
VOLUME 3: Platform Initialization

Shared Architectural Elements

Version 1.3

3/29/2013

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

ii 3/29/2013 Version 1.3

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006 - 2013 Unified EFI, Inc. All Rights Reserved.

Version 1.3 3/29/2013 iii

Revision History

Revision Revision History Date

1.0 Initial public release. 8/21/06

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

• M178 Remove references to tail in file header and made file
checksum for the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and
update all FV

10/29/07

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

1.1
correction

Restore (missing) MP protocol 03/12/08

1.1 Errata Revises typographical errors and minor omissions--see Errata for
details

04/25/08

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

iv 3/29/2013 Version 1.3

1.1 Errata Mantis tickets
• 204 Stack HOB update 1.1errata

• 225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

•

01/13/09

1.1 Errata • 247 Clarification regarding use of dependency expression section
types with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File
Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Version 1.3 3/29/2013 v

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp
PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

vi 3/29/2013 Version 1.3

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table
Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

Version 1.3 3/29/2013 vii

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl
has EFI_STATUS w/o return code & errror on stage 3 recovery
description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service

clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

viii 3/29/2013 Version 1.3

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM
architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState()
return code

• 737 Remove SMM Communication ACPI Table definition .

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• 753 SIO PEI and UEFI-Driver Model Architecture

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in
EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT, Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Version 1.3 3/29/2013 ix

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP)
clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM
Migration is not required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

1.2.1 Errata
A

• 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the
GCD

• 936 Clarify memory usage in PEI on S3

• 937SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958

• 969Vol 1 errata: TE Header parameters

10/26/12

1.2.1 Errata
A

• 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the
GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

x 3/29/2013 Version 1.3

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and
printing convenience. The Platform Initialization Specification consists of the following volumes:

VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface

VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization
Specification is available to aid search functions through the entire specification.

Version 1.3 3/29/2013 xi

Contents

1
Platform Intialization
Shared Architectural Elements ... 1
1.1 Overview ... 1
1.2 Target Audience.. 1
1.3 Conventions Used in this Document... 1

1.3.1 Data Structure Descriptions .. 1
1.3.2 Pseudo-Code Conventions ... 2
1.3.3 Typographic Conventions ... 2

1.4 Conventions used in this document .. 4
1.4.1 Number formats .. 4
1.4.2 Binary prefixes .. 5

2
Firmware Storage Design Discussion .. 7
2.1 Firmware Storage Introduction.. 7

2.1.1 Firmware Devices ... 7
2.1.2 Firmware Volumes .. 7
2.1.3 Firmware File System ... 8
2.1.4 Firmware Files... 8
2.1.5 Firmware File Sections.. 14

2.2 PI Architecture Firmware File System Format .. 16
2.2.1 Firmware Volume Format.. 17
2.2.2 Firmware File System Format ... 18
2.2.3 Firmware File Format .. 18
2.2.4 Firmware File Section Format ... 20
2.2.5 File System Initialization.. 20
2.2.6 Traversal and Access to Files ... 24
2.2.7 File Integrity and State .. 25
2.2.8 File State Transitions .. 26

3
Firmware Storage Code Definitions.. 31
3.1 Firmware Storage Code Definitions Introduction ... 31
3.2 Firmware Storage Formats ... 31

3.2.1 Firmware Volume .. 31
EFI_FIRMWARE_VOLUME_HEADER... 31

3.2.2 Firmware File System ... 37
EFI_FIRMWARE_FILE_SYSTEM2_GUID.. 37
EFI_FIRMWARE_FILE_SYSTEM3_GUID.. 38
EFI_FFS_VOLUME_TOP_FILE_GUID... 39

3.2.3 Firmware File .. 40
EFI_FFS_FILE_HEADER ... 40

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

xii 3/29/2013 Version 1.3

3.2.4 Firmware File Section ... 46
EFI_COMMON_SECTION_HEADER ... 46

3.2.5 Firmware File Section Types... 48
EFI_SECTION_COMPATIBILITY16 ... 48
EFI_SECTION_COMPRESSION.. 49
EFI_SECTION_DISPOSABLE.. 51
EFI_SECTION_DXE_DEPEX ... 52
EFI_SECTION_FIRMWARE_VOLUME_IMAGE .. 53
EFI_SECTION_FREEFORM_SUBTYPE_GUID... 54
EFI_SECTION_GUID_DEFINED.. 55
EFI Signed Sections.. 57
EFI_SECTION_PE32 .. 58
EFI_SECTION_PEI_DEPEX... 59
EFI_SECTION_PIC... 60
EFI_SECTION_RAW .. 61
EFI_SECTION_SMM_DEPEX .. 62
EFI_SECTION_TE .. 63
EFI_SECTION_USER_INTERFACE .. 64
EFI_SECTION_VERSION... 65

3.3 PEI .. 66
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI.. 66

3.3.1 PEI Firware Volume PPI ... 67
EFI_PEI_FIRMWARE_VOLUME_PPI .. 67
EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume().................................... 68
EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType() 69
EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName() 70
EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo() ... 71
EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo() 72
EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType().............................. 73

3.3.2 PEI Load File PPI.. 73
EFI_PEI_LOAD_FILE_PPI.. 73
EFI_PEI_LOAD_FILE_PPI.LoadFile()... 75

3.3.3 PEI Guided Section Extraction PPI ... 76
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI .. 76
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() 78

3.3.4 PEI Decompress PPI .. 80
EFI_PEI_DECOMPRESS_PPI.. 80
EFI_PEI_DECOMPRESS_PPI.Decompress() .. 81

3.4 DXE... 82
3.4.1 Firmware Volume2 Protocol.. 82

EFI_FIRMWARE_VOLUME2_PROTOCOL.. 82
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes() 84
EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes().................... 87
EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile() 89
EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()................................ 93
EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile() 95
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile() 98

Version 1.3 3/29/2013 xiii

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()....................................... 100
EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo() 102

3.4.2 Firmware Volume Block2 Protocol .. 103
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.. 103
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes() 105
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()................ 106
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress().... 107
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()............... 108
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()............................ 109
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()............................ 111
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks() 113

3.4.3 Guided Section Extraction Protocol .. 114
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL 114
EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection() 115

4
HOB Design Discussion .. 117
4.1 Explanation of HOB Terms ... 117
4.2 HOB Overview .. 117
4.3 Example HOB Producer Phase Memory Map and Usage .. 118
4.4 HOB List.. 118
4.5 Constructing the HOB List .. 119

4.5.1 Constructing the Initial HOB List ... 119
4.5.2 HOB Construction Rules ... 119
4.5.3 Adding to the HOB List.. 120

5
HOB Code Definitions .. 121
5.1 HOB Introduction .. 121
5.2 HOB Generic Header.. 122

EFI_HOB_GENERIC_HEADER.. 122
5.3 PHIT HOB ... 124

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB) ... 124
5.4 Memory Allocation HOB.. 126

5.4.1 Memory Allocation HOB.. 126
EFI_HOB_MEMORY_ALLOCATION.. 126

5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB............................ 129
EFI_HOB_MEMORY_ALLOCATION_STACK.. 129

5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB 131
EFI_HOB_MEMORY_ALLOCATION_BSP_STORE .. 131

5.4.4 Memory Allocation Module HOB ... 132
EFI_HOB_MEMORY_ALLOCATION_MODULE... 132

5.5 Resource Descriptor HOB .. 133
EFI_HOB_RESOURCE_DESCRIPTOR... 133

5.6 GUID Extension HOB ... 139
EFI_HOB_GUID_TYPE... 139

5.7 Firmware Volume HOB ... 140
EFI_HOB_FIRMWARE_VOLUME .. 140

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

xiv 3/29/2013 Version 1.3

EFI_HOB_FIRMWARE_VOLUME2 .. 141
5.8 CPU HOB.. 142

EFI_HOB_CPU ... 142
5.9 Memory Pool HOB .. 143

EFI_HOB_MEMORY_POOL... 143
5.10 UEFI Capsule HOB... 143

EFI_HOB_UEFI_ CAPSULE... 143
5.11 Unused HOB... 145

EFI_HOB_TYPE_UNUSED .. 145
5.12 End of HOB List HOB ... 146

EFI_HOB_TYPE_END_OF_HOB_LIST.. 146

6
Platform Intialization
Status Codes... 147
6.1 Status Codes Overview .. 147

6.1.1 Organization of the Status Codes Specification.. 147
6.2 Terms.. 147
6.3 Types of Status Codes.. 148

6.3.1 Status Code Classes... 150
6.3.2 Instance Number... 150

6.4 Hardware Classes... 151
6.4.1 Computing Unit Class ... 151
6.4.2 User-Accessible Peripheral Class... 160
6.4.3 Subclasses.. 161

6.5 Software Classes .. 179
6.5.1 Host Software Class.. 179
6.5.2 Instance Number... 179
6.5.3 Progress Code Operations.. 179
6.5.4 Error Code Operations .. 180
6.5.5 Subclasses.. 181
6.5.6 Runtime (RT) Subclass ... 190

6.6 Code Definitions.. 198
6.6.1 Data Structures ... 198
6.6.2 Extended Data Header.. 198

EFI_STATUS_CODE_DATA... 198
 EFI_STATUS_CODE_DATA_TYPE_STRING_GUID...................................... 200
EFI_STATUS_CODE_SPECIFIC_DATA_GUID ... 203

6.6.3 Enumeration Schemes.. 203
6.6.4 Common Extended Data Formats... 204

EFI_DEVICE_PATH_EXTENDED_DATA... 205
EFI_DEVICE_HANDLE_EXTENDED_DATA.. 206
EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA..................................... 207

