features reside in a number of the ACPI-defined address spaces at the |ocations described
by the ACPI programming model. Generic hardware features reside in one of five address spaces (system
1/0, system memory, PCI configuration, embedded controller, or serial device I/O space) and are described
by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware
features are optional, if implemented they must be implemented as described. Thisis necessary because a
standard OS driver istalking to these registers and expects the defined behavior. Fixed functional hardware
provides functional equivalents of the fixed hardware feature interfaces as described in section 4.1.1,

“Functional Fixed Hardware.”

Generic hardware feature implementation is flexible. Thislogic is controlled by OEM -supplied AML code
(for more information, see section 5, “ ACPI Software Programming Model”), which can be written to
support awide variety of hardware. Also, ACPI provides specialized control methods that provide
capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A good
understanding of this section and section 5 of this specification will give designers a good understanding of
how to design hardware to take full advantage of an ACPI -compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many

types of hardware not listed.

Table4-1 Feature/Programming Model Summary

Feature Name

Description

Programming M odel

Power Management Timer

24-hit/32-bit free running timer.

Fixed Hardware Feature Control
Logic

system between the working and
sleeping state.

Power Button User pushes button to switch the Fixed Hardware Event and Control
system between the working and Logic or Generic Hardware Event
sleeping states. and Logic

Sleep Button User pushes button to switch the Fixed Hardware Event and Control

Logic or Generic Hardware Event
and Logic

Power Button Override

User sequence (press the power
button for 4 seconds) to turn off a
hung system.

Real Time Clock Alarm

Programmed time to wake the
system.

Optional Fixed Hardware Event?

Sleep/Wake Control Logic

L ogic used to transition the system
between the sleeping and
working.states.

Fixed Hardware Control and Event
Logic

2 RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

Compag/I ntel/Microsoft/Phoenix/T oshiba

54 Advanced Configuration and Power Interface Specification

Table4-1 Feature/Programming Model Summary (continued)
Feature Name Description Programming M odel
Embedded Controller ACPI Embedded Controller protocol | Generic Hardware Event Logic,
Interface and interface, as described in section | must reside in the general-purpose

13, “ACPI Embedded Controller
Interface Specification.”

register block

Legacy/ACPI Select

Status bit that indicates the systemis
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

C3 power state.

Lid switch Button used to indicate whether the Generic Hardware Event Feature
system’slid is open or closed
(mobile systems only).

C1 Power State Processor instruction to place the Processor ISA
processor into alow-power state.

C2 Power Control Logic to place the processor into a Fixed Hardware Control Logic
C2 power state.

C3 Power Control Logic to place the processor into a Fixed Hardware Control Logic

Thermal Control

Logic to generate thermal events at
specified trip points.

Generic Hardware Event and
Control Logic (See description of
thermal logic in section 3.9,
“Battery Management.”)

Device Power Management

Control logic for switching between
different device power states.

Generic Hardware control logic

AC Adapter

Logic to detect the insertion and
removal of the AC adapter.

Generic Hardware event logic

Docking/device insertion
and removal

Logic to detect device insertion and
removal events.

Generic Hardware event logic

4.7 ACPI Register Model

ACPI hardwareresidesin one of six address spaces:

System /O

System memory

PCI configuration
SMBus

Embedded controller

Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The
ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed hardware
registers are required to implement ACPI -defined interfaces. The generic hardware registers are needed for
any events generated by value-added hardware.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 55

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in
memory at boot-up) that contains alist of pointersto the different fixed hardware register blocks used by
OSPM. The bits within these registers have attributes defined for the given register block. The types of
registersthat ACPI definesare:

Status/Enable Registers (for events)

Control Registers

If aregister block is of the status/enable type, then it will contain aregister with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation definition
that needs to be followed (unless otherwise noted), which isillustrated by the following diagram:

Status Bit

Event Input >—|Z|—D—> Event Output

Enable BitJ;

Figure4-4 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be
cleared by software writing a1 to its bit position. Also, the enable bit has no effect on the setting or
resetting of the status bit; it only determinesif the SET status bit will generate an “ Event Output,” which
generates an SCI when set if its enable bit is set.

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each bit location within aregister grouping is fixed and cannot
be changed. The bits within aregister grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within aregister grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chipsto the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats aregister grouping as a single register; but located in multiple places. To read aregister
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logicaly “OR” the two results together (the SLP_TY P field is an exception to this rule). Reserved hits, or
unused bits within aregister block always return zero for reads and have no side effects for writes (which is
areguirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object_Sx
containsaSLP_TYPaand aSLP_TYPbfield. That is, the object returns a package with two integer values
of 0-7 init. OSPM will alwayswritethe SLP_TY Pavalueto the“A” register block followed by the
SLP_TYPb value within thefield to the “B” register block. All other bit locations will be written with the
same value. Also, OSPM does not read the SLP_TY Px value but throws it away.

3% & % o
i i ii i Register
Grouping

Figure4-5 Example Fixed Hardware Feature Register Grouping

Register Block A

As an example, the above diagram represents a register grouping consisting of register block A and register
block b. Bits“a’ and “d” are implemented in register block B and register block A returns a zero for these
bit positions. Bits“b”, “c” and “€” areimplemented in register block A and register block B returns a zero
for these bit positions. All reserved or ignored bits return their defined ACPI values.

Compag/I ntel/Microsoft/Phoenix/T oshiba

56 Advanced Configuration and Power Interface Specification

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does alogical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer from
the FADT. These addresses are set by the OEM as static resources, so they are never changed—the Plug
and Play driver cannot re-map ACPI resources. The following register blocks are defined:

Registers Register Blocks Register Groupings
Pmi‘fé\? ~—PMia_EVT_BLK
PM1b STS :)— PM1 EVT Grouping
PM1b EN —_F—pPM1b_EVT BLK
PMla CNT PM1la_CNT_BLK
:)— PM1 CNT Grouping
PM1b_CNT PM1b_CNT_BLK
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT
P_LVL2 37 P_BLK Processor Block
P_LVL3
GGPIEEESEI\SI :)7 GPEO_BLK General Purpose Event 0
= Block
GPE1_STS :)
GPE1 _EN GPE1_BLK Glemle(ral Purpose Event 1
Bloc

Figure4-6 Register Blocksversus Register Groupings

The PM1 EVT grouping consists of the PM1a EVT and PM1b_EVT register blocks, which contain the
fixed hardware feature event bits. Each event register block (if implemented) contains two registers: a
status register and an enabl e register. Each register grouping has a defined bit position that cannot be
changed; however, the bit can be implemented in either register block (A or B). The A and B register
blocks for the events allow chipsetsto vary the partitioning of eventsinto two or more chips. For read
operations, OSPM will generate aread to the associated A and B registers, OR the two values together, and
then operate on this result. For write operations, OSPM will write the value to the associated register in
both register blocks. Therefore, there are anumber of rules to follow when implementing event registers:

Reserved or unimplemented bits always return zero (control or enable).

Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PMla CNT_BLK and PM1b CNT_BLK register blocks. Each register block is associated with asingle
control register. Each register grouping has a defined bit position that cannot be changed; however, the bit
can be implemented in either register block (A or B). There are a number of rules to follow when
implementing CNT registers:

Reserved or unimplemented bits always return zero (control or enable).

Writes to reserved or unimplemented bits have no affect.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 57

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function. The
general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere; however, the top-
level generic event resides in one of the general-purpose register blocks. Any generic feature event status
not in the general-purpose register space is considered a child or sibling status bit, whose parent status bit is
in the general-purpose event register space. Noticethat it is possible to have N levels of general-purpose
events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPEO_BLK or the GPE1 BLK.
Each register block is pointed to separately from within the FADT. Each register block is further broken
into two registers. GPEx_STS and GPEx_EN. The status and enabl e registers in the general-purpose event
registersfollow the event model for the fixed hardware event registers.

4.7.1 ACPI Register Summary
The following tables summarize the ACPI registers:
Table4-2 PM1 Event Registers

Register Size (Bytes) Address (relativeto register block)
PMla STS | PM1 EVT LEN/2 <PMla EVT BLK >

PM1la EN PM1 EVT LEN/2 <PM1la EVT BLK >+PM1 EVT LEN/2
PM1b STS | PM1 EVT LEN/2 <PM1b EVT BLK >

PM1b_EN PM1 _EVT_LEN/2 <PM1b_EVT _BLK >+PM1 EVT LEN/2

Table4-3 PM1 Control Registers

Register Size (Bytes) Address (relativeto register block)
PM1 CNTa PM1 CNT LEN <PMla CNT BLK >
PM1 CNTb PM1 CNT_LEN <PM1b CNT_BLK >

Table4-4 PM2 Control Register

Register Size (Bytes) Address (relativeto register block)

PM2 CNT PM2 CNT LEN <PM2 CNT BLK >

Table4-5 PM Timer Register

Reqister Size (Bytes) Address (relativeto register block)

PM_TMR PM_TMR LEN <PM_TMR BLK >

Table4-6 Processor Control Registers

Register Size (Bytes) Address (relativeto register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object (See section 8.3.1,
“ PTC [Processor Throttling Control].”)

P LVL2 1 <P BLK>+4h

P LVL3 1 <P BLK>+5h

Compag/I ntel/Microsoft/Phoenix/T oshiba

58 Advanced Configuration and Power Interface Specification

Table4-7 General-Purpose Event Registers

Register Size (Bytes) Address (relativeto register block)
GPEQ_STS GPEO_LEN/2 <GPEQ_BLK>

GPEO_EN GPEO_LEN/2 <GPEQ_BLK>+GPEQ_LEN/2
GPEL STS | GPEL LEN/2 <GPE1 BLK>

GPEL EN GPE1 LEN/2 <GPE1 BLK>+GPE1 LEN/2

4.7.1.1 PM1 Event Registers

The PM 1 event register grouping contains two register blocks: thePM1a EVT_BLK isarequired register
block when the following ACPI interface categories are required by a class specific platform design guide:
- Power management timer control/status

Processor power state control/status

Global Lock related interfaces

Power or Sleep button (fixed register interfaces)

System power state controls (sleeping/wake control)

ThePM1b_EVT_BLK isan optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b EVT_BLK isnot supported, its pointer contains avalue of zerointhe FADT.

Each register block in the PM 1 event grouping contains two registers that are required to be the same size:
the PM1x_STSand PM1x_EN (wherex can be“a’ or “b"). The length of theregistersisvariableand is
described by the PM1_EVT_LEN field in the FADT, which indicates the total length of the register block
in bytes. Hence if alength of “4” is given, thisindicates that each register contains two bytes of 1/0 space.
The PM 1 event register block has a minimum size of 4 bytes.

4.7.1.2 PM1 Control Registers

The PM 1 control register grouping containstwo register blocks: the PM1a CNT_BLK isarequired
register block when the following ACPI interface categories are required by a class specific platform design
guide:

SCI/SMI routing control/status for power management and general-purpose events

Processor power state control/status

Global Lock related interfaces

System power state controls (sleeping/wake control)

ThePM1b_CNT_BLK isan optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to alow the PM 1 event bitsto be partitioned between two chips. If the
PM1b _CNT_BLK isnot supported, its pointer containsavalue of zerointhe FADT.

Each register block in the PM 1 control grouping contains asingle register: the PM1x_CNT. The length of
theregister isvariable and is described by the PM1_CNT_LEN field in the FADT, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register

The PM2 control register is contained in the PM2_CNT_BLK register block. The FADT contains alength
variable for thisregister block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register
(the only register in this register block). Thisregister block is optional, if not supported its block pointer
and length contains a val ue of zero.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 59

4.7.1.4 PM Timer Register

The PM timer register iscontained inthe PM_TMR_BLK register block, which isarequired register block
when the power management timer control/status ACPI interface category isrequired by a class specific
platform design guide.

Thisregister block contains the register that returns the running val ue of the power management timer. The
FADT also contains alength variable for this register block (PM_TMR_LEN) that is equal to the sizein
bytes of the PM_TMR register (the only register in this register block).

4.7.1.5 Processor Control Block (P_BLK)

Thereisan optional processor control register block for each processor in the system. Asthisisa
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains the
processor control register (P_CNT -a 32-bit performance control configuration register), and the P_LVL2
and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controlsthe behavior of the
processor clock logic for that processor, the P_L VL2 register is used to place the CPU into the C2 state,
and the P_L VL3 register is used to place the processor into the C3 state.

4.7.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level eventsfor all generic features. To facilitate the
flexibility of partitioning the root events, ACPI providesfor two different general-purpose event blocks:
GPEQO BLK and GPE1 BLK. These are separate register blocks and are not a register grouping, because
thereis no need to maintain an orthogonal bit arrangement. Also, each register block containsits own
length variable in the FADT, where GPEO_LEN and GPE1_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (wherex is0 or 1).
The length of the GPEO_STS and GPEO_EN registersis equal to half the GPEO_LEN. The length of the
GPE1 _STSand GPEL1 _EN registersis equal to half the GPEL_LEN. If ageneric register block is not
supported then its respective block pointer and block Iength valuesin the FADT table contain zeros. The
GPEOQO_LEN and GPE1_LEN do not need to be the same size.

4.7.2 Fixed Hardware Features
This section describes the fixed hardware features defined by ACPI.

Compag/I ntel/Microsoft/Phoenix/T oshiba

60 Advanced Configuration and Power Interface Specification

4.7.2.1 Power Management Timer

The ACPI specification requires a power management timer that provides an accurate time value used by
system software to measure and profile system idleness (along with other tasks). The power management
timer provides an accurate time function while the system isin the working (GO) state. To allow software to
extend the number of bitsin the timer, the power management timer generates an interrupt when the last bit
of the timer changes (from 0 to 1 or 1to 0). ACPI supports either a 24-bit or 32-bit power management
timer. The PM Timer is accessed directly by OSPM, and its programming model is contained in fixed
register space. The programming model can be partitioned in up to three different register blocks. The
event bits are contained in the PM1_EV T register grouping, which has two register blocks, and the timer
value can be accessed through the PM_TMR_BLK register block. A block diagram of the power
management timer isillustrated in the following figure:

TMR_STS
e PM1x_STS.0
SR PMTMR_PME
3579545 MHZ>—B115(23/31-0)
- 24/32 TMR_EN
PM1x_EN.O

TMR_VAL
PM_TMR.0-23/0-31

Figure4-7 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checksthe FADT to determine whether the PM Timer isa 32-bit or
24-bit timer. The programming model for the PM Timer consists of event logic, and aread port to the
counter value. The event logic consists of an event status and enable bit. The status bit is set any time the
last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the TMR_EN bit is set, then the
setting of the TMR_STSwill generate an ACPI event inthe PM1_EVT register grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate alarger timer.

OSPM usestheread-only TMR_VAL field (inthe PM TMR register grouping) to read the current value of
the timer. OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an initial
TMR_VAL upon loading OSPM and assumes that the timer is counting. It is allowabl e to stop the Timer
when the system transitions out of the working (G0/S0) state. The only timer reset requirement is that the
timer functions while in the working state.

The PM Timer’s programming model isimplemented as a fixed hardware feature to increase the accuracy
of reading the tiner.
4.7.2.2 Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the GO working
state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines arecommended
mechanism to unconditionally transition the platform from a hung GO working state to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such, these
ACPI events are associated with buttons in the ACPI specification.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 61

The ACPI specification supports two button models:
A single-button model that generates an event for both sleeping and entering the soft-off state. The
function of the button can be configured using OSPM UI.
A dual-button model where the power button generates a soft-off transition request and a sleeping
button generates a sleeping transition request. The type of button implies the function of the button.

Control of these button eventsis either through the fixed hardware programming model or the generic
hardware programming model (control method based). The fixed hardware programming model has the
advantage that OSPM can access the button at any time, including when the system is crashed. In a crashed
system with afixed hardware power button, OSPM can make a*“best” effort to determine whether the
power button has been pressed to transition to the system to the soft-off state, because it doesn’t require the
AML interpreter to access the event hits.

4.7.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-button
model, the user button acts as both a power button for transitioning the system between the GO and G2
states and a sleeping button for transitioning the system between the GO and G1 states. The action of the
user pressing the button is determined by software policy or user settings. In the dual-button model, there
are separate buttons for sleeping and power control. Although the buttons still generate eventsthat cause
software to take an action, the function of the button is now dedicated: the sleeping button generates a
sleeping request to OSPM and the power button generates awaking request.

Support for a power button isindicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Table4-8 Power Button Support

Indicated Support PWR BUTTON Flag Power Button Device Object
Fixed hardware power button Clear Absent
Control method power button Set Present

The power button can also have an additional capability to unconditionally transition the system from a
hung working state to the G2 soft-off state. In the case where OSPM event handler is no longer able to
respond to power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state. This feature can be used when the platform
doesn’'t have amechanical off button, which can also provide this function. ACPI defines that holding the
power button active for four seconds or longer will generate a power button override event.

47.2.2.1.1 Fixed Power Button

Deb » PWRBTN
PWRBTN# ebounce PWRBTN P Over-ride
Logic Statemachine

PWRBTN Event

PWRBTN_STS
PM1x_STS.8

PWRBTN_EN
PM1x_EN.8

Figure4-8 Fixed Power Button Logic

The fixed hardware power button has its event programming model inthe PM1x_EVT_BLK. Thislogic
consists of asingle enable bit and sticky status bit. When the user presses the power button, the power
button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is
set and the power button status bit is set (PWRBTN_STS) due to a button press while the system isin the
GO state, then an SCI is generated. OSPM responds to the event by clearing the PWRBTN_STS bit. The
power button logic provides debounce logic that setsthe PWRBTN_STS bit on the button press “edge.”

Compag/I ntel/Microsoft/Phoenix/T oshiba

62 Advanced Configuration and Power Interface Specification

Whilethe systemisin the G1 or G2 global states (S1, S2, S3, $4 or S5 states), any further power button
press after the button press that transitioned the system into the sleeping state unconditionally setsthe
power button status bit and wakes the system, regardless of the value of the power button enable bit. OSPM
responds by clearing the power button status bit and waking the system.

47.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This allows
the power button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the power button isimplemented using generic hardware, then the
OEM needsto define the power button as a device with an _HID object value of “PNPOCOC,” which then
identifies this device as the power button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a power button event was generated. While the system isin the working
state, a power button pressis auser request to transition the system into either the sleeping (G1) or soft-off
state (G2). In these cases, the power button event handler issues the Notify command with the device
specific code of 0x80. Thisindicatesto OSPM to pass control to the power button driver (PNPOCOC) with
the knowledge that atransition out of the GO state is being requested. Upon waking from a G1 sleeping
state, the AML event handler generates a notify command with the code of Ox2 to indicate it was
responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform and
only requiresan _HID. An example definition follows.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 63

This example ASL code performsthe following:
- Createsadevice named “PWRB” and associates the Plug and Play identifier (through the _HID object)
of “PNPOCOC.”
The Plug and Play identifier associates this device object with the power button driver.
Creates an operational region for the control method power button’ s programming model:
System |/O space at 0x200.
Fields are not accessed are written aszeros. These status bits clear upon writing a 1 to their bit
position, therefore preserved would fail in this case.
Creates a field within the operational region for the power button status bit (called PBP). In this case
the power button status bit is achild of the general-purpose event status bit 0. When thisbit isset, itis
the responsibility of the ASL-codeto clear it (OSPM clears the general-purpose status bits). The
address of the status bit is 0x200.0 (bit O at address 0x200).
Creates an additional status bit called PBW for the power button wake event. Thisisthe next bit and its
physical address would be 0x200.1 (bit 1 at address 0x200).
Generates an event handler for the power button that is connected to bit O of the general-purpose event
status register 0. The event handler does the following:
Clearsthe power button status bit in hardware (writesaoneto it).
Notifies OSPM of the event by calling the Notify command passing the power button object and the
device specific event indicator 0x80.

/1 Define a control nethod power button
Devi ce(\ _SB. PWRB) {

Nanme(_HI D, El SAl D(“PNPOCOC'))

Narre(_PRW Package() {0, 0x4})

}

Oper at i onRegi on(\ Pho, System O, 0x200, 0x1)
Fi el d(\ Pho, ByteAcc, NoLock, WiteAsZeros){

PBP, 1, /1 sleep/off request
PBW 1 /1 wakeup request
} /1 end of power button device object
Scope(_GPE) { /1 Root level event handlers
Met hod(_LO0){ // uses bit 0 of GPO_STS register
I f (PBP){
St ore(One, PBP) /1 clear power button status
Not i fy(\ _SB. PARB, 0x80) /1l Notify OB of event
}
I F(PBW {

Store(One, PBW
Noti fy(\ _SB. PWRB, 0x2)

}
} // end of _LOO handler
} // end of _GPE scope

47.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four seconds
while the system isin the working state, a hardware event is generated and the system will transition to the
soft-off state. This hardware event is called a power button override. Inreaction to the power button
override event, the hardware clears the power button status bit (PWRBTN_STS).

Compag/I ntel/Microsoft/Phoenix/T oshiba

64 Advanced Configuration and Power Interface Specification

4.7.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request OSPM to
transition the platform between the GO working and G1 sleeping states. Support for asleep buttonis
indicated by a combination of the SLEEP_BUTTON flag and the sleep button device object:

Table4-9 Sleep Button Suppor t

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object
No sleep button Set Absent
Fixed hardware sleep button Clear Absent
Control method sleep button Set Present

4.7.2.2.2.1 Fixed Hardware Sleeping Button

SLPBTN_STS
PMix_STS.9

SLPBTN# Defgurcce >O StatSLPBT:"
g e machine SLPBTN Event
SLPBTN_EN
PM1x_EN.9

Figure4-9 Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model in the PM1x_EVT_BLK. Thislogic
consists of asingle enable bit and sticky status bit. When the user presses the sleep button, the sleep button
status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button enable bit (SLPBTN_EN)
is set, and the sleep button status bit is set (SLPBTN_STS, due to abutton press) while the systemisin the
GO state, then an SCI is generated. OSPM responds to the event by clearing the SLPBTN_STS bit. The
sleep button logic provides debounce logic that setsthe SLPBTN_STS bit on the button press “ edge.”

Whilethe systemis sleeping (in either the SO, S1, S2, S3 or $4 states), any further sleep button press (after
the button press that caused the system transition into the sleeping state) sets the sleep button status bit
(SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by clearing the sleep
button status bit and waking the system.

4.7.2.2.2.2 Control Method Sleeping Button

The sleep button programming model can also use the generic hardware programming model. This allows
the sleep button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the sleep button isimplemented via generic hardware, then the OEM
needs to define the sleep button as a device with an _HID object value of “PNPOCOE”, which then
identifies this device as the sleep button to OSPM. The AML event handler then generatesa Notify
command to notify OSPM that a sleep button event was generated. While in the working state, a sleep
button pressis auser request to transition the system into the sleeping (G1) state. In these cases the sleep
button event handler issues the Notify command with the device specific code of 0x80. Thiswill indicate to
OSPM to pass control to the sleep button driver (PNPOCOE) with the knowledge that the user is requesting
atransition out of the GO state. Upon waking-up from a G1 sleeping state, the AML event handler
generates a Notify command with the code of 0x2 to indicate it was responsible for waking the system.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 65

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform and
only requiresan _HID. An example definition is shown below.

The AML code below does the following:

Creates adevice named “SLPB” and associates the Plug and Play identifier (through the _HID object)

of “PNPOCOE.”

The Plug and Play identifier associates this device object with the sleep button driver.

Creates an operational region for the control method sleep button’s programming model:

System I/O space at 0x201.

Fieldsthat are not accessed are written as* 1s” (these status bits clear upon writing a“1” to their bit
position, hence preserved would fail in this case).

Creates afield within the operational region for the sleep button status bit (called PBP). In this case the

sleep button status bit isachild of the general-purpose status bit 0. When thisbit is set it isthe

responsibility of the AML codeto clear it (OSPM clears the general-purpose status bits). The address

of the status hit is 0x201.0 (bit O at address 0x201).

Creates an additional status bit called PBW for the sleep button wake event. Thisisthe next bit and its

physical address would be 0x201.1 (bit 1 at address 0x201).

Generates an event handler for the sleep button that is connected to bit O of the general-purpose status

register 0. The event handler does the following:

Clearsthe sleep button status bit in hardware (writesa“1” toit).

Notifies OSPM of the event by calling the Notify command passing the sleep button object and the
device specific event indicator 0x80.

/1 Define a control method sleep button
Devi ce(\ _SB. SLPB){
Nanme(_HI D, El SAl D(“ PNPOCOE"))
Nane(_PRW Package(){0x01, 0x04})
Qper at i onRegi on(\ Boo, System O, 0x201, 0x1)
Fi el d(\ Boo, ByteAcc, NoLock, WiteAsZeros){

SBP, 1, /1 sleep request
SBW 1 /1 wakeup request
} /1 end of field definition
}
Scope(_GPE) { /1 Root |evel event handlers
Met hod(_LO1){ // uses bit 1 of GPO_STS register
I f (SBP) {
St ore(One, SBP) /1 clear sleep button status
Noti fy(\ _SB. SLPB, 0x80) /1 Notify OS of event
}
I F(SBW {

St ore(One, SBW
Noti fy(\ _SB.SLPB, 0x2)

}
} // end of _LO1 handler
} /1 end of \ _GPE scope

Compag/I ntel/Microsoft/Phoenix/T oshiba

66 Advanced Configuration and Power Interface Specification

4.7.2.3 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-$4) or soft-off state (S5) and will wake the system back to the working state
upon awake event. Notice that the S4BIOS state is entered in a different manner (for more information, see
section 9.1.4.2, “The S4BIOS Transistion”).

SLP_EN SLP_TYP:3
PM1x_CNT.S413 PM1x_CNT.S4.[10-12]
< WAK_STS
PM1x_STS.S0.15
Sleeping H
"OR" orall
Wake Wakeup/
Events
Sleep
Logic
PWRBTN_OR

Figure4-10 Sleeping/Wake Logic

Thelogic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TY Px). The type
of sleep state desired is programmed into the SLP_TY Px field and upon assertion of the SLP_EN the
hardware will sequence the system into the defined sleeping state. OSPM gets valuesfor the SLP_TY Px
field from the_Sx objects defined in the static definition block. If the object is missing OSPM assumes the
hardware does not support that sleeping state. Prior to entering the desired sleeping state, OSPM will read
the designated \ Sx object and place thisvalueinthe SLP_TYPfield.

Additionally ACPI defines afail -safe Off protocol called the “power button override,” which allows the
user to initiate an Off sequence in the case where the system software is no longer able to recover the
system (the system has hung). ACPI definesthat this sequence beinitiated by the user pressing the power
button for over 4 seconds, at which point the hardware unconditionally sequences the system to the Off
state. Thislogic is represented by the PWRBTN_OR signal coming into the sleep logic.

Whilein any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for OSPM to “spin-
on” after setting the SLP_EN/SLP_TY P bit fields. When waking from the S1 sleeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-S5 states execution
control is passed to the BIOS software (execution begins at the CPU’ s reset vector). The WAK_STS bit
provides a mechanism to separate OSPM’ s sleeping and waking code during an S1 sequence. When the
hardware has sequenced the system into the sleeping state (defined here as the processor is no longer able
to execute instructions), any enabled wake event is allowed to set the WAK _STS bit and sequence the
system back on (to the GO state). If the system does not support the S1 sleeping state, the WAK _STS bit
can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. Thisis accomplished by waking the system;
OSPM programs the new sleep stateinto the SLP_TY P field, and then setsthe SLP_EN bit—placing the
system again in the sleeping state.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 67

47.2.4 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate awake event when the system isin a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STSand RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC_STSand RTC_EN bits are not supported, OSPM will attempt to identify the RTC as apossible
wake source; however, it might miss certain wake events. If implemented the RTC wake feature is required
to work in the following sleeping states: S1-S3. $4 wake is optional and supported through the RTC_$4
flag within the FADT (if set, then the platform supports RTC wake in the $4 state)®.

When the RTC generates an alarm event the RTC_STS bit will be set. If the RTC_EN bit isset, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

RTC_STS
PM1x_STS.10

Real Time Clock
(RTC) X RTC Wake-up
Event
R

TC_EN
PM1x_EN.10

Figure4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIXED_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status
and enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. If the fixed hardware feature event bits are not supported, then
OSPM will attempt to determine this by reading the RTC' s status field.

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-
hour alarm). Optional extensions are provided for the following features:
- Day Alarm. The DAY_ALRM field pointsto an optional CMOS RAM location that selects the
day within the month to generate an RTC alarm.
Month Alarm. The MON_ALRM field points to an optional CMOS RAM location that selects
the month within the year to generate an RTC alarm.
Centenary Value. The CENT field points to an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).

3 Notice that the G2/S5 “ soft off” and the G3 “mechanical off” states are not sleeping states. The OS will
disablethe RTC_EN hit prior to entering the G2/S5 or G3 states regardless.

Compag/I ntel/Microsoft/Phoenix/T oshiba

68 Advanced Configuration and Power Interface Specification

The RTC_STShit is set through the RTC interrupt (IRQ8 in | A-PC architecture systems). OSPM will

insure that the periodic and update interrupt sources are disabled prior to sleeping. Thisallowsthe RT C's

interrupt pin to serve as the source for the RTC_STS bit generation.
Table4-10 Alarm Field Decodings within the FADT

Field

Value

Address (Location) in RTC CMOS
RAM (Must be Bank 0)

DAY_ALRM

Eight bit value that can represent
0x01-0x31 daysin BCD or 0x01-
Ox1F daysin binary. Bits 6 and 7 of
thisfield are treated as Ignored by
software. The RTC isinitialized
such that thisfield containsa“don’t
care” value when the BIOS
switches from legacy to ACPI
mode. A don’t care value can be
any unused value (not 0x1-0x31
BCD or 0x01-0x1F hex) that the
RTC reverts back to a 24 hour
alarm.

The DAY_ALRM fieldinthe FADT will
contain anon-zero value that represents
an offset into the RTC's CMOS RAM
areathat contains the day alarm value. A
value of zero inthe DAY_ALRM field
indicates that the day alarm feature is not
supported.

MON_ALRM

Eight bit value that can represent
01-12 months in BCD or 0x01-0xC
months in binary. The RTC is
initialized such that thisfield
containsadon’t care value when the
BI1OS switches from legacy to ACPI
mode. A “don’t care” value can be
any unused value (not 1-12 BCD or
X01-xC hex) that the RTC reverts
back to a 24 hour alarm and/or 31
day alarm).

The MON_ALRM field inthe FADT will
contain anon-zero value that represents
an offset into the RTC's CMOS RAM
areathat contains the month alarm value.
A value of zero inthe MON_ALRM field
indicates that the month alarm feature is
not supported. If the month alarm is
supported, the day alarm function must
also be supported.

CENTURY

8-bit BCD or binary value. This
value indicates the thousand year
and hundred year (Centenary)
variables of the datein BCD (19 for
this century, 20 for the next) or
binary (x13 for this century, x14 for
the next).

The CENTURY field in the FADT will
contain anon-zero value that represents
an offset into the RTC's CMOS RAM
areathat contains the Centenary value for
the date. A value of zeroin the
CENTURY field indicates that the
Centenary valueis not supported by this
RTC.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 69

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware
sequence. ACPI operating systems use the SCI interrupt handler to respond to events, while legacy systems
use some type of transparent interrupt handler to respond to these events (that is, an SMI interrupt handler).
ACPI -compatible hardware can choose to support both legacy and ACPI modes or just an ACPlI mode.
Legacy hardware is needed to support these features for non-ACPI-compatible operating systems. When
the ACPI OS loads, it scans the BIOS tables to determine that the hardware supports ACPI, and then if the
it findsthe SCI_EN bit reset (indicating that ACPI is not enabled), issues an ACPI activate command to the
SMI handler through the SMI command port. The BIOS acknowledges the switching to the ACPI model of
power management by setting the SCI_EN bit (this bit can also be used to switch over the event mechanism
asillustrated below):

SCI_EN
PM1x_CNT.0
Power o0—— p SMLEVNT
Management Dec
:
Event Logic I———» SCILEWNT
Shareable
Interrupt

Figure4-12 Power Management Eventsto SM1/SCI Control Logic

The interrupt events (those that generate SMIsin legacy mode and SClsin ACPI mode) are sent through a
decoder controlled by the SCI_EN hit. For legacy mode this bit is reset, which routes the interrupt events to
the SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt
logic. Thisbit always returns set for ACPI-compatible hardware that does not support alegacy power
management mode (in other words, the bit iswired to read as“1” and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses
ashareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt is mapped to
(see section 5.2.5, “ System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has aregister that generates a hardware
event (for example, SMI for 1A -PC processors). OSPM uses this register to make the hardware to switch in
and out of ACPI mode. Within the FADT are three values that signify the address (SM1_CMD) of this port
and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state
(ACPI_DISABLE).

To transition an ACPI/Legacy platform from the L egacy mode to the ACPI mode the following would
occur;

ACPI driver checks that the SCI_EN hit is zero, and that it is in the Legacy mode.
OSPM does an OUT to the SMI_CMD port with the datain the ACPI_ENABLE field of the FADT.
OSPM pollsthe SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would
occur:

ACPI driver checksthat the SCI_EN bit isone, and that it isin the ACPI mode.
OSPM does an OUT to the SMI_CMD port with the datain the ACPI_DISABLE field of the FADT.
OSPM pollsthe SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the
Legacy to ACPI transition stated above.

Compag/I ntel/Microsoft/Phoenix/T oshiba

70 Advanced Configuration and Power Interface Specification

47.2.6 Processor Control

The ACPI specification defines several processor controlsincluding power state control, throttling control,
and performance state control. See Section 8, “Processor Control,” for a complete description of the
processor controls.

4.7.3 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.7.3.1 PM1Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or all placed in asingle chip. Although the
bits can be split between the two register blocks (each register blocks has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 PM1 Status Registers

Regi ster Location: <PMla_EVT_BLK/ PMLb_EVT_BLK> System |/ O or Menory Space

Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_EVT_LEN 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between two
registers: PM1la STSor PM1b_STS. Each register grouping can be at a different 32-bit aligned address and
ispointed to by thePM1la EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accessesto the PM 1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state thisregister is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the GO working state this register is cleared prior to entering the GO working state.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as afixed hardware feature, then software treats these bits asignored.

Table4-11 PM1 Status Registers Fixed Har dwar e Featur e Status Bits

Bit Name Description

0 TMR_STS Thisisthetimer carry status bit. This bit gets set any timethe
239/31% bit of a 24/32-bit counter changes (whenever the MSB
changes from clear to set or set to clear. While TMR_EN and
TMR_STSare set, an interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS Thisisthe bus master status bit. Thisbit is set any time a system
bus master requests the system bus, and can only be cleared by
writing a“1” to this bit position. Notice that this bit reflects bus
master activity, not CPU activity (this bit monitors any bus
master that can cause an incoherent cache for a processor in the
C3 state when the bus master performs a memory transaction).

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 71

Table4-11 PM1 Status Registers Fixed Hardwar e Featur e Status Bits (continued)

Bit Name Description

5 GBL_STS Thishit is set when an SCI is generated due to the BIOS wanting
the attention of the SCI handler. BIOS will have a control bit
(somewhere within its address space) that will raise an SCI and
set thisbit. Thisbit is set in response to the BIOS releasing
control of the Global Lock and having seen the pending bit set.

6-7 Reserved Reserved. These bits always return a value of zero.

8 PWRBTN_STS Thisoptional bit is set when the Power Button is pressed. Inthe
system working state, while PWRBTN_EN and PWRBTN_STS
are both set, an interrupt event israised. In the sleeping or soft-
off state, awake event is generated when the power button is
pressed (regardless of the PWRBTN_EN bit setting). Thisbitis
only set by hardware and can only be reset by software writing a
“1” to this bit position.

ACPI defines an optional mechanism for unconditional
transitioning a system that has stopped working from the GO
working state into the G2 soft-off state called the power button
override. If the Power Button is held active for more than four
seconds, thisbit is cleared by hardware and the system
transitionsinto the G2/S5 Soft Off state (unconditionally).

Support for the power button isindicated by the PWR_BUTTON
flag in the FADT being reset (zero). If the PWR_BUTTON flag
is set or apower button device object is present in the ACPI
Namespace, then this bit field isignored by OSPM.

If the power button was the cause of the wake (from an S1-$4
state), then this bit is set prior to returning control to OSPM.

9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the
system working state, while SLPBTN_EN and SLPBTN_STS
are both set, an interrupt event israised. In the sleeping or soft-
off states awake event is generated when the sleeping button is
pressed and the SLPBTN_EN bit is set. Thisbit isonly set by
hardware and can only be reset by software writing a“1” to this
bit position.

Support for the sleep button isindicated by the SLP_ BUTTON
flag inthe FADT being reset (zero). If the SLP_BUTTON flagis
set or asleep button device object is present in the ACPI
Namespace, then this bit field isignored by OSPM.

If the sleep button was the cause of the wake (from an S1-$4
state), then thisbit is set prior to returning control to OSPM.

Compag/I ntel/Microsoft/Phoenix/T oshiba

72 Advanced Configuration and Power Interface Specification

Table4-11 PM1 Status Registers Fixed Hardwar e Featur e Status Bits (continued)

Bit Name Description

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts
the RTC IRQ signal). Additionally, if the RTC_EN bit is set then
the setting of the RTC_STS bit will generate a power
management event (an SCI, SMI, or resume event). Thisbit is
only set by hardware and can only be reset by software writing a
“1” to this bit position.

If the RTC was the cause of the wake (from an S1-S3 state), then
thisbit is set prior to returning control to OSPM. If the RTC_$4
flag within the FADT is set, and the RTC was the cause of the
wake from the $4 state), then thisbit is set prior to returning
control to OSPM.

11 Ignore This bit field isignored by software.
12-14 | Reserved Reserved. These bits always return avalue of zero.
15 WAK_STS Thisbit is set when the system isin the sleeping state and an

enabled wake event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and
can only be cleared by softwarewriting a“1” to thisbit position.

4.7.3.1.2 PM1Enable Registers

Regi ster Location: <PMla_EVT_BLK/ PMLb_EVT_BLK>+PML_EVT_LEN 2 System |/ O or Menory Space
Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_EVT_LEN 2

The PM 1 enable registers contain the fixed hardware feature enable bits. The bits can be split between two
registers: PM1a EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and
ispointed to by the PM1a EVT_BLK or PM1b_EVT_BLK. The values for these pointersto the register
space are found in the FADT. Accesses to the PM 1 Enable registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state the enables are
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI -only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the GO working state this register is cleared prior to entering the GO working state.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as afixed hardware feature, then software treats the enable bits as write as zero.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 73

Table4-12 PM1 Enable Registers Fixed Hardwar e Feature Enable Bits

Bit Name Description

0 TMR_EN Thisisthetimer carry interrupt enable bit. When this bit is set
then an SCI event is generated anytime the TMR_STSbit is set.
When thisbit isreset then no interrupt is generated when the
TMR_STShit is set.

1-4 Reserved Reserved. These bits always return avalue of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the
GBL_STShit are set, an SCI israised.

6-7 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the

PWRBTN_STS bit to generate a power management event (SCI
or wake). The PWRBTN_STS bit is set anytime the power
button is asserted. The enable bit does not have to be set to
enabl e the setting of the PWRBTN_ST S bit by the assertion of
the power button (see description of the power button hardware).

Support for the power button isindicated by the PWR_BUTTON
flag in the FADT being reset (zero). If the PWR_BUTTON flag
is set or apower button device object is present in the ACPI
Namespace, then this bit field isignored by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the
SLPBTN_STShit to generate a power management event (SCI
or wake). The SLPBTN_STS bit is set anytime the sleep button
isasserted. The enable bit does not have to be set to enable the
setting of the SLPBTN_STS bit by the active assertion of the
sleep button (see description of the slegp button hardware).

Support for the sleep button isindicated by the SLP_BUTTON
flag in the FADT being reset (zero). If the SLP_BUTTON flagis
set or asleep button device object is present in the ACPI
Namespace, then this bit field isignored by OSPM.

10 RTC EN This optional bit is used to enable the setting of the RTC_STS hit
to generate awake event. The RTC_STSbit is set any time the
RTC generatesan alarm.

11-15 | Reserved Reserved. These bits always return avalue of zero.

4.7.3.2 PM1 Control Grouping

The PM 1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in asingle chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT), the
bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.

Compag/I ntel/Microsoft/Phoenix/T oshiba

74 Advanced Configuration and Power Interface Specification

4.7.3.2.1 PM1 Control Registers

Regi ster Location: <PMLa_CNT_BLK/ PMLb_CNT_BLK> System|/O or Menory Space

Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_CNT_LEN

The PM 1 control registers contain the fixed hardware feature control bits. These bits can be split between
two registers: PM1a CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a CNT_BLK or PM1b_CNT_BLK. The valuesfor these pointersto
the register space are found in the FADT. Accessesto PM 1 control registers are accessed through byte and
word accesses.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits asignored.

Table4-13 PM1 Control Registers Fixed Hardwar e Feature Control Bits

Bit Name Description

0 SCI_EN Sel ects the power management event to be either an SCI or SMI
interrupt for the following events. When this bit is set, then
power management events will generate an SCI interrupt. When
thisbit is reset power management events will generate an SMI
interrupt. It isthe responsibility of the hardware to set or reset
thisbit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request
to cause any processor in the C3 state to transition to the CO
state. When this bit is reset, the generation of a bus master
request does not affect any processor in the C3 state.

2 GBL_RLS Thiswrite-only bit is used by the ACPI software to raise an
event to the BIOS software, that is, generates an SMI to pass
execution control to the BIOS for 1A -PC platforms. BIOS
software has a corresponding enable and status bit to control its
ability to receive ACPI events (for example, BIOS_EN and
BIOS_STS). The GBL_RLSbit is set by OSPM to indicate a
release of the Global Lock and the setting of the pending bit in
the FACS memory structure.

38 Reserved Reserved. These bits are reserved by OSPM.
9 Ignore Software ignores this bit field.
10-12 | SLP_TYPx Definesthe type of sleeping state the system enters when the

SLP_EN bit is set to one. This 3-bit field defines the type of
hardware sleep state the system enters when the SLP_EN bit is
set. The_Sx object contains 3-bit binary values associated with
the respective sleeping state (as described by the object). OSPM
takes the two values from the _Sx object and programs each
value into the respective SLP_TY Px field.

13 SLP_EN Thisisawrite-only bit and readsto it always return a zero.
Setting this bit causes the system to sequence into the sleeping
state associated with the SLP_TY Px fields programmed with the
values from the\ Sx object.

14-15 | Reserved Reserved. Thisfield always returns zero.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 75

4.7.3.3 Power Management Timer (PM_TMR)

Regi ster Location: <PM TMR BLK> System|/O or Menory Space

Defaul t Val ue: 00h
Attribute: Read- Onl y
Si ze: 32-bits

Thisread-only register returns the current value of the power management timer (PM timer). The FADT
hasaflag called TMR_VAL_EXT that an OEM setsto indicate a 32-bit PM timer or reset to indicate a 24-
bit PM timer. When the last bit of the timer togglesthe TMR_STS bit is set. Thisregister is accessed as 32
bits.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits asignored.

Table4-14 PM Timer Bits

Bit Name Description

0-23 TMR_VAL This read-only field returns the running count of the power
management timer. Thisis a 24-bit counter that runs off a
3.579545-MHz clock and counts while in the SO working system
state. The starting value of the timer is undefined, thus allowing
the timer to bereset (or not) by any transition to the SO state
from any other state. The timer isreset (to any initial value), and
then continues counting until the system’s 14.31818 MHz clock
is stopped upon entering its Sx state. If the clock is restarted
without areset, then the counter will continue counting from
where it stopped.

24-31 | E TMR_VAL Thisread-only field returns the upper eight bits of a 32-bit power
management timer. |f the hardware supports a 32-bit timer, then
this field will return the upper eight bits; if the hardware supports
a 24-bit timer then thisfield returns all zeros.

4.7.3.4 PM2 Control (PM2_CNT)

Regi ster Location: <PM2_CNT_BLK> System|/Q, System Menory, or
Functional Fixed Hardware Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: PM2_CNT_LEN

Thisregister block is naturally aligned and accessed based on itslength. For ACPI 1.0 this register is byte
aligned and accessed as a byte.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits asignored.

Table4-15 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS Thisbit isused to enable and disable the system arbiter. When this bit
is CLEAR the system arbiter is enabled and the arbiter can grant the
bus to other bus masters. When this bit is SET the system arbiter is
disabled and the default CPU has ownership of the system.

OSPM clears this hit when using the C0O, C1 and C2 power states.

1-7 Reserved Reserved

Compag/I ntel/Microsoft/Phoenix/T oshiba

76 Advanced Configuration and Power Interface Specification

4.7.3.5 Processor Register Block (P_BLK)

This optional register block isused to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and control
methods that can be used to control processors, see section 8, “Processor Control.” This register block is
DWORD aligned and the context of this register block is not maintained across S3 or $4 sleeping states, or
the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32

Regi ster Location: E ther <P_BLK>: System /O Space or
Specified by _PTC bject: System|/Q System Menory, or
Functional Fi xed Hardware Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: 32-bits

Thisregister isaccessed asa DWORD. The CLK_VAL field iswhere the duty setting of the throttling
hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET vauesin the FADT.
Software treats all other CLK_V AL bits asignored (those not used by the duty setting value).

Table4-16 Processor Control Register Bits

Bit Name Description
0-3 CLK_VAL Possible locations for the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock as set in the

CLK_VAL field. THT_EN bit must be reset LOW when
changing the CLK_VAL field (changing the duty setting).

5-31 CLK VAL Possible locations for the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8

Regi st er Location: E ther <P_BLK>+4: System |/ O Space or
Specified by _CST bject: System|/Q System Menory, or
Functional Fi xed Hardware Space

Def aul t Val ue: 00h
Attribute: Read- Onl y
Si ze: 8-bits

Thisregister is accessed as abyte.
Table4-17 Processor LVL 2 Register Bits

Bit Name Description

07 P LVL2 Reads to thisregister return all zeros; writesto this register have
no effect. Reads to this register also generate an “enter a C2
power state” to the clock control logic.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 77

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8

Regi ster Location: E ther <P_BLK>+5: System |/ O Space or
Specified by _CST bject: System|/Q System Menory, or
Functi onal Fi xed Hardware Space

Defaul t Val ue: 00h
Attribute: Read- Onl y
Si ze: 8-hits

Thisregister is accessed as a byte.
Table4-18 Processor LVL 3 Register Bits

Bit Name Description

07 P LVL3 Reads to thisregister return all zeros; writes to this register have
no effect. Reads to thisregister also generate an “enter aC3
power state” to the clock control logic.

4.7.3.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system reset.
When implemented, this mechanism must reset the entire system. Thisincludes processors, core logic, al
buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism isthelogical
equivalent to power cycling the machine. Upon gaining control after areset, OSPM will perform actionsin
like manner to a cold boot.

The reset mechanism isimplemented via an 8-bit register described by RESET_REG in the FADT (always
accessed viathe natural alignment and size described in RESET_REG). To reset the machine, software will
write avalue (indicated in RESET_VALUE in FADT) to thereset register. The RESET_REG field in the
FADT indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCl Configuration space on afunction
in bus 0. Therefore, the Address_Space ID valuein RESET_REG must be set to 1/0O space, Memory space,
or PCI Configuration space (with a bus number of 0). Asthe register isonly 8 bits, Register_Bit_Width
must be 8 and Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following awrite to thisregister.

4.7.4 Generic Hardware Registers

ACPI provides amechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rulesto be followed when designing ACPI -
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system I/O, system
memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained in
the general-purpose event registers. The general-purpose event registers are pointed to by the GPEQ_BLK
and GPE1 BLK register blocks, and the generic hardware registers can be in any of the defined ACPI
address spaces. A device s generic hardware programming model is described through an associated object
in the ACPI Namespace, which specifies the bit’ s function, location, address space, and address location.

The programming model for devicesis normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipul ating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bitsresidein either the GPEO_STS or GPE1_STSregisters, and “child”
event status bits can reside in generic address space.

Compag/I ntel/Microsoft/Phoenix/T oshiba

78 Advanced Configuration and Power Interface Specification

The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned
into two chips: a chipset and an embedded controller.
The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).
The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions using
an OS-transparent interrupt in the embedded controller (represented by the EXTSMI# signal).

Momentary
Power i
PWRBTN#

8

& »
l »

EC Cs# ' ACH
Button Embedded |+—
< SabL Controller

| Embedded Controller Interface

ACPI-Compatlt < EXTPME#
bl .
Chip Set pocks | Docking
Chip
Momentary
LID
Switch LID# Ris
e
EXTSMI# SMi-only
SMI on, 1 —
GPx_REG Events EXTSMI# | LEXTSMIZ) sources
lo AC_STS
Block he s
EC_STS
GP_STS.0 I e
NG] s
_(Oq EXTPME# Dok
5 o< |—(DOCK# —{ Dock# y—< |—|g
s GFEN
Shareable -
Interrupt RI_STS

— GP_STS.1
RI#
RI_EN
GP_EN.1
LID_STS

GP_STS.2
—C 4

LID_POL
LID_EN . Y S33.2
GP_EN.2
Other SCI
sources

Figure4-13 Example of General-Purpose vs. Generic Hardwar e Events

At thetop level, the generic eventsin the GPEx_STS register are the:
Embedded controller interrupt, which contains two query events: one for AC detection and one for
docking (the docking query event has a child interrupt status bit in the docking chip).
Ring indicate status (used for waking the system).
Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query eventsis

active.
A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this event;
OSPM will then schedule for execution the control method associated with query value 34.
Another query event isfor the docking chip that generates a docking event. In this case, the
embedded controller will return a query value of 35 upon a query command from system software
responding to an SCI from the embedded controller. OSPM will then schedule the control method
associated with the query val ue of 35 to be executed, which services the docking event.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 79

For each of the status bitsin the GPEx_STSregister, there is a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID isopen (LID_POL is
and LID is) or closed (LID_POL isclear and LID is clear). This control bit residesin generic 1/0 space (in
this case, bit 2 of system 1/0O space 33h) and would be manipulated with a control method associated with
thelid object.

Aswith fixed hardware events, OSPM will clear the status bitsin the GPEx register blocks. However,
AML code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACPI specification also
provides specific control methods for notifying OSPM of certain power management and Plug and Play
events. Section 5, “ ACPI Software Programming Model,” provides information on the types of hardware
functionality that support the different types of subsystems. The following isalist of features supported by
ACPI. Thelist is not intended to be complete or comprehensive.

Device insertion/gjection (for example, docking, device bay, A/C adapter)

Batteries®

Platform thermal subsystem

Turning on/off power resources

Mobile lid Interface

Embedded controller

System indicators

OEM -specific wake events

Plug and Play configuration

4.7.4.1 General-Purpose Event Register Blocks

ACPI supports up to two general-purpose register blocks as described in the FADT (see section 5, “ACPI
Software Programming Model”) and an arbitrary number of additional GPE blocks described as devices
within the ACPI namespace. Each register block contains two registers: an enable and a status register.
Each register block is 32-bit aligned. Each register in the block is accessed as abyte. It is up to the specific
design to determineif these bits retain their context across sleeping or soft-off states. If they lose their
context across a sleeping or soft-off state, then BIOS resets the respective enable bit prior to passing control
to the OS upon waking.

4.7.4.1.1 General-Purpose Event 0 Register Block

Thisregister block consists of two registers: The GPEQO_STS and the GPEQ_EN registers. Each register’s
length is defined to be half the length of the GPEOQ register block, and is described in the ACPI FADT's
GPEQO _BLK and GPEO_BLK_LEN operators. OSPM owns the general-purpose event resources and these
bits are only manipulated by OSPM; AML code cannot access the general-purpose event registers.

Itis envisioned that chipsets will contain GPE event registers that provide GPE input pins for various
events.

The platform designer would then wire the GPEs to the various value-added event hardware and the AML
code would describe to OSPM how to utilize these events. As such, there will be the case where a platform
has GPE events that are not wired to anything (they are present in the chip set), but are not utilized by the
platform and have no associated AML code. In such, cases these event pins are to be tied inactive such that
the corresponding SCI status bit in the GPE register is not set by afloating input pin.

4 ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined
standard for batteries, called the “ Smart Battery Specification” (SBS). ACPI provides a set of control
methods for use by OEM s that use a proprietary “control method” battery interface.

Compag/I ntel/Microsoft/Phoenix/T oshiba

80 Advanced Configuration and Power Interface Specification

4.7.4.1.1.1 General-Purpose Event 0 Status Register

Regi ster Location: <GPEO_STS> System /O or System Menory Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPEO_BLK _LEN 2

The general-purpose event O status register contains the general-purpose event status bits in bank zero of
the general-purpose registers. Each available status bit in this register corresponds to the bit with the same
bit position in the GPEO_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a“1” to its respective bit position. For the general-
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system isin a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.1.2 General-Purpose Event 0 Enable Register

Regi ster Location: <GPEO_EN> System |/ O or System Menory Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Size: GPEO_BLK_LEN 2

The general-purpose event 0 enabl e register contains the general-purpose event enabl e bits. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPEO_STS register. The
enable bitswork similar to how the enable bits in the fixed-event registers are defined: When the enable bit
is set, then a set status bit in the corresponding status bit will generate an SCI bit. OSPM accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block

Thisregister block consists of two registers: The GPEL_STS and the GPE1_EN registers. Each register’s
length is defined to be half the length of the GPEL register block, and is described in the ACPI FADT’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register

Regi ster Location: <GPE1_STS> System /O or System Menory Space

Defaul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK _LEN 2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available
status bit in thisregister corresponds to the bit with the same bit position in the GPEL1_EN register. Each
available status bit in thisregister is set when the event is active, and can only be cleared by software
writing a“1” to itsrespective bit position. For the general-purpose event registers, unimplemented bits are
ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system isin a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 81

4.7.4.1.2.2 General-Purpose Event 1 Enable Register

Regi ster Location: <GPE1_EN> System |/ O or System Menory Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK LEN 2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE1_STS register. The
enable bitswork similar to how the enable bitsin the fixed-event registers are defined: When the enable bit
isset, aset status bit in the corresponding status bit will generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

47.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used by
the OS as policy input for sleeping the system, or for waking the system from a sleeping state. If used, then
the OEM needs to define the lid switch as a device with an _HID object value of “_PNPOCOD”, which
identifies this device as thelid switch to OSPM. The Lid device needs to contain a control method that
returnsits status. The Lid event handler AML code reconfiguresthe lid hardware (if it needs to) to generate
an event in the other direction, clear the status, and then notify OSPM of the event.

Example hardware and ASL code is shown below for such a design.

Mo T e =

O O Debounce

Momentary Normally LID_STS
Open push button

LID_POL

Figure4-14 Example Generic Address Space Lid Switch Logic

Thislogic will set the Lid status bit when the button is pressed or released (depending onthe LID_POL
bit).

The ASL code defines the following:
An operational region where the lid polarity resides in address space
System address spacein registers 0x201.
A field operator to allow AML code to access this bit:
Polarity control bit (LID_POL) iscalled LPOL and is accessed at 0x201.0.
A devicecalled “_SB.LID” with the following:
A Plug and Play identifier “PNPOCOD” that associates OSPM with this object.
Defines an object that specifiesachangein thelid’s status bit can wake the system from the $4 sleep
state and from all higher sleep states (S1, S2, or S3).

Compag/I ntel/Microsoft/Phoenix/T oshiba

82 Advanced Configuration and Power Interface Specification

Thelid switch event handler that does the following:
Definesthelid s status bit (LID_STS) asachild of the general-purpose event O register bit 1.
Definesthe event handler for the lid (only event handler on this status bit) that does the following:
Flipsthe polarity of the LPOL bit (to cause the event to be generated on the opposite condition).
Generates a notify to the OS that does the following:
Passesthe_SB.LID object.
Indicates a device specific event (notify value 0x80).

// Define a Lid switch
Oper at i onRegi on(\ Pho, System O, 0x201, O0x1)
Fi el d(\ Pho, ByteAcc, NoLock, Preserve) {
LPQL, 1 // Lid polarity control bit

}

Devi ce(\ _SB. LID){
Narme(_HI D, ElI SAI D(“PNPOCOD"))
Met hod(_LI D) {Ret ur n(LPQL) }
Nane(_PRW Package(2){
1, /1 bit 1 of GPE to enable Lid wakeup

0x04} /] can wakeup from S4 state
})
Scope(_GPE) { /1 Root level event handlers
Met hod(_LO1){ /1 uses bit 1 of GPO_STS register

Not (LPOL, LPQL) I/l Flip the lid polarity bit
Notify(LID, 0x80) // Notify OS of event
}

At the top level, the generic eventsin the GPEX_STS register are:

Embedded controller interrupt, which contains two query events: one for AC detection and one for docking
(the docking query event has a child interrupt status bit in the docking chip)

Ring indicate status (used for waking the system)
Lid status

The embedded controller event status bit (EC_STS) is used to indicate that one of two query eventsis
active.

A query event is generated when the AC# signal is asserted. The embedded controller returns a query value
of 34 (any byte number can be used) upon a query command in response to this event; OSPM will then
schedule for execution the control method associated with query value 34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. OSPM will then schedule the control method associated with the query
value of 35 to be executed, which services the docking event.

For each of the status bitsin the GPEx_STSregister, thereis a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

Thelid logic contains a control bit to determine if its status bit is set when the LID isopen (LID_POL is set
and LID isset) or closed (LID_POL isclear and LID isclear). This control bit residesin generic |/O space
(inthis case, bit 2 of system /O space 33h) and would be manipul ated with a control method associated
with the lid object.

Aswith fixed hardware events, OSPM will clear the status bitsin the GPEx register blocks. However,
AML codeisrequired to clear all sibling status bitsin generic space.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Hardware Specification 83

Generic hardware features are controlled by OEM supplied AML code. ACPI provides both an event and
control model for development of these features. The ACPI specification also provides specific control
methods for notifying OSPM of certain power management and Plug and Play events. Section 5, “ ACPI
Software Programming Model,” provides information on the types of hardware hooks required to support
the different types of subsystems. The following isalist of features supported by ACPI, however thelist is
not intended to be complete or comprehensive

Device insertion/gjection (for example, docking, device bay, A/C adapter)
Batteries®

Platform thermal subsystem

Turning on/off power resources

Mobile lid interface

Embedded controller

System indicators

OEM -specific wake events

Plug and Play configuration

47.4.2.2 Embedded Controller

ACPI provides astandard interface that enables AML code to define and access generic logicin
“embedded controller space.” This supports current computer models where much of the value added
hardware is contained within the embedded controller while allowing the AML code to access this
hardware in an abstracted fashion.

The embedded controller is defined as a device and must contain a set number of control methods:
_HID with avalue of PNPOCO09 to associate this device with the ACPI’ s embedded controller’ sdriver.
_CRSto return the resources being consumed by the embedded controller.
_GPE that returns the general-purpose event hit that this embedded controller iswired to.

> ACPI OS's assume the use of the Duracell/Intel defined standard for batteries, called the “ Smart Battery
Specification” (SBS). ACPI provides a set of control methods for use by OEMs that use a proprietary
“control method” battery interface.

Compag/I ntel/Microsoft/Phoenix/T oshiba

84 Advanced Configuration and Power Interface Specification

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’ s device
as control methods. An example of defining an embedded controller device is shown below:

Devi ce(EQD) {

/1 PnP ID

Name(_HI D, El SAI D(“PNPOC09”))

/1 Returns the “Qurrent Resources” of EC

Nare(_CRS,

Resour ceTenpl at e() {
| O(Decodel6, 0x62, 0x62, 0, 1)
| O Decodel6, Ox66, 0x66, 0, 1)

})
/1 Define that the EC SC is bit 0 of the GP_STS register

Nane(_GPE, 0) /1 enbedded controller is wired to bit 0 of GPE

Oper at i onRegi on(\ ECO, EnbeddedControl, 0, OxFF)
Fi el d(EQD, ByteAcc, Lock, Preserve) {
/1l Field definitions

}
Met hod(Q00){. . }
Met hod(QFF) {. . }

}
For more information on the embedded controller, see section 13, “ACPlI Embedded Controller Interface

Specification.”
4.7.4.2.3 Fan

ACPI has adevicedriver to control fans (active cooling devices) in platforms. A fan is defined as adevice
with the Plug and Play ID of “PNPOCOB.” It should then contain alist power resources used to control the
fan.

For more information, see section 10, “ ACPI -Specific Device Objects.”

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 85

5 ACPI Software Programming Model

ACPI defines ahardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described insection 4, “ ACPI Hardware Specification.” ACPI also
provides an abstract interface for controlling the power management and configuration of an ACPI system.
Finally, ACPI defines an interface between an ACPI -compatible OS and the system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system
information, features, and methods for controlling those features. These tableslist devices on the system
board or devices that cannot be detected or power managed using some other hardware standard, plustheir
capabilities as described in section 3, “Overview.” They also list system capabilities such as the sleeping
power states supported, a description of the power planes and clock sources available in the system,
batteries, system indicator lights, and so on. This enables OSPM to control system devices without needing
to know how the system controls are implemented.

Topics covered in this section are:
The ACPI system description table architecture is defined, and the role of OEM -provided
definition blocksin that architecture is discussed.
The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the BIOS. This structure contains the address of the Root System Description Table
(RSDT), which references other description tables that provide datato OSPM, supplying it with knowledge
of the base system’ simplementation and configuration (see Figure 5-1).

In low memory space on

16 byte boundry Located in memory space (0 - 4G)
— 8
(1
Root System Extended System
Description Pointer Description Table
RSD PTR
Pointer
Pointer Entry
Entry || contents contents
Entry

Figure5-1 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tablesisto define for OSPM various industry -standard implementation details. Such definitions enable
various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needsto control hardware directly.

Compag/I ntel/Microsoft/Phoenix/T oshiba

86 Advanced Configuration and Power Interface Specification

The Root System Description Table (RSDT) points to other tablesin memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The datawithin this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FADT table always refersto the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tablesis shown in Figure 5-2.

Fixed ACPI Differentiated System Firmware ACPI
Description Table Description Table Control Structure

FACS

Wake Vector
Shared Lock

Static info
. . L)
FIRM lef:fr.eptllated . |
DSDT Definition > Dr(i/er |
BLKS Block |
|
Software |
Hardware
GPx_BLK
OEM-Specific
PM2x_BLK
PM1x_BLK

Located in
port space <

Y
Device /O
Device Memory
PCI configuration
Embedded Controller space

Figureb5-2 Description Table Structures

OSPM searches the following physical ranges on 16-byte boundaries for a RSDP structure. This structureis
located by searching the areas listed below for avalid signature and checksum match:
Thefirst 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can
be found in the two-byte location 40:0Eh on the BIOS data area.
In the BIOS read-only memory space between OEO000h and OFFFFFh.,

When OSPM locates the structure, it looks at the physical address for the Root System Description Table.
The Root System Description Table starts with the signature “RSDT” and contains one or more physical
pointersto other system description tables that provide various information about the system. As shown in
Figure 51, thereis always aphysical address in the Root System Description Table for the Fixed ACPI
Description table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for aknown signature.
Based on the signature, OSPM can then interpret the implementati on-specific data within the description
table.

The purpose of the FADT isto define various static system information related to configuration and power
management. The Fixed ACPI Description Table startswith the “FACP” signature. The FADT describes
the implementation and configuration details of the ACPI hardware registers on the platform.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 87

For a specification of the ACPI Hardware Register Blocks (PM1a EVT_BLK, PM1b EVT BLK,

PMla CNT_BLK, PM1b CNT _BLK, PM2 CNT_BLK,PM_TMR_BLK, GP0_BLK, GP1_BLK, and one
or more P_BLKS), see section 4.7, “ACPI Register Model.” ThePM1a EVT_BLK, PM1b_EVT_BLK,

PMla CNT_BLK, PM1b CNT_BLK, PM2_CNT_BLK, and PM_TMR_BLK blocks are for controlling
low-level ACPI system functions.

The GPEO_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to the Differentiated System Description Table (DSDT). The DSDT contains a Definition Block named the
Differentiated Definition Block for the DSDT that contains implementation and configuration information
OSPM can use to perform power management, thermal management, or Plug and Play functionality that
goes beyond the information described by the ACPI hardware registers.

A Definition Block contains information about hardware implementation detailsin the form of a
hierarchical namespace, data, and control methods encoded in AML. OSPM “loads” or “unloads” an entire
definition block as alogical unit. The Differentiated Definition Block is always loaded by OSPM at boot
time and cannot be unloaded.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block isto
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI -compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using afew well -defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from /O space, but that is not the goal of the Definition Block specification. Such aspaceis
usually defined asa“built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to OSPM. The operators present are intended to allow many useful hardware designs
to be ACPI-expressed, not to allow all hardware designs to be expressed.

5.1.1 Address Space Translation

Some platforms may contain bridges that perform translations as I/0O and/or Memory cycles pass through
the bridges. Thistranslation can take the form of the addition or subtraction of an offset. Or it can take the
form of a conversion from 1/0O cyclesinto Memory cycles and back again. When translation takes place, the
addresses placed on the processor bus by the processor during aread or write cycle are not the same
addresses that are placed on the 1/0 bus by the I/O bus bridge. The address the processor places on the
processor bus will be known here as the processor-rel ative address. And the address that the bridge places
on the 1/0 bus will be known as the bus-relative address. Unless otherwise noted, all addresses used within
this section are processor-rel ative addresses.

For example, consider a platform with two root PCI buses. The platform designer has several choices. One
solution would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCI bus
and one part to the second root PCI bus. Another solution would be to make both root PCI buses decode the
entire 16-bit 1/0 space, mapping the second root PCI bus's I/O space into memory space. In this second
scenario, when the processor needs to read from an 1/0 register of a device underneath the second root PCI
bus, it would need to perform a memory read within the range that the root PCI bus bridge is using to map
the 1/O space.

Note: Industry standard PCs do not provide address space transl ations because of historical compatibility
issues.

Compag/I ntel/Microsoft/Phoenix/T oshiba

88 Advanced Configuration and Power Interface Specification

5.2 ACPI System Description Tables

This section specifies the structure of the system description tables:
Root System Description Pointer (RSDP)
System Description Table Header
Root System Description Table (RSDT)
Fixed ACPI Description Table (FADT)
Firmware ACPI Control Structure (FACS)
Differentiated System Description Table (DSDT)
Secondary System Description Table (SSDT)
Multiple APIC Description Table (MADT)
Smart Battery Table (SBST)
Extended System Description Table (XSDT)
Embedded Controller Boot Resources Table (ECDT)

All numeric values from the above tables, blocks, and structures are always encoded in little endian format.
Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all data items marked asreserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Notice that the list contains terms such as ACPI
tables and AML code defined | ater in this section of the specification.

5.2.1.1 Reserved Bits and Software Components
OEM implementations of software and AML code return the bit value of O for all reserved bitsin
ACPI tables or in other software values, such as resource descriptors.
For all reserved bitsin ACPI tables and registers, OSPM implementations must:
Ignore all reserved bitsthat are read.

Preserve reserved bit values of read/write dataitems (for example, OSPM writes back
reserved bit valuesit reads).
Write zeros to reserved bits in write-only dataitems.

5.2.1.2 Reserved Values and Software Components

OEM implementations of software and AML code return only defined values and do not return
reserved values.

OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components
Software ignores all reserved bits read from hardware enable or status registers.
Software writes zero to all reserved bitsin hardware enable registers.
Software ignores all reserved bits read from hardware control and status registers.
Software preserves the value of all reserved bitsin hardware control registers by writing back read
values.

5.2.1.4 Ignored Hardware Bits and Software Components

Software handles ignored bitsin ACPI hardware registers the same way it handles reserved bitsin
these same types of registers.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 89

5.2.2 Compatibility

All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previously reserved fields and val ues plus appending datato the 1.0
tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of thetable.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or I/O
space. Thiswas targeted at the | A-32 environment. Newer architectures require addressing mechanisms
beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and it
must allow the placement of control registersin address spaces other than System 1/0.

5.2.3.1 Generic Address Structure

In order to expand ACPI addressing capabilities, a Generic Address Structure (GAS) is defined that enables
access to registersin ACPI-defined address spaces. This 12-byte structure, described below (Table 5-1), is
used to express register addresses within the new tables defined by ACPI 2.0.

Table5-1 Generic Address Structure (GAS)

Byte Byte
Field Length Offset Description

Address_Space ID 1 0 The address space where the data structure or
register exists.
Defined values are:

0-System Memory

1-System I/O

2—PCI Configuration Space
3-Embedded Controller
4-SMBus

0x7F—Functional Fixed Hardware

Register_Bit_Width 1 1 The sizein bits of the given register. When
addressing a data structure, thisfield must be zero.

Register_Bit_Offset 1 2 The bit offset of the given register at the given
address. When addressing a data structure, thisfield
must be zero.

Reserved 1 3 Must be 0.

Address 8 4 The 64-bit address of the data structure or register
in the given address space (relative to the
processor). (See below for specific formats.)

Compag/I ntel/Microsoft/Phoenix/T oshiba

90 Advanced Configuration and Power Interface Specification

Table5-2 Address Space Format

Address Space For mat

0-System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-
bit platforms must have the high DWORD set to 0.

1-System 1/O The 64-bit 1/0 address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to O.

2-PCI Configuration | PCI Configuration space addresses must be confined to devices on PCI bus0

Space segment 0. The format of addresses are defined as follows:
WORD L ocation Description
Highest WORD Reserved (must be 0)

PCI Device number on bus 0

PCI Function number

Lowest WORD Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as; 0x0000000700020023.

Ox7F—Functiona All other fieldsin the GAS must be zero.
Fixed Hardware

5.2.4 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from
the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it thenlocates
the Root System Description Table (RSDT) or the Extended Root System Description Table (XSDT) using
the physical system address supplied in the RSDP.

5.2.4.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges
on 16-byte boundaries for avalid Root System Description Pointer structure signature and checksum match
asfollows:

Thefirst 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can

be found in the two-byte location 40:0Eh on the BIOS data area.

The BIOS read-only memory space between OEO000h and OFFFFFh.

5.2.4.2 Finding the RSDP on EFI Enabled Systems

In Extensible Firmware Interface (EFI) enabled systems (for example, 1A -64-based platforms) a pointer to
the RSDP structure exists within the EFl System Table. The OS loader’s EFI image is provided a pointer to
the EFI System Table at invocation. The OS |loader must retrieve the pointer to the RSDP structure from the
EFI System table and convey the pointer to OSPM, using an OS dependent data structure, as part of the
hand off of control from the OS |oader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI configuration table within
the EFI system table. EFI configuration table entries consist of Globally Unique Identifier (GUID)/table

pointer pairs. The EFI 1.0 specification defines a GUID for ACPI. An EFI configuration table entry that

matches this GUID pointsto an ACPI 1.0-compatible RSDP structure (ACPI 1.0 GUID).

The EFI GUID for the ACPI 2.0 RSDP structure pointer is: 8868E871-E4F1-11d3-BC22-0080C73C8881.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 91

The OS loader for an ACPI 2.0-compatible OS will search for an RSDP structure pointer using the ACPI
2.0 GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the GUID is not
found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table befor e assuming
platform control viathe EFI ExitBootServices interface. See the EFI specification for more information.

5.2.4.3 RSDP Structure
The revision number contained within the structure indicates the size of the table structure.

Table5-3 Root System Description Pointer Structure

Byte Byte

Field Length | Offset Description

Signature 8 0 “RSD PTR " (Notice that this signature must contain atrailing
blank character.)

Checksum 1 8 Thisisthe checksum of the fields defined in the ACPI 1.0
specification. Thisincludes only thefirst 20 bytes of thistable,
bytes 0 to 19, including the checksum field. These bytes must
sum to zero.

OEMID 6 9 An OEM -supplied string that identifies the OEM.

Revision 1 15 Therevision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI
version 1.0 revision number of thistableiszero. The ACPI 2.0
valuefor thisfieldis 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting
from offset 0. Thisfield is used to record the size of the entire
table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended 1 32 Thisisachecksum of the entire table, including both checksum

Checksum fields.

Reserved 3 33 Reserved field

Compag/I ntel/Microsoft/Phoenix/T oshiba

92 Advanced Configuration and Power Interface Specification

5.2.5 System Description Table Header

All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
arelisted in Table 5-5.

Table5-4 DESCRIPTION_HEADER Fields

Byte Byte
Field Length | Offset Description

Signature 4 0 The ASCII string representation of the table identifier. Notice
that if OSPM finds asignature in atable that isnot listed in
Table 5-5, OSPM ignores the entire table (it is not loaded into
ACPI namespace); OSPM ignores the table even though the
valuesin the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. Thisfield is used to record the size of the entire
table.

Revision 1 8 Therevision of the structure corresponding to the signature field
for thistable. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero
to be considered valid.

OEMID 6 10 An OEM -supplied string that identifiesthe OEM.

OEM TablelID 8 16 An OEM -supplied string that the OEM usesto identify the
particular datatable. Thisfield is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table anew OEM
TableID.

OEM Revision 4 24 An OEM -supplied revision number. Larger numbers are
assumed to be newer revisions.

Creator 1D 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, thisisthe ID for the ASL Compiler.

Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisisthe revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fieldsin any table. The intent of these fieldsisto allow for abinary control system that support services can
use. Because many support functions can be automated, it is useful when atool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

Table 5-5 contains the system description tabl e signatures defined by this specification. These system
description tables may be defined by ACPI or reserved by ACPI and declared by other industry
specifications. Thisallows OS and platform specific tables to be defined and pointed to by the
RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI specification acts as
gatekeeper to avoid collisionsin table signatures. Table signatures will be reserved by the ACPI promoters
and posted independently of this specification on the ACPI Web site between specification revisions with
the goal of avoiding collisions.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 93

Table5-5 DESCRIPTION_HEADER Signatures

Signature Description Reference

“APIC" Multiple APIC Description Table Section 5.2.10.4, “Multiple APIC Description
Table’

“BOOT” Simple Boot Flag Table Microsoft Simple Boot Flag Specification
http://www.microsoft.com/HWDEV/
desinit/simp_bios.htm

“DBGP” Debug Port Table Microsoft Debug Port Specification
http://www.microsoft.com/hwdev/
newPC/debugspec.htm

“DSDT” Differentiated System Description Table Section 5.2.10.1, “Differentiated System
Description Table’

“ECDT” Embedded Controller Boot Resources Table | Section 5.2.13, “Embedded Controller Boot
Resources Table”

“ETDT” Event Timer Description Table IA-PC Multimedia Timers Specification
http://devel oper.intel.com/ial/home/sp/

"FACP’ Fixed ACPI Description Table (FADT) Section 5.2.8, “Fixed ACPI Description
Table’

“FACS’ Firmware ACPI Control Structure Section 5.2.9, “Firmware ACPI Control
Structure”

“OEMX" OEM Specific Information Tables OEM Specific tables. All table signatures
starting with “OEM” are reserved for OEM
use.

“PSDT” Persistent System Description Table Section 5.2.10.3, “ Persistent System
Description Table’

“RSDT” Root System Description Table Section 5.2.6, “Root System Description
Table’

“SBST” Smart Battery Specification Table Section 5.2 12, “Smart Battery Table”

“SLIT” System Locality Information Table http://devresource.hp.com/devresource/Docs/
TechPapers/| A64/slit.pdf

“SPCR” Serial Port Console Redirection Table Microsoft Serial Port Console Redirection
Table http://www.microsoft.com/hwdev/
download/Serial PortRedir.zip

“SRAT” Static Resource Affinity Table Interim processor-memory proximity table

“SSDT” Secondary System Description Table Section 5.2.10.2, “ Secondary System
Description Table”

“SPMI” Server Platform Management Interface Table | http://devresource.hp.com/devresource/Docs/
TechPapers/| A64/hpspmi.pdf

“XSDT” Extended System Description Table Section 5.2.7, “ Extended System Description

Table”

Compag/I ntel/Microsoft/Phoenix/T oshiba

94 Advanced Configuration and Power Interface Specification

5.2.6 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shownin Table 56, starts with the signature ‘RSDT’ followed by an array of physical pointersto
other system description tables that provide various information on other standards defined on the current
system. OSPM examines each table for a known signature. Based on the signature, OSPM can then
interpret the implementation-specific datawithin the table.

Systems provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT, described
in the next section, supersedes RSDT functionality for ACPI 2.0.

Table5-6 Root System Description Table Fields (RSDT)

Byte Byte
Field Length | Offset Description
Header
Signature 4 0 ‘RSDT.’" Signature for the Root System Description Table.
Length 4 4 Length, in bytes, of the entire RSDT. The length impliesthe
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the RSDT, the table ID is the manufacture model 1D.
This field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, thisisthe revision for the
ASL Compiler.
Entry 4*n 36 An array of 32-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at | east the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 95

5.2.7 Extended System Description Table (XSDT)

The XSDT providesidentical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERSs that are larger than 32-bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPI 2.0-compatible OS must use the XSDT if present.

Table5-7 Extended System Description Table Fields (XSDT)

Byte Byte
Field Length | Offset Description
Header
Signature 4 0 ‘XSDT'. Signature for the Extended System Description
Table.
Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the RSDTle, the table ID is the manufacture model ID.
This field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of RSDT table for supplied OEM TableID.
Creator 1D 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, thisistherevision for the
ASL Compiler.
Entry 8 n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at | east the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its L ength field.

Compag/I ntel/Microsoft/Phoenix/T oshiba

96 Advanced Configuration and Power Interface Specification

5.2.8 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PMla EVT_BLK,PM1b_EVT_BLK, PMla CNT_BLK,PM1b CNT_BLK, PM2_CNT_BLK,

PM_TMR_BLK, GPEO_BLK, and GPE1_BLK.

The FADT aso hasapointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fieldsin the FADT that provide hardware addresses provide processor-rel ative physical addresses.

Table5-8 Fixed ACPI Description Table (FADT) Format

Byte Byte
Field Length | Offset Description
Header
Signature 4 0 ‘FACP'. Signature for the Fixed ACPI Description Table.
Length 4 4 Length, in bytes, of theentire FADT.
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the FADT, the table ID is the manufacture model 1D.
This field must match the OEM Table ID in the RSDT.
OEM Revision 4 24 OEM revision of FADT for supplied OEM TableID.
Creator 1D 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, thisisthe revision for the
ASL Compiler.
FIRMWARE_CTRL 4 36 Physical memory address (0-4 GB) of the FACS, where
OSPM and Firmware exchange control information. See
section 5.2.6, “Root System Description Table,” for a
description of the FACS.
DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.
Reserved 1 44 ACPI 1.0 defined this offset as afield named

INT_MODEL, which has been eliminated in ACPI 2.0.as
operating systems to date have had no use for thisfield.
New systems should set thisfield to zero but field values of
one are also allowed to maintain compatibility with ACPI
1.0.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 97

Table5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

Preferred_PM_Profile

1

45

Thisfield is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use thisfield to
set default power management policy parameters during OS
installation.

Field Values:
0-Unspecified
1-Desktop
2-Mobile
3-Workstation
4—Enterprise Server
5-SOHO Server
6-Appliance PC
>6-Reserved

SCI_INT

System vector the SCI interrupt is wired to in 8259 mode.
OSPM isrequired to treat the ACPI SCI interrupt as a
sharable, level, active low interrupt.

SMI_CMD

System port address of the SMI Command Port. During
ACPI OSinitialization, OSPM can determine that the ACPI
hardware registers are owned by SM1 (by way of the
SCI_EN bit), in which case the ACPI OS issues the
ACPI_ENABLE command to the SMI_CMD port. The
SCI_EN hit effectively tracks the ownership of the ACPI
hardware registers. OSPM issues commandsto the
SMI_CMD port synchronously from the boot processor.
Thisfield isreserved and must be zero on system that does
not support System Management mode.

ACPI_ENABLE

52

The value to writeto SMI_CMD to disable SMI ownership
of the ACPI hardware registers. The last action SMI does to
relinquish ownership isto set the SCI_EN bit. During the
OSinitialization process, OSPM will synchronously wait
for the transfer of SMI ownership to complete, so the ACPI
system releases SMI ownership as quickly as possible. This
field isreserved and must be zero on systems that do not
support Legacy Mode.

Compag/I ntel/Microsoft/Phoenix/T oshiba

98 Advanced Configuration and Power Interface Specification

Table5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

ACPI_DISABLE

1

53

The value to writeto SMI_CMD to re-enable SMI
ownership of the ACPI hardware registers. This can only be
done when ownership was originally acquired from SMI by
OSPM using ACPI_ENABLE. An OS can hand ownership
back to SMI by relinquishing use to the ACPI hardware
registers, masking off all SCI interrupts, clearing the
SCI_EN bit and then writing ACPI_DISABLE to the
SMI_CMD port from the boot processor. Thisfieldis
reserved and must be zero on systems that do not support

L egacy Mode.

S4BIOS REQ

Thevalueto writeto SMI_CMD to enter the S4BIOS state.
The S4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in S4BIOS_F indicates

SABIOS _REQ is not supported. (See Table 5-12.)

PSTATE_CNT

The value OSPM writes to the SMI_CMD register to
assume processor performance state control responsibility.

PM1la EVT _BLK

System port address of the PM 1a Event Register Block. See
section 4.7.3.1, “PM 1 Event Grouping,” for a hardware
description layout of thisregister block. Thisisarequired
field. Thisfield is superseded in ACPI 2.0 by the

X_PM1la EVT BLK field.

PM1b EVT BLK

System port address of the PM 1b Event Register Block. See
section 4.7.3.1, “PM 1 Event Grouping,” for a hardware
description layout of thisregister block. Thisfieldis
optional; if this register block is not supported, thisfield
contains zero. Thisfield is superseded in ACPI 2.0 by the

X PM1b EVT BLK field.

PM1a CNT_BLK

System port address of the PM 1a Control Register Block.
See section 4.7.3.2, “PM 1 Control Grouping,” for a
hardware description layout of thisregister block. Thisisa
required field. Thisfield is superseded in ACPI 2.0 by the
X_PM1la CNT_BLK field.

PM1b CNT_BLK

System port address of the PM 1b Control Register Block.
See section 4.7.3.2, “PM 1 Control Grouping,” for a
hardware description layout of thisregister block. Thisfield
isoptional; if this register block is not supported, thisfield
contains zero. Thisfield is superseded in ACPI 2.0 by the
X_PM1b CNT BLK field.

PM2_CNT_BLK

72

System port address of the PM2 Control Register Block.
See section 4.7.3.4, “PM2 Control (PM2_CNT),” for a
hardware description layout of this register block. Thisfield
isoptional; if thisregister block is not supported, this field
contains zero. Thisfield is superseded in ACPI 2.0 by the

X PM2 CNT BLK field.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 99

Table5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

PM_TMR_BLK

4

76

System port address of the Power Management Timer
Control Register Block. See section 4.7.3.3, “Power
Management Timer (PM_TMR),” for a hardware
description layout of this register block. Thisisarequired
field. Thisfield is superseded in ACPI 2.0 by the
X_PM_TMR_BLK field.

GPEO_BLK

System port address of General-Purpose Event O Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of thisregister block. Thisisan
optional field; if thisregister block is not supported, this
field contains zero. Thisfield is superseded in ACPI 2.0 by
the X_GPEO BLK field.

GPE1_BLK

System port address of General-Purpose Event 1 Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of thisregister block. Thisis an
optional field; if this register block is not supported, this
field contains zero. Thisfield is superseded in ACPI 2.0 by
the X_GPE1 BLK field.

PM1 EVT_LEN

Number of bytes decoded by PM1a EVT_BLK and, if
supported, PM1b_EVT_BLK. Thisvalueis? 4.

PM1 CNT_LEN

Number of bytes decoded by PM1a CNT_BLK and, if
supported, PM1b CNT BLK. Thisvalueis3 1.

PM2_CNT_LEN

Number of bytes decoded by PM2_CNT_BLK. Support for
the PM2 register block is optional. If supported, thisvalue
is® 1. If not supported, thisfield contains zero.

PM_TMR_LEN

91

Number of bytes decoded by PM_TMR_BLK. Thisfield’s
value must be 4.

GPEO_BLK_LEN

92

Number of bytes decoded by GPEO_BLK. Thevalueisa
non-negative multiple of 2.

GPEL BLK_LEN

Number of bytes decoded by GPE1_BLK. Thevalueisa
non-negative multiple of 2.

GPE1_BASE

Offset within the ACPI general-purpose event model where
GPEL1 based events start.

CST_CNT

95

The value OSPM writes to the SMI_CMD register to
indicate OS support for the _CST object and C States
Changed notification.

P LVL2 LAT

The worst-case hardware latency, in microseconds, to enter
and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

P LVL3 LAT

The worst-case hardware latency, in microseconds, to enter
and exit a C3 state. A value > 1000 indicates the system
does not support a C3 state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

100 Advanced Configuration and Power Interface Specification

Table5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

FLUSH_SIZE

2

100

If WBINVD=0, the value of thisfield is the number of flush
strides that need to be read (using cacheabl e addresses) to
completely flush dirty lines from any processor’s memory
caches. Notice that the valuein FLUSH_STRIDE is
typically the smallest cache line width on any of the
processor’ s caches (for more information, see the
FLUSH_STRIDE field definition). If the system does not
support a method for flushing the processor’ s caches, then
FLUSH_SIZE and WBINVD are set to zero. Notice that
this method of flushing the processor caches has
limitations, and WBINV D=1 isthe preferred way to flush
the processors caches. Thisvalueistypically at least 2
times the cache size. The maximum allowed value for
FLUSH_SIZE multiplied by FLUSH_STRIDE is2 MB for
atypical maximum supported cache size of 1 MB. Larger
cache sizes are supported using WBINVD=1.

Thisvaueisignored if WBINVD=L1.

Thisfield is maintained for ACPI 1.0 processor
compatibility on existing systems. Processorsin new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate thisto OSPM by setting
the WBINVD field = 1.

FLUSH_STRIDE

102

If WBINV D=0, the value of thisfield isthe cacheline
width, in bytes, of the processor’s memory caches. This
valueistypically the smallest cache line width on any of
the processor’ s caches. For more information, see the
description of the FLUSH_SIZE field.

Thisvalueisignored if WBINVD=1.

Thisfield is maintained for ACPI 1.0 processor
compatibility on existing systems. Processorsin new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate thisto OSPM by setting
the WBINVD field = 1.

DUTY_OFFSET

104

The zero-based index of where the processor’ s duty cycle
setting iswithin the processor’'s P_CNT register.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 101

Table5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

DUTY_WIDTH

1

105

The bit width of the processor’ s duty cycle setting valuein
the P_CNT register. Each processor’ s duty cycle setting
allows the software to select anominal processor frequency
below its absol ute frequency as defined by:

THTL_EN=1

BE * DC/(ZDUTY_WIDTH)
Where:

BF—Base frequency

DC-Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF.
A DUTY_WIDTH value of 0 indicates that processor duty
cycleisnot supported and the processor continuously runs
at its base frequency.

DAY_ALRM

106

The RTC CMOS RAM index to the day-of-month alarm
value. If thisfield contains a zero, then the RTC day of the
month alarm feature is not supported. If thisfield has a non-
zero value, then thisfield contains an index into RTC RAM
space that OSPM can use to program the day of the month
alarm. See section 4.7.2.4, “Real Time Clock Alarm,” for a
description of how the hardware works.

MON_ALRM

107

The RTC CMOS RAM index to the month of year alarm
value. If thisfield contains a zero, then the RTC month of
the year alarm feature is not supported. If thisfield hasa
non-zero value, then thisfield containsan index into RTC
RAM space that OSPM can use to program the month of
theyear alarm. If thisfeatureis supported, then the

DAY _ALRM feature must be supported al so.

CENTURY

108

The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains
azero, then the RTC centenary feature is not supported. I
thisfield has a non-zero value, then thisfield contains an
index into RTC RAM space that OSPM can use to program
the centenary field.

IAPC_BOOT_ARCH

109

IA-PC Boot Architecture Flags. See Table 510 for a
description of thisfield.

Reserved

111

Must be 0.

Flags

112

Fixed feature flags. See Table 5-9 for a description of this
field.

Compag/I ntel/Microsoft/Phoenix/T oshiba

102 Advanced Configuration and Power Interface Specification

Table5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

RESET_REG

12

116

The address of the reset register represented in Generic
Address Structure format (See section 4.7.3.6, “ Reset
Register,” for adescription of the reset mechanism.)

Note: Only System 1/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address Space |D. Also, Register_Bit Width must be 8
and Register_Bit Offset must be 0.

RESET_VALUE

128

Indicates the value to write to the RESET_REG port to
reset the system. (See section 4.7.3.6, “ Reset Register,” for
a description of the reset mechanism.)

Reserved

129

Must be 0.

X_FIRMWARE CTRL

132

64bit physical address of the FACS.

X_DSDT

140

64bit physical address of the DSDT.

X_PM1la EVT BLK

K;oooooo

148

Extended address of the PM 1a Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of thisregister block. Thisisarequired
field.

X_PM1b EVT_BLK

160

Extended address of the PM 1b Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PM 1 Event Grouping,” for a hardware
description layout of this register block. Thisfieldis
optional; if thisregister block is not supported, thisfield
contains zero.

X_PM1a CNT_BLK

172

Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PM 1 Control Grouping,” for a hardware
description layout of this register block. Thisisarequired
field.

X_PM1b_CNT_BLK

184

Extended address of the PM 1b Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PM 1 Control Grouping,” for a hardware
description layout of thisregister block. Thisfieldis
optional; if thisregister block is not supported, thisfield
contains zero.

X_PM2_CNT_BLK

196

Extended address of the Power Management 2 Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.4, “PM2 Control (PM2_CNT),”

for ahardware description layout of thisregister block. This
field isoptional; if thisregister block is not supported, this
field contains zero.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 103

Table5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

X_PM_TMR_BLK

12

208

Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this
register block. Thisisarequired field.

X_GPEO_BLK

220

Extended address of the General-Purpose Event 0 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of thisregister block Thisisan
optional field; if thisregister block is not supported, this
field contains zero.

X_GPE1_BLK

232

Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of thisregister block. Thisisan
optional field; if this register block is not supported, this
field contains zero.

Table5-9 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag

Bit
length

Bit
offset

Description

WBINVD

1

0

Processor properly implements afunctional equivalent to
the WBINVD IA-32 instruction.

If set, signifiesthat the WBINVD instruction correctly
flushes the processor caches, maintains memory coherency,
and upon completion of the instruction, all caches for the
current processor contain no cached data other than what
OSPM references and allows to be cached. If thisflagis not
set, the ACPI OSisresponsible for disabling all ACPI
features that need this function. Thisfield is maintained for
ACPI 1.0 processor compatibility on existing systems.
Processors in new ACPI 2.0-compatible systems are
required to support this function and indicate thisto OSPM
by setting thisfield.

WBINVD_FLUSH

If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency,
but does not guarantee the caches are invalidated. This
provides the compl ete semantics of the WBINVD
instruction, and provides enough tosupport the system
sleeping states. If neither of the WBINVD flagsis set, the
system will require FLUSH_SIZE and FLUSH_STRIDE to
support sleeping states. If the FLUSH parameters are also
not supported, the machine cannot support sleeping states
S1, S2, or S3.

Compag/I ntel/Microsoft/Phoenix/T oshiba

104 Advanced Configuration and Power Interface Specification

Table5-9 Fixed ACPI Description Table Fixed Feature Flags (continued)

FACP - Flag

Bit

length

Bit
offset

Description

PROC_C1

1

2

A oneindicates that the C1 power state is supported on all
processors.

P LVL2 UP

A zero indicates that the C2 power state is configured to
only work on a uniprocessor (UP) system. A one indicates
that the C2 power state is configured to work on aUP or
multiprocessor (MP) system.

PWR_BUTTON

A zero indicates the power button is handled as afixed
feature programming model; a one indicates the power
button is handled as a control method device. If the system
does not have a power button, this value would be “1” and
no sleep button device would be present.

SLP_BUTTON

A zero indicates the sleep button is handled as a fixed
feature programming model; a one indicates the sleep
button is handled as a control method device.

If the system does not have a sleep button, this value would
be“1” and no sleep button device would be present.

FIX_RTC

A zero indicates the RTC wake status is supported in fixed
register space; a one indicates the RTC wake status is not
supported in fixed register space.

RTC_S4

Indicates whether the RTC alarm function can wake the
system from the $4 state. The RTC must be able to wake
the system from an S1, S2, or S3 sleep state. The RTC
alarm can optionally support waking the system from the
$4 state, asindicated by thisvalue.

TMR_VAL_EXT

A zeroindicates TMR_VAL isimplemented as a 24-bit
value. A oneindicates TMR_VAL isimplemented as a 32-
bit value. The TMR_STS bit is set when the most
significant bit of the TMR_V AL toggles.

DCK_CAP

A zeroindicates that the system cannot support docking. A
oneindicates that the system can support docking. Notice
that this flag does not indicate whether or not a docking
station is currently present; it only indicates that the system
is capable of docking.

RESET_REG_SUP

10

If set, indicates the system supports system reset viathe
FADT RESET_REG as described in section 4.7. 3.6, “Reset
Register.”

SEALED_CASE

11

System Type Attribute. If set indicates that the system has
no internal expansion capabilities and the caseis sealed.

HEADLESS

System Type Attribute. If set indicates the system does not
have local video capabilities or local input devices.

CPU_SW SLP

13

If set, indicates to OSPM that a processor native instruction
must be executed after writing the SLP_TY Px register.

Reserved

18

14

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 105

5.2.8.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as aguide
for setting the Preferred_PM_Profile field inthe FADT. OSPM can use thisfield to set default power
management policy parameters during OS installation.

Desktop. A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. Thisdeviceis
used to perform work that is considered mainstream corporate or home computing (for example, word
processing, Internet browsing, spreadsheets, and so on).

Mabile. A single-user, full -featured, portable computing device that is capable of running on batteries or
other power storage devicesto perform its normal functions. Most often contains one processor. This
device performs the same task set as a desktop. However it may have limitations dues to its size, thermal
requirements, and/or power source life.

Workstation. A single-user, full -featured, stationary computing device that resides on or near an
individual’ swork area. Often contains more than one processor. Must be connected to AC power to
function. This deviceis used to perform large quantities of computations in support of such work as
CAD/CAM and other graphics-intensive applications.

Enterprise Server. A multiuser, stationary computing device that frequently resides in a separate, often
specially designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This deviceis used to support large-scal e networking, database, communications, or
financial operationswithin acorporation or government.

SOHO Server. A multiuser, stationary computing device that frequently resides in a separate area or room
in asmall or home office. May contain morethan one processor. Must be connected to AC power to
function. Thisdeviceis generally used to support all of the networking, database, communications, and
financial operations of asmall office or home office.

Appliance PC. A device specifically designed to operate in alow-noise, high-availability environment
such as aconsumer’ s living rooms orfamily room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI. Must be
connected to AC power to function. Normally they are sealed case style and may only perform a subset of
the tasks normally associated with today’ s personal computers.

5.2.8.2 System Type Attributes

This set of flagsis used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power management
and device settings. For example, asystem that has the SEALED_CASE bit set may take avery aggressive
low noise policy toward thermal management. In another example an OS might not load video, keyboard or
mouse drivers on aHEADLESS system.

5.2.8.3 IA-PC Boot Architecture Flags

This set of flagsis used by an OS to guide the assumptionsit can makeininitializing hardware on |A-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In
IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devicesif none are
present. For example, if there are no I SA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,
“Configuration.”

These flags pertain only to A -PC platforms. On other system architectures, the entire field should be set
to 0.

Compag/I ntel/Microsoft/Phoenix/T oshiba

106 Advanced Configuration and Power Interface Specification

Table5-10 Fixed ACPI Description Table Boot Architecture Flags

Bit Bit
BOOT_ARCH length offset Description

LEGACY_DEVICES | 1 0 If set, indicates that the motherboard supports user-visible
deviceson the LPC or ISA bus. User-visible devices are
devicesthat have end-user accessible connectors (for
example, LPT port), or devices for which the OS must load
adevicedriver so that an end-user application can use a
device. If clear, the OS may assume there are no such
devices and that all devicesin the system can be detected
exclusively viaindustry standard device enumeration
mechanisms (including the ACPI namespace).

8042 1 1 If set, indicates that the motherboard contains support for a
port 60 and 64 based keyboard controller, usually
implemented as an 8042 or eguivalent micro-controller.

Reserved 14 3 Must be 0.

5.2.9 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.8, “Fixed ACPI Description Table (FADT).”

The BIOS aligns the FACS on a 64-byte boundary anywhere withinthe 0-4G memory address space. The
memory where the FACS structure resides must not be reported as system AddressRangeMemory in the
system address map. For example, the E820 address map reporting interface would report the region as
AddressRangeReserved. For more information about system address map reporting interfaces, see
section 15, “ System Address Map Interfaces.”

Table5-11 Firmware ACPI Control Structure (FACS)

Byte Byte
Field Length | Offset Description
Signature 4 0 ‘FACS
Length 4 4 Length, in bytes, of the entire Firmware ACPI Control
Structure. Thisvalue is 64 bytes or larger.
Hardware Signature 4 8 The value of the system’s “hardware signature” at last boot.

Thisvalueis calculated by the BIOS on a best effort basis
to indicate the base hardware configuration of the system
such that different base hardware configurations can have
different hardware signature values. OSPM uses this
information in waking from an $4 state, by comparing the
current hardware signature to the signature values saved in
the non-volatile sleep image. If the values are not the same,
OSPM assumes that the saved non-volatile image is from a
different hardware configuration and cannot be restored.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 107

Table5-11 Firmware ACPI Control Structure (FACS) (continued)

Field

Byte
Length

Byte
Offset

Description

Firmware Waking_
Vector

4

12

The 32-bit address field into which the ACPI OS putsits
waking vector. Before transitioning the system into a global
sleeping state, OSPM fillsin this vector with the physical
memory address of an OS-specific wake function. During
POST, the BIOS checks this value and if it is non-zero,
transfers control to the specified address.

On PCs, the wake function addressisin memory below 1
MB and the control istransferred while in real mode.
OSPM’ s wake function restores the processors’ context.

For IA-PC platforms, the following example shows the
relationship between the physical addressin the Firmware
Waking Vector and the real mode address the BIOS jumps
to. If, for examp le, the physical addressis 0x12345, then
the BIOS must jump to real mode address 0x1234:0x0005.
In general thisrelationshipis

Real-mode address =
Physical address>>4 : Physical address and 0xO00F

Notice that on |A-PC platforms, A20 must be enabled when
the BIOS jumps to the real mode address derived from the
physical address stored in the Firmware Waking Vector.
Thisfield is superseded in ACPI 2.0 by the

X_Firmware Waking_Vector field.

Global_Lock

16

Thisfield contains the Global Lock used to synchronize
access to shared hardware resources between the OSPM
environment and an external controller environment (for
example, the SMI environment). Thislock is owned
exclusively by either OSPM or the firmware at any one
time. When ownership of the lock is attempted, it might be
busy, in which case the requesting environment exits and
waitsfor the signal that the lock has been released. For
example, the Global Lock can be used to protect an
embedded controller interface such that only OSPM or the
firmware will access the embedded controller interface at
any onetime. See section 5.2.9.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags

20

Firmware control structure flags. See Table 5-12for a
description of thisfield.

X_Firmware_Waking
_Vector

24

64bit physical address of the Firmware Waking Vector.

Version

32

1-Version of thistable

Reserved

31

Thisvalueis zero.

Compag/I ntel/Microsoft/Phoenix/T oshiba

108 Advanced Configuration and Power Interface Specification

Table5-12 Firmware Control Structure Feature Flags

Bit Bit
FACS - Flag Length | Offset Description
$4BIOS _F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
SABIOS _REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the $4 state.
Reserved 31 1 Thevalueis zero.

5.2.9.1 Global Lock

The Global Lock isa DWORD value in read/write memory located in the FACS and is accessed and
updated by both the OS environment and the SM1 environment in a defined manner to provide an exclusive
lock. By convention, thislock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment ownsit, the requesting environment sets a“pending” state within the lock, exitsits attempt to
acquire the lock, and waits for the owning environment to signal that the lock has been released before
attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set after the
lock isreleased, asignal is sent using an inter-environment interrupt mechanism to the other environment
toinform it that the lock has been released. During interrupt handling for the “lock released” event within
the corresponding environment, if the lock ownership were still desired an attempt to acquire the lock
would be made. If ownership is not acquired, then the environment must again set “pending” and wait for
another “lock release” signal.

Table 5-13 shows the encoding of the Global Lock DWORD in memory.
Table5-13 Embedded Controller Arbitration Structure

Bit Bit
Field Length | Offset | Description
Pending 1 0 Non-zero indicates that arequest for ownership of the
Global Lock is pending.
Owned 1 1 Non-zero indicates that the Global Lock is Owned.
Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero isreturned by the function, the caller has been granted ownership of the Global Lock and
can proceed. If zero isreturned by the function, the caller has not been granted ownership of the Global
Lock, the “pending” hit has been set, and the caller must wait until it is signaled by an interrupt event that
the lock is available before attempting to acquire access again.

Acqui r ed obal Lock:

nov ecx, (d obal Lock ; ecx = address of d obal Lock
acqlo: nmov eax, [ecx] ; Value to conpare agai nst

nmv edx, eax

and edx, not 1 ; Cear pending bit

bts edx, 1 ; Check and set owner bit

adc edx, O ; if owned, set pending bit

; Attenpt to set new val ue
| ock cnmpxchg dword ptr[ecx] edx

jnz short acql0 If not set, try again
cnp dl, 3 ; Was it acquired or marked pendi ng?
sbb eax, eax ; acquired = -1, pending = 0

ret

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 109

The following code sequence is used by OSPM and the firmware to release ownership of the Global Lock.
If non-zero is returned, the caller must raise the appropriate event to the other environment to signal that the
Global Lock isnow free. Depending on the environment, this signaling is done by setting the either the
GBL_RLSor BIOS_RL Swithin their respective hardware register spaces. This signal only occurs when
the other environment attempted to acquire ownership while the lock was owned.

Rel eased obal Lock:

nmv ecx, d obal Lock ; ecx = address of d obal Lock
rel 10: nmov eax, [ecx] ; Value to conpare agai nst

nmov edx, eax

and edx, not 03h ; clear owner and pending field

; Attenpt to set it
| ock cnmpxchg dword ptr[ecx], edx
jnz short rel 10 ; If not set, try again

and eax, 1 ; Was pending set?

If one is returned (we were pending) the caller nust signal that the
; lock has been rel eased using either GBL_RLS or BIOCS_RLS as appropriate

ret

Although using the Global Lock allows various hardware resources to be shared, it isimportant to notice
that its usage when there is ownership contention could entail a significant amount of system overhead as
well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason,
implementations should try to design the hardware to keep the required usage of the Global Lock to a
minimum. The Global Lock is required when alogical register in the hardware is shared. For example, if
bit 0 isused by ACPI (OSPM) and hit 1 of the same register is used by SMI, then access to that register
needs to be protected under the Global Lock, ensuring that the register’ s contents do not change from
underneath one environment while the other is making changesto it. Similarly if the entire register is
shared, as the case might be for the embedded controller interface, access to the register needs to be
protected under the Global Lock.

5.2.10 Definition Blocks

A Definition Block consists of datain AML format and contains information about hardware
implementation detailsin the form of AML objects that contain data, AML code, or other AML objects.
The top-level organization of thisinformation after a definition block isloaded is name-tagged in a
hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as alogical unit. OSPM will load a definition block
either asaresult of executingthe AML Load() or LoadTable() operator or encountering atable definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitionsin the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

Asmentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turmn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confinesit to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permitsimplementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for 1/0 space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a spaceis usually defined as
a“builtin” operator.

Compag/I ntel/Microsoft/Phoenix/T oshiba

110 Advanced Configuration and Power Interface Specification

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in thisspecification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

5.2.10.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description in Definition
Block format. This Definition Block islike all other Definition Blocks, with the exception that it cannot be
unloaded. See section 5.2.10, “ Definition Blocks,” for adescription of Definition Blocks.

5.2.10.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. There can be multiple
SSDTs present. After the DSDT isloaded, each SSDT is loaded. This allowsthe OEM to provide the base
support in one table and add smaller system optionsin other tables. For example, the OEM might put
dynamic object definitions into a secondary table such that the firmware can construct the dynamic
information at boot without needing to edit the static DSDT. A SSDT can only rely onthe DSDT being
loaded prior to it.

5.2.10.3 Persistent System Description Table (PSDT)

Thetable signature, “PSDT" refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
this version of the ACPI specification. OSPM will evaluate atable with the“PSDT” signaturein like
manner to the evaluation of an SSDT as described in section 5.2.10.2, “ Secondary System Description
Table.”