6.7 Class Definitions ... 208
6.7.1 Computing Unit Class ... 209

EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA..................................... 215
EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA............... 217

Version 1.3 3/29/2013 xv

EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA......................... 218
EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA 219
EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA..................................... 221
EFI_CACHE_INIT_DATA.. 222
EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA 223
EFI_MEMORY_EXTENDED_ERROR_DATA .. 224
EFI_STATUS_CODE_DIMM_NUMBER... 227
EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA 229
EFI_MEMORY_RANGE_EXTENDED_DATA... 230

6.7.2 User-Accessible Peripherals Class ... 230
6.7.3 I/O Bus Class .. 236
6.7.4 Software Classes .. 242

EFI_DEBUG_ASSERT_DATA.. 260
EFI_STATUS_CODE_EXCEP_EXTENDED_DATA... 261
EFI_STATUS_CODE_START_EXTENDED_DATA ... 263
EFI_LEGACY_OPROM_EXTENDED_DATA ... 264

7
Report Status Code Routers ... 265
7.1 Overview ... 265
7.2 Code Definitions... 265

7.2.1 Report Status Code Handler Protocol... 265
EFI_RSC_HANDLER_PROTOCOL.. 265
EFI_RSC_HANDLER_PROTOCOL.Register() ... 267
EFI_RSC_HANDLER_PROTOCOL.Unregister().. 268

7.2.2 Report Status Code Handler PPI .. 268
EFI_PEI_RSC_HANDLER_PPI .. 268
EFI_PEI_RSC_HANDLER_PPI.Register().. 270
EFI_PEI_RSC_HANDLER_PPI.Unregister() .. 271

7.2.3 SMM Report Status Code Handler Protocol ... 271
EFI_SMM_RSC_HANDLER_PROTOCOL ... 271
EFI_SMM_RSC_HANDLER_PROTOCOL.Register()....................................... 273
EFI_SMM_RSC_HANDLER_PROTOCOL.Unregister() 274

8
PCD.. 277
8.1 PCD Protocol Definitions .. 277

8.1.1 PCD Protocol .. 277
EFI_PCD_PROTOCOL... 277
EFI_PCD_PROTOCOL.SetSku () ... 280
EFI_PCD_PROTOCOL.Get8 ()... 281
EFI_PCD_PROTOCOL.Get16 ()... 282
EFI_PCD_PROTOCOL.Get32 ()... 283
EFI_PCD_PROTOCOL.Get64 ()... 284
EFI_PCD_PROTOCOL.GetPtr () .. 285
EFI_PCD_PROTOCOL.GetBool ().. 286
EFI_PCD_PROTOCOL.GetSize ().. 287
EFI_PCD_PROTOCOL.Set8 () ... 288

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

xvi 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.Set16 () ... 289
EFI_PCD_PROTOCOL.Set32 () ... 290
EFI_PCD_PROTOCOL.Set64 () ... 291
EFI_PCD_PROTOCOL.SetPtr ()... 292
EFI_PCD_PROTOCOL.SetBool () .. 293
EFI_PCD_PROTOCOL.CallbackOnSet ()... 294
EFI_PCD_PROTOCOL.CancelCallback ().. 295
EFI_PCD_PROTOCOL.GetNextToken () ... 296
EFI_PCD_PROTOCOL.GetNextTokenSpace () ... 297

8.1.2 Get PCD Information Protocol... 297
EFI_GET_PCD_INFO_PROTOCOL... 297
EFI_GET_PCD_INFO_PROTOCOL.GetInfo ()... 299
EFI_GET_PCD_INFO_PROTOCOL.GetSku ()... 301

8.2 PCD PPI Definitions.. 301
8.2.1 PCD PPI.. 301

EFI_PEI_PCD_PPI.. 301
EFI_PEI_PCD_PPI.SetSku ().. 304
EFI_PEI_PCD_PPI.Get8 () ... 305
EFI_PEI_PCD_PPI.Get16 () ... 306
EFI_PEI_PCD_PPI.Get32 () ... 307
EFI_PEI_PCD_PPI.Get64 () ... 308
EFI_PEI_PCD_PPI.GetPtr ()... 309
EFI_PEI_PCD_PPI.GetBool () .. 310
EFI_PEI_PCD_PPI.GetSize () .. 311
EFI_PEI_PCD_PPI.Set8 ().. 312
EFI_PEI_PCD_PPI.Set16 ().. 313
EFI_PEI_PCD_PPI.Set32 ().. 314
EFI_PEI_PCD_PPI.Set64 ().. 315
EFI_PEI_PCD_PPI.SetPtr () ... 316
EFI_PEI_PCD_PPI.SetBool().. 318
EFI_PEI_PCD_PPI.CallbackOnSet () ... 319
EFI_PEI_PCD_PPI.CancelCallback () .. 320
EFI_PEI_PCD_PPI.GetNextToken () .. 321
EFI_PEI_PCD_PPI.GetNextTokenSpace ().. 322

8.2.2 Get PCD Information PPI .. 322
EFI_GET_PCD_INFO_PPI ... 322
EFI_GET_PCD_INFO_PPI.GetInfo () ... 324
EFI_GET_PCD_INFO_PPI.GetSku () ... 325

Version 1.3 3/29/2013 xvii

Figures

Figure 1. Example File Image (Graphical and Tree Representations).................................. 15
Figure 2. The Firmware Volume Format ... 17
Figure 3. Typical FFS File Layout ... 19
Figure 4. File Header 2 layout for files larger than 16Mb.. 19
Figure 5. Format of a section (below 16Mb) ... 20
Figure 6. Format of a section using the ExtendedLength field.. 20
Figure 7. Creating a File ... 27
Figure 8. Updating a File... 29
Figure 9. Bit Allocation of FFS Attributes.. 43
Figure 10. EFI_FV_FILE_ATTRIBUTES fields ... 91
Figure 11. Example HOB Producer Phase Memory Map and Usage................................ 118
Figure 12. Hierarchy of Status Code Operations .. 149
Figure 13. Status Code Services .. 265

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

xviii 3/29/2013 Version 1.3

Tables

Table 1. SI prefixes ... 5
Table 2. Binary prefixes ... 5
Table 3. Defined File Types .. 9
Table 4. Architectural Section Types .. 16
Table 5. Descriptions of EFI_FVB_ATTRIBUTES_2 .. 34
Table 6. Bit Allocation Definitions ... 44
Table 7. Supported FFS Alignments... 44
Table 8. Description of Fields for CompressionType .. 50
Table 9. Descriptions of Fields for GuidedSectionHeader.Attributes 56
Table 10. AuthenticationStatus Bit Definitions... 79
Table 11. Descriptions of Fields for EFI_FV_ATTRIBUTES... 86
Table 12. Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT 91
Table 13. Description of fields for EFI_FV_WRITE_POLICY ... 96
Table 14. Translation of HOB Specification Terminology ... 117
Table 15. EFI_RESOURCE_ATTRIBUTE_TYPE fields .. 137
Table 16. HOB Producer Phase Resource Types .. 138
Table 17. Organization of This Specification .. 147
Table 18. Class Definitions ... 150
Table 19. Progress Code Operations: Computing Unit Class... 151
Table 20. Error Code Operations: Computing Unit Class ... 151
Table 21. Computing Unit Class: Subclasses... 152
Table 22. Progress and Error Code Operations: Computing Unit Unspecified Subclass ... 153
Table 23. Progress and Error Code Operations: Host Processor Subclass 153
Table 24. Progress and Error Code Operations: Service Processor Subclass................... 155
Table 25. Progress and Error Code Operations: Cache Subclass 156
Table 26. Progress and Error Code Operations: Memory Subclass................................... 157
Table 27. Progress and Error Code Operations: Chipset Subclass.................................... 159
Table 28. Progress Code Operations: User-Accessible Peripheral Class 160
Table 29. Error Code Operations: User-Accessible Peripheral Class 160
Table 30. Defined Subclasses: User-Accessible Peripheral Class..................................... 161
Table 31. Progress and Error Code Operations: Peripheral Unspecified Subclass............ 162
Table 32. Progress and Error Code Operations: Keyboard Subclass 163
Table 33. Progress and Error Code Operations: Mouse Subclass 164
Table 34. Progress and Error Code Operations: Local Console Subclass 165
Table 35. Progress and Error Code Operations: Remote Console Subclass 165
Table 36. Progress and Error Code Operations: Serial Port Subclass 166
Table 37. Progress and Error Code Operations: Parallel Port Subclass 166
Table 38. Progress and Error Code Operations: Fixed Media Subclass 167
Table 39. Progress and Error Code Operations: Removable Media Subclass................... 167
Table 40. Progress and Error Code Operations: Audio Input Subclass.............................. 168
Table 41. Progress and Error Code Operations: Audio Output Subclass........................... 168
Table 42. Progress and Error Code Operations: LCD Device Subclass............................. 168
Table 43. Progress and Error Code Operations: Network Device Subclass....................... 169