5.2.10.4 Multiple APIC Description Table (MADT)

The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-A T—compatible dual 8259 interrupt controller
and, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller (APIC) and
Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC). The choice of the interrupt
model (s) to support is up to the platform designer. The interrupt model cannot be dynamically changed by
the system firmware; OSPM will choose which model to use and install support for that model at the time
of installation. If a platform supports both models, an OS will install support for one model or the other; it
will not mix models. Multi-boot capability is a feature in many modern operating systems. This means that
a system may have multiple operating systems or multiple instances of an OSinstalled at any one time.
Platform designers must allow for this.

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC or SAPIC implementations.

ACPI represents all interrupts as “flat” values known as global system interrupts. Therefore to support
APICs or SAPICs on an ACPI-enabled system, each used APIC or SAPIC interrupt input must be mapped
to the global system interrupt value used by ACPI. See Section 5.2.11. Global System Interrupts,” for a
description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that APIC or SAPIC
implementations might support (for example, identifying each processor’slocal APIC ID).

All addressesinthe MADT are processor-rel ative physical addresses.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 111

Table5-14 Multiple APIC Description Table (MADT) Format

Byte Byte
Field Length [Offset Description
Header
Signature 4 0 ‘APIC.” Signature for the Multiple APIC Description Table.
Length 4 4 Length, in bytes, of the entire MADT.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the MADT, thetable ID is the manufacturer model ID.
OEM Revision 4 24 OEM revision of MADTfor supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, thisisthe revision for the
ASL Compiler.
Local APIC Address | 4 36 The 32-bit physical address at which each processor can
accessitslocal APIC.
Flags 4 40 Multiple APIC flags. See Table 5-15 for a description of
thisfield.
APIC Structure[n] — a4 A list of APIC structures for thisimplementation. Thislist
will contain all of thel/O APIC, I/O SAPIC, Loca APIC,
Local SAPIC, Interrupt Source Override, Non-maskable
Interrupt Source, Local APIC NMI Source, Local APIC
Address Override, and Platform Interrupt Sources structures
needed to support this platform. These structures are
described in the following sections.
Table5-15 Multiple APIC Flags
Bit Bit
Multiple APIC Flags | Length | Offset Description
PCAT_COMPAT 1 0 A oneindicates that the system also hasa PC-AT-
compatible dual-8259 setup. The 8259 vectors must be
disabled (that is, masked) when enabling the ACPI APIC
operation.
Reserved 31 1 Thisvalueis zero.

Immediately after the Flags valueinthe MADTis alist of APIC structures that declare the APIC features of
the machine. The first byte of each structure declares the type of that structure and the second byte declares
the length of that structure.

Compag/I ntel/Microsoft/Phoenix/T oshiba

112 Advanced Configuration and Power Interface Specification

Table5-16 APIC Structure Types

Value

Description

Processor Local APIC

I/OAPIC

Interrupt Source Override

Non-maskable Interrupt Source (NMI)

Local APIC NMI Structure

Local APIC Address Override Structure

/0 SAPIC

Local SAPIC

0 N o |0 |~ W N |k O

Patform Interrupt Sources

V
(0]

Reserved. OSPM skips structures of the reserved type.

5.2.10.5 Processor Local APIC

When using the APIC interrupt model, each processor in the system isrequired to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in this table
to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table5-17 Processor Local APIC Structure

Byte Byte

Field Length | Offset Description

Type 1 0 O-Processor Local APIC structure

Length 1 1 8

ACPI Processor ID 1 2 The Processorld for which this processor islisted in the
ACPI Processor declaration operator. For a definition of the
Processor operator, see section 16.2.3.3.1.16, “ Processor
(Declare Processor).”

APICID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-18 for a description of this
field.

Table5-18 Local APIC Flags

Bit Bit

Local APIC - Flags Length | Offset Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to useit.
Reserved 31 1 Must be zero.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 113

5.2.10.6 /O APIC

In an APIC inplementation, there are one or more I/0 APICs. Each |/O APIC has a series of interrupt
inputs, referred to as INTIn, where the value of n isfrom 0 to the number of the last interrupt input on the
I/O APIC. Thel/O APIC structure declares which global system interrupts are uniquely associated with the
I/O APIC interrupt inputs. Thereisone I/O APIC structure for each 1/0 APIC in the system. For more
information on global system interrupts see Section 5.2.11, “Global System Interrupts.”

Table5-19 1/0O APIC Structure

Byte Byte

Field Length | Offset | Description

Type 1 0 1-1/O APIC structure

Length 1 1 12

[/OAPICID 1 2 Thel/OAPIC'sID.

Reserved 1 3 0

/O APIC Address 4 4 The 32-bit physical addressto accessthis|/O APIC. Each
1/O APIC resides at a unique address.

Global System 4 8 The global system interrupt number where this1/O APIC's

Interrupt Base interrupt inputs start. The number of interrupt inputsis
determined by the 1/0 APIC’ sMax Redir Entry register.

5.2.10.7 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15 to
the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see section 5.2.10.8, “Interrupt
Source Overrides”). This meansthat 1/0 APIC interrupt inputs 0-15 must be mapped to global system
interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless overrides are used. Thisallows a
platform to support OSPM implementations that use the APIC model as well as OSPM implementations
that use the 8259 model (OSPM will only use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global system
interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater than 15 are
ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the 1/0 APIC structures. For more information on hardware resource configuration see
section 6, “ Configuration.”

5.2.10.8 Interrupt Source Overrides

Interrupt Source Overrides are necessary to describe variances between the | A -PC standard dual 8259
interrupt definition and the platform’ simplementation.

It isassumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is not necessary to provide an
Interrupt Source Override for every ISA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding | SA interrupt sources.

Compag/I ntel/Microsoft/Phoenix/T oshiba

114 Advanced Configuration and Power Interface Specification

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0,
but in APIC mode, it is connected to 1/0 APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is‘ 0’ and the Global System Interrupt is ‘2.’

Table5-20 Interrupt Source Override Structure

Byte Byte
Field Length | Offset Description
Type 1 0 2—Interrupt Source Override
Length 1 1 10
Bus 1 2 0-Constant, meaning ISA
Source 1 3 Bus-relative interrupt source (IRQ)
Global System 4 4 The Global System Interrupt that this bus-relative interrupt
Interrupt source will signal.
Flags 2 8 MPSINTI flags. See Table 5-21 for adescription of this

field.

The MPSINTI flags listed in Table 521 areidentical to the flags used in Table 4-10 of the MPS version
1.4 specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

Table5-21 MPSINTI Flags

Local APIC - Flags

Bit
Length

Bit
Offset

Description

Polarity

0

Polarity of the APIC 1/O input signals:
00-Conformsto the specifications of the bus

(For example, EISA is active-low for level-triggered
interrupts)

01-Active high
10-Reserved

11-Active low

Trigger Mode

Trigger mode of the APIC 1/O Input signals:
00-Conforms to specifications of the bus
(For example, ISA is edge-triggered)
01-Edge-triggered

10-Reserved

11-L evel-triggered

Reserved

Must be zero.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 115

Interrupt Source Overrides are also hecessary when an identity mapped interrupt input has a non-standard
polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this IRQ
is not identity mapped. This entry will override the valuein SCI_INT in FADT. For example, if SCl is
connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should have 9 in
SCI_INT inthe FADT and an interrupt source override entry mapping IRQ 9to INTIN11.

5.2.10.9 Non-Maskable Interrupt Sources (NMIs)

This structure allows a platform designer to specify which 1/0 (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table5-22 Non-maskable Source Structure

Byte Byte
Field Length | Offset Description
Type 1 0 3-NMI
Length 1 1 8
Flags 2 2 Same as MPS INTI flags
Global System 4 4 The Global System Interrupt that this NMI will signal.
Interrupt

5.2.10.10 Local APIC NMI

This structure describes the Local APIC interrupt input (LINTn) that NM1 is connected to for each of the
processors in the system where such a connection exists. Thisinformation is needed by OSPM to enable
the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the
platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two Local APIC
NMI entries would be needed in the MADT.

Table5-23 Local APIC NMI Structure

Byte Byte

Field Length [Offset Description

Type 1 0 4-Local APIC NMI Structure

Length 1 1 6

ACPI Processor ID 1 2 Processor ID corresponding to the ID listed in the processor
object. A value of Oxff signifiesthat this appliesto all
processorsin the machine.

Flags 2 3 MPSINTI flags. See Table 5-21 for a description of this
field.

Local APIC LINT# 1 5 Local APIC interrupt input LINTn to which NMI is
connected.

Compag/I ntel/Microsoft/Phoenix/T oshiba

116 Advanced Configuration and Power Interface Specification

5.2.10.11 Local APIC Address Override Structure

This optional structure overrides the physical address of the local APIC inthe MADT' stable header using
the Generic Address Structure.

If defined, OSPM must use the address specified in this structure for al local APICs (and local SAPICs),
rather than the address contained in the MADT’ s table header. Only one Local APIC Address Override
Structure may be defined.

Table5-24 Local APIC AddressOverride Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 5-Local APIC Address Override Structure
Length 1 1 16
Reserved 2 2 Reserved (must be set to zero)
Local APIC Address | 8 4 Physical address of Local APIC

5.2.10.12 1/O SAPIC Structure

The 1/O SAPIC structure isvery similar to the I/0 APIC structure. If both I/O APIC and 1/0O SAPIC
structures exist for aspecific APIC ID, the information in the I/O SAPIC structure must be used.

The 1/O SAPIC structure usesthe I/O_APIC_ID field as defined in the 1/0 APIC table. The Vector_Base
field remains unchanged but has been moved. The 1/O APIC address has been deleted. A new address and
reserved field have been added.

Table5-25 1/0O SAPIC Structure

Byte Byte
Field Length | Offset Description
Type 1 0 6-1/0 SAPIC Structure
Length 1 1 20
[/OAPICID 1 2 1/O SAPIC ID
Reserved 1 3 Reserved (must be zero)
Global System 4 4 Global System Interrupt Base
Interrupt Base
I/O SAPIC Address 8 8 Physical addressfor /0O SAPIC

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the information
fromthe 1/O APIC structure.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 117

If both /0O APIC and an I/O SAPIC structures exist inan MADT, the OEM/BIOS writer must prevent
“mixing” 1/0 APIC and I/O SAPIC addresses. Thisis done by ensuring that there are at least as many 1/0
SAPIC structures as |/0O APIC structures and that every 1/O APIC structure has a corresponding |/O SAPIC
structure (same APIC ID).

5.2.10.13 Local SAPIC Structure

The Processor local SAPIC structureis very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the systemis required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in thistable to be updated
if the processor information changes during the lifespan of an OS boot. Whilein the sleeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table5-26 Processor Local SAPIC Structure

Byte Byte

Field Length [Offset Description

Type 1 0 7—Processor Local SAPIC structure

Length 1 1 8

ACPI Processor ID 2 2 The Processor Id listed in the processor object. For a
definition of the Processor object, see section 16.2.3.3.1.16,
“Processor (Declare Processor).”

Flags 2 4 Loca SAPIC flags. See Table 5-18 for a description of this
field.

Local SAPICID 1 6 The processor’slocal SAPIC ID

Local SAPICEID 1 7 The processor’slocal SAPIC EID

5.2.10.14 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which 1/O SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events
(similar to SMI in1A-32). The |A-64 architecture permitsthe |/O SAPIC to send avector valuein the
interrupt message of the PMI type. Thisvalueis specified in the /O SAPIC Vector field of the Platform
Interrupt Sources Structure.

INIT messages cause processors to soft reset.

Compag/I ntel/Microsoft/Phoenix/T oshiba

118 Advanced Configuration and Power Interface Specification

If aplatform can generate an interrupt after correcting platform errors (e.g., single bit error correction), the
interrupt input line used to signal such corrected errorsis specified by the Global System Interrupt field in
the following table. The firmware indicates the processor that can retrieve the corrected platform error
information through the Processor 1D and EID fields in the structure below. In some systems, retrieval of
the error information may not be possible from other processors. OSPM is required to program the I/O
SAPIC redirection table entries with the Processor 1D, EID values specified by the ACPI system firmware.
Refer to the |A-64 System Abstraction Layer (SAL) Specification for details on handling the Corrected

Platform Error Interrupt.

Table5-27 Platform Interrupt Sources Structure

Byte Byte
Field Length | Offset Description
Type 1 0 8-Platform Interrupt Source structure
Length 1 1 16
Flags 2 2 MPSINTI flags. See Table 5-21 for a description of this
field.
Interrupt Type 1 4 1-PMI
2-INIT
3—Corrected Platform Error Interrupt
All other values are reserved.
Processor ID 1 5 Processor ID of destination.
Processor EID 1 6 Processor EID of destination.
I/0 SAPIC Vector 1 7 Value that OSPM must use to program the vector field of
the 1/0 SAPIC redirection table entry for entries with the
PMI interrupt type.
Global System 4 8 The Global System Interrupt that this platform interrupt will
Interrupt signal.
Reserved 4 12 Reserved, must be zero.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 119

Global System Interrupt Vector Interrupt Input Lines ‘System Vector Base'
(ie ACPI PnP IRQ#) on |OAPIC reported in IOAPIC Struc
24 input 0 [{INTILO 0
IOAPIC
23 [{INTI_23
16 input 24 [JINTI O 24
I0OAPIC
39 [{INTI_15
24 input 40 [H{ INTI_O 40
IOAPIC .
51 [F[INTI_11
55 [|INTI_23

Figure5-3 APIC-Global System Interrupts

5.2.11 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interruptsin tables and in ASL methods that perform resource allocation of interrupts. Do not
confuse global system interrupts with ISA IRQs although in the case of the | A-PC 8259 interrupts they
correspond in aone-to-one fashion.

There are two interrupt modelsused in ACPI -enabled systems.

Thefirst model isthe APIC model. In the APIC model, the number of interrupt inputs supported by each
I/O APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how
many interrupt inputs each 1/0 APIC supports and by determining the global system interrupt base for each
I/0O APIC as specified by the 1/0O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the 1/O APIC. The global system interrupts mapped to that 1/0
APIC begin at the global system interrupt base and extending through the number of interrupts specified in
the Max Redirection register. This mapping is depicted in Figure 5-3.

Compag/I ntel/Microsoft/Phoenix/T oshiba

120 Advanced Configuration and Power Interface Specification

Thereisexactly one l/O APIC structure per I/O APIC in the system.

Global System Interrupt Vector 8259 ISA IRQs

(ie ACPI PnP IRQ#) ¢ ¢
0 IRQO
M aster | RQ3
8259
7 IRQ7
IR8
Save _
8259 IRQ11
15 IRQ15

Figure5-4 8259-Glabal System Interrupts

The other interrupt model isthe standard AT style mentioned above which uses ISA IRQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their
mappings to the 8259 pair are part of the AT standard and are well defined. This mapping isdepicted in
Figure 5-4.

5.2.12 Smart Battery Table (SBST)

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. Thistable indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the user
to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in current
(mA/mAnh) or in energy (mW/mWh), OSPM must set them to operate in energy (mW/mWh) mode so that
the energy levels specified in the SBST can be used. OSPM uses these tables with the capabilities of the
batteries to determine the different trip points. For more precise definitions of these levels, see section
3.9.3, “Battery Gas Gauge.”

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 121

Table5-28 Smart Battery Description Table (SBST) Format

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘SBST.’ Signature for the Smart Battery Description Table
(SBST).
Length 4 4 Length, in bytes, of the entire SBST
Revision 1 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the SBST, the table ID is the manufacturer model 1D.
OEM Revision 4 24 OEM revision of SBST for supplied OEM TableID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, thisisthe revision for the
ASL Compiler.
Warning Energy 4 36 OEM suggested energy level in milliWatt-hours (mWh) at
Level which OSPM warns the user.
Low Energy Level 4 40 OEM suggested platform energy level in mWh at which
OSPM will transition the system to a sleeping state.
Critical Energy Level | 4 44 OEM suggested platform energy level in mWh at which
OSPM performs an emergency shutdown.

5.2.13 Embedded Controller Boot Resources Table

This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of thistable allows OSPM to provide Embedded Controller operation region space access before
the namespace has been evaluated. If thistableis not provided, the Embedded Controller region space will
not be available until the Embedded Controller device in the AML namespace has been discovered and
enumerated. The availability of the region space can be detected by providing a_REG method object
underneath the Embedded Controller device.

Compag/I ntel/Microsoft/Phoenix/T oshiba

122 Advanced Configuration and Power Interface Specification

Table5-29 Embedded Controller Boot Resources Table For mat

Field

Byte
Length

Byte
Offset

Description

Header

Signature

‘ECDT.’ Signature for the Embedded Controller Table.

Length

Length, in bytes, of the entire Embedded Controller Table

Revision

1

Checksum

Entire table must sum to zero.

OEMID

OEM ID

OEM TableID

ol [~ [~ |~ |

For the Embedded Controller Table, thetable ID isthe
manufacturer model ID.

OEM Revision

24

OEM revision of Embedded Controller Table for supplied
OEM TableID.

Creator ID

28

Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.

Creator Revision

32

Revision of utility that created the table. For tables
containing Definition Blocks, thisisthe revision for the
ASL Compiler.

EC_CONTROL

Contains the processor relative address, represented in
Generic Address Structure format, of the Embedded
Controller Command/Status register.

Note: Only System 1/O space and System Memory space
arevalid for valuesfor Address_Space |ID.

EC DATA

Contains the processor-relative address, represented in
Generic Address Structure format, of the Embedded
Controller Data register.

Note: Only System 1/0O space and System Memory space
arevalid for valuesfor Address Space ID.

uib

Unique | D-Same as the value returned by the _UID under
the device in the namespace that represents this embedded
controller.

GPE BIT

The bit assignment of the SCI interrupt within the
GPEXx_STSregister of a GPE block described in the FADT
that the embedded controller triggers.

EC_ID

Variable

ASCII, null terminated, string that contains afully qualified
reference to the name space object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC").
Quotes are omitted in the data field.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 123

ACPI 2.0 OSPM implementations supporting Embedded Controller devices must also support the ECDT.
ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The following example
code shows how to detect whether the Embedded Controller operation regions are available in a manner
that is backward compatible with prior versions of ACPI/OSPM.
Devi ce(EQD) {

Nane(REGC, Ones)

Met hod(_REG 2) {

I f(Lequal (Arg0, 3)) {
Store(Argl, REGC)
}

Met hod(ECAV, 0) {
| f (Lequal (REGC, Ones)) {
| f (LgreaterEqual (_REV, 2)) {
Ret ur n(One)
}

El se {
Ret ur n(Zer o)
}

}Ret ur n(REGC)

}
To detect the availability of theregion, call the ECAV method. For example:

If (_SB.PC 0. ECO. ECAV()) {
...regions are available...

el se {
...regions are not available...
}

5.3 ACPI NameSpace

For all Definition Blocks, the system maintains a single hierarchical namespace that it usesto refer to
objects. All Definition Blocks load into the same namespace. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take care
to avoid any naming collisions®. Only an unload operation of a Definition Block can remove names from
the namespace, so a name collision in an attempt to load a Definition Block is considered fatal. The
contents of the namespace changes only on aload or unload operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:;
- All names are afixed 32 hits.
Thefirst byte of aname isinclusiveof: ‘A'—Z",* ', (0x41-0x5A, Ox5F).
The remaining three bytes of aname areinclusiveof: ‘A’—'Z", ‘0°—9', * ', (0x41-0x5A, 0x30-
0x39, Ox5F).
By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with
trailing underscores (*_'). See the language definition for AML NameSeg in Section 16, “ACPI
Source Language Reference.”
Names beginning with * ' are reserved by this specification. Definition Blocks can only use names
beginning with " as defined by this specification.
A name proceeded with ‘\' causes the nameto refer to the root of the namespace (‘\' is not part of
the 32-bit fixed-length name).
A name proceeded with ‘A’ causes the name to refer to the parent of the current namespace (‘' is
not part of the 32-bit fixed-length name).

® For the most part, since the name space is hierarchical, typically the bulk of adynamic definition file will
load into adifferent part of the hierarchy. In the root of the name space, and certain locations where
interaction is being designed, will be the areas which extra care must be taken.

Compag/I ntel/Microsoft/Phoenix/T oshiba

124 Advanced Configuration and Power Interface Specification

Except for names preceded with a‘\’, the current namespace determines where in the namespace hierarchy
aname being created goes and where a name being referenced isfound. A nameislocated by finding the
matching name in the current namespace, and then in the parent namespace. If the parent namespace does
not contain the name, the search continues recursively upwards until either the nameisfound or the
namespace does not have a parent (the root of the namespace). Thisindicates that the name is not found'.
An attempt to access namesin the parent of the root will result in the name not being found.

There are two types of namespace paths. an absolute namespace path (that is, one that startswitha“‘\’
prefix), and arelative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, whichisarelative
namespace path. For those relative name paths that contain multiple NameSegs or Parent Prefixes, ‘', the
search rules do not apply. If the search rules do not apply to arelative namespace path, the namespace
object islooked up relative to the current namespace. For example:

ABCD [Isearch rules apply
~ABCD /Isearch rules don’t apply
XYZ.ABCD /Isearch rulesdon’t apply
\XYZ.ABCD /Isearch rules don’t apply

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple
32-bit fixed-length name components together. Thisis useful for referring to the name of an object, such as
acontrol method, that is not in the scope of the current namespace.

" Unless the operation being performed is explicitly prepared for failure in name resolution, thisis
considered an error andthe system to stop working.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 125

Figure 5-5 shows a sample of the ACPI namespace after a Differentiated Definition Block has been loaded.

[C) Root

R
(7]

—{R] \PIDO
—

—
—

L7 \sB

— Processor Tree
CPUO — Processor 0 object
— Power resource for IDEO
_STA — Method to return status of power resourse
_ON — Method to turn on power resourse
_OFF — Method to turn off power resourse
— System bus tree
PCIO —PCl bus
_HID — Device ID
_CRS — Current resources (PCI bus number)
IDEO — IDEOQ device Key
_ADR — PCI device #, function # |i| Package
_PRO — Power resource requirements for DO |'i‘| Processor Object
\ GPE — General purpose events (GP_STS) |1‘| gg\jl;i: Resource
_L01 — Method to handle level GP_STS.1 |'i—| Bus/Device Object
_E02 — Method to handle edge GP_STS.2 D Data Object
_Lo3 — Method to handle level GP_STS.3 = Control Method (AML code)

Figure5-5 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of the
namespace search rules. An attempt to access arelative object recurses toward the root until the object is
found or the root isencountered. This can cause unintentional results. For example, using the namespace
described in Figure 5.5, attempting to accessa_CRS named object from within the_SB_.PCI0.IDEO will
have different results depending on if an absolute or relative path name is used. If an absolute pathnameis
specified (_SB_.PCI0.IDEOQ._CRS) an error will result since the object does not exist. Accessusing a
single segment name (_CRS) will actually accessthe\ SB .PCI0._CRS object. Notice that the access will
occur successfully with no errors.

Compag/I ntel/Microsoft/Phoenix/T oshiba

126 Advanced Configuration and Power Interface Specification

5.3.1 Defined Root Namespaces
The following namespaces are defined under the namespace root.

Table5-30 Namespaces Defined Under the Namespace Root

Name Description
_GPE General eventsin GPE register block.
_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined

under this namespace. ACPI 2.0 allows Processor object definitions under the_SB
namespace. ACPI 2.0-compatible systems may maintain the\ PR namespace for
compatibility with ACPI 1.0 operating systems. An ACPI 2.0-compatible namespace may
define Processor objectsin either the_SB or_PR scope but not both.

For more information about defining Processor objects, see section 8, “Processor

Control.”
_SB All Device/Bus Objects are defined under this namespace.
_Sl System indicator objects are defined under this namespace. For more information about

defining system indicators, see section 10.1, _S1 System Indicators.”

\ Tz ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objectsto be
defined under this namespace. ACPI 2.0 allows Thermal Zone object definitions under the
_SB namespace. ACPI 2.0-compatible systems may maintain the_TZ namespace for
compatibility with ACPI 1.0 operating systems. An ACPI 2.0-compatible namespace may
define Thermal Zone objectsin either the\ _SB or_TZ scope but not both.

For more information about defining Thermal Zone objects, see section 12, “ Thermal
Management.”

5.3.2 Objects

All objects, except locals, have aglobal scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objectsvary greatly. Neverthel ess, most objects refer to data variables of any supported
datatype, acontrol method, or system software-provided functions.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages. The Definition Block is encoded as a stream from beginning to end. The lead bytein the
stream comes from the AML encoding tables shown in section 16, “ ACPI Source Language Reference,”
and signifies how to interpret some number of following bytes, where each following byte can in turn
signify how to interpret some number of following bytes. For afull specification of the AML encoding, see
section 16, “ACPI Source Language Reference.”

Within the stream there are two levels of data being defined. Oneis the packaging and object declarations
(load time), and the other is an object reference (package contents/run-time).

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 127

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take
the form shown below, where PkgLength isthe length of the inclusive length of the datafor the operation.

LeadByte PkgLength data... LeadByte ...
\—b PkgLength J

Figure5-6 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that,
at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytesin the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used
in one-byte encodings, which allows for one-byte encodings on alength up to 0x3F. Longer encodings,
which do not use these two bits, have a maximum length of the following: two-byte encodings of OXOFFF,
three-byte encodings of OXOFFFFF, and four-byte length encodings of OXOFFFFFFFFF.

It isfatal for a package length to not fall on alogical boundary. For example, if a packageiscontained in
another package, then by definition its length must be contained within the outer package, and similarly for
adatum of implicit length.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and popul ates the ACPI namespace and initializes objects
accordingly. The namespace for which population occursis either from the current namespace location, as
defined by all nested packages or from the root if the nameis preceded with ‘\'.

The first object present in a Definition Block must be a named control method. Thisis the Definition
Block’ s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered avertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of nhamed objects. Unnamed objects cannot be created in
the “root.” Unnamed objects can be used as arguments in control methods.

Control method execution may generate errors when creating objects. This can occur if aMethod that
creates named objects blocks and is reentered while blocked. Thiswill happen because all nhamed objects
have an absolute path. Thisistrue even if the object name specified is relative. For example, the following
ASL code segments are functionally identical.

Method (DEAD,)
Scope (_SB_.FOO) {
Name (BAR,) // Runtime definition
}

}
Scope (_SB) {Name (_SB_. FOO.BAR,) // Load time definition

Notice that in the above exampl e the execution of the DEAD method will always fail because the object
_SB .FOO.BAR iscreated at load time.

Compag/I ntel/Microsoft/Phoenix/T oshiba

128 Advanced Configuration and Power Interface Specification

5.5 Using the ACPI Control Method Source Language

OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use atranslator to produce the byte stream encoding described in section 5.4. For example, the ASL
statements that produce the example byte stream shown in that earlier section are shown in the following
ASL example. For afull specification of the ASL statements, see section 16, “ ACPI Source Language
Reference.”

/1 ASL Exanpl e
DefinitionBlock (

"forbook. am ", /1 Qutput Filenane
" DSDT", /1 Signature

0x10, /1 DSDT Revi sion
"CEM', // CEM D
"forbook", /1 TABLE ID

0x1000 /1 CEM Revi si on

)
{ /Il start of definition block
Oper ationRegi on(\Ad O, System O 0x125, 0x1)
Field(\A O ByteAcc, NoLock, Preserve) {
C101, 1,
}

Scope(_SB){ // start of scope
Devi ce(PCl 0) { /Il start of device

Power Resour ce(FETO, 0, 0) { /1 start of pw
Met hod(_QN) {
Store ((Cnes, CT01) /1 assert power
Sl eep (30) /1 wait 30ns

}
Met hod(_OFF) {
Store (Zero, CT01) !/l assert reset#

}
Met hod(_STA) {
Ret urn (CTO01)

}
} /1 end of pw
} // end of device
} // end of scope
} // end of definition block

5.5.1 ASL Statements

ASL isprincipally adeclarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

Cbj ect := (nj ect Type FixedLi st Vari abl eLi st

FixedList refersto alist of known length that supplies data that all instances of a given ObjectType must
have. It iswritten as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, thatis(a, b, (g, 1, s, t), d). Argumentsto a FixedList can have default
values, in which case they can be skipped. Some ObjectTypes can have anull FixedList.

Variablelist refersto alist, not of predetermined length, of child objects that help define the parent. Itis
written as{x, y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have anull variable list.

For adetailed specification of the ASL language, see section 16, “ACPI Source Language Reference.” For
adetailed specification of the ACPI Control Method Machine Language (AML), upon which the output of
the ASL translator is based, see section 17, “ ACPI Machine Language Specification.”

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 129

5.5.2 ASL Macros

The ASL compiler supports some built in macrosto assist in various ASL coding operations. The following
table lists the supported directives and an explanation of their function.

Table5-31 ASL Built-in Macros

ASL Statement Description

Offset (a) Used in aFieldList parameter to supply the byte offset of the next defined
field within its parent region. This can be used instead of defining the bit
lengths that need to be skipped. All offsets are defined from beginning to
end of aregion.

EISAID (Id) Macro that converts the 7-character text argument into its corresponding 4-
byte numeric EISA ID encoding. This can be used when declaring IDs for
devicesthat are EISA IDs.

ResourceTemplate () Macro used to supply Plug and Play resource descriptor information in
human readable form, which is then translated into the appropriate binary
Plug and Play resource descriptor encodings. For more information about
resource descriptor encodings, see section 6.4, “ Resource Data Types for
ACPI.”

Unicode (string) Macro that converts an ASCII string to a Unicode string contained in a
buffer.

5.5.3 Control Method Execution

The operating software will initiate well -defined control methods as necessary to either interrogate or
adjust system-level hardware state. Thisis called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand,
which can include defined control methods provided by the operating software. Interpretation of a Control
Method is not preemptive, but it can block. When a control method does block, the operating software can
initiate or continue the execution of adifferent control method. A control method can only assume that
access to global objectsisexclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.3.1 Control Methods, Objects, and Operation Regions

Control Methods can reference any objects anywhere in the Namespace as well as address spaces defined
in operation regions. Control methods must have exclusive access to the any address accessed via
OpRegions. Control methods do not directly access any other hardware registers, including the ACPI-
defined register blocks. Some of the ACPI registers, in the defined ACPI registers blocks, are maintained
on behalf of control method execution. For example, the GPEx_BLK isnot directly accessed by a control
method but is used to provide an extensible interrupt handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of embedded controller, embedded controller OpRegion field access may block.

Compag/I ntel/Microsoft/Phoenix/T oshiba

130 Advanced Configuration and Power Interface Specification

5.5.4 Control Method Arguments, Local Variables, and Return Values

Control methods can be passed up to seven arguments. Each argument is an object, and could inturn be a
“package” style object that refersto other objects. Access to the argument objectsisviathe ASL ArgTerm
language elements. The number of arguments passed to any control method is fixed and is defined when
the control method package is created.

Control methods can access up to eight local data objects. Accessto thelocal data objects have shorthand
encodings. Oninitial control method execution, the local data objects are NULL. Accessto local objectsis
viathe ASL Loca Term language elements.

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or save it to a different object if it wants to
preserveit. See the description of the Return ASL operator for additional details.

NameSpace objects created within the scope of amethod are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method
may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objectswill still be destroyed on method exit. Objects created at |oad time
outside of the scope of the method are static. For example:

Scope (\ XYZ) {
Nane (BAR, 5) /1 Creates \ XYZ BAR
Method (FOO, 1) {
Store (BAR CREG /Il same effect as Store (\XYZ BAR CREQ
Nane (BAR 7) /1 O eates \XYZ FQO BAR
Store (BAR DREG Il same effect as Store (\XYZ FOO BAR DREG
Nane (\XYZ. FOOB, 3) // Oreates \XYZ FOOB
} // end nethod
} I/ end scope

The object \XYZ.BAR is astatic object created when the table that contains the above ASL isloaded. The
object \XYZ.FOO.BAR isadynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XY Z.FOOB is adynamic object created by the\XY Z.FOO method when
theName (\ Xyz. FOOB, 3) statement isexecuted. Notice that the\XY Z.FOOB object is destroyed after the
\XY Z.FOO method exits.

5.6 ACPI Event Programming Model

The ACPI event programming model is based on the SCI interrupt and General-Purpose Event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this
section.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 131

5.6.1 ACPIEvent Programming Model Components

The components of the ACPI event programming model are the following:
osPM
FADT
PM1la STS,PM1b_STSand PM1la EN, PM1b EN fixed register blocks
GPEO_BLK and GPE1_BLK register blocks
GPE register blocks defined in GPE block devices
SCI interrupt
ACPI AML code general-purpose event model
ACPI device-specific model events
ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.

Table5-32 ACPI Event Programming Model Components

Component Description

OSsPM Receives all SCI interrupts raised (receives all SCI events). Either
handles the event or masks the event off and later invokes an
OEM -provided control method to handle the event. Events
handled directly by OSPM are fixed ACPI events; interrupts
handled by control methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks
on an ACPI-compatible platform: PM1x_STSand PM1x_EN
fixed registers and the GPEx_STS and GPEX_EN fixed registers.

PM1x_STSand PM1x_EN fixed registers | PM1x_STSbitsraise fixed ACPI events. While a PM1x_STS hit
isset, if the matching PM1x_EN bit is set, the ACPI SCI event is
raised.

GPEX_STS and GPEX_EN fixed registers GPEXx_STS bits that raise general-purpose events. For every
event bit implemented in GPEx_STS, there must be a comparable
bitin GPEx_EN. Up to 256 GPEx_STS bits and matching
GPEX_EN bits can be implemented. While a GPEx_STS bit is
set, if the matching GPEx_EN bit is set, then the general-purpose
SCI event israised.

SCI interrupt A level-sensitive, shareable interrupt mapped to a declared
interrupt vector. The SCI interrupt vector can be shared with
other low-priority interrupts that have alow frequency of
occurrence.

ACPI AML code general-purpose event A model that allows OEM AML codeto use GPEX_STS events.
model Thisincludes using GPEX_STS events as “wake” sources aswell
as other general service events defined by the OEM (“button
pressed,” “thermal event,” “device present/not present changed,”
and so on).

ACPI device-specific model events Devicesin the ACPI namespace that have ACPI-specific device
IDs can provide additional event model functionality. In
particular, the ACPlI embedded controller device provides a
generic event model.

ACPI Embedded Controller event model A model that allows OEM AML code to use the response from
the Embedded Controller Query command to provide general-
service event defined by the OEM.

Compag/I ntel/Microsoft/Phoenix/T oshiba

132 Advanced Configuration and Power Interface Specification

5.6.2 Types of ACPI Events
At the direct ACPI hardware level, two types of events can be signaled by an SCI interrupt:

Fixed ACPI events
General-purpose events

In turn, the general-purpose events can be used to provide further levels of eventsto the system. And, asin
the case of the embedded controller, awell-defined second-level event dispatching is defined to make a
third type of typical ACPI event. For the flexibility common in today’ s designs, two first-level general-
purpose event blocks are defined, and the embedded controller construct allows alarge number of
embedded controller second-level event-dispatching tablesto be supported. Then if needed, the OBM can
aso build additional levels of event dispatching by using AML code on a general-purpose event to sub-
dispatch in an OEM defined manner.

5.6.2.1 Fixed ACPI Event Handling

When OSPM receives afixed ACPI event, it directly reads and handles the event registersitself. The
following table lists the fixed ACPI events. For adetailed specification of each event, see section 4, “ACPI

Hardware Specification.”

Table5-33 Fixed ACPI Events

Event

Comment

Power management timer
carry bit set.

For more information, see the description of the TMR_STS and TMR_EN bits
of the PM 1x fixed register block in section 4.7.3.1, “PM 1 Event Grouping,” as
well asthe TMR_VAL registerinthe PM_TMR_BLK in section 4.7.3.3,
“Power Management Timer.”

Power button signal

A power button can be supplied in two ways. One way is to simply use the fixed
status bit, and the other uses the declaration of an ACPI power device and AML
code to determine the event. For more information about the alternate-device
based power button, see section 4.7.2.2.1.2, Control Method Power Button.”

Notice that during the SO state, both the power and sleep buttons merely notify
OSPM that they were pressed.

If the system does not have a sleep button, it is recommended that OSPM use the
power button to initiate sleep operations as requested by the user.

Sleep button signal

A sleep button can be supplied in one of two ways. One way isto simply use the
fixed status button. The other way requires the declaration of an ACPI sleep
button device and AML code to determine the event.

RTCaarm

ACPI -defines an RTC wake alarm function with a minimum of one-month
granularity. The ACPI status bit for the device is optional. If the ACPI status bit
isnot present, the RTC status can be used to determine when an alarm has
occurred. For more information, see the description of the RTC_STS and
RTC_EN bits of the PM1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.”

Wake status

The wake status bit is used to determine when the sleeping state has been
completed. For more information, see the description of the WAK_STS and
WAK_EN bits of the PM 1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.”

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 133

Table5-33 Fixed ACPI Events (continued)

Event Comment

System bus master request | The bus-master status bit provides feedback from the hardware asto when a bus
master cycle has occurred. Thisis necessary for supporting the processor C3
power savings state. For more information, see the description of the BM_STS
bit of the PM 1x fixed register block in section 4.7.3.1, “PM1 Event Grouping.”

Global release status This statusis raised as aresult of the Global Lock protocol, and is handled by
OSPM as part of Global Lock synchronization. For more information, see the
description of the GBL_STS bit of the PM1x fixed register block in section
4.7.3.1, “PM1 Event Grouping.” For more information on Global Lock, see
section 5.2.9.1, “Global Lock.”

5.6.2.2 General-Purpose Event Handling

When OSPM receives a general-purpose event, it either passes control to an ACPl-aware driver, or uses an
OEM -supplied control method to handle the event. An OEM can implement up to 128 general-purpose
event inputs in hardware per GPE block, each as either alevel or edge event. It is also possible to
implement a single 256-pin block aslong asit’s the only block defined in the system.

An example of ageneral-purpose event is specified in section 4, “ACPI Hardware Specification,” where
EC_STSand EC_EN bits are defined to enable OSPM to communicate with an ACPIl-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Noticethat if aplatform
uses an embedded controller in the ACPI environment, then the embedded controller’s SCI output must be
directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bitsin Operational Regions (/O space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in
section 4.7.4.1, “ General-Purpose Event Register Blocks.”

OSPM manages the bitsin the GPEx blocks directly, although the source to those eventsis not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose event
(the event isfrom a GPEx_BLK STS bit), OSPM does the following:
1. Disablestheinterrupt source (GPEX_BLK EN bit).
2. If an edge event, clears the status bit.
3. Performsone of the following:
Dispatchesto an ACPI-aware device driver.
Queues the matching control method for execution.
Manages awake event using device PRW objects.
4. If alevel event, clearsthe status bit.
5. Enablestheinterrupt source.

The OEM AML code can perform OEM -specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will execute
the control method of the name_GPE. TXX where XX isthe hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E’ for anedge event or ‘L’ for alevel
event). The event values for status bitsin GPEO_BLK start at zero (_T00) and end at the GPEO_BLK_LEN
- 1. The event values for status bitsin GPE1_BLK start at GPE1_BASE and end at GPE1_BASE +
(GPE1_BLK_LEN/2)-1. GPEO BLK_LEN, GPE1 BASE, and GPE1_BLK_LEN are al defined in the
FADT.

For OSPM to manage the bitsin the GPEx_BLK blocks directly:
Enable bits must be read/write.
Status bits must be latching.
Status bits must be read/clear, and cleared by writing a“1” to the status bit.

Compag/I ntel/Microsoft/Phoenix/T oshiba

134 Advanced Configuration and Power Interface Specification

5.6.2.2.1 Wake Events

Animportant use of the general-purpose eventsis to implement device wake events. The components of the
ACPI event programming model interact in the following way:

When adevice assertsits wake signal, the general-purpose status event bit used to track that deviceis set.
While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

If the system is sleeping, thiswill cause the hardware, if possible, to transition the system into the SO state.
Once the system is running, OSPM will dispatch the corresponding GPE handler.

The handler needs to determine which device object has signaled wake and performs awake Notify
command on the corresponding device object(s) that have asserted wake.

In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to service it.

Events that wake may not be intermixed with non-wake events on the same GPE input. Also, all wake
events not exclusively tied to a GPE input (for example, one input is shared for multiple wake events) need
to haveindividual enable and status bitsin order to properly handle the semantics used by the system.

5.6.2.2.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, an OS-native, ACPI -aware driver is given the GPE event for its
device. Thisdriver services the embedded controller device and determines when events are to be reported
by the embedded controller by using the Query command. When an embedded controller event occurs, the
ACPI -aware driver queues control methods to handle each event. Another way the OEM AML code can
perform OEM -specific functions that are customized to each event on the particular platform isto queue a
control method to handle these events. For an embedded controller event, OSPM will queue the control
method of the name _QXX, where XX is the hex format of the query code. Notice that each embedded
controller device can have query event control methods.

5.6.2.2.3 Queuing the Matching Control Method for Execution

When a general-purpose event israised, OSPM uses a haming convention to determine which control
method to queue for execution and how the GPE EOI isto be handled. The GPEx_STSbitsin the
GPEx_BLK areindexed with a number from 0 through FF. The name of the control method to queue for an
event raised from an enable status bit is always of the form_GPE._Txx where xx is the event value and T
indicates the event EOlprotocol to use

(either edge or level). The event values for status bitsin GPEO_BLK start at zero (_T00), end at the
(GPEO_BLK_LEN/2) -1, and correspond to each status bit index within GPEO_BLK. The event values
for status bitsin GPE1 _BLK are offset by GPE_BA SE and therefore start at GPE1_BASE and end at
GPE1 BASE + (GPE1_ BLK_LEN/?2)- 1.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 135

For example, suppose an OEM supplies awake event for acommunications port and uses bit 4 of the
GPEQ_STSbitsto raise the wake event status. In an OEM -provided Definition Block, there must be a
Method declaration that uses the name_GPE._L 04 or \GPE._EO04 to handle the event. An example of a
control method declaration using such a name is the following:

Met hod (_GPE. _L04) { /1 GPE 4 | evel wake handl er
Notify (_SB. PCI O COWD, 2)
}

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to some
other hardware register and signal a change notify request of the appropriate device object. Or, the cause of
the general-purpose event can result from more then one source, in which case the control method for that
event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01 through
FF. (A query response of 0 from the embedded controller isreserved for “no outstanding events.”) The
name of the control method to queueis aways of the form _Qxx where xx is the number of the query
acknowledged by the embedded controller. An example declaration for a control method that handles an
embedded controller query is the following:

Met hod(_@B4) { /1 enbedded controller event for thermnal
Notify (_SB.TZO. THVL, 0x80)

5.6.2.2.4 Managing a Wake Event Using Device PRW Objects

A device's_PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general-purpose status bit from either GPEO_BLK or GPE1_BLK is used as the specific
device' s wake mask. Although the hardware must maintain individual device wake enable bits, the system
can have multiple devices using the same general -purpose event bit by using OEM -specific hardware to
provide second-level status and enable bits. In this case, the OEM AML code is responsible for the second-
level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its_PSW control method (which is used to take care of the second-level enables). When the GPE
is asserted, OSPM still executes the corresponding GPE control method that determines which device
wakes are asserted and notifies the corresponding device objects. The native OS driver is then notified that
its device has asserted wake, for which the driver powers on its device to serviceit.

If the system isin a sleeping state when the enabled GPE hit is asserted the hardware will transition the
system into the SO state, if possible.

Compag/I ntel/Microsoft/Phoenix/T oshiba

136 Advanced Configuration and Power Interface Specification

5.6.3 Device Object Notifications

Some objects need to notify the OSPM of various object-related events. All such notifications are
accomplished using the Notify operator, which supplies the ACPI object and a notification value that
signifies the type of notification being performed. Notification values from 0 through Ox7F are common
across any device object type. Notification values of 0x80 and above are device-specific and defined by
each such device. For more information on the Notify operator, see section 16.2.3.4.1.9, “Notify (Notify).”

Table5-34 Device Object Notification Types

Value

Description

Bus Check. This notification is performed on a device object to indicate to OSPM that it
needs to perform the Plug and Play re-enumeration operation on the device tree starting from
the point where it has been notified. OSPM will only perform this operation at boot, and when
notified. It isthe responsibility of the ACPI AML code to notify OSPM at any other times that
this operation is required. The more accurately and closer to the actual device tree change the
notification can be done, the more efficient the operating system’s response will be; however,
it can also be an issue when a device change cannot be confirmed. For example, if the
hardware cannot notice a device change for a particular location during a system sleeping
state, it issues a Bus Check notification on wake to inform OSPM that it needsto check the
configuration for a device change.

Device Check. Used to notify OSPM that the device either appeared or disappeared. If the
device has appeared, OSPM will re-enumerate from the parent. If the device has disappeared,
OSPM will invalidate the state of the device. OSPM may optimize out re-enumeration. If
_DCK ispresent, then Notify(object,1) is assumed to indicate an undock request.

Device Wake. Used to notify OSPM that the device has signaled its wake event, and that
OSPM needsto notify OSPM native device driver for the device. Thisisonly used for devices
that support _PRW.

Eject Request. Used to notify OSPM that the device should be gjected, and that OSPM needs
to perform the Plug and Play €jection operation. OSPM will run the _EJx method.

Device Check Light. Used to notify OSPM that the device either appeared or disappeared. If
the device has appeared, OSPM will re-enumerate from the deviceitself, not the parent. If the
device has disappeared, OSPM will invalidate the state of the device.

Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be
attached to the bus because the device cannot be operated at the current frequency of the bus.
For example, thiswould be used if auser tried to hot-plug a33 MHz PCI deviceinto aslot
that was on a bus running at greater than 33 MHz.

Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into aslot or bay
that cannot support the device in its current mode of operation. For example, thiswould be
used if auser tried to hot-plug a PCI deviceinto aslot that was on abus running in PCI -X
mode.

Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state because
of a power fault.

87F

Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 137

Table5-35 Control Method Battery Device Notification Values

Hex value | Description

80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.
81 Battery Information Changed. Used to notify OSPM that the Control Method Battery

device information has changed. This only occurs when a battery is replaced.

>81 Reserved.

Table5-36 Power Source Object Notification Values

Hex value | Description

80 Power Sour ce Status Changed. Used to notify OSPM that the power source status has
changed.
>80 Reserved.

Table5-37 Thermal Zone Object Notification Values

Hex value | Description

80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone
temperature has changed.

81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip
points have changed.

82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALX,
_PSL, _TzD) have changed.

>82 Reserved.

Table5-38 Control Method Power Button Notification Values

Hex value Description

80 SO Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system isin the SO state. Notice that when the button is pressed while the
system isin the S1-$4 state, a Device Wake notification must be issued instead.

>80 Reserved.

Table5-39 Control Method Sleep Button Notification Values

Hex value | Description

80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed
whilethe system isin the SO state. Notice that when the button is pressed while the
systemisin the S1-$4 state, a Device Wake notification must be issued instead.

>80 Reserved.

Compag/I ntel/Microsoft/Phoenix/T oshiba

138 Advanced Configuration and Power Interface Specification

Table5-40 Control Method Lid Notification Values

Hex value | Description

80 Lid Status Changed. Used to notify OSPM that the control method lid device status has
changed.
>80 Reserved.

Table5-41 Processor Device Notification Values

Hex value | Description

80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to
re-evaluate the _PPC object. See section 8, “Processor Control,” for more information.

81 C States Changed. Used to notify OSPM that the number or type of supported processor
C States has changed. This notification causes OSPM to re-evaluate the _CST object. See
section 8, “Processor Control,” for more information.

>81 Reserved.

5.6.4 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in sections 6, 7, 8, 10, 11,
and 12. Section 5.6.5, “Defined Generic Objects and Control Methods,” lists all the generic objects and
control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI -aware devices and as such have Plug and Play I Ds that represent these
devices. The following table lists the Plug and Play 1Ds defined by the ACPI specification.

Table5-42 ACPI Device IDs

Plugand Play ID | Description

PNPOCO8 ACPI. Not declared in ACPI asadevice. ThisID isused by OSPM for the
hardware resources consumed by the ACPI fixed register spaces, and the operation
regions used by AML code. It represents the core ACPI hardware itself.

PNPOAO5 Generic | SA Bus Device. A bus only device whose bus settings are totally
controlled by its ACPI resource information, and otherwise needs no bus-specific
driver support.

PNPOAO6 Extended 1/0O Bus. A special case of the PNPOAOS device, where the only
difference isin the name of the device. Thereis no functional difference between
thetwo IDs.

PNPOC09 Embedded Controller Device. A host embedded controller controlled through an
ACPI-aware driver.

PNPOCOA Control Method Battery. A device that solely implements the ACPI Control

Method Battery functions. A device that has some other primary function would
useits normal device ID. This|D is used when the devices primary function is that
of abattery.

PNPOCOB Fan. A device that causes cooling when “on” (DO device state).

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 139

Table5-42 ACPI Device IDs (continued)

Plugand Play ID | Description

PNPOCOC Power Button Device. A device controlled through an ACPI -aware driver that
provides power button functionality. Thisdeviceisonly needed if the power button
is not supported using the fixed register space.

PNPOCOD Lid Device. A device controlled through an ACPI -aware driver that provides|lid
status functionality. Thisdevice isonly needed if the lid state is not supported
using the fixed register space.

PNPOCOE Sleep Button Device. A device controlled through an ACPI -aware driver that
provides power button functionality. This deviceisoptional.

PNPOCOF PCI Interrupt Link Device. A devicethat allocates an interrupt connected to a
PCI interrupt pin. See section 6., “Configuration,” for more details.

PNPOC30 Memory Device. This device isamemory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible

with the embedded controller-based SMB-HC interface (as specified in section
13.9, “SMBus Host Controller Interface via Embedded Controller”) and
implementing the SMBus 1.0 Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 11,
“Power Source Devices.”

ACPI0003 AC Device. The AC adapter specified in section 11, “Power Source Devices.”

ACPI0004 Module Device. Thisdeviceis acontainer object that actsasabusnodein a
namespace.

ACPI0005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible

with the embedded controller-based SMB-HC interface (as specified in section
13.9, “SMBus Host Controller Interface via Embedded Controller”) and
implementing the SMBus 2.0 Specification.

ACPI0006 GPE Block Device. This device allows a system designer to describe GPE blocks
beyond the two that are described inthe FADT.

5.6.5 Defined Generic Objects and Control Methods

Thefollowing tablelists all of the generic object and control methods defined in this specification and
provides areference to the defining section of the specification.

Table5-43 Defined Generic Object and Control Methods

Object Description Reference

_ACx Thermal Zone object that returns active cooling policy threshold valuesin 1231
tenths of degrees Kelvin.

_ADR Device object that evaluates to a device' s address on its parent bus. For the 6.1.1
display output device, this object returnsaunique ID. (B.5.1,“_ADR -
Return the Unique ID for this Device.”)

_AlLx Thermal zone object containing alist of cooling device objects. 12.32
_ALN Resource data type reserved field name 16.2.4
_ASI Resource datatype reserved field name 16.2.4.16

Compag/I ntel/Microsoft/Phoenix/T oshiba

140 Advanced Configuration and Power Interface Specification

Table5-43 Defined Generic Object and Control Methods (continued)

Object | Description Reference
_BAS Resource datatype reserved field name 16.2.4
_BBN PCI bus number setup by the BIOS 6.5.5
_BCL Returns a buffer of bytesindicating list of brightness control levels B.5.2
supported.
_BCM Sets the brightness level of the built-in display output device. B.5.3
_BDN Correlates a docking station between ACPI and legacy interfaces. 6.5.3
_BFS Control method executed immediately following a wake event. 7.3.1
_BIF Control Method Battery information object 11.2.2.1
_BM Resource data type reserved field name 16.2.4
_BST Control Method Battery status object 11.2.2.2
_BTP Sets Control Method Battery trip point 11.2.2.3
_CID Device identification object that evaluatesto a device’'s Plug and Play 6.1.2
Compatible ID list.
_CRS Device configuration object that specifies a device’ scurrent resource 6.2.1
settings, or a control method that generates such an object.
_CRT Thermal zone object that returns critical trip point in tenths of degrees 12.3.3
Kelvin.
_CsT Processor power state declaration object 8.3.2
_DCK Indicates that the device is adocking station. 6.5.2
_DCs Returns the status of the display output device. B.5.5
_DDC | Returnsthe EDID for the display output device B.5.4
_DDN Object that associates alogical software name (for example, COM1) witha | 6.1.3
device.
_DEC Resource datatype reserved field name 16.2.4
_DGS Control method used to query the state of the output device. B.5.6
_DIS Device configuration control method that disables adevice. 6.2.2
_DMA | Object that specifies adevice scurrent resources for DMA transactions. 6.2.3
_DOD | Control method used to enumerate devices attached to the display adapter. B.4.2
_DOs Control method used to enable/disable display output switching. B.4.1
_DSS Control method used to set display device state. B.5.7
_Exx Control method executed as a result of a general-purpose event. 5.6.5.3
_EC Control Method used to define the offset address and Query value of an 13.12
SMB-HC defined within an embedded controller device.
_EDL Deviceremoval object that returns a packaged list of devicesthat are 6.3.1
dependent on adevice.
_EX Device insertion/removal control method that €jects a device. 6.3.3

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 141

Table5-43 Defined Generic Object and Control Methods (continued)

Object | Description Reference

_EJD Device removal object that evaluates to the name of a device object upon | 6.3.2

which a device is dependent. Whenever the named device is gjected, the
dependent device must receive an gjection notification.

_FDE Object that indicates the presence or absence of floppy disks. 109.1
_FDI Object that returns floppy drive information. 10.9.2
_FDM Control method that changes the mode of floppy drives. 10.9.3
_FIX Object used to provide correl ation between the fixed hardware register 6.2.4

blocks defined in the FADT and the devices that implement these fixed
hardware registers.

_GL OS-defined Global Lock mutex object 5.7.1

_GLK Indicates the need to acquire the Global Lock, must be acquired when 6.5.7
accessing the device.

_GPD Control method that returns which VGA device will be posted at boot B.4.4

_GPE 1. General-Purpose Events root name space 534
2. Object that returns the SCI interrupt within the GPx_STSregister that | 13.11

is connected to the EC.
_GRA Resource data type reserved field name. 16.2.4
_GTF IDE device control method to get the Advanced Technology Attachement | 10.8.1

(ATA) task file needed to re-initialize the drive to bootup defaults.

_GTM IDE device control method to get the IDE controller timing information. 10.8.2

_GTS Control method executed just prior to setting the sleep enable (SLP_EN) 733

bit.
_HE Resource data type reserved field name 16.24
_HID Device identification object that evaluates to a device' s Plug and Play 6.1.4
Hardware ID.

_HPP An object that specifiesthe Cache-line size, Latency timer, SERR enable, | 6.2.5
and PERR enable values to be used when configuring a PCI device
inserted into a hot-plug slot or initial configuration of a PCI device at

system boot.
_INI Device initialization method that performs device specific initialization. 6.5.1
_INT Resource datatype reserved field name 16.2.4
_IRC Power management object that signifies the device hasasignificant inrush | 7.2.11
current draw.
_Lxx Control method executed as aresult of a general-purpose event. 5.6.5.3
_LCK Device insertion/removal control method that locks or unlocks a device. 6.3.4
_LEN Resource datatype reserved field name 16.2.4
_LID Object that returns the status of the Lid on a mobile system. 1031
_LL Resource data type reserved field name 16.2.4

Compag/I ntel/Microsoft/Phoenix/T oshiba

142 Advanced Configuration and Power Interface Specification

Table5-43 Defined Generic Object and Control Methods (continued)

Object | Description Reference
_MAF | Resource datatype reserved field name 16.2.4
_MAT | Object evaluatesto abuffer of MADT APIC Structure entries. 6.2.6
_MAX | Resource datatype reserved field name 16.2.4
_MEM | Resource datatype reserved field name 16.2.4
_MIF Resource data type reserved field name 16.2.4
_MIN Resource datatype reserved field name 16.2.4
_MSG | Systemindicator control that indicates messages are waiting. 10.1.2
_OFF Power resource object that sets the resource off. 7.1.2
_ON Power resource object that sets the resource on. 7.1.3
_0s Object that evaluatesto a string that identifies the operating system. 5.7.2
_PCL Power source object that contains alist of devices powered by a power 11.32
source.
_PCT Processor performance control object 8.3.3.1
_PIC Control method that conveys interrupt model in use to the system firmware. | 5.8.1
_PPC Control method used to determine number of performance states currently 8.3.3.3
supported by the platform.
_PR ACPI 1.0 Processor Namespace 531
PRO Power management object that evaluates to the device’s power 7.2.6
requirementsin the DO device state (device fully on).
PR1 Power management object that evaluates to the device’s power 7.2.7
requirementsin the D1 device state. Only devices that can achieve the
defined D1 device state according to its given device class would supply
thislevel.
_PR2 Power management object that evaluatesto the device’ s power 7.2.8
requirementsin the D2 device state. Only devicesthat can achieve the
defined D2 device state according to its given device class would supply
thislevel.
_PRS Device configuration object that specifies a device' spossible resource 6.2.7
settings, or a control method that generates such an object.
_PRT An object that specifiesthe PCI interrupt Routing Table. 6.2.8
_PRW Power management object that evaluates to the device’s power 7.2.9
requirementsin order to wake the system from a system sleeping state.
_PS0 Power management control method that puts the device in the DO device 721
state. (device fully on).
_Ps1 Power management control method that puts the devicein the D1 device 7.2.2
state.
P2 Power management control method that puts the device in the D2 device 723
state.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 143

Table5-43 Defined Generic Object and Control Methods (continued)

Object Description Reference
_PSs3 Power management control method that puts the device in the D 3 device 7.2.4
state (device off).
_PSC Power management object that evaluates to the device’ s current power 7.2.5
state.
_PSL Thermal zone object that returns list of passive cooling device objects. 12.34
_PSR Power source object that returns present power source device. 1131
_PSS Object indicates the number of supported processor performance states. 8.3.3.2
_Psv Thermal zone object that returns Passive trip point in tenths of degrees 12.35
Kelvin.
_PSwW Power management control method that enables or disables the device's 7.2.10
wake function.
_PTC Object used to define a processor throttling control register. 8.3.1
_PTS Control method used to prepare to sleep. 7.3.2
_PXM Object used to describe proximity domains within a machine. 6.2.9
_Qxx Embedded Controller Query control method 5.6.2.2.3
_RBO Resource datatype reserved field name 16.2.4
_RBW Resource data type reserved field name 16.2.4
_REG Notifies AML code of achangein the availability of an operation region. | 6.5.4
_REV Revision of the ACPI specification that OSPM implements. 5.7.3
_RMV Device insertion/removal object that indicates that the given deviceis 6.3.5
removable.
_RNG Resource data type reserved field name 16.2.4
_ROM Control method used to get a copy of the display devices ROM data. B.4.3
_RW Resource datatype reserved field name 16.2.4
S0 Power management package that defines system _SO0 state mode. 7.34.1
_S1 Power management package that defines system _S1 state mode. 7.34.2
Y Power management package that defines system _S2 state mode. 7.3.4.3
_S3 Power management package that defines system _S3 state mode. 7.3.4.4
A Power management package that defines system _$4 state mode. 7.345
S5 Power management package that defines system _S5 state mode. 7.3.4.6
_S1D Highest D-state supported by the devicein the S1 state. 7.2.12
_S2D Highest D-state supported by the devicein the S2 state. 7.2.13
_S3D Highest D-state supported by the devicein the S3 state. 7.2.14
4D Highest D-state supported by the device in the $4 state. 7.2.15
_SB System bus scope 53.1

Compag/I ntel/Microsoft/Phoenix/T oshiba

144 Advanced Configuration and Power Interface Specification

Table5-43 Defined Generic Object and Control Methods (continued)

Object | Description Reference
_SBS Smart Battery object that returns Smart Battery configuration. 11.12
_SCP Thermal zone object that sets user cooling policy (Active or Passive). 12.3.6
_SEG Busidentification object that evaluates to abus’'s segment number. 6.5.6
_SHR Resource data type reserved field name 16.4.2
_S System indicators scope 531
_Slz Resource data type reserved field name 16.4.2
_SPD Control method used to update which video device will be posted at boot. | B.4.5
_SRS Device configuration control method that sets a device' s settings. 6.2.10
_SST System indicator control method that indicates the system status. 10.1.1
STA 1. Device insertion/removal control method that returns a device's status. 6.3.6

2. Power resource object that evaluates to the current on or off state of the | 7.1.4
Power Resource.

_STM IDE device control method used to set the IDE controller transfer timings. | 10.8.3

_STR Object evaluates to a Unicode string to describe a device. 6.1.5
_SUN Object that evaluates to the slot unique ID number for aslot. 6.1.6
T X Reserved for use by the ASL compiler. 16.2.1.1
_TC1 Thermal zone object that contains thermal constant for Passive cooling. 12.3.7
_TC2 Thermal zone object that contains thermal constant for Passive cooling. 12.3.8
_TMP | Thermal zone object that returns current temperature in tenths of degrees 12.3.9
Kelvin.
_TRA Resource data type reserved field name 16.4.2
_TRS Resource data type reserved field name 16.4.2
_TSP Thermal zone object that contains thermal sampling period for Passive 12.3.10
cooling.
_TTP Resource datatype reserved field name 16.4.2
_TYP Resource data type reserved field name 16.4.2
_TZ ACPI 1.0 thermal zone scope 53.1
_TzD Object evaluates to a package of device names associated with a Thermal 12.3.11
Zone.
_TZP Thermal zone polling frequency in tenths of seconds. 123.12
_UID Device identification object that specifies adevice’s unique persistent ID, 6.1.7
or acontrol method that generatesit.
_VPO Returns 32-bit integer indicating the video post options. B.4.6
_WAK | Power management control method run once system is awakened. 7.35

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 145

5.7 Operating System-Defined Object Names
A list of OS supplied object names are shown in the following table.
Table5-44 Predefined Global Events

Name Description

_GL Global Lock

_0S Name of the operating system

_REV Revision of the ACPI specification that OSPM implements.

5.7.1 \ GL (Global Lock Mutex)

Thisobject isaMutex object that behaves like a Mutex as defined in section 16.2.3.3.1.13, “Mutex
(Declare Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also acquires
the shared environment Global Lock defined in section 5.2.11, “Global System Interrupts.” This alows
Control Methods to explicitly synchronize with the Global Lock if necessary

5.7.2 \ OS (OS Name Object)

This object evaluatesto a string that identifies the operating system. In robust OSPM implementations,
_OS evaluates differently for each OS release. Thismay allow AML code to accommodate differencesin
OSPM implementations. This value does not change with different revisions of the AML interpreter.

5.7.3 \ REV (Revision Data Object)
This object evaluates to the revision of the ACPI Specification that the specified_OS implements asa
DWORD. Larger values are newer revisions of the ACPI specification.

5.8 System Configuration Objects

5.8.1 _PIC Method

The_PIC optional method isto report to the BIOS the current interrupt model used by the OS. This

control method returns nothing. The argument passed into the method signifies the interrupt model OSPM
has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is optional for OSPM.
If the method is never called, the BIOS must assume PIC mode. It isimportant that the BIOS save the value
passed in by OSPM for later use during wake operations.

PIC(x):
_PIC(0) =>PIC Mode
_PIC(1) =>APIC Mode
_PIC(2) => SAPIC Mode
_PIC(3n) => Reserved

Compag/I ntel/Microsoft/Phoenix/T oshiba

146 Advanced Configuration and Power Interface Specification

6 Configuration

This section specifies the objects OSPM expects to be used in control methods to configure devices. There
are three types of configuration objects:
- Deviceidentification objects associate platform devices with Plug and Play IDs.
Device configuration objects declare and configure hardware resources and characteristics for devices
enumerated viaACPI.
Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal
of devices.

This section also defines the ACPI device-resource descriptor formats. Device-resource descriptors are
used as parameters by some of the device configuration control method objects.
6.1 Device Identification Objects

Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed Table 6-1:

Table6-1 Device Identification Objects

Obj ect Description

_ADR Object that evaluatesto adevice’ s address on its parent bus.

_CID Object that evaluates to a device’ s Plug and Play-compatible ID list.

_DDN Object that associates alogical software name (for example, COM1) with a device.

_HID Object that evaluates to adevice' s Plug and Play hardware ID.

_SUN Object that evaluates to the slot-unique ID number for aslot.

_STR Object that contains a Unicode identifier for adevice.

_UID Object that specifies adevice's unique persistent 1D, or a control method that generates it.

For any device that is not on an enumerabl e type of bus (for example, an I SA bus), OSPM enumerates the
devices' Plug and Play ID(s) and the ACPI BIOS must supply an _HID object (plus an optional _CID
object) for each device to enable OSPM to do that. For devices on an enumerable type of bus, such asaPCI
bus, the ACPI system must identify which device on the enumerable busisidentified by a particular Plug
and Play I1D; the ACPI BIOS must supply an _ADR object for each device to enable this. A device object
must contain either an _HID object or an _ADR object, but can contain both.

If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be evaluated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region provider.
(_REG methods notify the BIOS of the presence of operation region providers.) When a control method
cannot determine the current state of the hardware due to alack of operation region provider, itis
recommended that the control method should return the condition that was true at the time that control
passed from the BIOS to the OS. (The control method should return a default, boot value).

6.1.1 _ADR (Address)

This object isused to supply OSPM with the address of adevice onits parent bus. An _ADR object must
be used to specify the address of any device on abus that has a standard enumeration algorithm.

An_ADR object can be used to provide capabilities to the specified address even if adeviceisnot present.
This allows the system to provide capabilities to a slot on the parent bus.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 147

OSPM infersthe parent bus from the location of the _ADR object’ s device package in the ACPI
namespace. For more informetion about the positioning of device packagesin the ACPI namespace, see
section 16.2.3.3.1.9, “ Device-Declare Bus/Device Package.”

_ADR object information must be static and can be defined for the following bus typeslisted in Table 6-2.

Table6-2 _ADR Object BusTypes

BUS Addressencoding

EISA EISA slot number 0-F

Floppy Bus Drive select values used for programming the floppy
controller to access the specified INT13 unit number. The
_ADR Objects should be sorted based on drive select
encoding from 0-3.

IDE Controller O—Primary Channel, 1-Secondary Channel

IDE Channel 0-Master drive, 1-Slavedrive

PCI High word—Device #, Low word—Function #. (for example,
device 3, function 2 is 0x00030002). To refer to all the
functions on a device #, use a function number of FFFF).

PCMCIA Socket #; O—First Socket

PC CARD Socket #; O—First Socket

SMBus Lowest Slave Address

USB Root HUB Only one child of the host controller. It must havean ADR
of 0. No other children or values of _ADR are allowed.

USB Ports Port number

6.1.2 _CID (Compatible ID)

This optional object is used to supply OSPM with adevice's Plug and Play-compatible device ID. Use
_CID objects when adevice has no other defined hardware standard method to report its compatible I Ds.

A _CID object evaluates to acompatible device ID, or a package of compatible device IDs, for the device
in the order of preference. A compatible ID must be either a numeric 32-bit compressed EISA -typeID or a
PCI ID. The format of PCI IDsis one of the following:

PCIN\CC_ccss
PCIN\CC_ccsspp

PCN\VEN_vvvw&DEV_dddd& SUBSY S ssssssss& REV _rr
PCN\VEN_vvvw&DEV_dddd& SUBSY S_ssssssss
PCN\VEN_vvvv&DEV_dddd& REV _rr
PCNVEN_vvvv&DEV_dddd

Where:

cc—hexadecimal representation of the Class Code byte
ss—hexadecimal representation of the Subclass Code byte
pp—hexadecimal representation of the Programming interface byte
vvvv—hexadecimal representation of the Vendor ID
dddd-hexadecimal representation of the Device ID
ssssssss-hexadecimal representation of the Subsystem ID
r—hexadecimal representation of the Revision byte

A compatible ID retrieved from a_CID object is only meaningful if itisanon-NULL value.

Compag/I ntel/Microsoft/Phoenix/T oshiba

148 Advanced Configuration and Power Interface Specification

6.1.3 _DDN (Device Name)

This object is used to associate alogical software name (for example, COM1) with afloppy disk drive.
This name can be used by applicationsto connect to the device.

6.1.4 HID (Hardware ID)

This object is used to supply OSPM with the device' s Plug and Play hardware 1D.2 When describing a
platform, use of any _HID objectsis optional. However, a_HID object must be used to describe any device
that will be enumerated by OSPM. OSPM only enumerates a device when no bus enumerator can detect the
device ID. For example, deviceson an | SA bus are enumerated by OSPM. Usethe _ADR object to describe
devices enumerated by bus enumerators other than OSPM.

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or astring.

6.1.5 _STR (String)

The _STR object evaluates to a Unicode string that may be used by an OS to provide information to an end
user describing the device. Thisinformation is particularly valuable when no other information is available.

Example ASL:

Devi ce (XYZ) {
Narme (_ADR, 0x00020001)
Name (_STR Uni code("ACME super DVD controller"))

}

Then, when all elsefails, an OS can use theinfo included in the STR object to describe the hardware to
the user.

6.1.6 _SUN (Slot User Number)

_SUN isused by OSPM Ul to identify slots for the user. For example, this can be used for battery slots,
PCMCIA slots, or swappable bay slots to inform the user of what devices are in each slot. _SUN evaluates
to aDWORD that isthe number to be used in the user interface. This number should match any slot
number printed on the physical slot.

6.1.7 _UID (Unique ID)

This object provides OSPM with a serial number-style ID of adevice (or battery), which does not change
across reboots. This object isoptional, but is required when the device has no other way to report a
persistent unique device ID. When a system has two devices that report the same _HID, each device must
have a_UID object. When reported, the UID needs to be unique only among devices with the same device
ID. OSPM typically usesthe unique device ID to ensure that the device-specific information, such as
network protocol binding information, is remembered for the device even if itsrelative location changes.
For most integrated devices, this object contains a unique identifier. For other devices, like a docking
station, this object can be a control method that returns the unique docking station ID.

A _UID object evaluates to either anumeric value or astring.

8A Plug and Play (EISA) ID can be obtained by sending e-mail to pnpid@microsoft.com.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 149

6.2 Device Configuration Objects

Device configuration objects are used to configure hardware resources for devices enumerated via ACPI.
Device configuration objects provide information about current and possible resource requirements, the
relationship between shared resources, and methods for configuring hardware resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates adevice, it calls_PRS to determine the resource requirements of the device. It
may also call _CRSto find the current resource settings for the device. Using thisinformation, the Plug and
Play system determines what resources the device should consume and sets those resources by calling the
device’'s SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
aproprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be
taken from the nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devicesthat share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section
6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource producer)
that claimsthe shared resource inits_PRS. This allows OSPM to clearly understand the resource
dependenciesin the system and move all related devices together if it needs to change resources.
Furthermore, it allows OSPM to allocate resources only to resource producers when devices that consume
that resource appear.

The device configuration objects are listed in Table 6-3.
Table6-3 Device Configuration Objects

Object Description

_CRS Object that specifies adevice scurrent resource settings, or a control method that generates
such an object.

_DIS Control method that disables adevice.

_DMA Object that specifies adevice scurrent resources for DMA transactions.

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the

FADT and the devices that implement these fixed-hardware registers.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or initial configuration
of aPCI device at system boot.

_MAT Object that evaluatesto abuffer of MADT APIC Structure entries.

_PRS An object that specifies a device’ spossible resource settings, or a control method that
generates such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for adevice.

_SRS Control method that setsadevice’ s settings.

Compag/I ntel/Microsoft/Phoenix/T oshiba

150 Advanced Configuration and Power Interface Specification

6.2.1 _CRS (Current Resource Settings)

Thisrequired object evaluates to a byte stream that describes the system resources currently allocated to a
device. Additionally, a bus device must supply the resources that it decodes and can assign to its children
devices. If adeviceisdisabled, then _CRS returns avalid resource template for the device, but the actual
resource assignments in the return byte stream are ignored. If the device is disabled when _CRSiscalled, it
must remain disabled.

The format of the data contained in a_CRS object follows the formats defined in section 6.4, “Resource
Data Typesfor ACPI,” acompatible extension of the formats specified in the PNPBIOS specification. The
resource datais provided as a series of data structures, with each of the resource data structures having a
unique tag or identifier. The resource descriptor data structures specify the standard PC system resources,
such as memory address ranges, 1/O ports, interrupts, and DMA channels.

Arguments:
None

Result Code:
Byte stream

6.2.2 _DIS (Disable)

This control method disables a device. When the device is disabled, it must not be decoding any hardware
resources. Prior to running this control method, OSPM will have already put the devicein the D3 state.

When adeviceisdisabled viathe DIS, the STA control method for this device must return with the
Disabled bit set.

Arguments:
None

Result Code:
None

6.2.3 _DMA (Direct Memory Access)

This optional object returns a byte stream in the same format asa_CRS object. DMA isonly defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the child-
side of itsinterface. (Thisis analogousto the _CRS object, which describes the resources that the bus
controller decodes on the parent-side of itsinterface.) Any ranges described in the resources of a_ DMA
object can be used by child devices for DMA or bus master transactions.

The_DMA objectisonly valid if a_CRS object is also defined. OSPM must re-evaluate the _DMA object
after an _SRS object has been executed because the _ DMA ranges resources may change depending on
how the bridge has been configured.

If the _DMA object is not present for abus device, the OS assumes that any address placed on abusby a
child device will be decoded either by a device on the bus or by the busitself, (in other words, all address
ranges can be used for DMA).

For example, if aplatform implementsa PCl bus that cannot access all of physical memory, it hasa_DMA
object under that PCI bus that describes the ranges of physical memory that can be accessed by devices on
that bus.

® Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compag Computer Corp., Intel Corp.,
Phoenix Technologies Ltd.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 151

A _DMA object is not meant to describe any “map register” hardware thatis set up for each DMA
transaction. It is meant only to describe the DMA properties of a busthat cannot be changed without
reevaluating the _SRS method.

Arguments:
None

Result Code:
Byte stream

6.2.4 _FIX (Fixed Register Resource Provider)

This optional object is used to provide a correlation between the fixed-hardware register blocks defined in
the FADT and the devicesin the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
playsarole in the implementation of the fixed-hardware (for example, implements the hardware or decodes
the hardware’' s address). _FIX conveysto OSPM whether a given device can be disabled, powered off, or
should be treated specially by conveying its role in the implementation of the ACPI fixed-hardware register
interfaces. This object takes no arguments.

The _CRS object describes adevice' s resources. That _CRS object may contain a superset of the resources
inthe FADT, asthe device may actually decode resources beyond what the FADT requires. Furthermore,
in amachine that performs translation of resources within I/O bridges, the processor-relative resources in
the FADT may not be the same as the bus-relative resourcesin the _CRS.

Each of fieldsin the FADT hasitsown corresponding Plug and Play 1D, as shown below:
- PNPOC20- SMI_CMD
PNPOC21-PM1a EVT_BLK /X_PMla EVT_BLK
PNPOC22 - PM1b EVT _BLK /X_PM1b EVT_BLK
PNPOC23 - PM1a CNT_BLK / X_PMla CNT_BLK
PNPOC24 - PM1b_CNT_BLK /X_PM1b_CNT_BLK
PNPOC25 - PM2_CNT_BLK / X_PM2_CNT_BLK
PNPOC26 - PM_TMR_BLK / X_PM_TMR_BLK
PNPOC27 - GPEO_BLK / X_GPEO_BLK
PNPOC28 - GPE1 BLK / X_ GPE1 BLK

Compag/I ntel/Microsoft/Phoenix/T oshiba

152 Advanced Configuration and Power Interface Specification

Example ASL for _FIX usage:
Scope(_SB) {

Devi ce(PC 0) { /1 Root PO Bus
Nane(_HI D, ElI SAI D("PNPOA03")) // Need _H D for root device
Nane(_ADR, 0) /1 Device 0 on this bus
Met hod (_CRS, 0) { /1 Need current resources for root device

/] Return current resources for root bridge 0

}
Name(_PRT, Package(){ // Need PCl IRQ routing for PC bridge
/1 Package with PCl IRQ routing table information

})
Nane(_FI X, Package(1l) {
El SAI D(" PNPOC25") } //PM2 control ID
)

Devi ce (PX40) { /1 1SA
Narre(_ADR, 0x00070000)
Name(_FI X, Package(1) {
El SAI D(" PNPOC20") } //SM conmmand port

)

Devi ce (NS17) { /1 NS17 (Nat. Sem 317, an ACPI
Nane(_H D, El SAl D("PNP0C02"))
Nane(_FI X, Package(3) {

El SAI D(" PNPOC22") , /1 PMLb event 1D
El SAl D(" PNPOC24") , //PMLb control ID
El SAI D("PNPOC28")} //GPE1 I D
}
} /1 end PX40
Devi ce (PX43) { /1 PM Control

Nane(_ADR, 0x00070003)
Nane(_FI X, Package(4) ({

El SAl D(" PNPOC21"), //PMLa event |D
El SAI D(" PNPOC23") , /1 PMLa control ID
El SAI D(" PNPOC26") , /[/IPMTinmer ID

El SAI D("PNPOC27")} // GPEO I D
)
} /1 end PX43
} // end PCIO

} /1 end scope SB

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 153

6.2.5 _HPP (Hot Plug Parameters)

This optional object evaluates to the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or for performing configuration of a
PCI devices not configured by the BIOS at system boot. The object is placed under a PCI bus where this
behavior isdesired, such as abus with hot-plug slots. _HPP provided settings apply to all child buses, until
another _HPP object is encountered.

Arguments:
None
Result Code:

Met hod (_HPP, 0) {
Ret urn (Package(4){

0x08, /| CacheLineSi ze i n DWORDS
0x40, /1 LatencyTiner in PCl clocks
0x01, /| Enabl e SERR (Bool ean)
0x00 /1 Enabl e PERR (Bool ean)
3]
Table6-4 _HPP
Field Format Definition
Cache-linesize INTEGER Cache-line size reported in number of DWORDs.
Latency timer INTEGER Latency timer value reported in number of PCI clock
cycles.
Enable SERR INTEGER When set to 1, indicates that action must be performed to

enable SERR in the command register.

Enable PERR INTEGER When set to 1, indicates that action must be performed to
enable PERR in the command register.

Compag/I ntel/Microsoft/Phoenix/T oshiba

154 Advanced Configuration and Power Interface Specification

6.2.5.1 Example: Using HPP
Scope(_SB) {

Devi ce(PCl 0) { /1 Root PO Bus
Nane(_HI D, ElI SAI D(" PNPOA03")) /I _HDfor root device
Name(_ADR, 0) /1 Device 0 on this bus
Met hod (_CRS, 0) { /1 Need current resources for root dev

/] Return current resources for root bridge 0

}
Nane(_PRT, Package(){ // Need PCl IRQ routing for PCl bridge
/1 Package with PCl IRQ routing table information

})

Devi ce (P2P1) { /1l First PCl-to-PCl bridge (No Hot Plug slots)
Nane(_ADR, 0x000C0000) /1 Device#Ch, Func#0 on bus PC 0
Nane(_PRT, Package(){ /1 Need PO IRQrouting for PCl bridge

/1 Package with PCl IRQ routing table information

1))
} /1 end P2P1

Devi ce (P2P2) { /1 Second PO -to-PCl bridge (Bus contains Hot plug slots)
Nane(_ADR, 0x000EO0000) /1 Device#Eh, Func#0 on bus PC 0
Nane(_PRT, Package(){ /1 Need PCl IRQrouting for PCl bridge

/1 Package with PCl IRQ routing table information

})
Narme(_HPP, Package(){0x08, 0x40, 0x01, 0x00})

/] Device definitions for Slot 1- HOT PLUG SLOT

Device (S1F0) { /1 Slot 1, Func#0 on bus P2P2
Narre(_ADR, 0x00020000)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S1F1) { /1 Slot 1, Func#l on bus P2P2
Nane(_ADR, 0x00020001)
Met hod(_EJO, 1) { //Renove all power to device}

}
Devi ce (S1F2) { /1 Slot 1, Func#2 on bus P2P2
Nane(_ADR, 0x000200 02)
Met hod(_EJO, 1) { //Renove all power to device} }
Device (S1F3) { /1 Slot 1, Func#3 on bus P2P2

Nane(_ADR, 0x00020003)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S1F4) { /1 Slot 1, Func#4 on bus P2P2
Nane(_ADR, 0x00020004)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S1F5) { /1 Slot 1, Func#5 on bus P2P2
Nane(_ADR, 0x00020005)
Met hod(_EJO, 1) { //Renove all power to device}

}

Devi ce (S1F6) { /1 Slot 1, Func#6 on bus P2P2
Nane(_ADR, 0x00020006)
Met hod(_EJO, 1) { //Renove all power to device}

}
Device (S1F7) { /1 Slot 1, Func#7 on bus P2P2

Narre(_ADR, 0x00020007)
Met hod(_EJO, 1) { //Renove all power to device}

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 155

/] Device definitions for Slot 2- HOI PLUG SLOT

Devi ce (S2F0) { /1 Slot 2, Func#0 on bus P2P2
Narre(_ADR, 0x00030000)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S2F1) { /1 Slot 2, Func#l on bus P2P2
Nane(_ADR, 0x00030001)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S2F2) { I/l Slot 2, Func#2 on bus P2P2
Nane(_ADR, 0x00030002)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S2F3) { /1 Slot 2, Func#3 on bus P2P2
Nane(_ADR, 0x00030003)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S2F4) { /1 Slot 2, Func#4 on bus P2P2
Nane(_ADR, 0x00030004)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S2F5) { /1 Slot 2, Func#5 on bus P2P2
Nane(_ADR, 0x00030005)
Met hod(_EJO, 1) { //Renove all power to device}

}

Devi ce (S2F6) { /1 Slot 2, Func#6 on bus P2P2
Nane(_ADR, 0x00030006)
Met hod(_EJO, 1) { //Renove all power to device}

}

Device (S2F7) { /1 Slot 2, Func#7 on bus P2P2
Nane(_ADR, 0x00030007)
Met hod(_EJO, 1) { //Renove all power to device}

}

} /1 end P2P2
} // end PAO
} /! end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with acache line size of 32
(Noticethisfield isin DWORDSs), latency timer of 64, enable SERR, but leave PERR alone.

6.2.6 _MAT (Multiple APIC Table Entry)

This optional object evaluatesto a buffer returning datain the format of aseries of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an I/O APIC or processor
object definition as processors may contain Local APICs. Specific types of entriesfrom section 5.2.11
“Global System Interrupt Vectors’ are meaningful to (in other words, is processed by) OSPM when
returned viathe evaluation of this object as described below. Other entry types returned by the evaluation
of MAT areignored by OSPM.

When _MAT appears under a Processor object, OSPM processes Local APIC (section 5.2.10.5, “Processor
Local APIC"), Local SAPIC (section 5.2.10.13, “Local SAPIC Structure”), and local APIC NMI (section
5.2.10.10, “Loca APIC NMI") entries returned from the object’ s evaluation. Other entry types are ignored
by OSPM. OSPM uses the ACPI processor ID in the entries returned from the object’ s evaluation to
identify the entries corresponding to the ACPI processor ID of the Processor object.

Compag/I ntel/Microsoft/Phoenix/T oshiba

156 Advanced Configuration and Power Interface Specification

When _MAT appears under an I/O APIC, OSPM processes |/0 APIC (section 5.2.10.6), 1/0 SAPIC
(section 5.2.10.12, “1/O SAPIC Structure”), non-maskable interrupt sources (section 5.2.10.9, “Non-
Maskable Interrupt Sources”), interrupt source overrides (section 5.2.10.8, “Interrupt Source Overrides’),
and platform interrupt source structure (section 5.2.10.14, “Platform Interrupt Source Structure”) entries
returned from the object’ s evaluation. Other entry types areignored by OSPM.

Arguments:

None

Result Code:

A buffer

Example ASL for _MAT usage:

Scope(_SB) {

Devi ce(PA 0) { /1 Root PO Bus
Nane(_HI D, ElI SAI D("PNP0A03")) // Need _H D for root device
Nanme(_ADR, 0) /] Device 0 on this bus
Met hod (_CRS, 0){ /1 Need current resources for root device

/] Return current resources for root bridge 0

}
Name(_PRT, Package(){ /1 Need PCl IRQ routing for PO bridge
/1 Package with PO IRQ routing table infornation

3]
Devi ce (P64A) { /1 PBAA ACPI
Nare(_ADR, 0)
Oper ati onRegi on(TABD, SystemMenory, //Physical address of first
/1 data byte of multiple ACPI table, Length of tables)
Field (TABD, ByteAcc, NoLock, Preserve)({
MATD, Length of tables x 8
}
Met hod(_MAT, 0){
return (MATD)}
} /1 end P64A

} // end PCIO

} /1 end scope SB

6.2.7 _PRS (Possible Resource Settings)

This optional object evaluatesto abyte stream that describes the possible resource settings for the device.
When describing a platform, specify a_PRSfor all the configurable devices. Static (non-configurabl€)
devices do not specify a_PRS object. The information in this package is used by OSPM to select a
conflict-free resource allocation without user intervention. This method must not reference any operation
regions that have not been declared available by a_REG method.

The format of the datain a_PRS object follows the same format as the _CRS object (for more information,
seethe _CRS object definition).

If the deviceisdisabled when PRSis called, it must remain disabled.

Arguments:
None

Result Code:
Byte stream

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 157

6.2.8 _PRT (PCI Routing Table)

PCI interrupts are inherently non-hierarchical. PCl interrupt pins are wired to interrupt inputs of the
interrupt controllers. The PRT object provides a mapping from PCI interrupt pinsto the interrupt inputs of
the interrupt controllers. The _PRT object isrequired under all PCI root bridges. _PRT evaluatesto a
package that contains alist of packages, each of which describes the mapping of a PCl interrupt pin. Note:
The function number in the PRT packages must be FFFF, that is, any function number. The _PRT
mapping packages have the fields listed in Table 6-5.

Table6-5 Mapping Fields

Field Type Description

Address DWORD The address of the device (uses the sameformat as_ADR).

Pin BYTE The PCI pin number of the device (O-INTA, 1-INTB, 2-INTC, 3-INTD).

Source String Name of the device that allocates the interrupt to which the above pinis
connected . If thisfield isNULL, then the interrupt is allocated from the global
interrupt pool.

Source DWORD Index that indicates which resource descriptor in the resource template of the

Index device pointed to in the Source field thisinterrupt is allocated from. If the Source
fieldisnull, thisfield is the global system interrupt number to which the pinis
connected.

There aretwo waysthat _PRT can be used. Typically, the interrupt input that a given PCI interrupt isonis
configurable. For example, agiven PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a PCl Interrupt
Link Device.

These objects have _PRS, CRS, SRS, and _DIS control methods to allocate the interrupt. Then, OSPM
handles the interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt pins. The driver
looks up the device' s pinsin the _PRT to determine which device objects all ocate the interrupts. To move
the PCI interrupt to adifferent interrupt input on the interrupt controller, OSPM uses_PRS, _CRS, _SRS,
and _DIS control methods for the PCI Interrupt Link Device. In the second model, the PCI interrupts are
hardwired to specific interrupt inputs on the interrupt controller and are not configurable. In this case, the
Sourcefield in _PRT does not point to adevice, but is null, and the Source Index field contains the global
system interrupt to which the PCI interrupt is hardwired.

Compag/I ntel/Microsoft/Phoenix/T oshiba

158 Advanced Configuration and Power Interface Specification

6.2.8.1 Example: Using PRT to Describe PCI IRQ Routing

The following exampl e describes two PCI slots and a PCI video chip. Notice that the interrupts on the two
PCI slotsare wired differently (barber-poled).

Scope(_\ SB) {
Devi ce(LNKA) {
Nanme(_H D, El SAI D(" PNPOCOF")) /1 PO interrupt link
Name(_U D, 1)
Nane(_PRS, ResourceTenpl at e() {
I nt errupt (Resour ceProducer, ..) {10, 11} /1 IR 10,11

})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(LNKB) {
Nane(_HI D, El SAl D(" PNPOCOF")) /1 PA interrupt link
Nare(_UI D, 2)
Nane(_PRS, ResourceTenpl at e(){
I nt errupt (Resour ceProducer, ..) {11, 12} /1 TR 11,12
})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(LNKC) {
Name(_HI D, El SAl D(" PNPOCOF")) /1 PQ interrupt |ink
Nane(_U D, 3)
Nane(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, ..) {12, 14} /Il 1R 12,14

})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(LNKD) {
Narme(_HI D, ElI SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Nane(_U D, 4)
Nane(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, ..) {10, 15} /1 1R 10, 15
})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(PC 0) {
Name(_PRT, Package{
Package{ 0x0004ffff, 0, LNKA, 0}, // Slot 1, INTA
Package{0x0004ffff, 1, LNKB, 0}, // Slot 1, INTB
Package{ 0x0004ffff, 2, LNKC, 0}, // Slot 1, INTC
Package{ 0x0004ffff, 3, LNKD, 0}, // Slot 1, INTD
Package{ 0x0005ffff, O, LNKB, 0}, // Slot 2, INTA
Package{ 0x0005ffff, 1, LNKC, 0}, // Slot 2, INTB
Package{ 0x0005ffff, 2, LNKD, 0}, // Slot 2, INTC
Package{ 0x0005ffff, 3, LNKA, 0}, // Slot 2, INID
Package{ 0x0006ffff, 0, LNKC, 0} /1 Video, |NTA
})
}

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 159

6.2.9 _PXM (Proximity)

This optional object is used to describe proximity domains within amachine. _PXM evaluatesto an integer
that identifies the device as belonging to a specific proximity domain. The OS assumes that two devicesin
the same proximity domain are tightly coupled. An OS could choose to optimize its behavior based on this.
For example, in a system with four processors and six memory devices, there might be two separate
proximity domains (0 and 1), each with two processors and three memory devices. In this case, the OS may
decide to run some software threads on the processorsin proximity domain 0 and others on the processors
in proximity domain 1. Furthermore, for performance reasons, it could choose to allocate memory for those
threads fromthe memory devices inside the proximity domain common to the processor and the memory
device rather than from a memory device outside of the processor’s proximity domain. _PXM can be used
to identify any device belonging to a proximity domain. Children of a device belong to the same proximity
domain as their parent unless they contain an overriding _PXM. Proximity domains do not imply any
€jection relationships.

An OS makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance between
the proximity domains (in other words, proximity domain 1 is not assumed to be closer to proximity
domain 0 than proximity domain 6).

Arguments:
None

Result Code:
Aninteger

6.2.10 _SRS (Set Resource Settings)

This optional control method takes one byte stream argument that specifies a new resource allocation for a
device. The resource descriptors in the byte stream argument must be specified in the same order as listed
in the _CRS byte stream (for more information, see the _CRS object definition). A _CRS object can be
used as atemplate to ensure that the descriptors arein the correct format.

The settings must take effect before the _SRS control method returns.

This method must not reference any operation regions that have not been declared availableby a_REG
method.

If the deviceisdisabled, SRS enablesthe device at the specified resources. SRSisnot used to disable a
device; usethe DI S control method instead.

Arguments:
Byte stream
Result Code:

None

6.3 Device Insertion and Removal Objects

Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal of
devices. These same mechanisms are used for docking and undocking. These objects give information
about whether or not devices are present, which devices are physically in the same device (independent of
which bus the deviceslive on), and methods for controlling ejection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style g ection
mechanism instead of a“surprise-style” gection mechanism. In this system, the gject button for adevice
does not immediately remove the device, but simply signals the operating system. OSPM then shuts down
the device, closes open files, unloads the driver, and sends a command to the hardware to gject the device.

Compag/I ntel/Microsoft/Phoenix/T oshiba

160 Advanced Configuration and Power Interface Specification

In ACPI, the sequence of events for dynamically inserting a device followsthe process below. Notice that

this process supports hot, warm, and cold insertion of devices.

1. If thedeviceis physically inserted while the computer isin the working state (in other words, hot
insertion), the hardware generates a general-purpose event.

2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of the bus
that the new deviceis on or the device object for the new device. If the Notify command points to the
device object for the new device, the control method must have changed the device' s status returned by
_STA toindicate that the device is now present. The performance of this process can be optimized by
having the object of the Notify as close as possible, in the namespace hierarchy, to where the new
device resides. The Notify command can also be used from the _WAK control method (for more
information about _ WAK, see section 7.3.5“_WAK (System Wake)") toindicate device changes that
may have occurred while the computer was sleeping. For more information about the Notify command,
see section 5.6.3 “Device Object Notification.”.”

3. OSPM usestheidentification and configuration objects to identify, configure, and load a device driver
for the new device and any devices found below the device in the hierarchy.

4. If thedevicehasa_LCK control method, OSPM may later run this control method to lock the device.

The new devicereferred to in step 2 need not be asingle device, but could be awhole tree of devices. For
example, it could point to the PCI -PCI bridge docking connector. OSPM will then load and configure all
devicesit found below that bridge. The control method can also point to several different devicesin the
hierarchy if the new devices do not all live under the same bus. (in other words, more than one bus goes
through the connector).

For removing devices, ACPI supports both hot removal (system isin the SO state), and warm removal
(systemisin asleep state: S1-S4). Thisisdone using the _EJx control methods. Devices that can be gjected
include an _EJx control method for each sleeping state the device supports (a maximum of 2 _EJx objects
can belisted). For example, hot removal deviceswould supply an _EJO; warm removal devices would use
one of _EJ1-EJ4. These control methods are used to signal the hardware when an gject isto occur.

The sequence of events for dynamically removing a device goes as follows:

1. Theeject button is pressed and generates a general-purpose event. (If the system wasin a sleeping
state, it should wake the computer).

2. The control method for the event uses the Notify(device, 3) command to inform OSPM which specific
device the user has requested to gject. Notify does not need to be called for every device that may be
gjected, but for the top-level device. Any child devicesin the hierarchy or any ejection-dependent
devices on this device (as described by EJD, below) are automatically removed.

3. The OS shuts down and unloads devices that will be removed.

4. If thedevicehasa_LCK control method, OSPM runs this control method to unlock the device.

5. The OSlooksto seewhat _EJx control methods are present for the device. If the removal event will
cause the system to switch to battery power (in other words, an undock) and the battery islow, dead, or
not present, OSPM uses the lowest supported sleep state EJx listed; otherwise it uses the highest state
_EJx. Having made this decision, OSPM runs the appropriate _EJx control method to prepare the
hardware for eject.

6. Warm removal requires that the system be put in a sleep state. If the removal will be awarm removal,
OSPM putsthe system in the appropriate Sx state. If the removal will be a hot removal, OSPM skips to
step 8, below.

7. For warm removal, the system is put in a sleep state. Hardware then uses any motors, and so on, to
gject the device. Immediately after gjection, the hardware transitions the computer to SO. If the system
was sleeping when the gject notification camein, the OS returns the computer to a sleeping state
consistent with the user’ s wake settings.

8. OSPM calls_STA to determineif the gject successfully occurred. (In this case, control methods do not
need to use the Notify(device,3) command to tell OSPM of the changein _STA) If there were any
mechanical failures, _STA returns 3: device present and not functioning, and OSPM informs the user
of the problem.

Note: This mechanism is the same for removing a single device and for removing several devices, asin an
undock.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 161

ACPI does not disallow surprise-style removal of devices; however, thistype of removal is not
recommended because system and dataintegrity cannot be guaranteed when a surprise-style removal
occurs. Because the OSis not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device isremoved. To handle surprise-style removal, a general-purpose
event must be raised. Its associated control method must use the Notify command to indicate which bus the
device was removed from.

The device insertion and removal objects are listed in Table 6-6.

Table6-6 Device Insertion and Removal Objects

Object Description

_EDL Object that evaluates to a package of namespace references of device objects that depend on
the device containing _EDL. Whenever the named deviceis ejected, OSPM ejects all
dependent devices.

_EJD Object that evaluates to the name of a device object on which a device depends. Whenever the
named deviceis g ected, the dependent device must receive an g ection notification.

_EXx Control method that ejects a device.

_LCK Control method that locks or unlocks a device.

_RMV Object that indicates that the given deviceis removable.

STA Control method that returns a device' sstatus.

6.3.1 _EDL (Eject Device List)

This object evaluates to a package of namespace references containing the names of device objects that
depend on the device under whichthe EDL object isdeclared. Thisis primarily used to support docking
stations. Before the device under which the EDL object is declared may be € ected, OSPM prepares the
deviceslistedinthe_EDL object for physical removal.

Before OSPM egjects adevice viathe device's _EJIx methods, all dependent devices listed in the package
returned by _EDL are prepared for removal. Notice that _EJx methods under the dependent devices are not
executed.

When describing a platform that includes a docking station, an _EDL object is declared under the docking
station device. For example, if amobile system can attach to two different types of docking stations, _EDL
is declared under both docking station devices and eval uates to the packaged list of devices that must be
gjected when the system is ejected from the docking station.

An ACPI 2.0-compliant OS evaluates the EDL method just prior to gjecting the device.

6.3.2 _EJD (Ejection Dependent Device)

Thisobject is used to specify the name of a device on which the device, under which this object is declared,
is dependent. This object is primarily used to support docking stations. Before the device indicated by
_EJD isgjected, OSPM will prepare the dependent device (in other words, the device under which this
object is declared) for removal.

_EJD is evaluated once when the ACPI table loads. The EJx methods of the device indicated by _EJD will
be used to gject all the dependent devices. A device' s dependents will be gjected when the deviceitself is
gjected.

Note: OSPM will not execute a dependent device's _EJx methods when the device indicated by EJD is
€gjected.

Compag/I ntel/Microsoft/Phoenix/T oshiba

162 Advanced Configuration and Power Interface Specification

When describing a platform that includes a docking station, usually more than one _EJD object will be
needed. For example, if adock attaches both a PCI device and an ACPI-configured device to a mobile
system, then both the PCI device description package and the ACPI -configured device description package
must include an _EJD object that evaluates to the name of the docking station (the name specified in an
_ADRor _HID object in the docking station’ s description package). Thus, when the docking connector
signals an g ect request, OSPM first attemptsto disable and unload the driversfor both the PCl and ACPI
configured devices.

Note: An ACPI 1.0 OS evaluates the _EJD methods only once during the table load process. This greatly
restricts atable designer’ s freedom to describe dynamic dependencies such as those created in scenarios
with multiple docking stations. Thisrestriction isillustrated in the example below; the _EJD information
supplied viaand ACPI 1.0-compatible namespace omits the IDE2 device from DOCK2'slist of gjection
dependencies. In ACPI 2.0, OSPM will be presented with a more in-depth view of the gjection
dependenciesin a system by use of the EDL methods.

Example
An example use of _EJD and _EDL isasfollows:
Scope(_SB. PCI 0) {

Devi ce(DOCK1) { /1 Pass through dock — DOCK1
Nare(_ADR, .)
Met hod(_EJO, 0) {.}
Met hod(_DCK, 1) {.}
Nane(_BDN, ..
Met hod(_STA, 0) {OxF}
Nane(_EDL, Package() { /1 DOCK1 has two dependent devices — | DE2 and CB2
\ _SB. PCI 0. | DE2,
\ _SB. PC1 0. CB2})

}
Devi ce(DOCK2) { /1 Pass through dock — DOCK2

Nane(_ADR ..

Met hod(_EJO, 0) {.}

Met hod(_DCK, 1) {.}

Nane(_BDN, ..

Met hod(_STA, 0) {0x0}

Nane(_EDL, Package() { /1 DOCK2 has one dependent device — | DE2

\ _SB. PCl 0. | DE2})
}

Devi ce(I DE1) { /1 1DE Drivel not dependent on the dock
Nane(_ADR ..
}

Devi ce(| DE2) { /1 1DE Drive2
Nane(_ADR

)
Nane(_EJD, "\ _SB. PCl 0. DOCK1") [// Dependent on DOCK1
}

Devi ce(CB2) { /1 CardBus Controller
Nane(_ADR, .)
Nane(_EJD, "\ _SB. PCI 0. DOCK1") // Dependent on DOCK1l

}
} // end _SB.PCO

6.3.3 _EJx (Eject)

These control methods are optional and are supplied for devices that support a software-controlled VCR-
style gjection mechanism or that require an action be performed such asisolation of power/datalines before
the device can be removed from the system. To support warm (system isin a sleep state) and hot (systemis
in SO) removal, an _EJx control method is listed for each sleep state from which the device supports
removal, where x is the sleeping state supported. For example, _EJO indicates the device supports hot
removal; _EJ1-EJ4 indicate the device supports warm removal.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 163

For hot removal, the device mu st be immediately ejected when OSPM calls the _EJO control method. The
_EJO control method does not return until ejection is complete. After calling _EJO, OSPM verifiesthe
device no longer existsto determineif the gect succeeded. For _HID devices, OSPM evaluatesthe STA
method. For _ ADR devices, OSPM checks with the bus driver for that device.

For warm removal, the _EJ1—_EJ4 control methods do not cause the device to be immediately ejected.
Instead, they set proprietary registers to prepare the hardware to eject when the system goesinto the given
sleep state. The hardware gjects the device only after OSPM has put the system in a sleep state by writing
tothe SLP_EN register. After the system resumes, OSPM calls _STA to determineif the gject succeeded.

The _EJx control methods take one parameter to indicate whether gject should be enabled or disabled:

1-Hot gject or mark for gjection
0—Cancel mark for ejection (EJO will never be called with this value)

A device object may have multiple _EJx control methods. First, it lists an EJx control method for the
preferred sleeping state to gject the device. Optionally, the device may list an EJ4 control method to be
used when the system has no power (for example, no battery) after the gject. For example, a hot-docking
notebook might list _EJO and _EJ4.

6.3.4 _LCK (Lock)

This control method is optional and isrequired only for a device that supports a software-controlled locking
mechanism. When the OS invokes this control method, the associated device isto be locked or unlocked
based upon the value of the argument that is passed. On alock request, the control method must not
complete until the device is completely locked.

The L CK control method takes one parameter that indicates whether or not the device should be locked:

1-Lock the device.
0-Unlock the device.

When describing a platform, devices use either a_L CK control method or an _EJx control method for a
device.

6.3.5 _RMV (Remove)

The optional _RMV object indicates to OSPM whether the device can be removed while the systemisin
the working state and does not require any ACPI system firmware actions to be performed for the device to
be safely removed from the system (in other words, any device that only supports surprise-style removal).
Any such removable device that does not have L CK or _EJx control methods must havean RMYV object.
Thisalows OSPM to indicate to the user that the device can be removed and to provide away for shutting
down the device before removing it. OSPM will transition the device into D3 before telling the user it is
safe to remove the device.

This method is reevaluated after a device-check notification.
Arguments:

None
Result Code:

0-The device cannot be removed.

1-The device can be removed.

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the
deviceisremovable.

Compag/I ntel/Microsoft/Phoenix/T oshiba

164 Advanced Configuration and Power Interface Specification

6.3.6 _STA (Status)

This object returns the status of a device, which can be one of the following: enabled, disabled, or removed.

Arguments:
None

Result Code (bitmap):
Bit 0-Set if the deviceis present.
Bit 1-Set if the device is enabled and decoding its resources.
Bit 2—Set if the device should be shown in the UI.
Bit 3-Set if the deviceis functioning properly (cleared if the device failed its diagnostics).
Bit 4-Set if the battery is present.
Bits 5-31-Reserved (must be cleared).

If bit Oiscleared, then bit 1 must also be cleared (in other words, adevice that is not present cannot be
enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit
0 cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

If adeviceis present in the machine, but should not be displayed in OSPM user interface, bit 2 is cleared.
For example, anotebook could have joystick hardware (thusit is present and decoding its resources), but
the connector for plugging in the joystick requires a port replicator. If the port replicator is not plugged in,
the joystick should not appear in the Ul, so bit 2 is cleared.

If adevice object does not have an _STA object, then OSPM assumes that all of the above bits are set (in
other words, the deviceis present, enabled, shown in the Ul, and functioning).

This method must not reference any operation regions that have not been declared available by a_ REG
method.

6.4 Resource Data Types for ACPI

The _CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.

6.4.1 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is defined
in section 16.2.4, “ASL Macros for Resource Descriptors.”

6.4.2 Small Resource Data Type

A small resource data type may be 2 to 8 bytesin size and adheres to the following format:

Table6-7 Small Resource Data Type Tag Bit Definitions

Offset Field

Byte O Tag Bit[7] Tag Bitg[6: 3] Tag Bits[2:0]
Type-0 Small item name Length—n bytes

Byteslton Data bytes

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 165

The following small information items are currently defined for Plug and Play devices:

Table6-8 Small Resource ltems

Small Item Name Value
Reserved Ox1
Reserved 0x2
Reserved 0x3

IRQ format Ox4
DMA format 0x5

Start dependent Function 0x6

End dependent Function Ox7

I/0 port descriptor 0x8
Fixed location /O port descriptor 0x9
Reserved OxA—-0xD
Vendor defined OxE

End tag OxF

6.4.2.1 IRQ Format (Type 0, Small Item Name 0x4, Length=2 or 3)

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levelsimplemented in this device. For standard PC-AT implementation there are 15 possible
interrupts so atwo-byte field isused. This structure is repeated for each separate interrupt required.