Version 1.3 3/29/2013 xix

Table 44. Progress Code Operations: I/O Bus Class ... 169
Table 45. Error Code Operations: I/O Bus Class.. 170
Table 46. Defined Subclasses: I/O Bus Class .. 172
Table 47. Progress and Error Code Operations: I/O Bus Unspecified Subclass 172
Table 48. Progress and Error Code Operations: PCI Subclass.. 173
Table 49. Progress and Error Code Operations: USB Subclass .. 174
Table 50. Progress and Error Code Operations: IBA Subclass .. 174
Table 51. Progress and Error Code Operations: AGP Subclass .. 175
Table 52. Progress and Error Code Operations: PC Card Subclass 175
Table 53. Progress and Error Code Operations: LPC Subclass... 176
Table 54. Progress and Error Code Operations: SCSI Subclass 176
Table 55. Progress and Error Code Operations: ATA/ATAPI/SATA Subclass 176
Table 56. Progress and Error Code Operations: FC Subclass ... 177
Table 57. Progress and Error Code Operations: IP Network Subclass 177
Table 58. Progress and Error Code Operations: SMBus Subclass 178
Table 59. Progress and Error Code Operations: I2C Subclass .. 178
Table 60. Progress Code Operations: Host Software Class... 179
Table 61. Error Code Operations: Host Software Class ... 180
Table 62. Defined Subclasses: Host Software Class.. 181
Table 63. Progress and Error Code Operations: Host Software Unspecified Subclass 182
Table 64. Progress and Error Code Operations: SEC Subclass .. 183
Table 65. Progress and Error Code Operations: PEI Foundation Subclass 183
Table 66. Progress and Error Code Operations: PEI Module Subclass 184
Table 67. Progress and Error Code Operations: DXE Foundation Subclass 186
Table 68. Progress and Error Code Operations: DXE Boot Service Driver Subclass 187
Table 69. Progress and Error Code Operations: DXE Runtime Service Driver Subclass .. 188
Table 70. Progress and Error Code Operations: SMM Driver Subclass............................. 189
Table 71. Progress and Error Code Operations: UEFI Application Subclass 189
Table 72. Progress and Error Code Operations: OS Loader Subclass 189
Table 73. Progress and Error Code Operations: Runtime Subclass 190
Table 74. Progress and Error Code Operations: PEI Subclass .. 190
Table 75. Progress and Error Code Operations: Boot Services Subclass.......................... 192
Table 76. Progress and Error Code Operations: Runtime Services Subclass.................... 195
Table 77. Progress and Error Code Operations: DXE Services Subclass.......................... 196
Table 78. Progress Code Enumeration Scheme .. 202
Table 79. Debug Code Enumeration Scheme .. 203
Table 80. Class Definitions ... 207
Table 81. Defined Subclasses: Computing Unit Class ... 208
Table 82. Decription of EFI_CPU_STATE_CHANGE_CAUSE fields................................. 223
Table 83. Definitions to describe Group Operations ... 226
Table 84. Defined Subclasses: User-Accessible Peripheral Class..................................... 229
Table 85. Defined Subclasses: I/O Bus Class .. 235
Table 86. Defined Subclasses: Host Software Class.. 241

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

xx 3/29/2013 Version 1.3

Version 1.3 3/29/2013 1

1
Platform Intialization

Shared Architectural Elements

1.1 Overview
This volume describes the basic concepts behind Platform Initialization (PI) firmware storage and
Hand-Off Blocks implementation.

The basic Platform Initialization (PI) firmware storage concepts include:

• Firmware Volumes

• Firmware File Systems

• Firmware Files

• Standard Binary Layout

• Pre-EFI Initialization (PEI) PEIM-to-PEIM Interfaces (PPIs)

• Driver Execution Environment (DXE) Protocols

The core code that is required for an implementation of Hand-Off Blocks (HOBs) in the Platform
Initialization (PI) Architecture specifications are also shown. A HOB is a binary data structure that
passes system state information from the HOB producer phase to the HOB consumer phase in the PI
Architecture. This HOB specification does the following:

• Describes the basic components of HOBs and the rules for constructing them

• Provides code definitions for the HOB data types and structures that are architecturally required
by the PI Architecture specifications

1.2 Target Audience
This document is intended for the following readers:

• Independent hardware vendors (IHVs) and original equipment manufacturers (OEMs) who will
be implementing firmware components that are stored in firmware volumes

• Firmware developers who create firmware products or those who modify these products for use
in platforms

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

2 3/29/2013 Version 1.3

address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.3 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Platform Intialization Shared Architectural Elements

Version 1.3 3/29/2013 3

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
Requirements

This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

4 3/29/2013 Version 1.3

facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

1.4 Conventions used in this document

1.4.1 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).
Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by 0x preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between characters in
hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xB
FD8C FA23 or 0xB_FD8C_FA23).

 A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

Platform Intialization Shared Architectural Elements

Version 1.3 3/29/2013 5

• the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.

1.4.2 Binary prefixes
This standard uses the prefixes defined in the International System of Units (SI) (see
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

Table 1. SI prefixes

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Table 2. Binary prefixes

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

Factor Factor Name Symbol

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

6 3/29/2013 Version 1.3

Version 1.3 3/29/2013 7

2
Firmware Storage Design Discussion

2.1 Firmware Storage Introduction
This specification describes how files should be stored and accessed within non-volatile storage.
Firmware implementations must support the standard PI Firmware Volume and Firmware File
System format (described below), but may support additional storage formats.

2.1.1 Firmware Devices
A firmware device is a persistent physical repository that contains firmware code and/or data. It is
typically a flash component but may be some other type of persistent storage. A single physical
firmware device may be divided into smaller pieces to form multiple logical firmware devices.
Similarly, multiple physical firmware devices may be aggregated into one larger logical firmware
device.

This section describes the characteristics of typical physical firmware devices.

2.1.1.1 Flash
Flash devices are the most common non-volatile repository for firmware volumes. Flash devices are
often divided into sectors (or blocks) of possibly differing sizes, each with different run-time
characteristics. Flash devices have several unique qualities that are reflected in the design of the
firmware file system:

• Flash devices can be erased on a sector-by-sector basis. After an erasure, all bits within a sector
return to their erase value, either all 0 or all 1.

• Flash devices can be written on a bit-by-bit basis if the change is from its erase value to the non-
erase value. For example, if the erase value is 1, then a bit with the value 1 can be changed to 0.

• Flash devices can only change from a non-erase value to an erase value by performing an erase
operation on an entire flash sector.

• Some flash devices can enable or disable reads and writes to the entire flash device or to
individual flash sectors.

• Some flash devices can lock the current enable or disable state of reads and writes until the next
reset.

• Flash writes and erases are often longer operations than reads.

• Flash devices often place restrictions on the operations that can be performed while a write or
erase is occurring.

2.1.2 Firmware Volumes
A Firmware Volume (FV) is a logical firmware device. In this specification, the basic storage
repository for data and/or code is the firmware volume. Each firmware volume is organized into a
file system. As such, the file is the base unit of storage for firmware.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

8 3/29/2013 Version 1.3

Each firmware volume has the following attributes:

• Name. Each volume has a name consisting of an UEFI Globally Unique Identifier (GUID).

• Size. Each volume has a size, which describes the total size of all volume data, including any
header, files, and free space.

• Format. Each volume has a format, which describes the Firmware File System used in the body
of the volume.

• Memory Mapped? Some volumes may be memory-mapped, which indicates that the entire
contents of the volume appear at once in the memory address space of the processor.

• Sticky Write? Some volumes may require special erase cycles in order to change bits from a
non-erase value to an erase value.

• Erase Polarity. If a volume supports “Sticky Write,” then all bits within the volume will return
to this value (0 or 1) after an erase cycle.

• Alignment. The first byte of a volume is required to be aligned on some power-of-two
boundary. At a minimum, this must be greater than or equal to the highest file alignment value.
If EFI_FVB2_WEAK_ALIGNMENT is set in the volume header then the first byte of the volume
can be aligned on any power-of-two boundary. A weakly aligned volume can not be moved from
its initial linked location and maintain its alignment.

• Read Enable/Disable Capable/Status. Volumes may have the ability to change from readable
to hidden.

• Write Enable/Disable Capable/Status. Volumes may have the ability to change from writable
to write protected.

• Lock Capable/Status. Volumes may be able to have their capabilities locked.

• Read-Lock Capable/Status. Volumes may have the ability to lock their read status.

• Write-Lock Capable/Status. Volumes may have the ability to lock their write status.

Firmware volumes may also contain additional information describing the mapping between OEM
file types and a GUID.

2.1.3 Firmware File System
A firmware file system (FFS) describes the organization of files and (optionally) free space within
the firmware volume. Each firmware file system has a unique GUID, which is used by the firmware
to associate a driver with a newly exposed firmware volume.

The PI Firmware File System is described in “Firmware File System Format” on page 18.

2.1.4 Firmware Files
Firmware files are code and/or data stored in firmware volumes.

Each of the files has the following attributes:

• Name. Each file has a name consisting of an UEFI GUID. File names must be unique within a
firmware volume. Some file names have special significance.

Firmware Storage Design Discussion

Version 1.3 3/29/2013 9

• Type. Each file has a type. There are four ranges of file types: Normal (0x00-0xBF), OEM
(0xC0-0xDF), Debug (0xE0-0xEF) and Firmware Volume Specific (0xF0-0xFF). For more
information on types, see “Firmware File Types” on page 9.

• Alignment. Each file’s data can be aligned on some power-of-two boundary. The specific
boundaries that are supported depend on the alignment and format of the firmware volume. If
EFI_FVB2_WEAK_ALIGNMENT is set in the volume header then file alignment does not
depend on volume alignment.

• Size. Each file’s data is zero or more bytes.

Specific firmware volume formats may support additional attributes, such as integrity verification
and staged file creation. The file data of certain file types is sub-divided in a standardized fashion
into “Firmware File Sections” on page 14.

Non-standard file types are supported through the use of the OEM file types. See “Firmware File
Types” on page 9 for more information.

In the PEI phase, file-related services are provided through the PEI Services Table, using
FfsFindNextFile, FfsFindFileByName and FfsGetFileInfo. In the DXE phase, file-
related services are provided through the EFI_FIRMWARE_VOLUME2_PROTOCOL services
attached to a volume’s handle (ReadFile, ReadSection, WriteFile and GetNextFile).

2.1.4.1 Firmware File Types
Consider an application file named FOO.EXE. The format of the contents of FOO.EXE is implied
by the “.EXE” in the file name. Depending on the operating environment, this extension typically
indicates that the contents of FOO.EXE are a PE/COFF image and follow the PE/COFF image
format.

Similarly, the PI Firmware File System defines the contents of a file that is returned by the firmware
volume interface.

The PI Firmware File System defines an enumeration of file types. For example, the type
EFI_FV_FILETYPE_DRIVER indicates that the file is a DXE driver and is interesting to the DXE
Dispatcher. In the same way, files with the type EFI_FV_FILETYPE_PEIM are interesting to the
PEI Dispatcher.

Table 3. Defined File Types

Name Value Description

EFI_FV_FILETYPE_RAW 0x01 Binary data

EFI_FV_FILETYPE_FREEFORM 0x02 Sectioned data

EFI_FV_FILETYPE_SECURITY_CORE 0x03 Platform core code used during
the SEC phase

EFI_FV_FILETYPE_PEI_CORE 0x04 PEI Foundation

EFI_FV_FILETYPE_DXE_CORE 0x05 DXE Foundation

EFI_FV_FILETYPE_PEIM 0x06 PEI module (PEIM)

EFI_FV_FILETYPE_DRIVER 0x07 DXE driver

EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER 0x08 Combined PEIM/DXE driver

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

10 3/29/2013 Version 1.3

2.1.4.1.1 EFI_FV_FILETYPE_APPLICATION

The file type EFI_FV_FILETYPE_APPLICATION denotes a file that contains a PE32 image that
can be loaded using the UEFI Boot Service LoadImage(). Files of type
EFI_FV_FILETYPE_APPLICATION are not dispatched by the DXE Dispatcher.

This file type is a sectioned file that must be constructed in accordance with the following rule:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

There are no restrictions on the encapsulation of the leaf section.

In the event that more than one EFI_SECTION_PE32 section is present in the file, the selection
algorithm for choosing which one represents the PE32 for the application in question is defined by
the LoadImage() boot service. See the Platform Initialization Driver Execution Environment
Core Interface Specification for details.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.2 EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER

The file type EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER denotes a file that contains code
suitable for dispatch by the PEI Dispatcher, as well as a PE32 image that can be dispatched by the
DXE Dispatcher. It has two uses:

• Enables sharing code between PEI and DXE to reduce firmware storage requirements.

• Enables bundling coupled PEIM/driver pairs in the same file.

EFI_FV_FILETYPE_APPLICATION 0x09 Application

EFI_FV_FILETYPE_SMM 0x0A Contains a PE32+ image that
will be loaded into SMRAM.

EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE 0x0B Firmware volume image

EFI_FV_FILETYPE_COMBINED_SMM_DXE 0x0C Contains PE32+ image that will
be dispatched by the DXE
Dispatcher and will also be
loaded into SMRAM.

EFI_FV_FILETYPE_SMM_CORE 0x0D SMM Foundation

EFI_FV_FILETYPE_OEM_MIN…
EFI_FV_FILETYPE_OEM_MAX

0xC0-
0xDF

OEM File Types

EFI_FV_FILETYPE_DEBUG_MIN…
EFI_FV_FILETYPE_DEBUG_MAX

0xE0-
0xEF

Debug/Test File Types

EFI_FV_FILETYPE_FFS_MIN…
EFI_FV_FILETYPE_FFS_MAX

0xF0-
0xFF

Firmware File System Specific
File Types

EFI_FV_FILETYPE_FFS_PAD 0xF0 Pad File For FFS

Name Value Description

Firmware Storage Design Discussion

Version 1.3 3/29/2013 11

This file type is a sectioned file and must follow the intersection of all rules defined for both
EFI_FV_FILETYPE_PEIM and EFI_FV_FILETYPE_DRIVER files. This intersection is listed
below:

• The file must contain one and only one EFI_SECTION_PE32 section. There are no
restrictions on encapsulation of this section; however, care must be taken to ensure any execute-
in-place requirements are satisfied.

• The file must not contain more than one EFI_SECTION_DXE_DEPEX section.

• The file must not contain more than one EFI_SECTION_PEI_DEPEX section.

• The file must contain no more than one EFI_SECTION_VERSION section.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.3 EFI_FV_FILETYPE_COMBINED_SMM_DXE

The file type EFI_FV_FILETYPE_COMBINED_SMM_DXE denotes a file that contains a PE32+
image that will be dispatched by the DXE Dispatcher and will also be loaded into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section. This section is
ignored when the file is loaded into SMRAM.

• The file must contain no more than one EFI_SECTION_SMM_DEPEX section. This section is
ignored when the file is dispatched by the DXE Dispatcher.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

2.1.4.1.4 EFI_FV_FILETYPE_DRIVER

The file type EFI_FV_FILETYPE_DRIVER denotes a file that contains a PE32 image that can be
dispatched by the DXE Dispatcher.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections.

In the event that more than one EFI_SECTION_PE32 section is present in the file, the selection
algorithm for choosing which one represents the DXE driver that will be dispatched is defined by the

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

12 3/29/2013 Version 1.3

LoadImage() boot service, which is used by the DXE Dispatcher. See the Platform Initialization
Driver Execution Environment Core Interface Specification for details.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.5 EFI_FV_FILETYPE_DXE_CORE

The file type EFI_FV_FILETYPE_DXE_CORE denotes the DXE Foundation file. This image is
the one entered upon completion of the PEI phase of a UEFI boot cycle.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one and only one executable section, which must have a type of
EFI_SECTION_PE32.

• The file must contain no more than one EFI_SECTION_VERSION section.

The sections that are described in the rules above may be optionally encapsulated in compression
and/or additional GUIDed sections as required by the platform design.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design.

2.1.4.1.6 EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE

The file type EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE denotes a file that contains one
or more firmware volume images.

This file type is a sectioned file that must be constructed in accordance with the following rule:

• The file must contain at least one section of type
EFI_SECTION_FIRMWARE_VOLUME_IMAGE. There are no restrictions on encapsulation of
this section.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.7 EFI_FV_FILETYPE_FREEFORM

The file type EFI_FV_FILETYPE_FREEFORM denotes a sectioned file that may contain any
combination of encapsulation and leaf sections. While the section layout can be parsed, the
consumer of this type of file must have a priori knowledge of how it is to be used.

Standard firmware file system services will not return the handle of any pad files, nor will they
permit explicit creation of such files. The Name field of the EFI_FFS_FILE_HEADER and
EFI_FFS_FILE_HEADER2 structures is considered invalid for pad files and will not be used in
any operation that requires name comparisons.

A single EFI_SECTION_FREEFORM_SUBTYPE_GUID section may be included in a file of type
EFI_FV_FILETYPE_FREEFORM to provide additional file type differentiation. While it is
permissible to omit the EFI_SECTION_FREEFORM_SUBTYPE_GUID section entirely, there
must never be more than one instance of it.

2.1.4.1.8 EFI_FV_FILETYPE_FFS_PAD

A pad file is an FFS-defined file type that is used to pad the location of the file that follows it in the
storage file. The normal state of any valid (not deleted or invalidated) file is that both its header and

Firmware Storage Design Discussion

Version 1.3 3/29/2013 13

data are valid. This status is indicated using the State bits with State = 00000111b. Pad files
differ from all other types of files in that any pad file in this state must not have any data written into
the data space. It is essentially a file filled with free space.

Standard firmware file system services will not return the handle of any pad files, nor will they
permit explicit creation of such files. The Name field of the EFI_FFS_FILE_HEADER structure is
considered invalid for pad files and will not be used in any operation that requires name
comparisons.

2.1.4.1.9 EFI_FV_FILETYPE_PEIM

The file type EFI_FV_FILETYPE_PEIM denotes a file that is a PEI module (PEIM). A PEI
module is dispatched by the PEI Foundation based on its dependencies during execution of the PEI
phase. See the Platform Initialization Pre-EFI Initialization Core Interface Specification for details
on PEI operation.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain one and only one executable section. This section must have one of the
following types:
—EFI_SECTION_PE32
—EFI_SECTION_PIC
—EFI_SECTION_TE

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_PEI_DEPEX section.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design. Care must be taken to ensure that additional
encapsulations do not render the file inaccessible due to execute-in-place requirements.

2.1.4.1.10 EFI_FV_FILETYPE_PEI_CORE

The file type EFI_FV_FILETYPE_PEI_CORE denotes the PEI Foundation file. This image is
entered upon completion of the SEC phase of a PI Architecture-compliant boot cycle.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain one and only one executable section. This section must have one of the
following types:
—EFI_SECTION_PE32
—EFI_SECTION_PIC
—EFI_SECTION_TE

• The file must contain no more than one EFI_SECTION_VERSION section.

As long as the above rules are followed, the file may contain other leaf and encapsulations as
required/enabled by the platform design.

2.1.4.1.11 EFI_FV_FILETYPE_RAW

The file type EFI_FV_FILETYPE_RAW denotes a file that does not contain sections and is treated
as a raw data file. The consumer of this type of file must have a priori knowledge of its format and
content. Because there are no sections, there are no construction rules.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

14 3/29/2013 Version 1.3

2.1.4.1.12 EFI_FV_FILETYPE_SECURITY_CODE

The file type EFI_FV_FILETYPE_SECURITY_CORE denotes code and data that comprise the
first part of PI Architecture firmware to execute. Its format is undefined with respect to the PI
Architecture, as differing platform architectures may have varied requirements.