Table6-9 |IRQ Descriptor Definition
Offset Field Name
Byte 0 Vaue = 0010001nB (Type =0, small item name = 0x4, length = (2 or 3))
Byte 1 IRQ mask bits[7:0], _INT
Bit[O] represents IRQO, bit[1] isIRQ1, and so on.
Byte 2 IRQ mask bits[15:8], _INT
Bit[0] represents IRQ8, bit[1] isIRQ9, and so on.

Compag/I ntel/Microsoft/Phoenix/T oshiba

166 Advanced Configuration and Power Interface Specification

Table6-9 IRQ Descriptor Definition (continued)

Offset Field Name

Byte 3 IRQ Information. Each bit, when set, indicates this device is capable of driving a
certain type of interrupt. (Optional—if not included then assume edge sensitive,
high true interrupts)

Note: These bits can be used both for reporting and setting |RQ resources.

Note: This descriptor is meant for describing interrupts that are connected to PIC-
compatibleinterrupt controllers, which can only be programmed for Active-High-
Edge-Triggered or Active-L ow-Level-Triggered interrupts. Any other
combination isillegal. The Extended Interrupt Descriptor can be used to describe
other combinations.

Bit[7:5] Reserved (must be 0)

Bit[4] Interruptissharable, SHR

Bit[3] Interrupt Polarity, LL
0: Active-High-Thisinterrupt is sampled when the signal is high, or true.

1: Active-Low-Thisinterrupt is sampled when the signal is low, or false.
Bit[2:1] Ignored
Bit[0] Interrupt Mode, HE

0: Level-Triggered-Thisinterrupt istriggered in response to the signal beingin
alow state.

1: Edge-Triggered—Thisinterrupt istriggered in response to achangein signal
state from low to high.

Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might
work isbeyond the scope of this specification.

Note: If byte 3 isnot included, High true, edge sensitive, non-shareable is assumed.

See section 16.2.4.1, “ASL Macro for IRQ Descriptor,” for a description of the ASL macro that creates an
IRQ descriptor.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 167

6.4.2.2 DMA Format (Type 0, Small ltem Name 0x5, Length=2)

The DMA data structure indicates that the device usesa DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device. This structure is repeated for each separate
channel required.

Table6-10 DMA Descriptor Definition

Offset Field Name
Byte 0 Vaue = 00101010B (Type = 0, small item name = 0x5, length = 2)
Byte 1 DMA channel mask bitg[7:0], _DMA
Bit[0] is channel O
Byte 2 Bit[7] Reserved (must be 0)
Bit5[6:5] DMA channel speed supported, _TYP
Status
00 Indicates compatibility mode
01 Indicates Type A DMA as described in the EISA
Specification
10 Indicates Type B DMA
11 Indicates Type F
Bit[4:3] Ignored

Bit[2] Logica device bus master status, BM
Status
0 Logical deviceis not a bus master
1 Logical deviceis abus master

Bitg[1:0] DMA transfer type preference, _SIZ
Status
00 8bit only
01 8- and 16-bit
10 16-bit only
1 Reserved

See section 16.2.4.2, “ASL Macro for DMA Descriptor,” for a description of the ASL macro that createsa
DMA descriptor.

6.4.2.3 Start Dependent Functions (Type 0, Small Iltem Name 0x6, Length=0
or1l)

Each logical device requires a set of resources. This set of resources may have interdependencies that need
to be expressed to allow arbitration software to make resource allocation decisions about the logical device.
Dependent functions are used to exp ress these interdependencies. The data structure definitions for
dependent functions are shown here. For a detailed description of the use of dependent functions refer to
the next section.

Table6-11 Start Dependent Functions

Offset Field Name
Byte 0 Value=0_0110 _00nB (Type = 0, small item name = 0x6, length =(0 or 1))

Compag/I ntel/Microsoft/Phoenix/T oshiba

168 Advanced Configuration and Power Interface Specification

Start Dependent Function fields may be of length O or 1 bytes. The extrabyteis optionally used to denote
the compatibility or performance/robustness priority for the resource group following the Start DF tag. The
compatibility priority isaranking of configurations for compatibility with legacy operating systems. Thisis
the same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM1 is IRQ4, I/O 3F8-3FF. The performance/robustness performanceisa
ranking of configurations for performance and robustness reasons. For example, a device may have a high-
performance, bus mastering configuration that may not be supported by legacy operating systems. The bus-
mastering configuration would have the highest performance/robustness priority whileits polled I/O mode
might have the highest compatibility priority.

If the Priority byte is not included, thisindicates the dependent function priority is ‘ acceptable’. This byteis
defined as:

Table6-12 Start Dependent Function Priority Byte Definition

Bits Definition

1.0 Compatibility priority. Acceptable values are:

0-Good configuration: Highest Priority and preferred configuration
1-Acceptable configuration: Lower Priority but acceptable configuration
2-Sub-optimal configuration: Functional configuration but not optimal

3-Reserved

3.2 Performance/robustness. Acceptable values are:

0-Good configuration: Highest Priority and prefered configuration
1-Acceptable configuration: Lower Priority but acceptable configuration
2-Sub-optimal configuration: Functional configuration but not optimal
3-Reserved

7:4 Reserved (must be 0)

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by the order
in which they appear in the resource data structure. The Dependent Function that appears earliest (nearest
the beginning) in the structure has the highest priority, and so on.

See section 16.2.4.3, “ASL M acro for Start-Dependent Function Descriptor,” for adescription of the ASL
macro that creates a Start Dependent Function descriptor.

6.4.2.4 End Dependent Functions (Type 0, Small Item Name 0x7, Length=0)
Table6-13 End Dependent Functions

Offset Field Name

Byte 0 Vaue=0_0111 000B (Type =0, small item name = 0x7 length =0)

Notice that only one End Dependent Function item is allowed per logical device. This enforces the fact that
Dependent Functions cannot be nested.

See section 16.2.4.4, “ASL Macro for End-Dependent Functions Descriptor,” for adescription of the ASL
macro that creates an End Dependent Functions descriptor.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 169

6.4.2.5 1/0O Port Descriptor (Type 0, Small Item Name 0x8, Length=7)

There are two types of descriptorsfor I/O ranges. The first descriptor isafull function descriptor for
programmabl e devices. The second descriptor isaminimal descriptor for old ISA cards with fixed |/0O
requirements that use a 10-bit | SA address decode. Thefirst type descriptor can also be used to describe
fixed I/0 requirements for | SA cardsthat require a 16-bit address decode. Thisis accomplished by setting
the range minimum base address and range maximum base address to the same fixed |/O value.

Table6-14 1/O Port Descriptor Definition

Offset Field Name Definition

ByteO 1/O port descriptor Value = 01000111B (Type = 0, Small item name =
0x8, Length=7)

Byte 1l Information Bits[7:1] are reserved and must be O
Bit[0] (_ DEC)

If set, indicates the logical device decodes 16-bit
addresses. If bit[Q] isnot set, thisindicates the logical
device only decodes address bits[9:0].

Byte 2 Range minimum base Address bitg[7:0] of the minimum base 1/0 address
address, MIN that the card may be configured for.
bitg[7:0]

Byte 3 Range minimum base Address bits[15:8] of the minimum base 1/0 address
address, _MIN that the card may be configured for.
bits[15:8]

Byte 4 Range maximum base Address bits[7:0] of the maximum base 1/0O address
address, _MAX that the card may be configured for.
bitg[7:0]

Byte5 Range maximum base Address bits[15:8] of the maximum base I/O address
address, _MAX that the card may be configured for.
bits[15:8]

Byte 6 Basealignment, _ALN Alignment for minimum base address, increment in 1-

byte blocks.
Byte7 Range length, _LEN The number of contiguous I/O ports requested.

See section 16.2.4.5, “ASL Macro for 1/0 Port Descriptor,” for a description of the ASL macro that creates
an /O Port descriptor.

Compag/I ntel/Microsoft/Phoenix/T oshiba

170 Advanced Configuration and Power Interface Specification

6.4.2.6 Fixed Location I/O Port Descriptor (Type 0, Small Item Name 0x9,
Length=3)
This descriptor is used to describe 10-bit 1/0 locations.

Table6-15 Fixed-Location I/O Port Descriptor Definition

Offset Field Name Definition
Byte 0 Fixed Location 1/0 port Value =01001011B (Type = 0, Small item name =
descriptor 0x9, Length = 3)
Byte 1 Range base address, BAS |Address bitg[7:0] of the base I/O address that the card
bitg 7:0] may be configured for. This descriptor assumes a 10-
bit ISA address decode.
Byte 2 Range base address, BAS [Address bitg[9:8] of the base I/O address that the card
bitg[9:8] may be configured for. This descriptor assumes a 10-
bit ISA address decode.
Byte 3 Range length, LEN The number of contiguous I/O ports requested.

See section 16.2.4.6, “ASL Macro for Fixed |/O Port Descriptor,” for a description of the ASL macro that
creates a Fixed 1/0O Port descriptor.

6.4.2.7 Vendor Defined (Type 0, Small ltem Name OxE, Length=1-7)

The vendor defined resource datatype isfor vendor use.

Table6-16 Vendor -Defined Resour ce Descriptor Definition

Offset Field Name
ByteO Value = 01110nnnB (Type = 0, small item name = OXE, length = (1-7))
Bytelto7 Vendor defined

See section 16.2.4.7, “ASL Macro for Short Vendor-Defined Descriptor,” for a description of the ASL
macro that creates a short Vendor Defined descriptor.

6.4.2.8 End Tag (Type 0, Small Item Name OxF, Length 1)

The End tag identifies an end of resource data.

Note: If the checksum field is zro, the resource dataistreated asif the checksum operation succeeded.
Configuration proceeds normally.

Table6-17 End Tag Definition

Offset Field Name

Byte O Vaue=01111001B (Type = 0, small item name = OxF, length = 1)

Byte 1 Check sum covering all resource data after the serial identifier. This check sumis
generated such that adding it to the sum of all the data bytes will produce a zero
sum.

The End Tag is automatically generated by the ASL compiler at the end of the Resour ceT emplate
Statement.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 171

6.4.3 Large Resource Data Type

To allow for larger amounts of datato be included in the configuration data structure the large format is
shown below. Thisincludes a 16-bit length field allowing up to 64 KB of data.

Table6-18 Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte 0 Value = IxxxxxxxB (Type = 1, Large item name = XXXXXXX)
Byte 1 Length of dataitems bits[7:0]

Byte 2 Length of dataitems bits[15:8]

Bytes3ton | Actual dataitems

The following large information items are currently defined for Plug and Play | SA devices:

Table6-19 Large Resource ltems

Large Item Name Value
24-bit memory range descriptor Ox1
Generic register descriptor 0x2
Reserved 0x3
Vendor defined Ox4
32-bit memory range descriptor O0x5
32-hit fixed location memory range descriptor 0x6
DWORD address space descriptor Ox7
WORD address space descriptor 0x8
Extended IRQ descriptor 0x9
QWORD address space descriptor OxA
Reserved 0xB—0x7F

6.4.3.1 24-Bit Memory Range Descriptor (Type 1, Large Item Name 0x1)

The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit address
space.

Table6-20 Large Memory Range Descriptor Definition

Offset Field Name, ASL Field Name | Definition

Byte 0 Memory range descriptor Vaue = 10000001B (Type = 1, Large item name =
0x1)

Byte 1 Length, bits[7:0] Vaue = 00001001B (9)

Byte 2 Length, bits[15:8] Vaue = 00000000B (0)

Compag/I ntel/Microsoft/Phoenix/T oshiba

172 Advanced Configuration and Power Interface Specification

Table6-20 Large Memory Range Descriptor Definition (continued)

Offset Field Name, ASL Field Name [Definition

Byte 3 Information Thisfield provides extrainformation about this
memory.

Bit[7:1] Ignored
Bit[Q] Write status, RW

Status

1 writeable

0 non-writeable
(ROM)

Byte4 Range minimum base address, | Address bitg[15:8] of the minimum base memory
_MIN address for which the card may be configured.
bitg[7:0]

Byte 5 Range minimum base address, | Address bitg[23:16] of the minimum base memory
_MIN address for which the card may be configured
bits[15:8]

Byte 6 Range maximum base address, | Address bits[15:8] of the maximum base memory
_MAX, address for which the card may be configured.
bitg[7:0]

Byte7 Range maximum base address, | Address bits[23:16] of the maximum base memory
_MAX, address for which the card may be configured
bits[15:8]

Byte 8 Basealignment, ALN, Thisfield contains the lower eight bits of the base
bitg[7:0] alignment. The base alignment provides the

increment for the minimum base address. (0x0000 =
64 KB)

Byte 9 Basealignment, ALN, Thisfield contains the upper eight bits of the base

bits[15:8] alignment. The base alignment provides the
increment for the minimum base address. (0x0000 =
64 KB)

Byte 10 Range length, LEN, bitg[7:0] | Thisfield containsthe lower eight bits of the
memory range length. The range length provides the
length of the memory range in 256 byte blocks.

Byte 11 Range length, _LEN, bits[15:8]| Thisfield contains the upper eight bits of the
memory range length. The range length field
provides the length of the memory range in 256 byte
blocks.

Notes: Address bits[7:0] of memory base addresses are assumed to be 0.

A Memory range descriptor can be used to describe a fixed memory address by setting the range minimum

base address and the range maximum base address to the same value.
24-bit Memory Range descriptors are used for legacy devices.
Mixing of 24-bit and 32-bit memory descriptors on the same deviceis not allowed.

See section 16.2.4.8, “ASL Macro for 24-Bit Memory Descriptor,” for a description of the ASL macro that

creates a 24-bit Memory descriptor.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 173

6.4.3.2 Vendor Defined (Type 1, Large Item Name 0x4)

The vendor defined resource datatype isfor vendor use.

Table6-21 LargeVendor-Defined Resour ce Descriptor Definition

Offset Field Name Definition

Byte 0 Vendor defined Value = 10000100B (Type = 1, Large item name = 0x4)
Byte 1 Length, bits[7:0] Lower eight bits of vendor defined datalength

Byte 2 Length, bitg[15:8] Upper eight bitsof vendor defined datalength

N * bytes |Vendor Defined Vendor defined data bytes

See section 16.2.4.9, “ASL Macro for Long Vendor-Defined Descriptor,” for adescription of the ASL
macro that creates along Vendor Defined descriptor.

6.4.3.3 32-Bit Memory Range Descriptor (Type 1, Large Item Name 0x5)

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table6-22 Large 32-Bit Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 Memory range descriptor Vaue = 10000101B (Type = 1, Large item name =

0x5)

Byte 1 Length, bitg[7:0] Value = 00010001B (17)

Byte 2 Length, bitg[15:8] Vaue = 00000000B (0)

Byte 3 Information Thisfield provides extrainformation about this

memory.
Bit[7:1] Ignored
Bit[O] Write status, RW
Status
1 writeable
0 non-writeable
(ROM)

Byte4 Range minimum base address, |Address bits[7:0] of the minimum base memory
_MIN address for which the card may be configured.
bitg[7:0]

Byte5 Range minimum base address, |Address bits[15:8] of the minimum base memory
_MIN address for which the card may be configured.
bits[15:8]

Byte 6 Range minimum base address, |Address bits[23:16] of the minimum base memory
_MIN address for which the card may be configured.
bits[23:16]

Byte 7 Range minimum base address, |Address bitg31:24] of the minimum base memory
_MIN address for which the card may be configured.
bitg[31:24]

Compag/I ntel/Microsoft/Phoenix/T oshiba

174 Advanced Configuration and Power Interface Specification

Table6-22 Large 32-Bit Memory Range Descriptor Definition (continued)

Offset Field Name Definition

Byte 8 Range maximum base address, |Address bits[7:0] of the maximum base memory
_MAX address for which the card may be configured.
bitg[7:0]

Byte 9 Range maximum base address, |Address bits[15:8] of the maximum base memory
_MAX address for which the card may be configured.
bits[15:8]

Byte 10 Range maximum base address, |Address bits[23:16] of the maximum base memory
_MAX address for which the card may be configured.
bits[23:16]

Byte 11 Range maximum base address, |Address bitg[31:24] of the maximum base memory
_MAX address for which the card may be configured.
bitg[31:24]

Thisfield contains Bits[7:0] of the base alignment.

Byte 12 Base alignment, ALN The base alignment provides the increment for the
bitg[7:0] minimum base address.

Thisfield contains Bitg[15:8] of the base

Byte 13 Base alignment, ALN alignment. The base alignment providesthe

bits[15:8] increment for the minimum base address.
Thisfield contains Bits[23:16] of the base

Byte 14 Base alignment, _ALN alignment. The base alignment providesthe

bits[23:16] increment for the minimum base address.
Thisfield contains Bits[31:24] of the base

Byte 15 Base alignment, _ALN alignment. The base alignment provides the

bits[31:24] increment for the minimum base address.
Thisfield contains Bits[7:0] of the memory range

Byte 16 Rangelength, _LEN length. The range length provides the length of the
bitg[7:0] memory range in 1-byte blocks.

Thisfield contains Bits[15:8] of the memory range

Byte 17 Rangelength, LEN length. The range length provides the length of the
bits[15:8] memory rangein 1-byte blocks.

Thisfield contains Bitg[23:16] of the memory

Byte 18 Range length, LEN range length. The range length provides the length
bits[23:16] of the memory range in 1-byte blocks.

Thisfield contains Bits[31:24] of the memory

Byte 19 Range length, LEN range length. The range length provides the length
bits[31:24] of the memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 16.2.4.10, “ASL Macro for 32-Bit Memory Descriptor,” for adescription of the ASL macro
that creates a 32-bit Memory descriptor.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 175

6.4.3.4 32-Bit Fixed Location Memory Range Descriptor (Type 1, Large
Item Name 0x6)

This memory range descriptor describes a device' s memory resources within a 32-bit address space.

Table6-23 Large Fixed-Location Memory Range Descriptor Definition

Offset Field Name Definition
Byte 0 Memory range descriptor |Vaue=10000110B (Type =1, Largeitem name = 6)
Byte 1 Length, bits[7:0] Vaue = 00001001B (9)
Byte 2 Length, bits[15:8] Vaue = 00000000B (0)
Byte 3 Information Thisfield provides extrainformation about this memory.
Bit[7:1] Ignored
Bit[Q] Write status, RW
Status
1 writeable
0 non-writeable
(ROM)
Byte4 Range base address, _BAS|Address bitg[7:0] of the base memory address for which
bitg[7:0] the card may be configured.
Byte 5 Range base address, BAS | Address bitg[15:8] of the base memory address for which
bits[15:8] the card may be configured.
Byte 6 Range base address, BAS [Address bitg[23:16] of the base memory address for
bits[23:16] which the card may be configured.
Byte 7 Range base address, BAS [Address bits[31:24] of the base memory address for
bits[31:24] which the card may be configured.
Thisfield contains Bits[7:0] of the memory range length.
Byte 8 Rangelength, _LEN The range length provides the length of the memory
bitg[7:0] rangein 1-byte blocks.
Thisfield contains Bitg[15:8] of the memory range
Byte9 Rangelength, LEN length. The range length provides the length of the
bits[15:8] memory range in 1-byte blocks.
Thisfield contains Bits[23:16] of the memory range
Byte 10 Range length, LEN length. The range length provides the length of the
bits[23:16] memory range in 1-byte blocks.
Thisfield contains Bits[31:24] of the memory range
Byte 11 Range length, LEN length. The range length provides the length of the
bits[31:24] memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 16.2.4.11, “ASL Macro for 32-Bit Fixed Memory Descriptor,” for a description of the ASL
macro that creates a 32-bit Fixed Memory descriptor.

Compag/I ntel/Microsoft/Phoenix/T oshiba

176 Advanced Configuration and Power Interface Specification

6.4.3.5 Address Space Descriptors

The QWORD, DWORD, and WORD Address Space Descriptors are general-purpose structures for
describing avariety of types of resources. These resources also include support for advanced server
architectures (such as multiple root buses), and resource types found on some RISC processors. These
descriptors can describe various kinds of resources. The following table defines the valid combination of
each field and how they should beinterpreted.

Table6-24 Valid combination of Address Space Descriptorsfields

LEN MIF MAF | Definition

Variable size, variable location resource descriptor for _PRS.

If _MIFisset, MIN must be amultiple of (GRA+1). If MAFisset,

o| of ol
| of ol
o | ol

MAX must be (amultiple of (GRA+1))-1.
OS can pick the resource range that satisfies following conditions:

If _MIFisnot set, start addressis amultiple of (GRA+1) and
greater or equal to _MIN. Otherwise, start addressis_MIN.

If _MAF isnot set, end address is (amultiple of (. GRA+1))-1
and less or equal to_MAX. Otherwise, end addressis_MAX.

0 1 1 (I11egal combination)

Non-0 0 0 Fixed size, variable |ocation resource descriptor for _PRS.
_LEN must be amultiple of (_GRA+1).

OS can pick the resource range that satisfies following conditions:;

Start addressis amultiple of (_ GRA+1) and greater or equal to
_MIN.

End addressis (start address+ LEN -1) and less or equal to
_MAX.

Non-0 0 1 (Illegal combination)

Non-0 1 0 (Illegal combination)

Non-0 1 1 Fixed size, fixed location resource descriptor.
_GRA must be 0 and _LEN must be (MAX - _MIN +1).

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration

6.4.3.5.1 QWORD Address Space Descriptor (Type 1, Large Item Name

OxA)

The QWORD address space descriptor is used to report resource usage in a 64-bit address space (like

memory and 1/0).

Table6-25 QWORD Address Space Descriptor Definition

177

Offset

Field Name

Definition

ByteO

QWORD Address Space
Descriptor

Vaue=10001010B (Type = 1, Large item name = OxA)

Bytel

Length, bits[7:0]

Variable: Vaue = 43 (minimum)

Byte 2

Length, bitg[15:8]

Variable: Value = 0 (minimum)

Byte 3

Resource Type

Indicates which type of resource this descriptor
describes. Defined values are:

0 Memory range

1 I/O range

2 Bus number range
3-255 Reserved

Byte4

General Flags

Flags that are common to all resource types:
Bits[7:4] Reserved (must be 0)
Bit[3] _MAF:
1-The specified max addressis fixed.
0-The specified max addressis not fixed and
can be changed.
Bit[2] _MIF:
1-The specified min address is fixed.
0-The specified min addressis not fixed and
can be changed.
Bit[l] _DEC:
1-This bridge subtractively decodes this
address (top level bridges only).
0-This bridge positively decodes this address.
Bit[0].
1-This device consumes this resource.
0-This device produces and consumes this

resource.

Byte5

Type Specific Flags

Flags that are specific to each resource type. The
meaning of the flagsin thisfield depends on the value
of the Resource Type field (see above).

Compag/I ntel/Microsoft/Phoenix/T oshiba

178 Advanced Configuration and Power Interface Specification

Table6-25 QWORD Address Space Descriptor Definition (continued)

Offset

Field Name

Definition

Byte 6

Address space
granularity, _GRA
bitg[7:0]

A set bit in this mask means that this bit is decoded. All
bits less significant than the most significant set bit
must be set. That is, the value of the full Address Space
Granularity field (all 32 bits) must be anumber (2"-1).

Byte 7

Address space
granularity, GRA
bitg[15:8]

Byte 8

Address space
granularity, GRA
bits[23:16]

Byte9

Address space
granularity, GRA
bits[31:24]

Byte10

Address space
granularity, GRA
bits[39:32]

Byte 11

Address space
granularity, GRA
bitg[47:40]

Byte 12

Address space
granularity, GRA
bits[55:48]

Byte 13

Address space
granularity, _GRA
bits[63:56]

Byte 14

Address range minimum,
_MIN
bits[7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte 15

Address range minimum,
_MIN
bitg[15:8]

Byte 16

Address range minimum,
_MIN
bits[23:16]

Byte 17

Address range minimum,
_MIN
bits[31:24]

Byte 18

Address range minimum,
_MIN
bits[39:32]

Byte 19

Address range minimum,
_MIN
bits[47:40]

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 179

Table6-25 QWORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 20 Address range minimum,
_MIN
bitg[55:48]

Byte21 Address range minimum,
_MIN
bits[63:56]

Byte 22 Addressrange For bridges that translate addresses, thisisthe address
maximum, _MAX space on the secondary side of the bridge.
bitg[7:0]

Byte 23 Addressrange
maximum, _MAX
bits[15:8]

Byte 24 Addressrange
maximum, _MAX
bits[23:16]

Byte 25 Addressrange
maximum, _MAX

bitg[31:24]

Byte 26 Addressrange For bridges that translate addresses, thisisthe address
maximum, _MAX space on the secondary side of the bridge.
bits[39:32]

Byte 27 Addressrange
maximum, MAX
bitg[47:40]

Byte 28 Addressrange
maximum, _MAX
bits[55:48]

Byte 29 Addressrange
maximum, MAX

bitg[63:56]

Byte 30 Address Translation For bridges that translate addresses across the bridge,
offset, TRA thisisthe offset that must be added to the address on
bitg7:0] the primary side to obtain the address on the secondary

side. Non-bridge devices must list O for all Address
Translation offset bits.

Byte 31 Address Translation
offset, TRA
bits[15:8]

Byte 32 Address Translation
offset, TRA
bitg[23:16]

Byte 33 Address Translation
offset, TRA
bitg[31:24]

Compag/I ntel/Microsoft/Phoenix/T oshiba

180 Advanced Configuration and Power Interface Specification

Table6-25 QWORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 34 Address Translation
offset, TRA
bits[39:32]

Byte 35 Address Translation
offset, TRA
bits[47:40]

Byte 36 Address Translation
offset, TRA
bitg[55:48]

Byte 37 Address Translation
offset, TRA
bits[63:56]

Byte 38 Addresslength, LEN
bitg[7:0]

Byte 39 Addresslength, LEN,
bits[15:8]

Byte 40 Addresslength, LEN
bits[23:16]

Byte41l Addresslength, LEN
bits[31:24]

Byte 42 Addresslength, LEN
bits[39:32]

Byte 43 Addresslength, LEN
bits[47:40]

Byte 44 Addresslength, LEN
bits[55:48]

Byte 45 Addresslength, LEN
bitg[63:56]

Byte 46 Resource Source Index (Optional) Only present if Resource Source (below) is
present. Thisfield gives an index to the specific
resource descriptor that this device consumes fromin
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that usesthis
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global poal.

If not present, the device consumes this resource from
its hierarchical parent.

See section 16.2.4.12, “ASL Macros for QWORD Address Space Descriptor,” for a description of the ASL
macro that creates a QWORD Address Space descriptor.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration

6.4.3.5.2 DWORD Address Space Descriptor (Type 1, Large Item Name

0x7)

The DWORD address space descriptor is used to report resource usage in a 32-bit address space (like

memory and 1/0).

Table6-26 DWORD Address Space Descriptor Definition

Offset Field Name Definition
Byte 0 DWORD Address Space | Vaue=10000111B (Type = 1, Large item name = 0x7)
Descriptor
Byte 1 Length, bits[7:0] Variable: Vaue = 23 (minimum)
Byte 2 Length, bitg[15:8] Variable: Value = 0 (minimum)
Byte 3 Resource Type Indicates which type of resource this descriptor
describes. Defined values are:
0 Memory range
1 I/O range
2 Bus number range
3255 Reserved
Byte4 General Flags Flags that are common to all resource types:
Bits[7:4] Reserved (must be 0)
Bit[3] _MAF:
1-The specified max addressis fixed.
0-The specified max addressis not fixed and
can be changed.
Bit[2] _MIF:
1-The specified min address is fixed.
0-The specified min addressis not fixed and
can be changed.
Bitfl] _DEC:
1-This bridge subtractively decodes this
address (top level bridges only).
0-This bridge positively decodes this
address.
Bit[O]
1-This device consumes this resource.
0-This device produces and consumes this
resource.
Byte5 Type Specific Flags Flags that are specific to each resource type. The
meaning of the flagsin thisfield depends on the value
of the Resource Type field (see above).

Compag/I ntel/Microsoft/Phoenix/T oshiba

181

182 Advanced Configuration and Power Interface Specification

Table6-26 DWORD Address Space Descriptor Definition (continued)

Offset

Field Name

Definition

Byte 6

Address space
granularity, GRA
bitg[7:0]

A set bit in this mask means that this bit is decoded. All
bits less significant than the most significant set bit
must be set. (in other words, the value of the full
Address Space Granularity field (all 32 bits) must be a
number (2"-1).

Byte 7

Address space
granularity, GRA
bits[15:8]

Byte 8

Address space
granularity, GRA
bits[23:16]

Byte9

Address space
granularity, GRA
bits[31:24]

Byte 10

Address range minimum,
_MIN
bits[7:0]

For bridges that translate addresses, this is the address
space on the secondary side of the bridge.

Byte11

Address range minimum,
_MIN
bits[15:8]

Byte 12

Address range minimum,
_MIN
bits[23:16]

Byte 13

Address range minimum,
_MIN
bits [31:24]

Byte 14

Addressrange
maximum, _MAX
bits[7:0]

For bridges that translate addresses, thisisthe address
space on the secondary side of the bridge.

Byte 15

Addressrange
maximum, _MAX
bits[15:8]

Byte 16

Addressrange
maximum, _MAX
bits [23:16]

Byte 17

Addressrange
maximum, _MAX
bits[31:24]

Byte 18

Address Translation
offset, TRA
bits[7:0]

For bridges that translate addresses across the bridge,
thisisthe offset that must be added to the address on
the primary side to obtain the address on the secondary
side. Non-bridge devices must list O for all Address
Translation offset bits.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 183

Table6-26 DWORD Address Space Descriptor Definition (continued)

Byte 19 Address Translation
offset, _TRA
bits[15:8]

Byte 20 Address Translation
offset, TRA
bits[23:16]

Byte 21 Address Translation
offset, TRA
bits[31:24]

Byte 22 Address Length, _LEN,
bits[7:0]

Byte 23 Address Length, _LEN,
bits[15:8]

Byte24 Address Length, _LEN,
bits[23:16]

Byte 25 Address Length, LEN,
bits[31:24]

Byte 26 Resource Source Index (Optional) Only present if Resource Source (below) is
present. Thisfield gives an index to the specific
resource descriptor that this device consumes fromin
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that usesthis
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

See section 16.2.4.13, “ASL Macro for DWORD Address Space Descriptor,” for a description of the ASL

macro that creates a DWORD Address Space descriptor.

Compag/I ntel/Microsoft/Phoenix/T oshiba

184 Advanced Configuration and Power Interface Specification

6.4.3.5.3 WORD Address Space Descriptor (Type 1, Large Item Name 0x8)

The WORD address space descriptor is used to report resource usage in a 16-bit address space (like
memory and |/O).

Note: This descriptor is exactly the same as the DWORD descriptor specified in Table 6-23; the only
difference isthat the address fields are 16 bits wide rather than 32 bits wide.

Table6-27 WORD Address Space Descriptor Definition

Offset Field Name Definition
Byte 0 WORD Address Space Value=10001000B (Type = 1, Large item name = 0x8)
Descriptor
Byte 1 Length, bits[7:0] Variable: Value = 13 (minimum)
Byte2 Length, bits[15:8] Variable: Value = 0 (minimum)
Byte3 Resource Type Indicates which type of resource this descriptor
describes. Defined values are:
0 Memory range
1 1/0 range
2 Bus number range
3255 Reserved
Byte4 General Flags Flags that are common to all resource types:
Bits[7:4] Reserved (must be 0)
Bit[3] _MAF:

1-The specified max addressis fixed.
0-The specified max addressis not fixed and
can be changed.

Bit[2] _MIF:
1-The specified min address is fixed.
0-The specified min addressis not fixed and
can be changed.

Bit{1] _DEC:
1-This bridge subtractively decodes this
address (top level bridges only).
0-This bridge positively decodes this address.

Bit[0]
1-This device consumes this resource.
0-This device produces and consumes this
resource.
Byte 5 Type Specific Flags Flags that are specific to each resource type. The

meaning of theflagsin thisfield depends on the value
of the Resource Typefield (see above).

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration

Table6-27 WORD Address Space Descriptor Definition (continued)

185

Offset Field Name Definition

Byte 6 Address space A set bit in this mask means that thisbit is decoded. All
granularity, _GRA bits less significant than the most significant set bit
bitg7:0] must be set. (in other words, the value of the full

Address Space Granularity field (all 16 bits) must be a
number (2"-1).

Byte7 Address space
granularity, GRA
bitg[15:8]

Byte 8 Address range minimum, | For bridges that translate addresses, thisisthe address
_MIN space on the secondary side of the bridge.
bits[7:0]

Byte 9 Address range minimum,

_MIN
bits[15:8]

Byte 10 Addressrange For bridges that translate addresses, thisis the address
maximum, _MAX space on the secondary side of the bridge.
bits[7:0]

Byte11 Addressrange
maximum, _MAX
bits [15:8]

Byte 12 Address Translation For bridges that transl ate addresses across the bridge,
offset, TRA thisisthe offset that must be added to the address on
bits[7:0] the primary side to obtain the address on the secondary

side. Non-bridge devices must list O for all Address
Translation offset bits.

Byte 13 Address Translation
offset, TRA
bits[15:8]

Byte 14 Address Length, LEN,
bits[7:0]

Byte 15 Address Length, LEN,

bits[15:8]

Compag/I ntel/Microsoft/Phoenix/T oshiba

186 Advanced Configuration and Power Interface Specification

Table6-27 WORD Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 16 Resource Source Index (Optional) Only present if Resource Source (below) is
present. Thisfield gives an index to the specific
resource descriptor that this device consumes fromin
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of aglobal pool.
If not present, the device consumes this resource from
its hierarchical parent.

See section 16.2.4.14, “ASL Macro for WORD Address Descriptor,” for a description of the ASL macro
that creates a WORD address descriptor.
6.4.3.5.4 Resource Type Specific Flags

The meaning of the flagsin the Type Specific Flagsfield of the Address Space Descriptors depends on the
value of the Resource Type field in the descriptor. The flags for each resource type are defined in the
following tables:

Table6-28 Memory Resource Flag (Resource Type = 0) Definitions

Bits M eaning
Bitg7:6] Reserved (must be 0)
Bit[5] Memory to I/O Tranglation, _TTP

1-TypeTranslation: This resource, which is memory on the secondary side of the
bridge, is /O on the primary side of the bridge.

O-TypeStatic: Thisresource, which is memory on the secondary side of the
bridge, is also memory on the primary side of the bridge.

Bitg[4:3] Memory attributes, MTP. These bits are only defined if this memory resource
describes system RAM. For adefinition of the labels described here, see section
15, “System Address Map Interfaces.”

Value and Meaning

0 AddressRangeM emory
1 AddressRangeReserved
2 AddressRangeACPI

3 AddressRangeNV S

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 187

Table6-28 Memory Resource Flag (Resource Type = 0) Definitions (continued)

Bits M eaning
Bitg[2:1] Memory attributes, MEM
Value andMeaning
0 The memory is non-cacheable.
1 The memory is cacheable.
2 The memory is cacheable and supportswrite combining.
3 The memory is cacheable and prefetchable.

Bit[0] Write status, RW
1-This memory range is read-write.
0-This memory range is read-only.

Table6-29 1/0 Resource Flag (Resource Type = 1) Definitions

Bits M eaning
Bitg[7:6] Reserved (must be 0)
Bit[5] Sparse Trangdlation, _TRS. This bit is only meaningful if Bit[4] is set.

1-SparseTranslation: The primary-side memory address of any specific I/0 port
within the secondary-side range can be found using the following function.

address = (((port & 0xfffc) << 10) || (port & Oxfff)) + TRA

In the address used to access the 1/0 port, bits[11:2] must be identical to
bits[21:12], this gives four bytes of I/O ports on each 4 KB page.

O-DenseTrang ation: The primary-side memory address of any specific I/0 port
within the secondary-side range can be found using the following function.

address=port + _TRA

Bit[4] 1/0 to Memory Trandlation, _TTP

1-— TypeTranglation: This resource, which isl/O on the secondary side of the
bridge, is memory on the primary side of the bridge.

O-TypeStatic: This resource, which is1/O on the secondary side of the bridge, is
also I/0 on the primary side of the bridge.

Bit[3:2] Reserved (must be 0)

Compag/I ntel/Microsoft/Phoenix/T oshiba

188 Advanced Configuration and Power Interface Specification

Table6-29 1/0 Resource Flag (Resource Type = 1) Definitions (continued)

Bits M eaning

Bit[1] _RNG

Thisflag isfor bridges on systems with multiple bridges. Setting this bit means
the memory window specified in this descriptor islimited to the ISA 1/0O
addresses that fall within the specified window. The ISA 1/O ranges are: n000-
nOFF, n400-n4FF, n800-n8FF, nCOO-nCFF. This bit can only be set for bridges
entirely configured through ACPI namespace.

Bit[0] _RNG

Thisflag isfor bridges on systems with multiple bridges. Setting this bit means
the memory window specified in this descriptor is limited to the non-1SA I/O
addresses that fall within the specified window. The non-I1SA 1/0O ranges are:
n100-n3FF, n500-n7FF, n900-nBFF, nDOO-nFFF. This bit can only be set for
bridges entirely configured through ACPI namespace.

Table6-30 Bus Number Range Resour ce Flag (Resource Type = 2) Definitions

Bits M eaning

Bit[7:0] Reserved (must be 0)

6.4.3.6 Extended Interrupt Descriptor (Type 1, Large Item Name 0x9)

The Extended Interrupt Descriptor is necessary to describe interrupt settings and possibilities for systems
that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor allows vendorsto list an array of possible interrupt
numbers, any one of which can be used.

Table6-31 Extended Interrupt Descriptor Definition

Offset Field Name Definition

Byte 0 Extended Interrupt Vaue=10001001B (Type = 1, Large item name =
Descriptor 0x9)

Byte 1 Length, bits[7:0] Variable: Value = 6 (minimum)

Byte 2 Length, bitg[15:8] Variable: Value = 0 (minimum)

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 189

Table6-31 Extended Interrupt Descriptor Definition (continued)

Offset Field Name Definition

Byte3 Interrupt Vector Flags Interrupt Vector Information.
Bit[7:4] Reserved (must be 0)
Bit[3] Interrupt is shareable, SHR
Bit[2] Interrupt Polarity, LL

O-Active-High: This interrupt is sampled
when the signal is high, or true.

1-Active-Low: Thisinterrupt is sampled
when the signal islow, or false.

Bit[1] Interrupt Mode, HE

O-Level-Triggered: Thisinterrupt is
triggered in response to the signal being in
either ahigh or low state.

1-Edge-Triggered: Thisinterrupt is
triggered in response to a change in signal
state, either high to low or low to high.

Bit[O]
1-This device consumes this resource.
0-This device produces and consumes
thisresource.
Byte 4 Interrupt table length Indicates the number of interrupt numbers that follow.

When this descriptor isreturned from _CRS, or when
OSPM passes this descriptor to _SRS, this field must

besettol.
Byte 4n+5 Interrupt Number, INT Interrupt number
bits[7:0]
Byte 4n+6 Interrupt Number, INT
bits[15:8]

Byte 4n+7 Interrupt Number, INT
bits[23:16]

Byte 4n+8 Interrupt Number, INT
bits[31:24]

Additional interrupt numbers

Compag/I ntel/Microsoft/Phoenix/T oshiba

190 Advanced Configuration and Power Interface Specification

Table6-31 Extended Interrupt Descriptor Definition (continued)

Offset Field Name Definition

Byte x Resource Source Index (Optional) Only present if Resource Source (below) is
present. Thisfield gives an index to the specific
resource descriptor that this device consumes fromin
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produces by the named device object. If not present,
the device consumes its resources out of aglobal pool.

If not present, the device consumes this resource from
its hierarchical parent.

Note: Low true, level sensitive interrupts may be electrically shared, the process of how this might work is
beyond the scope of this specification.

If the OSisrunning using the 8259 interrupt model, only interrupt number values of 0-15 will be used, and
interrupt numbers greater than 15 will be ignored.

See section 16.2.4.15, “ASL Macro for Extended Interrupt Descriptor,” for a description of the ASL macro
that creates an Extended Interrupt descriptor.
6.4.3.7 Generic Register Descriptor (Type 1, Large Item Name 0x2)

The generic register descriptor describes the location of afixed width register within any of the ACPI-
defined address spaces.

Table6-32 Generic Register Descriptor Definition

Offset Field Name, ASL Field Name | Definition

Byte 0 Generic register descriptor Value = 10000010B (Type = 1, Large item name =
0x2)

Byte 1 Length, bits[7:0] Value = 00001011B (11)

Byte 2 Length, bits[15:8] Value = 00000000B (0)

Byte 3 Address Space ID, _ASI The address space where the data structure or
register exists.
Defined values are:
0-System Memory
1-System 1/O

2—PCI Configuration Space
3-Embedded Controller
4-SMBus

Ox7F—Functional Fixed Hardware

Byte4 Register Bit Width, RBW Indicates the register width in bits.

Byte5 Register Bit Offset, _RBO Indicates the offset to the start of the register in bits
from the Register Address.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 191

Table6-32 Generic Register Descriptor Definition (continued)

Offset Field Name, ASL Field Name | Definition
Byte 6 Register Address, ADR Register Address
bitg[7:0]
Byte7 Register Address, ADR
bits[15:8]
Byte 8 Register Address, ADR
bitg[23:16]
Byte 9 Register Address, ADR
bitg[31:24]
Byte 10 Register Address, ADR
bitg[39:32]
Byte 11 Register Address, ADR
bitsg[47:40]
Byte 12 Register Address, ADR
bitg[55:48]
Byte 13 Register Address, ADR
bits[63:56]

See section 16.2.4.16, “ASL Macro for Generic Register Descriptor,” for a description of the ASL macro
that creates a Generic Register descriptor.

6.5 Other Objects and Control Methods
Table6-33 Other Objects and Methods

Object Description

_INI Device initialization method that is run shortly after ACPI has been enabled.
_DCK Indicates that the deviceis adocking station.

_BDN Correlates a docking station between ACPI and legacy interfaces.

_REG Notifies AML code of achangein the availability of an operation region.
_BBN PCI bus number set up by the BIOS.

_SEG Indicates a bus segment |ocation.

_GLK Indicates the Global Lock must be acquired when accessing a device.

6.5.1 _INI (Init)

_INI'isadeviceinitialization object that performs device specific initialization. This control method is
located under adevice object and is run only when OSPM |oads a description table. There are restrictions
related to when this method is called and governing writing code for this method. The _INI method must
only access Operation Regions that have been indicated to available as defined by the REG method. The
_REG method is described in section 6.5.4, “_REG (Region).” This control method is run before _ADR,
_CID, _HID, _SUN, and_UID arerun.

Compag/I ntel/Microsoft/Phoenix/T oshiba

192 Advanced Configuration and Power Interface Specification

If the _STA method indicates that the device is present, OSPM will evaluatethe __INI for the device (if the
_INI method exists) and will examine each of the children of the device for _INI methods. If the _STA
method indicates that the device is not present, OSPM will not run the _INI and will not examine the
children of the device for _INI methods. If the device becomes present after the table has already been
loaded, OSPM will not evaluate the _INI method, nor examine the children for _INI methods.

The _INI control method is generally used to switch devices out of alegacy operating mode. For example,
Bl OSes often configure CardBus controllersin alegacy mode to support legacy operating systems. Before
enumerating the device with an ACPI operating system, the CardBus controllers must be initialized to
CardBus mode. For such systems, the vendor can include an _INI control method under the CardBus
controller to switch the device into CardBus mode.

6.52 _DCK (Dock)

This control method is located in the device object that represents the docking station (that is, the device
object with all the EJx control methods for the docking station). The presence of _DCK indicatesto the
OSthat the deviceisreally adocking station.

_DCK also controlsthe isolation logic on the docking connector. This allows an OS to prepare for docking
before the busis activated and devices appear on the bus.

Arguments:
Arg0
1-Dock (that is, remove isolation from connector)
0-Undock (isolate from connector)
Return Code;
1if successful, O if failed.

Note: When DCK iscalled with 0, OSPM will ignore the return value. The _STA object that follows the
_EJx control method will notify whether or not the portable has been gjected.

6.5.3 _BDN (BIOS Dock Name)

_BDN isused to correlate a docking station reported via ACPI and the same docking station reported via
legacy interfaces. It is primarily used for upgrading over non-ACPI environments.

_BDN must appear under a device object that represents the dock, that is, the device object with _Ejx
methods. This object must return aDWORD that is the EISA -packed DocklID returned by the Plug and
Play BIOS Function 5 (Get Docking Station Identifier) for a dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.5.4 REG (Region)

The OSruns _REG control methods to inform AML code of a change in the availability of an operation
region. When an operation region handler is unavailable, AML cannot access datafieldsin that region.
(Operation region writes will be ignored and reads will return indeterminate data.).

Except for the cases shown below, control methods must assume all operation regions inaccessible until the
_REG(RegionSpace, 1) method is executed. Once _REG has been executed for a particular operation
region, indicating that the operation region handler is ready, a control method can accessfieldsin the
operation region. Conversely, control methods must not access fields in operation regionswhen _REG
method execution has not indicated that the operation region handler is ready.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 193

For example, until the Embedded Controller driver is ready, the control methods cannot access the
Embedded Controller. Once OSPM has run _REG(EmbeddedControl, 1), the control methods can then
access operation regions in Embedded Controller address space. Furthermore, if OSPM executes
_REG(EmbeddedControl, 0), control methods must stop accessing operation regionsin the Embedded
Controller address space.

The exceptions for thisrule are:
1. OSPM must guarantee that the following operation regions must always be accessible:
PCI_Config operation regions on a PCI root bus containing a_BBN object.
1/O operation regions.
Memory operation regions when accessing memory returned by the System Address Map
reporting interfaces.
2. OSPM must make Embedded Controller operation regions, accessed via the Embedded
Controllers described in ECDT, available before executing any control method. These operation
regions may become inaccessible after OSPM runs _ REG(EmbeddedContral, 0).

Place REG in the same scope as operation region declarations. The OSwill runthe REG in agiven scope
when the operation regions declared in that scope are available for use.

For example:

Scope(_SB. Pl 0) {
Oper ati onRegi on(OPR1, PCl _Config, ...)
Met hod(_REG 2) {...} [// OSPMexecutes this when PCl O operation region handl er
/1 status changes
Devi ce(PCl 1) {
Met hod(_REG 2) {...}
Devi ce(ETHO) {
Oper ati onRegi on(OPR2, PCl _Config, ...)
Met hod(_REG 2) {...}
}
}

Devi ce(l SA0) {
OperationRegion(CPR3, I/Q ...)
Met hod(_REG 2) {...} /1 OSPM executes this when | SAO operation region handl er
/1 status changes

Devi ce(EQD) {
Name(_HI D, El SAI D(" PNPOC0D9"))
Oper ati onRegi on(OPR4, EC, ...)
Method(_REG 2) {...} // CSPM executes this when EC operation region
/1 handl er status changes

Compag/I ntel/Microsoft/Phoenix/T oshiba

194 Advanced Configuration and Power Interface Specification

When the PCI0 operation region handler is ready, OSPM will run the _REG method declared in PCIO
scopeto indicate that PCI Config space operation region access is available within the PCI0 scope (in other
words, OPR1 accessis allowed). When the I SAO operation handler isready, OSPM will run the_REG
method in the | SAQ scope to indicate that the 1/O space operation region access is available within that
scope (in other words, OPR3 accessis allowed). Finally, when the Embedded Controller operation region
handler isready, OSPM will run the REG method in the ECO scope to indicate that EC space operation
region access is available within the ECO scope (in other words, OPR4 access is allowed). It should be
noted that PCI Config Space Operation Regions are ready as soon the host controller or bridge controller
has been programmed with a bus number. PCI1's _REG method would not be run until the PCI -PCI bridge
has been properly configured. At the same time, the OS will also run ETHO's _REG method since its PCI
Config Space would be also available. The OS will again run ETHO's _REG method when the ETHO
deviceis started. Also, when the host controller or bridge controller is turned off or disabled, PCI Config
Space Operation Regions for child devices are no longer available. As such, ETHO's _REG method will be
run when it is turned off and will again be run when PCI1 isturned off.

Note: The OS only runs_REG methods that appear in the same scope as operation region declarations that
use the operation region type that has just been made available. For example, _REG in the EC device
would not be run when the PCI bus driver is |oaded since the operation regions declared under EC do not
use any of the operation region types made available by the PCI driver (namely, config space, 1/0, and
memoty).

Arguments:
Arg0: Integer: Operation region space:

0-Memory
1-1/0
2-PCI_Config
3-Embedded Controller
4-SMBus
5-CMOS
6-PCIBARTarget
0x80-0xff—OEM region space handler

Argl: Integer: 1 for connecting the handler, O for disconnecting the handler

6.5.5 _BBN (Base Bus Number)

For multi-root PCI machines, BBN isthe PCI bus number that the BIOS assigns. Thisis needed to access
aPCI_Config operation region for the specific bus. The _BBN object must be unique for every host bridge
within asegment sinceit is the PCI bus number.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Configuration 195

6.5.6 _SEG (Segment)

The _SEG object indicates a bus segment location. _SEG isalevel higher than _BBN. Each segment is
composed of up to 256 PCI Buses.

Device(NDO) { // this is a node O
Narme(_HI D, “ACPI 0004")

/! Returns the "Current Resources"

Nane(_CRS,
Resour ceTenpl ate() {

}
)

Devi ce(PCl 0) {
Name(_HI D, El SAl D(“PNPOAO3"))
Nane(_ADR, 0x00000000)
Name(_SEG 0) // The buses bel ow the host bridge belong to PCl segnment 0O

Nare(_BBN, 0)
}
Devi ce(PCl 1) {

Néma(_SEG 0) // The buses bel ow the host bridge belong to PCl segnent 0O

Nane(_BBN, 16)

}

Device(ND1) { // this is a node 1
Nanme(_H D, “ACPI 0004")

/!l Returns the "Current Resources"

Nare(_CRS,
Resour ceTenpl ate() {

}

Devi ce(PCl 0) {
Nanme(_HI D, El SAl D(“PNPOA03"))
Narme(_ADR, 0x00000000)
Nane(_SEG 1) // The buses bel ow the host bridge belong to PCl segnment 1
Nare(_BBN, 0)
}
Devi ce(PCl 1) {
Nérre(_SEG, 1) // The buses bel ow the host bridge belong to PCl segnent 1

Nane(_BBN, 16)

Compag/I ntel/Microsoft/Phoenix/T oshiba

196 Advanced Configuration and Power Interface Specification

6.5.7 _GLK (Global Lock)

This optional named object islocated in adevice object. This object returns a value that indicates to any
entity that accesses this device (in other words, OSPM or any device driver) whether the Global Lock must
be acquired when accessing the device. OS-based device accesses must be performed while in acquisition
of the Global Lock when potentially contentious accesses to device resources are performed by non-OS
code, such as System Management M ode (SMM)-based code in Intel architecture-based systems.

An example of this device resource contention is a device driver for an SMBus-based device contending
with SMM -based code for access to the Embedded Controller, SMB-HC, and SMBus target device. In this
case, the device driver must acquire and release the Global Lock when accessing the device to avoid
resource contention with SMM-based code that accesses any of the listed resources.

Return Codes:

1 Global Lock required, 0 Global Lock not required

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power and Performance Management 197

7 Power and Performance Management

This section specifies the device power management objects and system power management objects.
OSPM uses these objects to manage the platform by achieving a desirable balance between performance
and energy conservation goals.

Device performance states (Px states) are power consumption and capability states within the active (DO)
device power state. Performance states allow OSPM to make tradeoffs between performance and energy
conservation. Device performance states have the greatest impact when the implementation is such that the
statesinvoke different device efficiency levels as opposed to alinear scaling of performance and energy
consumption. Since performance state transitions occur in the active device states, care must be taken to
ensure that performance state transitions do not adversely impact the system.

Device performance state objects, when necessary, are defined on a per device class basis as described in
the device class specifications (See Appendix A).

The system state indicator objects are also specified in this section.

7.1 Declaring a Power Resource Object

AnASL Power Resour ce statement is used to declare a Power Resour ce object. A Power Resource object
refersto a software-controllable power plane, clock plane, or other resource upon which an integrated
ACPI power-managed device might rely. Power resource objects can appear wherever is convenient in
namespace.

The syntax of a Power Resour ce statement is:
Power Resour ce(resour cename, systemlevel, resourceorder) {NamedL st}

where the systemlevel parameter is a number and the resourceorder parameter is anumeric constant (a
WORD). For aformal definition of the Power Resour ce statement syntax, see section 16, “ACPI Source
Language Reference.”

Systemlevel isthe lowest power system sleep level OSPM must maintain to keep this power resource on (0
equatesto SO, 1 equatesto S1, and so on).

Each power-managed ACPI device lists the resources it requires for its supported power levels. OSPM
multiplexes thisinformation from all devices and then enables and disables the required Power Resources
accordingly. Theresourceorder| field in the Power Resource object is a unique value per Power Resource,
and it provides the system with the order in which Power Resources must be enabled or disabled. Power
Resources are enabled from low values to high values and are disabled from high valuesto low values. The
operating software enables or disables all affected Power Resourcesin any one resourceorder level at a
time before moving on to the next ordered level. Putting Power Resources in different order levels provides
power sequencing and serialization where required.

Compag/I ntel/Microsoft/Phoenix/T oshiba

198 Advanced Configuration and Power Interface Specification

A Power Resource can have named objects under its Namespace |ocation. For a description of the ACPI-
defined named objects for a Power Resource, see section 7.2, “Device Power Management Objects.”

The following block of ASL sample code shows a use of Power Resour ce.
Power Resour ce(PIDE, 0, 0) {

Met hod(_STA) {
Return (Xor (G O IDEI, One, Zero)) /1 inverse of isolation

}
Met hod(_ON) {
Store (One, G O | DEP) /] assert power
Sl eep (10) /1 wait 10ns
Store (One, G O IDER /'l de-assert reset#
Stall (10) /1 wait 10us
Store (Zero, GO IDEl) /] de-assert isolation

}

Met hod(_OFF) {
Store (One, QO | DE
Store (Zero, GO
Store (Zero, GO

/] assert isolation
R /] assert reset#
P) /] de-assert power

~

}
7.1.1 Defined Child Objects for a Power Resource

Each power resource object isrequired to have the following control methods to allow basic control of each
power resource. As OSPM changes the state of device objectsin the system, the power resources that are
needed will also change causing OSPM to turn power resources on and off. To determine theinitial power
resource settings the _STA method can be used.

Table7-1 Power Resource Child Objects

Obj ect Description
_OFF Set the resource off.
_ON Set the resource on.
_STA Object that evaluates to the current on or off state of the Power Resource.
0-OFF, 1-ON
712 OFF

This power resource control method puts the power resource into the OFF state. The control method does
not complete until the power resource is off. OSPM only turns on or off one resource at atime, sothe AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result Code:
None

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power and Performance Management 199

713 _ON

This power resource control method puts the power resource into the ON state. The control method does
not complete until the power resourceis on. OSPM only turns on or off oneresource at atime, so the AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result Code:
None

7.1.4 _STA (Status)

Returnsthe current ON or OFF status for the power resource.

Arguments:
None
Result Code:

0 indicates the power resource is currently off.
1 indicates the power resource is currently on.

7.2 Device Power Management Objects

For adevicethat is power-managed using ACPI, a Definition Block contains one or more of the objects
found in the table below. Power management of a device is done using two different paradigms:

Power Resource control
Device-specific control

Power Resources are resources that could be shared amongst multiple devices. The operating software will
automatically handle control of these devices by determining which particular Power Resources need to be
inthe ON state at any given time. This determination is made by considering the state of all devices
connected to a Power Resource.

By definition, adevice that is OFF does not have any power resource or system power state requirements.
Therefore, device objects do not list power resources for the OFF power state.

For OSPM to put the devicein the D3 state, the following must occur:
All Power Resources no longer referenced by any device in the system must be in the OFF state.
If present, the PS3 control method is executed to set the device into the D3 device state.

The only transition allowed fromthe D3 device state is to the DO device state.

For many devices the Power Resource control is all that is required; however, device objects may include
their own device-specific control method.

These two types of power management controls (through Power Resources and through specific devices)
can be applied in combination or individually as required.

Compag/I ntel/Microsoft/Phoenix/T oshiba

200 Advanced Configuration and Power Interface Specification

For systems that do not control device power states through power plane management, but whose devices
support multiple D-states, more information is required by the OS to determine the S-state to D-state
mapping for the device. The ACPI BIOS can give thisinformation to OSPM by way of the _SxD methods.
These methodstell OSPM for S-state “x”, the highest D-state supported by the deviceis“y.” OSPM is
allowed to pick alower D-state for agiven S-state, but OSPM is not allowed to exceed the given D-state.

Further rules that apply to device power management objects are:

- For agiven Sstate, adevice cannot bein ahigher D-state than its parent device.
If there exists an ACPI Object to turn on a device (either through _PSx or _PRXx objects), then a
corresponding object to turn the device off must also be declared and vice versa.
If there exists an ACPI Object that controls power (_PSxor _PRx, where x =0, 1, 2, or 3), then
methods to set the device into DO and D3 device states must be present.
If amixture of _PSx and _PRx methodsis declared for the device, then the device states supported
through _PSx methods must be identical to the device states supported through _PRx methods. ACPI
system firmware may enable device power state control exclusively through PSx (or _PRx) method

declarations.
Table7-2 Device Power Management ChildObjects
Obj ect Description
_PsO Control method that puts the devicein the DO device state (device fully on).

_Ps1 Control method that puts the devicein the D1 device state.

_Ps2 Control method that puts the devicein the D2 device state.

_PSs3 Control method that puts the device in the D3 device state (device off).

_PSC Object that evaluates to the device's current power state.

PRO Object that evaluates to the device' s power requirements in the DO device state (device fully
on).

_PR1 Object that evaluates to the device's power requirementsin the D1 device state. The only
devicesthat supply thislevel are those that can achieve the defined D1 device state according
to therelated device class.

_PR2 Object that evaluates to the device’' s power requirements in the D2 device state. The only
devicesthat supply thislevel are those that can achieve the defined D2 device state according
to therelated device class.

_PRW Object that evaluatesto the device’ s power requirementsin order to wake the system from a
system sleeping state.

_PSW Control method that enables or disables the device' s wake function.

_IRC Object that signifies the device has asignificant inrush current draw.

_S1D Highest D-state supported by the device in the S1 state

_S2D Highest D-state supported by the device in the S2 state

_S3D Highest D-state supported by the device in the S3 state

AD Highest D-state supported by the device in the $4 state

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power and Performance Management 201

7.21 _PSO (Power State 0)

This Control Method is used to put the specific deviceinto its DO state. This Control Method can only
access Operation Regions that are either always available whilein a system working state or that are
available when the Power Resources references by the _PRO object are all ON.

Arguments:
None

Result Code:
None

7.2.2 _PS1 (Power State 1)

This control method is used to put the specific deviceinto its D1 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the _PR1 object are all ON.

Arguments:
None

Result Code:
None

7.2.3 _PS2 (Power State 2)

This control method is used to put the specific deviceinto its D2 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the PR2 object are all ON.

Arguments:
None

Result Code:
None

7.24 _PS3 (Power State 3)

This control method is used to put the specific device into its D3 state. This control method can only access
Operation Regions that are always available while in a system working state.

A device in the D3 state must no longer be using its resources (for example, its memory space and 1/O ports
are available to other devices).

Arguments:
None

Result Code:
None

Compag/I ntel/Microsoft/Phoenix/T oshiba

202 Advanced Configuration and Power Interface Specification

7.25 _PSC (Power State Current)

This control method evaluates to the current device state. This control method is not required if the device
state can be inferred by the Power Resource settings. This would be the case when the device does not
requirea_PS0, PS1, PS2, or PS3 control method.

Arguments:
None

Result Code:
The result codes are shown in Table 7-3.

Table7-3 _PSC Control Method Result Codes

Result Device State
0 DO
1 D1
2 D2
3 D3

7.2.6 _PRO (Power Resources for DO)

This object evaluates to a package of the following definition:

Table7-4 Power Resource Requirements Package

Object Description

object reference Reference to required Power Resource #0

N | object reference Reference to required Power Resource #N

For OSPM to put the device in the DO device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must bein the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.

3. If present, the _PSO0 control method is executed to set the device into the DO device state.

_PRO must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.7 _PR1 (Power Resources for D1)

This object evaluates to a package as defined in Table 7-3. For OSPM to put the devicein the D1device
state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.

3. If present, the PS1 control method is executed to set the device into the D1 device state.

_PR1 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power and Performance Management 203

7.2.8 _PR2 (Power Resources for D2)

This object evaluates to a package as defined in Table 7-3. For OSPM to put the device in the D2 device
state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any devicein the system must be in the OFF state.

3. If present, the _PS2 control method is executed to set the device into the D2 device state.

_PR2 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.29 _PRW (Power Resources for Wake)

This object isonly required for devices that have the ability to wake the system from a system sleeping
state. This object evaluates to a package of the following definition:

Table7-5 Wake Power Requirements Package

Object Type Description

0 | Numericor

package If the data type of this package element is numeric, then this

_PRW package element isthe bit index in the GPEx_EN, in the
GPE blocks described in the FADT, of the enable bit that is
enabled for the wake event.

If the datatype of this package element is a package, then this
_PRW package element is itself a package containing two
elements. The first is an object reference to the GPE Block
device that contains the GPE that will be triggered by the wake
event. The second element is numeric and it contains the bit
index in the GPEx_EN, in the GPE Block referenced by the
first element in the package, of the enable bit that is enabled for
the wake event.

For example, if thisfield isapackage then it is of the form:
Package() {_SB.PCI0.ISA.GPE, 2}

1 | numeric The lowest power system sleeping state that can be entered
while still providing wake functionality.

object reference Reference to required Power Resource #0

N | object reference Reference to required Power Resource #N

For OSPM to have the defined wake capability properly enabled for the device, the following must occur:

1. All Power Resources referenced by elements 2 through N are put into the ON state.

2. If present, the _PSW control method is executed to set the device-specific registers to enable the wake
functionality of the device.

Compag/I ntel/Microsoft/Phoenix/T oshiba

204 Advanced Configuration and Power Interface Specification

Then, if the system wants to enter a sleeping state:

1. Interrupts are disabled.

2. Thesleeping state being entered must be greater or equal to the power state declared in element 1 of
the _PRW object.

3. The proper general-purpose register bits are enabled.

The system sleeping state specified must be a state that the system supports (in other words, a
corresponding _Sx object must exist in the namespace).

_PRW must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.10 _PSW (Power State Wake)

In additionto PSR, this control method can be used to enable or disable the device' s ability to wake a
sleeping system. This control method can only access Operation Regionsthat are either always available
whilein a system working state or that are avail able when the Power Resources references by the PRW
object are all ON. For example, do not put a power plane control for a bus controller within configuration
space located behind the bus.

Arguments:
0- Enable/ Disable: 0 to disable the device' s wake capabilities.
1 to enable the device' s wake capabilities.
Result Code:
None

7.2.11 _IRC (In Rush Current)

The presence of this object signifies that transitioning the deviceto its DO state causes a system-significant
in-rush current load. In general, such operations need to be serialized such that multiple operations are not
attempted concurrently. Within ACPI, thistype of serialization can be accomplished with the
resourceorder parameter of the device' s Power Resources; however, this does not serialize ACPI-
controlled devices with non-ACPI controlled devices. IRC is used to signify this fact outside of OSPM to
OSPM such that OSPM can serialize all devicesin the system that have in-rush current serialization
requirements. OSPM can only transition one device flagged with _IRC to the DO state at atime.

7.2.12 _S1D (S1 Device State)

This object evaluates to an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this device in the S1 system sleeping state. _S1D must return the same integer each time it is
evaluated. Thisvalue overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-2 for the result code.

7.2.13 _S2D (S2 Device State)

This object evaluates to an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this device in the S2 system sleeping state. _S2D must return the same integer each timeitis
evaluated. Thisvalue overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-2 for the result code.

7.2.14 _S3D (S3 Device State)

This object evaluates to an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this device in the S3 system sleeping state. _S3D must return the same integer each timeitis
evaluated. Thisvalue overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-2 for the result code.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power and Performance Management 205

7.2.15 _S4D (S4 Device State)

This object evaluates to an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this device in the S4 system sleeping state. _S4D must return the same integer each timeitis
evaluated. Thisvalue overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-2 for the result code.

7.3 OEM-Supplied System-Level Control Methods

An OEM -supplied Definition Block provides some number of controls appropriate for system-level
management. These are used by OSPM to integrate to the OEM -provided features. The following table lists
the defined OEM system controlsthat can be provided.

Table7-6 BIOS-Supplied Control Methods for System-Level Functions

Obj ect Description

_BFS Control method executed immediately following a wake event.

_PTS Control method used to prepare to sleep.

_GTS Control method executed just prior to setting the sleep enable (SLP_EN) bit.

\ SO Package that defines system _S0 state mode.
_S1 Package that definessystem_S1 state mode.
_S2 Package that defines system _S2 state mode.
_S3 Package that defines system _S3 state mode.
\ A Package that defines system _$4 state mode.
_S5 Package that defines system _S5 state mode.

_WAK Control method run once awakened.

7.3.1 \ BFS (Back From Sleep)

_BFSisan optional control method. If it exists, OSPM must execute the BFS method immediately
following wake from any sleeping state S1, S2, S3, or S4. _BFS allows ACPI system firmware to perform
any required system specific functions when retuming a system sleep state. OSPM will executethe GTS
control method before performing any other physical 1/0 or enabling any interrupt servicing upon returning
from a sleeping state. A value that indicates the sleeping state from which the system was awoken (in other
words, 1=S1, 2=S2, 3=S3, 4=54) is passed as an argument to the _BFS control method.

The _BFS method must be self-contained (not call other methods). Additionally, BFS may only access
OpRegions that are currently available (see the _REG method for details).

Arguments:
0: Thevalue of the previous sleeping state (1 for S1, 2 for S2, and so on).

7.3.2 \ PTS (Prepare To Sleep)

The _PTS control method is executed by the OS at the beginning of the sleep processfor S1, S2, S3, $4,
and for orderly S5 shutdown. The sleeping state value (1, 2, 3, 4, or 5) is passed to the _PTS control
method. Before OSPM notifies native device drivers and prepares the system software for a system
sleeping state, it executes this ACPI control method. Thus, this control method can be executed arelatively
long time before actually entering the desired sleeping state. In addition, OSPM can abort the sleeping
operation without notification to OSPM, in which case another _PTS would occur some time before the
next attempt by OSPM to enter a sleeping state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

206 Advanced Configuration and Power Interface Specification

The _PTS control method cannot modify the current configuration or power state of any devicein the
system. For example, _PTS would simply store the sleep type in the embedded controller in sequencing the
system into a sleep state when the SLP_EN bit is set.

Arguments:
0: The value of the sleeping state (1 for S1, 2 for S2, and so on).

7.3.3 \ GTS (Going To Sleep)

_GTSisan optiona control method. If it exists, OSPM must execute the _GTS control method just prior to
setting the sleep enable (SLP_EN) bit in the PM 1 control register when enteringthe S1, S2, S3, and $4
sleeping states and when entering S5 for orderly shutdown. _GTS allows ACPI system firmware to perform
any required system specific functions prior to entering a system sleep state. OSPM will set the sleep
enable (SLP_EN) bit in the PM 1 control register immediately following the execution of the _GTS control
method without performing any other physical 1/0 or allowing any interrupt servicing. The sleeping state
value (1, 2, 3, 4, or 5) is passed as an argument to the _GTS control method. The _GTS method must not
attempt to directly place the system into a sleeping state. OSPM performs this function by setting the sleep
enable bit upon return from _GTS. In the case of entry into the S5 soft off state however, _GTS may indeed
perform operations that place the system into the S5 state as OSPM will not regain control.

The _GTS method must be self-contained (not call other methods). Additionally, _GTS may only access
OpRegions that are currently available (see the _REG method for details).

Arguments:
0: The value of the sleeping state (1 for S1, 2 for S2, and so on).

7.3.4 System\ Sx states

All system states supported by the system must provide a package containing the DWORD value of the
following format in the static Definition Block. The system states, known as SO-S5, are referenced in the
namespace as_S0-_S5 and for clarity the short Sx names are used unless specifically referring to the
named _Sx object. For each Sx state, there is a defined system behavior.

Table7-7 System State Package

Byte Byte

Length Offset Description

1 0 Vauefor PM1a CNT.SLP_TYPregister to enter this system state.

1 1 Vauefor PM1b CNT.SLP_TYPregister to enter this system state. To enter any
given state, OSPM must writethe PM1a CNT.SLP_TYP register before the
PM1b_CNT.SLP_TYP register.

2 2 Reserved

States S1-S4 represent some system sleeping state. The SO state is the system working state. Transition into
the SO state from some other system state (such assleeping) is automatic, and, by virtue that instructions
are being executed, OSPM assumes the system to bein the SO state. Transition into any system sleeping
state is only accomplished by the operating software directing the hardware to enter the appropriate state,
and the operating software can only do this within the requirements defined in the Power Resource and
Bus/Device Package objects.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power and Performance Management 207

All run-time system state transitions (for example, to and from the SO state), except S4 and S5, are done
similarly such that the code sequence to do thisisthe following:

/*
Intel Architecture Set Sl eepingState exanple
*/

ULONG

Set Syst en8l eepi ng (
IN ULONG NewState
)

{
PROCESSOR_CONTEXT Cont ext ;

ULONG Power Seqeunce;
BOOLEAN FI ushCaches;
USHORT Sl pTyp;

/1 Required environment: Executing on the system boot
/] processor. Al other processors stopped. Interrupts
/1 disabled. Al Power Resources (and devices) are in
/1 correspondi ng device state to support NewState.

/l Get h/wattributes for this systemstate
FI ushCaches = Sl eepType[NewsSt at e] . Fl ushCache;

Sl pTyp = Sl eepType[NewSt at e] . SI pTyp & SLP_TYP_MASK;

_asm/{

| ea eax, GsResuneCont ext

push eax ; Build real node handl er the resume
push of fset sp50 ; context, with eip = sp50

call SaveProcessor St at e

nmov eax, ResuneVect or ; set firmware’s resune vector

nmv [eax], offset OsReal ModeResuneCode

nmv edx, PMla_STS ; Make sure wake status is clear
nmov ax, WAK STS ; (cleared by asserting the bit
out dx, ax ; in the status register)

nmov edx, PMLb_STS ;
out dx, ax ;

and eax, not SLP_TYP_NASK

or eax, Sl pTyp ; set SLP_TYP

or ax, SLP_EN ; set SLP_EN

cnp Fl ushCaches, 0

jz short spl0 ; I'f needed, ensure no dirty data in
call Fl ushProcessor Caches ; the caches while sleeping

spl0: nov edx, PMla_SLP_TYP get address for PMla_SLP TYP

out dx, ax start h/w sequenci ng

nov edx, PMlb_SLP TYP ; get address for PMLb_SLP TYP
out dx, ax ; start h/w sequencing

nmv edx, PMla_STS ; get address for PMLx_STS

nov ecx, PMLb_STS

sp20: in ax, dx ; wait for WAK status
xchg edx, ecx
t est ax, WAK STS

jz short sp20
sp50:
}
/1 Done..
*ResunmeVect or = NULL;
return O;
}

Compag/I ntel/Microsoft/Phoenix/T oshiba

208 Advanced Configuration and Power Interface Specification

7.3.4.1 System\ SO State (Working)

While the system isin the SO state, it isin the system working state. The behavior of this state is defined as:
- The processors arein the CO, C1, C2, or C3 states. The processor-complex context is maintained and
instructions are executed as defined by any of these processor states.
Dynamic RAM context is maintained and is read/write by the processors.
Devices states are individually managed by the operating software and can be in any device state (DO,
D1, D2, or D3).
Power Resources are in a state compatible with the current device states.

Transition into the SO state from some system sleeping state is automatic, and by virtue that instructions are
being executed OSPM, assumes the system to bein the SO state.

7.3.4.2 System\ Sl State (Sleeping with Processor Context Maintained)

While the system isin the S1 sleeping state, its behavior is the following:

- The processors are not executing instructions. The processor-complex context is maintained.
Dynamic RAM context is maintained.
Power Resources are in a state compatible with the system S1 state. All Power Resources that supply a
System-Level reference of SO arein the OFF state.
Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that are in the ON state for a given device state can bein that device state.
In all other cases, the deviceisin the D3 (off) state®™.
Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to SO. This transition causes the processor to
continue execution where it left off.

To transition into the S1 state, the OSPM must flush all processor caches.

7.3.4.3 System\ S2 State

The S2 sleeping stateislogically lower than the Sl state and is assumed to conserve more power. The

behavior of this stateis defined as:

- The processors are not executing instructions. The processor-complex context is not maintained.
Dynamic RAM context is maintained.
Power Resources are in a state compatible with the system S2 state. All Power Resources that supply a
System-Level reference of SO or S1 are in the OFF state.
Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that arein the ON state for a given device state can be in that device state.
In all other cases, the deviceisin the D3 (off) state.
Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to SO. This transition causes the processor to
begin execution at its boot location. The BIOS performs initialization of core functions as needed to
exit an S2 state and passes control to the firmware resume vector. See section 9.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

Because the processor context can be lost while in the S2 state, the transition to the S2 state requires that
the operating software flush all dirty cache to dynamic RAM (DRAM).

0Oritisat least assumed to be in the D3 state by its device driver. For example, if the device doesn’t
explicitly describe how it can stay in some state non-off state while the system isin a sleeping state, the
operating software must assume that the device can lose its power and state.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power and Performance Management 209

7.3.4.4 System\ S3 State

The S3 stateislogically lower than the S2 state and is assumed to conserve more power. The behavior of
this state is defined as follows:
The processors are not executing instructions. The processor-complex context is not maintained.
Dynamic RAM context is maintained.
Power Resources are in a state compatible with the system S3 state. All Power Resources that supply a
System-Level reference of SO, S1, or S2 are in the OFF state.
Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that arein the ON state for a given device state can bein that device state.
In all other cases, the deviceisin the D3 (off) state.
Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to SO. This transition causes the processor to
begin execution at its boot location. The BIOS performsinitialization of core functions as necessary to
exit an S3 state and passes control to the firmware resume vector. See section 9.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

From the software viewpoint, this state is functionally the same as the S2 state. The operational difference
can be that some Power Resources that could be left ON to be inthe S2 state might not be available to the
S3 state. As such, additional devices may need to bein alogically lower DO, D1, D2, or D3 state for S3
than S2. Similarly, some device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires that
the operating software flush all dirty cacheto DRAM.

7.3.45 System\ S4 State

Whilethe systemisin this state, it isin the system $S4 sleeping state. The stateislogically lower than the
S3 state and is assumed to conserve more power. The behavior of this stateis defined as follows:
The processors are not executing instructions. The processor-complex context is not maintained.
DRAM context is not maintained.
Power Resources are in a state compatible with the system $4 state. All Power Resources that supply a
System-L evel reference of SO, S1, S2, or S3 are in the OFF state.
Devices states are compatible with the current Power Resource states. In other words, all devicesarein
the D3 state when the system state is $4.
Devicesthat are enabled to wake the system and that can do so from their S4 device state can initiate a
hardware event that transitions the system state to SO. Thistransition causes the processor to begin
execution at its boot location.

After OSPM has executed the _PTS control method and has put the entire system state into main memory,
there are two ways that OSPM may handle the next phase of the $4 state transition; saving and restoring
main memory. The first way isto use the operating system’ s driversto access the disks and file system
structures to save a copy of memory to disk and then initiate the hardware S4 sequence by setting the
SLP_EN register bit. When the system wakes, the firmware performs a normal boot process and transfers
control to the OS viathe firmware_waking_vector loader. The OS then restores the system’s memory and
resumes execution.

The alternate method for entering the $4 state is to utilize the BIOS via the SABIOS transition. The BIOS
uses firmware to save a copy of memory to disk and then initiates the hardware $4 sequence. When the
system wakes, the firmware restores memory from disk and wakes OSPM by transferring control to the
FACSwaking vector.

The S4BIOS transition is optional, but any system that supports this mechanism must support entering the
S state viathe direct OS mechanism. Thus the preferred mechanism for S4 support is the direct OS
mechanism asit provides broader platform support. The alternate S4BIOS transition provides away to
achieve $4 support on operating systems that do not have support for the direct method.

Compag/I ntel/Microsoft/Phoenix/T oshiba

210 Advanced Configuration and Power Interface Specification

7.3.4.6 System \ S5 State (Soft Off)

The S5 state is similar to the $4 state except that OSPM does not save any context. The system isin the
soft off state and requires a complete boot when awakened (BIOS and OS). Software uses a different state
val ue to distinguish between this state and the $4 state toallow for initial boot operations within the BIOS
to distinguish whether or not the boot is going to wake from a saved memory image. OSPM will not disable
wake events before setting the SLP_EN bit when entering the S5 sleeping state. This provides support for
remote management initiatives by enabling Remote Power On (RPO) capability. Thisis achange from
ACPI 1.0 behavior.

An ACPI 2.0-compliant OS must provide an end user accessible mechanism for disabling all wake devices,
with the exception of the system power button, from asingle point in the user interface.

7.3.5 \ WAK (System Wake)

After the system wakes from a slegping state, it will invoke the_ WAK method and pass the sleeping state
value that has ended. This operation occurs asynchronously with other driver notificationsin the system

and is not the first action to be taken when the system wakes. The AML code for this control method issues
device, thermal, and other notifications to ensure that OSPM checks the state of devices, thermal zones, and
so on, that could not be maintained during the system sleeping state. For example, if the system cannot
determine whether a device was inserted or removed from a bus whilein the S2 state, the WAK method
would issue a devicecheck type of notification for that bus when issued with the sleeping state value of 2
(for more information about types of notifications, see section 5.6.3, “Device Object Notifications”). Notice
that a device check notification from the_SB node will cause OSPM to re-enumerate the entire tree™*.

Hardware is not obligated to track the state needed to supply the resulting status; however, this method can
return status concerning the last sleep operation initiated by OSPM. The result codes can be used to provide
additional information to OSPM or user.

Arguments:
0 The value of the sleeping state (1 for S1, 2 for S2, and so on).

Result Code (2 DWORD package):
Status Bit field of defined conditions that occurred during sleep.
0x00000001 Wakewassignaled but failed due to lack of power.
0x00000002 Wake was signaled but failed due to thermal condition.
Other Reserved
PSS If non-zero, the effective S-state the power supply really entered.

Thisvalueis used to detect when the targeted S-state was not entered because of too much current
being drawn from the power supply. For example, this might occur when some active device's current
consumption pushes the system’s power requirements over the low power supply mark, thus
preventing the lower power mode from being entered as desired.

11 Only buses that support hardware-defined enumeration methods are done automatically at run-time. This
would include ACPI-enumerated devices.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Processor Control 211

8 Processor Control

This section describes OSPM run-time aspects of managing the processor’ s performance, power
consumption, and other controls while the system isin the working state*2. The major controls over the
processors are:

Processor power states: CO, C1, C2, C3...Cn

Processor clock throttling

Processor performance states. PO, P1, ... Pn

These controls are used in combination by OSPM to achieve the desired balance of the following
sometimes conflicting goals:

Performance

Power consumption and battery life

Thermal requirements

Noiselevel requirements

Because the goalsinteract with each other, the operating software needs to implement a policy asto when
and where tradeoffs between the goals are to be made®®. For example, the operating software would
determine when the audible noise of the fan is undesirable and would trade off that requirement for lower
thermal requirements, which can lead to lower processing performance. Each processor control is discussed
in the following sections along with how the control interacts with the various goals.

8.1 Processor Power States

ACPI supports placing system processors into one of four power states while in the GO working state**.
Processor power states include CO, C1, C2, and C3. The CO power state is an active power state where the
CPU executesinstructions. The C1, C2, and C3 power states are processor sleeping states where the
processor consumes less power and dissipates less heat than leaving the processor in the CO state. Whilein
asleeping state, the processor does not execute any instructions. Each processor sleeping state has alatency
associated with entering and exiting that corresponds to the power savings. In general, the longer the
entry/exit latency, the greater the power savings when in the state. To conserve power, OSPM placesthe
processor into one of its supported sleeping states when idle. While in the CO state, ACPI allowsthe
performance of the processor to be altered through a defined “throttling” process and through transitions
into multiple performance states (P-states). A diagram of processor power statesis provided below.

12 |n any system sleeping state, the processors are not executing instructions (that is, they are not run-time),
and the power consumption isfixed as a property of that system state.

13 A thermal warning |leaves room for operating system tradeoffs to occur (to start the fan or to reduce
performance), but a critical thermal alert doesnot occur.

14 Notice that these CPU states map into the GO working state. The state of the CPU is undefined in the G3
sleeping state, the Cx states only apply to the GO state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

212 Advanced Configuration and Power Interface Specification

THT_EN=1

and
DTY=value

Performance
State Px Co

THT_EN=0

Interrupt or
BM Access

P_LVL2 Interrupt
Interrupt - P P_LVL3,

ARB_DIS=1

(€10
Working

Figure8-1 Processor Power States

ACPI defineslogic on a per-CPU basis that OSPM uses to transition between the different processor power
states. Thislogicisoptional, and is described through the FADT table and processor objects (contained in
the hierarchical namespace). The fields and flags within the FADT table describe the symmetrical features
of the hardware, and the processor object contains the location for the particular CPU’ s clock logic
(described by the P_BLK register block and _CST objects).

TheP_LVL2and P_LVL3 registers provide optional support for placing the system processorsinto the C2
or C3 states. The P_LV L2 register is used to sequence the selected processor into the C2 state, and the
P_LVL3register isused to sequence the selected processor into the C3 state. Additional support for the C3
state is provided through the bus master status and arbiter disable bits (BM_STSinthe PM1_STSregister
and ARB_DISinthe PM2_CNT register). System softwarereadsthe P_LVL2 or P_L VL3 registersto enter
the C2 or C3 power state. The Hardware must put the processor into the proper clock state precisely on the
read operation to the appropriate P_LVLX register.

Processor power state support is symmetric; OSPM assumes all processorsin a system support the same
power states. If processors have non-symmetric power state support, then the BIOS will choose and use the
lowest common power states supported by all the processors in the system through the FADT table. For
example, if the CPUO processor supports all power states up to and including the C3 state, but the CPU1
processor only supports the C1 power state, then OSPM will only place idle processors into the C1 power
state (CPUO will never be put into the C2 or C3 power states). Notice that the C1 power state must be
supported. The C2 and C3 power states are optional (see the PROC_C1 flag in the FADT table description
in section 5.2.5, “ System Description Table Header”).

The following sections describe processor power states in detail.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Processor Control 213

8.1.1 Processor Power State CO

While the processor isin the CO power state, it executes instructions. While in the CO power state, OSPM
can generate apolicy to run the processor at less than maximum performance. The clock throttling
mechanism provides OSPM with the functionality to perform thistask in addition to thermal control. The
mechanism allows OSPM to program avalue into aregister that reduces the processor’ s performance to a
percentage of maximum performance.

duty value

. St clock off time ——
clock on time
=~ duty width 5
P_CNT duty value

—duty offset —<——duty width ——

Figure8-2 Throttling Example

The FADT contains the duty offset and duty width values. The duty offset value determines the offset
within the P_CNT register of the duty value. The duty width value determines the number of bits used by
the duty value (which determines the granularity of the throttling logic). The performance of the processor
by the clock logic can be expressed with the following equation:

dutysetting

% Performance = i *100%

Equation 1 Duty Cycle Equation

Nominal performance is defined as“ close as possible, but not below the indicated performance level.”
OSPM will use the duty offset and duty width to determine how to access the duty setting field. OSPM will
then program the duty setting based on the thermal condition and desired power of the processor object.
OSPM calculates the nominal performance of the processor using the equation expressed in Equation 1.
Notice that a dutysetting of zero is reserved.

Compag/I ntel/Microsoft/Phoenix/T oshiba

214 Advanced Configuration and Power Interface Specification

For example, the clock logic could use the stop grant cycle to emulate a divided processor clock frequency
on an | A processor (through the use of the STPCLK# signal). Thissignal internally stops the processor’s
clock when asserted LOW. To implement logic that provides eight levels of clock control, the STPCLK#
pin could be asserted as follows (to emul ate the different frequency settings):

< Duty Width (3-bits} >

.o ., 2, 2 , 3 , 4 , 5 , 6 4 7
| | | | | | | |

dutysetting
0 - Reserved Value

STPCLK# Signal
w

CPU Clock Stopped
4 A CPU Clock Running PP

i
L—I—I—I—I—I—I

Figure8-3 Example Control for the STPCLK#

To start the throttling logic OSPM sets the desired duty setting and then setsthe THT_EN bit HIGH. To
change the duty setting, OSPM will first reset the THT_EN bit LOW, then write another value to the duty
setting field while preserving the other unused fields of this register, and then set the THT_EN bit HIGH
again.

The example logic model is shown below:

P_LVL3 P_LVL2 BM_RLD ARB_DIS BM_STS
Rsa(d T‘ PM1x_CNT.1 Pr\ngNT PM%STSA
. System
Clock Logic ifi

é() éduty width

THT_EN THTL_DTY
P_CNT4 P_CNTx

Figure8-4 ACPI Clock Logic (One per Processor)

Implementation of the ACPI processor power state controls minimally requires the support a single CPU
sleeping state (C1). All of the CPU power states occur in the GO/S0 system state; they have no meaning
when the system transitionsinto the sleeping state(S1-S4). ACPI defines the attributes (semantics) of the
different CPU states (defines four of them). It is up to the platform implementation to map an appropriate
low-power CPU state to the defined ACPI CPU state.

ACPI clock control is supported through the optional processor register block (P_BLK). ACPI requires that
there be a unique processor register block for each CPU in the system. Additionally, ACPI requires that the
clock logic for multiprocessor systems be symmetrical; if the PO processor supports the C1, C2, and C3
states, but P1 only supports the C1 state, then OSPM will limit all processors to enter the C1 state when
idle.

The following sections define the different ACPI CPU sleeping states.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Processor Control 215

8.1.2 Processor Power State C1

All processors must support this power state. This state is supported through a native instruction of the
processor (HLT forl A 32-bit processors), and assumes no hardware support is needed from the chipset. The
hardware latency of this state must be low enough that OSPM does not consider the latency aspect of the
state when deciding whether to use it. Aside from putting the processor in a power state, this state has ho
other software-visible effects. In the C1 power state, the processor is able to maintain the context of the
system caches.

The hardware can exit this state for any reason, but must always exit this state when an interrupt isto be
presented to the processor.

8.1.3 Processor Power State C2

This processor power state is optionally supported by the system. If present, the state offersimproved
power savings over the C1 state and is entered by using the P_LVL2 command register for the local
processor. The worst-case hardware latency for this state is declared in the FADT and OSPM can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting the
processor in apower state, this state has no other software-visible effects. OSPM assumes the C2 power
state has lower power and higher exit latency than the C1 power state.

The C2 power stateis an optional ACPI clock state that needs chipset hardware support. This clock logic
consists of aP_LVL2 register that, when read, will cause the processor complex to precisely transition into
aC2 power state. In a C2 power state, the processor is assumed capable of keeping its caches coherent; for
example, bus master and multiprocessor activity can take place without corrupting cache context.

The C2 state puts the processor into a low-power state optimized around multi processor and bus master
systems. OSPM will cause an idle processor complex to enter a C2 state if there are bus masters or Multiple
processor activity (which will prevent OSPM from placing the processor complex into the C3 state). The
processor complex is able to snoop bus master or multiprocessor CPU accesses to memory whilein the C2
state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt isto
be presented to the processor.

8.1.4 Processor Power State C3

This processor power state is optionally supported by the system. If present, the state offersimproved
power savings over the C1 and C2 state and is entered by using the P_LVL3 command register for the local
processor. The worst-case hardware latency for this state is declared in the FADT, and OSPM can use this
information to determine when the C1 or C2 state should be used instead of the C3 state. Whilein the C3
state, the processor’ s caches maintain state but the processor is not required to snoop bus master or
multiprocessor CPU accesses to memory.

The hardware can exit this state for any reason, but must always exit this state when an interrupt isto be
presented to the processor or when BM_RLD is set and a bus master is attempting to gain access to
memory.

OSPM isresponsible for ensuring that the caches maintain coherency. In a uniprocessor environment, this
can be done by using the PM2_CNT.ARB_DI S bus master arbitration disable register to ensure bus master
cycles do not occur whilein the C3 state. In a multiprocessor environment, the processors' caches can be
flushed and invalidated such that no dynamic information remainsin the caches before entering the C3
state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

216 Advanced Configuration and Power Interface Specification

There are two mechanisms for supporting the C3 power state:
Having OSPM flush and invalidate the caches prior to entering the C3 state.
Providing hardware mechanisms to prevent masters from writing to memory (uniprocessor-only
support).

In the first case, OSPM will flush the system caches prior to entering the C3 state. Asthereis normally
much latency associated with flushing processor caches, OSPM islikely to only support thisin
multiprocessor platforms for idle processors. Flushing of the cache is accomplished through one of the
defined ACPI mechanisms (described below in section 8.2.4.1, “Flushing Caches”).

I'n uniprocessor-only platforms that provide the needed hardware functionality (defined in this section),
OSPM will attempt to place the platform into a mode that will prevent system bus masters from writing
into memory while the processor isin the C3 state. Thisis accomplished by disabling bus masters prior to
entering a C3 power state. Upon a bus master requesting an access, the CPU will awaken from the C3 state
and re-enable bus master accesses.

OSPM usesthe BM_STS bit to determine the power state to enter when considering atransition to or from
the C2/C3 power state. The BM_STSisan optional bit that indicates when bus masters are active. OSPM
uses this bit to determine the policy between the C2 and C3 power states: alot of bus master activity
demotes the CPU power state to the C2 (or C1 if C2 is not supported), no bus master activity promotes the
CPU power state to the C3 power state. OSPM keeps a running history of the BM_STS bit to determine
CPU power state policy.

Thelast hardware feature used in the C3 power state isthe BM_RLD bit. Thisbit determinesif the Cx
power state was exited as aresult of bus master requests. If set, then the Cx power state was exited upon a
request from a bus master. If reset, the power state was not exited upon bus master requests. In the C3 state,
bus master requests need to transition the CPU back to the CO state (as the system is capable of maintaining
cache coherency), but such atransition is not needed for the C2 state. OSPM can optionally set this bit
when using a C3 power state, and clear it when using a C1 or C2 power state.

8.1.5 Additional Processor Power States

ACPI 2.0 introduces optional processor power states beyond C3. These power states, C4... Cn, are
conveyed to OSPM through the CST object defined in section 8.3.2, “_CST (C-States).” These additional
power states are characterized by equivalent semantics to the C1 through C3 power states, as defined in the
previous sections, but with different entry/exit latencies and power savings. See section 8.3.2, “_CST (C-
States),” for more information.

8.2 Flushing Caches

To support the C3 power state without using the ARB_DI S feature, the hardware must provide
functionality to flush and invalidate the processors' caches (for an IA processor, thiswould be the
WBINVD instruction). To support the S1, S2 or S3 sleeping states, the hardware must provide functionality
to flush the platform caches. Flushing of cachesis supported by one of the following mechanisms:
Processor instruction to write back and invalidate system caches (WBINVD instruction for |A
processors).
Processor instruction to write back but not invalidate system caches (WBINVD instruction for 1A
processors and some chipsets with partial support; that is, they don’t invalidate the caches).

The ACPI specification expects all platformsto support the local CPU instruction for flushing system
caches (with support in both the CPU and chipset), and provides some limited “best effort” support for
systems that don’t currently meet this capability. The method used by the platform isindicated through the
appropriate FADT fields and flags indicated in this section.

ACPI specifies parametersin the FADT that describe the system’s cache capabilities. If the platform
properly supports the processor’ s write back and invalidate instruction (WBINVD for |A processors), then
this support isindicated to OSPM by setting the WBINVD flag in the FADT.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Processor Control 217

If the platform supports neither of the first two flushing options, then OSPM can attempt to manually flush
the cache if it meetsthe following criteria:
A cache-enabled sequential read of contiguous physical memory of not more than 2 MB will flush the
platform caches.

There are two additional FADT fields needed to support manual flushing of the caches:
FLUSH_SIZE, typically twice the size of the largest cache in the system.
FLUSH_STRIDE, typically the smallest cache line size in the system.

8.3 Declaring a Processor Object

A processor object is declared for each processor in the system using an ASL Processor statement. A
processor object provides processor configuration information and points to the processor register block
(P_BLK).

ACPI 2.0 processor objects are declared under the_SB namespace. This allows OSPM to treat processors
in adevice-like manner. For example, in a multiprocessor system, processors may be ejected or
dynamically inserted. ACPI 2.0-compatible systems may maintain the ACPI 1.0-defined _PR namespace
for compatibility with ACPI 1.0 operating systems. An ACPI 2.0-compatible namespace may define
Processor objectsin either the_SB or _PR scope but not both.

ACPI 2.0 expands the processor object definition by defining processor-specific objects that may be
included in the processor object’ s optional object list. These objects serve multiple purposes including
providing alternative definitions for the registers described by the processor register block (P_BLK) and
processor performance state control. Additionally, under ACPI 2.0, other ACPI -defined device-related
objects may be included in the processor object’s object list (for example, the unique identifier object
_UID).

With device-like characteristics attributed to processorsin ACPI 2.0, it isimplied that a processor device
driver will be loaded by OSPM to, at a minimum, process device notifications. OSPM will enumerate
processors in the system using the ACPI Namespace, processor-specific native identification instructions,
and optionally the _HID method.

OSPM will ignore definitions of ACPI-defined objectsin an object list of a processor object declared under
the\ PR namespace. Processor-specific objects are described in the following sections.

For more information on the declaration of the processor object, see section 16.2.3.3.1.16, “PowerResource
(Declare Power Resource).”

8.3.1 _PTC (Processor Throttling Control)

_PTCisan optional object used to define a processor throttling control register alternative to the /O
address spaced-based P_BLK throttling control register (P_CNT) described in section 4, “ACPI Hardware
Specification. The processor throttling control register mechanism remains as defined in section 8.1.1, “
Processor Power State CO.”

The _PTC object contains datain the following format:

Name (_PTC, Processor_Control_Register //ResourceTemplateTerm Generic Register Descriptor)

Compag/I ntel/Microsoft/Phoenix/T oshiba

218 Advanced Configuration and Power Interface Specification

Notice that if the _PTC object exists, the specified register is used instead of the P_CNT register specified
in the Processor term. Also noticethat if the PTC object exists and the _CST object doesnot exist, OSPM
will use the processor control register from the PTC object and the P_LVLx registers from the P_BLK.

EXAMPLE
Thisis an example usage of the _PTC object in a Processor object list:

Processor (

\ _SB. CPWO, /1 Processor Nane

1, /1 ACPl Processor nunber
0x120, /1 PBlk system | O address
6) /1 PBl kLen

{ //Object List
Nanme(_PTC, ResourceTenpl ate()

{
Regi st er (FFi xedHW 0, 0, 0)
}

) //End of _PTC bject

} // End of (bject List

EXAMPLE
Thisisan example usage of the _PTC object using the values defined in ACPI 1.0. Thisisanillustrative
example to demonstrate the mechanism with well -known values.

Processor (
_SB.CPW, // Processor Name

1, /1 ACPl Processor nunber
0x120, /1 PBLK system | O address
6) /1 PBLK Len

{ //Object List

Nanme(_PTC, // 32 bit wide |0 space- based regi ster at the <P_BLK> address
Resour ceTenpl at e()

Regi ster(System O 32, 0, 0x120)

) //End of _PTC bject

} /! End of nject List

8.3.2 _CST (C States)

_CST isan optional object that provides an alternative method to declare the supported processor power
states (C States). Values provided by the _CST object override P_LVLx valuesin P_BLK and
P_LVLX_LAT valuesinthe FADT. The _CST object allows the number of processor power statesto be
expanded beyond C1, C2, and C3 to an arbitrary number of power states. The entry semantics for these
expanded states, (in other words), the considerations for entering these states, are conveyed to OSPM by
the C-state_Typefield and correspond to the entry semantics for C1, C2, and C3 as described in sections
8.1.2 through 8.1.4. _CST defines ascending C-states characterized by lower power and higher entry/exit
latency.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Processor Control 219

The _CST object evaluates to a package that declares the available C-states as follows:
Name (_CST, Package()

{/l Field Name Field Type

C States_Defined, //IByteConst

Package () /I C State Definition - O

{

C State_Register, /IResourceTemplateTerm-Generic Register Descriptor
C Sate Type, /I ByteConst

Latency, /I WordConst

Power_Consumption /I DWordConst

|3

Package () /I C State Definition - n

{

C Sate_Register, //IResourceTemplateTerm-Generic Register Descriptor
C State_Type, /I ByteConst

Latency, /I WordConst

Power_Consumption /I DWordConst
}

}) /l End of _CST object

The C States_Defined field indicates the number of C state entries that follow. Each C State definition
entry is a package that describes the C State. A read of the C State_Register places the CPU in the
corresponding C State. The Generic Register Descriptor format is described in section 6.4.3.7, “Generic
Register Descriptor (Type 1, Large Item Name 0x2).” The description of the remaining package fieldsis as
follows:
C State Type. The C State type (for example, 0=CO, 1=C1, and so on).Thisfield conveysthe
semantics used by OSPM when entering the C state.
Latency. The worst-case latency in microseconds to enter and exit the C—State.
Power Consumption. Average power consumption in milliwatts when in the C —State.

Noticethat if the CST object exists, the power states specified inthe CST object are used in lieu of
P_LVL2and P_LVL3registersdefinedin P_BLK andthe P_LVLx_LAT values defined in the FADT.
Also noticethat if the _CST object exists and the _PTC object does not exist, OSPM will use the processor
control register defined in P_BLK and the P_LVLXx registersinthe CST object.

Compag/I ntel/Microsoft/Phoenix/T oshiba

220 Advanced Configuration and Power Interface Specification

The number or type of available C States may change dynamically. As such, ACPI 2.0 supports Notify
events on the processor object. Notify events of type 0x81 will cause OSPM to re-evaluate any _CST
objects residing under the particular processor object notified. This allows AML codeto notify OSPM
when the number of supported C States may have changed as aresult of an asynchronous event (AC
insertion/removal, and so on).

The fields in the processor structure remain for backward conpatibility.

EXAMPLE
Thisisan example usage of the CST structure in a Processor structure.

Processor (

\ _SB. CPWO, /1 Processor Nane
1, /1 ACPl Processor nunber
0x120, /1 PBlk system | O address
6) /1 PBl kLen

{
Nane(_CST, Package()
{
4, /1 There are four Gstates defined here with three semantics

/] The third and fourth C-states defined have the same C3 entry semantics

Package() { Resour ceTenpl at e() { Regi st er (FFi xedHW 0, 0, 0)}, 1, 20, 1000},
Package() { Resour ceTenpl at e() { Regi ster (System O 8, 0, 0x161)}, 2, 40, 750},
Package() { Resour ceTenpl ate() { Regi ster (System O 8, 0, 0x162)}, 3, 60, 500},
Package() { Resour ceTenpl at e() { Regi ster(System O, 8, 0, 0x163)}, 3, 100, 250}
3]

}

EXAMPLE

Thisisan example usage of the _CST structure using the values defined in ACPI 1.0.

Processor (

\ _SB. CPWO, /1 Processor Nane
1, /1 ACPl Processor nunber
0x120, /1 PBLK system | O address
6) /1 PBLK Len
{
Nane(_CST, Package()
{
2, /1 There are two Gstates defined here — C2 and C3
Package() { Resour ceTenpl ate(){ Regi ster(System O 8, 0, 0x124)}, 2, 2, 750},
Package() { Resour ceTenpl at e() { Regi ster(Systeml O, 8, 0, 0x125)}, 3, 65, 500}
3]
}

The platform will issue a Notify (_SB.CPUO, 0x81) to inform OSPM to re-evaluate this object when the
number of available processor power states changes.

8.3.3 Processor Performance Control

Processor performance control isimplemented through three optional objects whose presence indicates to
OSPM that the platform and CPU are capable of supporting multiple performance states. The platform
must supply all three objectsif processor performance control isimplemented. The processor performance
control objects define the supported processor performance states, allow the processor to be placedin a
specific performance state, and report the number of performance states currently available on the system.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Processor Control 221

In amultiprocessing environment, all CPUs must support the same number of performance states and each
processor performance state must have identical performance and power-consumption parameters.
Performance objects must be present under each processor object in the system for OSPM to utilize this
feature.

Processor performance control objectsincludethe’ PCT’ package, ' PSS package, and the‘_PPC’
method as detailed below.

8.3.3.1 _PCT (Performance Control)

This optional object declares an interface that allows OSPM to transition the processor into a performance
state. OSPM performs processor performance transitions by writing the performance state—specific control
value to a Performance Control Register (PERF_CTRL).

OSPM may select a processor performance state as indicated by the performance state value returned by
the _PPC method, or any lower power (higher numbered) state. The control value to write is contained in
the corresponding PSS entry’s“ Control” field.

Success or failure of the processor performance transition is determined by reading a Performance Status
Register (PERF_STATUS) to determine the processor’ s current performance state. If the transition was
successful, the value read from PERF_STATUS will match the “ Status” field in the _PSS entry that
corresponds to the desired processor performance state.

This object evaluates to a package that declares the above-mentioned transition control and status addresses
asfollows:

Name (_PCT, Package()

{

Perf_Ctrl_Register, /IResourceTemplateTerm-Generic Register Descriptor
Perf_Status Register /IResourceTemplateTerm-Generic Register Descriptor
1)) /I Endof PCT

Compag/I ntel/Microsoft/Phoenix/T oshiba

222 Advanced Configuration and Power Interface Specification

8.3.3.2 PSS (Performance Supported States)

This optional object indicates to OSPM the number of supported processor performance states that any
given system can support. This object evaluatesto a packaged list of information about available
performance states including internal CPU core frequency, typical power dissipation, control register
values needed to transition between performance states, and status register values that allow OSPM to
verify performance transition status after any OS-initiated transition change request. Thelist is sorted in
descending order by typical power dissipation. As aresult, the zeroth entry describes the highest
performance state and the ‘ nth’ entry describes the lowest performance state.

Name (_PSS, Package()

{/l Field Name Field Type

Package () /I Performance State 0 Definition— PO

{

CoreFreq, /I DWordConst
Power, /I DWordConst
TransitionLatency, /I DWordConst
BusMasterLatency, /I DWordConst
Control, /I DWordConst
Status /I DWordConst
}

Package () /I Performance State n Definition— Pn

{

CoreFreq, /I DWordConst
Power, /I DWordConst
TransitionLatency, /I DWordConst
BusMasterLatency, /I DWordConst
Control, /I DWordConst
Status /I DWordConst
}

}) /I End of _PSS object

Compag/I ntel/Microsoft/Phoenix/Toshiba

Processor Control 223

Each performance state entry contains six datafields asfollows:

- CoreFreg. Indicates the core CPU operating frequency (in MHz).
Power. Indicates the typical power dissipation (in milliWatts).
TransitionLatency. Indicates the worst-case latency in microseconds that the CPU is unavailable
during atransition from any performance state to this performance state.
BusMasterLatency. Indicates the worst-case latency in microseconds that Bus Masters are prevented
from accessing memory during atransition from any performance state to this performance state.
Control. Indicates the value to be written to the Performance Control Register (PERF_CTRL) in order
toinitiate atransition to the performance state.
Status. Indicates the value that OSPM will compare to a value read from the Performance Status
Register (PERF_STATUS) to ensure that the transition to the performance state was successful. OSPM
may always place the CPU in the lowest power state, but additional states are only available when
indicated by the _PPC method.

8.3.3.3 _PPC (Performance Present Capabilities)

This optional object is amethod that dynamically indicatesto OSPM the number of performance states
currently supported by the platform. This method returns a number that indicates the _PSS entry number of
the highest performance state that OSPM can use at a given time. OSPM may choose the corresponding
state entry in the _PSS asindicated by the value returned by the _PPC method or any lower power (higher
numbered) state entry in the _PSS.