2.1.4.1.13 EFI_FV_FILETYPE_SMM

The file type EFI_FV_FILETYPE_SMM denotes a file that contains a PE32+ image that will be
loaded into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_SMM_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

2.1.4.1.14 EFI_FV_FILETYPE_SMM_CORE

The file type EFI_FV_FILETYPE_DXE_CORE denotes the SMM Foundation file. This image will
be loaded by SMM IPL into SMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one and only one executable section, which must have a type of
EFI_SECTION_PE32.

• The file must contain no more than one EFI_SECTION_VERSION section.

The sections that are described in the rules above may be optionally encapsulated in compression
and/or additional GUIDed sections as required by the platform design.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design.

2.1.5 Firmware File Sections
Firmware file sections are separate discrete “parts” within certain file types. Each section has the
following attributes:

• Type. Each section has a type. For more information on section types, see “Firmware File
Section Types” on page 16.

• Size. Each section has a size.

While there are many types of sections, they fall into the following two broad categories:

• Encapsulation sections

• Leaf sections

Firmware Storage Design Discussion

Version 1.3 3/29/2013 15

Encapsulation sections are essentially containers that hold other sections. The sections contained
within an encapsulation section are known as child sections, and the encapsulation section is known
as the parent section. Encapsulation sections may have many children. An encapsulation section’s
children may be leaves and/or more encapsulation sections and are called peers relative to each
other. An encapsulation section does not contain data directly; instead it is just a vessel that
ultimately terminates in leaf sections.

Files that are built with sections can be thought of as a tree, with encapsulation sections as nodes and
leaf sections as the leaves. The file image itself can be thought of as the root and may contain an
arbitrary number of sections. Sections that exist in the root have no parent section but are still
considered peers.

Unlike encapsulation sections, leaf sections directly contain data and do not contain other sections.
The format of the data contained within a leaf section is defined by the type of the section.

Figure 1. Example File Image (Graphical and Tree Representations)

Root

E0 L3 E1

L0 L1 L2 E2 L6

L4 L5

Tree Representation

L4

L5

E2

L6

E1

L3

L2

L1

L0

E0

Graphical Representation

Complete file image

Encapsulation section (En)

Leaf section (Ln)

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

16 3/29/2013 Version 1.3

In the example shown in Figure 1, the file image root contains two encapsulation sections (E0 and
E1) and one leaf section (L3). The first encapsulation section (E0) contains children, all of which are
leaves (L0, L1, and L2). The second encapsulation section (E1) contains two children, one that is an
encapsulation (E2) and the other that is a leaf (L6). The last encapsulation section (E2) has two
children that are both leaves (L4 and L5)

In the PEI phase, section-related services are provided through the PEI Service Table, using
FfsFindSectionData. In the DXE phase, section-related services are provided through the
EFI_FIRMWARE_VOLUME2_PROTOCOL services attached to a volume’s handle
(ReadSection).

2.1.5.1 Firmware File Section Types
Table 4 lists the defined architectural section types.

Table 4. Architectural Section Types

2.2 PI Architecture Firmware File System Format
This section describes the standard binary encoding for PI Firmware Files, PI Firmware Volumes,
and the PI Firmware File System. Implementations that allow the non-vendor firmware files or

Name Value Description

EFI_SECTION_COMPRESSION 0x01 Encapsulation section where other
sections are compressed.

EFI_SECTION_GUID_DEFINED 0x02 Encapsulation section where other
sections have format defined by a GUID.

EFI_SECTION_DISPOSABLE 0x03 Encapsulation section used during the
build process but not required for
execution.

EFI_SECTION_PE32 0x10 PE32+ Executable image.

EFI_SECTION_PIC 0x11 Position-Independent Code.

EFI_SECTION_TE 0x12 Terse Executable image.

EFI_SECTION_DXE_DEPEX 0x13 DXE Dependency Expression.

EFI_SECTION_VERSION 0x14 Version, Text and Numeric.

EFI_SECTION_USER_INTERFACE 0x15 User-Friendly name of the driver.

EFI_SECTION_COMPATIBILITY16 0x16 DOS-style 16-bit EXE.

EFI_SECTION_FIRMWARE_VOLUME_IMAGE 0x17 PI Firmware Volume image.

EFI_SECTION_FREEFORM_SUBTYPE_GUID 0x18 Raw data with GUID in header to define
format.

EFI_SECTION_RAW 0x19 Raw data.

EFI_SECTION_PEI_DEPEX 0x1b PEI Dependency Expression.

EFI_SECTION_SMM_DEPEX 0x1c Leaf section type for determining the
dispatch order for an SMM driver

Firmware Storage Design Discussion

Version 1.3 3/29/2013 17

firmware volumes to be introduced into the system must support the standard formats. This section
also describes how features of the standard format map into the standard PEI and DXE interfaces.

The standard firmware file and volume format also introduces additional attributes and capabilities
that are used to guarantee the integrity of the firmware volume.

The standard format is broken into three levels: the firmware volume format, the firmware file
system format, and the firmware file format.

The standard firmware volume format (Figure 2) consists of two parts: the firmware volume header
and the firmware volume data. The firmware volume header describes all of the attributes specified
in “Firmware Volumes” on page 7. The header also contains a GUID which describes the format of
the firmware file system used to organize the firmware volume data. The firmware volume header
can support other firmware file systems other than the PI Firmware File System.

Figure 2. The Firmware Volume Format

The PI Firmware File System format describes how firmware files and free space are organized
within the firmware volume.

The PI Firmware File format describes how files are organized. The firmware file format consists of
two parts: the firmware file header and the firmware file data.

2.2.1 Firmware Volume Format
The PI Architecture Firmware Volume format describes the binary layout of a firmware volume.
The firmware volume format consists of a header followed by the firmware volume data. The
firmware volume header is described by EFI_FIRMWARE_VOLUME_HEADER.

The format of the firmware volume data is described by a GUID. Valid files system GUID values
are EFI_FIRMWARE_FILE_SYSTEM2_GUID and EFI_FIRMWARE_FILE_SYSTEM3_GUID.

FIRMWARE VOLUME
HEADER

FIRMWARE FILE SYSTEM

FIRMWARE FILE #1

FIRMWARE FILE #2

FIRMWARE FILE HEADER

FIRMWARE FILE DATA

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION HEADER

FIRMWARE FILE
SECTION DATA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

18 3/29/2013 Version 1.3

2.2.2 Firmware File System Format
The PI Architecture Firmware File System is a binary layout of file storage within firmware
volumes. It is a flat file system in that there is no provision for any directory hierarchy; all files
reside in the root directly. Files are stored end to end without any directory entry to describe which
files are present. Parsing the contents of a firmware volume to obtain a listing of files present
requires walking the firmware volume from beginning to end.

All files stored with the FFS must follow the “PI Architecture Firmware File System Format” on
page 16. The standard file header provides for several levels of integrity checking to help detect file
corruption, should it occur for some reason.

This section describes:

• PI Architecture’s Firmware File System GUID (s)

• Volume Top File (VTF)

2.2.2.1 Firmware File System GUID
The PI Architecture firmware volume header contains a data field for the file system GUID. See
EFI_FIRMWARE_VOLUME_HEADER on page 31 for more information on the firmware volume
header. There are two valid FFS file system, the GUID is defined as
EFI_FIRMWARE_FILE_SYSTEM2_GUID on page 37 and
EFI_FIRMWARE_FILE_SYSTEM3_GUID.

If the FFS file system is backward compatible with EFI_FIRMWARE_FILE_SYSTEM2_GUID
and supports files larger than 16 MB then EFI_FIRMWARE_FILE_SYSTEM3_GUID is used.

2.2.2.2 Volume Top File
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID on page 39.

Firmware file system driver code must be aware of this GUID and insert a pad file as necessary to
guarantee the VTF is located correctly at the top of the firmware volume on write and update
operations. File length and alignment requirements must be consistent with the top of volume.
Otherwise, a write error occurs and the firmware volume is not modified.

2.2.3 Firmware File Format
All FFS files begin with a header that is aligned on an 8-byteboundry with respect to the beginning
of the firmware volume. FFS files can contain the following parts:

• Header

• Data

It is possible to create a file that has only a header and no data, which consumes 24 bytes of space.
This type of file is known as a zero-length file.

If the file contains data, the data immediately follows the header. The format of the data within a file
is defined by the Type field in the header, either EFI_FFS_FILE_HEADER or
EFI_FFS_FILE_HEADER2 in section 3.2.3.

Firmware Storage Design Discussion

Version 1.3 3/29/2013 19

Figure 3 illustrates the layout of a (typical) PI Architecture Firmware File smaller than 16 Mb:

Figure 3. Typical FFS File Layout

Figure 4 illustrates the layout of a PI Architecture Firmware File larger than 16 Mb:

.

Figure 4. File Header 2 layout for files larger than 16Mb

File data

Size
IntegrityCheck

Name

TypeAttributes
State

FG100003

File Data
EFI_FFS_FILE_HEADER

31 16 15 0

File data

Size
IntegrityCheck

ExtendedSize

Name

TypeAttributes
State

FG100004

File Data
EFI_FFS_FILE_HEADER2

31 16 15 0

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

20 3/29/2013 Version 1.3

2.2.4 Firmware File Section Format
This section describes the standard firmware file section layout.

Each section begins with a section header, followed by data defined by the section type.

The section headers aligned on 4 byte boundaries relative to the start of the file's image. If padding is
required between the end of one section and the beginning of the next to achieve the 4-byte
alignment requirement, all padding bytes must be initialized to zero.

Many section types are variable in length and are more accurately described as data streams rather
than data structures.

Regardless of section type, all section headers begin with a 24-bit integer indicating the section size,
followed by an 8-bit section type. The format of the remainder of the section header and the section
data is defined by the section type. If the section size is 0xFFFFFF then the size is defined by a 32-
bit integer that follows the 32-bit section header. Figures 5 and 6 shows the general format of a
section.

Figure 5. Format of a section (below 16Mb)

Figure 6. Format of a section using the ExtendedLength field

2.2.5 File System Initialization
The algorithm below describes a method of FFS initialization that ensures FFS file corruption can be
detected regardless of the cause.

Section Data: Format defined by section type

LengthType

Remainder of section Header: Format defined by section type
(not all sections will have this portion)

FG100005

31 0

Section Data: Format defined by section type

ExtendedLength field

LengthType

Remainder of section Header: Format defined by section type
(not all sections will have this portion)

FG100006

31 0

Firmware Storage Design Discussion

Version 1.3 3/29/2013 21

The State byte of each file must be correctly managed to ensure the integrity of the file system is
not compromised in the event of a power failure during any FFS operation. It is expected that an FFS
driver will produce an instance of the Firmware Volume Protocol and that all normal file operations
will take place in that context. All file operations must follow all the creation, update, and deletion
rules described in this specification to avoid file system corruption.

The following FvCheck() pseudo code must be executed during FFS initialization to avoid file
system corruption. If at any point a failure condition is reached, then the firmware volume is
corrupted and a crisis recovery is initiated.All FFS files, including files of type
EFI_FV_FILETYPE_FFS_PAD must be evaluated during file system initialization. It is legal for
multiple pad files with this file type to have the same Name field in the file header. No checks for
duplicate files should be performed on pad files.

// Firmware volume initialization entry point – returns TRUE
// if FFS driver can use this firmware volume.
BOOLEAN FvCheck(Fv)
{
 // first check out firmware volume header
 if (FvHeaderCheck(Fv) == FALSE) {
 FAILURE();// corrupted firmware volume header
 }
 if (!((Fv->FvFileSystemId == EFI_FIRMWARE_FILE_SYSTEM2_GUID) || \
 (Fv->FvFileSystemId == EFI_FIRMWARE_FILE_SYSTEM3_GUID))){
 return (FALSE); // This firmware volume is not
 // formatted with FFS
 }
 // next walk files and verify the FFS is in good shape
 for (FilePtr = FirstFile; Exists(Fv, FilePtr);
 FilePtr = NextFile(Fv, FilePtr)) {
 if (FileCheck (Fv, FilePtr) != 0) {
 FAILURE(); // inconsistent file system
 }
 }
 if (CheckFreeSpace (Fv, FilePtr) != 0) {
 FAILURE();
 }
 return (TRUE); // this firmware volume can be used by the FFS
 // driver and the file system is OK
}
// FvHeaderCheck – returns TRUE if FvHeader checksum is OK.
BOOLEAN FvHeaderCheck (Fv)
{
 return (Checksum (Fv.FvHeader) == 0);
}
// Exists – returns TRUE if any bits are set in the file header
BOOLEAN Exists(Fv, FilePtr)
{
 return (BufferErased (Fv.ErasePolarity,
 FilePtr, sizeof (EFI_FIRMWARE_VOLUME_HEADER) == FALSE);
}

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

22 3/29/2013 Version 1.3

// BufferErased – returns TRUE if no bits are set in buffer
BOOLEAN BufferErased (ErasePolarity, BufferPtr, BufferSize)
{
 UINTN Count;
 if (Fv.ErasePolarity == 1) {
 ErasedByte = 0xff;
 } else {
 ErasedByte = 0;
 }
 for (Count = 0; Count < BufferSize; Count++) {
 if (BufferPtr[Count] != ErasedByte) {
 return FALSE;
 }
 }
 return TRUE;
}
// GetFileState – returns high bit set of state field.
 UINT8 GetFileState (Fv, FilePtr) {
 UINT8 FileState;
 UINT8 HighBit;
 FileState = FilePtr->State;
 if (Fv.ErasePolarity != 0) {
 FileState = ~FileState;
 }
 HighBit = 0x80;
 while (HighBit != 0 && (HighBit & FileState) == 0) {
 HighBit = HighBit >> 1;
 }
 return HighBit;
}
// FileCheck – returns TRUE if the file is OK
BOOLEAN FileCheck (Fv, FilePtr) {
 switch (GetFileState (Fv, FilePtr)) {
 case EFI_FILE_HEADER_CONSTRUCTION:
 SetHeaderBit (Fv, FilePtr, EFI_FILE_HEADER_INVALID);
 break;
 case EFI_FILE_HEADER_VALID:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 Break;
 case EFI_FILE_DATA_VALID:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (DuplicateFileExists (Fv, FilePtr,
 EFI_FILE_DATA_VALID) != NULL) {

Firmware Storage Design Discussion

Version 1.3 3/29/2013 23

 return (FALSE);
 }
 break;
 case EFI_FILE_MARKED_FOR_UPDATE:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (FilePtr->State & EFI_FILE_DATA_VALID) == 0) {
 return (FALSE);
 }
 if (FilePtr->Type == EFI_FV_FILETYPE_FFS_PAD) {
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 if (DuplicateFileExists (Fv, FilePtr, EFI_FILE_DATA_VALID)) {
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 if (Fv->Attributes & EFI_FVB_STICKY_WRITE) {
 CopyFile (Fv, FilePtr);
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 ClearHeaderBit (Fv, FilePtr, EFI_FILE_MARKED_FOR_UPDATE);
 }
 }
 }
 break;
 case EFI_FILE_DELETED:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 break;
 case EFI_FILE_HEADER_INVALID:
 break;
 }
 return (TRUE);
}
// FFS_FILE_PTR * DuplicateFileExists (Fv, FilePtr, StateBit)
// This function searches the firmware volume for another occurrence
// of the file described by FilePtr, in which the duplicate files
// high state bit that is set is defined by the parameter StateBit.
// It returns a pointer to a duplicate file if it exists and NULL
// if it does not. If the file type is EFI_FV_FILETYPE_FFS_PAD
// then NULL must be returned.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

24 3/29/2013 Version 1.3

// CopyFile (Fv, FilePtr)
// The purpose of this function is to clear the
// EFI_FILE_MARKED_FOR_UPDATE bit from FilePtr->State
// in firmware volumes that have EFI_FVB_STICKY_WRITE == TRUE.
// The file is copied exactly header and all, except that the
// EFI_FILE_MARKED_FOR_UPDATE bit in the file header of the
// new file is clear.
// VerifyHeaderChecksum (FilePtr)
// The purpose of this function is to verify the file header
// sums to zero. See IntegrityCheck.Checksum.Header definition
// for details.
// VerifyFileChecksum (FilePtr)
// The purpose of this function is to verify the file integrity
// check. See IntegrityCheck.Checksum.File definition for details.

2.2.6 Traversal and Access to Files
The Security (SEC), PEI, and early DXE code must be able to traverse the FFS and read and execute
files before a write-enabled DXE FFS driver is initialized. Because the FFS may have
inconsistencies due to a previous power failure or other system failure, it is necessary to follow a set
of rules to verify the validity of files prior to using them. It is not incumbent on SEC, PEI, or the
early read-only DXE FFS services to make any attempt to recover or modify the file system. If any
situation exists where execution cannot continue due to file system inconsistencies, a recovery boot
is initiated.

There is one inconsistency that the SEC, PEI, and early DXE code can deal with without initiating a
recovery boot. This condition is created by a power failure or other system failure that occurs during
a file update on a previous boot. Such a failure will cause two files with the same file name GUID to
exist within the firmware volume. One of them will have the EFI_FILE_MARKED_FOR_UPDATE
bit set in its State field but will be otherwise a completely valid file. The other one may be in any
state of construction up to and including EFI_FILE_DATA_VALID. All files used prior to the
initialization of the write-enabled DXE FFS driver must be screened with this test prior to their use.
If this condition is discovered, it is permissible to initiate a recovery boot and allow the recovery
DXE to complete the update.

The following pseudo code describes the method for determining which of these two files to use.
The inconsistency is corrected during the write-enabled initialization of the DXE FFS driver.
// Screen files to ensure we get the right one in case
// of an inconsistency.
FFS_FILE_PTR EarlyFfsUpdateCheck(FFS_FILE_PTR * FilePtr) {
 FFS_FILE_PTR * FilePtr2;
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 switch (GetFileState (Fv, FilePtr)) {
 case EFI_FILE_DATA_VALID:
 return (FilePtr);

Firmware Storage Design Discussion

Version 1.3 3/29/2013 25

 break;
 case EFI_FILE_MARKED_FOR_UPDATE:
 FilePtr2 = DuplicateFileExists (Fv, FilePtr,
 EFI_FILE_DATA_VALID);
 if (FilePtr2 != NULL) {
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 return (FilePtr2);
 } else {
 return (FilePtr);
 }
 break;
 }
}

Note: There is no check for duplicate files once a file in the EFI_FILE_DATA_VALID state is located.
The condition where two files in a single firmware volume have the same file name GUID and are
both in the EFI_FILE_DATA_VALID state cannot occur if the creation and update rules that are
defined in this specification are followed.