Arguments:
None
Returned Value:
Number of states supported (integer)
0—states 0 .. n'" state available (all states available)
1-state1.. n'" state available
2—state 2 .. n'" state available

n — state n available only

In order to support dynamic changes of _PPC object, ACPI 2.0 supports Notify events on the processor
object. Notify events of type 0x80 will cause OSPM to reevaluate any _PPC objects residing under the
particular processor object notified. Thisallows AML code to notify OSPM when the number of supported
states may have changed as aresult of an asynchronous event (AC insertion/removal, docked, undocked,
and so on).

8.3.3.4 Processor Performance Control Example
EXAMPLE:

Thisisan example of processor performance control objectsin aprocessor object list.

In this exanple, a uniprocessor platform that has processor performance capabilities with support for three
performance states as follows:;

1. 500 MHz (8.2W) supported at any time

2. 600 MHz (14.9W) supported only when AC powered

3. 650 MHz (21.5W) supported only when docked

Compag/I ntel/Microsoft/Phoenix/T oshiba

224 Advanced Configuration and Power Interface Specification

It takes no more than 500 microseconds to transition from one performance state to any other performance

state.

During a performance transition, bus masters are unabl e to access memory for a maximum of 300

microseconds.

The PERF_CTRL and PERF_STATUS registers are implemented as Functional Fixed Hardware.

Thefollowing ASL objects areimplemented within the system:

_SB.DOCK: Evaluatesto 1 if system is docked, zero otherwise.

_SB.AC: Evaluatesto 1 if AC isconnected, zero otherwise.

Processor (

\ _SB. CPWO, /1
1, /1
0x120, /1

6) /1

Processor Nane

ACPl Processor nunber
PBl k system | O address
PBl kLen

{
Nane(_PCT, Package () // Performance Control

{

Resour ceTenpl at e() { Regi st er (FFi xedHW 0,
Resour ceTenpl at e() { Regi st er (FFi xedHW O,

}) // End of _PCT object

Nane (_PSS, Package()

{
Package() {650, 21500, 500, 300, O0x00, 0x08},
Package() {600, 14900, 500, 300, 0x01, O0x05},

Package(){500, 8200, 500, 300, 0x02, 0x06}

1) /1

Met hod (_PPC, 0)
{

End of _PSS obj ect

/1 Performance Present

I'f (_SB. DOCK)

obj ect

0, 0)}, /1 PERF_CTRL
0, 0)} /| PERF_STATUS

/1 Performance State zero (PO)
/1 Performance State one (P1)
/1 Performance State two (P2)

Capabi lities method

Ret ur n(0) /1 Al _PSS states avail able (650, 600, 500).
}
If (_SB. AQ)
{
Return(1) // States 1 and 2 avail able (600, 500).
}
El se
Ret urn(2) // State 2 avail able (500)
}
} // End of _PPC method

} /] End of processor object I|ist

The platform will issue a Notify (_SB.CPUO, 0x80) to inform OSPM to re-eval uate this object when the
number of available processor performance states changes.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 225

9 Waking and Sleeping

ACPI defines amechanism to transition the system between the working state (GO) and a sleeping state
(G1) or the soft-off (G2) state. During transitions between the working and sleeping states, the context of
the user’s operating environment is maintained. ACPI defines the quality of the G1 sleeping state by
defining the system attributes of four types of ACPI sleeping states (S1, S2, S3, and $4). Each sleeping
state is defined to allow implementations that can tradeoff cost, power, and wake latencies. Additionally,
ACPI definesthe sleeping states such that an ACPI platform can support multiple sleeping states, allowing
the platform to transition into a particul ar sleeping state for a predefined period of time and then transition
to alower power/higher wake latency sleeping state (transitioning through the GO state) *°.

ACPI defines a programming model that provides a mechanism for OSPM to initiate the entry into a
sleeping or soft-off state (S1-S5); this consists of a3-bit field SLP_TY Px*® that indicates the type of sleep
state to enter, and asingle control bit SLP_EN to start the sleeping process.

Note: Systems containing processors without a hardware mechanism to place the processor in a low-power
state may additionally require the execution of appropriate native instructions to place the processor in a
low-power state after OSPM setsthe SLP_EN bit. The hardware may implement a number of low-power
sleeping states and then associate these states with the defined ACPI sleeping states (through the
SLP_TYPx fields). The ACPI system firmware creates a sleeping object associated with each supported
sleeping state (unsupported sleeping states are identified by the lack of the sleeping object). Each sleeping
object contains two constant 3-bit values that OSPM will program into the SLP_TYPaand SLP_TY Pb
fields (in fixed register space).

ACPI also defines an alternate mechanism for entering and exiting the $4 state that passes control to the
BIOS to save and restore platform context. Context ownership is similar in definition to the S3 state, but
hardware saves and restores the context of memory to non-volatile storage (such as adisk drive), and
OSPM treats this as an $4 state with implied latency and power constraints. This alternate mechanism of
entering the $4 state is referred to as the S4BIOS transition.

Prior to entering a sleeping state (S1-S4), OSPM will execute OEM -specific AML/ASL code contained in
the PTS (Prepare To Sleep) control method. One use of the _PTS control method isthat it can indicate to
the embedded controller what sleeping state the system will enter when the SLP_EN hit is set. The
embedded controller can then respond by executing the proper power-plane sequencing upon this bit being
set.

Immediately prior to entering a system sleeping state (as well asthe S5 soft-off state), OSPM will execute
the _GTS (Going To Sleep) control method. _GTS allows ACPI system firmware to perform any necessary
system specific functions prior to entering a system sleeping state.

Upon waking, OSPM will execute the _BFS (Back From Sleep) control method. This allows ACPI system
firmware to perform any necessary system specific functions prior to returning control to OSPM. The
_WAK (Wake) control method is then executed. This control method again contains OEM -specific
AML/ASL code. One use of the_ WAK control method requests OSPM to check the platform for any
devices that might have been added or removed from the system while the system was asleep. For example,
a PC Card controller might have had a PC Card added or removed, and because the power to this device
was off in the sleeping state, the status change event was not generated.

15 OSPM uses the RTC wakeup feature to program in the time transition delay. Prior to sleeping, OSPM
will program the RTC alarm to the closest (in time) wakeup event: either atransition to alower power
sleeping state, or a calendar event (to run some application).

16 Notice that there can be two fixed PM1x_CNT registers, each pointing to adifferent system I/O space
region. Normally aregister grouping only allows a bit or bit field to reside in asingle register group
instance (a or b); however, each platform can have two instances of the SLP_TY P (one for each grouping
register: aand b). The_Sx control method gives a package with two values: thefirstisthe SLP_TYPa
value and the second isthe SLP_TY Pb value.

Compag/I ntel/Microsoft/Phoenix/T oshiba

226 Advanced Configuration and Power Interface Specification

This section discusses the system initialization sequence of an ACPI-enabled platform. Thisincludes the
boot sequence, different wake scenarios, and an example to illustrate how to use the system address map
reporting interfaces. This sequenceis part of the ACPI event programming model.

For detailed information on the power management control methods described above, see section 7, “ Power
and Performance Management.”
9.1 Sleeping States

Theillustration below shows the transitions between the working state, the sleeping states, and the Soft Off
state.

S1

Sleeping

Wake SLP_TYPx=S1

Event and
SLP_EN
- S2
SLP_TYPx=S Sleeping
and
ACPI SLP_EN
Boot
— (SCIEN=1) A
GO (SO0) - SLP_TYPx=S3 s3
. and .
Working SLP_EN Sleeping
SLP_TYPx=S5
and
SLP_EN
or SLP_TYPx=S4
PWRBTN_OR S4BIOS_REQ and
to SLP_EN
SMI_CMD S4
¢ ‘ Sleeping
SLP_TYPx=54
OEM S4 BIOS _ and
Handler SLP_EN

Figure9-1 Example Sleeping States

ACPI defines distinct differences between the GO and G1 system states.
In the GO state, work is being performed by the OS/application software and the hardware. The CPU or
any particular hardware device could be in any one of the defined power states (CO-C3 or D0O-D3);
however, some work will be taking place in the system.
In the G1 state, the system is assumed to be doing no work. Prior to entering the G1 state, OSPM will
place devicesin adevice power state compatible with the system sleeping state to be entered; if a
deviceisenabled to wake the system, then OSPM will place these devicesinto the lowest Dx state
from which the device supports wake. Thisis defined in the power resource description of that device
object. This definition of the G1 state implies:

The CPUs execute no instructions in the G1 state.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 227

Hardware devices are not operating (except possibly to generate awake event).
ACPI registers are affected asfollows:
Wake event bits are enabled in the corresponding fixed or general-purpose registers according
to enabled wake options.
PM1 control register is programmed for the desired sleeping state.
WAK_STSisset by hardware in the sleeping state.

All sleeping states have these specifications. ACPI defines additional attributes that allow an ACPI
platform to have up to four different sleeping states, each of which has different attributes. The attributes
were chosen to allow differentiation of sleeping states that vary in power, wake latency, and
implementation cost tradeoffs.

Running processors at reduced levels of performanceis not an ACPI sleeping state (G1); thisisaworking
(GO0) state-defined event.

The CPU cannot execute any instructions when in the sleeping state; OSPM relies on thisfact. A platform
designer might be tempted to support a sleeping system by reducing the clock frequency of the system,
which allows the platform to maintain a low-power state while at the same time maintaining
communication sessions that require constant interaction (as with some network environments). Thisis
definitely a GO activity where an OS policy decision has been made to turn off the user interface (screen)
and run the processor in areduced performance mode. This type of reduced performance state as a sleeping
state is not defined by the ACPI specification; ACPI assumes no code execution during sleeping states.

ACPI defines attributes for four sleeping states: S1, S2, S3 and S4. (Notice that $4 and S5 are very similar
from a hardware standpoint.) At least one sleeping state, S1-S4, must be implemented by an ACPI-
compatible system. Platforms can support multiple sleeping states. ACPI specifiesthat a 3-bit binary
number be associated with each sleeping state (these numbers are given objects within ACPI’ s root
namespace: _SO,\ S1,_S2,\ S3,\ _$S4 and_S5). When entering a system sleeping state, OSPM will do
the following:

1. Pick the deepest sleeping state supported by the platform and enabled waking devices.

2. Executethe PTS control method (which passes the type of intended sleep state to OEM AML code) if
itisan S1-$4 sleeping state.

3. If OS policy decidesto enter the S4 state and chooses to use the S4BIOS mechanism and S4BIOS s
supported by the platform, OSPM will pass control to the BIOS software by writing the S4BIOS_REQ
valueto the SMI_CMD port.

4. If not using the S4BIOS mechanism, OSPM getsthe SLP_TY Px value from the associated sleeping
object (_S1,\ S2,_S3,_S4or_S5).

5. Program the SLP_TY Px fields with the values contained in the sd ected sleeping object.

6. Executethe_GTS control method, passing an argument that indicates the sleeping state to be entered
(1, 2, 3, or 4 representing S1, S2, S3, and $4).

7. If entering S1, S2, or S3, flush the processor caches.

8. If not entering SABIOS, set the SLP_EN bit to start the sleeping sequence. (This actually occurs on the
same write operation that programsthe SLP_TY Px field inthe PM1_CNT register.) If entering
SABIOS, writethe S4BIOS_REQ value into the SMI_CMD port.

9. On systems containing processors without a hardware mechanism to place the processor in alow-
power state, execute appropriate native instructions to place the processor in alow-power state.

The _PTS control method provides the BIOS a mechanism for performing some housekeeping, such as
writing the sleep type value to the embedded controller, before entering the system sleeping state. Control
method execution occurs “just prior” to entering the sleeping state and is not an event synchronized with
the write to the PM1_CNT register. Execution can take place several seconds prior to the system actually
entering the sleeping state. As such, no hardware power-plane sequencing takes place by execution of the
_PTS control method.

Upon waking, the _BFS control method is executed. OSPM then executes the _WAK control method. This
control method executes OEM -specific ASL/AML code that can search for any devices that have been
added or removed during the sleeping state.

The following sections describe the sleeping state attributes.

Compag/I ntel/Microsoft/Phoenix/T oshiba

228 Advanced Configuration and Power Interface Specification

9.1.1 S1 Sleeping State

The S1 state is defined as alow wake-latency sleeping state. In this state, all system context is preserved
with the exception of CPU caches. Before setting the SLP_EN hit, OSPM will flush the system caches. If
the platform supports the WBINV D instruction (as indicated by the WBINVD and WBINVD_FLUSH
flagsinthe FADT), OSPM will execute the WBINVD instruction. The hardware is responsible for
maintaining all other system context, which includes the context of the CPU, memory, and chipset.

Examples of S1 sleeping state implementation alternatives follow.

9.1.1.1 Example 1: S1 Sleeping State Implementation

This examplereferences an | A processor that supports the stop grant state through the assertion of the
STPCLK# signal. When SLP_TY Px is programmed to the S1 value (the OEM chooses avalue, which is
then placed in the_S1 object) and the SLP_ENX bit is subsequently set, the hardware can implement an S1
state by asserting the STPCLK# signal to the processor, causing it to enter the stop grant state.

In this case, the system clocks (PCI and CPU) are still running. Any enabled wake event causes the
hardware to de-assert the STPCLK# signal to the processor whereby OSPM must first invalidate the CPU
caches and then transition back into the working state.

9.1.1.2 Example 2: S1 Sleeping State Implementation

When SLP_TY Px is programmed to the S1 value and the SLP_ENX bit is subsequently set, the hardware

will implement an S1 sleeping state transition by doing the following:

1. Placing the processor into the stop grant state.

2. Stopping the processor’ s input clock, placing the processor into the stop clock state.

3. Placing system memory into a self -refresh or suspend-refresh state. Refresh is maintained by the
memory itself or through some other reference clock that is not stopped during the sleeping state.

4. Stopping all system clocks (asserts the standby signal to the system PLL chip). Normally the RTC will
continue running.

Inthiscase, al clocksin the system have been stopped (except for the RTC). Hardware must reverse the
process (restarting system clocks) upon any enabled wake event whereby OSPM must first invalidate the
CPU caches and then transition back into the working state.

9.1.2 S2 Sleeping State

The S2 stateis defined as alow wake latency sleep state. This state is similar to the S1 sleeping state where
any context except for system memory may be lost. Additionally, control starts from the processor’ s reset
vector after the wake event. Before setting the SLP_EN bit, OSPM will flush the system caches. If the
platform supports the WBINVD instruction (as indicated by the WBINVD and WBINVD_FLUSH flagsin
the FADT), OSPM will execute the WBINVD instruction. The hardware is responsible for maintaining
chip set and memory context. An example of an S2 sleeping state implementation follows.

9.1.2.1 Example: S2 Sleeping State Implementation

When the SLP_TY Px register(s) are programmed to the S2 value (found in the_S2 object) and the
SLP_EN bit is set, the hardware will implement an S2 sleeping state transition by doing the following:
1. Stopping system clocks (the only running clock isthe RTC).

2. Placing system memory into a self -refresh or suspend-refresh state.

3. Powering off the CPU and cache subsystem.

Inthis case, the CPU is reset upon detection of the wake event; however, core logic and memory maintain
their context. Execution control starts from the CPU’ s boot vector. The BIOS is required to:
Program the initial boot configuration of the CPU (such as the CPU’s MSR and MTRR registers).
Initialize the cache controller to itsinitial boot size and configuration.
Enable the memory controller to accept memory accesses.
Jump to the waking vector.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 229

9.1.3 S3 Sleeping State

The S3 state is defined as alow wake-latency sleep state. From the software viewpoint, this stateis
functionally the same as the S2 state. The operational differenceisthat some Power Resources that may
have been |left ON in the S2 state may not be available to the S3 state. As such, some devices may beina
lower power state when the system isin S3 state than when the system isin the S2 state. Similarly, some
device wake events can function in S2 but not S3. An example of an S3 sleeping state implementation
follows.

9.1.3.1 Example: S3 Sleeping State Implementation

When the SLP_TY Px register(s) are programmed to the S3 value (found in the_S3 object) and the

SLP_EN bit is set, the hardware will implement an S3 sleeping state transition by doing the following:

1. Placing the memory into alow-power auto-refresh or self-refresh state.

2. Devicesthat are maintaining memory isolating themselves from other devicesin the system.

3. Removing power from the system. At this point, only devices supporting memory are powered
(possibly partially powered). The only clock running in the system isthe RTC clock.

In this case, the wake event repowers the system and resets most devices (depending on the
implementation).

Execution control starts from the CPU’ s boot vector. The BIOS isrequired to:

1. Program theinitial boot configuration of the CPU (such asthe MSR and MTRR registers).
2. Initialize the cache controller to itsinitial boot size and configuration.

3. Enable the memory controller to accept memory accesses.

4. Jump to the waking vector.

Notice that if the configuration of cache memory controller islost while the system is sleeping, the BIOSis
reguired to reconfigure it to either the pre-sleeping state or theinitial boot state configuration. The BIOS
can store the configuration of the cache memory controller into the reserved memory space, where it can
then retrieve the values after waking. OSPM will call the _PTS method once per session (prior to sleeping).

The BIOS is also responsible for restoring the memory controller’s configuration. If this configuration data
isdestroyed during the S3 sleeping state, then the BIOS needs to store the pre-sleeping state or initial boot
state configuration in anon-volatile memory area (as with RTC CMOS RAM) to enable it to restore the
values during the waking process.

When OSPM re-enumerates buses coming out of the S3 sleeping state, it will discover any devices that
have been inserted or removed, and configure devices as they are turned on.

9.1.4 S4 Sleeping State

The $4 sleeping state is the lowest-power, longest wake-latency sleeping state supported by ACPI. In order
to reduce power to aminimum, it is assumed that the hardware platform has powered off all devices.
Because thisis a sleegping state, the platform context is maintained. Depending on how the transition into
the $4 sleeping state occurs, the responsibility for maintaining system context changes. S4 supports two
entry mechanisms: OS initiated and BIOS-initiated. The OSPM -initiated mechanism is similar to the entry
into the S1-S3 sleeping states; OSPM driver writesthe SLP_TY Px fields and setsthe SLP_EN bit. The
BIOS-initiated mechanism occurs by OSPM transferring control to the BIOS by writing the S4BIOS_REQ
valueto the SMI_CMD port.

In OSPM -initiated S4 sleeping state, OSPM isresponsible for saving all system context. Before entering
the $4 state, OSPM will save context of all memory with the exception of memory reported as
typeAddressRangeReserved (see section 15, “ System Address Map Interfaces,” for more information).
Upon waking, OSPM will then restore the system context. When OSPM re-enumerates buses coming out of
the $4 sleeping state, it will discover any devices that have come and gone, and configure devices as they
areturned on.

Compag/I ntel/Microsoft/Phoenix/T oshiba

230 Advanced Configuration and Power Interface Specification

In the BIOS-initiated $4 sleeping state, OSPM is responsible for the same system context as described in
the S3 sleeping state (BIOS restores the memory and some chip set context). The S4BIOS transition
transfers control to the BIOS, allowing it to save context to non-volatile memory (such as adisk partition).

9.1.4.1 Operating System-Initiated S4 Transition

If OSPM supports OSPM -initiated $4 transition, it will not generate a BIOS-initiated $4 transition.
Platformsthat support the BIOS-initiated S4 transition also support OSPM -initiated $4 transition.

OSPM -initiated S4 transition isinitiated by OSPM by saving system context, writing the appropriate values
tothe SLP_TY Px register(s), and setting the SLP_EN bit. Upon exiting the S4 sleeping state, the BIOS
restores the chipset to its POST condition, updates the hardware signature (described later in this section),
and passes control to OSPM through anormal boot process.

When the BIOS builds the ACPI tables, it generates a hardware signature for the system. If the hardware
configuration has changed during an OS-initiated S4 transition, the BIOS updates the hardware signature in
the FACStable. A change in hardware configuration is defined to be any change in the platform hardware
that would cause the platform to fail when trying to restore the S4 context; this hardware is normally
limited to boot devices. For example, changing the graphics adapter or hard disk controller whilein the $4
state should cause the hardware signature to change. On the other hand, removing or adding a PC Card
device from a PC Card slot should not cause the hardware signature to change.

9.1.4.2 The S4BIOS Transition

The BIOS-initiated $4 transition begins with OSPM writing the S4BIOS_REQ value into the SMI_CMD
port (as specified in the FADT). Once gaining control, the BIOS then saves the appropriate memory and
chip set context, and then places the platform into the $4 state (power off to all devices).

Inthe FACS memory table, thereisthe S4BIOS _F bit that indicates hardware support for the BIOS
initiated $4 transition. If the hardware platform supports the SABIOS state, it setsthe SABIOS _F flag
within the FACS memory structure prior to booting the OS. If the S4BIOS_F flag in the FACS table is set,
thisindicates that OSPM can request the BIOS to transition the platform into the S4B1OS sleeping state by
writing the SABIOS_REQ value (found in the FADT) to the SMI_CMD port (identified by the SMI_CMD
valueinthe FADT).

Upon waking the BIOS, software restores memory context and jumps to the waking vector (similar to wake
from an S3 state). Coming out of the S4BIOS state, the BIOS must only configure boot devices (so it can
read the disk partition where it saved system context). When OSPM re-enumerates buses coming out of the
SABIOS state, it will discover any devices that have come and gone, and configure devices asthey are
turned on.

9.1.5 S5 Soft Off State

The S5 soft off stateis used by OSPM to turn the machine off. Notice that the S5 state is not a sleeping
state (it isa G2 state) and no context is saved by OSPM or hardware. Also notice that from a hardware
perspective, the 4 and S5 states are nearly identical. When initiated, the hardware will sequence the
system to a state similar to the off state. The hardware has no responsibility for maintaining any system
context (memory or |/O); however, it does allow power on due to a power button press or wake event
(Remote Power On event). Upon power on, the BIOS does normal power-on reset, |oads the boot sector,
and executes (but not the waking vector, asall ACPI table context islost when entering the S5 state).

Compag/I ntel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 231

9.1.6 Transitioning from the Working to the Sleeping State

On atransition of the system from the working to the sleeping state, the following occurs:

1
2.

13.
14.
15.

16.
17.

OSPM decides (through a policy scheme) to place the system into the sleeping state.

OSPM examines all devices enabled to wake the system and determines the deepest possible sleeping
state the system can enter to support the enabled wake functions. The _PRW named object under each
deviceis examined, as well asthe power resource object it pointsto.

OSPM places all device driversinto their respective Dx state. If the device is enabled for wake, it
enters the Dx state associated with the wake capability. If the device is not enabled to wake the system,
it entersthe D3 state.

OSPM executesthe _PTS control method, passing an argument that indicates the desired sleeping state
(1, 2, 3, or 4 representing S1, S2, S3, and $4).

OSPM saves any other processor’ s context (other than the local processor) to memory.

OSPM writes the waking vector into the FACS table in memory.

OSPM executesthe _GTS control method, passing an argument that indicates the sleeping state to be
entered (1, 2, 3, or 4 representing S1, S2, S3, and $4).

OSPM clearsthe WAK_STSinthe PM1la STSand PM1b_STSregisters.

OSPM saves the local processor’s context to memory.

OSPM flushes caches (only if entering S1, S2 or S3).

. OSPM sets GPE enable registers to ensure that all appropriate wake signals are armed.

If entering an $4 state using the S4B1OS mechanism, OSPM writes the S4BIOS_REQ value (from the
FADT) to the SMI_CMD port. This passes control to the BIOS, which then transitions the platform
into the S4BIOS state.

If not entering an S4BIOS state, then OSPM writes SLP_TY Pa (from the associated sleeping object)
with the SLP_ENabit set tothe PM1a CNT register.

OSPM writes SLP_TYPb with the SLP_EN hit set to the PM1b_CNT register.

On systems containing processors without a hardware mechanism to place the processor in a low-
power state, OSPM executes appropriate native instructions to place the processor in alow-power
state.

OSPM loops on the WAK_STSbit (in boththe PM1a CNT and PM1b_CNT registers).

The system enters the specified sleeping state.

Note: thisis accomplished after step 14 or 15 above.

9.1.7 Transitioning from the Working to the Soft Off State

On atransition of the system from the working to the soft off state, the following occurs:

O AWM

OSPM executesthe _PTS control method, passing the argument 5.

OSPM prepares its components to shut down (flushing disk caches).

OSPM executes the _GTS control method, passing the argument 5.

OSPM writes SLP_TY Pa (from the_S5 object) with the SLP_ENa bit set to the PM1a_CNT register.
OSPM writes SLP_TYPb (from the_S5 object) with the SLP_END bit set to the PM1b_CNT register.
The system enters the Soft Off state.

Compag/I ntel/Microsoft/Phoenix/T oshiba

232 Advanced Configuration and Power Interface Specification

9.2 Flushing Caches

Before entering the S1, S2 or S3 sleeping states, OSPM isresponsible for flushing the system caches. ACPI
provides a number of mechanismsto flush system caches. These include:
- Using anative instruction (for example, the IA32 WBINVD instruction) to flush and invalidate
platform caches.
WBINVD_FLUSH flag set (1) inthe FADT indicates the system provides this support level.
Using the IA32 instruction WBINVD to flush but not invalidate the platform caches.
WBINVD flag set (1) in the FADT indicates the system provides this support level.

The manual flush mechanism has two caveats:
Largest cacheis1 MB in size (FLUSH_SIZE is a maximum value of 2 MB).
No victim caches (for which the manual flush algorithm is unreliable).

Processors with built-in victim caches will not support the manual flush mechanism and are therefore
required to support the WBINV D mechanism to use the S2 or S3 state.

The manual cache-flushing mechanism relies on thetwo FADT fields:
FLUSH_SIZE. Indicates twice the size of the largest cache in bytes.
FLUSH_STRIDE. Indicates the smallest line size of the cachesin bytes.

The cache flush size valueistypically twice the size of the largest cache size, and the cache flush stride
valueistypically the size of the smallest cache line size in the platform. OSPM will flush the system caches
by reading a contiguous block of memory indicated by the cache flush size.

9.3 Initialization

This section covers the initialization sequences for an ACPI platform. After areset or wake from an S2, S3,
or $4 sleeping state (as defined by the ACPI sleeping state definitions), the CPU will start execution from
its boot vector. At this point, the initialization software has many options, depending on what the hardware
platform supports. This section describes at a high level what should be done for these different options.
Figure 9-2illustrates the flow of the boot-up software.

Compag/I ntel/Microsoft/Phoenix/Toshiba

< Boot Vector)

Waking and Sleeping 233

Initialize CPU

Init Memory Controller
Enable Memory
Configure Caches
Enable Caches
Initialize Chipset

SLP_TYP=S3

Initialize CPU
Enable Memory
Configure Caches

?

No

LP_TYP=
S4BIOS
?

No

POST

A

Initialize Memory
Image

* System

* Reserved

* ACPI NVS
ACPI Reclaim
ACPI Tables
MPS Tables

* % X F

(Boot O; Loader)

Yes

Restore memory

A

Image

Jump To
Waking Vector

Figure9-2 BIOS Initialization

Compag/I ntel/Microsoft/Phoenix/T oshiba

234 Advanced Configuration and Power Interface Specification

The processor will start executing at its power-on reset vector when waking from an S2, S3, or $4 sleeping
state during a power-on sequence or during a hard or soft reset. The sleeping attributes are such that the
power-on sequence (and hard and soft reset) is similar to waking from an $4 state, the system is configured
to aboot configuration, and then OSPM loader is called. Waking in the S2, S3, or $4 states only requires a
partial configuration by the hardware, followed by jumping to the firmware waking vector (found in the
FACS).

First, the BIOS determines whether thisis awake from S2 or S3 by examining the SLP_TY P register
value, which is preserved between sleeping sessions. If thisisan S2 or S3 wake, then the BIOS restores
minimum context of the system before jumping to the waking vector. Thisincludes:
CPU configuration. BIOS restores the pre-sleep configuration or initial boot configuration of each
CPU (MSR, MTRR, BIOS update, SMBase, and so on). Interrupts must be disabled (for 1A -32
processors, disabled by CLI instruction).
Memory controller configuration. If the configuration islost during the sleeping state, the BIOS
initializes the memory controller to its pre-sleep configuration or initial boot configuration.
Cache memory configuration. If the configuration is lost during the sleeping state, the BIOS
initializes the cache controller to its pre-sleep configuration or initial boot configuration.
Functional device configuration. The BIOS doesn’t need to configure/restore context of functional
devices such as a network interface (even if it is physically included in chipset) or interrupt controller.
OSPM isresponsible for restoring all context of these devices. The only requirement for the hardware
and BIOS isto ensure that interrupts are not asserted by devices when the control is passed to OS.
ACPI registers. SCI_EN bit must be set. All event status/enable bits (PM1x_STS, PM1x_EN,
GPEx_STS and GPEx_EN) nust not be changed by BIOS.

Note: The BIOS may reconfigure the CPU, memory controller and cache memory controller to either the
pre-sleeping configuration or the initial boot configuration. OSPM must accommodate both configurations.

When waking from an S4B10OS sleeping state, the BIOS initializes a minimum number of devices such as
CPU, memory, cache, chipset and boot devices. After initializing these devices, the BIOS restores memory
context from non-volatile memory such as hard disk, and jumps to waking vector.

As mentioned previously, waking from an $4 state is treated the same as a cold boot: the BIOS runs POST
and then initializes memory to contain the ACPI system description tables. After it has finished this, it can
call OSPM loader, and control is passed to OSPM.

When waking from $4 (either S40S or S4BI0OS), the BIOS may optionally set SCI_EN bit before passing
control to OSPM. In this case, interrupts must be disabled (for | A-32 processors, disabled CLI instruction)
until the control is passed to OSPM and the chipset must be configured in ACPI mode.

9.3.1 Placing the System in ACPI Mode

When aplatform initializes from a cold boot (mechanical off or from an $4 or S5 state), the hardware
platform may be configured in alegacy configuration. From these states, the BIOS software initializes the
computer asit would for alegacy operating system. When control is passed to the operating system, OSPM
will check the SCI_EN bit and if it is not set will then enable ACPI mode by first finding the ACPI tables,
and then by generating awrite of the ACPI_ENABLE valueto the SMI_CMD port (as described in the
FADT). The hardware platform will set the SCI_EN bit to indicate to OSPM that the hardware platform is
now configured for ACPI.

Note: Before SCI is enabled, no SCI interrupt can occur. Nor can any SCI interrupt occur immediately after
ACPI ison. The SCI interrupt can only be signaled after OSPM has enabled one of the GPE/PM1 enable
bits.

When the platform is waking froman S1, S2 or S3 state, OSPM assumes the hardware is already in the
ACPI mode and will not issue an ACPI_ENABLE command to the SMI_CMD port.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 235

9.3.2 BIOS Initialization of Memory

During a power-on reset, an exit from an $4 sleeping state, or an exit from an S5 soft-off state, the BIOS
needs to initialize memory. This section explains how the BIOS should configure memory for use by a
number of featuresincluding:

ACPI tables.

BIOS memory that wants to be saved across $4 sleeping sessions and should be cached.

B1OS memory that does not require saving and should be cached.

For example, the configuration of the platform’s cache controller requires an area of memory to store the
configuration data. During the wake sequence, the BIOS will re-enable the memory controller and can then
use its configuration data to reconfigure the cache controllers. To support these three items, | A -PC-based
systems contain system address map reporting interfaces that return the following memory range types:

- ACPI Reclaim Memory. Memory identified by the BIOS that contains the ACPI tables. This memory
can be any place above 8 MB and contains the ACPI tables. When OSPM isfinished using the ACPI
tables, it isfreeto reclaim this memory for system software use (application space).

ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being reserved by
the BIOS for its use. OSPM is required to tag this memory as cacheable, and to save and restore its
image before entering an S4 state. Except as directed by control methods, OSPM is not allowed to use
this physical memory. OSPM will call the _PTS control method some time before entering a sleeping
state, to allow the platform’s AML code to update this memory image before entering the sleeping
state. After the system awakes from an $4 state, OSPM will restore this memory areaand call the
_WAK control method to enable the BIOS to reclaim its memory image.

Note: The memory information returned from the system address map reporting interfaces should be the
same before and after an $4 sleep.

When the system is first booting, OSPM will invoke E820 interfaces on | A-PC-based legacy systems or the
GetMemoryMap() interface on EFI-enabled systems to obtain a system memory map (see section 15,
“System Address Map Interfaces,” for more information). As an example, the following memory map
represents atypical |A-PC-based legacy platform’s physical memory map.

4GB
Boot ROM
Boot Base
No Memory
Top of Memoryl
Above 8 MB
RAM
8 MB
Contiguous
RAM
1MB
Compatibility
Holes
640 KB
Compatibility
Memory
0

Figure9-3 Example Physical Memory Map

Compag/I ntel/Microsoft/Phoenix/T oshiba

236 Advanced Configuration and Power Interface Specification

The names and attributes of the different memory regions are listed below:

- 0-640 KB. Compatibility Memory. Application executable memory for an 8086 system.
640 KB—1 MB. Compatihility Holes. Holes within memory space that allow accesses to be directed to
the PC-compatible frame buffer (A0000h-BFFFFh), to adapter ROM space (C0000h-DFFFFh), and to
system BI1OS space (EO000h-FFFFFh).
1 MB-8 MB. Contiguous RAM. An area of contiguous physical memory addresses. Operating systems
may require this memory to be contiguous in order for itsloader to load the OS properly on boot up.
(No memory-mapped /O devices should be mapped into this area.)
8 MB-Top of Memoryl. This area contains memory to the “top of memory1” boundary. In this area,
memory-mapped /O blocks are possible.
Boot Base-4 GB. This area contains the bootstrap ROM.

The BIOS should decide where the different memory structures belong, and then configure the E820
handler to return the appropriate values.

For this example, the BIOS will report the system memory map by E820 as shown in Figure 9-4. Notice
that the memory range from 1 MB to top of memory is marked as system memory, and then asmall range
is additionally marked as ACPI reclaim memory. A legacy OS that does not support the E820 extensions
will ignore the extended memory range calls and correctly mark that memory as system memory.

Reserved Boot ROM
Memory
No Memory
Available
Address space 4 Top of Memory2
Reserved Reserved
Memory
ACPINVS NVS Memory
Memory Top of Memoryl
Above 8 Mbyte
RAM
ACPI Reclaim
Memory ACPI Tables - System Memory (E820)
- Reserved Memory (E820)
8 MBytes . - ACPI Reclaim Memory (E820)
Contiguous
System Memory RAQM - ACPI NVS Memory (E820)
Reserved c — 1 MByte
Memory ompatibility
Holes

Available
Address space

640 KByte

Compatibility

System Memory Memory

0

Figure9-4 Memory as Configured after Boot

Also, from the Top of Memory1 to the Top of Memory2, the BIOS has set aside some memory for its own
use and has marked as reserved both ACPI NV S Memory and Reserved Memory. A legacy OS will throw
out the ACPI NVS Memory and correctly mark this as reserved memory (thus preventing this memory
range from being allocated to any add-in device).

Compag/I ntel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 237

OSPM will call the PTS control method prior to initiating a sleep (by programming the sleep type,
followed by setting the SLP_EN bit). During a catastrophic failure (where the integrity of the AML code
interpreter or driver structureis questionable), if OSPM decides to shut the system off, it will not issue a
_PTS, but will immediately issue a SLP_TY P of “soft off” and then set the SLP_EN bit. Hence, the
hardware should not rely solely on the _PTS control method to sequence the system to the “ soft of f” state.
After waking from an $4 state, OSPM will restore the ACPI NVS memory image and then issue the_ WAK
control method that informs BIOS that its memory image is back.

9.3.3 OS Loading

At this point, the BIOS has passed control to OSPM, either by using OSPM boot |oader (aresult of waking
from an S4/S5 or boot condition) or OSPM waking vector (aresult of waking from an S2 or S3 state). For
the Boot OS Loader path, OSPM will get the system address map via one of the mechanisms describein
section 15, “ System Address Map Interfaces.” If OSPM is booting from an $4 state, it will then check the
NV Simagefile s hardware signature with the hardware signature within the FACStable (built by BIOS) to
determine whether it has changed since entering the sleeping state (indicating that the platforms
fundamental hardware configuration has changed during the current sleeping state). If the signature has
changed, OSPM will not restore the system context and can boot from scratch (from the S4 state). Next, for
an S4 wake, OSPM will check the NV Sfile to see whether it isvalid. If valid, then OSPM will load the
NV Simage into system memory. Next, OSPM will check the SCI_EN bit and if it is not set, will write the
ACPI_ENABLE value to the SMI_CMD register to switch into the system into ACPI mode and will then
reload the memory image from the NV Sfile.

Compag/I ntel/Microsoft/Phoenix/T oshiba

238 Advanced Configuration and Power Interface Specification

(Boot OS Loader) os
Waking Vector

R
Get Memory Map
(E820)

* ACPINVS

* ACPI Reclaim
* Reserved

* System

* Reserved

Sanity Check
Compare memory and
volume SSN

No

Turn on ACPI

R
Execute _BFS

Execute _WAK

Figure9-5 OS Initialization

If an NV Simage file did not exist, then OSPM loader will load OSPM from scratch. At this point, OSPM
will generate a_WAK call that indicates to the BIOS that its ACPI NV S memory image has been

successfully and completely updated.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 239

9.3.4 Exiting ACPI Mode

For machines that do not boot in ACPI mode, ACPI provides a mechanism that enables the OSto disable
ACPI. The following occurs:

1
2.
3.
4

5.
6.

OSPM unloads all ACPI drivers (including the ACPI driver).

OSPM disables all ACPI events.

OSPM finishes using al ACPI registers.

OSPM issues an I/O access to the port at the address contained in the SMI_CMD field (in the FADT)
with the value contained in the ACPI_DISABLE field (in the FADT).

BIOS then remaps all SCI eventsto legacy events and resetsthe SCI_EN bit.

Upon seeing the SCI_EN bit cleared, the ACPI OS enters the legacy OS mode.

When and if the legacy OS returns control to the ACPI OS, if the legacy OS has not maintained the ACPI
tables (in reserved memory and ACPI NV S memory), the ACPI OS will reboot the system to allow the
BIOSto re-initialize the tables.

Compag/I ntel/Microsoft/Phoenix/T oshiba

240 Advanced Configuration and Power Interface Specification

10 ACPI-Specific Device Objects

This section specifiesthe ACPI device-specific objects. The system status indicator objects, declared under
the_SI scope in the ACPI Namespace, are also specified in this section.

The device-specific objects specified in this section are objects for the following types of devices:

- Control method battery devices (for more information about Control Method Battery devices, see
section 11.2, “Control Method Batteries”).
Control method lid devices (for more information about control method lid devices, see section 10.3,
“Control Method Lid Device").
Control method power and sleep button devices (for more information about control method power and
sleep button devices, see section 4.7.2.2, “Buttons”).
Embedded controller devices (for more information about embedded controller devices, see section 13,
“ACPI Embedded Controller Interface Specification™).
System Management Bus (SMBus) host controller (for more information, see section 13.9, “SMBus
Host Controller Interface via Embedded Controller”).
Fan devices (for more information about fan devices, see section 12, “ Thermal Management”).
Generic bus bridge devices.
IDE control methods.

For alist of the ACPI Plug and Play ID valuesfor all these devices, see section 5.6.4, “Device Class-
Specific Objects.”
10.1 \ SI System Indicators

ACPI provides an interface for avariety of simple and icon-style indicators on a system. All indicator
controlsarein the_SI portion of the namespace. The following table lists all defined system indicators.
(Noticethat there are also per-device indicators specified for battery devices).

Table10-1 System Indicator Control Methods

Object Description

SST System status indicator

_MSG M essages waiting indicator

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI-Specific Device Objects 241

10.1.1 _SST (System Status)
Operating software invokes this control method to set the system status indicator as desired.

Arguments:
0— No system state indication. Indicator off.

1-Working

2-Waking

3-Sleeping. Used to indicate system state S1, S2 or S3.
4-Sleeping with context saved to non-volatile storage.

10.1.2 _MSG (Message)
This control method sets the system’ s message-waiting statusindicator.

Arguments:
0 Number of messages waiting

10.2 Battery Device

A battery deviceisrequired to either have an ACPI Smart Battery Table or a Control Method Battery
interface. In the case of an ACPI Smart Battery Table, the Definition Block needsto include a Bus/Device
Package for the SMBus host controller. Thiswill install an OS specific driver for the SMBus, which in turn
will locate the Smart Battery System Manager or Smart Battery Selector and Smart Battery Charger SMBus
devices.

The Control Method Battery interfaceis defined in section 11.2, “ Control Method Batteries.”

10.3 Control Method Lid Device

For systemswith alid, thelid status can either be implemented using the fixed register space as defined in
section 4, “ ACPI Hardware Specification,” or implemented in AML code as a control method lid device.

To implement a control method lid device, implement AML code that issues notifications for the device
whenever the lid status has changed. The _LID control method for the lid device must be implemented to
report the current state of the lid as either opened or closed.

Thelid device can support _PRW and _PSW methods to select the wake functions for the lid when the lid
transitions from closed to opened.

The Plug and Play 1D of an ACPI control method lid device is PNPOCOD.
Table10-2 Control Method Lid Device

Object Description

_LID Returnsthe current status of thelid.

10.3.1 _LID
Evauatesto the current status of thelid.

Result Code:
Zero: Thelidis closed
Non-zero: Thelidisopen

Compag/I ntel/Microsoft/Phoenix/T oshiba

242 Advanced Configuration and Power Interface Specification

10.4 Control Method Power and Sleep Button Devices

The system’ s power or sleep button can either be implemented using the fixed register space as defined in
section 4.7.2.2, “Buttons,” or implemented in AML code as a control method power button device. In either
case, the power button override function or similar unconditional system power or reset functionality is still
implemented in external hardware.

To implement a control method power-button or sleep-button device, implement AML code that delivers
two types of notifications concerning the device. The first isNotify (Object, 0x80) to signal that the button
was pressed while the system was in the SO state to indicate that the user wants the machine to transition
from SO to some sleeping state. The other notification isNotify (Object, 0x2) to signal that the button was
pressed while the system wasin an S1 to $4 state and to cause the system to wake. When the button is used
to wake the system, the wake notification (Notify (Object, 0x2)) must occur after OSPM actually wakes,
and a button-pressed notification (Notify (Object, 0x80)) must not occur.

The Wake Notification indicates that the system is awake because the user pressed the button andtherefore
acomplete system resume should occur (for example, turn on the display immediately, and so on).

10.5 Embedded Controller Device

Operation of the embedded controller host controller register interface requires that the embedded
controller driver has ACPI-specific knowledge. Specifically, the driver needs to provide an “operational
region” of itsembedded controller address space, and needs to use a general-purpose event (GPE) to
service the host controller interface. For more information about an ACPI-compatible embedded controller
device, see section 13, “ACPI Embedded Controller Interface Specification.”

The embedded controller device object providesthe HID of an ACPI-integrated embedded controller
device of PNPOCO09 and the host controller register locations using the device standard methods. In
addition, the embedded controller must be declared as a named device object that includes a set of control
methods. For more information, see section 13.11, “Defining an Embedded Controller Devicein ACPI
Namespace”).

10.6 Fan Device

A fan deviceis assumed to bein operation when it isin the DO state. Thermal zones reference fan device(s)
as being responsible primarily for cooling within that zone. Notice that multiple fan devices can be present
for any one thermal zone. They might be actual different fans, or they might be used to implement one fan

of multiple speeds (for example, by turning both “fans” on the one fan will run full speed).

The Plug and Play 1D of afan deviceis PNPOCOB. For more information about fan devices, see section 12,
“Thermal Management.”

10.7 Generic ISA Bus Device

A generic | SA bus deviceisabridge that does not require a special OS driver because the bridge does not
provide or require any features not described within the normal ACPI device functions. The resources the
bridge requires are specified vianormal ACPI resource mechanisms. Device enumeration for child devices
is supported via ACPI namespace device enumeration and OS drivers require no other features of the bus.
Such a bridge deviceisidentified with the Plug and Play ID of PNPOAO5 or PNPOA06.

A generic bus bridge deviceistypically used for integrated bridges that have no other means of controlling
them and that have a set of well -known devices behind them. For example, a portable computer can have a
“generic bus bridge” known as an EIO bus that bridges to some number of Super-1/0 devices. The bridged
resources are likely to be positively decoded as either afunction of the bridge or the integrated devices. In
this example, a generic bus bridge device would be used to declare the bridge then child devices would be
declared below the bridge; representing the integrated Super-1/0 devices.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI-Specific Device Objects 243

10.8 IDE Controller Device

Most device drivers can save and restore the registers of their device. For IDE controllers and drives, thisis
not true because there are several drive settings for which ATA does not provide mechanismsto read.
Further, there is no industry standard for setting timing information for IDE controllers. Because of this,
ACPI interface mechanisms are necessary to provide the operating system information about the current
settings for the drive and channel, and for setting the timing for the channel.

OSPM and the IDE driver will follow these steps when powering off the IDE subsystem:

1. ThelDE driver will call the_GTM control method to get the current transfer timing settings for the
IDE channel. Thisincludes information about DMA and PIO modes.

2. ThelDE driver will call the standard OS servicesto power down the drives and channel.

3. Asaresult, OSPM will execute the appropriate _PS3 methods and turn off unneeded power resources.

To power on the IDE subsystem, OSPM and the IDE driver will follow these steps:

1. ThelDEdriver will call the standard OS services to turn on the drives and channel.

2. Asaresult, OSPM will execute the appropriate _PS0 methods and turn on required power resources.

3. ThelDEdriver will call the_STM control method passing in transfer timing settings for the channel,
aswell asthe ATA drive ID block for each drive on the channel. The _STM control method will
configure the IDE channel based on this information.

4. For each drive on the IDE channel, the IDE driver will run the _GTF to determine the ATA commands
reguired to reinitialize each drive to boot up defaults.

5. ThelDE driver will finish initializing the drives by sending these ATA commandsto the drives,
possibly modifying or adding commands to suit the features supported by the operating system.

The following shows the namespace for these objects:

_SB - System bus
PCIO - PCI bus
IDE1 - IDE channel
_ADR - Indicates address of the channel on the PCI bus
_GTM - Control method to get current IDE channel settings
_STM - Control method to set current IDE channel settings
_PRO - Power resources needed for DO power state
DRV1 -DriveO
_ADR - Indicates address of master IDE device
_GTF - Control method to get task file
DRV2 -Drivel
_ADR -Indicates address of slave IDE device
_GTF - Control method to get task file
IDE2 - Second IDE channel
_ADR -Indicates address of the channel on the PCI bus
_GTM - Control method to get current IDE channel settings
_STM - Control method to set current IDE channel settings

Compag/I ntel/Microsoft/Phoenix/T oshiba

244 Advanced Configuration and Power Interface Specification

_PRO

- Power resources needed for DO power state

DRV1 -DriveO
_ADR -Indicates address of master IDE device
_GTF - Control method to get task file

DRV2 -Drivel
_ADR -Indicates address of slave IDE device
_GTF - Control method to get task file

The sequential order of operationsisasfollows:

Powering down:

Cal _GTM.

Power down drive (calls _PS3 method and turns off power planes).
Powering up:

Power up drive (calls_PS0 method if present and turns on power planes).

Call _STM passing info from _GTM (possibly modified), with ID data from

each drive.
Initialize the channel.
May modify the results of _GTF.
For each drive:
Cal _GTF.
Execute task file (possibly modified).
Table 10-3 |IDE Specific Controls
Object Description
_GTF Optional control method to get the ATA task file needed to re-initialize the drive to boot up
defaults.
_GTM Optional control method to get the IDE controller timing information.
_ST™M Optional control method to set the IDE controller’ s transfer timing settings.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI-Specific Device Objects 245

10.8.1 _GTF (Get Task File)

This Control Method returns a buffer containing the ATA commands used to restore the drive to boot up
defaults (that is, the state of the drive after POST). The returned buffer is an array with each element in the
array consisting of 7 8-bit register values (56 bits) corresponding to ATA task registers 1F1 thru 1F7. Each
entry in the array defines acommand to the drive.

Note: ACPI 1.0b defines _GTF as evaluating to abuffer containing a header byte (1-based) that indicates
the number of commands following in the array. The de facto standard OSPM implementations supporting
the _GTF method do not support the ACPI 1.0b definition including this header byte. As such, the _GTF
definition has been updated, removing the header byte for ACPI 2.0.

ATA task file array definition:
Seven register values for command 1
Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
Seven register values for command 2
Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
Seven register values for command 3
Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)

After powering up the drive, the OS will send these commands to the drive, in the order specified. The IDE
driver may modify some of the feature commands or append its own to better tune the drive for OSPM
features before sending the commands to the drive.

This Control Method islisted under each drive device object. _GTF must be called after calling _STM.

Arguments:
None

Result Code:
A buffer that is a byte stream of ATA commands to send to the drive.

Exarrple of the return from _GTF:
Met hod(_GTF, 0x0, Not Serialized)
Ret ur n(GTFO)
ihne(GWFO, Buf f er (Ox1c)
0x03, 0x00, 0x00, 0x00, 0x00, Oxa0, Oxef, 0x03, 0x00, 0x00, 0x00, 0x00,

Oxa0, Oxef, 0x00, 0x10, 0x00, 0x00, 0x00, Oxa0O, Oxc6, O0x00, 0x00, 0x00
0x00, 0x00, Oxa0, 0x91

Compag/I ntel/Microsoft/Phoenix/T oshiba

246 Advanced Configuration and Power Interface Specification

10.8.2 _GTM (Get Timing Mode)
This Control Method returns the current settings for the IDE channel.

This control method is listed under each channel device object.

Arguments:
None
Result Code:
A buffer with the current settings for the IDE channel:
Buffer (){
Pl O Speed 0 / | DWORD
DVA Speed 0 / 1 DWORD
Pl O Speed 1 / | DWORD
DVA Speed 1 / 1 DWORD
Fl ags / | DWORD
}
Table10-4 _GTM Method Result Codes

Field Format Description

PIO Speed 0 DWORD The PO bus-cycle timing for drive 0 in nanoseconds.
OXFFFFFFFF indicates that this mode is not supported by the
channel. If the chipset cannot set timing parameters
independently for each drive, thisfield represents the timing
for both drives.

DMA Speed 0 DWORD The DMA bus-cycle for drive 0 timing in nanoseconds. If Bit
0 of the Flags register is set, this DMA timing isfor
UltraDMA mode, otherwise the timing is for multi-word
DMA mode. OxFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing
parameters independently for each drive, this field represents
the timing for both drives.

PIO Speed 1 DWORD The PIO bus-cycletiming for drive 1 in nanoseconds.
OXFFFFFFFF indicates that this mode is not supported by the
channel. If the chipset cannot set timing parameters
independently for each drive, thisfield must be Oxffffffff.

DMA Speed 1 DWORD The DMA bus-cycle timing for drive 1 in nanoseconds. If Bit
0 of the Flagsregister is set, thisDMA timing is for
UltraDMA mode, otherwise the timing is for multi-word
DMA mode. OxFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing
parameters independently for each drive, thisfield must be
OXFFFFFFFF.

Flags DWORD Mode flags
Bit[0]: 1 indicates using UltraDMA on drive 0
Bit[1]: 1 indicates |OChannel Ready is used on drive O
Bit[2]: 1 indicates using UltraDMA on drive 1
Bit[3]: 1 indicates |OChannelReady is used on drive 1
Bit[4]: 1 indicates chipset can set timing independently for
each drive
Bits[5-31]: reserved (must be 0)

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI-Specific Device Objects 247

10.8.3 _STM (Set Timing Mode)

This Control Method sets the IDE channel’ s transfer timings to the setting requested. The AML codeis
required to convert and set the nanoseconds timing to the appropriate transfer mode settings for the IDE
controller. _STM may also make adjustments so that _ GTF control methods return the correct commands
for the current channel settings.

This control method takes three arguments. Channel timing information (as described in Table 10-4), and
the ATA drive ID block for each drive on the channel. The channel timing information is not guaranteed to
be the same values as returned by _ GTM; the OS may tune these val ues as needed.

The ATA driveID block isthe raw data returned by the Identify Drive, ATA command, which has the
command code “0Oech.” The _STM control method is responsible for correcting for drives that misreport
their timing information.

Arguments:
Arg0 Buffer Channel timing information (formatted as described in table 10-4)

Argl Buffer ATA drivelDE block for drive 0
Arg2 Buffer ATA drivelDE block for drive 1

Result Code:
None

10.9 Floppy Controller Device Objects

10.9.1 FDE (Floppy Disk Enumerate)

Enumerating devices attached to afloppy disk controller isatime-consuming function. In order to speed up
the process of floppy enumeration, ACPI defines an optional enumeration object that is defined directly
under the device object for the floppy disk controller. It returns a buffer of five 32-bit values. Thefirst four
values are Boolean values indicating the presence or absence of the four floppy drivesthat are potentially
attached to the controller. A non-zero value indicates that the floppy deviceis present. The fifth value
returned indicates the presence or absence of atape controller. Definitions of the tape presence value can be
found in Table 10-5.

Arguments:
None

Result Code:
A buffer containing val ues that indicate the presence or absance of floppy devices.

Buf fer (){
Fl oppy O /1 Bool ean DWORD
Fl oppy 1 /1 Bool ean DWORD
Fl oppy 2 /1 Bool ean DWORD
Fl oppy 3 /1 Bool ean DWORD
Tape /1 See table bel ow

Table10-5 TapePresence

Value Description
0 Unknown if deviceis present
1 Deviceis present
2 Deviceis never present
>2 Reserved

Compag/I ntel/Microsoft/Phoenix/T oshiba

248 Advanced Configuration and Power Interface Specification

10.9.2 _FDI (Floppy Disk Information)

This object returns information about afloppy disk drive. Thisinformation is the same as that returned by
the INT 13 Function 08H on |A -PCs.

Result Code:

Package {
Drive Number /1 BYTE
Devi ce Type /1 BYTE
Maxi mum Cyl i nder Nunber /1 WORD
Maxi mum Sect or Nunber /1 WORD
Maxi mum Head Nunber /1 WORD
di sk_specify_1 /1 BYTE
di sk_specify_2 /1 BYTE
di sk_not or _wai t /1 BYTE
di sk_sector_siz /1 BYTE
di sk_eot /1 BYTE
di sk_rw_gap /1 BYTE
di sk_dt | /1 BYTE
di sk_fornt _gap /1 BYTE
disk_fill /1 BYTE
di sk_head_sttl /1 BYTE
di sk_notor_strt /1 BYTE
}

Table10-6 ACPI Floppy Drive Information

Field Format Definition
Drive Number BYTE Asreported by INT 13 Function 08H
Device Type BYTE Asreported by INT 13 Function 08H
Maximum Cylinder |WORD Asreported by INT 13 Function 08H
Number
Maximum Sector WORD Asreported by INT 13 Function 08H
Number
Maximum Head WORD Asreported by INT 13 Function 08H
Number
Disk_specify 1 BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_specify 2 BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_motor_wait BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_sector_siz BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_eot BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_rw_gap BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_dtl BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_formt_gap BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_fill BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_head_sttl BYTE Asreported in ES:D1 from INT 13 Function 08H
Disk_motor_strt BYTE Asreported in ES:D1 from INT 13 Function 08H

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI-Specific Device Objects 249

10.9.3 _FDM (Floppy Disk Drive Mode)

This control method switches the mode (300RPM/360RPM) of all floppy disk drives attached to this
controller. If this control method isimplemented, the platform must reset the mode of all drivesto 300RPM
mode after a Dx to DO transition of the controller.

Arguments:;
0— Set the mode of all drives to 300RPM mode.

1 - Set the mode of all drives to 360RPM mode.
Result Code:

None

10.10 GPE Block Device

The GPE Block deviceis an optional device that allows a system designer to describe GPE blocks beyond
the two that are described in the FADT. Control methods associated with the GPE pins of GPE block
devices exist as children of the GPE Block device, not within the_GPE namespace.

A GPE Block device consumes 1/O or memory address space, as specified by its_PRS or _CRS child
objects. The interrupt vector used by the GPE block does not need to be the same asthe SCI_INT field. The
interrupt used by the GPE block deviceis specified inthe _CRS and _PRS methods associated with the
GPE block.

A GPE Block device must havea_HID or a_CID of “ACPI0006.”

Note: A system designer must describe the GPE block necessary to bootstrap the system inthe FADT asa
GPEOQ/GPEL block. GPE Block devices cannot be used to implement these GPE inputs.

To represent the GPE block associated with the FADT, the system designer needs only to include the
ACPI0006 devicein thetree, and not haveany _CRS, PRS, SRS, or other GPE-specific methods
associated with that block. Any block that does not represent the GPE block of the FADT must contain the
_Lxx, _Exx, _CRS, _PRS, or _SRS methods required to use/program that block. OSPM assumes the first
ACPI0006 device without a_CRSisthe GPE devicethat is associated with the FADT.

/] ASL exanple of root GPE bl ock

Devi ce(\ _SB. PCl 0. GPED) {
Narme(_H D, " ACPI 0006")
Nanme(_Ul D, 1)

}

/1 ASL exanple of a non-root GPE bl ock
Devi ce(\ _SB. PCl 0. GPEL) {
Narme(_H D, " ACPI 0006")
Nanme(_Ul D, 2)
Narme(_CRS, Buffer() {
| O(Decodel6, FQO0, FQ03, 4, 4,)
| RQ Level, ActiveH gh, Shared,) { 5}
}

%vm hod(_L02) { ...}
Met hod(_E07) { ...}

Noticethat it islegal to replace the I/O descriptors with Memory descriptorsif the register is memory
mapped.

If the system must run any GPEs to bootstrap the system (for example, when Embedded Controller events
are required), the associated block of GPEs must be described in the FADT. Thisregister block is not
relocatable and will always be available for the life of the operating system boot.

The GPE block associated with the ACPI0006 device can be stopped, € ected, reprogrammed, and so on.
The system can also have multiple such GPE blocks.

Compag/I ntel/Microsoft/Phoenix/T oshiba

250 Advanced Configuration and Power Interface Specification

10.10.1 Matching Control Methods for General-Purpose Events in a GPE
Block Device

When a GPE Device raises an interrupt, OSPM executes a corresponding control method (as described in
section 5.6.2.2.3, “Queuing the Matching Control Method for Execution™). These control methods (of the
form _Lxx and _Exx) for GPE Devices are not within the_GPE namespace. They are children of the GPE
Block device.

For example:

Devi ce(GPE5) {
Nanme(_H D, “ACPI 0006")

Met hod(_L02) { ...}
Met hod(_E07) { ...}
}

10.11 Module Device

This optional deviceisa container object that acts as a bus node in a namespace. It may contain child
objects that are devices or buses. The module deviceis declared using the ACPI0004 hardware indentifier
(HID).

If the module device contains a_CRS object, the “bus”’ described by this object is assumed to have these
resources available for consumption by its child devices. Any resources not described in the module
device’s_CRS object may not be allocated to child devices.

For example, consider a Module Device containing three child memory devices. If the _CRS object for the
Module Device contains memory from 2 GB through 6 GB, then the child memory devices may only be
assigned addresses within this range.

Example:

Devi ce(\ _SB. NODO) {
Narme(_H D, "ACPI 0004") /1 Modul e devi ce
Nane(_U D, 0)
Nane(_PRS, ResourceTenpl ate() {
Wor dl o(Resour cePr oducer,

M nFi xed, Il _MF
MaxFi xed, , , Il _NAF
0x0000, /1 _GRA
0x0000, /1 _MN
Ox7FFF, /1 _NAX
0x0, /1 _TRA
0x8000) /1 _LEN
DWor dMenor y(Resour cePr oducer , , /1 For Main Mermory + PCl
M nNot Fi xed, Il _MF
MaxNot Fi xed, Il _NAF
Cacheabl e, /Il _NEM
ReadWi t e, Il _RW
OXOFFFFFFF, Il _GRA
0x40000000, /1 _MN
OX7FFFFFFF, /1 _NMAX
0x0, /1 _TRA
0x00000000) /1 _LEN
})

Method(_SRS, 1) { ... }

Method(_CRS, 0) { ... }

Devi ce(MEMD) { /] Main Menory (256MB nodul e)

Narme(_HI D, EI SAI D(" PNPOC80"))

Nane(_U D, 0)

Met hod(_STA, 0) {
/1 1f menory not present --> Return(0x00)
/l Else if menory is disabled --> Return(0x0D)
/1 El se --> Return(0xO0F)

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI-Specific Device Objects 251

Nane(_PRS, ResourceTenpl ate() {
DwWr dmvenory(, ,, ,

Cacheable, // _MEM
ReadWite, // _RW
OXOFFFFFFF, /1 _GRA
0x40000000, // _MN
OX7FFFFFFF, /[_NMAX
0x0, /1 _TRA
0x10000000) // _LEN

1)

Method(_CRS, 0) { ... }

Method(_SRS, 1) { ... }

Method(_DI'S, 0) { }

}
Devi ce(MEML) { /1 Main Menory (512MB nodul e)
Narme(_HI D, El SAl D("PNPOCB0"))
Narme(_U D, 1)
Met hod(_STA, 0) {
/] |If nenory not present --> Return(0x00)
// Else if menory is disabled --> Return(0x0D)
/1 El se --> Return(O0xO0F)

}
Name(_PRS, ResourceTenpl ate() {
Dwr dmvenory(, , , ,

Cacheable, // _MEM
ReadWite, // _RW
OX1FFFFFFF, /1 _GRA
0x40000000, // _MN
OX7FFFFFFF, /1 _MAX
0x0, /1 _TRA
0x20000000) // _LEN

})
Method(_CRS, 0) { ... }
Method(_SRS, 1) { ... }
Met hod(_D'S, 0) { }
}
Devi ce(PCl 0) { /1 PG Root Bridge
Name(_HI D, El SAl D(" PNPOA03"))
Nane(_U D, 0)

Nane(_BBN, 0x00)
Nane(_PRS, ResourceTenplate() {
Wor dBusNunber (Resour cePr oducer
M nFixed, // _MF

MaxFi xed,, // _MAF

0x00, Il “GRA
0x00, /1 "MN
OX7F, 11 _MAX
0x0, /1 _TRA
0x80) /1 _LEN

Wor dl o(Resour cePr oducer,
M nFixed, // _MF

MaxFi xed, ,, // _NAF

0x0000, Il —GRA
0x0000, /1 "MN
0x0CF7, 11 _MBX
0x0, /1 _TRA

0x0CF8) /1 _LEN
Wor dl o(Resour cePr oducer
M nFixed, // _MF

MaxFi xed, ,, // _NMAF

0x0000, Il _GRA
0x0D00, /1 "MN
OX7FFF, Y™
0x0, /1 _TRA

0x7300) /1 _LEN

Compag/I ntel/Microsoft/Phoenix/T oshiba

252 Advanced Configuration and Power Interface Specification

DwWor dMenor y(Resour cePr oducer, ,
M nNot Fi xed, Il _MF
MaxNot Fi xed, /1 _NAF
NonCacheable, // _NMEM
ReadWite, // _RW
OXOFFFFFFF, /1 _GRA
0x40000000, // _MN
OX7FFFFFFF, /1 _
0x0, /1 _TRA
0x00000000) // _

})
Met hod(_CRS, 0) { ...

}
Method(SRS, 1) { ... }
}

10.12 Memory Devices

Memory devices allow a platform designer to optionally describe the dynamic properties of memory. If a
platform cannot have memory added or removed while the system is active, then memory devices are not
necessary. Memory devices may describe exactly the same physical memory that the System Address Map
interfaces describe (see section 15, “ System Address Map Interfaces’). They do not describe how that
memory is, or has been, used. If aregion of physical memory is marked in the System Address Map
interface as AddressRangeReserved or AddressRangeNV S and it is also described in a memory device,
then it is the responsibility of the OS to guarantee that the memory deviceis never disabled.

It is not necessary to describe all memory in the system with memory devices if there is some memory in
the system that is static in nature. If, for instance, the memory that is used for thefirst 16 MB of system
RAM cannot be gjected, inserted, or disabled, that memory may only be represented by the System Address
Map interfaces. But if memory can be gjected, inserted, or disabled, it must be represented by a memory
device.

10.12.1 Address Decoding

Memory devices must provide a_CRS object that describes the physical address space that the memory
decodes. If the memory can decode alternative ranges in physical address space, the devices may also
provide PRS, SRSand _DIS objects. Other device objects may also apply if the device can be gjected.

10.12.2 Example: Memory Device

Scope(_SB){
Devi ce(MBWD) {
Nanme(_HI D, El SAl D(“PNPOCB80"))
Nane(_CRS, ResourceTenplate() {
Qnor dMenor y(Resour ceConsuner ,

M nFi xed,
MaxFi xed,
Cacheabl e,
ReadWite,
oxfffffff,
0x10000000,
0x30000000,
0,

1)

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power Source Devices 253

11 Power Source Devices
This section specifies the battery and AC adapter device objects OSPM uses to manage power resources.

A battery deviceisrequired to either have a Smart Battery subsystem or a Control Method Battery interface
as described in this section. OSPM isrequired to be able to connect and manage a battery on either of these
interfaces. This section describes these interfaces.

In the case of acompatible ACPI Smart Battery Table, the Definition Block needsto include a Bus/Device
package for the SMB-HC. Thiswill install an OS-specific driver for the SMBus, which in turn will locate
the components of the Smart Battery subsystem. In addition to the battery or batteries, the Smart Battery
subsystem includes a charger and a manager device to handle subsystems with multiple batteries.

The Smart Battery System Manager is one implementation of a manager device that is capable of
arbitrating among the available power sources (AC power and batteries) for a system. It provides a superset
of the Smart Battery Selector functionality, such as safely responding to power events (AC versus battery
power), inserting and removing batteries and notifying the OS of all such changes. Additionally, the Smart
Battery System Manager is capable of handling configurations including simultaneous charging and
discharging of multiple batteries. Unlike the Smart Battery Selector that shares responsibility for
configuring the battery system with OSPM, the Smart Battery System Manager alone controls the safe
configuration of the battery system and simply issues status changes to OSPM when the configuration
changes. Smart Battery System Manager is the recommended solution for handling multiple-battery
systems.

11.1 Smart Battery Subsystems

The Smart Battery subsystem is defined by the:
System Management Bus Specification (SMBS)
Smart Battery Data Specification (SBDS)
Smart Battery Charger Specification (SBCS)
Smart Battery System Manager Specification (SBSM)
Smart Battery Selector Specification (SBSS)

An ACPI-compatible Smart Battery subsystem consists of
An SMB-HC(CPU to SMB-HC) interface
At least one Smart Battery
A Smart Battery Charger
Either a Smart Battery System Manager or a Smart Battery Selector if more than one Smart Battery is
supported

In such a subsystem, a standard way of communicating with a Smart Battery and Smart Battery Charger is
through the SMBus physical protocols. The Smart Battery System Manager or Smart Battery Selector
provides event notification (battery insertion/removal, and so on) and charger SMBus routing capability for
any Smart Battery subsystem. A typical Smart Battery subsystem is illustrated below:

Compag/I ntel/Microsoft/Phoenix/T oshiba

254 Advanced Configuration and Power Interface Specification

SBS
SMBI
> BatteryO
0xB
SMBu: SBS
Batteryl
0xB
Host SMBus SBS
Interface Host SMBUfI System
Controller Manager rl SMB“i SBS
(0x8) OxA Battery2
I 0xB
SMBus
SBS SMBus SBS
Charger » Battery3
0x9 0xB

Figure11l-1 Typical Smart Battery Subsystem (SBS)

SMBus defines afixed 7-bit slave address per device. This meansthat all batteriesin the system have the
same address (defined to be 0xB). The slave addresses associated with Smart Battery subsystem
components are shown in the following table.

Table11-1 Example SMBusDevice Slave Addresses

SM Bus Device Description SMBus Slave Address (AO-A6)
SMBus Host Slave Interface 0x8

Smart Battery Charger/Charger 0x9

Selector or Charger System

M anager

Smart Battery System Manager or OxA

Smart Battery Selector

Smart Battery 0xB

Each SMBus device has up to 256 registers that are addressed through the SMBus protocol’ s Command
value. SMBus devices are addressed by providing the slave address with the desired register’ s Command
value. Each SMBusregister can have non-linear registers; that is, command register 1 can have a 32-byte
string, while command register 2 can have a byte, and command register 3 can have a word.

The SMBus host slave interface provides a standard mechanism for the host CPU to generate SMBus
protocol commands that are required to communicate with SMBus devices (in other words, the Smart
Battery components). ACPI defines such an SMB-HCthat resides in embedded controller address space;
however, an OS can support any SMB-HCthat has a native SMB-HCdevice driver.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power Source Devices 255

The Smart Battery System Manager provides a standard programming model to control multiple Smart
Batteriesin a Smart Battery subsystem. A Smart Battery System Manager provides the following types of
battery management functions:

Event notification for battery insertion and removal

Event notification for AC power connected or disconnected

Status of which Smart Battery is communicating with the SMB-HC

Status of which Smart Battery(s) are powering the system

Status of which Smart Battery(s) are connected to the charger

Status of which Smart Batteries are present in the system

Event notification when the Smart Battery System Manager switches from one power source to another

Hardware-switching to an alternate Smart Battery when the Smart Battery supplying power runs low

Hardware switching between battery -powered and A C-powered powered operation

The Smart Battery System Manager function can reside in a standalone SMBus slave device (Smart Battery
System Manager that responds to the OXA slave address), may be present within a smart charger device
(Smart Battery Charger that responds to the 0x9 slave address), or may be combined within the embedded
controller (that responds to the OXA slave address). If both a Smart Battery Charger and a standalone Smart
Battery System Manager are present in the same Smart Battery subsystem, then the driver assumes that the
standalone Smart Battery System Manager iswired to the batteries.

The Smart Battery charger is an SMBus device that provides a standard programming model to control the
charging of Smart Batteries present in a Smart Battery subsystem. For single battery systems, the Smart
Battery Charger is also responsible for notifying the system of the battery and AC status.

The Smart Battery provides intelligent chemistry-independent power to the system. The Smart Battery is
capable of informing the Smart Battery charger of its charging requirements (which provides chemistry
independence) and providing battery status and alarm features needed for platform battery management.

11.1.1 ACPI Smart Battery Status Change Notification Requirements

The Smart Battery System Manager, the Smart Battery Selector, and the Smart Battery Charger each have
an optional mechanism for notifying the system that the battery configuration or AC status has changed.
ACPI requiresthat thisinterrupt mechanism be through the SMBus Alarm Notify mechanism.

For systems using an embedded controller asthe SMBus host, a battery system device issues a status
change notification by either mastering the SMBus to send the notification directly to the SMBus host, or
by emulating it in the embedded controller. In either case, the process is the same. After the notificationis
received or emulated, the embedded controller asserts an SCI. The source of the SCI isidentified by a GPE
that indicates the SCI was caused by the embedded controller. The embedded controller’ s status register
alarm bit is set, indicating that the SMBus host received an alarm message. The Alarm Address Register
contains the address of the SMBus device that originated the alarm and the Alarm Data Registers contain
the contents of that device's status register.

Compag/I ntel/Microsoft/Phoenix/T oshiba

256 Advanced Configuration and Power Interface Specification

11.1.1.1 Smart Battery Charger

Thisrequires a Smart Battery Charger, on a battery or AC status change, to generate an SMBus Alarm
Notify. The contents of the Smart Battery Charger’s ChargerStatus() command register (0x13) isplaced in
the embedded controller’s Alarm Data Registers, the Smart Battery Charger’ s slave address'’ (0x09) is
placed in the embedded controller’s Alarm Address Register and the EC’ s Status Register’s Alarm bit is
set. The embedded controller then asserts an SCI.

11.1.1.2 Smart Battery Charger with optional System Manager or Selector

A Smart Battery Charger that contains the optional System Manager or Selector function (as indicated by
the ChargerSpeclnfo() command register, 0x11, bit 4) isrequired to generate an SMBus Alarm Notify on a
battery or AC status change. The content of the Smart Battery Charger with an optional System Manager,
the BatterySystemState() command register (0x21) (or in the case of an optional Selector, the
SelectorState() (0x01)), is placed in the EC’'s Alarm Data Registers, the Smart Battery Charger’s slave
address (0x09) is placed in the embedded controller’s Alarm Address Register, and the embedded
controller’s Status Register’s Alarm bit is set. The emb edded controller then asserts an SCI.

11.1.1.3 Smart Battery System Manager

The Smart Battery System Manager is required to generate an SMBus Alarm Notify on a battery or AC
status change. The content of the Smart Battery System Manager’ s BatterySystemState() command register
(0x01) isplaced in the EC’'s Alarm Data Registers, the Smart Battery System Manager’s slave address
(Ox0A) is placed in the EC’s Alarm Address Register, and the embedded controller’ s Status Register’s
Alarm bit is set. The embedded controller then asserts an SCI.

11.1.1.4 Smart Battery Selector

The requirements for the Smart Battery Selector are the same as the requirements for the Smart Battery
System Manager, with the exception that the contents of the SelectorState() command register (0x01) are
used instead of BatterySystemState(). The Smart Battery Selector is a subset of the Smart Battery System
Manager and does not have the added support for simultaneous charge/discharge of multiple batteries. The
System Manager isthe preferred implementation.

17 Notice that the 1.0 SMBus protocol specification is ambiguous about the definition of the “slave address”
written into the command field of the host controller. In this case, the slave addressis actually the
combination of the 7-bit slave address and the Write protocol hit. Therefore, bit 0 of the initiating device's
slave addressis aligned to bit 1 of the host controller’s slave command register, bit 1 of the slave addressis
aligned to bit 2 of the controller’s slave command register, and so on.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power Source Devices 257

11.1.2 Smart Battery Objects

The Smart Battery subsystem requires a number of objects to define itsinterface. These are summarized

below:
Table11-2 Smart Battery Objects
Obj ect Description
_HID Thisisthe hardware ID named object that contains a string. For Smart Battery subsystems, this
object returns the value of “ACPI0002.” This identifies the Smart Battery subsystem to the
Smart Battery driver.
SBS Thisisthe Smart Battery named object that contains a DWORD. This named object returnsthe

configuration of the Smart Battery subsystem and is encoded as follows:

0— Maximum of one Smart Battery and no Smart Battery System Manager or Smart Battery
Selector.

1— Maximum of one Smart Battery and a Smart Battery System Manager or Smart Battery
Selector.

2— Maximum of two Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

3— Maximum of three Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

4— Maximum of four Smart Batteries and a Smart Battery System Manager or Smart Battery
Selector.

The maximum number of batteriesis for the system. Therefore, if the platform is capable of
supporting four batteries, but only two are normally present in the system, then thisfield
should return 4. Notice that a value of 0 indicates a maximum support of one battery and there
isno Smart Battery System Manager or Smart Battery Selector present in the system.

Compag/I ntel/Microsoft/Phoenix/T oshiba

258 Advanced Configuration and Power Interface Specification

11.1.3 Smart Battery Subsystem Control Methods

Asthe SMBusis not an enumerable bus, all devices on the bus must be declared in the ACPI hame space.
Asthe Smart Battery driver understands Smart Battery, Smart Battery Charger, and Smart Battery System
Manager or Smart Battery Selector; only asingle device needs to be declared per Smart Battery subsystem.
The driver gets information about the subsystem through the hardware 1D (which defines a Smart Battery
subsystem) and the number of Smart Batteries supported on this subsystem (_SBS named object). The
ACPI Smart Battery table indicates the energy levels of the platform at which the system should warn the
user and then enter a sleeping state. The Smart Battery driver then reflects these as threshold alarms for the
Smart Batteries.

The _SBS control method returns the configuration of the Smart Battery subsystem. This named object
returns aDWORD value with a number from 0 to 4. If the number of batteriesis greater than O, then the
Smart Battery driver assumes that a Smart Battery System Manager or Smart Battery Selector is present. If
0, then the Smart Battery driver assumes a single Smart Battery and neither a Smart Battery System
Manager nor Smart Battery Selector is present.

A Smart Battery device declaration in the ACPl name space requiresthe _GLK object if potentially
contentious accesses to device resources are performed by non-OS code. See section 6.5.7, “_GLK (Global
Lock),” for details about the _GLK object.

11.1.3.1 Example: Single Smart Battery Subsystem

This section illustrates how to define a Smart Battery subsystem containing a single Smart Battery and
charger. The platform implementation isillustrated below:

Embedded
Controller
Ports: 0x62, 0x66 SBS
Offset: 0x80 »
Que?y: 030 » Battery
0xB
Host
Interface SMBUS P ‘ASMBus
Host [7€
Controller
(0x8) SBS
»| Charger
0x9

Figure11l-2 Single Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HCinterface. The embedded controller
interface sits at system 1/0 port addresses 0x62 and 0x66. The SMB-HCis at base address 0x80 within
embedded controller address space (as defined by the ACPI embedded controller specification) and
responds to events on query value 0x30.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power Source Devices 259

In this example the Smart Battery subsystem only supports asingle Smart Battery. The ASL code for
describing thisinterface is shown below:

Devi ce(EQD) {
Name(_HI D, El SAl D(" PNPOC09"))
Nane(_CRS,
Resour ceTenpl at e() { /] port 0x62 and 0x66
| Q(Decodel6, 0x62, 0x62, 0, 1),
| O Decodel6, Ox66, 0x66, 0, 1)

}

)
Nane(_GPE, 0)
Devi ce (SMB0O) {
Nane(_H D, "ACPI 0001") /1 Smart Battery Host Controller
Nane(_EC, 0x8030) /1 EC offset (0x80), Query (0x30)
Devi ce(SBSO) { /1 Smart Battery Subsystem
Narme(_HI D, "ACPI 0002")// Smart Battery Subsystem|D
Nane(_SBS, 0x1) /1 Indicates support for one battery
} /! end of SBSO
} /1 end of SMBO
} /1 end of EC

11.1.3.2 Multiple Smart Battery Subsystem: Example

This section illustrates how to define a Smart Battery subsystem that contains three Smart Batteries, a
Smart Battery System Manager, and a Smart Battery Charger. The platform implementation is illustrated
below:

Embedded Controller

Ports: 0x100, 0x101 SMBuU SBS
Offset: 0x90 Batteryo

Query: 0x31 OXB

Host Vil SBS
Interface SMBuUs SyStem

SMBus I Manager M SBS
Host OxA Batteryl

Controller Virtual 0xB

(0X8) SMBus
SBS SBS
SMBus

Charger Battery?2

0x9 oxB

Figure11-3 Smart Battery Subsystem

In this example, the platform is using an SMB-HCthat resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HCinterface. The embedded controller
interface sits at system 1/0 port addresses 0x100 and 0x101. The SMB-HCresides at base address 0x90
within embedded controller address space (as defined by the ACPI embedded controller specification) and
responds to events on query value Ox31.

In this example the Smart Battery subsystem supports three Smart Batteries. The Smart Battery Charger
and Smart Battery System Manager reside within the embedded controller, meet the Smart Battery System
Manager and Smart Battery Charger interface specification, and respond to their 7-bit addresses (OxA and
0x9 respectively). The ASL code for describing thisinterface is shown below:

Compag/I ntel/Microsoft/Phoenix/T oshiba

260 Advanced Configuration and Power Interface Specification

Devi ce(EC1) {
Nanme(_HI D, El SAI D(" PNPOC09"))
Nane(_CRS,
Resour ceTenpl at e() { /1 port 0x100 and 0x101
| O(Decodel6, 0x100, 0x100, 0, 2)

}

)
Nane(_GPE, 1)
Devi ce (SMB1) {
Nane(_H D, "ACPI 0001") /1 Smart Battery Host Controller

Name(_EC, 0x9031) /1 EC offset (0x90), Query (0x31)
Devi ce(SBS1) { /1 Smart Battery Subsystem
Nane(_HI D, "ACPI0002")// Smart Battery Subsystem|D
Nane(_SBS, 0x3) /1 Indicates support for three batteries
} /! end of SBS1
} /1 end of SMB1
} /1 end of EC

11.2 Control Method Batteries
The following section illustrates the operation and definition of the Control Method Battery.

11.2.1 Battery Events

The AML code handling an SCI for a battery event notifies the system of which battery’ s status may have
changed. The OSusesthe BST control method to determine the current status of the batteries and what
action, if any, should be taken (for more information about the BST control method, see section 11.2.2,
“Battery Control Methods”). Thetypical action isto notify applications monitoring the battery status to
provide the user with an up-to-date display of the system battery state. But in some cases, the action may
involve generating an alert or even forcing a system into a sleeping state. In any case, any changesin
battery status should generate an SCI in atimely manner to keep the system power state Ul consistent with
the actual state of the system battery (or batteries).

Unlike most other devices, when a battery isinserted or removed from the system, the device itself (the
battery bay) is still considered to be present in the system. For most systems, the STA for this device will
always return a value with bits 0-3 set and will toggle bit 4 to indicate the actual presence of abattery (see
section 6.3.6, “_STA [Status]”). When thisinsertion or removal occurs, the AML code handler for this
event should issue a Notify(battery_device, 0x81) to indicate that the static battery information has
changed. For systems that have battery slotsin adocking station or batteries that cannot be surprise-
removed, it may be beneficial or necessary to indicate that the entire device has been removed. In this case,
the standard methods and notifications described in section 6.3, “ Device Insertion and Removal Objects,”
should be used.

When the present state of the battery has changed or when the trip point set by the_BTP control method is
reached or crossed, the hardware will assert ageneral purpose event. The AML code handler for this event
issues a Notify(battery_device, 0x80) on the battery device.

In the case where the remaining battery capacity becomes critically low, the AML code handler issues a
Notify(battery device, 0x80) and reports the battery critical flag in the _BST object. The OS performs an
emergency shutdown. For afull description of the critical battery state, see section 3.9.4, “Low Battery
Levels”

Sometimes the value to bereturned from _BST or _BIF will be temporarily unknown. In this case, the
method may return the value OXFFFFFFFF as a placehol der. When the val ue becomes known, the
appropriate notification (0x80 for _BST or 0x81 for BIF) should be issued, in like manner to any other
changein the data returned by these methods. Thiswill cause OSPM to re-eval uate the method—obtaining
the correct data value.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power Source Devices 261

11.2.2 Battery Control Methods

The Control Method Battery is a battery with an AML code interface between the battery and the host PC.
The battery interface is completely accessed by AML code control methods, allowing the OEM to use any
type of battery and any kind of communication interface supported by ACPI. OSPM requires accurate
battery datato perform optimal power management policy and to provide the end user with a meaningful
estimation of remaining battery life. As such, control methods that return battery information should
calculate thisinformation rather than return hard coded data.

A Control Method Battery is described as a device object. Each device object supporting the Control
Method Battery interface contains the following additional control methods. When there are two or more
batteriesin the system, each battery will have an independent device object in the name space.

Table11-3 Battery Control Methods

Object Description

_BIF Returns static information about a battery (in other words, model humber, serial number,
design voltage, and so on).

_BST Returns the current battery status (in other words, dynamic information about the battery, such
as whether the battery is currently charging or discharging, an estimate of the remaining
battery capacity, and so on).

_BTP Sets the Battery Trip point, which generates an SCI when batterycapacity reaches the specified
point.

_PCL List of pointers to the device objects representing devices powered by the battery.

_STA Returns general status of the battery (for a description of the _STA control method, see section

6.3.6,“ STA [Status]”).

A Control Method Battery device declaration in the ACPI name space requiresthe _GLK object if
potentially contentious accesses to device resources are performed by non-OS code. See section 6.5.7,
“ GLK (Global Lock),” for details about the _GLK object.

11.2.2.1 BIF (Battery Information)

This object returns the static portion of the Control Method Battery information. Thisinformation remains
constant until the battery is changed.

Arguments:
None

Result Code:

Package {

/1 ASCI1Z is ASCI| character string termnated with

/1 a 0x00.
Power Uni t / | DINORD
Desi gn Capacity / 1 DWORD
Last Full Charge Capacity / | DWORD
Battery Technol ogy / 1 DWORD
Desi gn Vol t age / | DWORD
Desi gn Capacity of Warning / 1 DWORD
Desi gn Capacity of Low / | DWORD

Battery Capacity Ganularity 1 / 1 DWORD
Battery Capacity Ganularity 2 / | DWORD

Model Number /1ASC | Z
Serial Nunber //ASCl | Z
Battery Type [1ASC | Zz
CEM I nformati on //ASCl | Z

Compag/I ntel/Microsoft/Phoenix/T oshiba

262 Advanced Configuration and Power Interface Specification

Table11-4 _BIF Method Result Codes

Field Format Description

Power Unit DWORD Indicates the units used by the battery to report its capacity
and charge/discharge rate information to the OS.
0x00000000 — Capacity information is reported in [mWh] and
charge/discharge rate information in [mW].
0x00000001 — Capacity information is reported in [mAh] and
charge/discharge rate information in [mA].

Design Capacity DWORD Battery’s design capacity. Design Capacity isthe nominal
capacity of anew battery. The Design Capacity valueis
expressed as power [mMWh] or current [mAh] depending on
the Power Unit value.
0x000000000 — Ox7FFFFFFF (in [mWHh] or [mAh])
OxFFFFFFFF — Unknown design capacity

Last Full Charge DWORD Predicted battery capacity when fully charged. The Last Full

Capacity Charge Capacity value is expressed as power (mWh) or
current (mAh) depending on the Power Unit value.
0x000000000h — Ox7FFFFFFF (in [mWh] or [mAh])
OxFFFFFFFF — Unknown last full charge capacity

Battery DWORD 0x00000000 — Primary (for example, non-rechargeable)

Technology 0x00000001 — Secondary (for example, rechargeable)

Design Voltage DWORD Nominal voltage of anew battery.
0x000000000 — Ox7FFFFFFF in [mV]

OXFFFFFFFF — Unknown design voltage

Design capacity DWORD OEM -designed battery warning capacity. See section 3.9.4,

of Warning “Low Battery Levels.”
0x000000000 — OX7FFFFFFF in [mWh] or [mAh]

Design Capacity DWORD OEM -designed low battery capacity. See section 3.9.4, “Low

of Low Battery Levels.”
0x000000000 — OX7FFFFFFF in [mWh] or [mAh]

Battery Capacity DWORD Battery capacity granularity between low and warning in

Granularity 1 [mAhR] or [mW h].

Battery Capacity DWORD Battery capacity granularity between warning and Full in

Granularity 2 [mAR] or [mMWHh].

Model Number ASClIZ OEM -specific Control Method Battery model humber

Serial Number ASClIZ OEM -specific Control Method Battery serial number

Battery Type ASClIZ The OEM -specific Control Method Battery type

OEM Information | ASCIIZ OEM -specific information for the battery that the

Ul usesto display the OEM information about the Battery. If
the OEM does not support thisinformation, this should be
reserved as 0x00.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power Source Devices 263

Notes: A secondary-type battery should report the corresponding capacity (except for Unknown).
On amultiple-battery system, all batteries in the system should return the same granularity.

Operating systems prefer these control methods to report datain terms of power (watts).

11.2.2.2 BST (Battery Status)

This object retumns the present battery status. Whenever the Battery State val ue changes, the system will
generate an SCI to notify the OS.

Arguments:
None
Result Code:
Package{
Battery State / | DWORD
Battery Present Rate / | DWORD
Battery Remai ning Capacity / | DWORD
Battery Present Voltage / | DWORD
}
Table11-5 BST Method Result Codes
Field For mat Description
Battery State DWORD Bit values. Notice that the Charging bit and the Discharging

bit are mutually exclusive and must not both be set at the
sametime. Even in critical state, hardware should report the
corresponding charging/discharging state.

Bit0O— 1 indicates the battery is discharging.

Bitl — 1 indicates the battery is charging.

Bit2 — 1 indicates the battery isin the critical energy state (see
section 3.9.3, “Low Battery Levels’). This does not mean
battery failure.

Battery Present DWORD Returns the power or current being supplied or accepted
Rate through the battery’ s terminal s (direction depends on the
Battery State value). The Battery Present Rate value is
expressed as power [mMWh] or current [mAh] depending on
the Power Unit value.

Batteries that are rechargeable and are in the discharging state
arerequired to return avalid Battery Present Rate value.

0x00000000 — Ox7FFFFFFF in [mW] or [mA]
OXFFFFFFFF — Unknown rate

Compag/I ntel/Microsoft/Phoenix/T oshiba

264 Advanced Configuration and Power Interface Specification

Table11-5 BST Method Result Codes (continued)

Field For mat Description

Battery DWORD Returns the estimated remaining battery capacity. The Battery
Remaining Remaining Capacity valueis expressed as power [mWh] or
Capacity current [mAh] depending on the Power Unit value.

Batteries that are rechargeable are required to return avalid
Battery Remaining Capacity value.

0x00000000 — Ox7FFFFFFF in [mWh] or [mAh]
OXFFFFFFFF — Unknown capacity

Battery Present DWORD Returns the voltage across the battery’ sterminals.

Voltage Batteries that are rechargeable must report Battery Present

Voltage.

0x000000000 — Ox7FFFFFFF in [mV]
OxFFFFFFFF — Unknown voltage

Note: Only aprimary battery can report unknown voltage.

Notice that when the battery isa primary battery (a non-rechargeabl e battery such as an Alkaline-
Manganese battery) and cannot provide accurate information about the battery to use in the calculation of
the remaining battery life, the Control Method Battery can report the percentage directly to OS. It does so
by reporting the Last Full Charged Capacity =100 and BatteryPresentRate=0xFFFFFFFF. This means that
Battery Remaining Capacity directly reports the battery’ s remaining capacity [%] as avaluein therange O
through 100 as follows:

o Battery Remaining Capacity [=0 ~ 100]
Remaining Battery Percentage[%] = * 100
Last Full Charged Capacity [=100]

Battery Remaining Capacity [mMAh/mWh]
Remaining Battery Life [h] = = unknown
Battery Present Rate [=OxFFFFFFFF]

11.2.2.3 BTP (Battery Trip Point)

This object isused to set atrip point to generate an SCI whenever the Battery Remaining Capacity reaches
or crosses the value specified in the _BTP object. Specifically, if Battery Remaining Capacity is less than
the last argument passed to _BTP, anotification must be issued when the value of Battery Remaining
Capacity risesto be greater than or equal to thistrip-point value. Similarly, if Battery Remaining Capacity
is greater than the last argument passed to _BTP, a notification must be issued when the value of Battery
Remaining Capacity fallsto be less than or equal to thistrip-point value. The last argument passedto _BTP
will be kept by the system.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Power Source Devices 265

If the battery does not support this function, the BTP control method is not located in the name space. In
this case, the OS must poll the Battery Remaining Capacity value.

Arguments:
Level at which to set thetrip point:

0x00000001 — Ox7FFFFFFF (in units of mWh or mAh, depending on the Power Units value)
0x00000000— Clear the trip point

Result Code:
None
11.3 AC Adapters and Power Source Objects
The Power Source objects describe the power source used to run the system.
Table11-6 Power Source Control Methods

Object Description

PSR Returns present power source device.

PCL List of pointersto powered devices.

11.3.1 PSR (Power Source)

Returns the current power source devices. Used for the AC adapter and islocated under the AC adapter
object in name space. Used to determineif system isrunning off the AC adapter.

Arguments:
None

Result Code:
0x00000000— Off-line
0x00000001 - On-line

11.3.2 PCL (Power Consumer List)

This object evaluatesto alist of pointers, each pointing to adevice or abus powered by the power source
device. Pointing to abus indicates that all devices under the bus are powered by the power source device.

Compag/I ntel/Microsoft/Phoenix/T oshiba

266 Advanced Configuration and Power Interface Specification

11.4 Example: Power Source Name Space

The ACPI name space for acomputer with an AC adapter and two batteries associated with adocking
station that has an AC adapter and a battery is shown in Figure 11.4.

_SB

System Bus
—(] ADP1 AC Adapterl
f —= _PSR Power Source Type
== PCL Power Class List
—(3] BAT1 Battery 1
—H—1 _HID Plug and Play ID for the BAT1
—== _STA Status of the BAT1 Object
—== BIF Batteryl Information
= _BST Batteryl Status
== BTP Batteryl Trip Point
== PC Power Class List
—d] BAT Battery 2
—= _HID Plug and Play ID for the BAT2
= _STA Status of the BAT2 Object
—H _BIF Battery2 Information
= _BST Battery2 Status
—== BTP Battery2 Trip Point
L m== PCL Power Class List
£ PCIO

DOCK

gt

ADP2 AC Adapter 2
_PSR Power Source Type
_PCL Power Class List

Figure11-4 Power Source Name Space Examplethat I ncludes a Docking Station

Compag/I ntel/Microsoft/Phoenix/Toshiba

Thermal Management 267

12 Thermal Management

This section specifies the objects OSPM uses for thermal management of a platform.

12.1 Thermal Control

ACPI allows OSPM to be proactive in its system cooling policies. With OSPM in control of the operating
environment, cooling decisions can be made based on the application load on the CPU and the thermal
heuristics of the system. Graceful shutdown of the OS at critical heat levels becomes possible aswell. The
following sections describe the thermal objects available to OSPM to control platform temperature. ACPI
expects all temperatures to be given in tenths of degrees Kelvin.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several thermal zones if necessary.

12.1.1 Active, Passive, and Critical Policies

There are three cooling policies that OSPM uses to control the thermal state of the hardware. The policies
are active, passive and critical.
Active Cooling. OSPM takes a direct action such asturning on afan. Active cooling devices typically
consume power and produce some amount of noise when enabled (_ON), but are able to cool athermal
zone without limiting system performance. The _ACx objects declare the temperature threshol ds
OSPM usesto decide when to start or stop different active cooling devices.
Passive Cooling. OSPM reduces the power consumption of devices to reduce the temperature of a
thermal zone, such as slowing (throttling) the processor clock. Passive cooling devices typically
produce no user-noticeable noise. The _PSV control method specifies the temperature threshold where
OSPM will start or stop passive cooling.
Critical Trip Points. These are threshold temperatures at which OSPM performsan orderly, but
critical, shutdown of the system. The HOT object declares the critical temperature at which OSPM
may choose to transition the system into the S4 sleeping state, if supported, The _CRT object declares
the critical temperature at which OSPM must perform acritical shutdown.

When athermal zone appears, OSPM runs control methods in the thermal zone to retrieve the temperature
thresholds (trip points) at which it executes a cooling policy. When OSPM receiv es atemperature change
notification it will runthe _TMP control method, which returns the current temperature of the thermal
zone. OSPM checks the current temperature against the temperature thresholds. If _TMP is greater than or
equal to _ACx then OSPM will turn on the associated active cooling device(s). If _TMP isgreater than or
equal to _PSV then OSPM will perform passive cooling. If _"TMP is greater than or equal to _HOT then
OSPM may choose to transition the system into the S4 sleeping state, if supported. Finally, if _"TMPis
greater than or equal to _CRT then OSPM will shut the system down. OSPM must also evaluate_ TMP
when any thermal zone appearsin the namespace (for example, during system initialization) and must
initiate a cooling policy aswarranted independent of receipt of atemperature change notification. This
allows OSPM to cool systems containing athermal zone whose temperature has already exceeded
temperature thresholds at initialization time.

An optimally designed system that uses several thresholds can notify OSPM of thermal increase or
decrease by raising an SCI every several degrees. This enables OSPM to anticipate thermal trends and
incorporate heuristics to better manage the system’ s temperature.

The OS can also request that the platform change the priority of active cooling (performance) versus
passive cooling (energy conservation/silence) by invoking the _SCP (Set Cooling Policy) method.

Compag/I ntel/Microsoft/Phoenix/T oshiba

268 Advanced Configuration and Power Interface Specification

12.1.2 Dynamically Changing Cooling Temperatures

An OEM canreset _ACxand _PSV and notify OSPM to reevaluate the control methods to retrieve the new
policy threshold settings. The following are the primary uses for this type of thermal notification:

When OSPM changes the platform’s cooling policy from one cooling mode to the other.

When a swappable bay deviceisinserted or removed. A swappable bay isaslot that can accommodate
several different devices that have identical form factors, such asaCD-ROM drive, disk drive, and so
on. Many mobile PCs have this concept already in place.

When the temperature reachesan _ACx or _PSV policy threshold to implement hysteresis.

In each situation, the OEM -provided AML code must execute a Notify(thermal _zone, 0x81) statement to
request OSPM to re-eval uate the policy thresholds by obtaining the current values for the _ACxand _PSV
objects.

12.1.2.1 OSPM Change of Cooling Policy

When OSPM changes the platform’s cooling policy from one cooling mode to the other, the following
occurs:

1. OSPM natifiesthe platform of the new cooling mode by running the Set Cooling Policy (_SCP)
control method in all thermal zones.

2. Thresholds are updated in the hardware and OSPM is notified of the change.

3. OSPM re-evaluates _ACx and _PSV to obtain the new temperature thresholds.

12.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion
or Removal

The platform can adjust the thermal zone temperature to accommodate the maximum operating temperature
of abay device as necessary. For example:

1. Hardware detectsthat adevice wasinserted into or removed from the bay, updates the temperature
thresholds, and then notifies OSPM of the thermal policy change and device insertion events.
2. OSPM re-enumerates the devices and reevaluates_ACxand _PSV.

12.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis

An OEM can build hysteresisinto platform thermal design by dynamically resetting cooling temperature
thresholds. For example:

1. When the temperature increases to the designated threshold, OSPM will turn on the associated active
cooling device or perform passive cooling.

2. The platform resets the threshold value to alower temperature (to implement hysteresis) and notifies
OSPM of the change. Because of this new threshold value, the fan will be turned off at alower
temperature than when it was turned on (therefore implementing a negative hysteresis).

3. When the temperature hits the lower threshold value, OSPM will turn off the associated active cooling
device or cease passive cooling. The hardware will reset _ACx to its original value and notify OSPM
that the trip points have once again been altered.

12.1.3 Detecting Temperature Changes

The ability of hardware to asynchronously notify an ACPI -compatible OS of meaningful changesin the
thermal zone' s temperature is a highly desirable capability that relieves OSPM from implementing a poll-
based policy and generally results in a much more responsive and accurate environment. Each notification
instructs OSPM to eval uate whether atrip point has been crossed and allows OSPM to anticipate
temperature trends for the thermal zone.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Thermal Management 269

It isrecognized that much of the hardware used to implement thermal zone functionality today is not
capable of generating A CPI-visible notifications (SCIs) or only can do so with wide granularity (for
example, only when the temperature crosses the critical threshold). In these environments, OSPM must poll
the thermal zone' s temperature periodically to implement an effective policy.

While ACPI specifies a mechanism that enables OSPM to poll thermal zone temperature, platform reliance
on thermal zone polling is strongly discouraged by this specification. OEMs should design systems that
asynchronously notify OSPM whenever a meaningful change in the zone' s temperature occurs— relieving
the OS of the overhead associated with polling. In some cases, embedded controller firmware can
overcome limitations of existing thermal sensor capabilities to provide the desired asynchronous
notification.

Notice that the _TZP (thermal zone polling) object is used to indicate whether athermal zone must be
polled by OSPM, and if so, a recommended polling frequency. See section 12.3.13,“_TZP,” for more
information.

12.1.3.1 Hardware Notifications

Hardware that supports asynchronous temperature change notifications does so using an SCI. The OEM -
provided AML that responds to this SCI must execute a Notify (thermal_zone, 0x80) statement to inform
OSPM that a meaningful change in temperature has occurred. When OSPM receives this thermal event, it
will run the _TMP control method to evaluate the current temperature. OSPM will then compare the value
to the cooling policy temperatures. If the temperature has crossed over any of the policy thresholds, then
OSPM will actively or passively cool (or stop cooling) the system, or shut the system down entirely.

Both the number and granularity of thermal zone trip points are OEM -specific. However, it isimportant to
notice that since OSPM can use heuristic knowledge to help cool the system, the more events OSPM
receives the better understanding it will have of the system’sthermal characteristic.

VR
95
— —p» [-96-] <@— _CRT: Critical shutdown threshold
—p -85
—p [-86
—p |- #5-{ <@—— _ACO: Fan high speed threshold
— 7B
A5 .
Temperature Change P — 65 -— _AC1: Fan low speed threshold
Events (SCIs) < 55
—» |-50-| <@— _PSV: Passive cooling threshold
— |45
—p [-40
—» |35
N~ — |36
25

Figure12-1 SCI Events

For example, the thermal zone illustrated above includes hardware that will generate atemperature change
notification using a’5° Celsius granularity. All thresholds (_PSV, _AC1, ACO0, and _CRT) exist within the
monitored range and fall on 5° boundaries. This granularity is appropriate for this system as it provides
sufficient opportunity for OSPM to detect when athreshold is crossed as well asto understand the thermal
zone' s basic characteristics (temperature trends).

Note: The ACPI specification defines Kelvin as the standard unit for temperature. All thermal zone objects
must report temperaturesin Kelvin. All figures and examplesin this section of the specification use Celsius
for reasons of clarity. ACPI allows Kelvin to be declared in precision of 1/10" of adegree (for example,
310.5). Kelvinis expressed asq/K =T/°C + 273.2.

Compag/I ntel/Microsoft/Phoenix/T oshiba

270 Advanced Configuration and Power Interface Specification

12.1.3.2 Polling

Platforms that are not capable of generating SCls for thermal change events or that can only do so for afew
thresholds should inform OSPM to implement a poll-based policy. OSPM does thisto ensure that
temperature changes across threshold boundaries are always detectable.

Polling can be done in conjunction with hardware notifications. For example, thermal zone hardware that
only supports a single threshold might be configured to use this threshold as the critical temperature trip
point. Assuming that hardware monitors the temperature at a finer granularity than OSPM would, this
environment has the benefit of being more responsive when the system is overheating.

A thermal zone advertises the need to be polled by OSPM viathe _TZP object. The absence of this control
method informs OSPM to implement polling using an OS-provided default frequency. See section 12.3.13,
“ TZP,” for more information.

12.1.4 Active Cooling

Active cooling devices typically consume power and produce some amount of noise when enabled (_ON).
These devices are able to cool athermal zone without limiting the performance of a device.

The active cooling methods (_ACX) in conjunction with the active cooling lists (_ALx) allow an OEM to
use adevice that offers varying degrees of cooling capability or multiple cooling devices. The _ACx
method designates the temperature where Active cooling is engaged or disengaged (depending upon the
direction in which the temperature is changing). The _ALx object evaluatesto alist of devicesthat actively
cool the zone. For example:

If astandard single-speed fan isthe Active cooling device, then _ACO evaluates to the temperature
where active cooling is engaged and thefan islisted in _ALO.

If the zone uses two independently controlled single-speed fans to regul ate the temperature, then _ACO
will evaluate to the maximum cooling temperature using two fans, and _AC1 will evaluate to the
standard cooling temperature using one fan.

If azone has asingle fan with alow speed and a high speed, the _ACO will evaluate to the temperature
associated with running the fan at high-speed, and _AC1 will evaluate to the temperature associated
with running the fan at low speed. _ALO and _AL 1 will both point to different device objects
associated with the same physical fan, but control the fan at different speeds.

For ASL coding examples that illustrate these points, see sections 12.4, “Thermal Zone Object
Requirements,” and 12.5, “ Thermal Zone Examples.”

12.1.5 Passive Cooling

Passive cooling devices are able to cool athermal zone without creating noise and without consuming
additional power (actually saving power), but do so by lowering the performance of the system.
12.1.5.1 Processor Clock Throttling

The processor passive cooling threshold (_PSV) in conjunction with the processor list (_ PSL) allows an
OEM to indicate the temperature at which clock throttling will be applied to the processor(s) residing in a
given thermal zone. Unlike other cooling policies, during passive cooling of processors OSPM takes the
initiative to actively monitor the temperature in order to cool the platform.

On an ACPI-compatible platform that properly implements CPU throttling, the temperature transitions will
be similar to the following figure.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Thermal Management 271

o A A
2 100%
o
(O]
=3 0
5 Y
— c
o
]
Tl a
3
QD
=}
O
o
_TSP (Sampling period)
50%

Time
Figure12-2 Temperature and CPU Performance Versus Time

The following equation should be used by OSPM to assess the optimum CPU performance change
necessary to lower the thermal zone'stemperature:

Equation#1: DP[%] = _TC1* (Tn - Tn-1)+ _TC2* (Tn-Tt)
Where:

Tn = current temperature
Tt = target temperature (_PSV)

Thetwo coefficients_TC1 and _TC2 and the sampling period _TSP are hardware-dependent constants the
OEM must supply to OSPM (for more information, see section 12.3, “ Thermal Objects’). The object _TSP
contains atimeinterval that OSPM usesto poll the hardware to sample the temperature. Whenever _TSP
time has elapsed, OSPM will run _TMP to sample the current temperature (shown as Tn in the above
equation). Then OSPM will use the sampled temperature and _PSV (which isthe target temperature Tt) to
evaluate the equation for DP. The granularity of DP is determined by the CPU duty width of the system.

Note: Equation #1 has an implied formula.
Equation #2: Pn = Pn-1 + HW[- DP] where 0% <= Pn <= 100%

For Equation #2, whenever Pn-1 + DP lies outside the range 0-100%, then Pn will be truncated to 0-100%.
For hardware that cannot assume all possible values of Pn between 0 and 100%, a hardware-specific
mapping function HW is used.

In addition, the hardware mapping function in Equation #2 should be interpreted as follows:

1. If theright hand side of Equation #1 is negative, HW[DP] is rounded to the next available higher
setting of frequency.

2. If theright hand side of Equation #1 is positive, HW[DP] is rounded to the next available lower setting
of frequency.

The calculated Pn becomes Pn-1 during the next sampling period.

For more information about CPU throttling, see section 8.1.1, Processor Power State C0.” A detailed
explanation of thisthermal feedback equation is beyond the scope of this specification.

Compag/I ntel/Microsoft/Phoenix/T oshiba

272 Advanced Configuration and Power Interface Specification

12.1.6 Critical Shutdown

When the thermal zone temperature reaches the threshold indicated by _ CRT, OSPM must immediately
shut the system down. The system must disable the power either after the temperature reaches some
hardware-determined level above _CRT or after a predetermined time has passed. Before disabling power,
platform designers should incorporate some time that allows OSPM to run its critical shutdown operation.
Thereis no requirement for a minimum shutdown operation window that commences immediately after the
temperature reaches CRT. Thisis because:

Temperature might rise rapidly in some systems and slowly on others, depending on casing design and

environmental factors.

Shutdown can take several minutes on a server and only afew short seconds on a hand-held device.

Because of thisindistinct discrepancy and the fact that acritical heat situation is aremarkably rare
occurrence, ACPI does not specify atarget window for a safe shutdown. It isentirely up to the OEM to
build in asafe buffer that it seesfit for the target platform.

12.2 Cooling Preferences

A robust OSPM implementation provides the means for the end user to convey a preference (or alevel of
preference) for either performance or energy conservation to OSPM. Allowing the end user to choose this
preference is most critical to mobile system users where maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance. For example, if auser istaking
notes on her PC in aquiet environment, such asalibrary or a corporate meeting, she may want the system
to emphasize passive cooling so that the system operates quietly, even at the cost of system performance.

A user preference towards performance corresponds to the Active cooling mode while auser’s preference
towards energy conservation or quiet corresponds to the Passive cooling mode. ACPI defines an interface
to convey the cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal
policy intervention. For exanple, the platform indicates through thermal zone parameters that crossing a
thermal trip point requires afan to be turned on. Passive cooling requires OSPM thermal policy to
manipul ate device interfaces that reduce performance to reduce thermal zone temperature.

Either cooling mode will be activated only when the thermal condition requiresit. When the thermal zone
isat an optimal temperature level where it does not warrant any cooling, both modes result in a system
operating at its maximum potential with all fans turned off.

Thermal zones supporting the _SCP control method allow the user to switch the system’s cooling mode
emphasis. See section 12.3.7, “_SCP,” for more information.

7N

G © ©

Active Cooling Thresholds (_ACx) —#» -d— Passive Cooling Threshold (_PSV)

‘._-_._-_
€-—--—---

co
[EoNONeNO NN NeRONNONGNO NN

MWWHBBAEOGGOO®ON ‘#

Figure12-3 Active and Passive Threshold Values

Compag/I ntel/Microsoft/Phoenix/Toshiba

Thermal Management 273

Asillustrated in Figure 12-3, OEMs must choose the value for each threshold to instruct OSPM to initiate
the cooling policies at the desired target temperatures. OEMs can emphasize active or passive cooling
modes by assigning different threshold values. Generally, if _ACx is set lower than _PSV, then the system
emphasizes active cooling. Conversely, if _PSV is set lower than _ACx, then the emphasisis placed on
passive cooling.

For example, athermal zone that includes a processor and one single-speed fan may use PSV to indicate
the temperature value at which OSPM would enable passive cooling and _ACO to indicate the temperature
at which the fan would be turned on. If the value of _PSV islessthan _ACO then the system will favor
passive cooling (for example, CPU clock throttling). On the other hand, if _ACOislessthan _PSV the
system will favor active cooling (in other words, using the fan). See Figure 12-4 below.

Active Cooling Passive Cooling
Preference Preference
N N
95 95
90| <@— _CRT 90-{ <@— _CRT
85 85
86 80
75| @— _PSV 75-| <@— _ACO
76 70
65 65
60 60
55 55
50- <@— _ACO 50-{ <— _PSV
45 45
40 40
35 35
30 30
25 25

Figure12-4 Cooling Preferences

The example on the | eft enables active cooling (for example, turn on afan) when OSPM detects the
temperature has risen above 50°. If for some reason the fan does not reduce the system temperature, then at
75° OSPM will initiate passive cooling (for example, CPU throttling) while still running the fan. If the
temperature continues to climb, OSPM will quickly shut the system down when the temperature reaches
90°C. The example on theright issimilar but the _ACO and _PSV threshold val ues have been swapped to
emphasize passive cooling.

The ACPI thermal model allows flexibility in the thermal zone design. An OEM that needs aless elaborate
thermal implementation may consider using only a single threshold (for example, _CRT). Complex thermal
implementations can be model ed using multiple active cooling thresholds and devices, or through the use
of additional thermal zones.

12.2.1 Evaluating Thermal Device Lists

The Notify(thermal _zone, 0x82) statement can be used to inform OSPM that a change has been made to
the thermal zone device lists. Thisthermal event instructs OSPM to re-evaluatethe ALXx, PSL,and _TZD
objects.

For example, a system that supports the dynamic insertionsof processors might issue this notification to
inform OSPM of changesto _PSL following the insertion or removal of aprocessor. OSPM would re-
evaluate all thermal device lists and adjust its policy accordingly.

Notice that this notification can be used with the Notify (thermal_zone, 0x81) statement to inform OSPM to
both re-evaluate all devicelists and all thresholds.

Compag/I ntel/Microsoft/Phoenix/T oshiba

274 Advanced Configuration and Power Interface Specification

12.3 Thermal Objects
Control methods and objects related to thermal management are listed in Table 12-1.
Table12-1 Thermal Control Methods

Obj ect Description

_ACX Returns active cooling policy threshold valuesin tenths of degrees Kelvin.

_ALx List of active cooling device objects.

_CRT Returns critical trip point in tenths of degrees Kelvin where OSPM must perform acritical
shutdown.

_HOT Returns critical trip point in tenths of degrees Kelvin where OSPM may choose to transition the
system into 4.

_PSL List of processor device objects for clock throttling.

_PSVv Returns the passive cooling policy threshold valuein tenths of degrees Kelvin.

_SCP Sets platform cooling policy (active or passive).
_TC1 Thermal constant for passive cooling.
_TC2 Thermal constant for passive cooling.

_TMP Returns the thermal zone's current temperature in tenths of degrees Kelvin.

_TSP Thermal sampling period for Passive cooling in tenths of seconds.
_TZD List of devices whose temperature is measured by this thermal zone.
_TZP Thermal zone polling frequency in tenths of seconds.

12.3.1 ACx (Active Cooling)

This object returns the temperature at which OSPM must start or stop Active cooling, wherex is avalue
between 0 and 9 that designates multiple active cooling levels of the thermal zone. If the Active cooling
device has one cooling level (that is, “on”) then that cooling level is named _ACQO. If the cooling device has
two levels of capability, such as ahigh fan speed and alow fan speed, then they are named _ACO and
_AC1 respectively. The smaller the value of X, the greater the cooling strength _ ACx represents. In the
above example, _ACO represents the greater level of cooling (the faster fan speed) and _ACL1 represents the
lesser level of cooling (the slower fan speed). For every ACx method, there must be a matching ALx object.

Arguments:
None

Result Code:
Active cooling temperature threshold in tenths of degrees Kelvin.

Theresult code is an integer value that represents tenths of degrees Kelvin. For example, 300.0K is
represented by the integer 3000.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Thermal Management 275

12.3.2 ALXx (Active List)

This object evaluatesto alist of Active cooling devicesto be turned on when the associated _ACx
temperature threshold is exceeded. For example, these devices could be fans.

Arguments:
None
Result Code:

A package consisting of referencesto all active cooling devices that should be engaged when the
associated active cooling threshold (_ACXx) is exceeded.

12.3.3 CRT (Critical Temperature)
This object returns the critical temperature at which OSPM must shutdown the system.
Arguments:
None
Result Code:
Critical temperature threshold in tenths of degrees Kelvin.
Theresult is an integer value that represents tenths of degrees Kelvin. For example, 300.0K is represented
by the integer 3000.

12.3.4 HOT (Hot Temperature)

This object returns the critical temperature at which OSPM may choose to transition the system into the S4
sleeping state. The platform vendor should define_HOT to be far enough below _CRT so asto allow
OSPM enough time to transition the system into the S4 sleeping state. While dependent on the amount of
installed memory, on typical platforms OSPM implementations can transition the system into the $4
sleeping state in tens of seconds.

Arguments:
None
Result Code:
Critical temperature threshold in tenths of degrees Kelvin.
Theresult is an integer value that represents tenths of degrees Kelvin. For example, 300.0K is represented
by the integer 3000.
12.3.5 PSL (Passive List)
This object evaluatesto alist of processor objects to be used for passive cooling.
Arguments:
None
Result Code:

A package consisting of referencesto all processor objects that will be used for passive cooling when
the passive cooling threshold (_PSV) is exceeded.

Compag/I ntel/Microsoft/Phoenix/T oshiba

276 Advanced Configuration and Power Interface Specification

12.3.6 PSV (Passive)
This object returns the temperature at which OSPM must activate passive cooling policy.
Arguments:
None
Result Code:
Passive cooling temperature threshold in tenths of degrees Kelvin.
Theresult code is an integer value that represents tenths of degrees Kelvin. For example, 300.0 Kelvinis
represented by 3000.
12.3.7 SCP (Set Cooling Policy)

This control method sets the platform’s cooling mode policy setting. The hardware can use this as atrigger
toreassign _ACx and _PSV temperatures. The OS will automatically evaluate _ACx and _PSV objects
after executing _SCP.

Arguments:
0—Active
1—Passive

Result Code:

None

12.3.8 TC1 (Thermal Constant 1)

This object evaluates to the constant _TC1 for usein the Passive cooling formula:
DPerformance [%]=_TC1* (Tn - Tn-1)+_TC2* (Tn. - Tt)

Arguments:
None

Result Code:
Integer value of thermal constant #1.

12.3.9 TC2 (Thermal Constant 2)

This object evaluates to the constant _TC2 for usein the Passive cooling formula:
DPerformance [%]=_TC1* (Tn - Tn-1) + _TC2*(Tn- Tt)

Arguments:
None

Result Code:
Integer value of thermal constant #2.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Thermal Management 277

12.3.10 TMP (Temperature)

This control method returns the thermal zon€e' s current operating temperature in Kelvin.

Arguments:
None

Result Code:

The current temperature of the thermal zone in tenths of degrees Kelvin. For example, 300.0K is
represented by the integer 3000.

12.3.11 TSP (Thermal Sampling Period)

This object evaluates to athermal sampling period (in tenths of seconds) used by OSPM to implement the
Passive cooling equation. Thisvalue, alongwith _TC1 and _TC2, will enable OSPM to provide the proper
hysteresis required by the system to accomplish an effective passive cooling policy. The granularity of the
sampling period is 0.1 seconds. For example, if the sampling period is 30.0 seconds, then _TSP needsto
report 300; if the sampling period is 0.5 seconds, then it will report 5. OSPM can normalize the sampling
over alonger period if necessary.

Arguments:
None

Result Code:

Thermal sampling period for passive cooling, in tenths of seconds.

12.3.12 TZD (Thermal Zone Devices)

This optional object evaluates to a package of device names. Each name correspondsto adevicein the
ACPI namespace that is associated with the thermal zone. The temperature reported by the thermal zoneis
roughly correspondent to that of each of the devices.

Thelist of devices returned by the control method need not be a complete and absol ute list of devices
affected by the thermal zone. However, the package should at |east contain the devices that would uniquely
identify where this thermal zoneis located in the machine. For example, athermal zone in a docking station
should include a device in the docking station, athermal zone for the CD-ROM bay, should include the
CD-ROM.

Arguments:
None
Result Code:

A package consisting of references to devices associated with the thermal zone.

12.3.13 TZP (Thermal Zone Polling)

This optional object evaluates to arecommended polling frequency (in tenths of seconds) for thisthermal
zone. A value of zero indicates that OSPM does not need to poll the temperature of thisthermal zonein
order to detect temperature changes (the hardware is capabl e of generating asynchronous notifications).
Notice that the absence of _TZP informs OSPM to implement polling using an OS-provided default
frequency.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in the zone' s temperature occurs—
relieving the OS of the overhead associated with polling. See section 12.1.3, “ Detecting Temperature
Changes,” for more information.

Compag/I ntel/Microsoft/Phoenix/T oshiba

278 Advanced Configuration and Power Interface Specification

Thisvalueis specified as tenths of seconds with a 1 second granularity. A minimum value of 30 seconds
(_TZP evaluates to 300) and a maximum value of 300 seconds (in other words, 5 minutes) (_TZP evaluates
to 3000) may be specified. Asthisisarecommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

Arguments:
None
Result Code:

The recommended polling frequency, in tenths of seconds. A value of zero indicates that polling is not
necessary.

12.4 Thermal Zone Object Requirements

While not all thermal zone objects are required to be present in each thermal zone defined in the
namespace, OSPM levies conditional requirements for the presence of specific thermal zone objects based
on the definition of other related thermal zone objects. These requirements are outlined below:
All thermal zones must contain the _TMP object.
A thermal zone must define at least one trip point: _CRT, _CS4, ACx, or _PSV.
If _ACx isdefined then an associated _ALx must be defined (e.g. defining _ACO requires_ALO also
be defined).
If _PSV isdefined then either _PSL or _TZD must be defined. _PSL and _TZD may both be defined.
If _PSL isdefined then:
If a performance control register isdefined (viaeither P_BLK or _PTC) for aprocessor defined in _PSL
then _TC1, TC2, and TSP must be defined.
If aperformance control register is not defined (via either P_BLK or _PTC) for a processor defined in
_PSL then the processor must support processor performance states (in other words, the processor’s
processor object must include PCT, PSS, and _PPC).
If _PSV isdefined and _PSL isnot defined (in other words, only _TZD is defined) then at least one
deviceinthe_TZD device list must support device performance states.
_SCPisoptional.
_TZD isoptional outside of the _PSV requirement outlined above.
If _CS4isdefined then the system must support the $4 sleeping state.

12.5 Thermal Zone Examples

12.5.1 Example: The Basic Thermal Zone

Thefollowing ASL describes a basic configuration where the entire system is treated as a single thermal
zone. Cooling devices for this thermal zone consist of a processor and one single-speed fan. Thisisan
example only.

Notice that this thermal zone object (TZ0) isdefined in the_SB scope. Thermal zone objects should
appear in the namespace under the portion of the system that comprises the thermal zone. For example, a
thermal zone that isisolated to adocking station should be defined within the scope of the docking station
device. Besides providing for awell-organized namespace, this configuration allows OSPM to dynamically
adjust itsthermal policy as devices are added or removed from the system.

Scope(_SB) {
Processor (

CPUO,

1, /1 uni que nunber for this processor
0x110, /] system|O address of Pblk Registers
0x06 /1 length in bytes of PBIk

) {}

Compag/I ntel/Microsoft/Phoenix/Toshiba

Thermal Management 279

Scope(_SB. PCI 0.1 SA0) {
Devi ce(EQD) {
Nanme(_HI D, El SAl D(" PNPOC09")) /1 1D for this EC
/1 current resource description for this EC
Nane(_CRS,
Resour ceTenpl ate() {
| Q(Decodel6, 0x62, 0x62, 0, 1)
| O Decodel6, 0x66, 0x66, 0, 1)

})
Nane(_GPE, 0) /1 GPE index for this EC

/1 create EC s region and field for thernal support
(per at i onRegi on(EQQ, EnbeddedControl, 0, OxFF)
Fi el d(EQD, ByteAcc, Lock, Preserve) {

MODE, 1, /1 thermal policy (quiet/perform
FAN, 1, /1 fan power (on/off)

, 6, /1l reserved

TP, 8, [/l current tenp

ACO, 8, /1 active cooling tenp (fan high)
, 8, /'l reserved

PSyv, 8, /1 passive cooling tenp

(e57) 8, /] critical $S4 tenp

CRT, 8 /1l critical tenp

}

I/l following is a nethod that CSPM wi || schedule after
/1 it receives an SCl and queries the EC to receive value 7
Met hod(_Q07)
Notify (_SB.PCl 0.1 SA0. ECO. TZ0, 0x80)
} /] end of Notify nethod

/1 fan cooling on/off - engaged at AQO tenp

Power Resour ce(PFAN, 0, 0) {
Met hod(_STA) { Return (_SB. PCl 0.1 SA0. ECO. FAN) } /'l check power state
Met hod(_ON) { Store (One, _SB.PCl 0.1 SA0. EQO. FAN) } // turn on fan
Met hod(_OFF) { Store (Zero, _SB. PO 0.1 SA0. EQ. FAN) } [/ turn off fan

}

/1 Oreate FAN device object
Device (FAN) {
/1 Device ID for the FAN
Name(_HI D, El SAI D(" PNPOCOB"))
/1 list power resource for the fan
Narme(_PRO, Package(){PFAN})
}

/] create a thermal zone
Ther nal Zone (TZ0) {
Met hod(_TMP) { Return (_SB.PC 0.1 SA0. ECO. TMP)} // get current tenp
Met hod(_AQJ) { Return (_SB.PCl 0.1 SA0. EC0. AQQ) } // fan high tenp
Nane(_ALO, Package(){_SB. PCl 0. | SA0. ECO. FAN}) /1 fan is act cool dev
Met hod(_PSV) { Return (_SB.PCl 0.1 SA0. EC). PSV) } // passive cooling tenp
Name(_PSL, Package (){_SB. CPU0}) /1 passive cooling devices
Met hod(_CS4) { Return (_SB.PC0.1SA0. ECO.C4) } // get critical S4 tenp
Met hod(_CRT) { Return (_SB.PCI0.1SA0. ECO.CRT) } // get critical tenp
Met hod(_SCP, 1) { Store (Argl, _SB.PCIO0.|SAO0. ECO. MCDE) } // set cooling node

Nane(_TC1, 4) /1 bogus exanpl e const ant
Nane(_TC2, 3) /1 bogus exanpl e const ant
Nane(_TSP, 150) /] passive sanpling = 15 sec
Name(_TZP, 0) /1 polling not required

} /1 end of TZO

} /] end of ECO
} // end of _SB.PCO0.|SA0 scope-

} /1 end of _SB scope

Compag/I ntel/Microsoft/Phoenix/T oshiba

280 Advanced Configuration and Power Interface Specification

12.5.2 Example: Multiple-Speed Fans

Thefollowing ASL describes athermal zone consisting of a processor and one dual-speed fan. Aswith the
previous example, this thermal zone object (TZ0) is defined in the\ SB scope and represents the entire
system. Thisisan example only.

Scope(_SB) {
Processor (

CPUO,
1, /] uni que nunber for this processor
0x110, /1 system 1O address of Pblk Registers
0x06 /1 length in bytes of PBIk
) {}
Scope(_SB. PCI1 0. 1 SA0) {
Devi ce(EQD) {
Narme(_HI D, EI SAI D(" PNPOC09")) /] IDfor this EC
/1 current resource description for this EC
Nare(_CRS,
Resour ceTenpl ate() {
| (Decodel6, 0x62, 0x62, 0, 1)
| O Decodel6, 0x66, 0x66, 0, 1)
1)
Nane(_GPE, 0) /1 GPE index for this EC

/1 create EC s region and field for thernal support
Oper at i onRegi on(EQQ, EnbeddedControl, 0, OxFF)
Fi el d(EQD, ByteAcc, Lock, Preserve) {

MODE, 1, /1 thermal policy (quiet/perform
FANO, 1, /1 fan strength high/off

FANL, 1, /1 fan strength | ow of f

, 5, /1l reserved

TP, 8, /1 current tenp

ACO, 8, /1 active cooling tenp (high)
AC1, 8, /1 active cooling tenp (low)

PSv, 8, /| passive cooling tenp

cA4 8, /1 critical $S4 tenp

CRT, 8 /1 critical tenp

}

/] following is a method that CGSPM wi || schedule after it
/1 receives an SC and queries the EC to receive value 7
Met hod(_Q07) {

Notify (_SB.PCl 0. SA0. ECO. TZ0, 0x80)
} end of Notify mnethod

/1 fan cooling node high/off - engaged at AQO tenp

Power Resour ce(FN10, 0, 0) {
Met hod(_STA) { Return (_SB. PCl 0. SA0. ECO. FANO) } /'l check power state
Met hod(_ON) { Store (One, _SB.PCl 0.1 SA0. ECO. FANO) } // turn on fan at high
Met hod(_OFF) { Store (Zero, _SB.PC 0.|SA0. EQ. FANO) }// turn off fan

}

// fan cooling node | ow of f - engaged at ACl tenp

Power Resour ce(FN11, 0, 0) {
Met hod(_STA) { Return (_SB. PCl 0.1 SA0. ECO. FAN1) } /'l check power state
Met hod(_ON) { Store (One, _SB.PCl 0.1 SA0. ECO. FAN1) } // turn on fan at |ow
Met hod(_OFF) { Store (Zero, _SB.PC0.|SA0. EQ0. FAN1) }// turn off fan

Compag/I ntel/Microsoft/Phoenix/Toshiba

// Following is a single fan with two speeds.
/1 by creating two |ogical fan devices.
/1 the fan is at a | ow speed.
/1 the fan is at high speed.
11l
/1 Create FAN device object
Device (FN1) {
/1 Device ID for the FAN
Name(_H D, El SAl D(" PNPOCOB"))
Nane(_PRO, Package(){FNLO, FN11})

FN1

}

/1 Create FAN device object
Device (FN2) {
/1 Device ID for the FAN
Nane(_H D, El SAl D("PNPOCOB"))
Narme(_PRO, Package(){FNL0})

FN2

}

/] create a thernal
Ther mal Zone (TZ0) {

zone

Met hod(_TMP) { Return (_SB.PCl 0.1 SA0. ECO. TMP)} //
Met hod(_AC0) { Return (_SB.PC 0.1 SA0. EC0. ACO) } //
Met hod(_AC1) { Return (_SB.PCl0.1SA0. ECO. ACl) } //
Narme(_ALO, Package() {_SB. PC 0.1 SAO. ECO. FN1}) /1
Nane(_AL1, Package() {_SB. PO 0. SA0. ECO. FN2}) /1
Met hod(_PSV) { Return (_SB.PC0.1SA0. ECO.PSV) } [/

Nane(_PSL, Package() {_SB. CPU0})
Met hod(_

Thermal Management 281

This is represented
When FN2 is turned on then
When FNL and FN2 are both on then

get current tenp

fan high tenp

fan |l ow tenp

active cooling (high)
active cooling (low)
passi ve cooling tenp

/1 passive cooling devices
Cs4) { Return (_SB.PCI0.1SA0. EC0.C4) } // get critical
Met hod(_CRT) { Return (_SB.PCI0.1SA0. ECO.CRT) } // get crit.

A tenp
tenp

Met hod(_SCP, 1) { Store (Argl,
4)

Nane(_TCL,

Name(_TC2, 3)
150)
Name(_TZP, 0)

Nane(_TSP,
} /1 end of TZO

} /1 end of ECO

/1 bogus exanpl e const ant

/] passive sanpling =
/1 polling not

} /] end of _SB. PCO0.lSA0 scope

} // end of \ _SB scope

Compag/I ntel/Microsoft/Phoenix/T oshiba

required

_SB.PCI 0.1 SAO. ECO. MCDE) } // set cooling node
/1 bogus exanpl e const ant

15 sec

282 Advanced Configuration and Power Interface Specification

13 ACPI Embedded Controller Interface Specification

ACPI defines a standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OSto provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers. Thisin turn enables the OEM to provide platform
features that the OS OSPM and applications can take advantage of .

ACPI aso defines a standard hardware and software communications interface between an OS driver and
an Embedded Controller-based SMB-HC (EC-SM B-HC).

The ACPI standard supports multiple embedded controllersin a system, each with its own resources. Each
embedded controller has aflat byte-addressable /O space, currently defined as 256 bytes. Features
implemented in the embedded controller have an event “query” mechanism that allows feature hardware
implemented by the embedded controller to gain the attention of an OS driver or ASL/AML code handler.
The interface has been specified to work on the most popular embedded controllers on the market today,
only requiring changesin the way the embedded controller is“wired” to the host interface.

Two interfaces are specified:
A private interface, exclusively owned by the embedded controller driver.
A shared interface, used by the embedded controller driver and some other driver.

Thisinterface is separate from the traditional PC keyboard controller. Some OEMs might choose to
implement the ACPI Embedded Controller Interface (ECI) within the same embedded controller asthe
keyboard controller function, but the ECI requires its own unique host resources (interrupt event and access
registers).

Thisinterface does support sharing the ECI with an inter-environment interface (such as SMI) and relies on
the ACPI-defined “Global Lock” protocol. For information about the Global Lock interface, see section
5.2.9.1, “Global Lock.” Both the shared and private EC interfaces are described in the following sections.

The ECI has been designed such that a platform can useit in either the legacy or ACPI modes with minimal
changes between the two operating environments. Thisis to encourage standardization for thisinterface to
enable faster development of platforms as well as opening up features within these controllers to higher
levels of software.

13.1 Embedded Controller Interface Description

Embedded controllers are the general class of microcontrollers used to support OEM -specific
implementations. The ACPI specification supports embedded controllersin any platform design, aslong as
the microcontroller conforms to one of the models described in this section. The embedded controller isa
unique featurein that it can perform complex low-level functions through a simple interface to the host
microprocessor(s).

Although there is alarge variety of microcontrollersin the market today, the most commonly used
embedded controllersinclude a host interface that connects the embedded controller to the host data bus,
allowing bi-directional communications. A bi-directional interrupt scheme reduces the host processor
latency in communicating with the embedded controller.

Compag/I ntel/Microsoft/Phoenix/Toshiba

Currently, the most common host interface architecture incorporated into microcontrollersis modeled after
the standard | A -PC architecture keyboard controller. This keyboard controller is accessed at 0x60 and 0x64
in system 1/O space. Port 0x60 is termed the data register, and allows bi-directional data transfers to and
from the host and embedded controller. Port O0x64 is termed the command/status register; it returns port
status information upon aread, and generates a command seguence to the embedded controller upon a
write. This same class of controllers also includes a second decode range that shares the same properties as
the keyboard interface by having a command/status register and adata register. The following diagram

graphically depicts thisinterface.

AN

ACPI Embedded Controller Interface Specification 283

COMMAND WRITE (SMI/SCI) | N

Ly

DATA WRITE (SMI/SCI)

EC INPUT
BUFFER

< DATA READ (SMI/SCI)

EC OUTPUT
BUFFER

< STATUS READ (SMI/SCI)

EC STATUS
REGISTER

INTERFACE
ARBITRATION
CODE

=

SMI
INTERFACE
CODE

=

=

SCI
INTERFACE
CODE

K=

MAIN
FIRMWARE

K=

110

EC_SMI_STS

EC_SMI
EC_SMI_EN

EC_SCI_STS

HED_' EC_SCI
EC_SCI_EN

Figure13-1 Shared Interface

The diagram above depicts the general register model supported by the ACPI Embedded Controller

Interface.

Compag/I ntel/Microsoft/Phoenix/T oshiba

284 Advanced Configuration and Power Interface Specification

The first method uses an embedded controller interface shared between OSPM and the system management
code, which requires the Global Lock semaphore overhead to arbitrate ownership. The second method isa
dedicated embedded controller decode range for sole use by OSPM driver. The following diagram
illustrates the embedded controller architecture that includes a dedicated ACPI interface.

EC_SMI_STS

EC_SMI

EC_SMI_EN

COMMAND WRITE (SMI)

A
v

A
v

DATA WRITE (SMI)

DATA READ (SMI)

<

STATUS READ (SMI)

<

MAIN =)
FIRMWARE Vo

| COMMAND WRITE (SCI) _ |
|J.> SCINPUT L
> BUFFER
DATA WRITE (SCI)
SCl
DATA READ (SCI) SCI OUTPUT
< 4: INTERFACE Q:D
BUFFER CODE
STATUS READ (SCI) SCI STATUS < >
< REGISTER [< >

EC_SCI_STS

EC_SCI

EC_SCI_EN

Figure13-2 Private Interface

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 285

The private interface allows OSPM to communicate with the embedded controller without the additional
software overhead associated with using the Global Lock. Several common system configurations can
prowdethe additional embedded controller interfaces:
Non-shared embedded controller. Thiswill be the most common case where there is no need for the
system management handler to communicate with the embedded controller when the system transitions
to ACPI mode. OSPM processes all normal types of system management events, and the system
management handler does not need to take any actions.
Integrated keyboard controller and embedded controller. This provides three host interfaces as
described earlier by including the standard keyboard controller in an existing component (chip set, I/0
controller) and adding a discrete, standard embedded controller with two interfacesfor system
management activities.
Standard keyboard controller and embedded controller.This provides three host interfaces by providing
akeyboard controller as adistinct component, and two host interfaces are provided in the embedded
controller for system management activities.
Two embedded controllers. This provides up to four host interfaces by using two embedded
controllers; one controller for system management activities providing up to two host interfaces, and
one controller for keyboard controller functions providing up to two host interfaces.
Embedded controller and no keyboard controller. Future platforms might provide keyboard
functionality through an entirely different mechanism, which would allow for two host interfacesin an
embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface) model, a method
is available to make the embedded controller a shareable resource between multiple tasks running under the
operating system’s control and the system management interrupt handler. This method, as described in this
section, requires several changes:

Additional external hardware

Embedded controller firmware changes

System management interrupt handler firmware changes

Operating software changes

Access to the shared embedded controller interface requires additional software to arbitrate between the
operating system’ s use of the interface and the system management handler’ s use of the interface. Thisis
done using the Global Lock as described in section 5.2.9.1, “Global Lock.”

Thisinterface sharing protocol also requires embedded controller firmware changes, in order to ensure that
collisions do not occur at theinterface. A collision could occur if abyteis placed in the system output
buffer and an interrupt is then generated. Thereis asmall window of time when the incorrect recipient
could receive the data. This problem isresolved by ensuring that the firmware in the embedded controller
does not place any datain the output buffer until it is requested by OSPM or the system management
handler.

More detailed algorithms and descriptions are provided in the following sections.

13.2 Embedded Controller Register Descriptions

The embedded controller contains three registers at two address locations: EC_SC and EC_DATA. The
EC_SC, or Embedded Controller Status’Command register, acts as two registers: a status register for reads
to this port and a command register for writes to this port. The EC_DATA (Embedded Controller Data
register) acts as a port for transferring data between the host CPU and the embedded controller.

Compag/I ntel/Microsoft/Phoenix/T oshiba

286 Advanced Configuration and Power Interface Specification

13.2.1 Embedded Controller Status, EC_SC (R)
Thisisaread-only register that indicates the current status of the embedded controller interface.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
IGN SMI_EVT | SCI_EVT | BURST | CMD IGN IBF OBF
Where:
IGN: Ignored
SMI_EVT: 1—Indicates SMI event is pending (requesting SMI query).

0—No SMI events are pending.

SCI_EVT: 1-Indicates SCI event is pending (requesting SCI query).

0— No SCI events are pending.

BURST: 1- Controller isin burst mode for polled command processing.

0— Controller isin normal mode for interrupt-driven command processing.

CMD: 1-Bytein dataregister isacommand byte (only used by controller).
0— Bytein dataregister is adata byte (only used by controller).

IBF: 1—Input buffer isfull (dataready for embedded controller).
O0—Input buffer is empty.

OBF: 1— Output buffer isfull (dataready for host).
0— Output buffer is empty.

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte of datainto the
command or data port but the host has not yet read it. After the host reads the status byte and sees the OBF
flag set, the host reads the data port to get the byte of datathat the embedded controller has written. After
the host reads the data byte, the OBF flag is cleared automatically by hardware. Thissignals the embedded
controller that the data has been read by the host and the embedded controller is free to write more data to
the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of datato the command or data port,
but the embedded controller has not yet read it. After the embedded controller reads the status byte and sees
the IBF flag set, the embedded controller reads the data port to get the byte of data that the host has written.
After the embedded controller reads the data byte, the IBF flag is automatically cleared by hardware. This
isthe signal to the host that the data has been read by the embedded controller and that the host is free to
write more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an internal event that
requires the operating system’s attention. The embedded controller sets this bit in the status register, and
generates an SCI to OSPM. OSPM needs this bit to differentiate command-complete SCls from notification
SCls. OSPM uses the query command to request the cause of the SCI_EVT and take action. For more
information, see section 13.3, “Embedded Controller Command Set.”)

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 287

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an internal event that
reguires the system management interrupt handler’ s attention. The embedded controller setsthis bit in the
status register before generating an SM1I.

The Burst (BURST) flag indicates that the embedded controller has received the burst enable command
from the host, has halted normal processing, and iswaiting for a series of commands to be sent from the
host. Thisallows OSPM or system management handler to quickly read and write several bytes of data at a
time without the overhead of SCIs between the commands.

13.2.2 Embedded Controller Command, EC_SC (W)

Thisisawrite-only register that allows commands to be issued to the embedded controller. Writesto this
port are latched in the input data register and the input buffer full flag is set in the status register. Writes to
this location also cause the command bit to be set in the status register. This allows the embedded controller
to differentiate the start of a command sequence from a data byte write operation.

13.2.3 Embedded Controller Data, EC_DATA (R/W)

Thisisaread/write register that allows additional command bytes to be issued to the embedded controller,
and allows OSPM to read data returned by the embedded controller. Writesto this port by the host are
latched in the input data register, and the input buffer full flag is set in the status register. Reads from this
register return data from the output data register and clear the output buffer full flag in the status register.

13.3 Embedded Controller Command Set

The embedded controller command set allows OSPM to communi cate with the embedded controllers.
ACPI defines the commands and their byte encodings for use with the embedded controller that are shown
in the following table.

Table13-1 Embedded Controller Commands

Embedded Controller Command Command Byte Encoding
Read Embedded Controller (RD_EC) 0x80
Write Embedded Controller (WR_EC) 0x81

Burst Enable Embedded Controller (BE_EC) 0x82
Burst Disable Embedded Controller (BD_EC) 0x83
Query Embedded Controller (QR_EC) 0x84

13.3.1 Read Embedded Controller, RD_EC (0x80)

This command byte allows OSPM to read a byte in the address space of the embedded controller. This
command byte isreserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SClsin response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command consists of acommand byte written to the Embedded Controller
Command register (EC_SC), followed by an address byte written to the Embedded Controller Data register
(EC_DATA). The embedded controller then returns the byte at the addressed location. The dataisread at
the data port after the OBF flag is set.

Compag/I ntel/Microsoft/Phoenix/T oshiba

288 Advanced Configuration and Power Interface Specification

13.3.2 Write Embedded Controller, WR_EC (0x81)

This command byte allows OSPM to write a byte in the address space of the embedded controller. This
command byte isreserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SClsin response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SM1s. This command allows OSPM to write a byte in the address space of the embedded
controller. It consists of acommand byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Dataregister (EC_DATA), followed by a
data byte written to the Embedded Controller Data Register (EC_DATA); thisis the data byte written at the
addressed location.

13.3.3 Burst Enable Embedded Controller, BE_EC (0x82)

This command byte allows OSPM to request dedicated attention from the embedded controller and (except
for critical events) prevents the embedded controller from doing tasks other than receiving command and
data from the host processor (either the system management interrupt handler or OSPM). This command is
an optimization that allows the host processor to issue several commands back to back, in order to reduce
latency at the embedded controller interface. When the controller isin the burst mode, it should transition
to the burst disable state if the host does not issue a command within the following guidelines:

First Access— 400 microseconds

Subsequent Accesses— 50 microseconds each

Total Burst Time— 1 millisecond

In addition, the embedded controller can disengage the burst mode at any time to process acritical event. If
the embedded controller disables burst mode for any reason other than the burst disable command, it should
generate an SCI to OSPM to indicate the change.

Whilein burst mode, the embedded controller follows these guidelines for OSPM driver:
SClsare generated as normal, including IBF=0 and OBF=L1.

Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

OSPM driver writes the Burst Enable Embedded Controller, BE_EC (0x82) command byte and then the
Embedded Controller will prepare to enter the Burst mode. This includes processing any routine activities
such that it should be able to remain dedicated to OSPM interface for ~ 1 microsecond.

The Embedded Controller setsthe Burst bit of the Embedded Controller Status Register, puts the Burst
Acknowledge byte (0x90) into the SCI output buffer, setsthe OBF bit, and generates an SCI to signal
OSPM that it isin Burst mode.

Burst mode is exited the following manner:

OSPM driver writes the Burst Disable Embedded Controller, BD_EC (0x83) command byte and then the
Embedded Controller will exit Burst mode by clearing the Burst bit in the Embedded Controller Status
register and generating an SCI signal (dueto IBF=0).

The Embedded Controller clears the Burst bit of the Embedded Controller Status Register.

13.3.4 Burst Disable Embedded Controller, BD_EC (0x83)

This command byte releases the embedded controller from a previous burst enable command and allows it
to resume normal processing. This command is sent by OSPM or system management interrupt handler
after it has completed its entire queued command sequence to the embedded controller.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 289

13.3.5 Query Embedded Controller, QR_EC (0x84)

OSPM driver sends this command when the SCI_EVT flag inthe EC_SC register is set. When the
embedded controller has detected a system event that must be communicated to OSPM, it first setsthe
SCI_EVT flag in the EC_SC register, generates an SCI, and then waits for OSPM to send the query
(QR_EC) command. OSPM detects the embedded controller SCI, seesthe SCI_EVT flag set, and sends the
guery command to the embedded controller. Upon receipt of the QR_EC command byte, the embedded
controller places a notification byte with a value between 0-255, indicating the cause of the notification.
The notification byte indicates which interrupt handler operation should be executed by OSPM to process
the embedded controller SCI. The query value of zero is reserved for a spurious query result and indicates
“no outstanding event.”

13.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT

This query command notification header is the special return code that indicates events with an SMBus
controller implemented within an embedded controller. These events include:

Command completion

Command error

Alarm reception

The actual notification value is declared in the EC-SM B-HC device object in the ACPI Namespace.

13.5 Embedded Controller Firmware

The embedded controller firmware must obey the following rulesin order to be ACPI-compatible:
SMI Processing. Although it is not explicitly stated in the command specification section, a shared
embedded controller interface has a separate command set for communicating with each environment
it plans to support. In other words, the embedded controller knows which environment is generating
the command request, as well as which environment is to be notified upon event detection, and can
then generate the correct interrupts and notification values. Thisimplies that a system management
handler uses commands that parallel the functionality of all the commands for ACPI including query,
read, write, and any other implemented specific commands.
SCI/SM1 Task Queuing. If the system design is sharing the interface between both a system
management interrupt handler and OSPM, the embedded controller should always be prepared to
gueue anotification if it receives acommand. The embedded controller only sets the appropriate event
flag in the status (EC_SC) register if the controller has detected an event that should be communicated
to the OS or system management handler. The embedded controller must be able to field commands
from either environment without loss of the notification event. At some later time, the OS or system
management handler issues a query command to the embedded controller to request the cause of the
notification event.
Notification M anagement. The use of the embedded controller means using the query (QR_EC)
command to notify OSPM of system events requiring action. If the embedded controller is shared with
the operating system, the SMI handler usesthe SMI_EVT flag and an SMI query command (not
defined in this document) to receive the event notifications. The embedded controller doesn't place
event notifications into the output buffer of a shared interface unlessit receives aquery command from
OSPM or the system management interrupt handler.

Compag/I ntel/Microsoft/Phoenix/T oshiba

290 Advanced Configuration and Power Interface Specification

13.6 Interrupt Model

The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The Interrupt isfirmware
generated using an EC general-purpose output and has the waveform shown in Figure 13-3. The embedded
controller SCI is always wired directly to a GPE input, and OSPM driver treats this as an edge event (the
EC SCI GPE cannot be shared).

Interrupt detected

—T —»
HOLD Interrupt serviced

\\ and cleared
A\

Figure13-3 EC Interrupt Waveform

13.6.1 Event Interrupt Model

The embedded controller must generate SClsfor the eventslisted in the following table.
Table13-2 Eventsfor Which Embedded Controller Must Generate SCls

Event Description

IBF=0 Signals that the embedded controller has read the last command or data from the
input buffer and the host is free to send more data.

OBF=1 Signals that the embedded controller has written a byte of datainto the output
buffer and the host is free to read the returned data.

SCI_EVT=1 Signals that the embedded controller has detected an event that requires OS
attention. OSPM should issue a query (QR_EC) command to find the cause of

the event.

13.6.2 Command Interrupt Model
The embedded controller must generate SCls for commands as follows:

Read Command (3 Bytes)

Byte#1 (Command byte Header) Interrupt on IBF=0
Byte #2 (Address byteto read) No Interrupt
Byte#3 (Dataread to host) Interrupt on OBF=1

Write Command (3 Bytes)

Byte#1 (Command byte Header) Interrupt on IBF=0
Byte #2 (Address byte to write) Interrupt on IBF=0
Byte#3 (Datatoread) Interrupt on IBF=0

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 291

Query Command (2 Bytes)

Byte#1 (Command byte Header) No Interrupt

Byte #2 (Query value to host) Interrupt on OBF=1
Burst Enable Command (2 Bytes)

Byte#1 (Command byte Header) No Interrupt

Byte #2 (Burst acknowledge byte) Interrupt on OBF=1

Burst Disable Command (1 Byte)
Byte#1 (Command byte Header) Interrupt on IBF=0

13.7 Embedded Controller Interfacing Algorithms

To initiate communications with the embedded controller, OSPM or system management handler acquires
ownership of the interface. This ownership is acquired through the use of the Global Lock (described in
section 5.2.9.1, “Global Lock”), or is owned by default by OSPM as a hon-shared resource (and the Global
Lock isnot required for accessibility).

After ownership is acquired, the protocol always consists of the passing of acommand byte. The command
byte will indicate the type of action to be taken. Following the command byte, zero or more data bytes can
be exchanged in either direction. The data bytes are defined according to the command byte that is
transferred.

The embedded controller also has two status bits that indicate whether the registers have been read. Thisis
used to ensure that the host or embedded controller has received data from the embedded controller or host.
When the host writes data to the command or data register of the embedded controller, the input buffer flag
(IBF) in the status register is set within 1 microsecond. When the embedded controller reads this datafrom
the input buffer, the input buffer flag is reset. When the embedded controller writes data into the output
buffer, the output buffer flag (OBF) in the status register is set. When the host processor reads this data
from the output buffer, the output buffer flag is reset.

13.8 Embedded Controller Description Information

Certain aspects of the embedded controller’ s operation have OEM -definabl e values associated with them.
Thefollowing isalist of valuesthat are defined in the software layers of the ACPI specification:

Status flag indicating whether the interface requires the use of the Global L ock.

Bit position of embedded controller interrupt in general-purpose status register.

Decode address for command/status register.

Decode address for dataregister.

Base address and query value of any EC-SMBus controller.

For implementation details of the above listed information, see sections 13.11, “Defining an Embedded
Controller Device in ACPI Namespace,” and 13.12, “Defining an Embedded Controller SMBus Host
Controller in ACPI Namespace.”

An embedded controller will require the inclusion of the GLK method in its ACPI namespace if potentially
contentious accesses to device resources are performed by non-OS code. See section 6.5.7, “_GLK (Global
Lock)” for details about the _GLK method.

Compag/I ntel/Microsoft/Phoenix/T oshiba

292 Advanced Configuration and Power Interface Specification

13.9 SMBus Host Controller Interface via Embedded Controller

This section specifies astandard interface that an ACPI-compatible OS can use to communicate with
embedded controller-based SMBus host controllers (EC-SMB-HC). Thisinterface allows the host
processor (under control of OSPM) to manage devices on the SMBus. Typical devices residing on the
SMBus include Smart Batteries, Smart Battery Chargers, contrast/backlight control, and temperature
SEensors.

The EC-SM B-HC interface consists of ablock of registersthat reside in embedded controller space. These
registers are used by software to initiate SMBus transactions and receive SMBus notifications. By using a
well-defined register set, OS software can be written to operate with any vendor’ sembedded controller
hardware.

Certain SMBus segments have special reguirements that the host controller filters certain SMBus
commands (for example, to prevent an errant application or virus from potentially damaging the battery
subsystem). Thisis most easily accomplished by implementing the host interface controller through an
embedded controlle—as embedded controller can easily filter out potentially problematic commands.

Notice that an EC-SM B-HC interface will require the inclusion of the GLK method in its ACPI namespace
if potentially contentious accesses to device resources are performed by non-OS code. See section6.5.7,
“ GLK (Global Lock” for details on using the _GLK method.

13.9.1 Register Description

The EC-SMBus host interface isaflat array of registersthat are arranged sequentially in the embedded
controller address space.

13.9.1.1 Status Register, SMB_STS

Thisregister indicates general status on the SMBus. Thisincludes SMB-HC command compl etion status,
alarm received status, and error detection status (the error codes are defined later in this section). This
register is cleared to zeroes (except for the ALRM bit) whenever a new command isissued using awrite to
the protocol (SMB_PRTCL) register. Thisregister is always written with the error code before clearing the
protocol register. The SMB-HCquery event (that is, an SMB-HCinterrupt) is raised after the clearing of the
protocol register.

Note: OSPM must ensure the ALRM bit is cleared after it has been serviced by writing ‘00’ to the
SMB_STS register.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
DONE ALRM | RES STATUS
Where:
DONE: Indicates the last command has completed and no error.
ALRM: Indicates an SMBus alarm message has been received.
RES: Reserved
STATUS: Iggli cates SMBus communication status for one of the reasons listed in the following
table.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 293

Table13-3 SMBus Status Codes

Status
Code Name Description
00h SMBus OK Indicates the transaction has been successfully completed.
07h SMBus Unknown Failure Indicates failure because of an unknown SMBus error.
10h SMBus Device Address Not Indicates the transaction failed because the slave device
Acknowledged address was not acknowledged.
11h SMBus Device Error Indicates the transaction failed because the slave device
Detected signaled an error condition.
12h SMBus Device Command Indicates the transaction failed because the SMBus host does
Access Denied not allow the specific command for the device being
addressed. For example, the SMBus host might not allow a
caller to adjust the Smart Battery Charger’s output.
13h SMBus Unknown Error Indicates the transaction failed because the SMBus host
encountered an unknown error.
17h SMBus Device Access Indicates the transaction failed because the SMBus host does
Denied not allow access to the device addressed. For example, the
SMBus host might not allow acaller to directly
communicate with an SMBus device that controls the
system’s power planes.
18h SMBus Timeout Indicates the transaction failed because the SMBus host
detected atimeout on the bus.
19h SMBus Host Unsupported Indicates the transaction failed because the SM Bus host does
Protocol not support the requested protocol.
1Ah SMBus Busy Indicates that the transaction failed because the SMBus host
reports that the SMBusis presently busy with some other
transaction. For example, the Smart Battery might be
sending charging information to the Smart Battery Charger.
1Fh SMBus PEC (CRC-8) Error Indicates that a Packet Error Checking (PEC) error occurred

during the last transaction.

All other error codes are reserved.

13.9.1.2 Protocol Register, SMB_PRTCL

Thisregister determines the type of SMBus transaction generated on the SMBus. In addition to indicating
the protocol type to the SMB-HC, awrite to this register initiates the transaction on the SMBus. Notice that
bit 7 of the protocol valueis used to indicate whether packet error checking should be employed. A value
of 1 (one) in this bit indicates that PEC format should be used for the specified protocol, and avalue of 0
(zero) indicates the standard (non-PEC) format should be used.

Bit7

Bit6 Bit5

Bit4

Bit3 Bit2 Bitl BitO

PEC

PROTOCOL

Compag/I ntel/Microsoft/Phoenix/T oshiba

294 Advanced Configuration and Power Interface Specification

Where:
PROTOCOL.: 0x00 — Controller Not In Use
0x01 — Reserved
0x02 — Write Quick Command
0x03 — Read Quick Command
0x04 — Send Byte
0x05 — Receive Byte
0x06 — Write Byte
0x07 — Read Byte
0x08 — Write Word
0x09 — Read Word
OxOA — Write Block
0x0B — Read Block
0x0C — Process Call
0x0D — Block Write-Block Read Process Call

For example, the protocol value of 0x09 would be used to communicate to a device that supported the
standard read word protocol. If this device also supported packet error checking for this protocol, a value of

0x89 (read word with PEC) could optionally be used. See the SMBus specification for more information on
packet error checking.

When OSPM initiates a new command such as write to the SMB_PRTCL register, the SMBus controller

first updatesthe SMB_STSregister and then clearsthe SMB_PRTCL register. After the SMB_PRTCL
register is cleared, the host controller query valueis raised.

All other protocol values are reserved.

13.9.1.3 Address Register, SMB_ADDR

Thisregister contains the 7-bit address to be generated on the SMBus. Thisisthefirst byte to be sent on the
SMBusfor all of the different protocols.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
ADDRESS (A6:AQ) RES

Where:

RES: Reserved

ADDRESS: 7-bit SMBus address. This addressis not zero aligned (in other words, itisonly a 7-

bit address (A6:A0Q) that isaligned from bit 1-7).

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 295

13.9.1.4 Command Register, SMB_CMD

Thisregister contains the command byte that will be sent to the target device on the SMBus and is used for
the following protocols: send byte, write byte, write word, read byte, read word, process call, block read
and block write. It is not used for the quick commands or the receive byte protocol, and as such, itsvalueis
a“don’'t care” for those commands.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
COMMAND

Where:

COMMAND: Command byte to be sent to SMBus device.

13.9.1.5 Data Register Array, SMB_DATA][i], i=0-31

This bank of registers contains the remaining bytesto be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA[i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
DATA

Where:
DATA: One byte of datato be sent or received (depending upon protocol).

13.9.1.6 Block Count Register, SMB_BCNT

Thisregister contains the number of bytes of data present inthe SMB_DATA[I] registers preceding any
write block and following any read block transaction. The data size is defined on a per protocol basis.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
RES BCNT

13.9.1.7 Alarm Address Register, SMB_ALRM_ADDR

This register containsthe address of an alarm message received by the host controller, at slave address 0x8,
from the SMBus master that initiated the alarm. The address indicates the slave address of the device on the
SMBus that initiated the alarm message. The status of the alarm message is contained in the
SMB_ALRM_DATAX registers. Once an alarm message has been received, the SMB-HC will not receive
additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
ADDRESS (A6:AQ) RES

Where:

RES: Reserved

ADDRESS: Slave address (A6:A0) of the SMBus device that initiated the SMBus alarm message.

Compag/I ntel/Microsoft/Phoenix/T oshiba

296 Advanced Configuration and Power Interface Specification

13.9.1.8 Alarm Data Registers, SMB_ALRM_DATAJ0],
SMB_ALRM_DATA[1]

These registers contain the two data bytes of an alarm message received by the host controller, at slave
address 0x8, from the SMBus master that initiated the alarm. These data bytes indicate the specific reason
for the alarm message, such that OSPM can take actions. Once an alarm message has been received, the
SMB-HCwill not receive additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
DATA (D7:D0)

Where:
DATA: Data byte received in alarm message.

The alarm address and alarm data registers are not read by OSPM until the alarm status bit is set. OSPM
driver then reads the 3 bytes, and clears the alarm status bit to indicate that the alarm registers are now
available for the next event.

13.9.2 Protocol Description

This section describes how to initiate the different protocols on the SMBus through the interface described
in section 13.9.1, “Register Descriptions.” The registers should all be written with the appropriate values
before writing the protocol value that starts the SMBus transaction. All transactions can be completed in
one pass.

13.9.2.1 Write Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL.: Write 0x02 to initiate the write quick protocol.
Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command compl etion.

13.9.2.2 Read Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL.: Write 0x03 to initiate the read quick protocol.
Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command compl etion.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 297

13.9.2.3 Send Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL.: Write 0x04 to initiate the send byte protocol, or 0x84 to initiate the send byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command compl etion.

13.9.2.4 Receive Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write Ox05 to initiate the receive byte protocol, or 0x85 to initiate the receive byte
protocol with PEC.

Data Returned:

SMB_DATA[Q]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL.: 0x00 to indicate command compl etion.

13.9.2.5 Write Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATAJO]: Data byte to be sent.

SMB_PRTCL.: Write 0x06 to initiate the write byte protocol, or 0x86 to initiate the write byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command compl etion.

Compag/I ntel/Microsoft/Phoenix/T oshiba

298 Advanced Configuration and Power Interface Specification

13.9.2.6 Read Byte

Data Sent:
SMB_ADDR:
SMB_CMD:
SMB_PRTCL:

Data Returned:
SMB_DATA[O]:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.
Command byte to be sent.

Write 0x07 to initiate the read byte protocol, or 0x87 to initiate the read byte
protocol with PEC.

Databyte received.
Status code for transaction.

0x00 to indicate command compl etion.

13.9.2.7 Write Word

Data Sent:
SMB_ADDR:
SMB_CMD:
SMB_DATA[O]:
SMB_DATA[1]:
SMB_PRTCL:

Data Returned:
SMB_STS:
SMB_PRTCL:

Address of SMBusdevice.
Command byte to be sent.
Low data byte to be sent.
High data byte to be sent.

Write 0x08 to initiate the write word protocol, or 0x88 to initiate the write word
protocol with PEC.

Status code for transaction.

0x00 to indicate command completion.

13.9.2.8 Read Word

Data Sent:
SMB_ADDR:
SMB_CMD:
SMB_PRTCL:

Data Returned:
SMB_DATA[O]:
SMB_DATA[1]:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.
Command byte to be sent.

Write 0x09 to initiate the read word protocol, or 0x89 to initiate the read word
protocol with PEC.

Low data byte received.
High data byte received.
Status code for transaction.

0x00 to indicate command completion.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 299

13.9.2.9 Write Block

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Databytestowrite (1-32).

SMB_BCNT: Number of data bytes (1-32) to be sent.

SMB_PRTCL: Write OXOA to initiate the write block protocol, or Ox8A to initiate the write block
protocol with PEC.

Data Returned:

SMB_PRTCL: 0x00 to indicate command compl etion.

SMB_STS: Status code for transaction.

13.9.2.10 Read Block

Data Sent:
SMB_ADDR: Address of SMBus device.
SMB_CMD: Command byte to be sent.
SMB_PRTCL: Write OxOB to initiate the read block protocol, or 0x8B to initiate the read block
protocol with PEC.
Data Returned:
SMB_BCNT: Number of data bytes (1-32) received.
SMB_DATA[0-31]: Databytesreceived (1-32).
SMB_STS: Status code for transaction.
SMB_PRTCL.: 0x00 to indicate command completion.

13.9.2.11 Process Call

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[O]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL.: Write OxOC to initiate the process call protocol, or 0x8C to initiate the process call
protocol with PEC.

Data Returned:

SMB_DATA[Q]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL.: 0x00 to indicate command completion.

Compag/I ntel/Microsoft/Phoenix/T oshiba

300 Advanced Configuration and Power Interface Specification

13.9.2.12 Block Write-Block Read Process Call

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Databytestowrite (1-31).

SMB_BCNT: Number of data bytes (1-31) to be sent.

SMB_PRTCL.: Write OxOD to initiate the write block-read block process call protocol, or 0x8D to
initiate the write block-read block process call protocol with PEC.

Data Returned:

SMB_BCNT: Number of data bytes (1-31) received.

SMB_DATA[0-31]: Databytesreceived (1-31).

SMB_STS: Status code for transaction.

SMB_PRTCL.: 0x00 to indicate command completion.

Note: The following restrictions apply: The aggregate data length of the write and read blocks must not
exceed 32 bytes and each block (write and read) must contain at least 1 byte of data.

13.9.3 SMBus Register Set
Theregister set for the SMB-HChas the following format. All registers are 8 hit.

Table13-4 SMB EC Interface

LOCATION | REGISTER NAME DESCRIPTION
BASE+0 SMB_PRTCL Protocol register
BASE+1 SMB_STS Status register
BASE+2 SMB_ADDR Address register
BASE+3 SMB_CMD Command register
BASE+4 SMB_DATA[Q] Data register zero
BASE+5 SMB_DATA[1] Dataregister one
BASE+6 SMB_DATA[2] Dataregister two
BASE+7 SMB_DATA[3] Dataregister three
BASE+8 SMB_DATA[4] Dataregister four
BASE+9 SMB_DATA[5] Dataregister five
BASE+10 SMB_DATA[6] Data register six
BASE+11 SMB_DATA[7] Dataregister seven
BASE+12 SMB_DATA[8] Dataregister eight
BASE+13 SMB_DATA[9] Data register nine
BASE+14 SMB_DATA[10] Dataregister ten
BASE+15 SMB_DATA[1]] Dataregister eleven

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 301

Table13-4 SMB EC Interface (continued)

BASE+16 SMB_DATA[12] Dataregister twelve
BASE+17 SMB_DATA[13] Data register thirteen
BASE+18 SMB_DATA[14] Dataregister fourteen
BASE+19 SMB_DATA[15] Data register fifteen
BASE+20 SMB_DATA[16] Data register sixteen
BASE+21 SMB_DATA[17] Dataregister seventeen
BASE+22 SMB_DATA[18] Data register eighteen
BASE+23 SMB_DATA[19] Dataregister nineteen
BASE+24 SMB_DATA[20] Dataregister twenty
BASE+25 SMB_DATA[2]] Dataregister twenty-one
BASE+26 SMB_DATA[22] Data register twenty-two
BASE+27 SMB_DATA[23] Dataregister twenty-three
BASE+28 SMB_DATA[24] Data register twenty-four
BASE+29 SMB_DATA[25] Data register twenty-five
BASE+30 SMB_DATA[26] Data register twenty-six
BASE+31 SMB_DATA[27] Data register twenty-seven
BASE+32 SMB_DATA[28] Dataregister twenty-eight
BASE+33 SMB_DATA[29] Dataregister twenty-nine
BASE+34 SMB_DATA[30] Dataregister thirty
BASE+35 SMB_DATA[31] Dataregister thirty-one
BASE+36 SMB_BCNT Block Count Register
BASE+37 SMB_ALRM_ADDR Alarm address
BASE+38 SMB_ALRM_DATA[Q] Alarm dataregister zero
BASE+39 SMB_ALRM_DATA[]] Alarm dataregister one

13.10 SMBus Devices

The embedded controller interface provides the system with a standard method to access devices on the
SMBus. It does not define the data and/or access protocol (s) used by any particular SMBusdevice. Further,
the embedded controller can (and probably will) serve as a gatekeeper to prevent accidental or malicious
access to devices on the SMBus.

Some SMBus devices are defined by their address and a specification that describes the data and the
protocol used to access that data. For example, the Smart Battery System devices are defined by a series of
specificationsincluding:

Smart Battery Data specification

Smart Battery Charger specification

Smart Battery Selector specification

Smart Battery System Manager specification

The embedded controller can also be used to emulate (in part or totally) any SMBus device.

Compag/I ntel/Microsoft/Phoenix/T oshiba

302 Advanced Configuration and Power Interface Specification

13.10.1 SMBus Device Access Restrictions

In some cases, the embedded controller interface will not allow accessto a particular SMBus device. Some
SMBus devices can and do communicate directly between themselves. Unexpected accesses can interfere
with their normal operation and cause unpredictable results.

13.10.2 SMBus Device Command Access Restriction

There are cases where part of an SMBus device' s commands are public while others are private. Extraneous
attempts to access these commands might cause interference with the SMBus device’ s normal operation.

The Smart Battery and the Smart Battery Charger are good examples of devices that should not have their
entire command set exposed. The Smart Battery commands the Smart Battery Charger to supply a specific
charging voltage and charging current. Attempts by anyone to alter these values can cause damage to the
battery or the mobile system. To protect the system’ sintegrity, the embedded controller interface can
restrict access to these commands by returning one of the following error codes: Device Command Access
Denied (0x12) or Device Access Denied (0x17).

13.11 Defining an Embedded Controller Device in ACPlI Namespace

An embedded controller device is created using the named device object. The embedded controller’s device
object requires the following elements:

Table13-5 Embedded Controller Device Object Control Methods

Object Description

_CRS Named object that returns the Embedded Controller’s current resource settings. Embedded
Controllers are considered static resources; hence only return their defined resources. The
embedded controller resides only in system I/O or memory space. The first address region
returned is the data port, and the second address region returned is the status/’command port for
the embedded controller. CRS is a standard device configuration control method defined in
section 6.2.1, “_CRS (Current Resource Settings.”

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. Thisvalueis
set to PNPOCO09. _HID isastandard device configuration control method defined in section
6.1.4,“_HID (Hardware ID).”

_GPE Named Object that evaluatesto either an integer or a package. If _GPE evaluatesto an integer,
the valueis the bit assignment of the SCI interrupt within the GPEx_STS register of a GPE
block described in the FADT that the embedded controller will trigger.

If _GPE evaluates to a package, then that package contains two elements. The first is an object
reference to the GPE Block device that contains the GPE register that will be triggered by the
embedded controller. The second element is numeric (integer) that specifies the bit assignment
of the SCI interrupt within the GPEx_STS register of the GPE Block device referenced by the
first element in the package. This control method is specific to the embedded controller.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACP Embedded Controller Interface Specification 303

13.11.1 Example: EC Definition ASL Code

Example ASL code that defines an embedded controller deviceis shown below:

Devi ce(EQD) {
/1 PnP ID
Nane(_H D, El SAl D(“PNP0C09"))
/!l Returns the “Current Resources” of EC
Nane(_CRS,
Resour ceTenpl at e() { /1 port Ox62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O Decodel6, 0x66, 0x66, 0, 1)
}
)

/1 Define that the EC SC is bit 0 of the GP_STS register
Nane(_GPE, 0)

Oper at i onRegi on(ECOR, EnbeddedControl, 0, OxFF)
Fi el d(ECOR, Byt eAcc, Lock, Preserve) {
/1 Field definitions go here

}
}

13.12 Defining an EC SMBus Host Controller in ACPI Namespace

An EC-SMB-HC device is defined using the named device object. The EC-SM B- HC'’ s device object
reguires the following elements:

Table13-6 EC SMBusHC Device Objects

Object Description

_HID Named object that provides the EC-SM B- HC' s Plug and Play identifier. Thisvalueis be set to

“ HID (Hardware ID).”

_EC Named object that evaluatesto aWORD that defines the SM Bus attributes needed by the
SMBus driver. _EC isthe Embedded Controller Offset Query Control Method. The most

least significant byteisthe query value for all SMBus events.

Compag/I ntel/Microsoft/Phoenix/T oshiba

ACPI0001. _HID isastandard device configuration control method defined in section 6.1.4,

significant byteisthe address offset in embedded controller space of the SMBus controller; the

304 Advanced Configuration and Power Interface Specification

13.12.1Example: EC SMBus Host Controller ASL-Code
Example ASL code that defines an SMB-HC from within an embedded controller device is shown below:
Devi ce(EQD)

Nane(_H D, El SAl D("PNPOC09"))
Narme(_CRS, ResourceTenpl at e()

| O Decodel6, O0x62, 0x62, 0, 1), // Status port
| O(Decodel6, 0x66, 0x66, 0, 1) /1 comrand port

1)
Nane(_GPE, 0)

Devi ce (SMBO)

Narme(_HI D, "ACPI 0001") /1 ECG SMB-HC
Nane(_U D, 0) /1 Unique device identifier
Nanme(_EC, 0x2030) /1 EC offset 0x20, query bit 0x30
}
Devi ce (SMB1)
Narme(_HI D, "ACPI 0001") /1 ECG SMB-HC
Nane(_U D, 1) /1 Unique device identifier
Narme(_EC, 0x8031) /1 EC offset 0x80, query bit 0x31
}
} /1 end of EQ

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI System Management Bus Interface Specification 305

14 ACPI System Management Bus Interface Specification

This section describes the System Management Bus (SMBus) generic address space and the use of this
address space to access SMBus devices from AML.

Unlike other address spaces, SMBus operation regions are inherently non-linear, where each offset within
an SMBus address space represents avariable-sized (from 0 to 32 bytes) field. Given this uniqueness,
SMBus operation regionsinclude restrictions on their field definitions and require the use of an SMBus-
specific data buffer for all transactions.

The SMBusinterface presented in this section isintended for use with any hardware implementation
compatible with the SMBus specification. SMBus hardware is broadly classified as either non-EC-based or
EC-based. EC-based SMBus implementations comply with the standard register set defined in section 13,
ACPI Embedded Controller Interface Specification.”

Non-EC SMBus implementations can employ any hardware interface and are typically used for their cost
savings when SMBus security is not required. Non—-EC-based SMBus i mplementations require the
development of hardware specific driversfor each OS implementation. See section 14.2, “Declaring
SMBus Host Controller Objects,” for more information.

Support of the SMBus generic address space by ACPI-compatible operating systemsis optional. As such,
the Smart Battery System Implementer’s Forum (SBS-IF) has defined an SMBusinterface based on a
standard set of control methods. Thisinterface is documented in the SMIBus Control Method Interface
Specification, available from the SBS-IF Web site at: http://www.sbs-forum.org/.

14.1 SMBus Overview

SMBusisatwo-wire interface based upon the 12C protocol. The SMBusis alow-speed bus that provides
positive addressing for devices, aswell as bus arbitration. For more information, refer to the complete set
of SMBus specifications published by the SBS-IF.

14.1.1 SMBus Slave Addresses

Slave addresses are specified using a 7-bit non-shifted notation. For example, the slave address of the
Smart Battery Selector device would be specified as 0xOA (1010b), not 0x14 (10100b) as might be found in
other documents. These two different forms of addresses result from the format in which addresses are
transmitted on the SMBus.

During transmission over the physical SMBus, the slave address is formatted in an 8-bit block with bits 7-1
containing the address and bit O containing the read/write bit. ASL code, on the other hand, presents the
slave address simply asa 7-bit value making it the responsibility of the OS (driver) to shift the value if
needed. For example, the ASL value would have to be shifted left 1 bit before being written to the
SMB_ADDR register in the EC based SMBus as described in section 13.9.1.3, “ Address Register,
SMB_ADDR.”

14.1.2 SMBus Protocols

There are six possible command protocols for any given SMBus slave device, and a device may use any or
al of the protocolsto communicate. The protocols and associated access type indicators are listed below.
Notice that the protocols values are similar to those defined for the EC-based SMBusin section 13.9.1.2,
“Protocol Register, SMB_PRTCL,” except that protocol pairs (for example, Read Byte, Write Byte) have
been joined.

Compag/I ntel/Microsoft/Phoenix/T oshiba

306 Advanced Configuration and Power Interface Specification

Table14-1 SMBus Protocol Types

Value Type Description
0x02 SMBQuick SMBus Read/Write Quick Protocol
0x04 SMBSendReceive SMBus Send/Receive Byte Protocol
0x06 SV BByte SMBus Read/Write Byte Protocol
0x08 SMBWord SMBus Read/Write Word Protocol
Ox0A SMBBIlock SMBus Read/Write Block Protocol
0ox0C SMBProcessCall SMBus Process Call Protocol
SMBus Write Block-Read Block
0x0D SMBBIockProcessCall Process Call Protocol

All other protocol values are reserved.

Noticethat bit 7 of the protocol value is used by thisinterface to indicate to the SMB-HC whether or not
packet error checking (PEC) should be employed for a transaction. Packet error checking is described in
section 7.4 of the System Management Bus Specification, Version 1.1. This highly desirable capability
improves the reliability and robustness of SMBus communications.

The bit encoding of the protocol value is shown below. For example, the value 0x86 would be used to
specify the PEC version of the SMBus Read/Write Byte protocol.

&— Bits 6:0 = Protocol —>
[7]s6]s5]4]3]2]1]o0

S~

““Bit 7 = Packet Error Checking

Figure 14-1 Bit Encoding Example

Noticethat bit O of the protocol valueis always zero (even number hexadecimal values). In amanner
similar to the slave address, software that implements the SMBusinterfaceis responsible for setting this bit
to indicate whether the transaction is aread (for example, Read Byte) or write (for example, Write Byte)
operation.

For example, software implanting this interface for EC-SM Bus segments would set bit O for read
transactions. For the SMBByte protocol (0x06), thiswould result in the value 0x07 being placed into the
SMB_PRTCL register (or 0x87 if PEC is requested).

14.1.3 SMBus Status Codes

The use of status codes helps AML determine whether an SMBus transaction was successful. In general, a
status code of zero indicates success, while anon-zero value indicates failure. The SMBus interface uses
the same status codes defined for the EC-SMBus (see section 13.9.1.1, “ Status Register, SMB_STS").

14.1.4 SMBus Command Values

SMBus devices may optionally support up to 256 device-specific commands. For these devices, each
command value supported by the device is modeled by thisinterface as a separate virtual register.
Protocols that do not transmit a command value (for example, Read/Write Quick and Send/Receive Byte)
are modeled using a single virtual register (with a command value = 0x00).

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI System Management Bus Interface Specification 307

14.2 Declaring SMBus Host Controller Objects

EC-based SMBus 1.0-compatible HCs should be modeled in the ACPI namespace as described in section
13.12, “Defining an Embedded Controller SMBus Host Controller in ACPlI Namespace.” An example
definition is given below. Using the HID value “ ACPI0001” identifies that this SMB-HC is implemented
on an embedded controller using the standard SMBus register set defined in section 13.9, SMBus Host
Controller Interface via Embedded Controller.”

Devi ce (SMBO)
{

Nane(_H D, "ACPI 0001") /'l EG based SMBus 1.0 conpatible Host Controller
Nane(_ECO, 0x2030) /1 EC of fset 0x20, query bit 0x30

}
EC-based SMBus 2.0-compatible host controllers should be defined similarly in the name space as follows:

Devi ce (SMBO)

Nane(_H D, "ACPI 0005") /!l EG based SMBus 2.0 conpatible Host Controller
Nane(_EC1, 0x2030) /1 EC of fset 0x20, query bit 0x30

}

Non—EC-based SMB-HCs should be modeled in a manner similar to the EC-based SMBus HC. An
example definition is given below. These devices use avendor-specific hardware identifier (HID) to
specify the type of SMB-HC (do not use “ACPI0001” or “ACPI0005"). Using a vendor-specific HID
allows the correct software to be loaded to service this segment’ s SMBus address space.

Devi ce(SMBO)
Name(_H D, "<Vendor-Specific HD>") // Vendor-Specific HD

}

Regardless of the type of hardware, some OS software element (for example, the SMBus HC driver) must
register with OSPM to support all SMBus operation regions defined for the segment. This software allows
the generic SMBus interface defined in this section to be used on a specific hardware implementation by
translating between the conceptual (for example, SMBus address space) and physical (for example, process
of writing/reading registers) models. Because of thislinkage, SMBus operation regions must be defined
immediately within the scope of the corresponding SMBus device.

14.3 Declaring SMBus Devices

The SMBus, as defined by the SMBus 1.0 Specification, is not an enumerable bus. As aresult, an SMBus
1.0-compatible SMB-HCdriver cannot discover child devices on the SMBus and |oad the appropriate
corresponding device drivers. As such, SMBus 1.0-compatible devices are declared in the ACPI
namespace, in like manner to other motherboard devices, and enumerated by OSPM.

The SMBus 2.0 specification adds mechanisms enabling device enumeration on the bus while providing
compatibility with existing devices. ACPI 2.0 defines and associates the “ ACPI0005” HID value with an
EC-based SMBus 2.0-compatible host controller. OSPM will enumerate SMBus 1.0-compatible devices
when declared in the namespace under an SMBus 2.0-compatible host controller.

Theresponsihility for the definition of ACPI namespace objects, required by an SMBus 2.0-compatible
host controller driver to enumerate non-bus-enumerabl e devices, is relegated to the SBS-IF in ACPI 2.0.
The definition of these objectsis documented in the SMBus ACPI Namespace Device Definition
Specification, available from the SBS-IF Web site at: http://www.shs-forum.org/.

ACPI 2.0 uses_ADR to associate SMBus devices with their lowest SMBus slave address.

Compag/I ntel/Microsoft/Phoenix/T oshiba

308 Advanced Configuration and Power Interface Specification

14.4 Declaring SMBus Operation Regions

Each SMBus operation region definition identifies a single SMBus slave address. Operation regions are
defined only for those SMBus devices that need to be accessed from AML. Aswith other regions, SMBus
operation regions are only accessible viathe Fieldterm (see section 14.5, “ Declaring SMBus Fields”).

Thisinterface models each SMBus device as having a 256-byte linear address range. Each byte offset
within this range corresponds to a single command value (for example, byte offset 0x12 equates to
command value 0x12), with a maximum of 256 command values. By doing this, SMBus address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from section 16.2.3.3.1.14, “ OperationRegion [Declare
Operation Region]”) is described below.

Oper at i onRegi on(
Regi onNane, // NaneStri ng
Regi onSpace, / | Regi onSpaceKeywor d

O fset, /| Ter MAr g=>I nt eger
Lengt h /| Ter MAr g=>I nt eger
)

Where:
- RegionName specifies aname for this slave device (for example, “SBD0").
RegionSpace must be set toSM Bus (operation region type value 0x04).
Offset isaword-sized value specifying the slave address and initial command value offset for the target
device. The slave addressis stored in the high byte and the command value offset is stored in the low
byte. For example, the value 0x4200 would be used for an SMBus deviceresiding at slave address
0x42 with an initial command value offset of zero (0).
Length is set to the 0x100 (256), representing the maximum number of possible command values, for
regionswith aninitial command value offset of zero (0). The difference of these two valuesis used for
regions with non-zero offsets. For example, aregion with an Offset value of 0x4210 would have a
corresponding Length of 0xFO (0x100 minus 0x10).

For example, the Smart Battery Subsystem (illustrated below) consists of the Smart Battery Charger at
slave address 0x09, the Smart Battery System Manager at slave address 0xOA, and one or more batteries
(multiplexed) at slave address OxOB. (Notice that Figure 14-1 represents the logical connection of a Smart
Battery Subsystem. The actual physical connections of the Smart Battery(s) and the Smart Battery Charger
are made through the Smart Battery System Manager.) All devices support the Read/Write Word protocol.
Batteries also support the Read/Write Block protocol.

[eXoReRvNoXoNoNOX)
o Ie) Smart Battery
o O System Manager
o EC o [0X0A]
C O I I I
(@} ' ' (o]
o| ['sweo |2 I 1 *
o o] [0x09] [0x0B]
eooo0ooo00o Smart Battery Smart Battery
Charger Device(s)

Figure14-2 Smart Battery Subsystem Devices

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI System Management Bus Interface Specification 309

Thefollowing ASL code shows the use of the OperationRegion term to describe these SMBus devices:
Devi ce (SMBO)
{

Nane(_H D, "ACPI 0001") /'l EG SMBus Host Controller
Narme(_EC, 0x2030) /1 EC offset 0x20, query bit 0x30

Oper at i onRegi on(SBQ0, SMBus, 0x0900, 0x100) /] Smart Battery Charger
Oper at i onRegi on(SBSO, SMBus, 0x0A00, 0x100) /1 Smart Battery Sel ector
Oper at i onRegi on(SBDO, SMBus, 0x0B00, 0x100) /] Smart Battery Device(s)

}

Notice that these operation regionsin this example are defined within the immediate context of the
‘owning’ EC-SMBus device. Each definition corresponds to a separate slave address (device), and happens
to use an initial command value offset of zero (0).

14.5 Declaring SMBus Fields

Aswith other regions, SMBus operation regions are only accessible viathe Field term. Each field element
isassigned a unique command value and represents avirtual register on the targeted SMBus device.

The syntax for the Fieldterm (from section 16.2.3.3.1.10, “Event [Declare Event Synchronization
Object]”) is described below.

Field
Régi onNane, // NameSt ri ng=>Qper at i onRegi on
AccessType, // AccessTypeKeywor d
LockRul e, //LockRul eKeyword
Updat eRul e // Updat eRul eKeyword — onitted
) {FieldUnitList}

Where:
- RegionName specifies the operation region name previously defined for the device.

AccessType must be set to Buffer Acc. This indicatesthat accessto field elementswill be done using a
region-specific data buffer. For this access type, the field handler is not aware of the data buffer’s
contents and must copy the entire buffer bi-directionally (see section 14.6, “Declaring an SMBus Data
Buffer”).

LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. Thisfield should be set to Lock on system with firmware that may access the SMBus,
and NoL ock otherwise.

UpdateRuleis not applicable to SMBus operation regions since each virtual register isaccessed in its
entirety. Thisfield isomitted from all SMBus field definitions.

SMBus operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to itsindividual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. Thislimitationis
imposed both to simplify the SMBus interface and to maintain consistency with the physical model defined
by the SMBus specification.

SMBus protocols are assigned to field elements using the AccessAs term within the field definition. The
syntax for this term (from section 16.1.3, “ASL Language and Terms”) is described below.

AccessAs(
AccessType, // AccessTypeKeywor d
AccessAttribute //Nothing | ByteConst | AccessAttribKeyword

)

Where:
AccessType must be set to Buffer Acc.
AccessAttribute indicates the SMBus protocol to assign to command values that follow thisterm. See
section 14.1.2, “SMBus Protocols,” for alisting of the SMBus protocol types and values.

Compag/I ntel/Microsoft/Phoenix/T oshiba

310 Advanced Configuration and Power Interface Specification

An AccessAs term must appear asthe first entry in afield definition to set the initial SMBus protocol for
the field elements that follow. A maximum of one SMBus protocol may be defined for each field element.
Devices supporting multiple protocols for a single command value can be modeled by specifying multiple
field elements with the same offset (command value), where each field element is preceded by an AccessAs

term specifying an alternate protocol.

For example, the register at command value 0x08 for a Smart Battery device (illustrated below) represents
aword value specifying the battery temperature (in degrees Kelvin), while the register at command value
0x20 represents avariable-length (0 to 32 bytes) character string specifying the name of the company that

manufactured the battery.
Smart Battery Device
Command Value Reqister
ManufacturerAccess(0x00 (Word) | Byte O | Bytel
RemainingCapacityAlarm() 0x01 (Word) | Byte O | Bytel
Temperature() 0x08 (Word) | Byte O | Byte 1l
ManufacturerName() 0x20 (Block) —m= Byte O Byte 31
DeviceName() 0x21 (Block) = Byte O Byte 31

Figure14-3 Smart Battery Device Virtual Registers

Thefollowing ASL code shows the use of the OperationRegion, Field, AccessAs, and Offset terms to

represent these Smart Battery device virtual registers:

Oper at i onRegi on(SBDO, SMBus, 0x0B00, 0x0100)
Fi el d(SBDO, BufferAcc, NoLock)

{
AccessAs(Buf ferAcc, SMBWrd) // Use the SMBWrd protocol for the follow ng...
MG, 8, /1 Manuf act urer Access() [command val ue 0x00]
RCAP, 8, /1 Remai ni ngCapaci tyAl arm() [comrand val ue 0x01]
O f set (0x08) /1 Skip to command val ue 0x08...
BTMP, 8, /1 Tenperature() [comand val ue 0x08]
O f set (0x20) /!l Skip to command val ue 0x20...
AccessAs(Buf ferAcc, SMBBl ock) // Use the SMBBI ock protocol for the follow ng...
MFQN, 8, /1 Manuf act urer Name() [command val ue 0x20]
DEVN, 8 /1 DeviceName() [comrand val ue 0x21]

}

Notice that command values are equivalent to the field element’ s byte offset (for example, MFGA=0,
RCAP=1, BTMP=8). The AccessAs term indicates which SMBus protocol to use for each command value.

14.6 Declaring an SMBus Data Buffer

The use of adata buffer for SMBus transactions allows AML to receive status and data length values, as
well as making it possible to implement the Process Call protocol. As previously mentioned, the Buffer Acc
accesstypeisused to indicate to the field handler that a region-specific data buffer will be used.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI System Management Bus Interface Specification 311

For SMBuUs operation regions, this data buffer is defined as a fixed-length 34-byte buffer that, if
represented using a‘ C’ -styled declaration, would be modeled as follows:

typedef struct

BYTE St at us; /1 Byte O of the data buffer
BYTE Lengt h; /1 Byte 1 of the data buffer
BYTE[32] Dat a; /1 Bytes 2 through 33 of the data buffer

Where:
Status (byte 0) indicates the status code of a given SMBus transaction. See section 14.1.3, “SMBus
Status Code,” for more information.
Length (byte 1) specifies the number of bytes of valid data that existsin the data bufferUse of thisfield
isonly defined for the Read/Write Block protocol, where valid Length values are 0 through 32. For
other protocols—where the datalength isimplied by the protocol—this field is reserved.
Data (bytes 2-33) represents a 32-byte buffer, and is the location where actual datais stored.

For example, the following ASL showsthe use of the SMBus data buffer for performing transactionsto a
Smart Battery device. This code is based on the example ASL presented in section 14.5, “Declaring SMBus
Fields,” which lists the operation region and field definitions for the Smart Battery device.

/* Create the SMBus data buffer */

Narme(BUFF, Buffer(34){}) /1 Create SMBus data buffer as BUFF
Cr eat eByt eFi el d(BUFF, 0x00, OB1) /] OBl = Status (Byte)
O eat eByt eFi el d(BUFF, 0x01, 0B2) /] OB2 = Length (Byte)
Creat eWr dFi el d(BUFF, 0x02, OB3) // OB3 = Data (Wrd — Bytes 2 & 3)
Or eat eFi el d(BUFF, 0x16, 256, OB4) /] OB4 = Data (Block — Bytes 2-33)
/* Read the battery tenperature */
St ore(BTMP, BUFF) /1 I nvoke Read Wrd transaction
| f (LEqual (OB1, 0x00)) /1 Successful ?
// OB3 = Battery tenperature in 1/10'" degrees Kelvin
}
/* Read the battery manufacturer nane */
St or e(MFGN, BUFF) /1 1nvoke Read Bl ock transaction
| f (LEqual (OB1, 0x00)) /1 Successful ?
{
/] OB2 = Length of the nanufacturer nane
/] OB4 = Manufacturer nane (as a counted string)
}

Notice the use of the CreateFieldprimitives to access the data buffer’ s sub-elements (Status Length, and
Data), where Data (bytes 2-33) is ‘ typecast’ as both word (OB3) and block (OB4) data.

14.7 Using the SMBus Protocols

This section provides information and examples on how each of the SMBus protocols can be used to access
SMBus devices from AML.

14.7.1 Read/Write Quick (SMBQuick)

The SMBus Read/Write Quick protocol (SMBQuick) istypically used to control simple devicesusing a
device-specific binary command (for example, ON and OFF). Command values are not used by this
protocol and thus only a single element (at offset 0) can be specified in the field definition. This protocol
transfers no data.

Compag/I ntel/Microsoft/Phoenix/T oshiba

312 Advanced Configuration and Power Interface Specification

Thefollowing ASL codeillustrates how adevice supporting the Read/Write Quick protocol should be
accessed:

Oper ati onRegi on(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Fi el d(SMBD, BufferAcc, NoLock)

AccessAs(Buf fer Acc, SMBQui ck) /1 Use the SMBus Read/ Wite Quick protocol
FLDO, 8 /1 Virtual register at command val ue 0.

}

/* Create the SMBus data buffer */

Nane(BUFF, Buffer(34){}) /] Oreate SMBus data buffer as BUFF

Cr eat eByt eFi el d(BUFF, 0x00, OB1) /] OBl = Status (Byte)

/* Signal device (e.g. OFF) */

St ore(FLDO, BUFF) /1 I nvoke Read Quick transaction

| f (LEqual (OB1, 0x00)) {.} /1 Successful ?

/* Signal device (e.g. ON) */

St or e(BUFF, FLDO) /1 Invoke Wite Quick transaction

| f (LEqual (OB1, 0x00)) {.} /1 Successful ?

In thisexample, asingle field element (FLDO) at offset 0 is defined to represent the protocol’ s read/write
bit. Accessto FLDO will cause an SMBus transaction to occur to the device. Reading the field resultsin a
Read Quick, and writing to the field resultsin a Write Quick. In either case datais not transferred—access
to the register is simply used as a mechanism to invoke the transaction.

14.7.2 Send/Receive Byte (SMBSendReceive)

The SMBus Send/Receive Byte protocol (SMBSendReceive) transfers asingle byte of data. Like
Read/Write Quick, command values are not used by this protocol and thus only asingle element (at offset
0) can be specified in the field definition.

Thefollowing ASL codeillustrates how a device supporting the Send/Receive Byte protocol should be
accessed:

Oper at i onRegi on(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Fi el d(SMBD, BufferAcc, NoLock)

{
AccessAs(Buf fer Acc, SMBSendReceive) [// Use the SMBus Send/ Recei ve Byte protocol
FLDO, 8 /1 Virtual register at conmand val ue 0.
}
/* Create the SMBus data buffer */
Nane(BUFF, Buffer(34){}) /] Oreate SMBus data buffer as BUFF
O eat eByt eFi el d(BUFF, 0x00, STAT) /] STAT = Status (Byte)
Cr eat eByt eFi el d(BUFF, 0x02, DATA) /1 DATA = Data (Byte)
/* Receive a byte of data fromthe device */
St or e(FLDO, BUFF) /] Invoke a Receive Byte transaction
| f (LEqual (STAT, 0x00)) /1 Successful ?
/1 DATA = Received byte...
}
/* Send the byte ‘0x16’ to the device */
St ore(0x16, DATA) /1 Save 0x16 into the data buffer
St or e(BUFF, FLDO) /1 I'nvoke a Send Byte transaction
| f (LEqual (STAT, 0x00)) {.} /'l Successful ?

In thisexample, asingle field element (FLDO) at offset 0 is defined to represent the protocol’ s data byte.
Accessto FLDO will cause an SMBus transaction to occur to the device. Reading thefield resultsin a
Receive Byte, and writing to the field resultsin a Send Byte.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI System Management Bus Interface Specification 313

14.7.3 Read/Write Byte (SMBByte)

The SMBus Read/Write Byte protocol (SMBByte) also transfers a single byte of data. But unlike
Send/Receive Byte, this protocol uses acommand value to reference up to 256 byte-sized virtual registers.

Thefollowing ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

Oper ati onRegi on(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Fi el d(SMBD, BufferAcc, NoLock)

{
AccessAs(Buf f er Acc, SMBByt e) /1 Use the SMBus Read/Wite Byte protocol
FLDO, 8, /1 Virtual register at command val ue 0.
FLD1, 8, /1 Virtual register at command val ue 1.
FLD2, 8 /1 Virtual register at command val ue 2.

}

/* Create the SMBus data buffer */

Nanme(BUFF, Buffer(34){}) /] Oreate SMBus data buffer as BUFF

Cr eat eByt eFi el d(BUFF, 0x00, STAT) /1 STAT = Status (Byte)

O eat eByt eFi el d(BUFF, 0x02, DATA) /1 DATA = Data (Byte)

/* Read a byte of data fromthe device using comrand value 1 */

St ore(FLD1, BUFF) /1 Invoke a Read Byte transaction

| f (LEqual (STAT, 0x00)) /1 Successful ?
/1 DATA = Byte read from FLDL...

}

/* Wite the byte ‘0x16" to the device using conmand val ue 2 */

St ore(0x16, DATA) /1 Save 0x16 into the data buffer

St or e(BUFF, FLD2) // Invoke a Wite Byte transaction

| f (LEqual (STAT, 0x00)) {.} /1 Successful ?

In this example, three field elements (FLDO, FLD1, and FLD?2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 resultsin a Read Byte with a command value of 1, and writing to FLD2
resultsin a Write Byte with command value 2.

14.7.4 Read/Write Word (SMBWord)

The SMBus Read/Write Word protocol (SMBWord) transfers 2 bytes of data. This protocol also usesa
command value to reference up to 256 word-sized virtual device registers.

Thefollowing ASL code illustrates how a device supporting the Read/Write Word protocol should be
accessed:

Oper ati onRegi on(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Fi el d(SMBD, BufferAcc, NoLock)

{
AccessAs(Buf fer Acc, SMBWrd) /1 Use the SMBus Read/Wite Word protocol
FLDO, 8, /1 Virtual register at command val ue 0.
FLD1, 8, /1 Virtual register at command val ue 1.
FLD2, 8 /1 Virtual register at command val ue 2.

}

/* Create the SMBus data buffer */

Nanme(BUFF, Buffer(34){}) /]l Oreate SMBus data buffer as BUFF

Or eat eByt eFi el d(BUFF, 0x00, STAT) /1 STAT = Status (Byte)

Creat eWor dFi el d(BUFF, 0x02, DATA) /1 DATA = Data (Word)

/* Read two bytes of data fromthe device using conmand value 1 */

St ore(FLD1, BUFF) /1 I'nvoke a Read Word transaction

| f (LEqual (STAT, 0x00)) /1 Successful ?

{

/1 DATA = Word read from FLDL...

Compag/I ntel/Microsoft/Phoenix/T oshiba

314 Advanced Configuration and Power Interface Specification

/* Wite the word ‘0x5416" to the device using command val ue 2 */

St ore(0x5416, DATA) /1 Save 0x5416 into the data buffer
St or e(BUFF, FLD2) /1 Invoke a Wite Wrd transaction
| f (LEqual (STAT, 0x00)) {.} /1 Successful ?

In this example, three field elements (FLDO, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Word with a command value of 1, and writing to
FLD2 resultsin a Write Word with command value 2.

Notice that although accessing each field element transmits aword (16 bits) of data, the fields are listed as
8 bits each. The actual data size is determined by the protocol. Every field element is declared with alength
of 8 bits so that command values and byte offsets are equivalent.

14.7.5 Read/Write Block (SMBBIlock)

The SMBus Read/Write Block protocol (SMBBIlock) transfers variable-sized (0-32 bytes) data. This
protocol uses acommand value to reference up to 256 block-sized virtual registers.

Thefollowing ASL code illustrates how a device supporting the Read/Write Block protocol should be
accessed:

Oper at i onRegi on(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Fi el d(SMBD, BufferAcc, NoLock)

{
AccessAs(Buf f er Acc, SMBBI ock) /1 Use the SMBus Read/ Wite Bl ock protocol
FLDO, 8, /1 Virtual register at conmand val ue 0.
FLD1, 8, /1 Virtual register at command val ue 1.
FLD2, 8 /1 Virtual register at command val ue 2.

}

/* Create the SMBus data buffer */

Narme(BUFF, Buffer(34){}) /1 Create SMBus data buffer as BUFF

Cr eat eByt eFi el d(BUFF, 0x00, STAT) /1 STAT = Status (Byte)

O eat eByt eFi el d(BUFF, 0x01, SIZE) /1 SIZE = Length (Byte)

O eat eFi el d(BUFF, 0x16, 256, DATA) // DATA = Data (Bl ock)

/* Read bl ock data fromthe device using command value 1 */

St ore(FLD1, BUFF) /1 1nvoke a Read Bl ock transaction
| f (LEqual (STAT, 0x00)) /1 Successful ?
/Il SIZE = Size (nunber of bytes) of the block data read from FLD1...
/| DATA = Block data read from FLDL...
}
/* Wite the block ‘ TEST' to the device using command val ue 2 */
Store(“TEST", DATA) /! Save “TEST” into the data buffer
Store(4, SlZE) /1 Length of valid data in the data buffer
St or e(BUFF, FLD2) /1 Invoke a Wite Wrd transaction
| f (LEqual (STAT, 0x00)) {.} /1 Successful ?

In this example, three field elements (FLDO, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Accessto any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Block with acommand value of 1, andwriting to
FLD2 resultsin a Write Block with command value 2.

14.7.6 Process Call (SMBProcessCall)

The SMBus Process Call protocol (SMBProcessCall) transfers 2 bytes of data bi-directionally (performsa
Write Word followed by a Read Word as an atomic transaction). This protocol uses acommand value to
reference up to 256 word -sized virtual registers.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI System Management Bus Interface Specification 315

Thefollowing ASL codeillustrates how adevice supporting the Process Call protocol should be accessed:

Oper ati onRegi on(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Fi el d(SMBD, BufferAcc, NoLock)

{
AccessAs(Buf ferAcc, SMBProcessCall) // Use the SMBus Process Qall protocol
FLDO, 8, /1 Virtual register at command val ue 0.
FLD1, 8, /1 Virtual register at command val ue 1.
FLD2, 8 /1 Virtual register at command val ue 2.

}

/* Create the SMBus data buffer */

Nanme(BUFF, Buffer(34){}) // Oreate SMBus data buffer as BUFF

O eat eByt eFi el d(BUFF, 0x00, STAT) /1l STAT = Status (Byte)

Creat eWsr dFi el d(BUFF, 0x02, DATA) /1 DATA = Data (Word)

/* Process Call with input value ‘0x5416" to the device using command value 1 */

St ore(0x5416, DATA) /1 Save 0x5416 into the data buffer

St or e(BUFF, FLD1) /1 Invoke a Process Call transaction

| f (LEqual (STAT, 0x00)) /'l Successful ?

/! DATA = Word returned from FLDL...
}

In this example, three field elements (FLDO, FLD1, and FLD?2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading or writing FLD1 resultsin a Process Call with acommand value of 1. Notice
that unlike other protocols, Process Call involves both awrite and read operation in a single atomic
transaction. This means that the Data element of the SMBus data buffer is set with an input value before
the transaction isinvoked, and holds the output value following the successful completion of the
transaction.

14.7.7 Block Write-Read Block Process Call (SMBBlockProcessCall)

The SMBus Block Write-Read Block Process Call protocol (SMBBIlockProcessCall) transfers a block of
databi-directionally (performs a Write Block followed by a Read Block as an atomic transaction). The
maximum aggregate amount of data that may be transferred is limited to 32 bytes. This protocol uses a
command value to reference up to 256 block-sized virtual registers.

Thefollowing ASL codeillustrates how a device supporting the Process Call protocol should be accessed:

Qper ati onRegi on(SMBD, SMBus, 0x4200, 0x100) // SMous device at sl ave address 0x42
Fi el d(SMBD, BufferAcc, NoLock)

AccessAs(Buf fer Acc, SMBBl ockProcessCall) // Use the Bl ock Process Call protocol
FLDO, 8, /1 Virtual register representing a command value of 0
FLD1, 8// Virtual register representing a conmand val ue of 1

}
/* Oreate the SMBus data buffer as BUFF */
Name(BUFF, Buffer(34)()) /]l Oreate SMBus data buffer as BUFF

Creat eByt eFi el d(BUFF, 0x00, STAT) // STAT = Status (Byte)
Creat eByt eFi el d(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
Creat eFi el d(BUFF, 0x16, 256, DATA)// Data (Bl ock)

/* Process Call with input value "ACPI 2.0" to the device using command value 1 */

Store("ACPI 2.0", DATA)// Fill in outgoing data
Store(8, SlIZE) /1 Length of the valid data
St or e(BUFF, FLD1) /1 Execute the PC

i f (LEqual (STAT, 0x00)) // Test the status

/* BUFF now contains information returned from PC */
/* SI ZE now equal s size of data returned */

}

Compag/I ntel/Microsoft/Phoenix/T oshiba

316 Advanced Configuration and Power Interface Specification

15 System Address Map Interfaces

This section explains how an ACPI-compatible system conveys its memory resources/type mappings to
OSPM. There are three ways for the system to convey memory resources /mappings to OSPM. Thefirst is
an INT 15 BIOS interface that is used in I A -PC-based systems to convey the system’ sinitial memory map.
EFI enabled systems use the EFI defined GetM emoryM ap() boot services function to convey memory
resources to the OS |oader. These resources must then be conveyed by the OS loader to OSPM. See the EFI
specification for more information on EFI services.

Lastly, if memory resources may be added or removed dynamically, memory devices are defined in the
ACPI Namespace conveying the resource information described by the memory device (see section 10.12,
“Memory Devices’).

ACPI definesfour address range types; AddressRangeMemory, AddressRangeACPI, AddressRangeNV'S,
and AddressRangeReserved as described in the table bel ow:

Table15-1 Address Range Types

Value | Mnemonic Description

1 AddressRangeM emory Thisrange is available RAM usable by the operating system.

2 AddressRangeReserved Thisrange of addressesisin use or reserved by the system and
must not be used by the operating system.

3 AddressRangeACPI ACPI Reclaim Memory. Thisrangeis available RAM usable by the
OS &fter it reads the ACPI tables.

4 AddressRangeNV S ACPI NVS Memory. Thisrange of addressesisin use or reserve by

the system and must not be used by the operating system. This
rangeisreguired to be saved and restored across an NV S sleep.

Other | Undefined Undefined. Reserved for future use. OSPM must treat any range of
thistype asif the type returned was AddressRangeReserved.

The BIOS can use the AddressRangeReserved address range type to block out various addresses as not
suitable for use by a programmabl e device. Some of the reasons a BIOS would do this are:
The address range contains system ROM.
The address range contains RAM in use by the ROM.
The address range isin use by a memory-mapped system device.
The address range is, for whatever reason, unsuitable for a standard device to use as a device memory
space.

Note: OSPM will not save or restore memory reported as AddressRangeReserved when transitioning to or
from the $4 sleeping state.

15.1 INT 15H, E820H - Query System Address Map

Thisinterfaceisused in real mode only on A -PC-based systems and provides amemory map for all of the
installed RAM, and of physical memory ranges reserved by the BIOS. The address map is returned through
successive invocations of thisinterface; each returning information on asingle range of physical addresses.
Each range includes a type that indicates how the range of physical addressesisto be treated by the OSPM.

If the information returned from E820in some way differsfrom INT-15 88 or INT-15 E801, the
information returned from E820 supersedes the information returned from INT-15 88 or INT-15 E801. This
replacement allows the BIOS to return any information that it requires from INT-15 88 or INT-15 E801 for
compatibility reasons. For compatibility reasons, if E820 returns any AddressRangeACPI or
AddressRangeNV'S memory ranges below 16 MB, the INT-15 88 and INT-15 E801 functions must return
the top of memory below the AddressRangeACPI and AddressRangeNVS memory ranges.

Compag/I ntel/Microsoft/Phoenix/Toshiba

System Address Map Interfaces 317

The memory map conveyed by thisinterfaceis not required to reflect any changesin available physical
memory that have occurred after the BIOS hasinitially passed control to the operating system. For
example, if memory is added dynamically, thisinterface is not required to reflect the new system memory
configuration.

Table15-2 Input

EAX Function Code | E820h

EBX Continuation Contains the continuation value to get the next range of physical memory.
Thisisthe value returned by aprevious call to thisroutine. If thisisthe first
call, EBX must contain zero.

ES.DI | Buffer Pointer Pointer to an Address Range Descriptor structure that the BIOSfillsin.

ECX Buffer Size Thelength in bytes of the structure passed to the BIOS. The BIOSfillsin the
number of bytes of the structure indicated in the ECX register, maximum, or
whatever amount of the structure the BIOS implements. The minimum size
that must be supported by both the BIOS and the caller is 20 bytes. Future
implementations might extend this structure.

EDX Signature ‘SMAP Used by the BIOS to verify the caller is requesting the system map
information to be returned in ES:DI.

Table15-3 Output

CF Carry Flag Non-Carry — Indicates No Error

EAX Signature ‘SMAP." Signature to verify correct BIOS revision.

ES.DI | Buffer Pointer Returned Address Range Descriptor pointer. Same value as on input.

ECX Buffer Size Number of bytes returned by the BIOS in the address range descriptor. The
minimum size structure returned by the BIOS is 20 bytes.

EBX Continuation Contains the continuation value to get the next address range descriptor. The
actual significance of the continuation value is up to the discretion of the
BIOS. The caller must pass the continuation value unchanged as input to the
next iteration of the E820 call in order to get the next Address Range
Descriptor. A return value of zero means that thisis the last descriptor.

Note: the BIOS can also indicate that the last descriptor has already been
returned during previous iterations by returning the carry flag set. The caller
will ignore any other information returned by the BIOS when the carry flag
isset.

Table15-4 Address Range Descriptor Structure

Offset in Bytes Name Description

0 BaseAddrLow Low 32 Bits of Base Address

4 BaseAddrHigh High 32 Bits of Base Address

8 LengthLow Low 32 Bits of Length in Bytes
12 LengthHigh High 32 Bits of Length in Bytes
16 Type Address type of thisrange

Compag/I ntel/Microsoft/Phoenix/T oshiba

318 Advanced Configuration and Power Interface Specification

The BaseAddr Low and BaseAddrHigh together are the 64-bit base address of this range. The base address
isthe physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-bit length of thisrange. The length is the physical
contiguous length in bytes of arange being specified.

The Type field describes the usage of the described address range as defined in Table 15-1.

15.2 E820 Assumptions and Limitations

The BIOS returns address ranges describing baseboard memory.

The BIOS does not return arange description for the memory mapping of PCI devices, |SA Option
ROMs, and | SA Plug and Play cards because the OS has mechanisms available to detect them.

The BIOS returns chip set-defined address holes that are not being used by devices as reserved.
Address ranges defined for baseboard memory-mapped /O devices, such as APICs, are returned as
reserved.

All occurrences of the system BIOS are mapped as reserved, including the areas below 1 MB, at 16

MB (if present), and at end of the 4-GB address space.

Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF physical
addresses are not described by this function. The range from EO000 to EFFFF is specific to the
baseboard and is reported asit applies to that baseboard.

All of lower memory is reported as normal memory. The OS must handle standard RAM locations that
are reserved for specific uses, such asthe interrupt vector table (0:0) and the BIOS data area (40:0).

15.3 EFI GetMemoryMap() Boot Services Function

EFI enabled systems use the EFI defined GetMemoryMap() boot services function to convey memory
resources to the OS loader. These resources must then be conveyed by the OS loader to OSPM.

The GetMemoryMap interface is only available at boot servicestime. It is not available as arun-time
service after OSPM isloaded. The OS or its |oader initiates the transition from boot services to run-time
services by calling ExitBootServices(). After the call to ExitBootServices() all system menory map
information must be derived from objectsin the ACPI Namespace.

The GetMemoryMap() interface returns an array of EFl memory descriptors. These memory descriptors
define a system memory map of all the installed RAM, and of physical memory ranges reserved by the
firmware. Each descriptor contains atype field that dictates how the physical address range isto be treated
by the operating system. Table 15-4 below describes the memory types returned by the EFI
GetMemoryMap() interface along with a mapping from EFI memory type to ACPI address range types. See
the EFI specification for more information on EFI memory types.

Table15-5 EFI Memory Typesand mapping to ACPI address range types

Type | Mnemonic Description ACPI Address Range Type
0 EfiReservedMemoryType | Not used. AddressRangeReserved
1 EfiLoaderCode The Loader and/or OS may use this | AddressRangeMemory

memory as they seefit.

Note: the OS loader that called
ExitBootServices() is executing
out of one or more EfiL oaderCode
sections.

Compag/I ntel/Microsoft/Phoenix/Toshiba

System Address Map Interfaces 319

Table15-5 EFI Memory Types and mapping to ACPI address range types (continued)

Type

M nemonic

Description

ACPI Address Range Type

2

EfiLoaderData

The Loader and/or OS may use this
memory as they see fit.

Note: the OS loader that called
ExitBootServices() is utilizing out
of one or more EfiLoaderData
sections.

AddressRangeM emory

EfiBootServicesCode

Memory available for general use.

AddressRangeM emory

EfiBootServicesData

Memory available for general use.

AddressRangeM emory

EfiRuntimeServiceCode

The OS and loader must preserve
this memory range in the working
and ACPI S1-S3 states.

AddressRangeReserved

EfiRuntimeServicesData

The OS and loader must preserve
this memory range in the working
and ACPI S1-S3 states.

AddressRangeReserved

Efi Conventional Memory

Memory available for general use.

AddressRangeM emory

Efi ACPIReclainMemory

The memory isto be preserved by
the loader and OS until ACPI in
enabled. Once ACPI isenabled,
the memory in thisrangeis
available for general use.

AddressRangeACPI

EfiACPIMemoryNV S

The OS and loader must preserve
this memory range in the working
and ACPI S1-S3 states.

AddressRangeNV S

10

EfiMemoryMappedl O

The OS does not use this memory.
All system memory-mapped I/O
port space information should
come from ACPI tables.

AddressRangeReserved

1

EfiMemoryM apped| OPor
tSpace

The OS does not use this memory.
All system memory-mapped I/O
port space information should
come from ACPI tables.

AddressRangeReserved

EfiPalCode

The OS and loader must preserve
this memory range in the working
and ACPI S1-S3 states.