2.2.7 File Integrity and State
File corruption, regardless of the cause, must be detectable so that appropriate file system repair
steps may be taken. File corruption can come from several sources but generally falls into three
categories:

• General failure

• Erase failure

• Write failure

A general failure is defined to be apparently random corruption of the storage media. This
corruption can be caused by storage media design problems or storage media degradation, for
example. This type of failure can be as subtle as changing a single bit within the contents of a file.
With good system design and reliable storage media, general failures should not happen. Even so,
the FFS enables detection of this type of failure.

An erase failure occurs when a block erase of firmware volume media is not completed due to a
power failure or other system failure. While the erase operation is not defined, it is expected that
most implementations of FFS that allow file write and delete operations will also implement a
mechanism to reclaim deleted files and coalesce free space. If this operation is not completed
correctly, the file system can be left in an inconsistent state.

Similarly, a write failure occurs when a file system write is in progress and is not completed due to a
power failure or other system failure. This type of failure can leave the file system in an inconsistent
state.

All of these failures are detectable during FFS initialization, and, depending on the nature of the
failure, many recovery strategies are possible. Careful sequencing of the State bits during normal

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

26 3/29/2013 Version 1.3

file transitions is sufficient to enable subsequent detection of write failures. However, the State
bits alone are not sufficient to detect all occurrences of general and/or erase failures. These types of
failures require additional support, which is enabled with the file header IntegrityCheck field.

For sample code that provides a method of FFS initialization that can detect FFS file corruption,
regardless of the cause, see “File System Initialization” on page 20.

2.2.8 File State Transitions

2.2.8.1 Overview
There are three basic operations that may be done with the FFS:

• Creating a file

• Deleting a file

• Updating a file

All state transitions must be done carefully at all times to ensure that a power failure never results in
a corrupted firmware volume. This transition is managed using the State field in the file header.

For the purposes of the examples below, positive decode logic is assumed
(EFI_FVB_ERASE_POLARITY = 0). In actual use, the EFI_FVB_ERASE_POLARITY in the
firmware volume header is referenced to determine the truth value of all FFS State bits. All
State bit transitions must be atomic operations. Further, except when specifically noted, only the
most significant State bit that is TRUE has meaning. Lower-order State bits are superseded by
higher-order State bits.

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on
page 31.

2.2.8.2 Initial State
The initial condition is that of “free space.” All free space in a firmware volume must be initialized
such that all bits in the free space contain the value of EFI_FVB_ERASE_POLARITY. As such, if
the free space is interpreted as an FFS file header, all State bits are FALSE.

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on
page 31

2.2.8.3 Creating a File
A new file is created by allocating space from the firmware volume immediately beyond the end of
the preceding file (or the firmware volume header if the file is the first one in the firmware volume).
Figure 7 illustrates the steps to create a new file, which are detailed below the figure.

Firmware Storage Design Discussion

Version 1.3 3/29/2013 27

Figure 7. Creating a File

As shown in Figure 7, the following steps are required to create a new file:

1. Allocate space in the firmware volume for a new file header, either EFI_FFS_FILE_HEADER,
or EFI_FFS_FILE_HEADER2 if the file is 16MB or more in size, and complete all fields of
the header (except for the State field, which is updated independently from the rest of the
header). This allocation is done by interpreting the free space as a file header and changing the
EFI_FILE_HEADER_CONSTRUCTION bit to TRUE. The transition of this bit to the TRUE
state must be atomic and fully complete before any additional writes to the firmware volume are
made. This transition yields State = 00000001b, which indicates the header construction
has begun but has not yet been completed. This value has the effect of “claiming” the FFS
header space from the firmware volume free space.

While in this state, the following fields of the FFS header are initialized and written to the
firmware volume:

• Name

• IntegrityCheck.Header

Change the
EFI_FILE_HEADER_

CONSTRUCTION
bit to TRUE

Change the
EFI_FILE_HEADER_

VALID bit to TRUE

Change the
EFI_FILE_DATA_
VALID bit to TRUE

Complete all fields in
the header

Write the file data

File is
“free

space”

File is
created

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

28 3/29/2013 Version 1.3

• Type

• Attributes

• Size

If FFS_ATTRIB_LARGE_FILE is set in Attributes the Size field of the FFS header
must be zero and ExtendedSize must contian the size of the FFS file.The value of
IntegrityCheck.Header is calculated as described in EFI_FFS_FILE_HEADER.

2. Mark the new header as complete and write the file data. To mark the header as complete, the
EFI_FILE_HEADER_VALID bit is changed to TRUE. The transition of this bit to the TRUE
state must be atomic and fully complete before any additional writes to the firmware volume are
made. This transition yields State = 00000011b, which indicates the header construction is
complete, but the file data has not yet been written. This value has the effect of “claiming” the
full length of the file from the firmware volume free space. Once the
EFI_FILE_HEADER_VALID bit is set, no further changes to the following fields may be
made:

• Name

• IntegrityCheck.Header

• Type

• Attributes

• Size

While in this state, the file data and IntegrityCheck.File are written to the firmware
volume. The order in which these are written does not matter. The calculation of the value for
IntegrityCheck.File is described in EFI_FFS_FILE_HEADER on page 40.

3. Mark the data as valid. To mark the data as valid, the EFI_FILE_DATA_VALID bit is changed
to TRUE. The transition of this bit to the TRUE state must be atomic and fully complete before
any additional writes to the firmware volume are made. This transition yields State =
00000111b, which indicates the file data is fully written and is valid.

2.2.8.4 Deleting a File
Any file with EFI_FILE_HEADER_VALID set to TRUE and EFI_FILE_HEADER_INVALID
and EFI_FILE_DELETED set to FALSE is a candidate for deletion.

To delete a file, the EFI_FILE_DELETED bit is set to the TRUE state. The transition of this bit to
the TRUE state must be atomic and fully complete before any additional writes to the firmware
volume are made. This transition yields State = 0001xx11b, which indicates the file is marked
deleted. Its header is still valid, however, in as much as its length field is used in locating the next
file in the firmware volume.

Note: The EFI_FILE_HEADER_INVALID bit must be left in the FALSE state.

2.2.8.5 Updating a File
A file update is a special case of file creation where the file being added already exists in the
firmware volume. At all times during a file update, only one of the files, either the new one or the old
one, is valid at any given time. This validation is possible by using the
EFI_FILE_MARKED_FOR_UPDATE bit in the old file.

Figure 8 illustrates the steps to update a file, which are detailed below the figure.

Firmware Storage Design Discussion

Version 1.3 3/29/2013 29

Figure 8. Updating a File

As shown in Figure 8, the following steps are required to update a file:

1. Set the EFI_FILE_MARKED_FOR_UPDATE bit to TRUE in the old file. The transition of this
bit to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00001111b, which indicates the
file is marked for update. A file in this state remains valid as long as no other file in the firmware
volume has the same name and a State of 000001xxb.

2. Create the new file following the steps described in “Creating a File” on page 26. When the new
file becomes valid, the old file that was marked for update becomes invalid. That is to say, a file
marked for update is valid only as long as there is no file with the same name in the firmware
volume that has a State of 000001xxb. In this way, only one of the files, either the new or
the old, is valid at any given time. The act of writing the EFI_FILE_DATA_VALID bit in the
new file’s State field has the additional effect of invalidating the old file.

3. Delete the old file following the steps described in “Deleting a File” on page 28.

File is

created

In the old file, change the
EFI_FILE_MARKED_

FOR_UPDATE bit to TRUE

Create the new file

Delete the old file

Writing the
EFI_FILE_DATA_VALID
bit to TRUE in the new file
invalidates the old file New

file is
created

Old file
is

deleted

See Deleting a File.

See Creating a File.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

30 3/29/2013 Version 1.3

Version 1.3 3/29/2013 31

3
Firmware Storage Code Definitions

3.1 Firmware Storage Code Definitions Introduction
This section provides the code definitions for:

• The PI Architecture Firmware Storage binary formats for volumes, file system, files, and file
sections.

• The PEI interfaces that support firmware volumes, firmware file systems, firmware files, and
firmware file sections.

• The DXE protocols that support firmware volumes, firmware file systems, firmware files, and
firmware file sections.

3.2 Firmware Storage Formats

3.2.1 Firmware Volume

EFI_FIRMWARE_VOLUME_HEADER

Summary
Describes the features and layout of the firmware volume.

Prototype
typedef struct {
 UINT8 ZeroVector[16];
 EFI_GUID FileSystemGuid;
 UINT64 FvLength;
 UINT32 Signature;
 EFI_FVB_ATTRIBUTES_2 Attributes;
 UINT16 HeaderLength;
 UINT16 Checksum;
 UINT16 ExtHeaderOffset;
 UINT8 Reserved[1];
 UINT8 Revision;
 EFI_FV_BLOCK_MAP BlockMap[];
} EFI_FIRMWARE_VOLUME_HEADER;

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

32 3/29/2013 Version 1.3

Parameters
ZeroVector

The first 16 bytes are reserved to allow for the reset vector of processors whose reset
vector is at address 0.

FileSystemGuid

Declares the file system with which the firmware volume is formatted. Type
EFI_GUID is defined in InstallProtocolInterface() in the Unified
Extensible Firmware Interface Specification, version 2.0 (UEFI 2.0 specification).

FvLength

Length in bytes of the complete firmware volume, including the header.

Signature

Set to {'_','F','V','H'}.

Attributes

Declares capabilities and power-on defaults for the firmware volume. Current state is
determined using the GetAttributes() function and is not maintained in the
Attributes field of the firmware volume header. Type
EFI_FVB_ATTRIBUTES_2 is defined in “Related Definitions” below.

HeaderLength

Length in bytes of the complete firmware volume header.