AddressRangeReserved

13

EfiFirmwareReserved

Memory reserved by system
firmware.

AddressRangeReserved

Compag/I ntel/Microsoft/Phoenix/T oshiba

320 Advanced Configuration and Power Interface Specification

15.4 EFI Assumptions and Limitations

The firmware returns address ranges describing the current system memory configuration.

The firmware does not return a range description for the memory mapping of PCI devices, |SA Option
ROMs, and | SA Plug and Play cards because the OS has mechanisms available to detect them.

The firmware returns chip set-defined address holes that are not being used by devices as reserved.
Address ranges defined for baseboard memory-mapped /O devices, such as APICs, are returned as
reserved.

All occurrences of the system firmware are mapped as reserved, including the areas below 1 MB, at 16
MB (if present), and at end of the 4-GB address space. This caninclude PAL code on |A-64 systems.
Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF physical
addresses are not described by this function. The range from EO000 to EFFFF is specific to the
baseboard and is reported asit applies to that baseboard.

All of lower memory is reported as normal memory. The OS must handle standard RAM locations that
are reserved for specific uses, such asthe interrupt vector table (0:0) and the BIOS data area (40:0).
EFI contains descriptors for memory mapped 1/0 and memory mapped /O port space to allow for
virtual mode callsto EFI run-time functions. The OS must never use these regions.

15.5 Example Address Map

This sample address map (for an Intel processor-based system) describes a machine that has 128 MB of
RAM, 640 KB of base memory and 127 MB of extended memory. The base memory has 639 KB available
for the user and 1 KB for an extended BIOS dataarea. A 4-MB Linear Frame Buffer (LFB) is based at 12
MB. The memory hole created by the chip set isfrom 8 MB to 16 MB. Memory-mapped APIC devices are
in the system. The I/O Unit is at FEC00000 and the Local Unit is at FEEOO0QO. The system BIOS is
remapped to 1 GB—64 KB.

The 639-KB endpoint of the first memory range is also the base memory size reported in the BIOS data
segment at 40:13. The following table shows the memory map of atypical system.

Table15-6 Sample Memory Map

Base (Hex) | Length | Type Description

0000 0000 639 KB | AddressRangeMemory Available Base memory. Typically the same value
asisreturned using the INT 12 function.

0009 FCO0 | 1KB AddressRangeReserved | Memory reserved for use by the BIOS(s). This
areatypically includes the Extended BIOS data
area.

0OOF 0000 64 KB | AddressRangeReserved | System BIOS

0010 0000 7MB AddressRangeM emory Extended memory, whichis not limited to the
64-M B address range.

0080 0000 4MB AddressRangeReserved | Chip set memory hole required to support the
LFB mapping at 12 MB.

0100 0000 120 MB | AddressRangeMemory Baseboard RAM relocated above a chip set
memory hole.

FECO00000 | 4KB AddressRangeReserved | 1/0 APIC memory mapped |/O at FEC00000.
FEEO 0000 | 4 KB AddressRangeReserved | Local APIC memory mapped I/0O at FEE000QO.
FFFF 0000 | 64 KB | AddressRangeReserved | Remapped System BIOS at end of address space.

Compag/I ntel/Microsoft/Phoenix/Toshiba

System Address Map Interfaces 321

15.6 Example: Operating System Usage

The following code segment illustrates the algorithm to be used when calling the Query System Address
Map function. It is an implementation exampl e and uses non-standard mechanisms.

E820Present = FALSE;

Reg. ebx = 0;

do {
Reg. eax = OxE820;
Reg. es = SEGVENT (&Descriptor);
Reg.di = OFFSET (&Descriptor);
Reg. ecx = sizeof (Descriptor);
Reg. edx = ' SMAP' ;

_int(15, regs);

if ((Regs.eflags & EFLAG CARRY) || Regs.eax !="'SMAP') {
br eak;

}

if (Regs.ecx < 20 || Reg.ecx > sizeof (Descriptor)) {

/1 bug in bios - all returned descriptors nust be
/1 at least 20 bytes long, and cannot be |arger then
/1 the input buffer.

br eak;

}
E820Pr esent = TRUE;

Add 'address range Descri ptor. BaseAddress through
Descri pt or. BaseAddress + Descriptor.Length
as type Descriptor. Type

} while (Regs.ebx !'= 0);

if (!E820Present) ({

calll INT-15 88 and/or INT-15 E801 to obtain old style
menory i nformation

Compag/I ntel/Microsoft/Phoenix/T oshiba

322 Advanced Configuration and Power Interface Specification

16 ACPI Source Language (ASL) Reference

This section formally defines the ACPI Source Language (ASL). ASL is asource language for defining
ACPI abjectsincluding writing ACPI control methods. OEMs and BIOS devel opers define objects and
write control methodsin ASL and then use atranslator tool (compiler) to generate ACPI Machine
Language (AML) versions of the control methods. For aformal definition of AML, see the ACPI Machine
Language (AML) Specification, section 17, “ ACPI Machine Language Specification.”

AML and ASL aredifferent languages though they are closely related.

Every ACPI-compatible OS must support AML. A given user can define some arbitrary source language
(toreplace ASL) and write atool to translate it to AML.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging. (Debuggers
and similar tools are expected to be AML-level tools, not source-level tools.) An ASL translator
implementer must understand how to read ASL and generate AML. An AML interpreter author must
understand how to execute AML.

This section has two parts:
The ASL grammar, which isthe formal ASL specification and also serves as a quick reference.
A full ASL reference, which repeats the ASL term syntax and adds information about the
semantics of the language.

16.1 ASL Language Grammar

The purpose of this section is to state unambiguously the grammar rules used by the syntax checker of an
ASL compiler.

ASL statements declare objects. Each object has three parts, two of which might not be present.
bj ect := Object Type FixedList Variablelist

FixedList refersto alist, of known length, that supplies data that all instances of a given ObjectType must
have. A fixed listiswrittenas(a, b, ¢, ...) where the number of arguments depends on the specific
ObjectType, and some elements can be nested objects, that is(a, b, (q, r, s, t), d). Argumentsto a

FixedL ist can have default values, in which case they can be skipped. Thus, (a,,c)will cause the default
value for the second argument to be used. Some ObjectTypes can have anull FixedList, whichis simply
omitted. Trailing arguments of some object types can be left out of afixed list, in which case the default
valueisused.

VariableList refersto alist, not of predetermined length, of child objects that help define the parent. Itis
written as{ x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableL ist. Some ObjectTypes may have anull variable list, which is
simply omitted.

Other rulesfor writing ASL statements are the following:
Multiple blanks are the same as one. Blank, (,), *,” and newline are all token separators.
/I marks the beginning of acomment, which continues from the // to the end of theline.
/* marks the beginning of acomment, which continues from the /* to the next */.
“" surround an ASCI| string.

Numeric constants can be written in three ways: ordinary decimal, octal (using Oddd) or

hexadecimal, using the notation Oxdd.
Nothing indicates an empty item. For example, { Nothing } isequivalent to{}.

16.1.1 ASL Grammar Notation
The notation used to express the ASL grammar is specified in the following table.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 323

Table16-1 ASL Grammar Notation

Notation Convention

Description

Example

Term:=Term Term ...

Theterm to the | eft of := can be
expanded into the sequence of terms
ontheright.

aterm := bterm cterm means that
aterm can be expanded into the two-
term sequence of bterm followed by
cterm.

Angle brackets (< >)

Used to group items.

<ab> | <c d> means either

aborcd.

Bar symbol (|)

Separates alternatives.

aterm := bterm | <cterm dterm>
means the following constructs are
possible:

bterm
cterm dterm

aterm := <bterm | cterm> dterm
means the following constructs are
possible:

bterm dterm

cterm dterm

Term Term Term

Terms separated from each other by
spaces form an ordered list.

N/A

Word in bold. Denotes the name of atermin the Inthefollowing ASL term
ASL grammar, representing any definition:
instance of such g_term. ASL terms ThermalZone (ZoneName)
are not case-sensitive.

{ObjectList}
theitem in bold is the name of the
term.

Word in italics Names of argumentsto objectsthat | Inthefollowing ASL term

are replaced for agiven instance.

definition:
ThermalZone (ZoneName)
{ObjectList}

theitalicized item is an argument.
Theitem that is not bolded or
italicized is defined elsewherein the
ASL grammar.

Singlequotes (* ')

Indicate constant characters.

A

Oxdd

Refersto abyte value expressed as
2two hexadecimal digits.

0x21 means a value of hexadecimal
21, or decimal 33. Noticethat a
value expressed in hexadecimal
must start with aleading zero (0).

Dash character (-)

Indicates arange.

1-9 means asingle digit in the range
1to9inclusive.

Compag/I ntel/Microsoft/Phoenix/T oshiba

324 Advanced Configuration and Power Interface Specification

16.1.2 ASL Names

LeadNareChar =‘'A-'Z | ‘a-‘z | ‘_

Di gi t Char ='0-'9

NaneChar = DigitChar | LeadNameChar

Root Char =\’

NameSeg = <LeadNarmeChar NaneChar NameChar NaneChar> |
<LeadNaneChar NanmeChar NaneChar> |
<LeadNaneChar NaneChar > |
<LeadNaneChar >

NaneString = <Root Char NanePath> | <'~’ PrefixPath NamePat h> |
NonEnpt yNanePat h

Prefi xPat h = Nothing | <7 PrefixPath>

NanePat h = Nothing | <NaneSeg NanePat hTail >

NonEnpt yNanePat h = NanmeSeg | <NaneSeg NanePat hTail >

NamePat hTai | = Nothing | <.’ NanmeSeg NanePat hTail >

16.1.3 ASL Language and Terms

ASLCode := DefinitionBl ockTerm

DefinitionBl ockTerm ;= DefinitionBl ock(
AMLFi | eNane, /1StringData
Tabl eSi gnat ure, /1StringData
Conpl i anceRevi si on, / I Byt eConst
CEM D, /1 StringData
Tabl el D, /1 StringData
CEMRevi si on / | DWr dConst

) {TernList}
Ternii st Not hi ng | <Term Ter i st >

Term oj ect | TypelQpcode | Type2Qpcode

ConpilerDirective I ncl udeTerm | External Term

bj ect Li st = Nothing | <Cbject bjectlList>

bj ect = ConpilerDirective | NamedObject | NameSpaceMdifier
Dat athj ect = BufferData | PackageData | IntegerData | StringData
Dat aRef Obj ect = Data(hj ect | ObjectReference | DDBHandl e

Conput at i onal Dat a Buf ferData | IntegerData | StringData

Buf f er Dat a = Type5Qpcode | BufferTerm

PackageDat a = PackageTerm

I nt eger Dat a = Type3Opcode | Integer | ConstTerm

StringDat a = Typed4Qpcode | String

NarmedQbj ect ;= BankFiel dTerm | COreateBitFieldTerm| QeateByteFieldTerm

| OreateDWrdFieldTerm| CreateFieldTerm |

O eateQMrdFi el dTerm | O eateWrdFiel dTerm |

Dat aRegi onTerm | DeviceTerm | EventTerm | FieldTerm|

I ndexFi el dTerm | MethodTerm | MutexTerm | OpRegi onTerm |
Power ResTerm | Processor Term | Thermal ZoneTerm

NameSpaceModi fi er AliasTerm| NaneTerm | ScopeTerm

User Term = NaneString([/ NaneSt ri ng=>Met hod
ArgLi st
) => Nothing | DataRef Qbject
ArgLi st = Nothing | <TermArg ArgListTail >
ArgLi st Tai | = Nothing | <',’ TermArg ArgListTail >
Ter mAr g = Type2Qpcode | DataRef Chject | ArgTerm| Local Term
Tar get = Nothing | SuperNane

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 325

TypelQpcode := BreakTerm | BreakPointTerm | ContinueTerm| Fatal Term |
| fEl seTerm| LoadTerm | NoQpTerm | NotifyTerm |
Rel easeTerm| ResetTerm| ReturnTerm| Signal Term |
Sl eepTerm| StallTerm| SwitchTerm| Unl oadTerm |

Wi | eTerm
/1 A TypelQpCode termcan only be used standing al one on
a

/1 line of ASL code; because these types of ternms do not
/1 return a value so they cannot be used as a termin an
/'l expression.

Type2QCpcode = AcquireTerm| AddTerm | AndTerm | BuffTerm | ConcatTerm
| Concat ResTerm | CondRefOf Term | CopyTerm | DecTerm |
DecStrTerm | DerefOf Term | DivideTerm |
Fi ndSet LeftBit Term | FindSetR ghtBitTerm| FronBCDTerm |
HexStrTerm | IncTerm | IndexTerm | IntTerm | LAndTerm |
LEqual Term | LG eaterTerm| LG eaterEqual Term |
LLessTerm | LLessEqual Term | LNot Term | LNot Equal Term |
LoadTabl eTerm | LO Term| MatchTerm| MdTerm| MdTerm
| MultiplyTerm| NAndTerm | NO Term| NotTerm |
Obj ect TypeTerm| O Term| RefOfTerm| ShiftLeftTerm |
ShiftRight Term| SizeOTerm| StoreTerm| StringTerm |
Subtract Term | ToBCDTerm | WiitTerm | XorTerm| UserTerm
/1 A Type2Qpcode termreturns a value that can be used
/1 inan expression.

Type3(pcode := AddTerm | AndTerm | DecTerm | DivideTerm| EI SAl DTerm |
Fi ndSet LeftBit Term | Fi ndSet Ri ghtBitTerm | FronBCDTerm |
IncTerm| IndexTerm| IntTerm| LAndTerm | LEqual Term |
LG eaterTerm| LG eaterEqual Term| LLessTerm |
LLessEqual Term | LNot Term | LNot Equal Term | LO Term |
Mat chTerm | ModTerm | MiltiplyTerm| NAndTerm | NO Term
| NotTerm| O Term| ShiftLeftTerm| ShiftRi ghtTerm |
Subtract Term | ToBCDTerm | XorTerm
/1 A Type3Opcode evaluates to an Integer, can't have a
/1 destination and nust have either Type3QOpcode,

/'l TypedQpcode, Type5QCpcode, Const Expr Term | nteger,
/1 BufferTerm Package or String for all argunents.

TypedOpcode := Concat Term| DecStrTerm| HexStrTerm| MdTerm |
StringTerm
/1 A TypedQpcode eval uates to an String, can’t have a
/1 destination and nust have either Type3(pcode,
/1 TypedQpcode, Type5Qpcode, ConstExprTerm | nteger,
/1 BufferTerm PackageTermor String for all argunents.

Type5QCpcode = Buff Term| Concat Term| ConcatResTerm | MdTerm |
Resour ceTenpl at eTerm | Uni codeTer m
/1 A Type5Qpcode evaluates to a BufferTerm can't
/1 have a destination and nust have either Type3QOpcode,
/1 Typed4Qpcode, Type5Opcode, Const ExprTerm | nteger,
/] BufferTerm PackageTermor String for all argunents.

Type6Qpcode = RefOTerm| DerefOTerm| IndexTerm| UserTerm
I ncl udeTer m := I ncl ude(
I ncFi | ePat hNane /1StringData
)
Ext ernal Term ;= External (
Gbj Nane, // NameStri ng
Obj Type /1 Not hing | Obj ect TypeKeyword

Compag/I ntel/Microsoft/Phoenix/T oshiba

326 Advanced Configuration and Power Interface Specification

BankFi el dTer m : = BankFi el d(
Regi onNane,
BankNane,
BankVal ue,
AccessType,
LockRul e,
Updat eRul e
) {FielduUnitlList}

/I NanmeSt ri ng=>Cper at i onRegi on
[/ NaneStri ng=>Fi el duni t

/I Ter mMAr g=>I nt eger

/I AccessTypeKeywor d

/I LockRul eKeywor d

/] Updat eRul eKeywor d

Compag/I ntel/Microsoft/Phoenix/Toshiba

Fi el dUni t Li st
Fi el dUni t Li st Tai |

Fi el dUni t
Fiel dUnitEntry

O fset Term

AccessAsTerm

CreateBitFi el dTerm

Cr eat eByt eFi el dTerm

Cr eat eDVWr dFi el dTerm

Creat eFi el dTerm

Creat eQMNrdFi el dTerm

Creat eWor dFi el dTerm

Dat aRegi onTerm

Devi ceTerm

Event Term

ACPI Source Language (ASL) Reference 327

Nothing | <FieldUnit FieldUnitListTail>
Nothing | <, Fieldunit FieldUnitListTail>

FieldUnitEntry | O fsetTerm| AccessAsTerm

<Not hi ng | NaneSeg> '’

O fset(
Byt eCf f set
)

AccessAs(
AccessType,
AccessAttribute

)

CreateBitFiel d(
Sour ceBuf fer,
Bi t | ndex,
Bi t Fi el dNare

)

Cr eat eByt eFi el d(
Sour ceBuf fer,
Byt el ndex,
Byt eFi el dNane

)

O eat eDWr dFi el d(
Sour ceBuf fer,
Byt el ndex,
DwWor dFi el dNane

)

Creat eFi el d(
Sour ceBuf f er,
Bi t | ndex,
NunBits,
Fi el dNane

)

Cr eat eQNor dFi el d(
Sour ceBuf fer,
Byt el ndex,
QWor dFi el dNarre

)

Cr eat eWr dFi el d(
Sour ceBuf f er,
Byt el ndex,
Wor dFi el dNarre

)

Dat aTabl eRegi on(
Regi onNane,
Si gnatureString,
Cemnl DSt ri ng,
CenTabl el DStr i ng

)

Devi ce(
Devi ceNare
) {QbjectList}

Event (
Event Name
)

I nt eger

/1l nt eger Dat a

/I AccessTypeKeywor d

//Not hing | ByteConst Expr |

/1 AccessAttri bKeyword

/| Ter mAr g=>Buf f er
/| Ter MAr g=>I nt eger
// NameStri ng

/| Ter mAr g=>Buf f er
/| Ter MAr g=>I nt eger
// NameStri ng

/| Ter mAr g=>Buf f er
/| Ter mAr g=>I nt eger
// NameStri ng

/| Ter MAr g=>Buf f er
/| Ter MAr g=>I nt eger
/| Ter mMAr g=>I nt eger
// NanmeSt ri ng

/| Ter mAr g=>Buf f er
/| Ter mMAr g=>I nt eger
[/ NameStri ng

/| Ter mAr g=>Buf f er
/| Ter mMAr g=>I nt eger
[/ NameStri ng

/1 NameString

/1 TermArg=>String
/1 TermArg=>String
/1 TermArg=>String

// NameString

// NameString

Compag/I ntel/Microsoft/Phoenix/T oshiba

328 Advanced Configuration and Power Interface Specification

Fi el dTerm

I ndexFi el dTerm

Met hodTer m

Mut exTer m

OpRegi onTer m

Power ResTer m

Processor Term

Ther mal ZoneTer m

AliasTerm

NameTer m

ScopeTerm

Br eakTer m
Br eakPoi nt Term

Conti nueTerm

Fi el d(
Regi onNane,
AccessType,
LockRul e,
Updat eRul e

) {FieldUnitList}

I ndexFi el d(
| ndexNane,
Dat aNane,
AccessType,
LockRul e,
Updat eRul e
) {FielduUnitlList}

Met hod(
Met hodNane,
NunmAr gs,
SerializeRul e,

SyncLevel
) {TernList}

Mt ex(
Miut exName,
SynclLevel

)

Oper at i onRegi on(
Regi onNane,
Regi onSpace,
O f set,
Lengt h

)

Power Resour ce(
Resour ceNane,
Syst enLevel ,
Resour ceOr der
) {oj ectList}

Processor (
Pr ocessor Nane,
Processor| D,
PBl ockAddr ess,
Pbl ockLengt h

) { QbjectList}

Ther mal Zone(
Ther mal ZoneNane

) { QbjectList}

Alias(
Sour ce(bj ect,
Al i asoj ect

)

Nare(
bj ect Nane,
hj ect

)

Scope(
Locati on
) {QbjectList}
Br eak
Br eakPoi nt

Conti nue

/I NanmeSt ri ng=>Cper at i onRegi on
/I AccessTypeKeywor d

/I LockRul eKeywor d

/ 1 Updat eRul eKeywor d

// NanmeSt ri ng=>Fi el duni t
/1 NaneStri ng=>Fi el duni t
/I AccessTypeKeywor d

/I LockRul eKeywor d

/] Updat eRul eKeywor d

// NameString
/1 Not hi ng | Byt eConst Expr
/1 Not hi ng |

/1 Seri al i zeRul eKeyword
// Not hi ng | ByteConst Expr

// NameString
/1 Byt eConst Expr

// NameStri ng

/ | Regi onSpaceKeywor d
/| Ter mMAr g=>I nt eger

/| Ter MAr g=>I nt eger

// NanmeSt ri ng
/| Byt eQnst Expr
/ | Wor dConst Expr

[/ NameStri ng

/| Byt eConst Expr

/ | DWr dConst Expr | Not hi ng (=0)
/I Byt eConst Expr | Not hi ng (=0)

// NameStri ng

// NameStri ng
// NameStri ng

// NameStri ng
/ | Dat aRef Obj ect

/I NaneString

Compag/I ntel/Microsoft/Phoenix/Toshiba

Fat al Term

| fEl seTerm

I fTerm

El seTerm

LoadTerm

NoGpTer m

Noti fyTerm

Fat al (
Type,
Code,
Arg

)

| f Term El seTerm

If(
Predi cate
) {TernList}

ACPI Source Language (ASL) Reference 329

/1 Byt eConst Expr
/ | DWbr dConst Expr
/I Ter mMAr g=>I nt eger

/| Ter mAr g=>I nt eger

Nothing | <Else {TernlList}> | <HE self {Terniist}

El seTer n»

Load(
oj ect,
DDBHandl e

)
Noop

Not i fy(
bj ect

// NameString
/I Super Nane

/ | Super Nane=>Ther nal Zone| Pr ocessor | Devi ce

Noti fi cati onVal ue

)

/| Ter mMAr g=>I nt eger

Rel easeTerm = Rel ease(
SyncOhj ect /I Super Nane
)
Reset Term = Reset (
SyncObj ect /I Super Nane
)
Ret ur n”Term = Return(
Arg /| Ter mAr g=>Dat aRef Cbj ect
)
Si gnal Term = Signal (
SyncObj ect /I Super Nane
)
Sl eepTerm = Seep(
M11i Secs /| Ter mMAr g=>I nt eger
)
Stal |l Term = Stall(
M croSecs /| Ter mMAr g=>I nt eger
)
SwitchTerm = Switch(
Predi cate /| Ter M g=>Conput at i onal Dat a

) { CaseTernlList}

Not hing | CaseTerm | Default Term Defaul t Termnii st |
CaseTerm CaseTer nii st

Nothing | CaseTerm | CaseTerm Defaul t Ter nLi st

CaseTer i st

Def aul t Ter nLi st

CaseTerm Case(
Val ue / | Dat aoj ect
) {TernList}
Def aul t Term = Default {Terniist}
Unl oadTer m : = Unl oad(
DDBHandl e /I Super Nane
)
Whi | eTerm c= Wil e(
Predi cate /| Ter mMAr g=>I nt eger
) {TernList}

Compag/I ntel/Microsoft/Phoenix/T oshiba

330 Advanced Configuration and Power Interface Specification

AcquireTerm

AddTer m

AndTer m

Buf f Term

Concat Term

Concat ResTerm

CondRef OF Term

CopyTer m

DecTerm

DecStrTerm

Deref Of Term

Di vi deTerm

Acqui re(
Syncbj ect ,
Ti meout Val ue
) => Bool ean

c= Add(
Addend1,
Addend2,
Resul t
) => Integer
1= And(
Sour cel,
Sour ce2,
Resul t
) => Integer
c= Buff(
Dat a,
Resul t

) => Conput ati onal Dat a

: = Concat enat e(
Sour cel,
Sour ce2,
Resul t

) => Conput ati onal Dat a

: = Concat enat eResTenpl at e(

Sour cel,
Sour ce2,
Resul t

) => Buffer

: = CondRef OF (
Sour ce,
Desti nati on
) => Bool ean

1= Copy(
Sour ce,
Resul t,

) => Dat aRef Obj ect

;= Decrenent (
Addend
) => I nteger
:= DecStr(
Dat a,
Resul t
) => String
:= Deref O (
Sour ce
obj ect

) => Dat aRef Obj ect

:= Divide(
Di vi dend,
Di vi sor,
Renai nder ,
Resul t
) => I nteger

/I Super Nane=>Mut ex
/1 Wr dConst Expr
/1 True means tined-out

/| Ter MAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter MAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter M g=>Conput at i onal Dat a
/| Tar get

/| Ter M g=>Conput at i onal Dat a
/| Ter M g=>Conput at i onal Dat a
/| Tar get

/| Ter mAr g=>Buf f er
/| Ter mAr g=>Buf f er
/| Tar get

/'] Super Nane
/| Tar get

/| Ter mAr g=>Dat aRef (bj ect
// NaneString | Local Term |
ArgTerm

/1 Super Nane

/| Ter MAr g=>Conput at i onal Dat a
/| Tar get

/| Ter mAr g=>(hj ect Ref er ence
/1 Qbj ect Ref erence is an

/I produced by terns such as
//1ndex, RefOf or CondRef .

/| Ter MAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/] Tar get

//returns Result

Compag/I ntel/Microsoft/Phoenix/Toshiba

Fi ndSet LeftBi t Term

Fi ndSet R ght Bi t Term

Fr onBCDTer m

HexStr Term

I ncTerm

| ndexTer m

I nt Term

LAndTer m

LEqual Term

LG eater Term

LG eat er Equal Term

LLessTerm

LLessEqual Term

LNot Ter m

ACPI Source Language (ASL) Reference 331

:= FindSetLeftBit(
Sour ce,
Resul t

) => Integer

= FindSetRi ghtBit (
Sour ce,
Resul t
) => I nteger

: = FronBCY(
BCDval ue,
Resul t

) => Integer

1= HexStr(
Dat a,
Resul t

) => String

;= I ncrenent (
Addend

) => Integer

:= I ndex(
Sour ce,

PackageTer n»
I ndex,
Destination

) => bj ect Ref erence

= Int(

Dat a,
Resul t
) => I nteger
:= LAnd(
Sour cel,
Sour ce2

) => Bool ean

;= LEqual (
Sour cel,
Sour ce2

) => Bool ean

:= LG eater(
Sour cel,
Sour ce2
) => Bool ean

1= LG eater Equal (
Sour cel,

Sour ce2
) => Bool ean

:= LLess(
Sour cel,
Sour ce2
) => Bool ean

;= LLessEqual (
Sour cel,

Sour ce2
) => Bool ean

:= LNot (
Sour ce,
) => Bool ean

/I Ter mMAr g=>I nt eger
/| Tar get

/| Ter MAr g=>I nt eger
/] Tar get

/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>Conput at i onal Dat a
/] Tar get

/I Super Nane

/| Ter mAr g=>
/1< String | Buffer |

/| Ter MAr g=>I nt eger
/| Tar get

/| Ter M g=>Conput at i onal Dat a
/| Tar get

/| Ter mAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter M g=>Conput at i onal Dat a
/| Ter MAr g=>Conput at i onal Dat a

/| Ter mMAr g=>Conput at i onal Dat a
/| Ter M g=>Conput at i onal Dat a

/| Ter M g=>Conput at i onal Dat a
/| Ter MAr g=>Conput at i onal Dat a

/| Ter mAr g=>Conput at i onal Dat a
/| Ter MAr g=>Conput at i onal Dat a

/| Ter MAr g=>Conput at i onal Dat a
/| Ter Mr g=>Conput at i onal Dat a

/| Ter MAr g=>Conput at i onal Dat a

Compag/I ntel/Microsoft/Phoenix/T oshiba

332 Advanced Configuration and Power Interface Specification

LNot Equal Term

LoadTabl eTerm

LOr Term

Mat chTer m

M dTerm

ModTer m

Mul tiplyTerm

NAndTer m

NOr Ter m

Not Term

Obj ect TypeTerm

LNot Equal (
Sour cel,
Sour ce2

) => Bool ean

LoadTabl e(
Si gnatureString,
Cemnl DSt ri ng,
Cenilrabl el DSt ri ng,
Root Pat hStri ng,
Par anet er Pat hStri ng,
Par anet er Dat a

Ter mAr g=>Dat aRef (bj ect

) => DDBHandl e

LO (
Sour cel,
Sour ce2

) => Bool ean

Mat ch(
Sear chPackage,
Opl,
Mat chCbj ect 1,
2,
Mat chCbj ect 2,
Start | ndex

) => Ones | Integer

M d(
Sour ce,
| ndex,
Length,
Resul t
) => Buffer|String

Mod(
Di vi dend,
Di vi sor,
Resul t

) => Integer

Ml tiply(
Ml ti plicand,
Mil tiplier,
Resul t
) => I nteger
NAnd(
Sour cel,
Sour ce2
Resul t
) => I nteger
NOr (
Sour cel,
Sour ce2
Resul t
) => I nteger
Not (
Sour ce,
Resul t
) => Integer
oj ect Type(
hj ect

) => Integer

/| Ter MAr g=>Conput at i onal Dat a
/| Ter M g=>Conput at i onal Dat a

/1 TermArg=>String

/1 TermArg=>String

/1 TermArg=>String

/1 Nothing | TermArg=>String
/1 Nothing | TermArg=>String
/1 Nothing |

/| Ter mMAr g=>Conput at i onal Dat a
/| Ter MAr g=>Conput at i onal Dat a

/| Ter M g=>Package
/ I Mat chQpKeywor d
/| Ter mMAr g=>I nt eger
/ I Mat chQpKeywor d
/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/1 TermArg=>Buffer| String
/| Ter mMAr g=>I nt eger

/| Ter MAr g=>I nt eger

/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter MAr g=>I nt eger
/| Tar get

//returns Result

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/] Tar get

/I Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/] Tar get

/] Ter mAr g=>I nt eger
/| Ter MAr g=>I nt eger
/] Tar get

/| Ter mMAr g=>I nt eger
/| Tar get

/1 Super Nane

Compag/I ntel/Microsoft/Phoenix/Toshiba

O Term

Ref Of Ter m

ShiftLeft Term

Shi ft Ri ght Term

Si zeOf Term

StoreTerm

StringTerm

Subt ract Term

ToBCDTer m

Wit Term

XOr Term

bj ect TypeKeywor d

AccessTypeKeywor d

AccessAttri bKeyword

ACPI Source Language (ASL) Reference 333

/I Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/] Tar get

/I Super Nane

/| Ter mMAr g=>I nt eger
/| Ter MAr g=>I nt eger
/] Tar get

/| Ter mMAr g=>I nt eger
/| Ter MAr g=>I nt eger
/| Tar get

= QO
Sour cel,
Sour ce2
Resul t
) => I nteger
= Ref OF (
bj ect
) => (oj ect Ref erence
c= ShiftlLeft(
Sour ce,
Shi f t Count
Resul t
) => I nteger
;= ShiftR ght(
Sour ce,
Shi f t Count
Resul t
) => Integer
:= SizeO (
Dat athj ect

/1 Super Name=>St ri ng| Buf f er | Package

) => Integer

:= Store(
Sour ce,
Destination

/| Ter mAr g=>Dat aRef Obj ect
/| Super Nane

) => Dat aRef Obj ect

1= String(
Sour ce,
Lengt h,
Resul t
) => String
;= Subtract (
Addend1l,
Addend2,
Resul t
) => Integer
1= ToBCX
Val ue,
Resul t
) => I nteger
= Wit (
Syncbj ect ,

Ti neout Val ue
) => Bool ean

/| Ter mAr g=>Buf f er
/1 Nothing | TermArg=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter mAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/] Tar get

/'] Super Name=>Event
/| Ter mMAr g=>I nt eger
/1 True means tined-out

= XO(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter MAr g=>I nt eger
Resul t /| Tar get
) => Integer
:= UnknownQbj | IntChj | StrQoj | BuffCbj | PkgOhj |

FieldUnitQoj | DeviceCbj | EventObj | MethodQhj |
Mit exCoj | OpRegi onQbj | Power ResCbj | Ther nal ZoneQhj |
Buf f Fi el dCbj | DDBHandl ej

;= AnyAcc | ByteAcc |

Buf f er Acc

WordAcc | DWordAcc | QuordAcc |

;= SMBQuick | SMBSendReceive | SvBByte | SMBWrd | SMBBI ock

| SMBProcessCal |

// Note: AccessAttribKeywords are for SMBus BufferAcc

only.

Compag/I ntel/Microsoft/Phoenix/T oshiba

334 Advanced Configuration and Power Interface Specification

LockRul eKeyword
Updat eRul eKeywor d

Regi onSpaceKeywor d

Addr essSpaceKeywor d
User Def Regi onSpace

Seri al i zeRul eKeywor d
Mat chQpKeywor d

DVATY peKeywor d
BusMast er Keywor d
Xf er TypeKeywor d

Resour ceTypeKeywor d
M nKeywor d

MaxKeywor d
DecodeKeywor d
RangeTypeKeywor d
MenTTy peKeywor d
ReadW i t eKeywor d

I nt errupt TypeKeyword
I nterruptLevel

Shar eTypeKeywor d

| OCDecodeKeywor d
TypeKeywor d

Transl ati onKeywor d
Addr essKeywor d

Super Nanme

ArgTerm
Local Term

DebugTer m

LeadDi gi t Char
Cct al Di gi t Char
HexDi gi t Char

I nt eger

Deci mal Const
Cct al Const
HexConst

Byt eConst
Wor dConst
DWr dConst
Qn\or dConst

String
Asci i Char Li st

Asci i Char
EscapeSeq
Si npl eEscapeSeq
Cct al EscapeSeq

Cct al Di gi t Char
HexEscapeSeq

Nul | Char
Const Term
Bool ean
True

Lock | NoLock
Preserve | WiteAsOnes | WiteAsZeros
User Def Regi onSpace | Systeml O | Systemenory |
PCl _Config | EnbeddedControl | SMBus | CMX6 |
Pci Bar Tar get
Regi onSpaceKeyword | FFi xedHW
| nt eger Dat a=>0x80- Oxf f
Serialized | NotSerialized
= MIR| MEQ| ME | MT | ME | M3T
Conpatibility | TypeA | TypeB | TypeF
BusMaster | Not BusMaster
Transfer8 | Transfer16 | Transfer8_16
Resour ceConsuner | Resour ceProducer
M nFi xed | M nNot Fi xed
MaxFi xed | MaxNot Fi xed
SubDecode | PosDecode
| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange
Cacheabl e | WiteConbining | Prefetchable | NonCacheabl e
ReadWite | ReadOnly
Edge | Level
ActiveH gh | ActivelLow
Shared | Excl usive
Decodel6 | DecodelO
TypeTransl ation | TypeStatic
SparseTransl ation | DenseTransl ation
Addr essRangeMenory | AddressRangeReserved |
Addr essRangeNVS | Addr essRangeACPI
NaneString | ArgTerm| Local Term | DebugTerm |
Type6Cpcode | User Term
Arg0 | Argl | Arg2 | Arg3 | Argd | Arg5 | Argé
Local 0 | Locall | Local2 | Local3 | Local4 | Local5 |
Local 6 | Local 7
Debug
g
‘o7
DgitCar | “A-‘F | ‘a-'f’
Deci mal Const | Cctal Const | HexConst
LeadDi gi t Char | <Deci mal Const Di git Char>
‘0" | <Cctal Const Cctal D gitChar>
<0x HexDi gitChar> | <OX HexDi gitChar> | <HexConst

HexDi gi t Char >
| nt eger =>0x00- Oxf f

| nt eger =>0x0000- Oxf f f

I nt eger =>0x00000000-

Oxffffffff

| nt eger =>0x0000000000000000-Oxffffffffffffffff

Asci i Char Li st
Not hi ng | <EscapeSeq
Asci i Char Li st >
0x01- 0x21 |
Si npl eEscapeSeq |
\" |\ | \a | \b|
\ CctalDigit |

0x23-0X5B |
Cct al EscapeSeq |

Asci i CharList> |
0x5D 0x7F

\folA\n | \r |\t

\ CctalDigit CctalDigit |
\ CctalDigit OctalDigit CctalDogit
o[1] 2 | '3 4| 5| E

\' x HexDigitChar |

\ x HexDi gi t Char HexDi gi t Char
0x00

Zero | One | Ones | Revision
True | Fal se

Ones

Compag/I ntel/Microsoft/Phoenix/Toshiba

\v |

o

<Asci i Char

HexEscapeSeq

\\

ACPI Source Language (ASL) Reference 335

Fal se .= Zero

Compag/I ntel/Microsoft/Phoenix/T oshiba

336 Advanced Configuration and Power Interface Specification

Byt eConst Expr
Wr dConst Expr
Dwor dConst Expr
Qnor dConst Expr
Const Expr Term

<Type3Cpcode | ConstExpr Term | |nteger> => ByteConst
<Type3(pcode | Const ExprTerm | Integer> => WrdConst
<Type3(pcode | Const Expr Term | |nteger> => DWrdConst
<Type3(pcode | Const Expr Term | |nteger> => QMrdConst
Zero | One | (nes

Buf f er (
Buf f Si ze // Not hi ng |

/| Ter mMAr g=>I nt eger

Buf f er Term

) {StringData | ByteList}

Byt eLi st = Nothing | <ByteConstExpr BytelistTail>
Byt eLi st Tai | = Nothing | <',’ ByteConstExpr ByteListTail>
DWor dLi st = Nothing | <DwrdConst Expr DWrdLi st Tai | >
DWor dLi st Tai | = Nothing | <, DWrdConstExpr DWrdListTail >
PackageTerm = Package(

Nuntl enent s /1 Not hing |

/1 Byt eConst Expr |
/| Ter mMAr g=>I nt eger
) { Packageli st}

Packageli st
PackagelLi st Tai |
PackageEl ement

Not hi ng | <PackageEl enent Packageli st Tai | >
Nothing | <',’ PackageEl ement Packageli st Tail >
Dat aChj ect | NanmeString

El SAl DTer m = El SA I
El SAI DSt ring /1 StringData
) => DWbrdConst
Resour ceTenpl at eTerm .= ResourceTenpl ate() {ResourceMacrolList} => Buffer
Uni codeTer m : = Uni code(
ASC | String /1 StringData
) => Buffer

Resour ceMacr oLi st
Resour ceMacr oTer m

Not hing | <ResourceMacroTer m Resour ceMacr oLi st >

DVMATerm | DWordl OTerm | DWordMenoryTerm |

EndDependent FnTerm | Fi xedl OTerm | InterruptTerm |

I OTerm | | RQNoFl agsTerm| | RQTerm | Menory24Term |
Menor y32Fi xedTerm | Menory32Term | QMrdl OTerm |
QnordMenoryTerm | Regi sterTerm | StartDependent FnTerm |
St art Dependent FnNoPri Term | Vendor LongTer m |

Vendor Short Term | Wr dBusNunber Term | Wrdl OTerm

DMATer m := DVIA(
DVAType, / | DVATypeKeyword (_TYP)
BusMast er, / / BusMast er Keyword (_BM
Xf er Type, /1 Xf er TypeKeyword (_SI Z)
Resour ceTag /1 Nothing | NameString
) {ByteList} //List of channels (0-7)

Compag/I ntel/Microsoft/Phoenix/Toshiba

DWor dl OTer m

DWor dMenor yTer m

EndDependent FnTer m

Fi xedl OTer m

ACPI Source Language (ASL) Reference 337

c= Dwrdl
Resour ceType,

M nType,
MaxType,
Decode,
RangeType,

AddressGranul arity,
M nAddr ess,

MaxAddr ess,

Transl ati on,

Addr essLen,

ResSour cel ndex,
ResSour ce,

Resour ceTag

Type

Transl ati onType

;= DwWor dMenor y(
Resour ceType,

Decode,

M nType,
MaxType,
MenType,

ReadW it eType,
AddressGranul arity,
M nAddr ess,
MaxAddr ess,
Transl ati on,
Addr essLen,
ResSour cel ndex,
ResSour ce,
Resour ceTag
Addr essRange
Transl ati onType

: = EndDependent Fn()

;= Fixedl 0
Addr essBase,
RangelLen,
Resour ceTag

/1 Not hi ng (Resour ceConsuner) |
/I Resour ceTypeKeywor d

/1 Not hi ng (M nNot Fi xed) |

// M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |

/I MaxKeywor d (_MAF)

/1 Not hi ng (PosDecode) |

/ | DecodeKeyword (_DEC)

/1 Not hi ng (EntireRange) |

/ I RangeTypeKeywor d (_RNG

/| DWr dConst Expr (_GRA)

/| DWor dConst Expr (_M N)
/| DWr dConst Expr (_MAX)
/| DWor dConst Expr (_TRA)
/| DWr dConst Expr (_LEN)
// Not hi ng | ByteConst Expr
/I Nothing | StringData
//Nothing | NaneString

/1 Nothing | TypeKeyword
// Not hing |

Transl ati onKeywor d

)

/1 Not hi ng (Resour ceConsurer) |
/I Resour ceTypeKeywor d

/1 Not hi ng (PosDecode) |

/ / DecodeKeyword (_DEC)

/1 Not hi ng (M nNot Fi xed) |
/I M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/I MaxKeywor d (_MAF)

/1 Not hi ng (NonCacheabl e) |
/I MenTypeKeyword (_MEM

// ReadW it eKeyword (_RW
/| DWr dConst Expr (_GRA)

/| DWr dConst Expr (_M N)

/| DWr dConst Expr (_MAX)

/| DWr dConst Expr (_TRA)

/| DWr dConst Expr (_LEN)

/1 Not hi ng | ByteConst Expr
/I Nothing | StringData

/1 Nothing | NameString

// Not hi ng | AddressKeyword
/1 Not hi ng |

Transl ati onKeywor d

/1 Wor dConst Expr (_BAS)
/1 Byt eConst Expr (_LEN)
//Nothing | NaneString

Compag/I ntel/Microsoft/Phoenix/T oshiba

338 Advanced Configuration and Power Interface Specification

I nterrupt Term := Interrupt(
Resour ceType, /1 Not hi ng (Resour ceConsuner) |
/I Resour ceTypeKeywor d
I nterrupt Type, /11 nterrupt TypeKeyword
/1 (_LL, _HE)
I nt errupt Level , /11 nterruptLevel Keyword
/1 (_LL, _HE)
Shar eType, /1 Not hi ng (Excl usi ve)
/| Shar eTypeKeyword (_SHR)
ResSourcel ndex, /1 Not hi ng | Byt eConst Expr
ResSour ce, //Nothing | StringData
Resour ceTag /1 Nothing | NameString
) { DWordLi st} /1list of interrupts (_INT)

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 339

| OTer m =1
| ODecode, /11 CDecodeKeyword (_DEC)
M nAddr ess, /I Wor dConst Expr (_MN)
MaxAddr ess, /' WrdConst Expr (_MAX)
Al i gnnent , /I Byt eConst Expr (_ALN)
RangeLen, /1 Byt eConst Expr (_LEN)
Resour ceTag //Nothing | NaneString
)
| RQNoFl agsTer m = | RQNoFI ags(
Resour ceTag //Nothing | NaneString
) {ByteList} //list of interrupts (0-15)
| RQTerm = | RY
I nterrupt Type, /1 nterrupt TypeKeywor d
/1 (_LL, _HE)
I nt errupt Level , /11 nterruptLevel Keyword
/1 (_LL, _HE)
Shar eType, /1 Not hi ng (Excl usive)
/| Shar eTypeKeyword (_SHR)
Resour ceTag //Nothing | NaneString
) {ByteList} //list of interrupts (0-15)
Menory24Ter m = Menory24(
ReadW i t eType, // ReadW i t eKeyword (_RW
M nAddr ess[23: 8], /1 Wor dConst Expr (_MN)
MaxAddr ess[23: 8], /1 Wor dConst Expr (_MAX)
Ali gnnent , /1 Wor dConst Expr (_ALN)
RangeLen, / / Wor dConst Expr (_LEN)
Resour ceTag /I Nothing | NameString
)
Menor y32Fi xedTer m : = Menor y32Fi xed(

ReadW it eType,
Addr essBase,
RangelLen,
Resour ceTag

// ReadW it eKeyword (_RW
/ |/ DWor dConst Expr (_BAS)
/ | DWr dConst Expr (_LEN)
//Nothing | NaneString

)

Menory32Ter m = Menory32(
ReadW i t eType, // ReadW it eKeyword (_RW
M nAddr ess, /| DWr dConst Expr (_M N)
MaxAddr ess, /| DWr dConst Expr (_MAX)
Al i gnnent , / | DWr dConst Expr (_ALN)
RangeLen, /| DWr dConst Expr (_LEN)
Resour ceTag /1 Nothing | NameString
)
Qnordi OTer m = Qeordl 0
Resour ceType, /1 Not hi ng (Resour ceConsuner) |
/I Resour ceTypeKeywor d
M nType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/I MaxKeywor d (_MAF)
Decode, /1 Not hi ng (PosDecode) |
/ I DecodeKeyword (_DEC)
RangeType, /1 Not hi ng (EntireRange) |

/I RangeTypeKeywor d (_RNG
AddressG anul arity, /1 QMordConst Expr (_GRA)

M nAddr ess, /1 QdrdConst Expr (_M N)
MaxAddr ess, /1 Qnor dConst Expr (_MAX)
Transl ati on, /1 Qdr dConst Expr (_TRA)
Addr essLen, /1 QMor dConst Expr (_LEN)
ResSour cel ndex, /1 Not hi ng | Byt eConst Expr
ResSour ce, /I Not hing | StringData
Resour ceTag /I Nothing | NameString
Type // Not hing | TypeKeyword
Transl ati onType /1 Not hi ng |

Transl ati onKeywor d)

Compag/I ntel/Microsoft/Phoenix/T oshiba

340 Advanced Configuration and Power Interface Specification

QMr dvenoryTerm

Regi ster Term

St art Dependent FnTer m

St art Dependent FnNoPri Ter m

Vendor LongTer m

Vendor Short Term

Wor dBusNunber Ter m

1= Quor dMenor y(

Reg

Resour ceType,
Decode,
M nType,
MaxType,
Menily pe,

ReadW it eType,
AddressG anul arity,
M nAddr ess,
MaxAddr ess,
Transl ati on,
Addr essLen,
ResSour cel ndex,
ResSour ce,
Resour ceTag
Addr essRange
Transl ati onType

ster(

Addr essSpacel D,
Regi st er Bi t W dt h,
Regi ster O f set ,
Regi st er Addr ess,

)

St art Dependent Fn(

Conpat Priority,
Per f Robust Priority

) { Resour ceMacrolLi st}

Vendor Long(

Resour ceTag

) {ByteList}

Vendor Short (

Resour ceTag

) {ByteList}

Wr dBusNurber (

Resour ceType,
M nType,
MaxType,
Decode,

AddressGranul arity,
M nAddr ess,

MaxAddr ess,

Transl ati on,

Addr essLen,
ResSour cel ndex,
ResSour ce,

Resour ceTag

/1 Not hi ng (Resour ceConsuner) |
/I Resour ceTypeKeywor d

/1 Not hi ng (PosDecode) |

/ | DecodeKeyword (_DEC)

/1 Not hi ng (M nNot Fi xed) |
// M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/I MaxKeyword (_MAF)

/1 Not hi ng (NonCacheabl e) |
/I MemTypeKeywor d (_MEM

// ReadW it eKeyword (_RW
/1 QNor dConst Expr (_GRA)

/1 QdrdConst Expr (_M N)

/1 Qnor dConst Expr (_MAX)

/1 Qdr dConst Expr (_TRA)

/1 QNor dConst Expr (_LEN)

/1 Not hi ng | Byt eConst Expr
//Nothing | StringData

/I Nothing | NameString

// Not hing | AddressKeyword
/1 Not hi ng |

Transl ati onKeywor d

/1 Addr essSpaceKeyword (_ASI)
/I Byt eConst Expr (_RBW

/1 Byt eConst Expr (_RBO

/| QNor dConst Expr (_ADR)

/1 Byt eConst Expr (0-2)

. =St art Dependent FnNoPri () {ResourceMacroLi st}

/] Byt eConst Expr (0-2)
/1 Nothing | NameString
/1 Nothing | NameString

/lup to 7 bytes

/1 Not hi ng (Resour ceConsuner) |
/I Resour ceTypeKeywor d

/1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |

/I MaxKeywor d (_MAF)

/1 Not hi ng (PosDecode) |

/ DecodeKeyword (_DEC)

/1 Wor dConst Expr (_GRA)

/1 Wor dConst Expr (_MN)

/1 Wor dConst Expr (_MAX)
/1 Wor dConst Expr (_TRA)
/1 Wor dConst Expr (_LEN)

/1 Not hi ng | Byt eConst Expr
//Nothing | StringData
/1 Nothing | NameString

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 341

Wor dl OTer m = Wordl
Resour ceType, /1 Not hi ng (Resour ceConsuner)
/ | Resour ceTypeKeywor d
M nType, /1 Not hi ng (M nNot Fi xed)
// M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed)
/I MaxKeywor d (_MAF)
Decode, // Not hi ng (PosDecode)
/ I DecodeKeyword (_DEC)
RangeType, /1 Not hi ng (EntireRange)
/I RangeTypeKeyword (_RNG
AddressGranul arity, /1 Wr dConst Expr _GRA)
M nAddr ess, [/ WordConst Expr (_MN)
MaxAddr ess, /1 Wor dConst Expr (_MAX)
Transl ation, / 1 \WWr dConst Expr (_TRA)
Addr essLen, /1 Wr dConst Expr (_LEN)
ResSour cel ndex, // Not hi ng | ByteConst Expr
ResSour ce, /I Nothing | StringData
Resour ceTag //Nothing | NaneString
Type /1 Nothing | TypeKeyword
Transl ati onType // Not hi ng

Transl ati onKeywor d

16.2 Full ASL Reference

Thisreference section isfor developers who are writing ASL code while devel oping definition blocks for
platforms.

16.2.1 ASL Names

This section describes how to encode object names using ASL.

Thefollowing table lists the characters legal in any position in an ASL object name. ASL names are not
case-sensitive and will be converted to upper case.

Table16-2 Named Object Reference Encodings

Value Description “Title”
0x41-0x5A, Ox5F, Lead character of name (‘A'—Z",‘ ', L eadNameChar
0x61-0x7A ‘a-'7')

0x30-0x39, 0x41-0x5A, | Non-lead (trailing) character of name NameChar
Ox5F, 0x61-0x7A (A=2Z,'_,'a-'7,'0-9)

The following table lists the name modifiers that can be prefixed to an ASL name.
Table 16-3 Definition Block Name M odifier Encodings

Description NamePr efix := Followed by ...
5C Namespace root (‘\") RootPrefix Name
5E Parent namespace (‘') ParentPrefix ParentPrefix or Name

16.2.1.1 T x Reserved Object Names

The ACPI specification reserves object names with the prefix _T_ for internal use by the ASL compiler.
The ASL compiler may, for example, use these objects to store temporary values when implementing
translating complicated control structuresinto AML. The ASL compiler must declare _T_Xx objects
normally (using Name) and must not define them more than once within the same scope.

Compag/I ntel/Microsoft/Phoenix/T oshiba

342 Advanced Configuration and Power Interface Specification

16.2.2 ASL Data Types

ASL provides awide variety of datatypes and operators that work on these data types. It also provides both
explicit and implicit conversion between these data types when used with ASL operators. To avoid these
implicit conversions, the Copy operator may be used.

In ASL, conversion can take place in two places during an operation. First, when the source operands are
converted to the operand type expected by the operator and second, when the result of the operator are
stored into the destination.

For example:

St ore(“XYZ", Local 1)

St or e(10, Local 0)

Add(Local 0, ”5", Local 1)

In this case, the Add operator converts the first two operands (Local0 and “5”) to Integers. Then the result
of the operation (15) is converted into a String, since thisisthetype of Local 1.

In some cases, the operator may take more than one type of operand (such as Integer and String). In this
case, depending on the type of the operand, the highest priority conversion is applied. Table 16-4, column
describes the source operand conversions available. For example:

Store(Buffer(1){}, Local 0)

Nane(ABCD, Buffer(10) {1,2,3,4,5,6,7,8,9,0})

Cr eat eDWr dFi el d(ABCD, 2, XYZ)

Nane(MNOP, " 1234")

Concat enat e(XYZ, MNOP, Local 0)

Concatenate can take an Integer, Buffer or String for itsfirst two parameters and the type of the first
parameter determines how the second parameter will be converted. In this example, the first parameter is of
type Buffer Field (from the CreateDWordField operator). What should it be converted to: Integer, Buffer or
String? According to Table 16-4, the highest priority conversion isto Integer. So XY Z (0x05040302) and
MNOP (0x31,0x32,0x33,0x34) will be converted to Integers, joined together and the resulting type will be
Buffer (0x02,0x03,0x04,0x05,0x31,0x32,0x33,0x34).

The following table describes the default source and destination conversions. If a particular conversionis
not described, then it will generate afatal error at run-time.

Table16-4 ASL Data Types

Default
Source Destination
Conversion | Conversion
Data Type Description (Operand) From... What Happens
Uninitialized | No assigned type. The Nothing. I nteger Integer
type of all Localx Generates a - -
variables at the beginning | fatal error String String
of aMethod s execution | when used as | Byffer Buffer
and uninitialized Package | an operand.
elements. Package Package
DDB DDB Handle
Handle
Object Object Reference
Reference

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 343

Table16-4 ASL Data Types (continued)

Default

Source Destination

Conversion | Conversion

Data Type | Description (Operand) From... What Happens

Integer An n-bit little-endian, Integer String The ASCII string isinterpreted
unsigned integer. In ACPI Buffer as a hexadecimal content. Starts
1.0thiswas at least 32 with the first hexadecimal
bits. INn ACPI 2.0thisisat | String ASCII character (0°-'9", ‘A’-
least 64.bits. ‘F,‘a, ‘f') and ends with the

DDB Handle first non-hexadecimal character.

Buffer The contents of the buffer,
starting with the least -
significant bit and continuing
through the minimum of the
most significant bit number (in
other words, # of bytes* 8) in
the buffer or the number of bits
in an Integer (at least 64 in
ACPI 2.0) are copied as an
Integer.

String Null-terminated ASCI| String Integer Creates an ASCII hexadecimal
string with up to 200 string.
characters. Integer -

Buffer Buffer Converted to a string of two-
character hexadecimal numbers,
separated by a space. Fatal error
if greater than two hundred
ASCII characters generated.

Package Generates an error.

Buffer Buffer Integer If the integer requires more bits

Integer String thar_l the si ze of the Buffer, then
the integer istruncated before

String being copied to the Buffer. If

the integer contains fewer
significant bits than the size of
the buffer, then the Integer is
zero-extended to fill the entire
buffer.

The string istreated as a Buffer,
with each ASCII character
making one Buffer byte.

Compag/I ntel/Microsoft/Phoenix/T oshiba

344 Advanced Configuration and Power Interface Specification

Table16-4 ASL Data Types (continued)

Default
Source Destination
Conversion | Conversion
Data Type | Description (Operand) From... What Happens
Package Collection of ASL objects | Package Package All contents of the package are
with a fixed number of removed. Contents of the
members (up to 255). source are copied into the
package.
Operation Bit-aligned variableinan | Integer Integer If the integer requires more bits
Region address space. Buffer than the size of the Field Unit, it
Field Unit is broken into pieces and
String written to the Field Unit, least
significant bitsfirst. If the
integer (or the last piece of the
If the Field integer, if broken up) is smaller
Unit is larger or equal in sizeto the Field
thanthesize Unit, then it is zero extended
of an Integer, before being written.
itwillbe — ~qp Each character of the string |
treated as a ring ach character of the string is
Buffer. wntten,_startl ng with theflrst,
to the Field Unit. If the Field
Unit islessthan eight bits, then
the upper bits of each character
islost. If the Field Unit is
greater than eight bits, then the
additional bits are zeroed.
Buffer If the buffer requires more bits

than the size of the Field Unit, it
is broken into pieces and
written to the Field Unit, lower
chunksfirst. If the integer (or
the last piece of the integer, if
broken up) is smaller or equal

in size to the Field Unit, then it
is zero extended before being
written.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 345

Table16-4 ASL Data Types (continued)

Default
Source Destination
Conversion | Conversion
Data Type | Descriptian (Operand) From... What Happens
Buffer Piece of abuffer created Integer Integer If the integer is smaller than the
Fied using CreateBitField, Buffer size of the buffer field, it is zero-
CreateByteField, extended. If the integer islarger
CreateWordField, String than the size of the buffer field,
CreateQWordField, the upper bits are truncated.
;;eﬁz?;l:oaéﬁéned by Compatibility Note: New in
' ACPI 2.0. The behavior in ACPI
1.0 was undefined.

String The string istreated as a buffer.
If this buffer is smaller than the
size of the buffer field, it is zero
extended. If the buffer islarger
than the size of the buffer field,
the upper bits are truncated.
Compatibility Note: New in
ACPI 2.0. The behavior in ACPI
1.0 was undefined.

Buffer If this buffer is smaller than the
size of the buffer field, it is zero
extended. If the buffer islarger
than the size of the buffer field,
the upper bits are truncated.
Compatibility Note: New in
ACPI 2.0. The behavior in ACPI
1.0 was undefined.

DDB Definition block handle DDB Handle | Integer DDB Handle
Handle

Integer
Device Deviceor bus Nothing None Generates an error.
Event Event Nothing None Generates an error.
Method Method (function) Nothing None Generates an error.
Mutex Mutex Nothing None Generates an error.
Operation Operation Region Nothing None Generates an error.
Region
Power Power Resource Nothing None Generates an error.
Resource
Processor Processor Nothing None Generates an error.
Thermal Thermal Zone Nothing None Generates an error.
Zone

Compag/I ntel/Microsoft/Phoenix/T oshiba

346 Advanced Configuration and Power Interface Specification

Table16-4 ASL Data Types (continued)

Default
Source Destinatian
Conversion | Conversion
Data Type | Description (Operand) From... What Happens
Debug Debug-output object. Has | Nothing. Integer Displayed as hexadecimal
Object no effect if debuggingis | Will integer.
not active. generate an - -
error when String Display as ASCII characters.
used asa Buffer Each byte displayed as
source. hexadecimal integer , delimited.
Package Each element of the package
displayed based on itstype.
Operation Displayed as hexadecimal
Region integer (if less than or equal to
Field Unit the size of an integer).
Otherwise displayed as a buffer.
Buffer Field | Displayed as a hexadecimal
integer.
DDB Displayed including
Handle information about the DDB.
Zero, One, | Integer constants I nteger None Cannot be adestination.
Ones
Object Reference to an object. Object Object Object Reference
Reference Reference Reference

Many of the ASL operators can store their result optionally into an object specified by the last parameter. In
these operators, if the destination is specified, the action is exactly asif a Store operator had been used to

place the result in the destination.

Compatibility Note: The ability to store and manipulate object referencesisnew in ACPI 2.0. In ACPI 1.0
references could not be stored in variables, passed as parameters or returned from functions.

16.2.3 ASL Terms

This section describes al the ASL terms and provides sample ASL code that uses the terms.

The ASL terms are grouped into the following categories:

Definition block terms
Compiler directive terms
Object terms
Opcodeterms

User terms

Data objects
Miscellaneous objects

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 347

16.2.3.1 Definition Block Term

Def i ni tionBl ockTerm ;= DefinitionBl ock(

AM_Fi | eNane, /1String

Tabl eSi gnat ure, /1String

Conpl i anceRevi si on, / 1 Byt eConst Expr
CEM D, /1String

Tabl el D, /1String

CEMRevi si on / | DWr dConst Expr

) {TernList}

The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of the
Differentiated Definition Block or as part of an additional Definition Block. This unit of dataand/or AML
code describes either the base system or some large extension (such as a docking station). The entire
DefinitionBlock will be loaded and compiled by the OS as a single unit, and can be unloaded by the OS as
asingle unit.

16.2.3.2 Compiler Directive Terms

The compiler directives are:
Include term
External term

16.2.3.2.1 Include (Include Another ASL File)

I ncl udeTer m := I 'ncl ude(
I ncFi | ePat hNane /1String
)

IncFilePathname isthe full OSfile system path to another file that contains ASL termsto beincluded in the
current file of ASL terms.

16.2.3.2.2 External (Declare External Objects)

Ext er nal Term := External (
Gbj Nane, // NameStri ng
Ooj Type //Nothing | ObjectTypeKeyword

)

The External compiler directiveisto let the assembler know that the object is declared external to thistable
so that the assembler will not complain about the undeclared object. During compiling, the assembler will
create the external object at the specified place in the namespace (if afull path of the object is specified), or
the object will be created at the current scope of the External term. Obj Type is optional. If not specified,
“UnknownObj” typeis assumed.

16.2.3.3 Object Terms

Object terms include: Named Object terms and Namespace Modifiers.

Compag/I ntel/Microsoft/Phoenix/T oshiba

348 Advanced Configuration and Power Interface Specification

16.2.3.3.1 Named Object Terms

The ASL termsthat can be used to create named objectsin adefinition block are listed in the following
table.

Table16-5 Named Object Terms

ASL Statement Description

BankField Declaresfieldsin a banked configuration object.
CreateBitField Declare a bit field object of a buffer object.
CreateByteField Declares abytefield object of abuffer object.
CreateDWordField Declaresa DWord field object of abuffer object.
CreateField Declaresafield object of any bit length of a buffer object.
CreateQWordField DeclaresaQWord field object of abuffer object.
CreateWordField DeclaresaWord field object of abuffer object.
DataT ableRegion Declares a Data Table Region.

Device Declares a bus/device object.

Event Declares an event synchronization object.

Field Declares fields of an operation region object.
IndexField Declares fieldsin an index/data configuration object.
M ethod Declares a control method.

Mutex Declares a mutex synchronization object.
OperationRegion Declares an operational region.

Power Resour ce Declares a power resource object.

Pr ocessor Declares a processor package.

ThermalZone Declares athermal zone package.

16.2.3.3.1.1 BankField (Declare Bank/Data Field)

BankFi el dTerm : = BankFi el d(
Regi onNane, [/ NanmeSt ri ng=>Cper at i onRegi on
BankNane, [/ NaneStri ng=>Fi el duni t
BankVal ue, /I Ter mMAr g=>I nt eger
AccessType, /I AccessTypeKeywor d
LockRul e, /I LockRul eKeywor d
Updat eRul e / I Updat eRul eKeywor d

) {FieldunitList}

This statement creates data field objects. The contents of the created objects are obtained by areferenceto a
bank selection register.

Thisencoding is used to define named data field objects whose data values are fields within alarger object
selected by a bank-selected register. Accessing the contents of a banked field data object will occur
automatically through the proper bank setting, with synchronization occurring on the operation region that
contains the BankName data variable, and on the Global Lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field operator.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 349

Thefollowing isablock of ASL sample code using BankField:
- Creates a4-bit bank-sel ected register in system 1/0 space.
Creates overlapping fieldsin the same system 1/O space that are selected viathe bank register.

/1 define 256-byte operational region in System O space
// and narme it G Q0
QperationRegion (G @, System O 0x125, 0x100)

/1 create some field in GO including a 4-bit bank sel ect register
Field (@@, ByteAcc, NoLock, Preserve) {

G.B1, 1,

GaB2, 1,

Ofset(1), /1 nove to offset for byte 1

BNK1, 4

}

// Create FETO & FET1 in bank O at byte offset 0x30
BankFi el d (@ 00, BNK1, 0, ByteAcc, NoLock, Preserve) {
O fset (0x30),
FETO, 1,
FET1, 1
}

/] Create BLVL & BAC in bank 1 at the sane offset
BankField (G 00, BNK1, 1, ByteAcc, NoLock, Preserve) {
O fset (0x30),
BLWL, 7,
BAC, 1
}

16.2.3.3.1.2 CreateBitField

OreateBitFieldTerm = OeateBitFiel d(
Sour ceBuf fer, /| Ter mAr g=>Buf f er
Bi t I ndex, /| Ter MAr g=>I nt eger
Bi t Fi el dNane // NameStri ng

)

SourceBuffer is evaluated as abuffer. Bitindex is evaluated as an integer. A new buffer field object
BitFieldName is created for the bit of SourceBuffer at the bit index of Bitlndex. The bit-defined field within
SourceBuffer must exist.

16.2.3.3.1.3 CreateByteField

Cr eat eByt eFi el dTerm ;= OreateByteFiel d(
Sour ceBuf fer, /| Ter mAr g=>Buf f er
Byt el ndex, /| Ter mMAr g=>I nt eger
Byt eFi el dNane // NameStri ng

)

SourceBuffer is evaluated as a buffer. Bytelndex is evaluated as an integer. A new buffer field object
ByteFieldName is created for the byte of SourceBuffer at the byte index of Bytelndex. The byte-defined
field within SourceBuffer must exist.

16.2.3.3.1.4 CreateDWordField

Cr eat eDWr dFi el dTerm ;= COreateDWrdFi el d(
Sour ceBuf fer, /| Ter mAr g=>Buf f er
Byt el ndex, /| Ter MAr g=>I nt eger
DWor dFi el dNane // NameStri ng

)

SourceBuffer is evaluated as a buffer. Bytelndex is evaluated as an integer. A new buffer field object
DWordFieldName is created for the DWord of SourceBuffer at the byte index of Bytelndex. The DWord-
defined field within SourceBuffer must exist.

Compag/I ntel/Microsoft/Phoenix/T oshiba

350 Advanced Configuration and Power Interface Specification

16.2.3.3.1.5 CreateField (Field)

CreateFi el dTerm = OreateFiel d(
Sour ceBuf f er, /| Ter mAr g=>Buf f er
Bi t | ndex, /| Ter mMAr g=>I nt eger
NunBits, /| Ter mMAr g=>I nt eger
Fi el dNane // NameStri ng

)

SourceBuffer is evaluated as a buffer. Bitlndex and NumBits are evaluated as integers. A new buffer field
object FieldName is created for the bits of SourceBuffer at Bitlndex for NumBits. The entire bit range of the
defined field within SourceBuffer must exist.

16.2.3.3.1.6 CreateQWordField

Creat eQor dFi el dTerm 1= OreateQMrdFi el d(
Sour ceBuffer, /| Ter mAr g=>Buf f er
Byt el ndex, /I Ter mMAr g=>I nt eger
Qnor dFi el dNane // NameStri ng

)

SourceBuffer is evaluated as a buffer. Bytelndex is evaluated as an integer. A new buffer field object
QWordFieldName is created for the QWord of SourceBuffer at the byte index of Bytelndex. The QWord-
defined field within SourceBuffer must exist.

16.2.3.3.1.7 CreateWordField

Creat eWr dFi el dTerm := Creat eWrdFi el d(
Sour ceBuffer, /| Ter mAr g=>Buf f er
Byt el ndex, /| Ter mMAr g=>I nt eger
Wor dFi el dNane // NameString

)

SourceBuffer is evaluated as a buffer. Bytelndex is evaluated as an integer. A new bufferfield object
WordFieldName is created for the word of SourceBuffer at the byteindex of Bytelndex. The word-defined
field within SourceBuffer must exist.

16.2.3.3.1.8 DataTableRegion

Dat aRegi onTer m : = Dat aTabl eRegi on(
Regi onNane, /1 NameString
Si gnatureString, /1 TermArg=>String
Cenl DSt ri ng, /1 TermArg=>String
Cenilrabl el DSt ri ng /1 TermArg=>String

)

A Data Table Region is a special Operation Region. Its region space is always memory. The memory
referred to by the Data Table Region is the memory that is occupied by the table referenced in XSDT that is
identified by SignatureString, OemIDString and OemTablel DString. Any Field object can reference
RegionName

The base address of a Data Table region is the address of the first byte of the header of the table identified
by SignatureString, OemlIDString and OemTablel DString. The length of the region is the length of the
table.

Any tablereferenced by a Data Table Region must be in memory marked by AddressRangeReserved or
AddressRangeNV S.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 351

16.2.3.3.1.9 Device (Declare Bus/Device Package)

Devi ceTerm 1= Devi ce(
Devi ceNane // NameStri ng

) { QbjectList}

Creates a Device object, which represents either abus or adevice or any other such entity of use. Device
opens a name scope.

A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the hardware
devicesin the system to the operating software. Each Bus/Device Package is defined somewhere in the
hierarchical namespace corresponding to that device’ s location in the system. Within the namespace of the
device are other names that provide information and control of the device, along with any sub-devices that
in turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in anon-hardware standard
manner. Thistype of value-added function is expressible in the ACPI Definition Block such that operating
software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function outside
the device’' s normal capabilities and for any Device Object required to fill in the tree for such adevice. For
example, if the system includes a PCI device (integrated or otherwise) with no additional functions such as
power management, the BIOS would not report such a device; however, if the system included an
integrated | SA device below the integrated PCI device (deviceis an I SA bridge), then the system would
include a Device Package for the | SA device with the minimum feature being added being the ISA device's
ID and configuration information and the parent PCI device, because it isrequired to get the ISA Device
Package placement in the namespace correct.

The following block of ASL sample code shows a nested use of Device objects to describe an IDE
controller connected to the root PCI bus.

Devi ce (1DEO) { /1 primary controller
Name(_ADR, 0) /] put PCl Address (device/function) here

/1 define region for |DE node register
OperationRegi on (PCIC, PC _Config, 0x50, 0x10)
Field (PG C, AnyAcc, NoLock, Preserve) {

}
Device(PRIM { /1 Primary adapter
Nane(_ADR, 0) //Primary adapter = 0

Met hod(_STM 2){
-
Met hod(_GTM {

}Devi ce(MSTR) { /1 master channel
Nane(_ADR 0)
Nane(_PRO, Package(){0, PIDE})
Nane(_GTF) {

}
}

Devi ce(SLAV) {
Name(_ADR, 1)
Nane(_PRO, Package(){0, PIDE})
Nane(_GTF) {

}

Compag/I ntel/Microsoft/Phoenix/T oshiba

352 Advanced Configuration and Power Interface Specification

16.2.3.3.1.10 Event (Declare Event Synchronization Object)

Event Term ;= Event (
Event Nane // NameStri ng
)

Creates an event synchronization object named EventName.

For more information about the uses of an event synchronization object, see the ASL definitions for the
Wait, Signal, and Reset function operators.

16.2.3.3.1.11 Field (Declare Field Objects)

Fi el dTerm = Field(
Regi onNane, /I NamreSt ri ng=>Cper at i onRegi on
AccessTy pe, /I AccessTypeKeywor d
LockRul e, /| LockRul eKeywor d
Updat eRul e / 1 Updat eRul eKeywor d

) {FieldunitList}

Declares a series of named data objects whose data values are fields within alarger object. Thefields are
parts of the object named by RegionName, but their names appear in the same scope as the Fieldterm.

For example, the field operator allows alarger operation region that represents a hardware register to be
broken down into individual bit fields that can then be accessed by the bit field names. Extracting and
combining the component field from its parent is done automatically when the field is accessed.

Accessing the contents of afield data object provides accessto the corresponding field within the parent
object. If the parent object supports Mutex synchronization, accesses to modify the component data objects
will acquire and release ownership of the parent object around the modification.

In general, accesses within the parent object are performed naturally aligned. If desired, AccessType set to a
value other than AnyAcc can be used to force minimum access width. Notice that the parent object must be
able to accommodate the AccessType width. For example, an access type of WordAcc cannot read the last
byte of an odd-length operation region. The exceptions to natural alignment are the access types used for a
non-linear SMBus device. These will be discussed in detail below. Not all access types are meaningful for
every type of operational region.

Thefollowing table relates region types declared with an OperationRegion term to the different access
types supported for each region.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 353

Table16-6 OperationRegion Region Types and Access Types

Region Types Access Type Description
SystemMemory ByteAcc
WordAcc
DWordAcc
QWordAcc
AnyAcc Read/Write Byte, Word, DWord, QWord
access
Systeml O ByteAcc
WordAcc
DWordAcc
QWordAcc
AnyAcc Read/Write Byte, Word, DWord, QWord
access
PCI_Config ByteAcc
WordAcc
DWordAcc
QWordAcc
AnyAcc Read/Write Byte, Word, DWord, QWord
access
EmbeddedControl ByteAcc
SMBus BufferAcc Reads and writes to this operation region
involve the use of aregion specific data
buffer. See section 14, “ACPI System
Management Bus Interface Specification,” for
more information.
CMOS ByteAcc
PciBar Tar get ByteAcc
WordAcc
DWordAcc
QWordAcc
AnyAcc Read/Write Byte, Word, DWord, QWord
access

Compag/I ntel/Microsoft/Phoenix/T oshiba

354 Advanced Configuration and Power Interface Specification

If LockRuleis set to Lock, accesses to modify the component data objects will acquire and release the
Global Lock. If both types of locking occur, the Global Lock is acquired after the parent object Mutex.

UpdateRuleis used to specify how the unmodified bits of afield are treated. For example, if afield defines
acomponent data object of 4 bitsin the middle of aWor dAcc region, when those 4 bits are modified the
UpdateRule specifies how the other 12 bits are treated.

The named data objects are provided in FieldList as a series of names and bit widths. Bits assigned no
name (or NULL) are skipped. The ASL compiler supports an Offset(ByteOffset) macro within a FieldList
to skip to the bit position of the supplied byte offset.

SMBus regions are inherently non-linear, where each offset within an SMBus address space represents a
variable sized (0 to 32 bytes) field. Given this uniqueness, SMBus operation regions include restrictions on
their field definitions and require the use of an SMBus-specific data buffer when initiating transactions. See
section 14, “ACPI System Management Bus Interface Specification,” for more information.

16.2.3.3.1.11.1 CMOS Protocols

This section describes how CMOS can be accessed from ASL. Most computers contain an RTC/CMOS
devicethat can berepresented as alinear array of bytes of non-volatile memory. There is a standard
mechanism for accessing the first 64 bytes of non-volatile RAM in devices that are compatible with the
Motorola RTC/CMOS device that wasin the IBM PC/AT. But today’s RTC/CMOS devices usually contain
more than 64 bytes of non-volatile RAM, and there is no standard for access to these extensions. To solve
this problem, new PnP I Ds are presented here for each type of extension.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

16.2.3.3.1.11.1.1 PC/AT-compatible RTC/CMOS Devices (PNPOBO0O)

The standard PC/AT-compatible RTC/CMOS device is denoted by the PnP 1D PNPOBOO. If an ACPI
platform uses a device that is compatible with this device, it may describe thisin its ACPI namespace. ASL
may then read and write this as alinear 64-byte array. If PNPOBOO is used, ASL and ACPI operating
systems may not assume that any extensions to the CMOS exist.

Note: This meansthat the CENTURY field in the Fixed ACPI Description Table may only contain values
between 0 and 63.

Thisis an example of how this device could be described:

Devi ce (RTCO) {
Nanme(_H D, El SAl D(" PNPOB00"))
Nane(_CRS, ResourceTenpl ate() {
| O(Decodel6, 0x70, 0x70, Ox1l, 0x2)

}

Oper ati onRegi on(V51, CMOS, 0, 0x40)

Fi el d(CvBl, ByteAcc, NoLock, Preserve) {
AccessAs(Byt eAcc, 0),

cwvo, 8,
, 256,

Ccw1, 8,
cw2, 16,
, 216,
Ccw3, 8

}

16.2.3.3.1.11.1.2 Intel PlIX4-compatible RTC/CMOS Devices (PNP0OBO01)

The Intel PI1X4 contains an RTC/CMOS device that is compatible with the onein the PC/AT. But it
contains 256 bytes of non-volatile RAM. Thefirst 64 bytes are accessed via the same mechanism as the 64
bytesin the PC/AT. The upper 192 bytes are accessed through an interface that is only used on Intel chips.
(See 82371AB PCI-TO-ISA / IDEXCELERATOR (Pl1X4) for details.)

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 355

Any platform containing this device or one that is compatible with it may use the PNP ID PNPOBO1. This
will allow an ACPI -compatible OS to recognize the RTC/CMOS device as using the programming
interface of the PI1X4. Thus, the array of bytesthat ASL can read and write with this device is 256 bytes
long.

Note: This aso means that the CENTURY field in the Fixed ACPI Description Table may contain values
between 0 and 255.

Thisis an example of how this device could be described:

Devi ce (RTCO) {
Nanme(_HI D, ElI SAI D("PNPOB01"))

Nane(_CRS, ResourceTenplate() {
| O Decodel6, 0x70, O0x70, 0x1, O0x2)
| (Decodel6, 0x72, O0x72, 0x1, O0x2)
}
Oper ati onRegi on(CV51, CMOS, 0, 0x100)
Fi el d(CVvBl1, ByteAcc, NoLock, Preserve) {
AccessAs(Byt eAcc, 0),

cwvo, 8,
, 256,
Ccw1, 8,
w2, 16,
, 224,
Ccw3, 8,
, 184,
CENT, 8

}

16.2.3.3.1.11.1.3 Dallas Semiconductor-compatible RTC/CMOS Devices
(PNPOBO02)

Dallas Semiconductor RTC/CMOS devices are compatible with the one in the PC/AT, but they contain 256
bytes of non-volatile RAM or more. The first 64 bytes are accessed via the same mechanism as the 64 bytes
inthe PC/AT. The upper bytes are accessed through an interface that is only used on Dallas Semiconductor
chips.

Any platform containing this device or one that is compatible with it may use the PNP ID PNPOB02. This
will allow an ACPI -compatible OS to recognize the RTC/CMOS device as using the Dallas Semiconductor
programming interface. Thus, the array of bytesthat ASL can read and write with this device is 256 bytes
long.

Description of these devicesis similar to the Pl X4 example above, and the CENTURY field of the FADT
may also contain values between 0 and 255.

16.2.3.3.1.11.2 PCI Device BAR Target Protocols

This section describes how PCI devices' control registers can be accessed from ASL. PCI devices each
have an address space associated with them called the Configuration Space. At offset 0x10 through offset
0x27, there are as many assix Base Address Registers, (BARS). These BARs contain the base address of a
series of control registers (in 1/0 or Memory space) for the PCI device. Since a Plug and Play OS may
change the values of these BARs at any time, ASL cannot read and write from these deterministically using
I/O or Memory operation regions. Furthermore, a Plug and Play Play OS will automatically assign
ownership of the I/0 and Memory regions associated with these BARs to adevice driver associated with
the PCI device. An ACPI OS (which must also be a Plug and Play operating system) will not allow ASL to
read and write regions that are owned by native device drivers.

Compag/I ntel/Microsoft/Phoenix/T oshiba

356 Advanced Configuration and Power Interface Specification

If aplatform uses a PClI BAR Target operation region, an ACPI OSwill not load a native device driver for
the associated PCI function. For example, if any of the BARsin a PCI function are associated with a PCI
BAR Target operation region, then the OS will assume that the PCI function is to be entirely under the
control of the ACPI BIOS. No driver will beloaded. Thus, a PCI function can be used as aplatform
controller for some task (hot-plug PCI, and so on) that the ACPI BIOS performs.

16.2.3.3.1.11.2.1 Declaring a PCI BAR Target Operation Region

PCI BARs contain the base address of an 1/0 or Memory region that a PCI device' s control registerslie
within. Each BAR implements a protocol for determining whether those control registers are within 1/O or
Memory space and how much address space the PCI device decodes. (See the PCI Specification for more
details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCI device's
PCI configuration space. The BAR determines whether the actual access to the device occurs through an
I/0 or Memory cycle, not by the declaration of the operation region. The length of the regionis similarly
implied.

Intheterm Qper at i onRegi on(PBAR, Pci Bar Target, 0x10, 0x4), the offset isthe offset of the BAR
within the configuration space of the device. Thiswould be an example of an operation region that uses the
first BAR inthe device.

16.2.3.3.1.11.2.2 PCIl Header Types and PCI BAR Target Operation Regions

PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI
Header Type of 0. PCI devices with other header types are bridges. The control of PCI bridgesis beyond
the scope of ASL.

16.2.3.3.1.12 IndexField (Declare Index/Data Fields)

I ndexFi el dTerm ;= I ndexFi el d(
| ndexNaneg, /1 NaneSt ri ng=>Fi el duni t
Dat aNan®, /I NaneStri ng=>Fi el duni t
AccessType, /| AccessTypeKeywor d
LockRul e, /I LockRul eKeywor d
Updat eRul e /] Updat eRul eKeywor d

) {Fiel dunitList}

Creates a series of named data objects whose data values are fields within alarger object accessed by an
index/data-style reference to IndexName and DataName.

This encoding is used to define named data objects whose data values are fields within an index/data
register pair. This provides a simple way to declare register variables that occur behind atypical index and
dataregister pair.

Accessing the contents of an indexed field data object will automatically occur through the DataName
object by using an IndexName object aligned on an AccessType boundary, with synchronization occurring
on the operation region that contains the index data variable, and on the Global Lock if specified by
LockRule.

AccessType, LockRule, UpdateRule, and FieldList are the same format as the Field term.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 357

Thefollowing isablock of ASL sample code using | ndexField:

Creates an index/data register in system |/O space made up of 8-bit registers.
Createsa FETO field within the indexed range.

Met hod(EX1) {
/1 define 256-byte operational region in System O space
// and narme it G Q0
OperationRegion (G @), 1, 0x125, 0x100)
/1 create field naned Preserve structured as a sequence
/1 of index and data bytes
Field (A Q, ByteAcc, NoLock, WiteAsZeros) {
I DX0, 8,
DATO, 8,

}
/! Create an IndexField within IDX0O & DATO which has
/!l FETs in the first two bits of indexed offset O,
// and another 2 FETs in the high bit on indexed
/1 2f and the low bit of indexed offset 30
I ndexFi el d (1DX0, DATO, ByteAcc, NoLock, Preserve) {

FETO, 1,

FET1, 1,

O fset (0x2f), I/l skip to byte offset 2f
, 7, /1 skip another 7 bits
FET3, 1,

FET4, 1

}
/1 dear FET3 (index 2f, bit 7)
Store (Zero, FET3)

} // End EX1

16.2.3.3.1.13 Method (Declare Control Method)

Met hodTer m ;= Met hod(
Met hodNane, [/ NameStri ng
Nun#r gs, /1 Not hi ng | Byt eConst Expr
SerializeRul e, /1 Not hing |
/] SerializeRul eKeywor d
SynclLevel /1 Not hing |
/| Byt eConst Expr
) {TernList}

Declares a named package containing a series of object references that collectively represent a control
method, which is a procedure that can be invoked to perform computation. M ethod opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more
information on control method execution, see section 5.5.3, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

If amethod is declared as Serialized, an implicit mutex associated with the method object is acquired at the
specified SyncLevel. If no SyncLevel is specified, SyncLevel 0 isassumed. The serialize rule can be used to
prevent reentering of amethod. Thisis especially useful if the method creates namespace objects. Without
the serialize rule, the reentering of amethod will fail when it attemptsto create the same namespace object.

Also notice that all namespace objects created by a method have temporary lifetime. When method
execution exits, the created objects will be destroyed.

Compag/I ntel/Microsoft/Phoenix/T oshiba

358 Advanced Configuration and Power Interface Specification

The following block of ASL sample code shows a use of M ethod for defining a control method that turns
on apower resource.

Met hod(_ON) {
Store (One, A O | DEP) /] assert power
Sl eep (10) /1 wait 10ns
Store (One, A O | DER) /'l de-assert reset#
Stall (10) /1 wait 10us
Store (Zero, GO |DE) /] de-assert isolation

}
16.2.3.3.1.14 Mutex (Declare Synchronization/Mutex Object)

Miut exTer m := Mut ex(
Mut exNane, // NameString
SynclLevel /1 Byt eConst Expr

)

Creates a data mutex synchronization object named MutexName, with level from O to 15 specified by
SyncLevel. A SyncLevel of n alowsn+1 mutex owners

A synchronization object provides a control method with a mechanism for waiting for certain events. To
prevent deadlocks, wherever more than one synchronization object must be owned, the synchronization
objects must always be released in the order opposite the order in which they were acquired. The SyncLevel
parameter declares the logical nesting level of the synchronization object. All Acquireterms must refer to a
synchronization object with an equal or greater SyncLevel to current level, and all Releaseterms must refer
to asynchronization object with equal or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using
an Acquireterm and is released using a Releaseterm. Ownership of aMutex must be relinquished before
completion of any invocation. For example, the top-level control method cannot exit while still holding
ownership of aMutex. Acquiring ownership of aMutex can be nested. The SyncLevel check is not
performed on a Mutex when the ownership count is nesting.

The SyncLevel of athread before acquiring any mutexesis zero. The SyncLevel of the Global Lock (_GL)
is zero. A method marked serialized has an inherent mutex of SyncLevel 0 unless SyncLevel is explicitly
specified.

16.2.3.3.1.15 OperationRegion (Declare Operation Region)

OpRegi onTer m : = QperationRegi on(
Regi onNane, // NameStri ng
Regi onSpace, / | Regi onSpaceKeywor d
O fset, /| Ter mMAr g=>I nt eger
Lengt h /| Ter MAr g=>I nt eger

)

Declares an operation region. Offset is the offset within the selected RegionSpace at which the region starts
(byte-granular), and Length is the length of the region in bytes.

An Operation Region is atype of data object where read or write operations to the data object are
performed in some hardware space. For example, the Definition Block can define an Operation Region
within abus, or system 1/Ospace. Any reads or writes to the named object will result in accesses to the |/O
space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI
control methods. In general, no hardware register (at least byte-granular) within the operation region
accessed by an ACPI control method can be shared with any accesses from any other source, with the
exception of using the Global Lock to share aregion with the firmware. The entire Operation Region can
be allocated for exclusive use to the ACPI subsystem in the host OS.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 359

Operation Regions that are defined within the scope of a method are the exception to thisrule. These
Operation Regions are known as“Dynamic” since the OS has no ideathat they exist or what registers they
use until the control method is executed. Using a Dynamic SystemlO or SystemMemory Operation Region
is not recommended since the OS cannot guar antee exclusive access. All other types of Operation Regions
may be Dynamic.

Operation Regions have “virtual content” and are only accessible via Field objects Operation Region
objects may be defined down to actual bit controls using Field data object definitions. The actual bit
content of aField iscomprised of bitsfrom within alarger Buffer that are normalized for that field (in
other words, shifted down and masked to the proper length), and as such the datatype of aField is Buffer.
Thereforefieldsthat are 32 bits or less in size may be read and stored as Integers.

An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or aField
data object for the region, will automatically synchronize on the Operation Region object; however, a
control method may also explicitly synchronize to aregion to prevent other accessesto the region (from
other control methods). Notice that, according to the control method execution model, control method
execution is non-preemptive. Because of this, explicit synchronization to an Operation Region needs to be
done only in cases where a control method blocks or yields execution and where the type of register usage
requires such synchronization.

There are seven predefined Operation Region types specified in ACPI:
0— SystemMemory

1-SystemlO

2—PCI_Config

3— EmbeddedControl

4—-SMBus

5- CMOS

6— PCIBARTarget

In addition, OEMs may define Operation Regions types 0x80 to OxFF.

Thefollowing example ASL code shows the use of OperationRegion combined with Fieldto describe
IDE 0 and 1 controlled through general 1/0 space, using one FET.

perationRegion (A O System O 0x125, 0x1)
Field (@O ByteAcc, NoLock, Preserve) {

| DEl, 1, /1 1 DEl SO EN - isolation buffer
| DEP, 1, /1 IDE_PWR EN - power
| DER, 1 /1 | DERST#_EN - reset#

}

16.2.3.3.1.16 PowerResource (Declare Power Resource)

Power ResTer m : = Power Resour ce(
Resour ceNane, [/ NameStri ng
Syst enlLevel , /| Byt eConst Expr
Resour ceOr der /1 Wr dConst Expr

) {QbjectList}
Declares a power resource. Power Resour ce opens a name scope.

For a definition of the Power Resour ce term, see section 7.1, “Declaring a Power Resource Object.”

Compag/I ntel/Microsoft/Phoenix/T oshiba

360 Advanced Configuration and Power Interface Specification

16.2.3.3.1.17 Processor (Declare Processor)

Processor Term ;= Processor (
Pr ocessor Nane, // NanmeStri ng
Processor | D, /1 Byt eConst Expr
PBl ockAddr ess, / | DWr dConst Expr
Pbl ockLengt h /1 Byt eConst Expr

) {QojectList}

Declares anamed processor object. Processor opens a name scope. Each processor isrequired to have a
unique ProcessorID value that is unique from any other ProcessorID value.

For each processor in the system, the ACPI BIOS declares one processor object in the namespace anywhere
within the_SB scope. For compatibility with operating systemsimplementing ACPI 1.0, the processor
object may also be declared under the\ PR scope. An ACPI 2.0-compatible namespace may define
Processor objectsin either the_SB or _PR scope but not both.

PBIlockAddress provides the system I/O address for the processors register block. Each processor can
supply adifferent such address. PBlockLength is the length of the processor register block, in bytesand is
either O (for no P_BLK) or 6. With one exception, all processors are required to have the same
PBlockLength. The exception is that the boot processor can have a non-zero PBlockLength when all other
processors have a zero PBlockLength.

The following block of ASL sample code shows a use of the Processor term.

Processor (

\ _PR CPWO, /1 nanmespace nane

1,

0x120, /1 PBlk system | O address
6 /1 PBl kLen

)
{Qoj ect List}

The ObjectList isan optional list that may contain an arbitrary number of ASL Objects. Processor-specific
objects that may be included in the ObjectList include _PTC, _CST, _PCT, _PSS, and_PPC. These
processor-specific objects can only be specified when the processor object is declared within the_SB
scope. For afull definition of these objects, see section 8, “Processor Control.”

16.2.3.3.1.18 ThermalZone (Declare Thermal Zone)

Ther mal ZoneTer m : = Ther mal Zone(
Ther mal ZoneNane // NameStri ng
) { QbjectList}

Declares anamed Thermal Zone object. Ther malZone opens a name scope.

Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a system
isrequired to have a unique Thermal ZoneName.

A thermal zone may be declared in the namespace anywhere within the_SB scope. For compatibility with
operating systems implementing ACPI 1.0, athermal zone may also be declared under the_TZ scope. An
ACPI 2.0-compatible namespace may define Thermal Zone objectsin either the\ SB or_TZ scope but not
both.

For sample ASL code that uses a Thermal Zone statement, see section 12, “Thermal Management.”

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 361

16.2.3.3.2 Namespace Modifiers
The namespace modifiers are as follows:

Table16-7 Namespace Modifiers

ASL Statement Description

Alias Definesaname alias.

Name Defines a global name and attaches a buffer, literal dataitem, or
packagetoit.

Scope Declares the placement of one or more object namesin the ACPI
namespace when the definition block that contains the Scope
statement is|oaded.

16.2.3.3.2.1 Alias (Declare Name Alias)

AliasTerm = Alias(
Sour cehj ect, // NameString
Ali asoj ect // NameStri ng

)
Creates a new name, AliasObject, which refers to and acts exactly the same as Sour ceObject.

AliasObject is created as an alias of SourceObject in the namespace. The SourceObject name must already
exist in the namespace. If the aliasis to a name within the same definition block, the SourceObject name
must be logically ahead of this definition in the block. The following example shows use of an Alias term:

Ali as(\SUS. SET. EVEN, SSE)

16.2.3.3.2.2 Name (Declare Named Object)

NarmeTer m ;= Name(
(bj ect Nane, // NameStri ng
hj ect / | Dat aoj ect

)
Attaches Object to ObjectName in the Global ACPI namespace.
This encoding is to create ObjectName in the namespace, which references the Object.
The following exampl e creates the name PTTX in the root of the namespace that references a package.
Nare(\ PTTX, /1l Port to Port Translate Table
Package() { Package() { 0x43, 0x59 }, Package() { 0x90, Oxff }}
The following example creates the name CNT in the root of the namespace that references an integer data

object with the value 5.

Narre(\ ONT, 5)

Compag/I ntel/Microsoft/Phoenix/T oshiba

362 Advanced Configuration and Power Interface Specification

16.2.3.3.2.3 Scope (Declare Name Scope)

ScopeTerm : = Scope(
Location // NanmeStri ng
) {CbjectlList}

Gives a base scope to a collection of objects. All object names defined within the scope act relative to
Location. Notice that Location does not have to be below the surrounding scope. Notice also that the Scope

term does not create objects, but only locates objectsin the namespace; the located objects are created by
other ASL terms.

The Scope term alters the current namespace location to Location. This causes the defined objects within
TermList to occur relative to the new location in the namespace.

The following example ASL code places the defined objectsin the ACPI namespace as shown:

Scope(\PCI 0) {

Nane(X, 3)

Scope(\) {
Met hod(RQ { Return(0) }

Nane(Y, 4)
}

places the defined objectsin the ACPI namespace as shown:

\ PCI 0. X
\RQ
\'Y

16.2.3.4 Opcode Terms
There are two types of ASL opcode terms: Type 1 opcodes and Type 2 opcodes.

A Typel opcode term can only be used standing alone on aline of ASL code; because these types of terms
do not return avalue, they cannot be used as aterm in an expression.

A Type2 opcode term can be used in an expression because these types of terms return avalue. When used
in an expression, the argument that names the object in which to store the result is optional .

Notice that in the opcode definitions below, when the definition says “result is stored in” thisliterally
means that the Stor e operator is assumed and the “execution result” is the Sour ce operand to the Store
opcode.

16.2.3.4.1 Type 1 Opcodes

TypelQpcode := BreakTerm | BreakPointTerm | ContinueTerm| Fatal Term |
| fEl seTerm | LoadTerm | NoQpTerm | NotifyTerm |
Rel easeTerm| ResetTerm| ReturnTerm| Signal Term |
SleepTerm| StallTerm| SwitchTerm| Unl oadTerm |
Wi |l eTerm

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 363

The Type 1 opcodes are listed in the following table.
Table16-8 Type 1l Opcodes

ASL Statement Description

Break Continue immediately following the innermost enclosing While scope

BreakPoint Used for debugging. Stops execution in the debugger.

Continue Continue innermost enclosing While loop where condition is evaluated

Else Else

Elself Elself

Fatal Fatal check

If If

Load Load differentiating definition block

Noop No operation

Notify Notify the OS that the specified notification event occurred for the
specified object.

Release Release a synchronization object

Reset Reset a synchronization object

Return Return from a control method, optionally setting areturn value

Signal Signal a synchronization object

Sleep Sleep n milliseconds (yields the processor)

Stall Delay n microseconds (does not yield the processor)

Switch Select code to execute based on expression value

Unload Unload differentiating definition block

While While

16.2.3.4.1.1 Break (Break)

Br eakTer m ;= Break

Break causes execution to continue immediately following the innermost enclosing W hile scope, in the
current Method. If there is no enclosing While within the current Method, afatal error is generated.

Compatibility Note: In ACPI 1.0, the Break command continued immediately following the innermost
“code package.” In ACPI 2.0, the Break command has been changed to exit the innermost “While”
package. This should have no impact on existing code, since the ACPI 1.0 definition was, in practice,
useless.

16.2.3.4.1.2 BreakPoint (BreakPoint)

Br eakPoi nt Term .= BreakPoi nt

Used for debugging, the Break point opcode stops the execution and entersthe AML debugger. In the retail
version of the interpreter, BreakPoint is equivalent to Noop.

Compag/I ntel/Microsoft/Phoenix/T oshiba

364 Advanced Configuration and Power Interface Specification

16.2.3.4.1.3 Continue — Continue Innermost Enclosing While
Cont i nueTer m ;= Continue

Continue causes execution to continue at the start of the innermost enclosing While scope, in the current
Method, at the point where the condition is evaluated. If there is no enclosing While within the current
Method, afatal error is generated.

16.2.3.4.1.4 Else/Elself (Else Operator)

El seTerm = Nothing | <Else {TernlList}>|
<El self (predicate) {TernlList} E seTerm

If Predicate evaluatesto O in an If statement, then control istransferred to the Else portion, which can
consist of zero or more Elsel f statements followed by zero or one Elsestatements. If the Predicate of any
Elself statement evaluates to non-zero, the statementsin itsterm list are executed and then control is
transferred past the end of the final Else term. If no Predicate evaluates to non-zero, then the statementsin
the Elseterm list are executed.

The following example checks Local 0 to be zero or non-zero. On non-zero, CNT is incremented,;
otherwise, CNT is decremented.

If (LG eater(Local 0,5) {
I ncrement ((CNT)

} Else If (Local 0) {
Add(CNT, 5, CNT)

.JIKEI se {
Decrement (CNT)
}

Compatibility Note: The Elself operator is new in ACPI 2.0, but is backward compatible with the ACPI
1.0 specification. The ACPI 2.0 compiler must synthesize Elself from the If..Else opcodes available in 1.0.

For example:
If (predicatel) {
.Statenentsl...

}
El sel f (predicate2) {
.Statements2...

}

El se {
.Statenments3...

}

istranslated to the following:
| f(predicatel) {
.statenmentsl...

}
El se {
I f (predicate2) {
.Statements2...
}
El se {
.Statenments3...
}
}

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 365

16.2.3.4.1.5 Fatal (Fatal Check)

Fat al Term := Fatal (
Type, / | Byt eConst Expr
Code, / | DWbr dConst Expr
Arg /| Ter mMAr g=>I nt eger

)

This operation is used to inform the OS that there has been an OEM -defined fatal error. In response, the OS
must log the fatal event and perform a controlled OS shutdown in atimely fashion.

16.2.3.4.1.6 If (If Operator)

I f Term = I
Predi cate /I Ter mMAr g=>I nt eger
) {TernList}

Predicateis evaluated as an integer. If the integer is non-zero, the term list of the If term is executed.
The following examples all check for bit 3 in Local0 being set, and clear it if set.

/1 exanple 1
If (And(Local 0, 4)) {
XOr (Local 0, 4, Local 0)

}
/1 exanple 2
Store(4, Local 2)
I'f (And(Local 0, Local 2)) {
XOr (Local 0, Local 2, Local 0)
}

16.2.3.4.1.7 Load (Load Differentiated Definition Block)

LoadTer m ;= Load(
bj ect // NameStri ng
DDBHandl e /1 Super Nane

)

Performs a run-time load of a Definition Block. The Object parameter can either refer to an operation
region field or an operation region directly. If the object is an operation region, the operation region must
be in SystemMemory space. The Definition Block should contain a DESCRIPTION_HEADER of type
SSDT or PSDT. The Definition Block must be totally contained within the supplied operation region or
operation region field. Thistableis read into memory, the checksum is verified, and then it is loaded into
the ACPI namespace. The DDBHandle parameter is the handle to the Differentiating Definition Block that
can be used to unload the Definition Block at afuture time.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default namespace location to load the Definition Block is relative to the current namespace. The new
Definition Block can override this by specifying absolute names or by adjusting the namespace location
using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

16.2.3.4.1.8 Noop Code (No Operation)
NoQpTer m ;= Noop

This operation has no effect.

Compag/I ntel/Microsoft/Phoenix/T oshiba

366 Advanced Configuration and Power Interface Specification

16.2.3.4.1.9 Notify (Notify)

Noti fyTerm = Notify(
bj ect,
/ | Super Name=>Ther nmal Zone| Processor | Devi ce
Noti ficationVal ue /| Ter mAr g=>Byt eConst Expr

)

Notifies the OS that the NotificationValue for the Object has occurred. Object must be areferenceto a
device or thermal zone object.

Object type determines the notification values. For example, the notification values for athermal zone
object are different from the notification values used for a device object. Undefined notification values are
treated as reserved and are ignored by the OS.

For lists of defined Notification values, see section5.6.3, “ Device Object Notifications.”

16.2.3.4.1.10 Release (Release a Mutex Synchronization Object)

Rel easeTerm ;= Rel ease(
Syncj ect /| Super Name=>Mut ex
)

SynchObject must be a mutex synchronization object. If the mutex object is owned by the current
invocation, ownership for the Mutex isreleased once. It isfatal to release ownership on aMutex unlessitis
currently owned. A Mutex must be totally released before an invocation compl etes.

16.2.3.4.1.11 Reset (Reset an Event Synchronization Object)

Reset Term ;= Reset (
Syncj ect / | Super Name=>Event
)

SynchObject must be an Event synchronization object. Thisencoding is used to reset an event
synchronization object to anon-signaled state. See also the Wait and Signal function operator definitions.

16.2.3.4.1.12 Return (Return)

Ret ur nTerm := Return(
Arg /| Ter mAr g=>Dat aRef Cbj ect
)

Returns control to the invoking control method, optionally returning a copy of the object named in Arg.

16.2.3.4.1.13 Signal (Signal a Synchronization Event)

Si gnal Term ;= Signal (
SyncOhj ect /| Super Nanme=>Event
)

SynchObject must be an Event synchronization object. The Event object is signaled once, allowing one
invocation to acquire the event.

16.2.3.4.1.14 Sleep (Sleep)

Sl eepTerm := Sl eep(
M11i Secs /| Ter mMAr g=>I nt eger
)

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the
required number of milliseconds. The implementation of Sleep isto round the request up to the closest
sleep time supported by the OS and relinquish the processor.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 367

16.2.3.4.1.15 Stall (Stall for a Short Time)

Stall Term = Stall(
M croSecs /| Ter mAr g=>I nt eger
)

The Stall term is used to implement short-term timing requirements. Execution is delayed for at |east the
required number of microseconds. The implementation of Stall is OS-specific, but must not relinquish
control of the processor. Because of this, delays longer than 100 microseconds must use Sleep instead of
Stall.

16.2.3.4.1.16 Switch — Select Code To Execute Based On Expression

Swi tchTerm

Swi t ch(
Predicate / | Conput at i onal Dat a
) { CaseTernlList}

Def aul t Ter niLi st Not hi ng | CaseTerm | CaseTerm Defaul t Ter nii st

CaseTer nlLi st Not hing | CaseTerm CaseTerniist | Defaul t Term
Def aul t Ter i st

CaseTerm = Case(Data(nject) {Ternlist}

Def aul t Term = Default {Terniist}

The Switch, Case and Default statements help simplify the creation of conditional and branching code.
The Switch statement transfers control to a statement within its body.

If the Casevalueisan Integer, Buffer or String, then control passes to the statement that matches the value
of Switch(Predicate). If the Casevalueis aPackage, then control passesif any member of the package
matches the Switch (Predicate). The Switch CaseTermList can include any number of Caseinstances, but
no two Caseval ues (or menbers of avalue, if value is a Package) within the same Switch statement can
contain the same value.

Execution of the statement body begins at the selected statement’s TermList and proceeds until the end of
the body or until an ExitSwitch (or other valid Exitx) statement transfers control out of the body.

Use of the Switch statement usually looks something like this:
Switch (expression)

Case (value) {
Statenments executed if Lequal (expression, value)

Case (Package() {val ue,val ue,value}) {

Statenments executed if Lequal (expression, any value in package)
Default {

statenments executed if expression does not equal

any case constant- expression

The Default statement is executed if no Case value matches the value of switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statementsin the Switch body are
executed. There can be at most one Default statement. The Default statement need not come at the end; it
can appear anywhere in the body of the Switch statement.

A Caseor Default term can only appear inside a Switch statement. Switch statements can be nested.

Compatibility Note: The Switch, Case, and Default terms are new to ACPI 2.0. However, their
implementation is backward compatible with ACPI 1.0 AML interpreters.

Compag/I ntel/Microsoft/Phoenix/T oshiba

368 Advanced Configuration and Power Interface Specification

Compiler Note: The following example demonstrates how the Switch statement should be translated into
ACPI 1.0-compatible AML:

Swi t ch (Add(ABC), 1)
{

Case(1) {
.Statementsl...

}Case(Package() {4,5,6}) {
.Statenents2...

}
Default {
.Statements3...

}
}

istranslated as:
Wi | e(Zer o)
{

Name(_T_I,0) I/l Oreate Integer tenporary variable for result
Store(Add(ABCD(), 1), _T_1)
I'f (LEqual (_T_I,1)) {
.statenmentsl...
}

El se {
I f (LNot Equal (Mat ch(Package() {4,5,6}, MEQ _T_ I, MR 0,0), Ones)) {
.Statenents2...

}

El se {
.Statements3...

}

}

}

Note: If the compiler is unable to determine the type of the expression, then it should generate awarning
and assume integer type. The warning should indicate that the ASL should use one of the type conversion
operators (Int, Buff, DecStr or HexStr). For example:

Swi t ch(ABCIX()) /1 Can’t determne the type because nethods can return anything.
{

..case statenents...

}
will generate awarning and the following code:

Name(_T_I,0)
Store(ABCD(), T 1)

To remove the warning, the code should be:
Swi t ch(1nt (ABC()))
{

..case statenents...

}
16.2.3.4.1.17 Unload (Unload Differentiated Definition Block)

Unl oadTer m : = Unl oad(
DDBHandl e /| Ter mMAr g=>DDBHandl e
)

Performs a run-time unload of a Definition Block that was |oaded using a L oad term. Loading or unloading
a Definition Block is a synchronous operation, and no control method execution occurs during the function.
On completion of the Unload operation, the Definition Block has been unloaded (all the namespace objects
created as aresult of the corresponding L oad operation will be removed from the namespace).

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 369

16.2.3.4.1.18 While (While)

Wi | eTerm = Wil e(
Predi cate /| Ter mMAr g=>I nt eger
) {TernList}

Predicateis evaluated as an integer. If the integer is non-zero, the list of termsin TermList is executed. The
operation repeats until the Predicate evaluatesto zero.

16.2.3.4.2 Type 2 Opcodes

Type2Qpcode := AcquireTerm| AddTerm| AndTerm | BuffTerm| ConcatTerm
| ConcateResTerm | CondRef O Term | DecTerm | DecStrTerm
| DerefOFTerm| DivideTerm| FindSetLeftBitTerm |
Fi ndSet R ghtBit Term | FronBCDTerm | HexStrTerm| IncTerm
| I'ndexTerm| IntTerm| LAndTerm| LEqual Term |
LG eaterTerm| LG eaterEqual Term| LLessTerm |
LLessEqual Term | LNot Term | LNot Equal Term |
LoadTabl eTerm| LO Term| MatchTerm | MdTerm | MdTerm
| MultiplyTerm| NAndTerm| NO Term| NotTerm |
Obj ect TypeTerm | O Term| RefOfTerm| ShiftLeftTerm|
ShiftRght Term | SizeOTerm| StoreTerm| StringTerm |
Subtract Term | ToBCDTerm | WAitTerm | XorTerm| UserTerm

The ASL termsfor Type 2 Opcodes are listed in the following table.

Table16-9 Type?2 Opcodes

ASL Statement Description

Acquire Acquire a mutex

Add Add two values

And Bitwise And

Buff Convert datatype to buffer

Concatenate Concatenate two strings, integers or buffers
ConcatenateResTemplate Concatenate two resource templates
CondRefOf Conditional reference to an object
Decrement Decrement avalue

DecStr Convert datatype to decimal string

DerefOf Dereference an object reference

Divide Divide

FindSetL eftBit Index of first least significant bit set
FindSetRightBit Index of first most significant bit set
FromBCD Convert from BCD to numeric

HexStr Convert data type to hexadecimal string
Increment Increment avalue

Index Reference the nth element/byte/character of a package, buffer or string
Int Convert datatype to integer

LANd Logical And

Compag/I ntel/Microsoft/Phoenix/T oshiba

370 Advanced Configuration and Power Interface Specification

Table16-9 Type 2 Opcodes (continued)

ASL Statement Description

LEqual Logica Equal

L Greater Logical Greater

L GreaterEqual Logical Not less

LLess Logical Less

L LessEqual Logical Not greater

LNot Logical Not

LNotEqual Logical Not equal

LoadTable Load Table from RSDT/XSDT
LOr Logical Or

Match Search for match in package array
Mid Returns a portion of buffer or string
Mod Modulo

Multiply Multiply

NAnd Bitwise Nand

NOr Bitwise Nor

Not Bitwise Not

ObjectType Type of object

Or Bitwise Or

Ref Of Reference to an object

ShiftLeft Shift value left

ShiftRight Shift valueright

SizeOf Get the size of abuffer, string, or package
Store Storevalue

String Copy ASCII string from buffer
Subtract Subtract values

ToBCD Convert numeric to BCD

Wait Wait

Xor Bitwise Xor

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 371

16.2.3.4.2.1 Acquire (Acquire a Mutex)

AcquireTerm := Acquire(
SyncQbj ect, /| Super Name=>Mut ex
Ti neout Val ue /1 Wr dConst Expr
) => Bool ean /1 True neans tined-out

SynchObject must be a mutex synchronization object. It refers to the mutex to be acquired.

Ownership of the Mutex is obtained. If the Mutex is already owned by a different invocation, the processor
isrelinquished until the owner of the Mutex releases it or until at least TimeoutVal ue milliseconds have
elapsed. A Mutex can be acquired more than once by the same invocation.

This operation returns Trueif atimeout occurred and the mutex ownership was not acquired. A
TimeoutValue of OxFFFF indicates that there is no time out and the operation will wait indefinitely.

16.2.3.4.2.2 Add (Add)

AddTer m 1= Add(
Addend1l, /| Ter mMAr g=>I nt eger
Addend2, /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => Integer

Addendl and Addend?2 are evaluated as integer data types and are added, and the result is optionally stored
into Result. Overflow conditions are ignored and the result of overflows simply loses the most significant
bits.

16.2.3.4.2.3 And (Bitwise And)

AndTer m := And(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2, /| Ter mAr g=>I nt eger
Resul t /| Tar get

) => Integer

Sourcel and Source? are evaluated asinteger datatypes, abitwise AND is performed, and theresult is
optionally stored into Result.

16.2.3.4.2.4 Buff (Convert Data Type to Buffer)

Buf f Ter m 1= Buff(
Dat a, /| Ter M g=>Conput at i onal Dat a
Resul t /] Tar get
) => Buffer

Data must be evaluated to integer, string, or buffer. Data is then converted to buffer type and the result is
optionally stored into Result. If Data was an integer, it is converted into 4 bytes of buffer, taking the least
significant type of integer asthefirst byte of buffer. If Data isabuffer, no conversionis performed.

16.2.3.4.2.5 Concatenate (Concatenate)

Concat Term : = Concat enat g(
Sour cel, /| Ter MAr g=>Conput at i onal Dat a
Sour ce2, /| Ter M g=>Conput at i onal Dat a
Resul t /] Tar get

) => Conput ati onal Dat a

Sourcel and Source2 are evaluated. Sourcel and Source2 must be of the same data type (that is, both
integers, both strings, or both buffers). Source2 is concatenated to Sourcel and the result datais optionally
stored into Result.

Compag/I ntel/Microsoft/Phoenix/T oshiba

372 Advanced Configuration and Power Interface Specification

Table16-10 Concatenate Data Types

Sourcel Data Type Source2 Data Type Result Data Type
Integer Integer Buffer
String String String
Buffer Buffer Buffer

16.2.3.4.2.6 ConcatenateResTemplate (Concatenate Resource Templates)

Concat ResTerm : = Concat enat eResTenpl at e(
Sour cel, /| Ter mAr g=>Buf f er
Sour ce2, /| Ter mAr g=>Buf f er
Resul t / | Tar get
) => Buffer

Sourcel and Source2 are evaluated as resource template buffers. The resource descriptors from Source2 are
appended to the resource descriptors from Sourcel. Then a new end tag and checksum are appended and
theresult is stored in Result, if specified. If either Sourcel or Source2 is exactly 1 bytein length, arun-time
error occurs. An empty buffer istreated as a resource template with only an end tag.

16.2.3.4.2.7 CondRefOf (Conditional Reference Of)

CondRef O Term : = CondRef OF (
Sour ce, /I Super Nane
Desti nation /| Target

) => Bool ean

Attempts to set Destination to refer to Source. The Source of this operation can be any object type (for
example, data package, device object, and so on). On success, the Destination object is set to refer to
Source and the execution result of this operation isthe value True. On failure, Destination is unchanged
and the execution result of this operation isthe value False. This can be used to referenceitemsin the
namespace that may appear dynamically (for example, from adynamically loaded differentiation definition
block).

CondRefOf is equivalent to RefOf except that if the Source object does not exist, it isfatal for RefOf but
not for CondRefOf .

16.2.3.4.2.8 Copy — Copy Object

CopyTerm 1= Copy(
Sour ce, / | Super Name=>Dat aRef (bj ect
Desti nati on /I NaneString | Local Term |
/1 ArgTerm
) => Dat aRef Obj ect

Convertsthe contents of the Source to a DataRefObject using the conversion rulesin 16.2.2 and then copies
the results without conversion to the object referred to by Destination. If Destination is aready an
initialized object of type DataRefObject, the original contents of Destination are discarded and replaced
with Source. Otherwise, afatal error is generated.

Compatibility Note: The Copy operator is new in ACPI 2.0.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 373

16.2.3.4.2.9 Decrement (Decrement)

DecTerm ;= Decrenent (
Addend /| Super Nane
) => Integer

This operation decrements the Addend by one and the result is stored back to Addend. Equivalent to
Subtract(Addend,1,Addend). Underflow conditions areignored and theresult is 1s.

16.2.3.4.2.10 DecStr (Convert Data Type to Decimal String)

DecStrTerm := DecStr(
Dat a, /| Ter mAr g=>Conput at i onal Dat a
Resul t /| Tar get
) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to adecimal string, and the
result is optionally stored into Result. If Data is already astring, no action is performed. If Data is a buffer,
it isconverted to astring of decimal values separated by commas.

16.2.3.4.2.11 DerefOf (Dereference Of Operator)

Deref O Term := Deref O (
Sour ce
/| Ter MAr g=>Cbj ect Ref erence| String
) => vj ect

Returns the object referred by the Source object reference. If the Sour ce evaluates to an object reference,
the actual contents of the object referred to are returned. If the Source evaluatesto astring, the string is
evaluated as an ASL name (relative to the current scope) and the contents of that object are returned. If the
object specified by Source does not exist then afatal error is generated.

Compatibility Note: The use of a String with DerefOf isnew in ACPI 2.0.

16.2.3.4.2.12 Divide (Divide)

Di vi deTerm := Divide(
Di vi dend, /I Ter mMAr g=>I nt eger
Di vi sor, /| Ter mMAr g=>I nt eger
Remai nder, /] Tar get
Resul t /| Tar get
) => Integer //returns Result

Dividend and Divisor are evaluated as integer data. Dividend is divided by Divisor, then the resulting
remainder is optionally stored into Remainder and the resulting quotient is optionally stored into Result.
Divide-by-zero exceptions are fatal.

16.2.3.4.2.13 FindSetLeftBit (Find Set Left Bit)

Fi ndSet Left Bi t Term ;= FindSetLeftBit(
Sour ce, /| Ter MAr g=>I nt eger
Resul t /] Tar get

) => I nteger

Sourceis evaluated as integer data type, and the one-based bit location of the first MSbh (most significant
set bit) is optionally stored into Result. The result of 0 means no bit was set, 1 means the |eft-most bit set is
thefirst bit, 2 means the left-most bit set is the second bit, and so on.

Compag/I ntel/Microsoft/Phoenix/T oshiba

374 Advanced Configuration and Power Interface Specification

16.2.3.4.2.14 FindSetRightBit (Find Set Right Bit)

Fi ndSet R ght Bi t Term ;= FindSetRightBit(
Sour ce, /| Ter mAr g=>I nt eger
Resul t /| Tar get

) => Integer

Sourceis evaluated as integer datatype, and the one-based bit location of the most LSb (least significant
set bit) is optionally stored in Result. The result of 0 means no bit was set, 32 means the first bit set isthe
thirty-second bit, 31 means the first bit set is the thirty-first bit, and so on.

16.2.3.4.2.15 FromBCD (Convert from BCD)

Fr onBCDTer m 1= FronBCY
BCDval ue, /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => I nteger

The FromBCD operation is used to convert BCDValue to anumeric format and store the numeric value
into Result.

16.2.3.4.2.16 HexStr (Convert Data Type to Hexadecimal String)

HexStr Term 1= HexStr(
Dat a, /| Ter MAr g=>Conput at i onal Dat a
Resul t /| Tar get
) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to a hexadecimal string, and the
result is optionally stored into Result. If Data is already astring, no action is performed. If Data is abuffer,
itisconverted to astring of hexadecimal values separated by commas.

16.2.3.4.2.17 Increment (Increment)

IncTerm ;= Increnent (
Addend /1 Super Nane

) => Integer

Add one to the Addend and place the result back in Addend. Equivalent to Add(Addend, 1, Addend).
Overflow conditions are ignored and the result of an overflow is zero.

16.2.3.4.2.18 Index (Index)

I ndexTer m ;= I ndex(
Sour ce, /] Ter MAr g=>
/I <Buffer | String |
Package>
I ndex, /| Ter mMAr g=>I nt eger
Desti nation /| Tar get

) => (vj ect Ref erence

Source is evaluated to a buffer, string, or package datatype. Index is evaluated to an integer. The reference
to the nth object (where n = Index) within Source is optionally stored as areference into Destination. When
Source evaluates to a Buffer, Index returns areference to a Buffer Field containing the nth bytein the
buffer. When Sour ce evaluates to a String, Index returns areference to a Buffer Field containing the nth
character in the string. When Sour ce evaluates to a Package, Index returns areference to the nth objectin
the package.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 375

16.2.3.4.2.18.1 Index with Packages

The following example ASL code shows away to use the Index term to store into alocal variable the sixth
element of the first package of a set of nested packages:

Nane(| QOD, Package() {
Package() {
0x01, O0x03F8, 0x03F8, 0x01, 0x08, 0x01,
0x25, OxFF, OxFE, 0x00, 0x00

b,

Package() {

0x01, O0x02F8, O0x02F8, 0x01, 0x08, 0xO01,
0x25, OxFF, OxBE, 0x00, 0x00

},

Package() {

0x01, OxO3E8, 0x03E8, 0x01, 0x08, 0x01,
0x25, OxFF, OxFA, 0x00, 0x00

},

Package() {

0x01, Ox02E8, 0x02E8, 0x01, 0x08, 0x01,

0x25, OxFF, OxBA, 0x00, 0x00

1,

Package() {

0x01, 0x0100, 0x03F8, 0x08, 0x08, 0x02,
0x25, 0x20, Ox7F, 0x00, 0xO00,

}

1)
//CGet the 6th elenent of the first package
St or e(DeRef O (| ndex(DeRef O (I ndex(1 @D, 0)), 5)), Local0)

Note: DeRefOf is necessary in the first operand of the Store command in order to get the actual object,
rather than just areference to the object. If DeRefOf were not used, then Local 0 would contain an object
reference to the sixth element in the first package rather than the nurrber 1.

16.2.3.4.2.18.2 Index with Buffers

The following example ASL code shows away to store into the third byte of a buffer:

Nane(BUFF, Buffer() {
0x01, 0x02, O0x03, 0x04, 0x05

})
//Store 0x55 into the third byte of the buffer
St or e(0x55, | ndex(BUFF, 2))

The Index operator returns areference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

If Sourceisevaluated to abuffer datatype, the ObjectReference refers to the byte at Index within Source. If
Sourceis evaluated to a buffer datatype, a Store operation will only change the byte at Index within
Source.

The following example ASL code shows the results of a series of Stor e operations:
Narme(SRCB, Buffer() {0x10, 0x20, 0x30, 0x40})

Name(BUFF, Buffer() {Ox1, 0x2, 0x3, 0x4})

The following will store 0x78 into the 31 byte of the destination buffer:
Store (0x12345678, |ndex(BUFF, 2))

The following will store 0x10 into the 2" byte of the destination buffer:

Store (SRCB, |ndex(BUFF, 1))

Compag/I ntel/Microsoft/Phoenix/T oshiba

376 Advanced Configuration and Power Interface Specification

The following will store 0x41 (an ‘A’) into the 4" byte of the destination buffer:
St ore(“ ABCDEFGH', | ndex(BUFF, 3))

Compatibility Note: New in ACPI 2.0. In ACPI 1.0, the behavior of storing data larger than 8-bitsinto a
buffer using Index was undefined.

16.2.3.4.2.18.3 Index with Strings

The following example ASL code shows away to storeinto the 3" character in astri ng:

Nanme(STR, “ ABCDEFCH JKL")
// Store ‘H (0x48) into the third character to the string
Store(“H', Index(STR 2))

The Index operator returns areference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

Compatibility Note: New in ACPI 2.0.

16.2.3.4.2.19 Int (Convert Data Type to Integer)

I nt Term = Int(
Dat a, /| Ter M g=>Conput at i onal Dat a
Resul t /] Tar get
) => I nteger

Data must be evaluated to integer, string, or buffer. Data is then converted to integer type and the result is
optionally stored into Result. If Data was a string, it must be either adecimal or hexadecimal numeric
string (in other words, prefixed by “0x”) and the value must not exceed the maximum of an integer value. If
the value is exceeding the maximum, the result of the conversion isunpredictable. If Data was a Buffer, the
first 8 bytes of the buffer are converted to an integer, taking the first byte as the least significant byte of the
integer.

16.2.3.4.2.20 LANnd (Logical And)

LAndTer m ;= LAnd(
Sour cel, /I Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
) => Bool ean

Sourcel and source2 are evaluated as integers. If both values are non-zero, Trueis returned: otherwise,
Falseis returned.

16.2.3.4.2.21 LEqual (Logical Equal)

LEqual Term ;= LEqual (
Sour cel, /| Ter M g=>Conput at i onal Dat a
Sour ce2 /| Ter MAr g=>Conput at i onal Dat a

) => Bool ean

Sourcel and Source2 must be evaluated to the same data type as integers, strings, or buffers. If the values
areequal, Trueisreturned; otherwise, Falseis returned.

16.2.3.4.2.22 LGreater (Logical Greater)

LG eaterTerm := LG eater(
Sour cel, /| Ter M g=>Conput at i onal Dat a
Sour ce2 /| Ter mMAr g=>Conput at i onal Dat a

) => Bool ean

Sourcel and Source2 must be evaluated to the same datatype as integers, strings, or buffers. If Sourcel is
greater than Source2, Trueis returned; otherwise, Falseis returned.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 377

16.2.3.4.2.23 LGreaterEqual (Logical Greater Than Or Equal)

LG eat er Equal Term ;= LG eater Equal (
Sour cel, /| Ter mMAr g=>Conput at i onal Dat a
Sour ce2 /| Ter M g=>Conput at i onal Dat a

) => Bool ean

Sourcel and Source2 must be evaluated to the same datatype asintegers, strings, or buffers. If Sourcel is
greater than or equal to Source2, Trueisreturned; otherwise, Falseis returned.

16.2.3.4.2.24 LLess (Logical Less)

LLessTerm i = LLess(
Sour cel, /| Ter M g=>Conput at i onal Dat a
Sour ce2 /| Ter MAr g=>Conput at i onal Dat a

) => Bool ean

Sourcel and Source2 must be evaluated to the same data type asintegers, strings, or buffers. If Sourcel is
lessthan Source2, Trueisreturned; otherwise, Falseis returned.

16.2.3.4.2.25 LLessEqual (Logical Less Than Or Equal)

LLessEqual Term ;= LLessEqual (
Sour cel, /| Ter M g=>Conput at i onal Dat a
Sour ce2 /| Ter M g=>Conput at i onal Dat a

) => Bool ean
Sourcel and Source2 must be evaluated to the same datatype as integers, strings, or buffers. If Sourcel is
less than or equal to Source2, Trueisreturned; otherwise, Falseis returned.

16.2.3.4.2.26 LNot (Logical Not)

LNot Ter m := LNot (
Sour ce, /| Ter mAr g=>I nt eger
) => Bool ean

Sourcel isevaluated as an integer. If the value is non-zero True is returned; otherwise, Falseis returned.

16.2.3.4.2.27 LNotEqual (Logical Not Equal)

LNot Equal Ter m ;= LNot Equal (
Sour cel, /| Ter MAr g=>Conput at i onal Dat a
Source2 /| Ter MAr g=>Conput at i onal Dat a

) => Bool ean

Sourcel and Source2 must be evaluated to the same datatype as integers, strings, or buffers. If Sourcel is
not equal to Source2, Trueisreturned; otherwise, Falseis returned.

16.2.3.4.2.28 LoadTable (Load Definition Block From XSDT)

LoadTabl eTer m ;= LoadTabl e(
SignatureString, /1 Ter mArg=>St ring
OCEM DStri ng, /] TermAr g=>String
CEMrabl el DSt ri ng, /1 Ter mArg=>St ring
Root Pat hStri ng, //Nothing | TermArg=>String
ParaneterPathString, //Nothing | TermArg=>String
Par anet er Dat a, /1 Nothing |

Ter mAr g=>Dat aRef Obj ect
) => DDBHandl e

Compag/I ntel/Microsoft/Phoenix/T oshiba

378 Advanced Configuration and Power Interface Specification

Performs a run-time load of a Differentiated Definition Block from the XSDT. The XSDT is searched for a
table where the Signature field matches SignatureString, the OEM D field matches OEMIDString, and the
OEM Table ID matches OEMTablelDString. All comparisons are case sensitive. If the SignatureString is
greater than four characters, the OEMIDString is greater than six characters, or the OEMTablelD is greater
than eight characters, arun-time error is generated. The OS can also check the OEM Table ID and Revision
ID against a database for a newer revision Definition Block of the same OEM Table ID and load it instead.

The RootPathString specifies the root of the Definition Block. It is evaluated using normal scoping rules,
assuming that the scope of the LoadTable instruction is the current scope. The new Definition Block can
override this by specifying absolute names or by adjusting the namespace location using the Scope
operator. If RootPathString is not specified, “\” is assumed

If Parameter PathString and Parameter Data are specified, the data object specified by ParameterData is
stored into the object specified by Parameter PathString after the table has been added into the namespace.
If the first character of Parameter PathString is abackslash (‘\') or caret (‘") character, then the path of the
object isParameterPathString. Otherwise, it is RootPathString.ParameterPathString. If the specified
object does not exist, arun-time error is generated.

The handle of the loaded tableis returned. If no table matches the specified signature, then O is returned.

Any table referenced by a Data Table Region must be in memory marked by AddressRangeReserved or
AddressRangeNV S.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during |oad
time.

For example:

St or e(LoadTabl e(“ CEML”, " MYCEM , " TABLEL", "\\ _SB. PCI1 0", ” M\YD', Package() {0, " \\ _SB. PCI 0"}),
Local 0)

This command would search through the RSDT or XSDT for atable with the signature“OEM1,” the OEM
ID of “MYOEM,” and thetable ID of “TABLEZL.” If not found, it would store Zeroin Local0. Otherwise,
it will store a package containing 0 and “_SB.PCIQ” into the variable at_SB.PCI0.MYD.

16.2.3.4.2.29 LOr (Logical Or)

LOr Term := LO(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
) => Bool ean

Sourcel and Source2 are evaluated as integers. If either valueis non-zero, True is returned; otherwise,
Falseis returned.

16.2.3.4.2.30 Match (Find Object Match)

Mat chTer m ;= Mat ch(
Sear chPackage, /| Ter MAr g=>Package
Opl, /I Mat chQpKeywor d
Mat chCbj ect 1, /I Ter mMAr g=>I nt eger
Op2, /I Mat chQpKeywor d
Mat chCbj ect 2, /I Ter mMAr g=>I nt eger
Start | ndex /| Ter mMAr g=>I nt eger
) => Ones | I|nteger

SearchPackage is evaluated to a package object and istreated as a one-dimension array. A comparison is
performed for each element of the package, starting with the index value indicated by Startindex (0 isthe
first element). If the element of SearchPackage being compared against is called P[i], then the comparison
is:

if (P[i] Opl MatchObjectl) and (P[i] Op2 MatchObject2) then Match => i isreturned.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 379

If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the constant
object ONES is returned.

Op1 and Op2 have the values and meanings listed in the Table 16-13.
Table16-11 Match Term Operator Meanings

Operator Encoding Macro
TRUE — A don't care, always returns TRUE 0 MTR
EQ - Returns TRUE if P[i] == MatchObject 1 MEQ
LE — Returns TRUE if P[i] <= MatchObject 2 MLE
LT — Returns TRUE if P[i] < MatchObject 3 MLT
GE — Returns TRUE if P[i] >= MatchObject 4 MGE
GT — Returns TRUE if P[i] > MatchObject 5 MGT

Following are some example uses of M atch:
Nane(P1,
Package() {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)
/1 match 1993 == P1[i]
Match(P1, MEQ 1993, MIR 0, 0) // -> 7, since P1[7] == 1993

/1 match 1984 == P1[i]
Match(P1, MEQ 1984, MIR, 0, 0) // -> ONES (not found)

/1 match P1[i] > 1984 and P1[i] <= 2000
Match(P1, MGT, 1984, M.E, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3" el enent
Mat ch(P1, M3T, 1984, ME, 2000, 3) // -> 3, first match at or past Start

16.2.3.4.2.31 Mid (Retrieve Portion of Buffer or String)

M dTerm 1= Md(
Sour ce, /] Ter mAr g=>Buf fer| Stri ng
I ndex, /| Ter mMAr g=>I nt eger
Lengt h, /| Ter MAr g=>I nt eger
Resul t /] Tar get

) => Buffer|String
Sourceis evaluated as either aBuffer or String.

If Source isabuffer, then Length bytes, starting with the Indexth byte (zero-based) are optionally copied
into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty buffer.
Otherwisg, if Index + Length is greater than or equal to the length of the buffer, then only bytes up to an
including the last byte are included in the result.

If Source isastring, then Length characters, starting with the Indexth character (zero-based) are optionally
copied into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty
string. Otherwise, if Index + Length is greater than or equal to the length of the string, then only bytes up to
an including the last character are included in the result.

Compag/I ntel/Microsoft/Phoenix/T oshiba

380 Advanced Configuration and Power Interface Specification

16.2.3.4.2.32 Mod (Modulo)

ModTer m := Mod(
Di vi dend, /| Ter mMAr g=>I nt eger
Di vi sor, /| Ter mMAr g=>I nt eger
Resul t /| Tar get
) => Integer //returns Result

Dividend and Divisor are evaluated as integer data. Dividend is divided by Divisor, then the resulting
remainder is optionally stored into Result. If Divisor evaluates to zero, afatal exception is generated.

16.2.3.4.2.33 Multiply (Multiply)

Ml tiplyTerm = Ml tiply(

Mul ti plicand, /| Ter mMAr g=>I nt eger
Mil tiplier, /| Ter mMAr g=>I nt eger
Resul t /] Tar get

) => I nteger

Multiplicand and Multiplier are evaluated as integer data types. Multiplicand is multiplied by Multiplier
and the result is optionally stored into Result. Overflow conditions are ignored and results are undefined.

16.2.3.4.2.34 NAnd (Bitwise Nand)

NAndTer m ;= NAnd(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => Integer

Sourcel and Source? are evaluated asinteger datatypes, abitwiseNAND is performed, and theresult is
optionally stored in Result.

16.2.3.4.2.35 NOr (Bitwise Nor)

NOr Term = NO(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => Integer

Sourcel and Source2 are evaluated as integer datatypes, abitwise NOR is performed, and theresult is
optionally stored in Result.

16.2.3.4.2.36 Not (Not)

Not Ter m ;= Not (
Sour ce, /| Ter MAr g=>I nt eger
Resul t /] Tar get
) => I nteger

Sourcel isevaluated as an integer datatype, abitwise NOT is performed, and the result is optionally stored
in Result.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 381

16.2.3.4.2.37 ObjectType (Object Type)

Obj ect TypeTerm ;= (bj ect Type(
Qbj ect /| Super Nane
) => Integer

The execution result of thisoperation is an integer that has the numeric value of the object type for Object.
The object type codes are listed in Table 16-14. Notice that if this operation is performed on an object
reference such as one produced by the Alias, Index, or RefOf statements, the object type of the base object

isreturned. For typel ess objects such as pre-defined scope names (in other words, _SB,\ GPE, and so on),
the type value O (Uninitialized) is returned.

Table16-12 Values Returned By the ObjectType Operator

Value | Meaning

0 Uninitialized

1 Integer

2 String

3 Buffer

4 Package

5 Field Unit

6 Device

7 Event

8 Method

9 Mutex

10 Operation Region
1 Power Resource
12 Processor

13 Thermal Zone
14 Buffer Field

15 DDB Handle

16 Debug Object
>16 Reserved

16.2.3.4.2.38 Or (Bit-wise Or)

O Term = O(
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter MAr g=>I nt eger
Resul t /] Tar get

) => Integer

Sourcel and Source? are evaluated asinteger datatypes, abitwise OR is performed, and theresult is
optionally stored in Result.

Compag/I ntel/Microsoft/Phoenix/T oshiba

382 Advanced Configuration and Power Interface Specification

16.2.3.4.2.39 RefOf (Reference Of)

Ref Of Term = Ref OF (
Qbj ect /| Super Nane
) => (vj ect Ref erence

Returns an object reference to Object. Object can be any object type (for example, apackage, adevice
object, and so on).

If the Object does not exist, the result of a RefOf operation isfatal. Use the CondRefOf term in cases
where the Object might not exist.

The primary purpose of RefOf() isto allow an object to be passed to a method as an argument to a method
without the object being evaluated at the time of the method was | oaded.

16.2.3.4.2.40 ShiftLeft (Shift Left)

ShiftLeft Term = ShiftlLeft(
Sour ce, /| Ter MAr g=>I nt eger
Shi ft Count /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => Integer

Source and ShiftCount are evaluated as integer datatypes. Sourceis shifted |eft with the least significant bit
zeroed ShiftCount times. The result is optionally stored into Result.

16.2.3.4.2.41 ShiftRight (Shift Right)

Shi ft Ri ght Term := ShiftR ght(
Sour ce, /| Ter MAr g=>I nt eger
Shi ft Count /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => Integer

Source and ShiftCount are evaluated as integer datatypes. Source s shifted right with the most significant
bit zeroed ShiftCount times. The result is optionally stored into Result.

16.2.3.4.2.42 SizeOf (SizeOf Data Object)

Si zeO Term := SizeO (
bj ect /| Super Name=>

Buf f er | Stri ng| Package
) => I nteger

Returns the size of abuffer, string, or package data object. For abuffer, it returns the size in bytes of the
data. For astring, it returns the size in bytes of the string, not counting the trailing NULL. For a package, it
returns the number of elements. For an object reference, the size of the referenced object is returned. Other
datatypes cause afatal run-time error.

16.2.3.4.2.43 Store (Store)

StoreTerm := Store(
Sour ce, /| Ter mAr g=>Dat aRef Cbj ect
Desti nation /| Super Name=>Cbj ect Ref er ence

) => Dat aRef Obj ect

This operation eval uates Sour ce converts to the data type of Destination and writes the results into
Destination. For information on automatic data-type conversion, see section 16.2.2, “ASL Data Types.”
Stores to Operational Region Field data types may relinquish the processor depending on the region type.

All stores (of any type) to the constant Zer o, constant One, or constant Ones object are not allowed. Stores
to read-only objects are fatal. The execution result of the operation is the same as the data written to
Destination.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 383

The following example creates the name CNT that references an integer data object with the value 5 and
then stores CNT to Local 0. After the Store operation, Local0 is an integer object with the value 5.

Narre(CNT, 5)
St ore(CNT, Local 0)

16.2.3.4.2.44 String (Create ASCII String From Buffer)

StringTerm := String(
Sour ce, /1 Ter mAr g=>Buf f er
Length, //Not hing | Ter mAr g=>I nt eger
Resul t /| Tar get
) => String

Sourceisevaluated as a buffer. Starting with the first byte, the contents of the buffer are copied into the
string until the number of characters specified by Length isreached. If Length is not specified or isOnes,
then the contents of the buffer are copied until anull (0) character isfound. In any case, afatal error will be
generated if the number of characters copied exceeds 200 (not including the terminating null). The result is
copied into the Result.

16.2.3.4.2.45 Subtract (Subtract)

Subtract Term ;= Subtract (
Addend1l, /| Ter mMAr g=>I nt eger
Addend2, /| Ter mMAr g=>I nt eger
Resul t /] Tar get

) => I nteger

Addendl and Addend?2 are evaluated as integer datatypes. Addend?2 is subtracted from Addendl, and the
result is optionally stored into Result. Underflow conditions are ignored and the result simply loses the
most significant bits.

16.2.3.4.2.46 ToBCD (Convert to BCD)

ToBCDTer m ;= ToBCOD(
Val ue, /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => Integer

The ToBCD operation is used to convert Value from a numeric format to a BCD format and optionally
store the numeric value into Result.

16.2.3.4.2.47 Wait (Wait for a Synchronization Event)

Wi t Term = Wit (
SyncQbj ect, /| Super Name=>Event
Ti neout Val ue /| Ter mMAr g=>I nt eger
) => Bool ean

SynchObject must be an event synchronization object. The calling method blocks waiting for the event to
be signaled.

The pending signal count is decremented. If there is no pending signal count, the processor is relinquished
until asignal count is posted to the Event or until at |east TimeoutValue milliseconds have el apsed.

This operation returns anon-zero value if atimeout occurred and a signal was not acquired. A
TimeoutValue of OXFFFF indicates that there is no time out and the operation will wait indefinitely.

Compag/I ntel/Microsoft/Phoenix/T oshiba

384 Advanced Configuration and Power Interface Specification

16.2.3.4.2.48 XOr (Bitwise Xor)

XOr Term = XO(
Sour cel, / | Ter mAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => Integer

Sourcel and Source2 are evaluated as integer datatypes, abitwise XOR is performed, and theresult is
optionally stored into Resullt.

16.2.3.5 User Terms

User Term ;= NaneString(// NameSt ri ng=>Met hod
ArgLi st
) => Nothing | DataRef(bject
NameString must refer to an existing Method in the namespace. If the Method is not present, afatal error is
generated. It can either be an absolute namespace path or else it must be accessible at the current scope of
invocation. The number of arguments in ArgList must match the number of arguments declared in the
method object.

16.2.3.6 Data Objects

There are four different types of data objects:
- Buffer terms

Package terms

Literal dataterms

Data macros

16.2.3.6.1 Buffer (Declare Buffer Object)

Buf f er Term := Buffer(
Buf f Si ze /I Not hing |

/I Ter mMAr g=>I nt eger
) {String | ByteList}

Declares aBuffer, of size BuffSze and initial value of Initializer (ByteList).

The optional BuffSze parameter specifies the size of the buffer and the initial valueis specified in
Initializer ByteList. If BuffSize is not specified, it defaults to the size of initializer. If the count istoo small
to hold the value specified by initializer, initializer size is used. For example, all four of the following
examples generate the same data in namespace, although they have different ASL encodings:

Buf f er (10) {“P00. 00A"}

Buf fer (Arg0) {0x50 Ox30 Ox30 Ox2e 0x30 0x30 0x41}

Buf fer (10) {0x50 0x30 0x30 0Ox2e 0x30 0x30 0x41 0x00 0x00 0x00}
Buf fer() {O0x50 0x30 Ox30 0Ox2e 0x30 Ox30 0x41 0x00 Ox00 0x00}

16.2.3.6.2 Package (Declare Package Object)

PackageTer m . = Package(
Nuntl enent s /1 Not hing |
/1 Byt eConst Expr |
/| Ter mMAr g=>I nt eger
) { Packageli st}

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 385

Declares an unnamed aggregation of dataitems, constants, and/or referencesto control methods. The size
of the package isNumElements. PackageL.ist contains the list data items, constants, and/or control method
references used to initialize the package. If NumElementsis absent, it is set to match the number of
elementsin the PackageL ist. If NumElementsis present and greater than the number of elementsin the
Packagel ist, the default entry of type Uninitialized (see ObjectType) is used to initialize the package
elements beyond those initialized from the PackagelL ist. Evaluating an undefined element will yield an
error, but elements can be assigned val ues to make them defined. It is an error for NumElements to be less
than the number of elementsin the PackageL.ist. It is an error for NumElements to exceed 255.

There are two types of package elementsin the PackageL ist: data objects and referencesto control
methods.

Note: If non-method code-package objects are implemented in an ASL compiler, evaluations of these
objects are performed within the scope of the invoking method, and are performed when the containing
definition block isloaded. This meansthat the targets of all stores, loads, and references to the locals,
arguments, or constant terms are in the same name scope as the invoking method.

Example 1. Note

Package () {
3,
9
“ACPl 1.0 COWPLI ANT”,
Package () {
“ CheckSun¥>",
Package () {
7

9
}

H
0
}
Example 2: This example defines and initializes atwo-dimensional array.

Package () {
Package () {11, 12, 13},
Package () {21, 22, 23}
Example 3: This exampleisalegal encoding, but of no apparent use.

Package (){}

Example 4: This encoding allocates space for ten things to be defined | ater (see the Name and | ndexterm
definitions).
Package (10) {}

Note: The ability to create variable-sized packagesis new in ACPI 2.0. ACPI 1.0 only allowed fixed-size
packages with up to 255 elements.

16.2.3.6.3 Literal Data Terms

Literal Datatermsinclude:
Integers
Strings
Constant dataterms

Compag/I ntel/Microsoft/Phoenix/T oshiba

386 Advanced Configuration and Power Interface Specification

16.2.3.6.3.1 Integers

LeadDi gi t Char ='1-'9

Cct al Di gi t Char ='0-'7

HexDi gi t Char =DgitChar | ‘A-‘F | ‘a-‘f’

I nt eger = Decimal Const | Cctal Const | HexConst

Deci mal Const = LeadDi git Char | <Deci nmal Const DigitChar>

Cct al Const = '0 | <Cctal Const Cctal DigitChar>

HexConst = <Ox HexDi gitChar> | <OX HexDi gitChar> | <HexConst
HexDi gi t Char >

Byt eConst = | nt eger =>0x00- Oxf f

Wor dConst = | nt eger =>0x0000- Oxf f f f

DWor dConst = | nt eger =>0x00000000- Oxffffffff

Quor dConst = | nt eger =>0x0000000000000000-Oxffffffffffffffff

Numeric constants can be specified in decimal, octal, or hexadecimal. Octal constants are preceded by a
leading zero (0), and hexadecimal constants are preceded by aleading zero and either alower or upper case
‘X". In some cases, the grammar specifies that the number must evaluate to an integer within alimited
range, such as 0x00—0xFF, and so on.

16.2.3.6.3.2 Strings

String = """ AsciiCharList ‘"’

Asci i CharLi st Not hing | <EscapeSequence Ascii CharlList> | <Ascii Char
Asci i Char Li st>

Asci i Char 0x01- Ox21 | 0x23-0x5B | 0x5D Ox7F

EscapeSeq Si npl eEscapeSeq | Cctal EscapeSeq | HexEscapeSeq

\ N Na | \b | NF | A\n | Nr] NE | AV | W
\ CctalDigit |

\ CctalDigit CctalbDgit |

\ CctalDigit CctalDigit Cctal Digit

Si npl eEscapeSeq
Cct al EscapeSeq

HexEscapeSeq = \x HexDigit |
\ x HexDigit HexDigit
Nul I Char := 0x00

String literals consist of zero or more ASCII characters surrounded by double quotation marks (). A String
may not exceed 200 characters. A string literal represents a sequence of characters that, taken together,
form anull -terminated string. After all adjacent strings in the constant have been concatenated, NullChar is
appended.

Since double quotation marks are used close a string, a special escape sequence (\") is used to allow
guotation marks within strings. Other escape sequences are listed in the table below:

Escape Sequence | ASCII Character
\a 0x07 (BEL)

\b 0x08 (BS)

\f 0x0C (FF)

\n OXO0A (LF)

\r 0x0D (CR)

\t 0x09 (TAB)

\v 0x0B (VT)

\" 0x22 (")

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 387

(continued)

Escape Sequence | ASCII Character
\ 0x27 (')

\\ 0x5C (\)

Since literal strings are read-only constants, the following ASL statement (for example) is not supported:
Store(“ABC’, "DEF")
However, the following sequence of statementsis supported:

Narme(STR, ” DEF")
Store(“ABC’, STR)

16.2.3.6.3.3 Constant Data Terms

Const Term = Zero | One | Ones | Revision

The constant declaration terms are Zero, One, Ones, and Revision.

16.2.3.6.3.3.1 Zero (Constant Zero Object)

The constant Zer o object is an object of type Integer that will always read as all bits clear. Writesto this
object are not allowed.

16.2.3.6.3.3.2 One (Constant One Object)

The constant One object is an object of type Integer that will always read the L SB as set and all other bits
asclear (thatis, thevalueof 1). Writes to this object are not allowed.

16.2.3.6.3.3.3 Ones (Constant Ones Object)

The constant Ones object is an object of type Integer that will alwaysread as all bits set. Writesto this
object are not allowed.

16.2.3.6.3.3.4 Revision (Constant Revision Object)

The constant Revision object is an object of type Integer that will alwaysread asthe revision of the AML
interpreter.

16.2.3.6.4 Data Macros

The data macros are:

EISAID terms

ResourceTemplate terms

Unicode term

16.2.3.6.4.1 EISAID Macro (Convert EISA ID String To Integer)

El SAl DTer m 1= EISA I
El SAI DSt ri ng /1String
) => DWordConst

Converts EISAIDSring, a7-character text string argument, into its corresponding 4-byte numeric EISA ID
encoding. It can be used when declaring I Ds for devices that have EISA IDs.

Compag/I ntel/Microsoft/Phoenix/T oshiba

388 Advanced Configuration and Power Interface Specification

16.2.3.6.4.2 ResourceTemplate Macro (Convert Resource To Buffer)
Resour ceTenpl at eTer m ;= ResourceTenpl ate() {ResourceMacrolList} => Buffer

For afull definition of the ResourceTemplateTerm macro, see section 6.4.1, “ASL Macros for Resource
Descriptors.”

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 389

16.2.3.6.4.3 Unicode Macro (Convert Ascii String To Unicode)

Uni codeTer m ;= Uni code(
ASC | String /1String
) => Buf fer

This macro will convert an ASCII string to a Unicode string contained in a buffer.

16.2.3.7 Miscellaneous Objects

Miscellaneous objects include:
Debug objects
ArgX objects
Loca X objects

16.2.3.7.1 Debug Data Object

DebugTer m : = Debug

The debug data object isavirtual data object. Writes to this object provide debugging information. On at
least debug versions of the interpreter, any writesinto this object are appropriately displayed on the

system’ s native kernel debugger. All writesto the debug object are otherwise benign. If the systemisin use
without akernel debugger, then writes to the debug object are ignored. The following table relates the ASL
term types that can be written to the Debug object to the format of the information on the kernel debugger
display.

Table 16-13 Debug Object Display Formats

ASL Term Type Display Format

Numeric dataobject | All digits displayed in hexadecimal format.

String data object String is displayed.

Object reference Information about the object is displayed (for example, object type and object
name), but the object is not eval uated.

The Debug object isawrite-only object; attempting to read from the debug object is not supported.

16.2.3.7.2 Argx (Method Argument Data Objects)
ArgTerm = Arg0 | Argl | Arg2 | Arg3 | Argd | Args | Argb

Up to 7 argument-object references can be passed to a control method. On entry to a control method, only
the argument objects that are passed are usable.

16.2.3.7.3 Localx (Method Local Data Objects)

Local Term := Local O | Locall | Local2 | Local3 | Local4 | Local5 |
Local 6 | Local 7

Up to 8 local objects can be referenced in a control method. On entry to a control method, these objects are
uninitialized and cannot be used until some value or reference is stored into the object. Onceinitialized,
these objects are preserved in the scope of execution for that control method.

Compag/I ntel/Microsoft/Phoenix/T oshiba

390 Advanced Configuration and Power Interface Specification

16.2.4 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ResourceTemplate macro creates a
Buffer in which resource descriptor macros can be listed. The ResourceTemplate macro automatically
generates an End descriptor and cal culates the checksum for the resource template. The format for the
ResourceTemplate macro is as follows:

Resour ceTenpl at e()

/1 List of resource macros

}

Thefollowing is an example of how these macros can be used to create aresource template that can be
returned from a_PRS control method:

Resour ceTenpl at e()

{
St art Dependent Fn(1, 1)

| R Level , ActivelLow, Shared){10, 11}

DVA(TypeF, Not BusMaster, Transfer16){4}

| O Decodel6, 0x1000, 0x2000, 0, 0x100)

| O Decodel6, 0x5000, 0x6000, 0, 0x100, |QL)

}
St art Dependent Fn(1, 1)

| RQ Level, ActivelLow, Shared){}

DVA(TypeF, Not BusMaster, Transfer16){5}

| O Decodel6, 0x3000, 0x4000, 0, 0x100)

| (Decodel6, 0x5000, O0x6000, O, 0x100, |Q2)

}
EndDependent Fn()
}

Occasionally, it is necessary to change a parameter of a descriptor in an existing resource template. To
facilitate this, the descriptor macros optionally include a name declaration that can be used later to refer to
the descriptor. When a name is declared with a descriptor, the ASL compiler will automatically create field
names under the given nameto refer to individual fieldsin the descriptor.

For example, given the above resource template, the following code changes the minimum and maximum
addresses for the 1/0O descriptor named 102:

St or e(0xA000, 12._MN)
St or e(0xB0O0O, | Q2. _NAX)

The resource template macros for each of the resource descriptors are listed below, after the table that
defines the resource descriptor. The resource template macros are formally defined in section 15,
“Memory.”

Thereserved names (such as_MIN and _MAX) for the fields of each resource descriptor are defined in the
appropriate table entry of the table that defines that resource descriptor.

16.2.4.1 ASL Macro for IRQ Descriptor

The following macro generates a short IRQ descriptor with optional IRQ Information byte:

I RY
Edge | Level, /Il _LL, _HE
ActiveH gh | ActivelLow, /Il _LL, _HE
Shared | Exclusive | Nothing, // _SHR Nothing defaults to Excl usive
NaneString | Nothing /1 A nane to refer back to this resource

{
Byt eConst Expr [, ByteConstExpr ...] // List of IRQ nunbers (valid values: 0-15)
}

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 391

The following macro generates a short |RQ descriptor without optional IRQ Information byte:

| RQNoFI ags(
NaneString | Nothing /1 A nane to refer back to this resource
{ . .
Byt eConst Expr [, ByteConstExpr ...] /1 list of IRQ nunbers (valid values: 0-15)
}

16.2.4.2 ASL Macro for DMA Descriptor

The following macro generates a short DMA descriptor.

DIVA(
Conpatibility | TypeA | TypeB | TypeF, /1 _TYP, DMA channel speed
BusMaster | Not BusMaster, /1 _BM Nothing defaults to BusMaster
Transfer8 | Transferl6 | Transfer8_16 /1 _SlzZ, Transfer size
NaneString | Nothing /1 A nane to refer back to this resource
{
Byt eConst Expr [, ByteConstExpr ...] /1 List of channel nunbers
//(valid values: 0-7)
}

16.2.4.3 ASL Macro for Start-Dependent Function Descriptor
The following macro generates a Start-Dependent Function descriptor with the optional Priority byte:
St ar t Dependent Fn(

Byt eConst Expr, /1 Conpatibility priority (valid values: 0-2)
Byt eConst Expr /1 Performance/ Robustness priority (valid values: 0-2)

)

/1 List of descriptors for this dependent function

}
The following macros generates a Start Dependent Function descriptor without the optional Priority byte:
St ar t Dependent FnNoPr i (

)
{

Descriptors

}
16.2.4.4 ASL Macro for End-Dependent Functions descriptor

The following macro generates an End-Dependent Functions descriptor:

EndDependent Fn(
)

16.2.4.5 ASL Macro for I/O Port Descriptor

The following macro generates a short 1/O descriptor:

e
Decodel6 | DecodelO, /Il _DEC
Wor dConst Expr, /1 _MN, Address m ni num
Wor dConst Expr, /1 _MAX, Address max
Byt eConst Expr, /1 _ALN, Base alignment
Byt eConst Expr /1 _LEN, Range | ength
NaneString | Nothing /1 A nane to refer back to this resource

Compag/I ntel/Microsoft/Phoenix/T oshiba

392 Advanced Configuration and Power Interface Specification

The following macro generates a short Fixed |/O descriptor:

Fi xedl (
Wor dConst Expr, /1 _BAS, Address base
Byt eConst Expr /1 _LEN, Range length
NameString | Nothing /] A name to refer back to this resource

16.2.4.6 ASL Macro for Fixed I/0O Port Descriptor

16.2.4.7 ASL Macro for Short Vendor-Defined Descriptor
The following macro generates a short V endor-Defined descriptor:

Vendor Short (
NaneString | Nothing /1 A nane to refer back to this resource

{
Byt eConst Expr [, ByteConstExpr ...] // List of bytes, up to 7 bytes
}

16.2.4.8 ASL Macro for 24-bit Memory Descriptor

The following macro generates along 24-bit Memory descriptor:

Menor y24(
ReadWite | ReadOnly, /Il _RW
Wr dConst Expr, /1 _MN, M ninumbase nmenory address [23: 8]
Wor dConst Expr, /1 _MAX, Maxi num base menory address [23: 8]
Wor dConst Expr, /1 _ALN, Base alignment
Wr dConst Expr /1 _LEN, Range | ength
NaneString | Nothing /1 A nane to refer back to this resource
)

16.2.4.9 ASL Macro for Long Vendor-Defined Descriptor
The following macro generates a long Vendor-Defined descriptor:

Vendor Long(
NaneString | Nothing /1 A nane to refer back to this resource

{
Byt eConst Expr [, ByteConstExpr ...] /1 List of bytes
}

16.2.4.10 ASL Macro for 32-Bit Memory Descriptor

The following macro generates along 32-bhit Memory descriptor:

Menor y32(
ReadWite | ReadOnly, /1l _RW
DWér dConst Expr, /1 _MN, Mninmmbase nmenory address
DWor dConst Expr , /1 _MAX, Maxi mum base nenory address
DWor dConst Expr , /1 _ALN, Base alignment
DWor dConst Expr /1 _LEN, Range | ength
NaneString | Nothing /1 A nane to refer back to this resource

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 393

16.2.4.11 ASL Macro for 32-bit Fixed Memory Descriptor
The following macro generates along 32-hit Fixed Memory descriptor:

Menor y32Fi xed(

ReadWite | ReadOnly, /Il _RW

DWor dConst Expr , /1 _BAS, Range base

DWor dConst Expr /1 _LEN, Range |ength

NaneString | Nothing /1 A nane to refer back to this resource

16.2.4.12 ASL Macros for QWORD Address Space Descriptor

The following macro generates a QWORD Address descriptor with ResourceType = Memory:

Qnor dMvenor y(
Resour ceConsumer | ResourceProducer | Nothing, // Nothing=>ResourceConsuner
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
M nFi xed | MnNotFi xed | Not hing, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Not hi ng=>MaxNot Fi xed

Cacheabl e | WiteConbining | Prefetchable | NonCacheabl e | Not hing,
/1 _MEM Not hi ng=>NonCacheabl e

ReadWite | ReadOnly, /1 _RW Nothing == ReadWite
Qn\or dConst Expr, /1 _GRA, Address granularity
QMr dConst Expr, /1 _MN, Address range m ni num
Qn\or dConst Expr, /1 _MAX, Address range max
Qnor dConst Expr, /1 _TRA, Translation
Qn\or dConst Expr, /1 _LEN, Address range length
Byt eConst Expr | Not hi ng, /! Resource Source |ndex;

/1 if Nothing, not generated
StringData | Nothi ng /] Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nanme to refer back

/1 to this resource
Addr essRangeMenory | Addr essRangeReserved | AddressRangeACPl | AddressRangeNVS |
Not hi ng, /1 _MIP, Not hi ng=>Addr essRangeMenory
TypeTransl ation | TypeStatic | Nothing, /1 _TTP, Not hi ng=>TypeStatic

The following generates a QWORD Address descriptor with ResourceType = 1/0:

QAORDI
Resour ceConsurer | ResourceProducer | Nothing, // Nothing == ResourceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing => M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Not hing => MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Nothing => PosDecode

g
=
>
«

| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange
/1 _RNG Nothing => EntireRange

QMor dConst Expr, /] _GRA: Address granularity
Qn\or dConst Expr, /1 _MN Address range m ni num
QMor dConst Expr, /] _MAX: Address range max
Qn\or dConst Expr, /1 _TRA: Transl ation
Quor dConst Expr, /1 _LEN Address range |length
Byt eConst Expr | Not hi ng, /1 Resource Source |ndex;

/1 if Nothing, not generated
StringData | Nothing /1 Resource Source;

/1 if Nothing, not generated
NaneString | Nothing /1 A nane to refer back to this

resour ce

TypeTransl ation | TypeStatic | Nothing, /1 _TTP, Not hi ng=>TypeStatic

SparseTransl ation | DenseTranslation | Nothing // _TRS, Nothi ng=>DenseTransl ation
)

Compag/I ntel/Microsoft/Phoenix/T oshiba

394 Advanced Configuration and Power Interface Specification

16.2.4.13 ASL Macros for DWORD Address Space Descriptor

The following macro generates a DWORD Address descriptor with ResourceType = Memory:

DWor dMenor y (

Resour ceConsurer | ResourceProducer | Nothing, // Nothing=>ResourceConsuner
SubDecode | PosDecode | Nothing, /1 _DEC, Not hi ng=>PosDecode
M nFi xed | MnNotFi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _MAF, Not hi ng=>MaxNot Fi xed
Cacheable | WiteConbining | Prefetchable | NonCacheabl e | Nothing,

/1 _MEM Not hi ng=>NonCacheabl e
ReadWite | ReadOnly, /1 _RW Nothing == ReadWite
DWor dConst Expr Expr, /1 _GRA, Address granularity
DWor dConst Expr, /1 _MN, Address range m ni num
DWor dConst Expr, /1 _MAX, Address range max
DWor dConst Expr, /1 _TRA, Translation
DWor dConst Expr , /1 _LEN, Address range length
Byt eConst Expr | Not hi ng, /1 Resource Source |ndex;

/1 if Nothing, not generated
StringData | Nothing /'l Resource Source;

/1 if Nothing, not generated
NaneString | Nothing /1 A name to refer back

/!l to this resource
Addr essRangeMenory | AddressRangeReserved | AddressRangeACPl | AddressRangeNVS |

Not hi ng, /1 _MIP, Not hi ng=>Addr essRangeMenory

TypeTransl ation | TypeStatic | Nothing, /1 _TTP, Not hi ng=>TypeStatic

The following generates a DWORD Address descriptor with ResourceType = 1/0O:

DWor dl (
Resour ceConsurer | Resour ceProducer | Not hi ng,
M nFi xed | M nNot Fi xed | Not hi ng,
MaxFi xed | MaxNot Fi xed | Not hi ng,
SubDecode | PosDecode | Not hing,
| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange |
DWr dConst Expr,
DWor dConst Expr ,
DWr dConst Expr,
DWor dConst Expr ,
DWr dConst Expr,
Byt eConst Expr | Not hi ng,
StringData | Nothing
NameString | Nothing
resour ce
TypeTransl ation | TypeStatic | Nothing,
SparseTransl ation | DenseTranslation | Nothing

)

/1 Not hi ng == Resour ceConsuner
/1 _MF, Nothing => M nNot Fi xed
/1 _MAF, Not hing => MaxNot Fi xed
/1 _DEC, Nothing => PosDecode
Not hi ng,

/1 _RNG Nothing => EntireRange
/1 _GRA: Address granularity

// _MN Address range m ni num
/1 _MAX: Address range max

/1 _TRA: Transl ation

/1 _LEN, Address range length
/] Resource Source |ndex;

/1 if Nothing, not generated

/] Resource Source;

/1 if Nothing, not generated
/] A nane to refer back to this
/1 _TTP, Not hi ng=>TypeStatic

/1 _TRS, Not hi ng=>DenseTransl ati on

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Source Language (ASL) Reference 395

16.2.4.14 ASL Macros for WORD Address Descriptor

The following macro generates a WORD Address descriptor with ResourceType = I/O

WORDI O(
Resour ceConsurer | Resour ceProducer | Not hi ng,
M nF xed | M nNot Fi xed | Not hi ng,
MaxFi xed | MaxNot Fi xed | Not hi ng,

SubDecode | PosDecode | Not hing,
| SAOnl yRanges |
Wor dConst Expr,
Wor dConst Expr,
Wor dConst Expr,
Wor dConst Expr,
Wor dConst Expr,

Byt eConst Expr | Not hi ng,
StringData | Nothing
NaneString | Nothing

TypeTransl ation | TypeStatic | Nothing,
SparseTransl ation | DenseTransl ation |

)

Nonl SAOnl yRanges | Enti reRange,

11
11
11
/1
/1
/1
11
/1
/1
11
/1
/1
/1
/1
/1
/1

Not hi ng=>Resour ceConsuner
_MF, Not hi ng=>M nNot Fi xed
_MAF, Not hi ng=>MaxNot Fi xed
_DEC, Not hi ng=>PosDecode
_RNG

_GRA: Address granularity
M N: Address range m ni mum
MAX: Address range max
_TRA: Transl ation

_LEN, Address range length
Resour ce Source | ndex;

if Nothing, not generated
Resour ce Source;

if Nothing, not generated
A nane to refer back

to this resource

/1 _TTP, Not hi ng=>TypeStatic
/1 _TRS, Not hi ng=>DenseTransl ati on

The following macros generates a WORD Address descriptor with ResourceType = BusNumber:

Wor dBusNunber (
Resour ceConsurer | Resour ceProducer | Not hi ng,
M nFi xed | M nNot Fi xed | Not hi ng,
MaxFi xed | MaxNot Fi xed | Not hi ng,

SubDecode | PosDecode | Not hing,
Wor dConst Expr,
Wor dConst Expr,
Wor dConst Expr,
Wyr dConst Expr,
Wor dConst Expr,

Byt eConst Expr | Not hi ng,
StringData | Nothing
NaneString | Nothing

)

/1
/1
/1
/1
/1
/1
11
/1
11
11
11
/1
11
11
11

Not hi ng=>Resour ceConsuner
M F, Not hi ng=>M nNot Fi xed
MAF, Not hi ng=>MaxNot Fi xed
DEC, Not hi ng=>PosDecode
GRA, Address granularity
M N, Address range m ni num
MAX, Address range max
_TRA: Transl ation

_LEN, Address range |ength
Resour ce Source | ndex;

if Nothing, not generated
Resource Sour ce;

if Nothing, not generated
A name to refer back

to this resource

16.2.4.15 ASL Macro for Extended Interrupt Descriptor

The following macro generates an Extended I nterrupt descriptor:

I nterrupt (

Resour ceConsurer | Resour ceProducer | Not hi ng,

Edge | Level,
ActiveHigh | ActivelLow ,
Shared | Exclusive | Nothing,

Byt eConst Expr | Not hi ng,
StringData | Nothing
NaneString | Nothing

)

{
DWr dConst Expr [, DWbrdConst Expr ...]
nunber s

11
11

Not hi ng=>Resour ceConsuner

HE

n__
SHR: Not hi ng=>Excl usi ve

/1

/1
/1
/1
/1
/1

71

LL

Resour ce Source | ndex;

if Nothing, not generated
Resource Source;

if Nothing, not generated
A nane to refer back

to this resource

/1 _INT, list of interrupt

Compag/I ntel/Microsoft/Phoenix/T oshiba

396 Advanced Configuration and Power Interface Specification

16.2.4.16 ASL Macro for Generic Register Descriptor

The following macro generates a Generic Register descriptor:

Regi st er (
Addr essSpacekKeyword, // _ASI, Address Space |ID
Byt eConst Expr, /1 _RBW Register Bit Wdth
Byt eConst Expr, /1 _RBO, Register Bit Ofset
Qn\or dConst Expr, /1 _ADR Register Address

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 397

17 ACPI Machine Language (AML) Specification

This section formally defines the ACPI Control Method Machine Language (AML) language. AML isthe
ACPI Control Method virtual machine language, machine code for a virtual machine that is supported by
an ACPI -compatible OS. ACPI control methods can be written in AML, but humans ordinarily write
control methodsin ASL.

AML isthe language processed by the ACPI AML interpreter. It is primarily a declarative language. It's
best not to think of it as a stream of code, but rather as a set of declarations that the ACPI AML interpreter
will compileinto the ACPI Namespace at definition block load time. For example, notice that DefByte
allocates an anonymous integer variable with abyte-size initial value in ACPI namespace, and passesin an
initial value. The byte in the AML stream that defines theinitial value isnot the address of the variable’s
storage location.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging. (Debuggers
and other ACPI control method language tools are expected to be AML-level tools, not source-level tools.)
An ASL translator implementer must understand how to read ASL and generate AML. An AML interpreter
author must understand how to execute AML.

AML and ASL aredifferent languages though they are closely related.

All ACPI-compatible operating systems must support AML. A given user can define some arbitrary source
language (to replace ASL) and write atool to translate it to AML. However, the ACPI group will support a
single translator for asingle language, ASL.

17.1 Notation Conventions

The notation conventionsin the table below help the reader to interpret the AML formal grammar.

Table17-1 AML Grammar Notation Conventions

Notation Convention Description Example

Oxdd Refersto abyte 0x21
value expressed as
2 hexadecimal
digits.

Number in bold. Denotesthe
encoding of the
AML term.

Term => Evaluated Type Shows the resulting
type of the
evaluation of Term.

Singlequotes (* ') Indicate constant ‘A’ =>0x41
characters.

Term:=Term Term ... Thetermtotheleft | aterm := bterm cterm means that aterm can be expanded

expanded into the
sequence of terms
on theright.

Term Term Term ... Terms separated
from each other by
spaces form an
ordered list.

Compag/I ntel/Microsoft/Phoenix/T oshiba

of := can be into the two-term sequence of bterm followed by cterm.

398 Advanced Configuration and Power Interface Specification

Table17-1 AML Grammar Notation Conventions (continued)

Notation Convention Description Example
<ab>|<cd> j
Angle brackets (< >) Used to group ab>| <c d>means either
items. aborcd.
Bar symbol (|) Separates aterm := bterm | [cterm dterm]
alternatives. means the following constructs are possible:
bterm
cterm dterm
aterm := [bterm | cterm] dterm
means the following constructs are possible:
bterm dterm
cterm dterm
Dash character (-) Indicates arange. 1-9 means asingle digit in the range 1 to 9 inclusive.
Parenthesized term following | The parenthesized | aterm(3) means aterm aterm aterm.
another term. term is the repeat
count of the bterm(n) means n number of bterms.
previous term.

17.2 AML Grammar Definition
This section defines the byte values that make up an AML byte stream.

AM_Code = Def Bl ockHdr Ter nii st

Def Bl ockHdr = Tabl eSi g Tabl eLen SpecConpl i ance CheckSum Cem D
CenTabl el D CenRev Creator| D Creat or Rev

Tabl eSi g = DWr dQonst
/1 As defined in section 5.2.3.

Tabl eLen : = Dwor dConst
//Length of the table in bytes including the block
/I header .

SpecConpl i ance ;= Byt eConst
/1 The revision of the structure.

CheckSum ;= Byt eConst
/1 Byte checksum of the entire table.

Cenm D : = Byt eConst (6)

//CEM ID of up to 6 characters. If the CEMID is
//shorter than 6 characters, it can be term nated
//with a NULL character.

CenTabl el D : = Byt eConst (8)
//CEM Table ID of up to 8 characters. If the CEM
//Table IDis shorter than 8 characters, it can be
//termnated with a NULL character.

CenRev ;= DwWor dConst
/1 OEM Tabl e Revi si on.
Creatorl D ;= DwWor dConst

//Vendor |ID of the ASL assenbl er. For exanpl e,
//the Mcrosoft provided assenbl er has a vendor
/11D “NMSFT.”

O eat or Rev : = DWor dConst
/1 Revision of the ASL assenbl er.

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 399

The AML encoding can be categorized in the following groups:
- Name objects encoding

Data objects encoding

Package length encoding

Term objects encoding

Miscel laneous objects encoding

17.2.1 Name Objects Encoding

LeadNaneChar ='A-'Zz |
Di gi t Char ='0-'9
NaneChar = DigitChar | LeadNanmeChar
Root Char =\’
Par ent Pr ef i xChar =N
‘A - Z = 0x41- Ox5a
c = Ox5f
‘0 -ty = 0x30- 0x39
\ = 0x5c
CA = 0Oxb5e
NanmeSeg = <LeadNaneChar NaneChar NanmeChar NaneChar >
/1 Notice that NaneSegs shorter than 4 characters are
/] filled with trailing *_’s.
NaneString = <Root Char NanePat h> | <PrefixPath NanePat h>
PrefixPath = Nothing | <7~ PrefixPath>
NanePat h = NanmeSeg | Dual NanePath | Milti NamePat h
Dual NarmePat h = Dual NanmePrefi x NameSeg NameSeg
Dual NarePr ef i x = Ox2e
Mul t i NanePat h = Mul ti NamePrefix SegCount NameSeg(SegCount)
Mul ti NanePrefi x = Ox2f
SegCount = ByteData
/1 SegCount can be from1l to 255.
/1 Ml ti NamePrefix(35) => 0x2f 0x23
/1 and follow ng by 35 NaneSegs.
/1 So, the total encoding |ength
/1 will be 1 + 1 + 35%4 = 142,
/1 Notice that:
/1 Dual NanePrefi x NanmeSeg NanmeSeg
/1 has a snaller encoding than the
/1 equival ent encoding of:
/1 Mul ti NanePrefix(2) NaneSeg NanmeSeg
Si mpl eNane = NanmeString | ArgChj | Local bj
Super Name = Sinpl eNane | DebugChj | Type6Opcode
Tar get = SuperNane | Nul | Narre

Compag/I ntel/Microsoft/Phoenix/T oshiba

400 Advanced Configuration and Power |nterface Specification

17.2.2 Data Objects Encoding

Conput at i onal Dat a

Dat athj ect
Dat aRef Cbj ect

Byt eConst
Byt ePrefi x
Wor dConst
Wor dPrefi x
DwWor dConst
DWor dPr ef i x
Qnor dConst
Qnor dPrefi x
String
StringPrefix
Const bj

Byt eLi st

Byt eDat a
Wor dDat a

DWor dDat a
QM\or dDat a

Asci i Char Li st
Asci i Char

Nul | Char

Zer oQp

e

nes

Revi si onOp
Ext QpPrefi x

Byt eConst | WordConst | DwordConst | QaordConst | String

| ConstCbj | RevisionQp | DefBuffer
Conput ati onal Data | Def Package | Def Var Package
Dat aCbj ect | Cbj ect Reference | DDBHandl e

Byt ePrefi x ByteData

Ox0a

VWor dPrefix WrdDat a

0x0b

DWor dPrefi x DWr dDat a

0x0c

Qor dPrefi x QAordDat a

0x0e

StringPrefix AsciiCharList Null Char
0x0d

ZeroQp | Onep | OnesOp

Not hing | <ByteData ByteList>
0x00- Oxf f

Byt eDat a[0: 7] Byt eDat a[8: 15]
/] 0x0000- Oxf f f

= WordDat a[0: 15] Wor dDat a[16: 31]

/1 0x00000000-Oxffffffff

Dwor dDat a[0: 31] Dwor dDat a[32: 63]

/1 0x0000000000000000-Oxffffffffffffffff
Not hi ng | <Ascii Char Ascii CharlList>
0x01- Ox7f

0x00

0x00

0x01

Oxf f

Ext OpPrefix 0x30

0x5b

17.2.3 Package Length Encoding

PkgLengt h

PkgLeadByt e

PkgLeadByte |

<PkgLeadByt e ByteData> |

<PkgLeadByt e ByteData ByteData> |

<PkgLeadByt e ByteData Byt eData Byt eDat a>

<bit 7-6: foll ow ByteData count>

<bit 5-4: reserved>

<bit 3-0: least significant package |ength byte>

/1 Note: The high 2 bits of the first byte reveal how
/1 many follow bytes are in the PkgLength. If the
/1 PkgLength has only one byte, bit 0 through 5 are
/1 used to encode the package length (in other words,
val ues

/ 0-63). If the package length value is nore than
/ 63, nore than one byte nust be used for the

/' encoding in which case bit 5 and 4 of the

| PkgLeadByte are reserved and nust be zero. If

/ multiple bytes encoding i s used, bits 3-0 of the
|/ PkgLeadByte becone the |east significant 4 bits
|/ of the resulting package | ength val ue. The next
/| ByteData will becone the next |east significant
/ 8 bits of the resulting value and so on.

~ e e~ e~~~ ——

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 401

17.2.4 Term Objects Encoding

Ter nbj ;= NaneSpaceMdifierQj | NanedQbj | TypelOpcode |
Type2Qpcode

Ter i st = Nothing | <Ternmlbj TernlList>

Ter mAr g = Type2(pcode | DataChject | Arglhj | Local Oyj

User Ter nbj = NaneString TernArgLi st

Ter mAr gli st = Nothing | <TermArg Ter mArgLi st>

bj ect Li st = Nothing | <Cbject (bjectlList>

bj ect = NameSpaceModi fierChj | NamedObj

17.2.4.1 Namespace Modifier Objects Encoding

NaneSpaceModi fi er Cbj

Def Alias | Def Nane | Def Scope

Def Al'i as = AliasOp NarmeString NaneString

Ali asOp = 0x06

Def Nane = NaneQp NaneString Dat aRef Obj ect
NaneCp = 0x08

Def Scope = Scope PkglLength NameString Ternii st
ScopeOp = 0x10

17.2.4.2 Named Objects Encoding

NarredCbj

Def BankField | DefCreateBitField | Def CreateByteField |
Def reateDWrdFiel d | DefCreateField |

Def OreateQMrdField | Def CreateWrdField |

Def Dat aRegi on | DefDevice | DefEvent | DefField |

Def | ndexFi el d | Def Method | Def Mutex | Def QpRegion |
Def Power Res | Def Processor | Def Ther nal Zone

Def BankFi el d BankFi el dOp PkgLength NameString NaneString BankVal ue
Fi el dFl ags Fi el dLi st

Ext OpPrefix 0x87

Ter mAr g=>I nt eger

Byt eDat a

/1 bit 0-3: AccessType

/1 0: AnyAcc

1/ . ByteAcc

/1 Wor dAcc

11 DWr dAcc

1
3:

/1 4. QMrdAcc
6

BankFi el dOp
BankVal ue
Fi el dFl ags

2
/1 5: BufferAcc
11 © Reserved
/1 7-15: Reserved
/1 bit 4: LockRule
/1 0: NoLock
/1 1. Lock
/1 bit 5-6: UpdateRule
11 0: Preserve
/1 1: WiteAsOnes
/1 2. WiteAsZeros
/1 bit 7: reserved (nust be 0)
Not hi ng | <Fi el dEl enent Fi el dLi st >
NarmedFi el d | ReservedField | AccessField
NaneSeg PkgLengt h
0x00 PkgLength
0x01 AccessType AccessAttrib
Byt eDat a
/] Sanme as AccessType bits of FieldFl ags

Fi el dLi st

Fi el dEl enent
NanedFi el d
Reser vedFi el d
AccessFi el d
AccessType

Compag/I ntel/Microsoft/Phoenix/T oshiba

402 Advanced Configuration and Power Interface Specification

AccessAttrib Byt eDat a

/1 1f AccessType is BufferAcc for the SMB (OpRegi on,
/1 AccessAttrib can be one of the foll ow ng val ues:
/1 0x02 — SMBQui ck

I 0x04 — SMBSendRecei ve

/1 0x06 — SMBByte

11 0x08 — SMBWord

I Ox0a — SMBBI ock

I 0x0c - SMBProcessCal |

Def CreateBitField
CreateBitFi el dOp
Sour ceBuf f

Bi t | ndex

CreateBitFiel dOp SourceBuff Bitlndex NameString
0x8d

Ter mAr g=>Buf f er

Ter mAr g=>I nt eger

Def Or eat eByt eFi el d
Cr eat eByt eFi el dOp
Byt el ndex

Creat eByt eFi el dOp Sour ceBuff Bytel ndex NameString
0x8c
Ter mAr g=>I nt eger

Def Cr eat eDWrdFi el d
O eat eDWr dFi el dOp

Cr eat eDWr dFi el dOp SourceBuff Bytel ndex NaneString
Ox8a

Def CreateField
Creat eFi el dOp
NunBi t s

OreateFi el dOp SourceBuff Bitlndex NunBits NameString
Ext OpPrefix 0x13
Ter mAr g=>I nt eger

Def CreateQnordFiel d
Creat eQMNor dFi el dOp

Or eat eQMr dFi el dOp Sour ceBuf f Byt el ndex NaneString
0x8f

Def Cr eat eWor dFi el d
Creat eWor dFi el dOp

Creat eWor dFi el dOp Sour ceBuff Bytel ndex NameString
0x8b

Def Dat aRegi on Dat aRegi onCp NaneString TermArg TernmArg TernArg

Dat aRegi onOp ExCpPrefi x 0x88
Def Devi ce = Devi ceOp PkgLength NaneString oj ectlLi st
Devi ceQp = Ext OPrefix 0x82
Def Event = Event O NaneString
Event Op = Ext OpPrefix 0x02
Def Fiel d = FieldO PkgLength NameString Fiel dFl ags Fi el dLi st
Fi el dOp = Ext OpPrefix 0x81
Def | ndexFi el d = | ndexFi el dOp PkgLength NameString NameString Fi el dFl ags
Fi el dLi st
I ndexFi el dOp i = Ext QoPrefix 0x86
Def Met hod = Met hodQp PkgLength NameString Met hodFl ags Ternii st
Met hodQp = 0x14
Met hodFl ags = ByteData
// bit 0-2: ArgCount (0-7)
/1 bit 3: SerializeFlag
I 0: NotSerialized
I 1. Serialized
/1 bit 4-7: SyncLevel (0x00-0x0f)
Def Mut ex = MutexQp NaneString SyncFl ags
Mut exOp = Ext OpPrefix 0x01
SyncFl ags = ByteData

/1 bit 0-3: SyncLevel (0x00-0xO0f)
/1 bit 4-7: reserved (nust be 0)

Compag/I ntel/Microsoft/Phoenix/Toshiba

Def OpRegi on
pRegi onM
Regi onSpace

Regi onOX f set
Regi onLen

Def Power Res

Power Resp
Syst enLevel
Resour ceOr der

Def Pr ocessor

Processor Op
Procl D

Pbl kAddr

Pbl kLen

Def Ther mal Zone
Ther mal ZoneQp

ACPI Machine Language (AML) Specification 403

pRegi onp NaneString Regi onSpace Regi onOf f set Regi onLen
Ext CpPrefix 0x80

Byt eDat a

/1 0x00: SystenMenory

/] 0x01: System O

/1 0x02: PCl_Config

/] 0x03: EnbeddedControl

/1 0x04: SMBus

/1 0x05: CMXS

/1 0x06: Pci Bar Tar get

/] 0x80- 0xff: user defined
Ter mAr g=>I nt eger

Ter mAr g=>I nt eger

Power ResOp PkgLength NaneString Systenievel
Resour ceOrder nj ect Li st

Ext OpPrefi x 0x84

Byt eDat a

Wor dDat a

Processor Op PkgLength NaneString Procl D Pbl kAddr Pbl kLen
bj ect Li st

Ext OpPrefi x 0x83

Byt eDat a

Dwor dDat a

Byt eDat a

Ther mal ZoneQp PkglLength NanmeString ObjectLi st
Ext OpPrefi x 0x85

17.2.4.3 Type 1 Opcodes Encoding

TypelQpcode

Def Br eak
Br eakOp

Def Br eakPoi nt
Br eakPoi nt Op

Def Cont i nue
Conti nueQ

Def El se
El se

Def Fat al
Fat al Op
Fat al Type
Fat al Code
Fatal Arg

Def I f El se
I fOp

Predi cate

Def Load
LoadOp
DDBHandl e(hj ect

Def Noop
NoopQp

Def Noti fy
Not i f yOp
Not i f yQnj ect
Not i f yVal ue

Def Break | DefBreakPoint | DefContinue | DefFatal |

Def IfEl se | DefLoad | Def Noop | DefNotify | DefRel ease |
Def Reset | DefReturn | DefSignal | DefSleep | DefStall |
Def Unl oad | Def Wil e

Br eakOp
Oxab5

Br eakPoi nt Op
Oxcc

Cont i nueQp
Oxof

Not hi ng | <El seC® PkgLength Ternli st>
Oxal

Fatal Op Fatal Type Fatal Code Fatal Arg
Ext QpPrefix 0x32

Byt eDat a

Dwor dDat a

Ter mAr g=>I nt eger

1 fOp PkgLength Predicate TernLi st DefEl se
Oxa0
Ter mAr g=>I nt eger

LoadOp NarmeString DDBHandl eChj ect
Ext QpPrefix 0x20
Super Nane

NoopQp
Oxa3

NotifyOp NotifyQbject NotifyVal ue

0x86

Super Name=>Ther mal Zone| Pr ocessor | Devi ce
Ter mAr g=>I nt eger

Compag/I ntel/Microsoft/Phoenix/T oshiba

404 Advanced Configuration and Power |nterface Specification

Def Rel ease
Rel easeOp
Mut exChbj ect

Def Reset
Reset Op
Event (bj ect

Def Ret urn
Ret ur nGp
Ar goj ect
Def Si gnal
Si gnal Op

Def Sl eep

Sl eepOp
MsecTi ne

Def Stal |
Stal |l Op
UsecTi ne

Def Unl oad
Unl oadOp

Def Wi | e
Vhi | ep

Rel easeQp Mt exObj ect
Ext QpPrefix 0x27

Super Nane

Reset Op Event Obj ect
Ext QpPrefix 0x26

Super Nane

Ret urnQp Argbj ect

Oxa4

Ter mAr g=>Dat aRef (bj ect
Si gnal O Event Obj ect
Ext OpPrefi x 0x24

Sl eepOp MsecTi ne
Ext QpPrefix 0x22
Ter mAr g=>I nt eger

Stall O UsecTine
Ext QpPrefix 0x21
Ter mAr g=>Byt eDat a

Unl oadCp DDBHandl ehj ect
Ext QpPrefi x 0x2a

Whi | eQp PkgLength Predi cate TernLi st

Oxa2

17.2.4.4 Type 2 Opcodes Encoding

Type2QCpcode

Type6Opcode

Def Acquire
Acqui reQ
Ti meout

Def Add
AddOp
Oper and

Def And
And

Def Buf f
Buf f Op

Def Buf f er
Buf f er Op
Buf f er Si ze
Def Concat
Concat Op
Dat a

Def Acquire | DefAdd | DefAnd | DefBuff | DefBuffer |

Def Concat | Def ConcatRes | Def CondRef O | Def Copy |

Def DecStr | DefDecrenent | DefDereff | DefDivide |

Def Fi ndSet LeftBit | DefFindSetRi ghtBit | Def FronBCD |
Def HexStr | Deflncrement | Deflndex | Deflnt | DefLAnd |
Def LEqual | DefLGreater | DefLG eaterEqual | DeflLess |
Def LLessEqual | DefMd | DefLNot | DefLNotEqual |

Def LoadTabl e | Def LOr | DefMatch | DefMod | DefMultiply
| DefNAnd | Def NOr | DefNot | Def QbjectType | DefOr |
Def Package | Def VarPackage | Def Ref Of | DefShiftLeft |
Def ShiftRight | DefSizeO | DefStore | DefString |

Def Subtract | Def ToBCD | DefWait | Def XOr | User Ter nObj
Def Ref O | DefDeref 0 | Deflndex | User Ter mbj

Acqui reQp Mit exCoj ect Ti neout
Ext OpPrefix 0x23

Wr dDat a

AddQp Operand Qperand Tar get

0x72

Ter mAr g=>I nt eger

AndQp Operand Qperand Tar get

0x7b

Buf f Op Operand Tar get

0x96

Buf f er O PkglLength BufferSi ze Byteli st

0x11

Ter mAr g=>I nt eger
Concat Op Data Data Tar get

0x73

Ter mAr g=>Conput at i onal Dat a

Compag/I ntel/Microsoft/Phoenix/Toshiba

Def Concat Res
Concat ResQp
Buf Dat a

Def CondRef OF
CondRef O O

Def Copy
Copy Op

Def DecStr
DecStr O

Def Decr enent
Decr ement Op

Def Der ef Of
Der ef O Op
Obj Ref erence

Def Di vi de
D vi deQp
Di vi dend
Di vi sor
Remai nder
Quoti ent

Def Fi ndSet Left Bi t
Fi ndSet Left Bi t Op

Def Fi ndSet Ri ght Bi t

Fi ndSet R ght Bi t Op

Def Fr onBCD

Fr onBCDOp
BCDVal ue

Def HexSt r
HexSt r Op

Def | ncr enent
I ncrenment O

Def | ndex

I ndexQp

Buf f PkgSt r Qbj
| ndexVal ue

Def | nt
Int O

Def LAnd
LandQp

Def LEqual
Lequal Op

Def LGreat er
Lgreater Op

Def LG eat er Equal
Lgr eat er Equal Op

Def LLess
LI essOp

Def LLessEqual
LI essEqual Op

ACPI Machine Language (AML) Specification 405

Concat ResQp Buf Dat a Buf Data Tar get
0x84
Ter mAr g=>Buf f er

CondRef O Op Super Nane Tar get
Ext QpPrefix 0x12

CopyQp TermArg Sinpl eNanme
0x9d

DecStrp Qperand Tar get
0x97

Decrenment Op Super Nane
0x76

Deref O Qo (bj Ref erence

0x83

Ter mAr g=>Cbj ect Ref erence| String

/| Qbj ect Reference is an object produced by terns
//such as Index, RefO or CondRefCf.

Di vi deOp Dividend Divisor Remainder Quotient
0x78

Ter mAr g=>I nt eger

Ter mAr g=>I nt eger

Tar get

Tar get

Fi ndSet Left Bit Op Qperand Tar get
0x81

Fi ndSet R ght Bi t Op Oper and Tar get
0x82

FronBCDOp BCDVal ue Tar get
Ext OpPrefix 0x28
Ter mAr g=>I nt eger

HexStrQp Operand Tar get
0x98

I ncrement Op Super Nane
0x75

I ndexQp Buf f PkgStr Qbj | ndexVal ue Tar get
0x88

Ter mAr g=>Buf fer, Package or String

Ter mAr g=>I nt eger

I nt Op Qperand Tar get
0x99

Land®p Operand Operand
0x90

Lequal Op Operand Oper and
0x93

Lgreater o Operand QOperand
0x94

Lgr eat er Equal Qo Qper and Oper and
Lnot Op Ll essOp

LI essOp Operand Oper and
0x95

LI essEqual Op Operand QOperand
Lnot Op Lgreater

Compag/I ntel/Microsoft/Phoenix/T oshiba

406 Advanced Configuration and Power Interface Specification

Var NunEl enent s
PackageEl enent Li st
PackageE!l enent

Ter mAr g=>I nt eger
Not hi ng | <PackageEl enent PackageEl enent Li st>
Dat aRef Obj ect | NaneString

Def LNot = Lnot Op QOper and
Lnot Qo = 0x92
Def LNot Equal = Lnot Equal Op Operand QOper and
Lnot Equal Op = Lnot O Lequal Op
Def LOr = LorQp Qperand Operand
Lor Op = 0x91
Def Mat ch = Mat chQp SearchPkg Mat chGpcode Operand Mat chQpcode
(perand Start | ndex
Mat chOp = 0x89
Sear chPkg = Ter mAr g=>Package
Mat chQpcode = ByteData
/] 0: MIR
/1 1: MEQ
/1 2: ME
/1 3: MT
/1 4: ME
/1 5: MGT
Start| ndex = Ter mAr g=>I nt eger
Def M d = MdOp MdOj TermArg TermArg Tar get
M dOp = Ox9E
M dpj = TermArg=>Buffer| String
Def Mod = ModOp Dividend Divisor Target
ModOp = 0x85
Def MUl tiply = MultiplyOp Operand Operand Tar get
Ml ti pl yOp = 0x77
Def NAnd = NandQ Operand Operand Tar get
NandQp = 0x7c
Def NOr = Nor Op Qperand Operand Tar get
Nor Qp = Ox7e
Def Not = Not Op Operand Tar get
Not Op = 0x80
Def Cbj ect Type = (bj ect TypeQp Super Nane
Obj ect TypeOp = 0x8e
Def Or = O Operand Qperand Target
O Op = 0x7d
Def Package = PackageQp PkgLength NunEtl enents PackageEl enent Li st
Def Var Package = Var PackageOp PkgLength Var NunEl enents PackageEl enent Li st
PackageOp = 0x12
Var PackageOp = 0x13
Nuntl enent s = ByteData

Def Ref Of
Ref OfF Op

Ref O Qo Super Nane
Ox71

Def ShiftLeft ShiftLeft O Operand ShiftCount Target

ShiftLeft o = 0x79

Shi f t Count = Ter mAr g=>| nt eger

Def Shi ft Ri ght = ShiftR ght Qo Qperand ShiftCount Target
Shi ft Ri ght Op = Ox7a

Def Si zeOF = SizeO O Super Nane

Si zeO' Op = 0x87

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 407

Def Store = Store TermArg Super Name
StoreQp = 0x70

Def String = StringQp TermArg Lengt hArg Target
Lengt hArg = Ter mAr g=>I nt eger

StringQp = 0x9c

Def Subt r act = Subtract Op Operand Operand Tar get
Subt ract Op = O0x74

Def ToBCD = ToBCDOp (perand Tar get

ToBCDOp = Ext Prefix 0x29

Def Wi t = Wai t Op Event Cbj ect Operand

Wait Qo = Ext OpPrefix 0x25

Def XOr = Xor Q@ Qperand Operand Tar get

Xor Op = Ox7f

17.2.5 Miscellaneous Objects Encoding
Miscellaneous objects include:

Arg objects

Local objects

Debug objects

17.2.5.1 Arg Objects Encoding

Ar gQoj = A;\rgo(%ol Agl® | Arg2d | Arg3Q | Argad | ArgsQ |
g

Arg0Qp = 0x68

Arglop = 0x69

Arg2(= Ox6a

Arg3p = 0x6b

ArgdQp = 0x6¢c

Arg5Qp = 0Ox6d

Arg6Qp = Ox6e

17.2.5.2 Local Objects Encoding

Local (bj = Local 0Op | Local 10p | Local 20p | Local 30p | Local 40p |
Local 5Op | Local 6Qp | Local 7Op
Local 0Op = 0x60
Local 1&p = 0x61
Local 20p = 0x62
Local 30p = 0x63
Local 40p = 0x64
Local 50p = 0x65
Local 60p = 0x66
Local 70p = 0x67

17.2.5.3 Debug Objects Encoding

DebugQbj
DebugQOp

DebugOp
Ext OpPrefix 0x31

17.3 AML Byte Stream Byte Values

Thefollowing table lists all the byte values that can be found in an AML byte stream and the meaning of
each byte value. Thistableisuseful for debugging AML code.

Compag/I ntel/Microsoft/Phoenix/T oshiba

408 Advanced Configuration and Power |nterface Specification

Tablel17-2 AML Byte Stream Byte Values

Encoding Encoding Name Encoding Fixed List Arguments Variable List
Value Group Arguments
0x00 ZeroOp Data — —
Object
0x01 OneOp Data — —
Object
0x02-0x05 | — — — —
0x06 AliasOp Term NameString NameString —
Object
0x07 — — — —
0x08 NameOp Term NameString —
Object DataRefObject
0x09 — — — —
Ox0A BytePrefix Data ByteData —
Object
0x0B WordPrefix Data WordData —
Object
0x0C DWordPrefix Data DWordData —
Object
0x0D StringPrefix Data AsciiCharList NullChar —
Object
OxO0E QWordPrefix Data QWordData —
Object
OxOF — — — —
0x10 ScopeOp Term NameString TermList
Object
Ox11 BufferOp Term TermArg ByteList
Object
0x12 PackageOp Term ByteData PackageTermList
Object
0x13 VarPackageOp TermObjec | TermArg PackageTermList
t
0x14 MethodOp Term NameString ByteData TermList
Object
0x15-0x2D | — — — —
Ox2E (*.") DualNamePrefix Name NameSeg NameSeg —
Object
Ox2F (‘/") MultiNamePrefix Name ByteData NameSeg(N) —
Object
0x30-0x40 | — — — —

Compag/I ntel/Microsoft/Phoenix/Toshiba

Table17-2 AML Byte Stream Byte Values (continued)

ACPI Machine Language (AML) Specification 409

Encoding Encoding Name Encoding Fixed List Arguments Variable List

Value Group Arguments

0x41-0x5A | NameChar Name — —

(‘A’-'Z7) Object

0x5B (‘[’) ExtOpPrefix — ByteData —

0x5B 0x01 | MutexOp Term NameString ByteData —
Object

0x5B 0x02 | EventOp Term NameString —
Object

0x5B 0x12 | CondRefOfOp Term SuperName SuperName —
Object

0x5B 0x13 | CreateFieldOp Term TermArg TermArg —
Object TermArg NameString

0x5B Ox1F | LoadTableOp Term TermArg TermArg —
Object TermArg TermArg

TermArg TermARg
NameString

0x5B 0x20 | LoadOp Term NameString SuperName —
Object

0x5B 0x21 | StallOp Term TermArg —
Object

0x5B 0x22 | SleepOp Term TermArg —
Object

0x5B 0x23 | AcquireOp Term SuperName WordData —
Object

0x5B 0x24 | SignalOp Term SuperName —
Object

0x5B 0x25 | WaitOp Term SuperName TermArg —
Object

0x5B 0x26 | ResetOp Term SuperName —
Object

0x5B 0x27 | ReleaseOp Term SuperName —
Object

0x5B 0x28 | FromBCDOp Term TermArg Target —
Object

0x5B 0x29 | ToBCD Term TermArg Target —
Object

O0x5B 0x2A | UnloadOp Term SuperName —
Object

0x5B 0x30 | RevisionOp Data — —
Object

Compag/I ntel/Microsoft/Phoenix/T oshiba

410 Advanced Configuration and Power Interface Specification

Table17-2 AML Byte Stream Byte Values (continued)

Encoding Encoding Name Encoding Fixed List Arguments Variable List
Value Group Arguments
0x5B 0x31 | DebugOp Debug — —
Object
Ox5B 0x32 | FatalOp Term ByteData DWordData —
Object TermArg
0x5B 0x80 | OpRegionOp Term NameString ByteData —
Object TermArg TermArg
0x5B 0x81 | FieldOp Term NameString ByteData FieldList
Object
0x5B 0x82 | DeviceOp Term NameString ObjectList
Object
0x5B 0x83 | ProcessorOp Term NameString ByteData ObjectList
Object DWordData ByteData
0x5B 0x84 | PowerResOp Term NameString ByteData ObjectList
Object WordData
0x5B 0x85 | ThermalZoneOp Term NameString ObjectList
Object
0x5B 0x86 | IndexFieldOp Term NameString NameString FieldList
Object ByteData
0x5B 0x87 | BankFieldOp Term NameString NameString FieldList
Object TermArg ByteData
0x5B 0x88 | DataRegionOp Term NameString TermArg —
Object TermArg TermArg
Ox5C (‘) RootChar Name — —
Object
0x5D — — — —
Ox5E (‘™) ParentPrefixChar Name — —
Object
Ox5F(* ") NameChar— Name — —
Object
0x60 (‘™) Local00p Local — —
Object
ox61(‘a) Local10p Local — —
Object
0x62 (‘b) Local20p Local — —
Object
0x63(‘'c’) Loca30p Local — —
Object
Ox64 (‘d") Local40p Local — —
Object

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 411

Table17-2 AML Byte Stream Byte Values (continued)

Encoding Encoding Name Encoding Fixed List Arguments Variable List

Value Group Arguments

0x65 (‘e’) Local50p Local — —
Object

0x66 (‘f") Local60p Local — —
Object

0x67(‘g’) Local 70p Loca — —
Object

0x68 (‘h’) Arg0Op Arg Object | — —

0x69 (‘i") ArglOp Arg Object | — —

Ox6A (‘j’) Arg20p Arg Object | — —

0x6B (‘k’) | Arg30p Arg Object | — —

0x6C (‘1) ArgdOp Arg Object | — —

0x6D (‘m’) | Arg50p Arg Object | — —

Ox6E (‘n’) | Arg6Op Arg Object | — —

Ox6F — — — —

0x70 StoreOp Term TermArg SuperName —
Object

0x71 RefOfOp Term SuperName —
Object

0x72 AddOp Term TermArg TermArg Target | —
Object

0x73 ConcatOp Term TermArg TermArg Target | —
Object

0x74 SubtractOp Term TermArg TermArg Target | —
Object

0x75 IncrementOp Term SuperName —
Object

0x76 DecrementOp Term SuperName —
Object

ox77 MultiplyOp Term TermArg TermArg Target | —
Object

0x78 DivideOp Term TermArg TermArg Target | —
Object Target

0x79 ShiftLeftOp Term TermArg TermArg Target | —
Object

Ox7A ShiftRightOp Term TermArg TermArg Target | —
Object

0x7B AndOp Term TermArg TermArg Target | —
Object

Compag/I ntel/Microsoft/Phoenix/T oshiba

412 Advanced Configuration and Power Interface Specification

Table17-2 AML Byte Stream Byte Values (continued)

Encoding Encoding Name Encoding Fixed List Arguments Variable List

Value Group Arguments

0x7C NandOp Term TermArg TermArg Target | —
Object

0x7D OrOp Term TermArg TermArg Target | —
Object

OX7E NorOp Term TermArg TermArg Target | —
Object

OX7F XorOp Term TermArg TermArg Target | —
Object

0x80 NotOp Term TermArg Target —
Object

0x81 FindSetL eftBitOp Term TermArg Target —
Object

0x82 FindSetRightBitOp Term TermArg Target —
Object

0x83 DerefOfOp Term TermArg —
Object

0x84 ConcatResOp Term TermArg TermArg Target | —
Object

0x85 ModOp Term TermArg TermArg Target | —
Object

0x86 NotifyOp Term SuperName TermArg —
Object

0x87 SizeOfOp Term SuperName —
Object

0x88 IndexOp Term TermArg TermArg Target | —
Object

0x89 MatchOp Term TermArg ByteData —
Object TermArg ByteData

TermArg TermArg

Ox8A CreateDWordFieldOp Term TermArg TermArg —
Object NameString

0x8B CreateWordFieldOp Term TermArg TermArg —
Object NameString

0x8C CreateByteFieldOp Term TermArg TermArg —
Object NameString

0x8D CreateBitFieldOp Term TermArg TermArg —
Object NameString

O0x8E ObjectTypeOp Term SuperName —
Object

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 413

Table17-2 AML Byte Stream Byte Values (continued)

Encoding Encoding Name Encoding Fixed List Arguments Variable List

Value Group Arguments

Ox8F CreateQWordField Term TermArg TermArg —
Object NameString

0x90 LandOp Term TermArg TermArg —
Object

0x91 LorOp Term TermArg TermArg —
Object

0x92 LnotOp Term TermArg —
Object

0x92 0x93 | LNotEqualOp Term TermArg TermArg —
Object

0x92 0x94 | LLessEqualOp Term TermArg TermArg —
Object

0x95 0x92 | LGreaterEqualOp Term TermArg TermArg —
Object

0x93 LEqualOp Term TermArg TermArg —
Object

0x94 L GreaterOp Term TermArg TermArg —
Object

0x95 LLessOp Term TermArg TermArg —
Object

0x96 BuffOp Term TermArg Target —
Object

0x97 DecStrOp Term TermArg Target —
Object

0x98 HexStrOp Term TermArg Target —
Object

0x99 IntOp Term TermArg Target —
Object

Ox9A-0x9B | — — — —

0x9C StringOp Term TermArg TermArg Target | —
Object

0x9D CopyOp Term TermArg SimpleName —
Object

Ox9E MidOp Term TermArg TermArg —
Object TermArg Target

Ox9F ContinueOp Term — —
Object

O0xAO IfOp Term TermArg TermList
Object

Compag/I ntel/Microsoft/Phoenix/T oshiba

414 Advanced Configuration and Power Interface Specification

Table17-2 AML Byte Stream Byte Values (continued)

Encoding Encoding Name Encoding Fixed List Arguments Variable List
Value Group Arguments
OxA1l ElseOp Term — TermList
Object
OxA2 WhileOp Term TermArg TermList
Object
OxA3 NoopOp Term — —
Object
OxA4 ReturnOp Term TermArg —
Object
OxA5 BreakOp Term — —
Object
OXA6 — — — —
0xCB
0xCC BreakPointOp Term — —
Object
OxCD- — — — —
OXFE
OxFF OnesOp Data — —
Object

17.4 AML Encoding of Names in the Namespace
Assume the following namespace exists:

\
SO
MEM
SET
CGET

Compag/I ntel/Microsoft/Phoenix/Toshiba

ACPI Machine Language (AML) Specification 415

Assume further that a definition block isloaded that creates anode \S0.CPU.SET, and loads a block using
it asaroot. A ssume the loaded block contains the following names:

STP1

NGET

/\/\PO o

AAPCI 0. SBS

\ 2

\ S2. 1 SA. COML

/\/\/\83

AAAS2 . VEM

AANS2 MEM SET

Scope(\ SO. CPU. SET. STP1) {
XYZ
AABC
AABC. DEF

Thiswill be encoded in AML as:

' STPY

Par ent Prefi xChar ' GET_'

Par ent Prefi xChar Parent PrefixChar ' PCl 0

Par ent Prefi xChar Parent PrefixChar Dual NamePrefix 'PCI 0" 'SBS '

Root Char 'S2__°'

Root Char Multi NanePrefix 3 'S2_ " 'ISA ' 'COW'

Par ent Pref i xChar Parent PrefixChar ParentPrefixChar 'S3_ '

Par ent Prefi xChar Parent Prefi xChar ParentPrefixChar Dual NanePrefix 'S2_ " ' MEM'
Par ent Prefi xChar Parent Prefi xChar ParentPrefixChar Multi NanePrefix 3 'S2_ ' 'MEM'
" SET

After the block isloaded, the namespace will look like this (names added to the namespace by the loading
operation are shown in bold):

\
SO
MVEM
SET

SET
STP1
XYz
ABC
DEF

PCl O
SBS
S1
MEM
SET

CPU
SET

S2
I SA

MEM

SET
S3

Compag/I ntel/Microsoft/Phoenix/T oshiba

416 Advanced Configuration and Power Interface Specification

APPENDIX A: Device Class Specifications

A Device Class PM Specifications

This section defines the behavior of devices as that behavior relates to power management and, specifically,
to the four device power states defined by ACPI. The goal is enabling device vendorsto design power-
manageabl e products that meet the basic needs of OSPM and can be utilized by any ACPI-compatible
operating system.

A.1 Overview

The power management of individual devicesisthe responsibility of apolicy owner in the operating
system. This software element will implement a power management policy that is appropriate for the type
(or class) of device being managed. Device power management policy typically operatesin conjunction
with aglobal system power policy implemented in the operating system.

In general, the device-class power management policy strives to reduce power consumption while the
system iswaorking by transitioning among various available power states according to device usage. The
challenge facing policy ownersis to minimize power consumption without adversely impacting the
system’ s usability. This balanced approach provides the user with both power savings and good
performance.

Because the policy owner has very specific knowledge about when adeviceisin use or potentially in use,
there is no need for hardware timers or such to determine when to make these transitions. Similarly, this
level of understanding of device usage makesit possible to use fewer device power states. Generally,
intermediate states attempt to draw a compromise between latency and consumption because of the
uncertainty of actual device usage. With the increased knowledge in the OS, good decisions can be made
about whether the deviceis needed at all. With this ability to turn devices off more frequently, the benefit
of having intermediate states diminishes.

The policy owner also determines what class-specific events can cause the system to transition from
sleeping to working states, and enables this functionality based on application or user requests. Notice that
the definition of the wake events that each class supports will influence the system’s global power policy in
terms of the level of power management a system sleeping state can attain while still meeting wake latency
requirements set by applications or the user.

A.2 Device Power States

The following definitions apply to devices of all classes:
DO. State in which device is on and running. It isreceiving full power from the system and is
delivering full functionality to the user.
D1. Class-specific low-power state (defined in the following section) in which device context may or
may not belost. Busesin D1 cannot do anything to the bus that would force devices on that busto lose
context.
D2. Class-specific low-power state (defined in the following section) in which device context may or
may not be lost. Attains greater power savingsthan D1. Busesin D2 can cause devices on that bus to
lose some context (for example, the bus reduces power supplied to the bus). Devicesin D2 must be
prepared for the busto bein D2 or higher.

D3. State in which device is off and not running. Device context islost. Power can be removed from
the device.

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 417

Device power-state transitions are typically invoked through bus-specific mechanisms (for example, ATA
Standby, USB Suspend, and so on). In some cases, bus-specific mechanisms are not available and device-
specific mechanisms must be used. Notice that the explicit command for entering the D3 state might be the
removal of power.

Itistheresponsibility of the policy owner (or other software) to restore any lost device context when
returning to the DO state.

A.2.1 Bus Power Management

Policy ownersfor bus devices (for example, PCI, USB, Small Computer System Interface [SCSI]) have the
additional responsibility of tracking the power states of all devices on the bus and for transitioning the bus
itself to only those power states that are consistent with those of its devices. This means that the bus state
can be no lower than the highest state of one of its devices. However, enabled wake events can affect this
aswell. For example, if aparticular deviceisin the D2 state and set to wake the system and the bus can
only forward wake requests while in the D1 state, then the bus must remain in the D1 state even if all
devicesarein alower state.

Below are summaries of relevant bus power management specifications with references to the sources.

A.2.2 Display Power Management
Refer to the Display Power Management Signaling Specification (DPMS), available from:

Video Electronics Standards Association (VESA)
2150 North First Street

Suite 440

San Jose, CA 95131-2029

A DPMS-compliant video controller and DPM Scompliant monitor use the horizontal and vertical sync
signalsto control the power mode of the monitor. There are 4 modes of operation: normal, standby,
suspend and off. DPM S-compliant video controllers toggle the sync lines on or off to select the power
mode.

A.2.3 PCMCIA/PCCARD/CardBus Power Management

Refer to the PCMCIA (Personal Computer Memory Card International Association) Web site,at
http://www.pc-card.com/.

PCMCIA and PCCARD devices do not have device power states defined. The only power states available
are on and off, controlled by the host bus controller. The CardBus specification is a superset of the
PCCARD specification, incorporating the power management specification for PCI bus. Power
management capabilities query, state transition commands and wake event reporting are identical.

A.24 PCIlPower Management

Refer to the PCI Special Interest Group (PCISIG) Web site, at http://www.pcisig.com/.

- PCI Bus Power Management Capabilities Query. PCI Bus device capabilities are reported viathe
optional Capabilities List registers, which are accessed viathe Cap_Ptr.
PCI Bus Power Management State Transition Commands. PCI Bus device power states are
controlled and queried viathe standard Power Management Status/Control Register (PMCSR).
PCI Bus Wakeup Event Reporting. PCI wake events are reported on the optional PME# signal, with
setting of the Wake_Int bit in the PMCSR. Wake event reporting is controlled by the Wake _En bitin
the PMCSR register.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

418 Advanced Configuration and Power Interface Specification

A.25 USB Power Management
Refer to the Universal Serial Bus Implementers Forum (USB-1F) Web site, at http://www.usb.org/.

USB Power Management Capabilities Query. USB device capabilities are reported to the USB Host
viathe standard Power Descriptors. These address power consumption, latency time, wake support,
and battery support and status notification.

USB Power Management State Tr ansition Commands. USB device power states are controlled by
the USB Host viathe standard SET_FEATURE command. USB device power states are queried via
the standard USB GET_STATUS command.

USB Wakeup Event Reporting. USB wake event reporting is controlled using the SET_FEATURE
command, with value DEVICE_REMOTE_WAKEUP. USB wake events are reported by sending
remote wake resume signaling.

A.2.6 Device Classes

Below isalist of the class-specific device power management definitions available in this specification.
Notice that there exists adefault device class definition that appliesto all devices, even if thereisa
separale class-specific section that adds additional requirements.

Audio Device Class. Appliesto audio devices.

COM Port Device Class. Appliesto COM ports devices.

Display Device Class. Appliesto CRT monitors, LCD panels, and video controllers for those devices.
Input Device Class. Appliesto standard types of input devices such as keyboards, keypads, mice,
pointing devices, joysticks, and game pads, plus new types of input devices such asvirtual reality
devices.

Modem Device Class. Applies to modem and modemtlike (for example, ISDN terminal adapters)
devices.

Networ k Device Class. Applies specifically to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

PC Card Controller Device Class. Appliesto PC Card controllers and slots.

Storage Device Class. Applies specifically to ATA hard disks, floppy disks, ATAPI and SCS CD-
ROMs, and the IDE channel.

A.3 Default Device Class

The requirements expressed in this section apply to all devices, even if there is a separate, class-specific
power management definition that identifies additional requirements.

A.3.1 Default Power State Definitions

State Definition

DO Deviceison and running. It isreceiving full power from the system, and is delivering full
functionality to the user.

D1 This stateis not defined and not used by the default device class.

D2 This stateis not defined and not used by the default device class.

D3 Deviceis off and not running. Device context is assumed lost, and there is no need for any of it

to be preserved in hardware. This state should consume the minimum power possible. Itsonly
requirement is to recognize a bus-specific command to re-enter DO. Power can be removed
from the device whilein D3. If power is removed, the device will receive a bus-specific
hardware reset upon reapplication of power, and should initialize itself asin anormal power
on.

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 419

A.3.2 Default Power Management Policy

Present Next Cause
State State
DO D3 Device determined by the OS to not be needed by any applications or the user.

System enters a sleeping state.

D3 DO Device determined by the OS to be needed by some application or the user.

A.3.3 Default Wake Events

There are no default wake events, because knowledge of the deviceisinplicit in servicing such events.
Devices can expose wake capabilities to OSPM, and device-specific software can enable these, but thereis
no generic application-level or OS-wide support for undefined wake events.

A.3.4 Minimum Power Capabilities

All devices must support the DO and D3 states. Functionality available in DO must be available after
returning to DO from D3 without requiring a system reboot or any user intervention. This requirement
applies whether or not power is removed from the device during D3.

A.4 Audio Device Class

The requirements expressed in this section apply to audio devices.

A.4.1 Power State Definitions

State | Status Definition
DO Required Power ison. Deviceis operating.
D1 Optional Power consumption isless than DO state. Device must be able to transition

between DO and D1 states within 100 ms. No audio samples may be lost by
entering and leaving this state.

D2 Required Power consumption isless than DO state. Device must be able to transition
between DO and D2 states within 100 ms. Audio samples may be lost by entering
and leaving this state.

D3 Required The device is completely off or drawing minimal power. For example, a stereo
will be off, but alight-emitting diode (LED) may be on and the stereo may be
listening to IR commands.

If adeviceisinthe D1 or D2 state it must resume within 100 ms. A device in the D3 state may take aslong
asit needsto power up. It isthe responsibility of the policy owner to advertise to the system how long a
devicerequiresto power up.

All audio devices must be capable of DO, D2 and D3 states. It is desirable that an audio device be capable
of D1 state. The difference between D1 and D2 isthat a device capable of D1 can maintain complete state
information in reduced power mode. The policy owner or other software must save all statesfor D2-
capable devices. Some audio samples may belost in transitioning into and out of the D2 state.

Notice that the D1 state was added to allow digital signal processor (D SP)-equipped audio hardware to
exploit low-power modes in the DSP. For example, a DSP may be used to implement Dolby AC-3 Decode.
When paused it stops playing audio, but the DSP may contain thousands of bytes worth of state
information. If the DSP supports alow-power state, it can shut down and later resume from exactly the
audio sample where it paused without losing state information.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

420 Advanced Configuration and Power Interface Specification

A.4.2 Power Management Policy

For the purpose of the following state transition policy, the following device-specific operational states are
defined:
- Playing. Audioisplaying.
Recording:
Foreground. Normal application is recording. Recording is considered foreground unless specifically
designated low priority.
Background. Speech recognition or speech activity detection is running. Recording may be preempted
by foreground recording or playing. Any audio recording may be designated as background.
Full Duplex Deviceis simultaneously playing and recording.
Paused. File handle is open. Only devices that are playing, foreground recording or in full duplex
operation may be paused. Background recording may not be paused. State is static and never lost. The
paused state assumes that a device must transition to the resumed state rapidly. Playing or recording
must be resumed within 100 ms. No audio samples may be lost between the device is paused and later
resumed.
Closed. No file handle is open.

Present | Next
State State | Cause

D3 DO Audio device moves from closed to open state or paused when the device receives
the resume command.

DO D1 Audio device receives pause command. If deviceis D1 capable, this stateis
preferred. If not, the device driver will preserve context, and the device will be setto
D2.

D2/D1 DO Audio device receives aresume command.

DO D2 Audio deviceis closed. Audio inactivity timer started.
D2 D3 Audio inactivity timer expires.
DO D3 Audio deviceisin background record mode and receives power-down command.

When an audio deviceisin the DO state it will refuse system requests to transition to D3 state unlessitisin
background record mode. When an audio deviceis paused (D1 or D2) and it receives a request to transition
tothe D3 state, it will save the state of the audio device and transition to the D3 state.

Since multimedia applications often open and close audio filesin rapid succession, it is recommended that
an inactivity timer be employed by the policy owner to prevent needless shutdowns (D3 transitions) of the
audio hardware. For example, frequent power cycling may damage audio devices powered by vacuum
tubes.

A.43 Wake Events

An audio device may be awake device. For example, a USB microphone designed for security applications
might use the USB wake mechanism to signal an alarm condition.

A.4.4 Minimum Power Capabilities

All audio devices must be capable of DO, D2 and D3 power states. If the device is capable of maintaining
context whilein alow-power state it should advertise support for D1. Transitional latency for the D2 or D3
states must be less than 100 ms. There are no latency restrictions for D3 transitions, but the policy owner
should advertise the amount of time required.

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 421

A5 COM Port Device Class

The requirements expressed in this section apply to Universal Asynchronous Receiver/Transmitters
(UARTS) such as the common NS16550 buffered serial port and equivalents.

Thetwo required states for any power-managed COM Port are full on (DO) and full off (D3). Thisin turn
requires that the COM port hardware be power-manageable by ACPI control methods for COM ports that
are on system boards, or by standard bus power management controls for COM portsthat are on add-in
cards (for example, PCI). Because of this, |SA -based COM port add-in cards will not be able to meet this
requirement, and therefore cannot be compliant with this specification.

A5.1 Power State Definitions

State [Status Definition

DO Required Linedriversareon. UART context is preserved.

D1 N/A This stateis not defined for COM Ports. Use the D3 state instead.

D2 N/A This stateis not defined for COM Ports. Use the D3 state instead.

D3 Required Linedrivers are off (unpowered; outputs isolated from devices attached to the
port). UART context islost. Latency to return to DO isless than 1 second.

A.5.2 Power Management Policy

Present | Next
State State Cause

D3 DO Power-on reset
COM port opened by an application

DO D3 COM port closed
System enters sleeping state while wake is disabled on this device.

System enters sleeping state while wake is enabled on this device and the deviceis
capable of generating wake to the system from state D3.

A.5.3 Wake Events

If the COM port is capable of generating wake events, asserting the “ring indicator” line (V.24 circuit 125)
will cause the COM port to assert awake event. There are two common mechanisms that may be employed
(either one or both) for performing machine wake using COM ports.

Thefirst provides a solution that is capable of waking the PC whether the UART is powered (DO) or not
(D3). Here, the “ring indicator” line (from V.24 circuit 125) is commonly connected directly to the system
wake devicein addition to being connected to the UART. While thisimplementation is normative for COM
ports located on system motherboards (see the ACPI specification), it could also be done by add-in cards
with COM ports that reside on buses supporting system wake from devicesin D3 (for example, PME#
signal on PClI).

The second mechanism requires that the UART be powered (DO) to use the UART’ sinterrupt output pin to
generate the wake event instead. When using this method, the OS COM port policy owner or power
management control methods are expected to configure the UART. Although any UART interrupt source
(for example, ‘dataready’) could theoretically be used to wake the system, these methods are beyond the
scope of this document.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

422 Advanced Configuration and Power Interface Specification

A.5.4 Minimum Power Capabilities

A COM port conforming to this specification must support the DO and D3 states.

A.6 Display Device Class

The requirements expressed in this section apply to CRT monitors, LCD panels, and video controllers.

A.6.1 Power State Definitions

A.6.1.1 CRT Monitors and LCD Panels

State

Status

Definition

DO

Required

This state is equivalent to the “On” state defined in the VESA DPMS
specification (see Related Documents) and is signaled to the dis play using the
DPMS method.

Display isfully on

Video image is active

D1

Optional

This stateis equivalent to the “ Standby” state defined inthe VESA DPMSandis
signaled to the display using the DPM S method.

Display isfunctional but may be conserving energy
Video image is blank

Latency to return to DO must be less than 5 seconds

D2

Required

This state is equivalent to the “ Suspend” state defined in the VESA DPM S
specification and is signaled to the display using the DPM S method.

Display is functional and conserving energy
Video image is blank

Latency to return to DO isless than 10 seconds

D3

Required

This state is equivalent to the “ Off” state defined in the VESA DPMS
specification and is signaled to the display using the DPM S method.

Display is non-functional
Video image is blank

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 423

A.6.1.2 Video Controllers

State [Status Definition

DO Required |Back-endison
Video controller context is preserved

Video memory contents are preserved

D1 Optional Back-end is off, except for monitor/LCD control signaling (DPMS)
Video controller context is preserved
Video memory contentsis preserved

Latency to returnto DO islessthan 1 second

D2 Optional Back-end is off, except for monitor/LCD control signaling (DPMS)
Video controller context is lost
Video memory contentsis lost

Latency to return to DO isless than 5 second

D3 Required |Back-end is off

Video controller context islost (power removed)

Video memory contentsislost (power removed)

A.6.2 Power Management Policy

Present Next

State State [Cause

DO D1 User inactivity for aperiod of time (T1)

D1 D2 User inactivity for aperiod of time (T2 > T1)

D2 D3 User inactivity for aperiod of time (T3 > T2)

D1/D2/D3 | DO User activity or application Ul change (for example, dialog pop-up)

Thesestate transition definitions apply to both the monitor/ LCD and the video controller. However, the
control of the two devicesisindependent, except that avideo controller will never be put into alower
power state than its monitor/LCD(s).

Transitions for the video controller are commanded via the bus-specific control mechanism for device
states. Monitor/LCD transitions are commanded by signaling from the video controller (DPMS) and are
only generated as aresult of explicit commands from the policy-owner. M onitor/LCD power control is
functionally independent from any other interface the monitor may provide (such as USB). For instance,
Hubs and HID devices in the monitor enclosure may be power-managed by their driver over the USB bus,
but the Monitor/LCD device itself may not; it must be power-managed by DPM S from the video controller.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

424 Advanced Configuration and Power Interface Specification

A.6.3 Wake Events

Display devicesincorporating a system power switch should generate a wake event when the switchis
pressed while the system is sleeping.

A.6.4 Minimum Power Capabilities

A CRT monitor or LCD panel conforming to this specification must support the DO, D2, and D3 states.
Support for the D1 state is optional. Transitional latencies for the D1 state must be less than 5 seconds, and
less than 10 seconds for the D2 state.

A video controller conforming to this specification must support the DO and D3 states. Support for the D1
and D2 statesis optional. Transitional latencies for the D1 state must be less than 1 second, and lessthan 5
seconds for the D2 state.

A.7 Input Device Class

The requirements expressed in this section apply to standard types of input devices such as keyboards,
keypads, mice, pointing devices, joysticks, game pads, to devices that combine these kinds of input
functionality (composite devices, and so on), and to new types of input devices such as virtual reality
devices, simulation devices, and so on.

A.7.1 Power State Definitions

State | Status Definition

DO Required Device isreceiving full power from its power source, delivering full
functionality to the user, and preserving applicable context and state
information.

D1 Optional Input device power consumption is greatly reduced. In general,

deviceisin a power management state and isnot delivering any
functionality to the user except wake functionality if applicable.
Device status, state, or other information indicators (for example,
LEDs, LCD displays, and so on) are turned off to save power.

The following device context and state information should be
preserved by the policy owner or other software:

Keyboard. Num, caps, scroll lock states (and Compose and Kana
states if applicable) and associated LED/indicator states, repeat
delay, and repeat rate.

Joystick . Forced feedback effects (if applicable).

Any input device. All context and state information that cannot be
preserved by the device when it’ s conserving power.

D2 N/A This state is not defined for input devices, use D1 as the power
management state instead.

D3 Required Input device is off and not running. In general, the deviceis not
delivering any functionality to the user except wake functionality if
applicable. Device context and state information is lost.

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 425

A.7.2 Power Management Policy

Present | Next

State State Cause

D3 DO Requested by the system

DO D1/D3* Requested by the system (for example, system goesto sleep with
wake enabl ed)

DO/D1 D3 Requested by the system (for example, system goes to sleep with
wake disabled)
Power is removed

D1/D3 DO Device with enabled wake capability requests transition by
generating a wake event
Requested by the system

*Depends on capability of device (if it features D1 or D3 wake capability or not); device will be put in state
with the lowest possible power consumption.

A.7.3 Wake Events

It isrecommended, but not required, that input devices implement and support bus-specific wake
mechanismsif these are defined for their bustype. Thisisrecommended because a user typically uses an
input device of some kind to wake the system when it isin a power management state (for example, when
the system is sleeping).

The actual input data (particular button or key pressed) that’ s associated with awake event should never be
discarded by the device itself, but should always be passed along to the policy owner or other software for
further interpretation. This software implements a policy for how this input data should be interpreted, and
decides what should be passed along to higher-level software, and so on.

It is recommended that the device button(s) or key(s) used for power management purposes are clearly
labeled with text and/or icons. Thisisrecommended for keyboards and other input devices on which all
buttons or keys are typically labeled with text and/or icons that identify their usage.

For example, akeyboard could include a special-purpose power management button (for example,
“Power”) that, when pressed during a system sleeping state, generates awake event. Alternatively, the
button(s) on mice and other pointing devices could be used to trigger awake event.

Examples of more advanced wake events include keyboard wake signaling when any key is pressed, mouse
wake signaling on detection of X/Y motion, joystick wake signaling on X/Y motion, and so on. However,
in order to avoid accidental or unintentional wake of the system, and to give the user some control over
which input events will result in a system wake, it’s suggested that more advanced types of wake events are
implemented as features that can be turned on or off by the user (for example, as part of the OSPM user
interface).

A.7.4 Minimum Power Capabilities

Aninput device conforming to this specification must support the DO and D3 states. Support for the D1
stateisoptional.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

426 Advanced Configuration and Power Interface Specification

A.8 Modem Device Class

The requirements expressed in this section apply to modems and similar devices, such as USB controlled
ISDN Terminal Adapters (“digital modems”) and computer-connected telephone devices ("CT phones").
This specification will refer to these devices as “ modems; the same considerations apply to digital modems
and CT phones unless explicitly stated otherwise.

The scope of this section is further restricted to modems that support power management using methods
defined by the relevant PC-modem connection bus. These include PCI, USB, PCCARD (PCMCIA),
CardBus, and modems on the system motherboard described by ACPI BIOS control methods. The scope
does not include bus-specific means for devices to alert the host PC (for example, how to deliver a
"ringing”’ message), nor does it address how those alerting operations are controlled.

A.8.1 Technology Overview

Modems are traditionally serial devices, but today modems may be attached to a PC by many different
means. Further, many new modems expose a software serial interface, where the modem controller
function isimplemented in software. This specification addresses three different connection types:
Traditional connections without power-managed connections (for example, COM, LPT, ISA)
Power managed connections (for example, PCCARD, CardBus, PCI, USB)
Motherboard modems

For some of the above modem connection types mentioned, there are three different modem architectures
possible:

Traditional modem (DAA, DSP, and controller in hardware)

Controller-less design (DAA and DSP in hardware)

"Soft modem" design (DAA and CODEC only in hardware)

The hardware components of the modem shall be controlled by the relevant bus commands, where
applicable (USB, PCI, CardBus). The software components are dependent on the power state of the CPU.

A.8.1.1 Traditional Connections

In older methods (COM, LPT, ISA) the modem is controlled primarily by serialized ASCIl command
strings (for example, V.25ter) and traditional V.24 (RS-232) out-of-band leads. In these legacy devices,
there are no common means for power management other than the power switch for the device, or the
entire system unit.

An external modem connected to a COM port or LPT port typically hasits own power supply. An LPT port
modem might run from the current on the LPT port +5V supply. For COM or LPT port modems, power is
typically controlled by a user switch.

The most common modem typeisan | SA card with an embedded COM port. From a software standpoint,
they arelogically identical to external modems, but the modems are powered by the PC system unit. Power
isdrawn from the |SA bus without independent power switching.

A.8.1.2 Power-Managed Connections

PCMCIA, PCCARD and CardBus slots are powered and power-managed by the system, using means
defined in the relevant bus specifications. For PCM CIA and PCCARD devices, only DO and D3 states are
available, via Socket Servicesin the OS and/or ACPI BIOS. CardBus adds intermediate states, using the
same mechanisms defined for PCI Bus.

PCI bus slots are powered and power-managed by the system, using means defined in the PCI
specification.

USB devices may be powered by the USB itself (100mA or 500mA), or have their own external power
supply. All USB devices are power-managed by the USB bus master, using means defined in the USB
specification.

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 427

A.8.1.3 Motherboard Modems

A modem embedded in the motherboard is powered by controls on the motherboard. It should be power-
managed by using control methods exposed via ACPI BIOS tables.

A.8.2 Power State Definitions

State | Status Definition

DO Required | Phoneinterfaceison (may be on or off hook)
Speaker ison
Controller Context is preserved

D1 N/A Not defined (do not use)

D2 Optional | Phoneinterfaceis not powered by the host (on hook)
Speaker is off

Controller context is preserved

2 seconds maximum restore time

D3 Required | Phoneinterfaceis not powered by host (on hook)
Speaker is off
Controller context may be lost

5 seconds maximum restore time

A.8.3 Power Management Policy

Present Next
State State | Cause

D2/D3 DO System issues a bus command to enter the DO state (for example, an
application is answering or originating acall).

DO D2 System issues a bus command to enter the D2 state. (for example, an
application islistening for an incoming call).

DO D3 System issues a bus command to enter the D3 state (for example, al
applications have closed the Modem device).

A.8.4 Wake Events

For any type of modem device, wake events (if supported and enabled) are only generated in response to
detected “ringing” from an incoming call. All other events associated with modems (V .8bis messages, and
so on) require that the PC be in the “working” state to capture them. The methods and signals used to
generate the wake may vary as a function of the modem connection (bus) type and modem architecture.

Machine wake is allowed from any modem power state (DO, D2, and D3), and is accomplished by methods
described in the appropriate bus power management specification (PCl, USB, PCCARD), or by ACPI
system board control methods (for Modem on Motherboard implementations).

If the specific modem implementation or connection type does not enable it to assert system wake
signaling, these modems will not be able to wake the machine. The OS modem policy owner will have to
retain the PC in the “working” state to perform all types of event detection (including ringing).

Compag/I ntel/Micr osoft/Phoenix/T oshiba

428 Advanced Configuration and Power Interface Specification

A.8.5 Minimum Power Capabilities

A modem or similar device conforming to this specification must support the DO and D3 states. Support of
the D2 stateis optional.

A.9 Network Device Class

The requirements expressed in this section apply to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

A.9.1 Power State Definitions

For the purpose of the following state definitions “no bus transmission” means that transmit requests from
the host processor are not honored, and “no bus reception” means that received data are not transferred to
host memory.

State | Status Definition

DO Required Deviceison and running and is delivering full functionality and
performance to the user
Deviceisfully compliant with the requirements of the attached
network

D1 Optional No bus transmission allowed

No bus reception allowed
No interrupts can occur

Device context may be lost

D2 Optional No bus transmission allowed
No bus reception allowed
No interrupts can occur

Device context may be lost

D3 Required Device context is assumed to be lost
No bus transmission allowed

No bus reception allowed

No interrupts can occur

This document does not specify maximum power and maximum latency requirements for the sleeping
states because these numbers are very different for different network technologies. The device must meet
the requirements of the busthat it attaches to.

Although the descriptions of states D1 and D2 are the same, the choice of whether to implement D1 or D2
or both may depend on bus services required, power requirements, or time required to restore the physical
layer. For example, adevice designed for a particular bus might include state D1 because it needs a bus
service such as abus clock to support Magic Packet™ wake, and that serviceis available in the bus

device’ s D1 power state but not in D2. Also, adevice might include both state D1 and state D2 to provide a
choice between lower power and lower latency.

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 429

A.9.2 Power Management Policy

Present Next

State State | Cause

DO Dx System enters sleep state. If wake is enabled, Dx isthe lowest power
state (for example, D1, D2, D3) from which the network device
supports system wake.

An appropriate time-out has elapsed after a“link down” condition
was detected. Dx isthe lowest power state in which the network
device can detect “link up.”

DO D3 System initiated network shutdown.

System enters sleep state and wake is either not enabled or the
network device is capable of waking from D3.

D1/D2/D3 | DO System wake (transition to S0), including a wake caused by a network
wake event.

A.9.3 Wake Events

Network wake events are generally the result of either achangein the link statusor the reception of awake
frame from the network.

A.9.3.1 Link Status Events

Link status wake events are useful to indicate a change in the network’s availability, particularly when this
change may impact the level at which the system should re-enter the sleeping state. For example, a
transition from “link off” to “link on” may trigger the system to re-enter sleep at a higher level (for
example, S2 versus S3) so that wake frames can be detected. Conversely, atransition from “link on” to
“link off” may trigger the system to re-enter sleep at a deeper level (for example, S3 versus S2) since the
network is not currently available. The network device should implement an internal delay to avoid
unnecessary transitions when the link status toggles on or off momentarily.

A.9.3.2 Wake Frame Events

Wake frame events are used to wake the system whenever meaningful datais presented to the system over
the network. Examples of meaningful datainclude the reception of a Magic Packet™, a management
request from aremote administrator, or simply network traffic directly targeted to the local system. In all of
these cases the network device was pre-programmed by the policy owner or other software with
information on how to identify wake frames from other network traffic. The details of how thisinformation
is passed between software and network device depend on the OS and therefore are not described in this
specification.

A.9.4 Minimum Power Capabilities

A network device conforming to this specification must support the DO and D3 states. Support for the D1
and D2 statesis optional.

A.10 PC Card Controller Device Class

The requirements expressed in this section apply to PC Card controller devices and the PC Card slots.

Power management of PC Cardsis not defined by this specification. PC Card power management is
defined by the relevant power management specification for the card’ s device class (for example, network,
modem, and so on), in conjunction with the PC Card standard (for 16-bit cards) or the PCI Power
Management Specification (for CardBus cards).

Compag/I ntel/Micr osoft/Phoenix/T oshiba

430 Advanced Configuration and Power Interface Specification

A.10.1 Power State Definitions

State

Status

Definition

DO

Required

Card status change interrupts are fully functional.
Card functional interrupts are fully functional.

Controller context (for example, memory, 1/O windows) is fully
functional.

Controller interface is fully functional (processor can access cards).

Power to cards (slots) isavailable (may be on or off under software
control).

The controller is at its highest power consumption level.
Bus command response timeis at its fastest level.
PC Cards can bein any Dx power state (D0-D3).

Note: In DO state, CSTSCHG interrupts can be passed to a system
from a powered down PC Card (for more detail, refer to section
5.2.11.2 of PC Card Standard, Electrical Specification).

D1

Optional

Card status change interrupts are disabled. CSTSCHG interrupt
events are still detectable by the controller and cause the bus-
specific wake signal to be asserted if wake is enabled on the
controller.

Card functional interrupts are disabled.

Controller context is preserved (all register contents must be
maintained but memory and 1/0 windows need not be functional).

Controller interface is non-functional (processor cannot access
cards).

Power to cards (slots) is available (may be on or off; retains power
setting it had at time of entry to D1).

Power-level consumption for the controller is high but less than DO.

Thetime required to restore the function from the D1 state to the DO
state is quicker than resumption from D3.

Bus command response timeis equal to or slower thanin DO.
PC Cardscanbeinthe D1, D2, or D3 power states (not DO).

Note: In D1 state, CSTSCHG interrupts can be passed to a system
from a powered-down PC Card (for more detail, refer to section
5.2.11.2 of PC Card Standard, Electrical Specification).

D2

Optional

Functionally the same as D1 (may be implemented instead of
D1in order to allow bus and/or system to enter alowerpower
state).

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 431

(continued)

State Status Definition

D3 Required Card status change interrupt: Disabled and need not be detected.
Card functional interrupt: Disabled and need not be detected.
Controller context (for example, memory, 1/0 windows): Lost.

Controller interface: Non-functional (processor can not access
cards).

Clock to controller: Off.
Power to cards (slots): Off (card context lost).

Note: If Vccisremoved (for example, PCI Bus B3) while the
deviceisinthe D3 state, a bus-specific reset (for example, PCI
RST#) must be asserted when power is restored and functions will
then return to the DO state with afull power-on reset sequence.
Whenever the transition from D3 to DO isinitiated through assertion
of abus-specific reset, the power-on defaults will be restored to the
function by hardware just as at initial power up. The function must
then befully initialized and reconfigured by software.

A.10.2 Power Management Policy

The PC Card controller isabus controller. As such, its power state is dependent on the devices plugged
into the bus (child devices). OSPM will track the state of all devices on the bus and will put the businto the
best possible power state based on the current device requirements on that bus. For example, if the PC Card
cardsareall inthe D1 state, OSPM will put the PC Card controller in the D1 state.

Present Next

State State | Cause

D2/D3 DO Any card in any slot needing to transition to state DO due to awake
event or because of system usage.

DO D1 No cardin any slot isin state DO.

DO D2 No cardin any slot isin state DO or D1.

DO D3 All cardsin all slotsarein state D3.

A.10.3 Wake Events

A wake event is any event that would normally assert the controller’ s status change interrupt (for example,
card insertion, card battery state change, card RegAttn event, and so on) or ring-indicate signal.

A.10.4 Minimum Power Capabilities

A PC Card controller device conforming to this specification must support the DO and D3 states. Support
for the D1 or D2 statesis optional.

A.11 Storage Device Class

The requirements expressed in this section apply to ATA hard disks, floppy disks, ATAPI and SCSI CD-
ROMSs, and the IDE channel.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

432 Advanced Configuration and Power Interface Specification

A.11.1 Power State Definitions

A.11.1.1 Hard Disk, CD-ROM and IDE/ATAPI Removable Storage Devices

State Status Definition

DO Required [Drive controller (for example, interface and control electronics) is
functional.

Interface mode context (for example, communications timings) is
programmed.

D1 Optional | Drive controller (for example, interface and control electronics) is
functional.

Interface mode context (for example, communicationstimings) is
preserved.

Drive motor (for example, spindle€) is stopped, with fast-start mode
enabled, if available.

Laser (if any) is off.
Recommended latency to return to DO isless than 5 seconds.

Power consumption in D1 should be no more than 80% of power
consumed in DO.

Note: For ATA devices, this state is invoked by the Standby
Immediate command.

D2 N/A Thisstateis not defined for storage devices.

D3 Required [Drive controller (for example, interface and control electronics) is not
functional; context is lost.

Interface mode (for example, communications timings) is not
preserved.

Drive motor (for example, spindle) is stopped.

Laser (if any) is off.

Power consumption in D3 is no more than 10% of power consumed
in DO.

Note: For ATA devices, this state isinvoked by the “sleep”
command.

Compag/I ntel/Microsoft/Phoenix/Toshiba

A Device Class PM Specifications 433

A.11.1.2 Floppy Disk Devices

State | Status Definition

DO Required | Drive controller (for example, interface and control electronics) is
functional.
Drive motor (for example, spindle) is turning.

D1 N/A This state isnot defined for floppy disk drives.

D2 N/A This state is not defined for floppy disk drives.

D3 Required | Drive controller (for example, interface and control electronics) is not
functional; context islost.
Drive motor (for example, spindle) is stopped.

A.11.1.3 IDE Channel Devices

State | Status Definition

DO Required | Adapter isfunctional.

Adapter interface mode (for example, communications timings) is
programmed.

Power is applied to the bus (and all devices connected to it).

D1 N/A Thisstateis not defined for the IDE Channel.

D2 N/A This state is not defined for the IDE Channel.

D3 Required | Adapter isnon-functional.

Adapter interface mode (for example, communications timings) is not
preserved.

Power to the bus (and all devices connected to it) may be off.

A.11.2 Power Management Policy

A.11.2.1 Hard Disk, Floppy Disk, CD-ROM and IDE/ATAPI Removable
Storage Devices

Present [Next
State State Cause

D3 DO Device usage (high-priority 1/0).

DO D1* Device inactivity (no high-priority 1/0) for some period of time (T1).

DO D3 Device inactivity (no high-priority 1/O) for aperiod of time
(T2=>T1).

System enters sleeping state.

D1* DO Device usage (High-priority 1/0).

* |f supported.

Note: For ATA, the D3-to-DO0 transition requires a reset of the IDE channel. This means that both devices
on achannel must be placed into D3 at the same time.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

434 Advanced Configuration and Power Interface Specification

A.11.2.2 |IDE Channel Devices

Present | Next
State State Cause

D3 DO Any device on the channel needing to transition to a state other than
state D3.
DO D3 All devices on the channel in state D3.

A.11.3 Wake Events

Storage devices with removable media can, optionally, signal wake upon insertion of media using their bus-
specific notification mechanism. There are no other wake events defined for Storage devices.

A.11.4 Minimum Power Capabilities

A hard disk, CD-ROM or IDE/ATAPI removable storage device conforming to this specification must
support the DO and D3 states. Support for the D1 stateis optional.

A floppy disk and IDE channel device conforming to this specification must support the DO and D3 states.

Compag/I ntel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 435

APPENDIX B: Video Extensions
B ACPI Extensions for Display Adapters

B.1 Introduction

This section of the document describes a number of specialized ACPI methods to support motherboard
graphics devices.

In many cases, system manufacturers need to add special support to handle multiple output devices such as
panels and TV-out capabilities, as well as special power management features. Thisis particularly true for
notebook manufacturers. The methods described here have been designed to enable interaction between the
system BIOS, video driver, and OS to smoothly support these features.

Systems containing a built-in display adapter are required to implement the ACPI Extensions for Display
Adapters.

TableB-1 Video Extension Object Requirements

Method Description

_DOS Enable/Disable output switching Required if system supports display
switching or LCD brightness leves

_DOD Enumerate all devices attached to display Required if integrated controller supports

adapter output switching

_ROM Get ROM Data Required if ROM image is stored in
proprietary format

_GPD Get POST Device Required if VPO isimplemented

_SPD Set POST Device Required if VPO isimplemented

_VPO Video POST Options Required if system supports changing post
VGA device

_ADR Return the unique ID for this device Required

_BCL Query list of brightness control levels Required if embedded L CD supports

supported brightness control

_BCM Set the brightness level Required if BCL isimplemented

_DDC Return the EDID for this device Required if embedded LCD does not
support return of EDID via standard
interface

_DCs Return status of output device Required if the system supports display
switching (via hotkey)

_DGS Query graphics state Required if the system supports display
switching (via hotkey

_DSS Device state set Required if the system supports display
switching (via hotkey).

Compag/I ntel/Micr osoft/Phoenix/T oshiba

436 Advanced Configuration and Power Interface Specification

B.2 Definitions

- Built-in display adapter. Thisisagraphics chip that is built into the motherboard and cannot be
replaced. ACPI information is valid for such built-in devices.
Add-in display adapter. Thisisagraphics chip or board that can be added to or removed from the
computer. Because the system BIOS cannot have specific knowledge of add-in boards, ACPI
information is not available for add-in devices.
Boot-up display adapter. Thisisthe display adapter programmed by the system BIOS during
machine power-on self -test (POST). It is the device upon which the machine will show the initial
operating system boot screen, aswell as any system BIOS messages.
The system can change the boot-up display adapter, and it can switch between the built-in adapter and
the add-in adapter.
Display device. Thisisasynonym for the term display adapter discussed above.
Output device. Thisisadevice, which isarecipient of the output of adisplay device. For example, a
CRT or aTV isan output device.

B.3 ACPI Namespace
Thisisan example of the display-related namespace on an ACPI system:

GPE /1 ACPl Ceneral - purpose HWevent
_LOx /1 Notify(VGA 0x80) to tell OSPMof the event, when user presses
/1 the hot key to switch the output status of the nonitor.
/] Notify(VGA Ox81) to tell the event to GSPM when there are any
/1 changes on the sub-devices for the VGA controller

SB
| - PA
| - VA /1 Define the VGA controller in the namespace

I
I
| - _DCs /1 Method to control display output swtching

| - _DOD /] Method to retrieve information about child output devices
| ROM /1 Method to retrieve the ROMinage for this device

I

I

I

I

- _GPD /1 Method for determ ning which VGA device will post
- _SPD /1 Method for controlling which VGA device will post
- _VPO /1 Method for determ ning the post options

- ORT /1 Child device CRT

| - _ADR /1 Hardware ID for this device
DDC /] Get EDID information fromthe nonitor device
| - _DCs /1 Get current hardware status
_DGS /1 Query desired hardware active \ inactive state
| - _DSS /1 Set hardware active \ inactive state

|- _PSO \
|- _PS1 - Power nethods
| - _PS2 - for the output device
|- _PS3 /
| - LCD /] Child device LCD
| - _ADR /1 Hardware ID for this device
| - _DDC /!l Get EDID information fromthe nonitor device
| - _DCs /1 Get current hardware status
| - _DGS /1 Query desired hardware active \ inactive state
| - _DSS /1 Set hardware active \ inactive state
| - _BCL /1 Brightness control |evels
| - _BC™M /1 Brightness control nethod
|- _PSO \
|- _PS1 - Power nethods
| - _PS2 - for the output device
|- _ /
|- TV // Child Device TV

PS3
ADR /1 Hardware ID for this device
- _DDC /!l Get EDID information fromthe nonitor device
DCS /1 Get current hardware status
DGS /1 Query desired hardware active \ inactive state
DSS /1 Set hardware active \ inactive state

Compag/I ntel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 437

The LCD device represents the built-in output device. Mobile PCswill always have abuilt-in LCD display,
but desktop systemsthat have a built-in graphics adapter generally don’t have a built-in output device.

Notify(VGA, 0x80) is an event that should be generated whenever the state of one of the output devices
attached to the VGA controller has been switched or toggled. This event will, for example, be generated
when the user presses a hotkey to switch the active display output from the LCD panel to the CRT.

Notify(VGA, 0x81) is an event that should be generated whenever the state of any output devices attached
to the VGA controller has been changed. This event will, for example, be generated when the user plugs-in
or remove a CRT from the VGA port. In this case, OSPM will re-enumerate all devices attached to VGA
controller.

The event number is standardized because the event will be handled by the OS directly under certain
circumstances (see _DOS method later in this specification).

B.4 Display-specific Methods

The methods described in thissection are all associated with specific display devices. This device-specific
association is represented in the namespace exampl e in the previous section by the positioning of these
methods in adevicetree.

B.4.1 DOS (Enable/Disable Output Switching)

Many ACPI machines currently reprogram the active display output automatically when the user presses
the display toggle switch on the keyboard. Thisis done because most video device drivers are currently not
capable of being notified synchronously of such state changes. However, this behavior violates the ACPI
specification, because the system modifies some graphics device registers.

The existence of the _DOS method indicates that the system BIOS is capable of automatically switching
the active display output or controlling the brightness of the LCD. If it exists at all, the _DOS method must
be present for all display output devices. This method isrequired if the system supports display switching
or LCD brightness control.

Arguments:
Bit 1:0

0: The system BIOS should not automatically switch (toggle) the active display output,
but instead just save the desired siate change for the display output devicesin
variables associated with each display output, and generate the display switch event.
OSPM can query these state changes by calling the _DGS method.

1. Thesystem BIOS should automatically switch (toggle) the active display output, with
no interaction required on the OS part. The display switch event should not be
generated in this case.

2: The _DGS values should be locked. It’s highly recommended that the system BIOS
do nothing when hotkey pressed. No switch, no notification.

3. Reserved

Bit 2

0: The system BIOS should automatically control the brightness level of the LCD when
the power changes from AC to DC.

1. The system BIOS should not automatically control the brightness level of the LCD
when the power changes from AC to DC.

Return Value:

None

Compag/I ntel/Micr osoft/Phoenix/T oshiba

438 Advanced Configuration and Power Interface Specification

The _DOS method controls this automatic switching behavior. This method should do so by saving the
parameter passed to this method in aglobal variable somewhere in the BIOS data segment. The system
BI1OS then checks the value of this variable when doing display switching. This method is also used to
control the generation of the display switching Notify(VGA, 0x80/0x81).

The system BIOS, when doing switching of the active display, must verify the state of the variable set by
the _DOS method. The default value of this variable must be 1.

B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter)

This method is used to enumerate devices attached to the display adapter. This method isrequired if
integrated controller supports output switching.

On many laptops today, a number of devices can be connected to the graphics adapter in the machine.
These devices are on the motherboard and generally are not directly enumerable by the video driver; for
this reason, all motherboard VGA attached devices are listed inthe ACPI hamespace.

These devicesfall into two categories:
Video output devices. For example, a machine with a single display device on the motherboard can
have three possible output devices attached to it, such asa TV, a CRT, or apanel.
Non-video output devices. For example, TV Tuner, DV D decoder, Video Capture. They just attach to
VGA and their power management closely relatesto VGA.

Both ACPI and the video driver have the ability to program and configure output devices. This means that
both ACPI and the video driver must enumerate the devices using the same I Ds. Because there are no
standard configurations for display output devices, no standard ID generation mechanism can be used.

To solvethis problem, the _DOD method returns alist of devices attached to the graphics adapter, along
with device-specific configuration information. This information will allow the cooperation between ACPI
components and the video driver.

Every child device enumerated in the ACPI namespace under the graphics adapter must be specified in this
list of devices.

Arguments:
None

Return Value:
A buffer containing an array of video device attributes as described in the table below.

Sample Code;

Met hod (_DOD, 0) {
Ret urn (package(){

0x00010100, /1 CRT, detectable by BlICS

0x00010110, /] LCD panel, detectable by BICS

0x00000200, /1 TV, not detectable by the BI OGS

0x00020000}) /1 enpty(unknown) device, attached to VGA device

}

Compag/I ntel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 439

TableB-2 Video Output Device Attributes

Bits Definition

15:0 Device ID. The device ID must match the IDs specified by Video Chip Vendors.
They must also be unigue under VGA namespace.

16 BIOS. Can detect the device.

17 Non-VGA output device whose power is related to the VGA device. This can be
used when specifying devices like TV Tuner, DVD decoder, Video Capture, and
SO on.

20:18 For VGA multiple-head devices, this specifies head ID.

3121 Reserved (must be 0)

TableB-3 Commonly-used Device | Ds

Bits Definition
0x0100 Monitor
0x0110 Panel
0x0200 TV

0 Other

Please contact the Video Chip vendors for other IDs.

B.43 _ROM (Get ROM Data)

This method is used to get a copy of the display devices' ROM data. This method is required when the
ROM imageis stored in a proprietary format such as stored in the system BIOS ROM. This method is not
necessary if the ROM image can be read through standard PCI interface (using ROM BAR).

The video driver can use the data returned by this method to program the device. The format of the data
returned by thisfunction isalarge linear buffer limited to 4 KB. The content of the buffer is defined by the
graphics independent hardware vendor (IHV) that builds this device. The format of this ROM data will
traditionally be compatible with the ROM format of the normal PCI video card, which will allow the video
driver to program its device, independently of motherboard versus add-in card issues.

The datareturned by the_ ROM method is implementation-specific data that the video driver needs to
program the device. This method is defined to provide this data as motherboard devices typically don’'t
have a dedicated option ROM. This method will allow avideo driver to get the key implementation specific
datait needs so that it can fully control and program the device without BIOS support.

Arguments:
Arg0: Offset of the display device ROM data.
Argl: Size of the buffer to fill in (up to 4K).

Output:
Buffer of bytes

Compag/I ntel/Micr osoft/Phoenix/T oshiba

440 Advanced Configuration and Power Interface Specification

B.4.4 _GPD (Get POST Device)
This method isrequired if the VPO method isimplemented.

This method is used as a mechanism for the OS to query a CMOS value that determines which VGA device
will be posted at boot. A zero return value indicates the motherboard V GA will be posted on the next boot,
alindicatesaPCl VGA device will be posted, and a2 indicates an AGP VGA device will be posted.

Arguments:
None
Return Value;
A 32-bit value

Bit 1:0

00 — Post the motherboard VGA device
01 — Post an add-in PCl VGA device
10— Post an add-in AGP VGA device
11 - Reserved

Bit 31:2
Reserved (must be 0)

B.45 _SPD (Set POST Device)
This method isrequired if the VPO method is implemented.

This method is used as a mechanism for the OS to update a CM OS val ue that determines which video
device will be posted at boot. A zero argument will cause the “motherboard” to be posted on the next boot,
a1 will cause an add-in PCI deviceto be posted, and a 2 will cause an add-in AGP device to be posted.

Arguments:

Bit 1:0

00 — Post the motherboard VGA device
01 — Post an add-in PCI VGA device
10— Post an add-in AGP VGA device
11 — Reserved

Bit 31:2
Reserved (must be 0)

Return Value:
A 32-bit value

0— Success

non-zero— Failure

Compag/I ntel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 441

Sample Code:
Met hod (_SPD, 1) { /1 Make the notherboard devi ce the device to post }

B.4.6 VPO (Video POST Options)

This method is required for systems with video devices built onto the motherboard and support changing
post-VGA device.

This method is used as a mechanism for the OS to determine what options are implemented. This method
will be used in conjunction with _GPD and _SPD.

Arguments:
None
Return Value:
A 32-bit integer
Bit 0: Posting the motherboard VGA deviceis an option. (Bit O should always be set)
Bit 1. Posting a PCI VGA deviceis an option.
Bit 2: Posting an AGP VGA deviceis an option.

Bits 31:3: Reserved (must be zero)

B.5 Output Device-specific Methods

The methods in this section are methods associated with the display output device.

B.5.1 _ADR (Return the Unique ID for this Device)

This method returns a unique 1D representing the display output device. All output devices must have a
unique hardware ID. This method is required for all The IDs returned by this method will appear in the list
of hardware | Ds returned by the_DOD method.

Arguments:
None
Return Value:
32-hit device ID

Sample Code:

Met hod (_ADR, 0) {
return(0x0100) // device ID for this CRT
}

This method isrequired for al output display devices.

B.5.2 _BCL (Query List of Brightness Control Levels Supported)

This method allows the OSto query alist of brightness level supported by built-in display output devices.
(Thismethod in not allowed for externally connected displays.) This method is required if an integrated
LCD is present and supports brightness levels.

Each brightness level is anumber between 0 and 100, and can be thought of as a percentage. For example,
50 can be 50% power consumption or 50% brightness, as defined by the OEM.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

442 Advanced Configuration and Power Interface Specification

Arguments:
None
Return Value:
Buffer of bytes

Sample Code;
Met hod (_BCL, 0) {
/1 List of supported brightness |evels
package(7){
80, // level when machine has full power
50, // level when machine is on batteries

/1 other supported |levels
20, 40, 60, 80, 100}

Thefirst number in the packageis the level of the panel when full power is connected to the machine. The
second number in the package is the level of the panel when the machine is on batteries. All other numbers
aretreated asalist of levels OSPM will cycle through when the user toggles (via a keystroke) the
brightness level of the display.

These levelswill be set using the _BCM method described in the following section.

B.5.3 _BCM (Set the Brightness Level)

This method allows OSPM to set the brightness level of the built-in display output device.

The OS will only set levels that were reported viathe _BCL method. This method isrequired if _BCL is
implemented.

Arguments:

Arg0: Desired brightness level
Return Value:

None
Sample Code:

Method (_BCM 1) { // Set the requested |evel }

The method will be called in response to a power source change or at the specific request of the end user,
for example, when the user presses afunction key that represents brightness control.
B.5.4 _DDC (Return the EDID for this Device)

This method returns an EDID structure that represents the display output device. This method is required
for integrated L CDs that do not have another standard mechanism for returning EDID data.

Arguments:
Arg0: Requested data length in bytes
0x01 — 128 bytes
0x02 — 256 bytes
Return Value:
0— Failure, invalid parameter

non-zero — Requested data, 128 or 256 bytes of data

Compag/I ntel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 443

Sample Code;

Met hod (_DDC, 2) {
If (LEqual (ArgO, 1)) { Return (Buffer(128){ ,,,, }) }
If (LEqual (ArgO, 2)) { Return (Buffer(256){ ,,,, }) }
Return (0)

}

The buffer will later be interpreted as an EDID data block. The format of this datais defined by the VESA
EDID specification.

B.5.5 _DCS (Return the Status of Output Device)
Thismethod isrequired if hotkey display switching is supported.
Arguments:
None
Return Value:
32-bit device status
TableB-4 Devce Status

Bits Definition
0 Output connector existsin the system now
1 Output is activated
2 Output isready to switch
3 Output is not defective (it isfunctioning properly)
4 Deviceis attached (thisis optional)
531 Reserved (must be zero)
Exanple:

If the output signal isactivated by DSS, DCS returns Ox1F or OxOF.

If the output signal isinactivated by DSS, DCSreturns 0x1D or 0x0D.

If the deviceis not attached or cannot be detected, _DCS returns OxOxxxx and should return Ox1xxxx if
it isattached.

If the output signal cannot be activated, _ DCS returns Ox1B or 0x0B.

If the output connector does not exist (when undocked), _DCS returns 0x00.

B.5.6 _DGS (Query Graphics State)

This method is used to query the state (active or inactive) of the output device. This method is required if
hotkey display switching is supported.
Arguments:
None
Return Value:
A 32-bit device state

Compag/I ntel/Micr osoft/Phoenix/T oshiba

444 Advanced Configuration and Power Interface Specification

TableB-5 Device State

Bits Definition

0 0—next desired stateisinactive

1— means next desired state is active

1-31 Reserved (must be zero)

The desired state represents what the user wants to activate or deactivate, based on the special function
keys the user pressed. OSPM will query the desired state when it receives the display toggle event
(described earlier).

B.5.7 _DSS - Device Set State

OSPM will call this method when it determines the outputs can be activated or deactivated. OSPM will
manage this to avoid flickering as much as possible. This method isrequired if hotkey display switching is
supported.

Arguments:
A 32-bit device state

Return Value:
None
TableB-6 Device Status
Bits Definition
0 0— Set output deviceto inactive state
1 Set output device to active state
30 0- Do whatever Bit31 requiresto do
1—Don't do actual switching, but need to change DGS to next state
31 0— Don't do actual switching, just cache the change
1-If Bit30=0, commit actual switching, including any _DSS with MSB=0
called before
If Bit30=1, don’'t do actual switching, change DGS to next state
1-29 Reserved (must be zero)
Example Usage:
OS may call in such an order to turn off CRT, and turn on LCD
CRT._DSS(0);

LCD._DSS(80000001L);

or
LCD._DSS(1);
CRT._DSS(80000000L);

Compag/I ntel/Microsoft/Phoenix/Toshiba

B ACPI Extensions for Display Adapters 445

OS may call in such an order to force BIOS to make _DGS jump to next state without actual CRT, LCD
switching

CRT._DSS(40000000L);
LCD._DSS(C0000001L);

B.6 Note on State Changes

It is possible to have any number of simultaneous active output devices. It is possibleto have0, 1, 2 ... and
S0 on active output devices. For example, it is possible for both the LCD device and the CRT deviceto be
active simultaneously. It isalso possible for all display outputs devices to be inactive (this could happen in
a system where multiple graphics cards are present).

The state of the output device is separate from the power state of the device. The “active” state represents
whether the image being generated by the graphics adapter would be sent to this particular output device. A
device can be powered off or in alow-power mode but still be the active output device. A device can also
bein an off state but still be powered on.

Example of the display-switching mechanism:

The laptop has three output devices on the VGA adapter. At this moment in time, the panel and the TV are
both active, while the CRT isinactive. The automatic display-switching capability has been disabled by
OSPM by calling _DOS(0), represented by global variable display_switching = 0.

The system BIOS, in order to track the state of these devices, will have three global variable to track the
state of these devices. There are currently initialized to:

crt_active—0
panel_active—1
tv_active—1
The user now presses the display toggle switch, which would switch the TV output to the CRT.
The system BIOS first updates three temporary variables representing the desired state of output devices:
want_crt_active—1
want_panel_active—1
want_tv_active—0

Then the system BIOS checks the display_switching variable. Because this variable is set to zero, the
system BIOS does not do any device reprogramming, but instead generates a Notify (VGA, 0x80/0x81)
event for the display. This event will be sent to OSPM.

OSPM will call the _DGS method for each enumerated output device to determine which devices should
now be active. OSPM will determine whether thisis possible, and will reconfigure the internal data
structure of the OS to represent this state change. The graphics modes will be recomputed and reset.

Finally, OSPM will call the _DSS method for each output deviceit has reconfigured.

Note: OSPM may not have called the _DSS routines with the same values and the _DGS routines returned,
because the user may be overriding the default behavior of the hardware-switching driver or operating
system-provided Ul. The datareturned by the _DGS method (the want_XXX values) are only ahint to the
OS asto what should happen with the output devices.

If the display-switching variable is set to 1, then the BIOS would not send the event, but instead would
automatically reprogram the devices to switch outputs. Any legacy display notification mechanism could
also be performed at thistime.

Compag/I ntel/Micr osoft/Phoenix/T oshiba

446 Advanced Configuration and Power Interface Specification

Index

_EJx 162
AC adapter
devicelD 139
power source objects 265
AC status notification 255
access types, Operation Region 353
access, device 301
AccessAsterm 310
acoustics See noise
ACH
definition 13
devicelD 138
goas 1
ACPI Hardware See hardware
ACPI Machine Language See AML
ACPI mode
entering 234
exiting 239
ACPI Namespace
AML encoding 414
control method access 129
definition 13
display adapters 436
embedded controller device definition 302
generic hardware registers 77
Modifier Objects encoding, AML 401
modifiers, ASL 361
naming conventions 123
Processor statements 217
root namespaces 126
SMBus host controller objects 307
ACPI Source Language See ASL
ACPI System Description tables Seetables
ACPI -compatible hardware See hardware
Acquire (AcquireaMutex) 371
Acquireterms 358
active cooling
_ACx object 267, 274
control methods 270
definition 42, 267
engaging 270
preferences 42, 272
threshold values 272
active line printer (LPT) ports 34
Active List (_ALX) object 275
Add (Add) 371
add-in display adapter, definition 436
Address (_ ADR) object 146
Address Range types 316
addressregister (SMB_ADDR) 294
Address Space Descriptors

DWORD 181
QWORD 177
resource specific flags 186
valid combinations 176
WORD 184
addresses
alarmfields 68
BARs (Base Address Registers) 355
blocking, BIOS 316
bustypes 147
control methods 129
decoding 252
FACS 106
format 89
functional fixed hardware 44
Generic Address Structure (GAS) 89
generic hardware 45, 51
/O (S)APIC 117
map interfaces 316
map samples 320
mixed, preventing 117
registers 57
reset register 77
slave 254, 305
SMBus 305
system description tables 85
Advanced Configuration and Power
Interface See ACPI
Advanced Programmable Interrupt
Controller See APIC
alarm address register
(SMB_ALRM_ADDR) 295
alarm dataregister (SMB_ALRM_DATA) 296
alarm events 67
Alias (Declare Name Alias) 361
allocation, device resources 159
AML
Arg Objectsencoding 407
battery events 260
bytevalues 407
code event handler 46
compiling 45
Control Method Battery 261
data buffers, SMBus 310
Data Objects encoding 400
Debug Objects encoding 407
definition 13
grammar 398
Local Objects encoding 407
Name Objects encoding 399
Named Objects encoding 401

Compag/I ntel/Microsoft/Phoenix/Toshiba

Namespace encoding 414
Namespace Modifier Objects encoding 401
notation conventions 397
Package Length encoding 400
purpose of 45
sleep button code example 65
SMBus device access protocols 311
specification 397
Term Objects encoding 401
Type 1 Opcodes encoding 403
Type 2 Opcodes encoding 404
And (Bitwise And) 371
angle brackets
AML 398
ASL notation 323
answering phones
modem example 32
power management 2
waking computer 34
APIC
_MAT (Multiple APIC Table Entry) 155
definition 13
/0 16, 113
local 16
multiple description table (MADT) 16
NMI 115
Processor Local 112
structure types 112
support 110, 113
APM BIOS 24
appliance PCs 105
ARB_DIS 75
architecture, system description tables 85
Arg Objects encoding, AML 407
arguments, control methods 130
Argx (Method Argument Data Objects) 389
ASL
_FIX usage example 152
_HPPexample 154
AML, relation to 322
casesensitivity 341
CMOS protocols 354
comments 322
compiler directiveterms 347
convertingto AML 45
dataobjects 384
datatypes 342
definition 13
Definition Block terms 347
EC-SMB-HC device code 304
embedded controller device code 303
grammar 322
grammar notation 322
index with buffers example code 375
language 324
lid status code example 81

Index 447

macros 129, 390. See also macros, ASL
modifiers 341, 361
multiple Smart Battery subsystem code 260
Named Object terms 348
names 324
Namespace modifiers 361
nested packages sample code 375
object names 341
object terms 347, 361
objects, declaring 128
opcodes 362, 369
parameters 346
power button code example 63
Power Resource statements 197
reserved object names 341
SMBBIlock code 314
SMBBIlockProcessCall code 315
SMBByte code 313
SMBProcessCall code 315
SMBQuick code 312
SMBSendReceive code 312
SMBus data buffer code 311
SMBusdevices 309
SMBWord code 313
storing results 346
strings 322
terms 324, 346
thermal zone examples 278
Type 1 Opcodes 362
Type 2 Opcodes 369
User Terms 384
virtual register code 310
AT interrupt model 120
ATA hard disks See storage devices
audible output See noise
audio devices, power management 418, 419
aware devicedrivers 134
Back From Sleep (BFS) 205
BankField (Declare Bank/Data Field) 348
bar symbol
AML notation 398
ASL notation 323
BARs (Base Address Registers) 355
Base Bus Number (_BBN) object 194
batteries Seealso Smart Batteries
capacity 38
Control Method Batteries 260
emergency shutdown 40
events 260
low-level warnings 39
management 37
multiple 37
power statusinformation 31
remaining capacity 264
types supported 31
Battery Information (_BIF) object 261

Compag/I ntel/Micr osoft/Phoenix/T oshiba

448 Advanced Configuration and Power Interface Specification

Battery Status (_BST) object 263
Battery Trip Point (_BTP) object 264
bay devices 268
BIOS
addressrange types 316
configuring boot devices 36
determining ACPI support 69
Device Objects 351
devices, switching 445
Dock Name (_ BDN) 192
initialization 233
legacy functions 24
legacy specifications 12
l[imitations on power management 2
memory initialization 235
relationto ACPI 4
resetting enable bits 79
4 Sleeping state transition 230
bits
alarm 68
child 51, 77
child status 79
control 77
diagram legend 47
enable 55
general-purpose events 79
generic hardware registers 77
ignored 16, 52
interrupt status 51
lid status 81
parent 51, 77
PM timer 75
PM1 Control registers 74
PM1 Enable registers 73
PM1 Status registers 70
PM2 Control register 75
processor control register 76
processor LVL2 76
processor LVL3 77
register notation 47
reserved 17, 51, 88
reset register 77
SMBus protocol encoding 306
status 55, 77
system event signals 36
wake enabled 31
write-only 52
blanks 322
block count register (SMB_BCNT) 295
block devices, GPE 249
Block Write-Read Block Process Call
(SMBBIlockProcessCall) protocol 315
blocking, control methods 129
blocks, register 56
BM_RLD 74
BM_STS 70

bold
AML notation 397
ASL notation 323
boot architecture flags, IA-PC 105
boot devices 36
boot resources, embedded controller 121
bootstrap ROM 236
boot-up 232
boot-up display adapter, definition 436
brackets, angle
AML notation 398
ASL notation 323
Break (Break) 363
BreakPoint (BreakPoint) 363
bridges
Base Bus Number (_ BBN) 194
DWORD 182
flags 188
I SA bus device 242, 351
power states 31
purpose 87
QWORD 179
WORD 185

Brightness Control Levels Supported, Query List

of (_BCL) 441
brightness control, LCDs 435
Brightness Level, Set (_ BCM) 442
Buff (Convert Data Type to Buffer) 371
Buffer (Declare Buffer Object) 384
Buffer datatype, ASL 343
Buffer field datatype, ASL 345
buffers, SMBus 310
built-in display adapter, definition 436
Burst Disable Embedded Controller
(BD_EC) 288
Burst Enable Embedded Controller
(BE_EC) 288
Burstflags 287
burst mode 288
Bus/Device packages 351
buses
power management standards 29, 417
segment locations 195
setting power states 30
button control models 60
buttons See power button; sleep button
byte values, AML 407
CO processor power state
definition 23
implementation 213
C1 processor power state
definition 23
implementation 215
C2 processor power state
definition 23
implementation 215

Compag/I ntel/Microsoft/Phoenix/Toshiba

C3 processor power state
definition 23
implementation 215
cache controller configuration 234
caches, flushing 216, 232
capacity, battery
calculating 38
low-level warnings 40
remaining 264
statusinformation 31
CardBus mode 192
casesensitivity, ASL 341
Case statements 368
category names 6
Celsiusscale 269
centenary value, RTC alarm 67
Central Processing Unit See CPU
CENTURY 68
channels, DMA 167
chemistry independence 255
child bits 51, 77
child objects, ASL statements 322
child status bits 79
CLK_VAL 76
clock logic 213
CMOS protocols 354
cold boots 77, 234
cold insertion and removal 160
COM port devices, power management 32, 418,
421
command protocols, SMBus 305
command register (SMB_CMD) 295
commands, embedded controller interface 287
comments, ASL 322
compatibility memory 236
compatibility, compiler 367
Compatible ID (_CID) object 147
compiler directiveterms 347
compiling, ASL to AML 45, 367
composite battery 37
Concatenate (Concatenate) 371
ConcatenateResTempl ate (Concatenate Resource
Templates) 372
CondRefOf (Conditional Reference Of) 372
configuration objects, device 149
configuring
BIOS initialization 234
boot devices 36
modem example 36
Plug and Play devices 36
Constant Data Terms 387
context, device 14
context, system
definition 18
during emergency shutdown 40
restoring 20

Index 449

4 sleeping state 229
sleep stateslostin 22
contiguous RAM 236
Continue — Continue Innermost Enclosing
While 364
control bits
functions 77
symbol 47
Control Method Battery 37, 137, 138, 260
control methods See also objects
_ADR (Return the Unique ID for this
Device) 441
_BCL (Query List of Brightness Control
Levels Supported) 441
_BCM (Set the Brightness Level) 442
_BDN (BIOS Dock Name) 192
_BFS (Back From Sleep) 205
_DCK (Dock) 192
_DCS (Return the Status of Output
Device) 443
_DDC (Return the EDID for this Device) 442
_DDS (Device Set State) 444
_DGS (Query Graphics State) 443
_DOD (Enumerate All Devices Attached to
the Display Adapter) 438
_DOS (Enable/Disable Output
Switching) 437
_FDM (Floppy Disk Drive Mode) 249
_GPD (Get POST Device) 440
_GTF (Get Task File) 245
_GTM (Get Timing Mode) 246
_GTS(Going To Sleep) 206
_LID (lid device) 241
_MSG (Message) 241
_OFF 198
_ON 199
_PS0 (Power State 0) 201
_PS1 (Power State 1) 201
_PS2 (Power State 2) 201
_PS3 (Power State 3) 201
_PSC (Power State Current) 202
_PSW 204
_PTS(Prepare To Sleep) 205
_REG (Region) 192
_ROM (Get Rom Data) 439
_SCP (Set Cooling Policy) 276
_SPD (Set POST Device) 440
_SST (System Status) 241
_STM (Set Timing Mode) 247
_TMP (Temperature) 267, 277
_VPO (Video POST OPtions) 441
_WAK (System Wake) 210
arguments 130
ASL, writing 322
battery 261
definition 14

Compag/I ntel/Micr osoft/Phoenix/T oshiba

450 Advanced Configuration and Power Interface Specification

deviceidentification 146

deviceremoval 160

event handling 134

generic objects 139

initialization (_INI) 191

lid device 241

OEM -supplied 205

overview 129

power button 62, 242

Power Resource objects 198

power source 265

resources 149

sleep button 64, 242

Smart Battery Subsystem 258

system indicators 240

thermal management 274

video extensions 435
control registers 55
controllers, embedded

definition 15

interface 15
conversion, datatypes 342
cooling modes 42, 267
cooling preferences 42, 272
Copy — Copy Object 372
corelogic, system events 36
CPU

boot configuration 234

boot-up 232

cache flushing 216

clock logic 213

definition 14

fixed hardware control 43, 44

multiple performance state control 220
non-symmetric power state support 212

passive cooling 270
performance states 23
power management 35
processor power states 23, 211
thermal management 41
throttling 213, 217
waking operations 31
crashed systems 61
CreateBitField 349
CreateByteField 349
CreateDWordField 349
CreateField (Field) 350
CreateQWordField 350
CreateWordField 350
Critical battery state 40

Critical Temperature (_CRT) object 272, 275

critical temperature shutdowns 267, 272
Cross Device Dependency 52

CRT monitors, power management 422
C-States (processor power) 216, 218
CT phones See modems

Current Resource Settings (_CRS) objects 150

Cx states See processor power states
DO-Fully On
control method 201
definition 21
In Rush Current (_IRC) object 204
power resource object 202
transitioning to 202
D1 Device State
control methods 201
definition 21
power resource objects 202
transitioning to 202
D2 Device State
control methods 201
definition 21
power resource objects 203
transitioning to 203
D3-Off
control methods 201
definition 21
transitioning to 199
dash character
AML notation 398
ASL notation 323
data buffers, SMBus 310
data macros 387
Data Objects encoding, AML 400
data objects, ASL
Buffer 384
datamacros 387
Literal data 385
Package 384
types of 384
dataregister array (SMB_DATA) 295
datatypes
ASL 342
concatenate 372

datatypes, resource See resource datatypes

DataTableRegion 350
day alarm 67
day mode 28
DAY_ALRM 68
DDB Handle datatype, ASL 345
DDT, Plug and Play devices 35
Debug Data Object 389
Debug Object datatype, ASL 346
Debug Objects encoding, AML 407
Debug Port Specification, Microsoft 93
debugging
AML code 407
requirementsfor 322
decimals, notation 322
Decrement (Decrement) 373
DecStr (Convert Data Type to Decimal
String) 373

Compag/I ntel/Microsoft/Phoenix/Toshiba

dedicated embedded controller interface 284
Default statements 368
defined generic objects 139
Definition Block term 347
Definition Blocks
ASL code 341
definition 14
encoding 126
loading 87, 109, 365
loading from XSDT 377
unloading 368
definitions See terminology
degrees, Kelvin 269
dependencies, device 52, 167
DerefOf (Dereference Of Operator) 373
description tables Seetables
design guides 6, 7
desktop PCs
power management 28
profile system type 105
Device (Declare Bus/Device Package) 351
device and processor performance states 23, 35
Device Class Power Management
specifications 29
Device datatype, ASL 345
devicedrivers, ACPl-Aware 134
Device Name (_DDN) object 148
device power
management 28, 416
modem example 32
objects 199
requirements 418
resources 30
specifications 416
standards 29
states 21, 22
status 31
Device Set State (_DSS) 444
devices
audio, power management 419
class-specific objects 138
COM port, power management 421
configuration objects 149
context, definition 14
definition 14
graphics 435
identification objects 146
IDs, common 439
input, power management 424
insertion and removal objects 159
interference 52
modems, power management 426
network, power management 428
object notification 136
PC Card controllers, power management 429
Plug and Play IDs 138

Index 451

power states 21, 22
resource allocation 159
resource control method 149
SMBus, declaring 307
storage, power management 431
waking system 203
Devices Attached to the Display Adapter
(_DOD) 438
diagram legends 47
Differentiated Definition Block
Bus/Device packages 351
definition 14
determining device power capabilities 30
modem example 33
Differentiated Description Block
isolation logic 33
Differentiated System Description Table See
DSDT
digital modems See modems
Direct Memory Access (DMA) object 150
Disable (_DIS) object 150
Disable Output Switching (_DOS) 437
display adapters
ACPI Namespace 436
control methods 435
definitions 436
requirementsfor 435
switching devices 445
display devices, power management 418, 422
Display Power Management Signaling
Specification (DPMS) 417
Divide (Divide) 373
DMA datastructure 167
DMA Descriptor macro 391
Dock (_DCK) control method 192
docking
control methods 159, 192
eventsignals 36
objects 161
guery events 78
documentation
organization 10
supplemental 12
drain rates, battery 38
drivers
interference 52
restoration 22
DSDT
definition 14, 110
location 86
purpose 87
dual 8259 113
dual-button model 61
duty cycle 213
DVD decoders 438
DWORD 76, 181

Compag/I ntel/Micr osoft/Phoenix/T oshiba

452 Advanced Configuration and Power Interface Specification

DWORD Address Space Descriptor macro 394
dynamic insertion and removal 159
dynamic objects 130
dynamic Operation Regions 359
dynamic transitioning 48
E_ TMR_VAL 75
E820 mapping 316
EC_DATA (embedded controller data
register) 287
EC_SC (R) (embedded controller status
register) 286
EC_SC (W) (embedded controller command
register) 287
ECDT 121
ECI See embedded controller interface
EC-SMB-HC 292, 303
EDBA (Extended BIOS DataArea) 86
EDID control methods (_DDC) 442
EF
definition 14
GetMemoryMap interface 318
RSDP location 90
EISA ID 148
EISA systems 86
EISAID macro 387
Eject (_EJXX) object 162
Eject Device List (_EDL) object 161
Ejection Dependent Device (_EJD) object 161
gjection mechanisms 159
Else/Elself (Else Operator) 364
embedded controller
address space 51
boot resourcestable 121
burst mode 288
definition 15
devicelD 138
device object 242
event control example 78
Global Lock 108
multiple 282
operations 83
gueuing events 135
region control method 193
embedded controller interface
ACPI Namespace objects 302
algorithms 291
ASL code, device 303
bi-directional communications 282
Burst flag 287
command interrupt model 290
command register (EC_SC (W)) 287
command set 287
commands, restricted 302
configurations, additional 285
dataregister (EC_DATA) 287
definition 15

device access 301
firmware requirements 289
Input Buffer Full (IBF) flag 286, 291
interrupt model 290
objects 302
OEM -definable values 291
Output Buffer Full (OBF) flag 286, 291
private 284
registers 285
SCI event (SCI_EVT) flags 286
shared 283, 285
SMBus host controller 292
SMBus notification header
(OS_ SMB_EVT) 289
SMBus protocol descriptions 296
SMBusregisters 292
SMI event flags 287
specifications 282
status register (EC-SC (W)) 286
emergency shutdown 40
enable bits
corresponding status bits 79
resetting 79
symbol 47
enable register 36
Enable/Disable Output Switch (_DOS) 437
encoding
AML 399
Definition Blocks 126
object names, ASL 341
tables 88
End Dependent Functions 168
endtag 170
End-Dependent Functions Descriptor macro 391
energy conservation See power management
Enterprise servers 105
Enumerate All Devices Attached to the Display
Adapter (_DOD) 438
enumeration, enabling 307
errors, fatal 365
Ethernet adapters See network devices
Event (Declare Event Synchronization
Object) 352
Event datatype, ASL 345
events
alarm 67
AML code handler 46
battery 260
button 60
enable register 36
fixed feature 15
fixed handling 132
general model 36
general-purposeregisters 15, 77
hardware 49
interrupt 49, 69

Compag/I ntel/Microsoft/Phoenix/Toshiba

link status 429
OS-transparent 50
power button 62
power button override 63
programming model 130
query 78
shared 51
status register 36
synchronization objects 366
synchronization, waiting for 383
user-initiated 60
wake frame 429
exiting ACPI mode 239
Extended BIOS Data Area (EDBA) 86
extended I/O bus 138
Extended Interrupt Descriptor 188
Extended Interrupt Descriptor macro 395
Extended Root Systems Description Table See
XSDT
Extensible Firmware Interface See EFI
External (Declare External Objects) 347
FACS
definition 15
flags 108
Global Lock 108
tablefields 106
FADT
alarm bits 67
cache flushing 216, 232
definition 15
flags 103, 104
location 86
optional feature bits 70
Plug and Play IDs 151
processor power states 212
purpose 86
reset register location 77
SCI interrupt mapping 69
tablefields 96
fans
active cooling 42, 270
device operations 242
noise preferences 42
Plugand Play ID 84
thermal zone example 280
Fatal (Fatal Check) 365
fatal errors 365
features
fixed 15
generic 15
generic hardware 79
Field (Declare Field Objects) 352
fields
alarm 68
cache flushing 232
declaring objects 352

Index 453

embedded controller boot resources 121

FACS 106

FADT 96, 151

[/OAPIC 113

/O SAPIC 116

MADT 111

NMI 115

Processor Local APIC 112

processor performance 223

reserved 88

RSDT 94

SBST 120

SMBus 309

Start Dependent Functions 167

XSDT 95
FindSetL eftBit (Find Set Left Bit) 373
FindSetRightBit (Find Set Right Bit) 374
firmware

ACPI System 5

embedded controller requirements 289

OSPM controls 25

SMM functional fixed hardware

implementation 44

Firmware ACPI Control Structure See FACS
Fixed ACPI Description Table See FADT
fixed event handling 132
fixed features

definition 15

events 15

registers 15
fixed hardware

definition 43

feature control bits 74

feature enable bits 72

feature status bits 70

features 53

functional implementation 44

interfaces 44

power button 61

programming model 43

register blocks 56

registers 54, 70

sleep button 64
fixed location /O port descriptor 170
Fixed Register Resource Provider (_FIX) 151
fixed width registers 190
FixedList 322
flags

Burst 287

DWORD 181

FACS 108

FADT 103, 104

I/O resource 187, 188

IA-PC boot architecture 105

Input Buffer Full (IBF) 286, 291

interrupt vector 189

Compag/I ntel/Micr osoft/Phoenix/T oshiba

454 Advanced Configuration and Power Interface Specification

local APIC 112
MADT 111
memory resource 186
MPSINTI 114
Output Buffer Full (OBF) 286, 291
QWORD 177
SCI event (SCI_EVT) 286
SMI event (SMI_EVT) 287
system type 105
WORD 184
floppy controller device objects 247
Floppy Disk Drive Mode (_FDM) control
method 249
Floppy Disk Enumerate (_FDE) object 247
Floppy Disk Information (_FDI) object 248
floppy disks See storage devices
flushing caches 216, 232
frequency mismatch 136
FromBCD (Convert from BCD) 374
functional device configuration 234
functional fixed hardware 44
functions
End Dependent 168
Start Dependent 167
GO Working state
behavior during 226
definition 19
properties 20
transitioning to 48
transitioning to Sleeping state 231
transitioning to Soft-Off 231
GL1 Sleeping state
definition 19
properties 20
transitioning to 226
G2 Soft Off
definition 19
properties 20
transitioning to 48
G3 Mechanical Off
definition 19
properties 20
transitioning from 48
transitioningto 27
game pads Seeinput devices
GASS See Generic Address Structure
GBL_EN 73
GBL_RLS 74
GBL_STS 71
general event model 36
general-purpose event registers
addresses 58, 77
blocks 59, 79
definition 15
event0 79
event 0 enable 80

event O status 80

event1 80

event 1 enable 81

event 1 status 80

grouping 57

wake events, rolein 135
general-purpose events

handling 133

gueuing for execution 134

wake 134
generic address space, SMBus 305
Generic Address Structure (GAS) 89
generic events

example 78

top-level 78
generic feature, definition 15
generic hardware

definition 43

features 53, 79

power button control 62

programming model 45

registers 45, 54, 77

sleep button control 64
generic ISA busdevice 242
generic objects 139
generic register descriptor 190
Generic Register Descriptor macro 396
Get POST Device (_GPD) 440
Get Power Status 31
Get ROM Data (_ROM) 439
Get Task File (_GTF) control method 245

Get Timing Mode (_GTM) control method 246

GetMemoryMap 318
Global Lock 108
Global Lock (_GLK) object 196
Global Lock Mutex 145
global standby timer 51
global system interrupts 113, 119
global system states
definition 16, 19
terminology 19
transitioning 26, 49
gods
ACPl 1
OosPM 1
power management 2
Going To Sleep (_GTS) control method 206
GPE
block devices 139, 249
control method 134
grammar
AML 398
ASL 322
grammar notation
AML 397
ASL 322

Compag/I ntel/Microsoft/Phoenix/Toshiba

graphics devices, requirements for 435
Graphics State, Query (_ DGS) 443
Green PCs, power management for 28
groupings, register See register groupings
guides, design 6, 7
hardware See also fixed hardware; generic
hardware
ACPI interfaces 4
ACPI specifications 43
definition 13
events 49
features 53
fixed 43
generic 45
ignored bits 52
interfaces 5
legacy 51
legacy vs. ACPI 3
OEM implementation 3
OS-independent 44, 45
OSPM model 48
register definitions 45
registers 54
reserved bits 51
value-added 45
hardware ID (_HID) object 148, 257
headers, long 95
headers, table 85, 92
heat management See thermal management
hexadecimals, notation 322
HexStr (Convert Data Typ 374
holes, compatibility 236
home PCs, power management for 28
host controller objects, SMBus 307
hot insertion and removal 160, 162
Hot Plug Memory Table Specification,
Microsoft 93
Hot Plug Parameters (_ HPP) object 153
Hot Temperature (HOT) object 275
hungsystems 61
hysteresis 268
[/OAPIC
_MAT (Multiple APIC Table Entry 155
definition 16
Global System Interrupts 120
mixed addresses, preventing 117
structure 113
I/O operations, lazy 2
I/O Port Descriptor macros 391
I/O port descriptors 169
I/O resource flag 187, 188
/0 SAPIC
definition 16
mixed addresses, preventing 117
Platform Interrupt Source structure 117
structure 116

Index 455

1/0O space 51, 87
IA (Intel Architecture) specifications 12
|A processors 216
IA-32 systems 44
IA-PC
boot architecture flags 105
definition 16
interrupt models 113
memory map system 316
memory mapping 235
RSDP location 90
ID, Compatible (_CID object) 147
IDE
controller device 243
drives 46
IDE devices See storage devices
identification objects, device 146
idleloops, CPU 35
idle timers, legacy 51
IDs, Plug and Play 138, 146
If (If Operator) 365
ignored bits
definition 16, 52
PM1 Status register 72
implementation requirements
OEM 3
OsS 10
OSPM 9
In Rush Current (_IRC) object 204
Include (Include Another ASL File) 347
Increment (Increment) 374
independence, OS
ACPl 3
functional fixed hardware 44
generic hardware 45
Independent Hardware Vendors (IHVs)
power management standards 29
Index (Index) 374
Index with Buffers 375
Index with Packages 375
Index with Strings 376
IndexField (Declare Index/Data Fields) 356
indicators, system 240
initialization
BIOS 233
boot-up 232
OsS 238
initialization object (_INI) 191
Input Buffer Full (IBF) flag 286, 291
input devices, power management 418, 424
Input/Output See l/O
insertion and removal objects 159
insertion and removal, batteries 260
Int (Convert Data Type to Integer) 376
INT 15 mapping 316
Integer datatype, ASL 343

Compag/I ntel/Micr osoft/Phoenix/T oshiba

456 Advanced Configuration and Power Interface Specification

Integers 386
Intel Architecture specifications 12
Intel Architecture-Personal Computer SeelA -
PC
interdependent resources 167
interfaces
ACPl 4
battery 37
BIOS, legacy 24
Control Method Battery 261
design guides 6
EC-SMB-HC 292
embedded controller 15
extensible firmware (EFI) 14
fixed hardware 44
hardware 5
mapping 316
sharing protocols 285
SMBus 18, 305
interference, device 52
Interrupt Descriptor macro, Extended 395
interrupt events
logic 49
SCI 69
shareable 69
SMI 69
Interrupt Source Overrides 113
interrupt sources, non-maskable (NMls) 115
interrupt status bits 51
interrupts
embedded controller interface 290
Extended Interrupt Descriptor 188
models 110, 113, 119
Platform Interrupt Source structure 117
PMIs 117
invocation, control methods 129
IRQ Descriptor macro, ASL 390
IRQs
data structure 165
mapping 113, 115
modem configuration example 36
PCI routing 158
ISA
busdevice 138, 242
Device Objects code 351
interrupt sources 113
old cards 169
ISDN Terminal Adapters See modems
isolation logic 33
italics, ASL notation 323
joysticks Seeinput devices
Kelvinscale 269
kernel 4
key, logic diagrams 47
keyboard controllers 282
keyboards Seeinput devices

LAN, waking from 28
LANd (Logical And) 376
large resource datatype 171
latency
acceptable 26
global power states 20
processor power states 211
lazy 1/0O operations 2
LCD panels
brightness control 435
power management 422
legacy BIOS interfaces 24
legacy hardware
BIOS specification 12
boot flags 105
converting to fixed 43
definition 16
interrupt handlers 69
support 3
legacy OS, definition 16
legacy systems
definition 16
memory mapping 235
power button functions 27
power management 50
power state transitions 48
switching devices out of 192
transitioning to ACPI 69
legends, logic diagrams 47
LEqual (Logical Equal) 376
LGreater (Logical Greater) 376
L GreaterEqual (Logical Greater Than Or
Equal) 377
lid device 139
lid status notification values 138
lid switch 81
life, battery 38
link status events 429
LINT 115
Literal Data Terms 385
LLess (Logical Less) 377

LLessEqual (Logical Less Than Or Equal) 377

LNot (Logical Not) 377

Load (Load Differentiated Definition
Block) 365

loading Definition Blocks 87, 109, 365, 377

LoadTable (Load Definition Block From
XSDT) 377

local APIC, definition 16

local areanetworks See LAN

Local Objects encoding, AML 407

Localx (Method Local Data Objects 389

Lock (_LCK) object 163

Lock, Global 108

logic
fixed power button 61

Compag/I ntel/Microsoft/Phoenix/Toshiba

generic hardware event example 78
lid switch 81
sleep button 64
sleeping/wake control 66
logic diagram legends 47
Long Vendor-Defined Descriptor macros 392
LOr (Logical Or) 378
low-level warnings, battery 39
LPT ports 34
macros, ASL
24-bit Memory Descriptor 392
32-hit Fixed Memory Descriptor 393
32-bit Memory Descriptor 392
coding 129
data 387
DMA Descriptor 391
DWORD 394
EISAID 387
End- Dependent Functions Descriptor 391
Extended Interrupt Descriptor 395
Fixed /O Port Descriptor 392
Generic Register Descriptor 396
I/O Port Descriptor 391
IRQ Descriptor 390
QWORD 393
Resource Descriptors 390
Resource Template 388
Start Dependent Function Descriptor 391
Unicode 389
V endor-Defined Descriptors 392
WORD 395
MADT
_MAT object 155
definition 16
flags 111
interrupt models 110
tablefields 111
Magic Packet wake 428
management See power management; thermal
management
mapping
E820 316
EFlI GetMemoryMap 318
Global System Interrupts 120
INT 15 316
interfacesfor 316
IRQs 113, 115
PCI interrupt pins 157
physical memory 235
Query System Address Map function 321
samples 320
Match (Find Object Match) 378
MCA systems 86
Mechanical Off
definition 19
properties 20

Index 457

transitioning from 48
transitioning to 27
memory
BIOSinitialization 235
controller configuration 234
descriptor macros 392, 393
devices 252
map interfaces 316
map sample 320
NVS 235
physical mapping 235
resource flag 186, 187
memory device 139
memory range descriptors
24-Bit 171
32-Bit 173
32-Bit Fixed Location 175
purpose 172
memory space 51
Message (_ MSG) control method 241
Method (Declare Control Method) 357
Method datatype, ASL 345
methods, control See control methods
mice Seeinput devices
Microsoft Device Class Power Management
specifications 29
Mid (Retrieve Portion of Buffer or String 379
mobile PCs
lid switch 81
power management 27
profile system type 105
Mod (Modulo) 380
modems
configuration example 36
power management 418, 426
power management example 32
modifiers
ASL names 341
namespace 361
Module Device 139, 250
MON-ALRM 68
monitors See display devices
month alarm 67
motherboard device configurations
ACPI goals 1
controlled by OSPM 24
modems 427
MPSINTI flags 114
Multiple APIC Description Table See MADT
Multiple APIC Table Entry (_ MAT) object 155
multiple Smart Battery Subsystem 259
Multiply (Multiply) 380
multiprocessor PCs
performance control 220
power management for 28
mutex

Compag/I ntel/Micr osoft/Phoenix/T oshiba

458 Advanced Configuration and Power Interface Specification

acquiring 371
Global Lock 145
release synchronization objects 366
Mutex (Declare Synchronization/Mutex
Object) 358
Mutex datatype, ASL 345
Name (Declare Named Object) 361
Name Objects encoding, AML 399
Named Object terms 348
Named Objects encoding, AML 401
names, ASL 324
names, object 16
Namespace See ACPI Namespace
naming conventions 123
NAnNd (Bitwise Nand) 380
nested packages 375
network devices, power management 418, 428
night mode 28
NMIs 115
noise, active cooling 42
non-linear address spaces 305
Non-Maskable Interrupt Sources (NMIs) 115
non-visible states, device power 21
Non-Volatile Sleep state, definition 20
Non-Volatile Sleeping memory (NVS) 235
Noop Code (No Operation) 365
NOr (Bitwise Nor) 380
Not (Not) 380
notation
AML 397
ASL 322
numeric constants 322
register bits 47
Nothing 322
notification
battery removal 260
embedded controller interface 289
power button control 62
Smart Battery status 255
temperature changes 269
Notify (Notify) 366
numeric constants, notation 322
NVSfiles
checking validity 237
restoring from 20
NVS memory 235
object name, definition 16
Object Reference datatype, ASL 346
object terms, ASL 347
objects See also control methods
_ACx (Active Cooling) 267, 274
_ADR (Address) 146
_ALXx (Active List) 275
_BBN (Base Bus Number) 194
_BIF (Battery Information) 261
_BST (Battery Status) 263

_BTP (Battery Trip Point) 264

_CID (Compatible ID) 147

_CRS (Current Resource Settings) 150
_CRT (Critical Temperature) 272, 275
_CST (C States) 218

_DDN (Device Name 148

_DIS (Disable) 150

_DMA (Direct Memory Access) 150
_EDL (Eject Device List) 161

_EJD (Ejection Dependent Device) 161
_EJX (Eject) 162

_FDE (Floppy Disk Enumerate) 247
_FDI (Floppy DIsk Information) 248
_FIX (Fixed Register Resource Provider) 151
_GLK (Global Lock) 196

_HID (hardware ID) 148, 257

_HOT (Hot Temperature) 275

_HPP (Hot Plug Parameters) 153

_INI (Init) 191

_IRC (In Rush Current) 204

_LCK (Lock) 163

_MAT (Multiple APIC Table Entry) 155
_PCL (Power Consumer List) 265
_PCT (Performance Control) 221

_PPC (Performance Present Capabilities) 223
_PRO (Power Resources for DO) 202
_PR1 (Power Resourcesfor D1) 202
_PR2 (Power Resources for D2) 203
_PRS (Possible Resource Settings) 156
_PRT (PCI Routing Table) 157

_PRW (Power Resourcesfor Wake) 135, 203
_PSL (PassivelList) 275

_PSR (Power Source) 265

_PSS (Performance Supported States) 222
_PSV (Passive) 267, 276

_PTC (Processor Throttling Control) 217
_PXM (Proximity) 159

_RMV (Remove) 163

_S1D 204

_S2D 204

_S3D 204

_$4D 205

_SBS (Smart Battery Subsystem) 257
_SEG (Segment) 195

_ SRS (Set Resource Settings) 159

_STA (Status) 164, 199

_STR (String) 148

_SUN (Slot User Number) 148

_TC1 (Thermal Constant 1) 276

_TC2 (Thermal Constant 2) 276
_TSP(Thermal Sampling Period) 277
_TZD (Thermal Zone Devices) 277
_TZP (Thermal Zone Polling) 277
_UID (UniquelID) 148

ASL encoding 341

ASL statements 322

Compag/I ntel/Microsoft/Phoenix/Toshiba

ASL, declaring 128
control methods 129
data 384
definition 16
device configuration 149
deviceidentification 146
deviceinsertion and removal 159
device power resource 202
device-specific 240
dynamic 130
EC-SMB-HC 303
embedded controller interface 302
floppy controller 247
generic 139
global scope 126
initialization 191
Module Device 250
names, reserved 341
Notify operator 136
OS-defined 145
Power Resource 197
processor 217
revision data 145
Smart Battery 257
SMBus host controller 307
static 130
thermal management 274
unnamed 127
ObjectType 322, 381
OEM implementation 3
OEM -supplied control methods 205
off See Mechanical Off; Soft-Off
OFF 198
ON 199
One (Constant One Object) 387
Ones (Constant Ones Object) 387
opcodes
Typel, AML 403
Typel, ASL 362
Type 2, AML 404
Type 2, ASL 369
Operating System See OS
Operating System-directed Power
Management See OSPM
Operation Region datatype, ASL 345
Operation Region Field Unit datatype, ASL 344
operation regions
SMBus 305, 308
OperationRegion term
accesstypes 353
Declare Operation Region 358
operators, ASL 342
OpRegion 129
Or (Bit-wise Or) 381
organization, document 10
original equipment manufacturer See OEM

Index 459

os
AML support, required 322
boot flags 105
compatibility requirements 10
defined object names 145
DefinitionBlock compiling 347
device power management 30
drivers, embedded controller interface 282
functional fixed hardware implementation 44
independent generic hardware 45
legacy hardware interaction 3
loading 237
name object 145
policy owner, device power management 416
power management 2
Query System Address Map 321
4 Sleeping state transition 230
transparent events 50
osPM
caches, flushing 232
cooling policy changes 268
cooling preferences 42
definition 17
deviceinsertion and removal 159
event handlers 51
exclusive controls 25
fixed hardware access 43
fixed hardware registers 70
functions 24
general-event register access 79
generic hardware model 46
Get Power Status 31
goas 1
hardware model 48
implementation requirements 9
passive cooling 270
performance states 35
power management vs. performance 197
power state control 25
Real Time Clock Alarm (RTC) 67
resetting system 77
Set Power State operation 30
SMBusregistration 307
thermal management 41, 267
transitioning to sleeping states 227
transitioning working to sleeping states 231
transitioning working to soft-off state 231
Output Buffer Full (OBF) flag 286, 291
output devices
control methods 443
definition 436
switching 445
types of 438
override, power button 63
P BLK 76
P LVL2 76

Compag/I ntel/Micr osoft/Phoenix/T oshiba

460 Advanced Configuration and Power Interface Specification

P_LVL3 77
PO performance state, definition 23
P1 performance state, definition 23
Package (Declare Package Object) 384
Package datatype, ASL 344
packages
definition 17
length 126
length encoding, AML 400
nested 375
packet error checking (PEC) 306
parameters, ASL 346
parent bits 51, 77
parent objects, ASL statements 322
parentheses, AML notation 398
Passive (_PSV) object 267, 276
passive cooling
definition 42, 267
preferences 42, 272
processor clock throttling 270
threshold values 272
Passive List (_PSL) object 275
PC Card controllers, power management 418,
429
PC keyboard controllers 282
PCCARD 417
PCI
BAR target operations 355
bus number 194
buses, address space translation 87
Device Objects code 351
device power management 417
interrupt pins 157
IRQ routing 158
power management 417
PCI configuration space 43, 51
PCI Interrupt Link device 139
PCI Routing Table (_PRT) object 157
PCISIG 417
PCMCIA 417
PEC (packet error checking) 293, 306
Performance Control (_PCT) object 221
Performance Present Capabilities (_PPC)
object 223
performance states
definitions 23
device 35
Performance Supported States (_PSS)
object 222
performance, energy conservation vs. 42, 197
Persistent System Description Table
(PSDT) 110
phones, answering
modem example 32
power management 2
waking computer 34

PIC method 145
pins
general event model 37
GPE 79
platform
implementation 5
independence 3
Platform Interrupt Source structure 117
Platform Management Interrupts (PMIs) 117
Plug and Play devices
ACPI control 35
IDs 138, 146
large resourceitems 171
modem example 36
resource control method 149
small resource items 165
specifications 12
PM timer
bits 75
function 51
idletime, determining 35
operations 60
register address 57
register blocks 59
PM1 Control registers
addresses 57
bits 74
blocks 58
grouping 56, 73
PM1 Enable registers 72
PM1 Event registers
addresses 57
blocks 58
grouping 56, 70
PM1 Status registers 70
PM2 Control registers
addresses 57
bits 75
blocks 58
PM2 Controller register grouping 57
PMIs 117
Pn performance state, definition 23
PNPBIOS 24
Polarity flags 114
policy owner 416
polling, thermal 269, 270
port descriptors, 1/0 169
portability See independence, OS
Possible Resource Settings (_PRS) object 156
POST Device control methods 440
power button
ASL code example 63
control methods 62, 242
definition 17
devicelD 139
dual-button model 61

Compag/I ntel/Microsoft/Phoenix/Toshiba

fixed hardware 61

functions 27

object notification values 137
override 63, 66

single-button model 61

Power Consumer List (_PCL) object 265
power consumption

device and processor performance states 23
device power states 22
global power states 20

power loss

Mechanical Off 48
4 Non-Volatile Sleep state 20

power management

audio devices 419

BIOS 2

buses 417

COM port devices 421
cooling, relationship to 42
definition 17

desktop PCs 28

device 28, 416, 418
device objects 199
display devices 422
display standards 417
goas 1,2

input devices 424

lazy 1/O operations 2
legacy 50

mobile PCs 27

modem devices 426
modem example 32
multiprocessor PCs 28
network devices 428

PC Card controllers 429
PCI 417

PCMCIA 417
performance states 35
performance vs. energy conservation 42, 197
Plug and Play devices 36
preferred system types 105
processor 35

servers 28

setting device power states 30
standards 29

storage devices 431

power management (PM) timer

bits 75

function 51

idletime, determining 35
operations 60

register address 57
register blocks 59

Power Resource datatype, ASL 345
power resources

battery management 253

Index 461

child objects 198
definition 17
device objects 202
devices, turning off 31
Differentiated Definition Block 30
isolation logic 33
objects 197
shared 34
wake system object 203
Power Source (_PSR) object 265
power sources
AC adapter 265
definition 17
object notification values 137
power states
control methods 201
controlled by OSPM 25
device 21
global 19
non-symmetric processor 212
objects 201
processor 23, 211
sleeping 22
transitioning 48
user-visible 26
PowerResource (Declare Power Resource) 359
preferences, user
performance vs. energy conservation 42, 272
power button 27
preferred PM profile system 105
Prepare to Sleep (_PTS) control method 205
private embedded controller interface 284
Process Call (SMBProcessCall) protocol 314
processor See CPU
Processor (Declare Processor) 360
processor and device performance states 23
processor control block 59
processor control registers
addresses 57
bits 76
Processor datatype, ASL 345
processor device notification values 138
Processor Local APIC 112,115
Processor Local SAPIC 117
processor LVL2 register 76, 212
processor LVL3 register 77, 212
processor objects 217
processor register block 76
Processor Throttling Control (_PTC) object 217
programming models
events 130
feature summary 53
fixed 43
generic 45
protocol register (SMB_PRTCL) 293
protocols

Compag/I ntel/Micr osoft/Phoenix/T oshiba

462 Advanced Configuration and Power Interface Specification

BARs (Base Address Registers) 355
CMOS 354
SMBus 296, 305, 311
Proximity (_PXM) object 159
PSDT 110
pseudocode language See AML
pulsed interrupts 290
PWRBTN_EN 73
PWRBTN_STS 71
Query Embedded Controller (QR_EC) 289
query events 78
Query System Address Map function 321
query value, definition 47
quotes
AML notation 397
ASL notation 323
QWORD 177
QWORD Address Space Descriptor macro 393
Read Embedded Controller (RD_EC) 287
Read/Write Block (SMBBIock) protocol 314
Read/Write Byte (SMBByte) protocol 313
Read/Write Quick (SMBQuick) protocol 311
Read/Write Word (SMBWord) protocol 313
Real Time Clock Alarm (RTC) 67
reclaim memory 235
RefOf (Reference Of) 382
Region (_REG) control method 192
register bits, notation 47
register blocks 56
register definitions, hardware 44
register groupings
definition 17, 55
list of 56
registers
BARs (Base Address Registers) 355
control 55
EC-SMB-HC 292
embedded controller interface 285
enable 36
fixed feature 15
fixed hardware 70
general-purpose event 15
reset 77
SMB-HC 300
status 36
status/enable 55
virtual 306, 310
related deviceinterference 52
Release (Release a Mutex Synchronization
Object) 366
Releaseterms 358
Remaining Battery Percentage 38, 264
removal objects 159
removal, batteries 260
Remove (RMV) object 163
requirements, implementation

OS 10
OosPM 9
reserved bits
definition 17
hardware 51
PM1 Control registers 74
PM1 Enable registers 73
PM1 Status register 71, 72
software requirements 88
reserved object names 341
reserved SMBus protocol values 305
Reset (Reset an Event Synchronization
Object) 366
reset register 77
resource data types
Address Space Descriptors 176
control methods 164
DMA 167
End Dependent Functions 168
endtag 170
IRQ 165
large 171
memory range descriptors 171
small 164
Start Dependent Functions 167
vendor defined 170, 173
resource descriptor macros 390
Resource Template macro 388
resources
allocation 159
control method 149
interdependencies 167
resources, power See power resources
restoring system context 20, 229
results, storing 346
Return (Return) 366
Revision (Constant Revision Object) 387
revision data object 145
RISC processors 176
RISC systems 27
ROM control methods 439
Root System Description Pointer See RSDP
Root System Description Table See RSDT
RSDP
definition 17
location 90
table structure 91
RSDT
definition 17
location 86
tablefields 94
RTC (Real Time Clock Alarm) 67
RTC/OMOS protocols 354
RTC EN 73
RTC_STS 72
SO State (Working) 208

Compag/I ntel/Microsoft/Phoenix/Toshiba

S1 Sleeping state
_S1D object 204
behavior during 208
definition 22
implementation 228
transitioning 207
waking using RTC 67
S2 Sleeping state
_S2D object 204
behavior during 208
definition 22
implementation 228
transitioning 207
waking using RTC 67
S3 Sleeping state
_S3D object 204
behavior during 209
definition 22
implementation 229
transitioning 207
waking using RTC 67
4 Sleeping state
_$A4D object 205
behavior during 209
definition 20, 22
implementation 229
low-level battery 40
waking using RTC 67
S5 Soft- Off
behavior during 210, 230
definition 19, 22
properties 20
transitioning to 231
SAPIC
definition 18
/0O 16, 116
local 16
NMI 115
Processor Local 117
support 110
saving system context
during emergency shutdown 40
4 Non-Volatile Sleep state 20, 229
SBST 121
SCl
battery statusinformation 31
definition 18
embedded controller events 290
enable bits 31
event flags (SCI_EVT) 286
interrupt handlers 50, 69
SCI_EN 69, 70, 74
Scope (Declare Name Scope) 362
SCSl, power management 417
Secondary System Description Table See SSDT
Segment (_SEG) object 195

Index 463

Send/Receive Byte (SMBSendReceive)
protocol 312
separators, ASL 322
Serialized methods 358
server machines, power management 28
Set Cooling Policy (SCP) control method 276
Set POST Device (_SPD) 440
Set Power State 30
Set Resource Settings (_SRS) object 159
Set the Brightness Level (BCM) 442
Set Timing Mode (_STM) control method 247
settings, user
performance vs. energy conservation 42, 272
power button 27
shareable interrupts 69
shared interface, embedded controller 283, 285
ShiftLeft (Shift Left) 382
ShiftRight (Shift Right) 382
Short Vendor-Defined Descriptor macro 392
shutdown, emergency 40, 272
shutting down See Mechanical Off; Soft-Off
Signal (Signal a Synchronization Event) 366
signatures
collisions, avoiding 93
interpreting 86, 94
values, storing 88
Simple Boot Flag Specification, Microsoft 93
single quotes
AML notation 397
ASL notation 323
single-button model 61
SizeOf (SizeOf Data Object) 382
dlave addresses, SMBus 254, 305
Sleep (Sleep) 366
sleep button
ASL code example 65
control methods 64, 242
definition 17
devicelD 139
fixed hardware 64
object notification values 137
support 64
Sleeping states
behavior during 208
button logic 64
control methods 205
definitions 19, 22
entering 227
logic controlling 66
non-volatile 20
objects 204
packages, system state 206
power consumption 20
power loss 20
properties 20
transitioning 26, 206

Compag/I ntel/Micr osoft/Phoenix/T oshiba

464 Advanced Configuration and Power Interface Specification

transitioning to 225, 226
user settings 27
waking using RTC 67
Slot User Number (_SUN) object 148
SLP EN 74, 227
SLP _EN field 66
SLP_TYPx 74, 227
SLP _TYPxfield 55, 66
SLPBTN_EN 73
SLPBTN_STS 71
small resource datatype 164
Smart Batteries
control methods 258
definition 18
devicelD 139
multiple battery subsystem 259
objects 257
single battery subsystem 258
SMBus data buffers 311
SMBusdevices 308
specifications 12
statusnotification 255
subsystem 37, 253
supported 31
table 18
tableformats 120
Smart Battery Charger
functions 255
status notification 256
Smart Battery Selector 256
Smart Battery System Manager
functions 255
status notification 256
SMB-HC 254, 259, 300
SMBus
addressregister (SMB_ADDR) 294
address space 305
alarm address register
(SMB_ALRM_ADDR) 295
alarm dataregister
(SMB_ALRM_DATA) 296
block count register (SMB_BCNT) 295
Block Write-Read Block Process Call
(SMBBIlockProcessCall) protocol 315
command register (SMB_CMD) 295
commands, restricted 302
data buffers 310
dataregister array (SMB_DATA) 295
definition 18
device access, embedded controller
interface 301
device enumeration, enabling 307
devicelD 139
embedded controller interface 292
encoding, bit 306
fields, declaring 309

generic hardware addresses 51
host controller notification header
(OS_ SMB_EVT) 289
host controller objects, declaring 307
interface 18
operation regions 305, 308
PEC (packet error checking) 306
Process Call (SMBProcessCall) protocol 314
protocol register (SMB_PRTCL) 293
protocols 296, 305, 311
Read/Write Block (SMBBIock) protocol 314
Read/Write Byte (SMBByte) protocol 313
Read/Write Quick (SMBQuick) 311
Read/Write Word (SMBWord) protocol 313
Send/Receive Byte (SMBSendReceive)
protocol 312
slave addresses 254, 305
specifications 12
status codes 306
statusregister (SMB_STS) 292
transactions 306
virtual registers 306
SMI
definition 18
embedded controller firmware 289
event flags (SMI1_EVT) 287
interrupt events 50, 69
SMM firmware 44
Soft-Off
behavior during 210, 230
definition 19, 22
properties 20
transitioning crashed systemsto 61
transitioning to 48, 231
SOHO servers 105
SOUrces, power See power sources
SSDT 17, 110
Stall (Stall for a Short Time) 367
standards
device power states 29
power management 29
Start Dependent functions 167
Start-Dependent Function Descriptor macro 391
statements
ASL 322
Case 368
Default 368
Elself 364
If 364
Power Resource 197
Processor 217
Switch 368
states See power states
static objects 130
Status (_STA) 199
Status (_STA) object 164

Compag/I ntel/Microsoft/Phoenix/Toshiba

status bits
corresponding enable bits 79
functions 77
symbol 47
status codes, SMBus 306
status notification, Smart Battery 255
status register 36
statusregister (SMB_STS) 292
status, battery 31
status/enable registers 55
sticky status bit, definition 47
storage devices, power management 418, 431
Store (Store) 382
storing results, ASL operators 346
Streamlined Advanced Programmable Interrupt
Controller See SAPIC
String (_STR) object 148
String (Create ASCII String From Buffer) 383
String datatype, ASL 343
strings, ASL 322, 386
Subtract (Subtract) 383
supplemental documentation 12
surprise-styleremoval 159, 163
Switch — Select Code To Execute Based O 367
Switch statements 368
switching, output devices 445
Sx states See Sleeping states
symbols, logic diagrams 47
syntax
ASL 322
OperationRegion 308
Power Resource statements 197
system context
definition 18
during emergency shutdown 40
restoring 20
4 Sleeping state 229
sleep stateslostin 22
System Control Interrupt See SCI
system description tables See tables
system events, general model 36
system indicators 240
System Management Bus See SMBus
System Management Interrupt See SMI
System Management Mode See SMM
system memory space 51
system states, global See global system states
System Status (_SST) control method 241
System Wake (_ WAK) control method 210
tables
addressformat 89
compatibility 89
DSDT 110
embedded controller boot resources 121
encoding format 88
FACS 106

Index 465

FADT 96

headers 85, 92

MADT 111

overview 85

RSDP 91

RSDT 94

SBST (Smart Battery Description) 120

signatures 93

SSDT 110

XSDT 95
Temperature (_TMP) control method 267, 277
temperature changes, detecting 268
temperature management See thermal

management
Term Objects encoding, AML 401
terminology

design guides 6, 7

device power states 21

general 13

global system states 19

performance states 23

processor power states 23

sleeping states 22
terms

AML 397

ASL 324,346

ASL notation 323
Thermal Constant 1 (_TC1) object 276
Thermal Constant 2 (_TC2) object 276
thermal management

control methods 274

energy conservation, optimizing 42

notification of temperature changes 269

objects 274

OSPM controlled 267

overview 41

performance, optimizing 42

polling 269, 270

temperature changes, detecting 268

threshold settings, dynamically changing 268

trip points 269
Thermal Sampling Period (_TSP) object 277
thermal states, definition 18
Thermal Zone datatype, ASL 345
Thermal Zone Devices (_TZD) object 277
Thermal Zone Polling (_TZP) object 277
thermal zones

basic configuration 278

examples 278

mobile PC example 41

multiple 42

multiple-speed fan example 280

object notification values 137

object requirements 278
ThermalZone (Declare Thermal Zone) 360

Compag/I ntel/Micr osoft/Phoenix/T oshiba

466 Advanced Configuration and Power Interface Specification

thirty-two bit fixed location memory range
descriptor 175
thirty-two bit memory range descriptor 173
throttling 213, 217
THT_EN 76
timers
global standby 51
ide 51
power management (PM) 51, 60
TMR- field 60
TMR_EN 73
TMR_STS 70
TMR_VAL 75
ToBCD (Convert to BCD) 383
token ring adapters See network devices
top of memory 236
transactions, SMBus
data buffers 310
status codes 306
transitioning
crashed systems 61
device power states 417
Legacy mode to ACPI 69
power states 26, 48
waking and sleeping 225
working to sleeping states 231
working to soft-off states 231
transparent events 50
transparent switching, device power states 22
trap monitors 51
Trigger Modeflags 114
trip points, thermal 269
turning off See Mechanical Off; Soft-Off;
transitioning
TVs 438
twenty-four bit memory range descriptor 171
Type 1 Opcodes
AML encoding 403
ASL 362
Type 2 Opcodes
AML encoding 404
ASL 362, 369
UARTS, power management 421
Unicode macro 389
Uninitialzed datatype, ASL 342
UniqueID (_UID) object 148
Unload (Unload Differentiated Definition
Block) 368
unnamed objects 127
unrelated device interference 52
upper case, ASL names 341
USB, power management 417, 418
user preferences
performance vs. energy conservation 42, 272
power button 27
User Terms 384

user-visible power states 26
value-added hardware
enabling OSPM 45
registers 77
Variable List 322
V CR-style gjection mechanism 159
vendor defined descriptor macros 392
vendor defined resource datatypes 170, 173
VESA specifications 417
VGA 438, 440
video controllers, power management 422
Video Electronics Standards Associations
(VESA) 417
video extensions, requirementsfor 435
Video POST Options (_VPO) 441
virtual dataobjects 389
virtual registers 306, 310
visible states
global system 19
power 26
Wait (Wait for a Synchronization Event) 383
WAK_STS (Wake Status) 66, 72
wake frame events 429
waking
_BFS (Back From Sleep) control method 205
_WAK control method 210
audio devices 420
COM ports 421
device power resource object (PRW) 203
devices 419
disabling systemrwaking devices 204
display devices 424
initialization 232
input devices 425
latency time 26
lid switch 81
logic controlling 66
modem devices 427
modem example 32, 34
network devices 429
OS operations 31
overview 225
PC Card controllers 431
Real Time Clock Alarm (RTC) 67
resetting lost enable bits 79
storage devices 434
warm insertion and removal 160, 162
warnings, battery 39
WBINVD 216, 232
web sites
Intel Architecture 12
Microsoft 12
PCISIG 417
PCMCIA 417
Smart Battery System 12
SMBus specification 305

Compag/I ntel/Microsoft/Phoenix/Toshiba

USB-IF 418
While (While) 369
WORD 184
WORD Address Descriptor macro 395
Working state
behavior during 226
definition 19
properties 20
transitioning to 48
transitioning to Sleeping state 231
transitioning to Soft-Off 231
workstations 105
Write Embedded Controller (WR_EC) 288

write-only bits
control 47
definition 52
XOr (Bitwise Xor) 384
XSDT
definition 18
loading Definition Block 377
location 86
tablefields 95
Zero (Constant Zero Object) 387
Zero, One, Ones datatype, ASL 346
zones, thermal See thermal zones

Compag/I ntel/Micr osoft/Phoenix/T oshiba

Index 467