Checksum

A 16-bit checksum of the firmware volume header. A valid header sums to zero.

ExtHeaderOffset

Offset, relative to the start of the header, of the extended header
(EFI_FIRMWARE_VOLUME_EXT_HEADER) or zero if there is no extended header.
The extended header is followed by zero or more variable length extension entries.
Each extension entry is prefixed with the EFI_FIRMWARE_VOLUME_EXT_ENTRY
structure (see “Related Definitions” below), which defines the type and size of the
extension entry. The extended header is always 32-bit aligned relative to the start of
the FIRMWARE VOLUME.

If there is an instance of the EFI_FIRMWARE_VOLUME_EXT_HEADER, then the
firmware shall build an instance of the Firmware Volume Media Device Path (ref
Vol2, Section 8.2).

Reserved

In this version of the specification, this field must always be set to zero.

Revision

Set to 2. Future versions of this specification may define new header fields and will
increment the Revision field accordingly.

FvBlockMap[]

An array of run-length encoded FvBlockMapEntry structures. The array is
terminated with an entry of {0,0}.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 33

FvBlockMapEntry.NumBlocks

The number of blocks in the run.

FvBlockMapEntry.BlockLength

The length of each block in the run.

Description
A firmware volume based on a block device begins with a header that describes the features and
layout of the firmware volume. This header includes a description of the capabilities, state, and
block map of the device.

The block map is a run-length-encoded array of logical block definitions. This design allows a
reasonable mechanism of describing the block layout of typical firmware devices. Each block can be
referenced by its logical block address (LBA). The LBA is a zero-based enumeration of all of the
blocks—i.e., LBA 0 is the first block, LBA 1 is the second block, and LBA n is the (n-1) device.

The header is always located at the beginning of LBA 0.

Related Definitions
//***
// EFI_FVB_ATTRIBUTES_2
//***
typedef UINT32 EFI_FVB_ATTRIBUTES_2

// Attributes bit definitions
#define EFI_FVB2_READ_DISABLED_CAP 0x00000001
#define EFI_FVB2_READ_ENABLED_CAP 0x00000002
#define EFI_FVB2_READ_STATUS 0x00000004

#define EFI_FVB2_WRITE_DISABLED_CAP 0x00000008
#define EFI_FVB2_WRITE_ENABLED_CAP 0x00000010
#define EFI_FVB2_WRITE_STATUS 0x00000020

#define EFI_FVB2_LOCK_CAP 0x00000040
#define EFI_FVB2_LOCK_STATUS 0x00000080

#define EFI_FVB2_STICKY_WRITE 0x00000200
#define EFI_FVB2_MEMORY_MAPPED 0x00000400
#define EFI_FVB2_ERASE_POLARITY 0x00000800

#define EFI_FVB2_READ_LOCK_CAP 0x00001000
#define EFI_FVB2_READ_LOCK_STATUS 0x00002000

#define EFI_FVB2_WRITE_LOCK_CAP 0x00004000
#define EFI_FVB2_WRITE_LOCK_STATUS 0x00008000

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

34 3/29/2013 Version 1.3

#define EFI_FVB2_ALIGNMENT 0x001F0000
#define EFI_FVB2_WEAK_ALIGNMENT 0x80000000
#define EFI_FVB2_ALIGNMENT_1 0x00000000
#define EFI_FVB2_ALIGNMENT_2 0x00010000
#define EFI_FVB2_ALIGNMENT_4 0x00020000
#define EFI_FVB2_ALIGNMENT_8 0x00030000
#define EFI_FVB2_ALIGNMENT_16 0x00040000
#define EFI_FVB2_ALIGNMENT_32 0x00050000
#define EFI_FVB2_ALIGNMENT_64 0x00060000
#define EFI_FVB2_ALIGNMENT_128 0x00070000
#define EFI_FVB2_ALIGNMENT_256 0x00080000
#define EFI_FVB2_ALIGNMENT_512 0x00090000
#define EFI_FVB2_ALIGNMENT_1K 0x000A0000
#define EFI_FVB2_ALIGNMENT_2K 0x000B0000
#define EFI_FVB2_ALIGNMENT_4K 0x000C0000
#define EFI_FVB2_ALIGNMENT_8K 0x000D0000
#define EFI_FVB2_ALIGNMENT_16K 0x000E0000
#define EFI_FVB2_ALIGNMENT_32K 0x000F0000
#define EFI_FVB2_ALIGNMENT_64K 0x00100000
#define EFI_FVB2_ALIGNMENT_128K 0x00110000
#define EFI_FVB2_ALIGNMENT_256K 0x00120000
#define EFI_FVB2_ALIGNMENT_512K 0x00130000
#define EFI_FVB2_ALIGNMENT_1M 0x00140000
#define EFI_FVB2_ALIGNMENT_2M 0x00150000
#define EFI_FVB2_ALIGNMENT_4M 0x00160000
#define EFI_FVB2_ALIGNMENT_8M 0x00170000
#define EFI_FVB2_ALIGNMENT_16M 0x00180000
#define EFI_FVB2_ALIGNMENT_32M 0x00190000
#define EFI_FVB2_ALIGNMENT_64M 0x001A0000
#define EFI_FVB2_ALIGNMENT_128M 0x001B0000
#define EFI_FVB2_ALIGNMENT_256M 0x001C0000
#define EFI_FVB2_ALIGNMENT_512M 0x001D0000
#define EFI_FVB2_ALIGNMENT_1G 0x001E0000
#define EFI_FVB2_ALIGNMENT_2G 0x001F0000

Table 5 describes the fields in the above definition:

Table 5. Descriptions of EFI_FVB_ATTRIBUTES_2

Attribute Description

EFI_FVB2_READ_DISABLED_CAP TRUE if reads from the firmware volume may be disabled.

EFI_FVB2_READ_ENABLED_CAP TRUE if reads from the firmware volume may be enabled.

EFI_FVB2_READ_STATUS TRUE if reads from the firmware volume are currently enabled.

EFI_FVB2_WRITE_DISABLED_CAP TRUE if writes to the firmware volume may be disabled.

EFI_FVB2_WRITE_ENABLED_CAP TRUE if writes to the firmware volume may be enabled.

EFI_FVB2_WRITE_STATUS TRUE if writes to the firmware volume are currently enabled.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 35

All other EFI_FVB_ATTRIBUTES_2 bits are reserved and must be zero.
typedef struct {
 UINT32 NumBlocks;
 UINT32 Length;
} EFI_FV_BLOCK_MAP;

NumBlocks

The number of sequential blocks which are of the same size.

Length

The size of the blocks.

typedef struct {
 EFI_GUID FvName;
 UINT32 ExtHeaderSize;

EFI_FVB2_LOCK_CAP TRUE if firmware volume attributes may be locked down.

EFI_FVB2_LOCK_STATUS TRUE if firmware volume attributes are currently locked down.

EFI_FVB2_STICKY_WRITE TRUE if a block erase is required to transition bits from

(NOT)EFI_FVB2_ERASE_POLARITY to

EFI_FVB2_ERASE_POLARITY. That is, after erasure, a write

may negate a bit in the EFI_FVB2_ERASE_POLARITY state,

but a write cannot flip it back again. A block erase cycle is required
to transition bits from the

(NOT)EFI_FVB2_ERASE_POLARITY state back to the

EFI_FVB2_ERASE_POLARITY state. See the

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL on

page 103.

EFI_FVB2_MEMORY_MAPPED TRUE if firmware volume is memory mapped.

EFI_FVB2_ERASE_POLARITY Value of all bits after erasure. See the

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL on

page 103.

EFI_FVB2_READ_LOCK_CAP TRUE if the firmware volume's read-status can be locked.

EFI_FVB2_READ_LOCK_STATUS TRUE If the firmware volume's read-status is locked.

EFI_FVB2_WRITE_LOCK_CAP TRUE if the firmware volume’s write status can be locked.

EFI_FVB2_WRITE_LOCK_STATUS TRUE if the firmware volume’s write-status is locked.

EFI_FVB2_ALIGNMENT The first byte of the firmware volume must be placed at an address
which is an even multiple of 2^(this field). For example, a value of 5
in this field would mean a required alignment of 32 bytes.

EFI_FVB2_WEAK_ALIGNMENT TRUE if the firmware volume can be less than the the highest file
alignment value.

Attribute Description

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

36 3/29/2013 Version 1.3

} EFI_FIRMWARE_VOLUME_EXT_HEADER;

FvName

Firmware volume name.

ExtHeaderSize

Size of the rest of the extension header, including this structure.

After the extension header, there is an array of variable-length extension header entries, each
prefixed with the EFI_FIRMWARE_VOLUME_EXT_ENTRY structure.

typedef struct {
 UINT16 ExtEntrySize;
 UINT16 ExtEntryType;
} EFI_FIRMWARE_VOLUME_EXT_ENTRY;

ExtEntrySize

Size of this header extension.

ExtEntryType

Type of the header. See EFI_FV_EXT_TYPE_x.

#define EFI_FV_EXT_TYPE_OEM_TYPE 0x01
typedef struct {
 EFI_FIRMWARE_VOLUME_EXT_ENTRY Hdr;
 UINT32 TypeMask;
 //EFI_GUID Types[];
} EFI_FIRMWARE_VOLUME_EXT_ENTRY_OEM_TYPE;

Hdr

Standard extension entry, with the type EFI_FV_EXT_TYPE_OEM_TYPE.

TypeMask

A bit mask, one bit for each file type between 0xC0 (bit 0) and 0xDF (bit 31). If a bit
is ‘1’, then the GUID entry exists in Types. If a bit is ‘0’ then no GUID entry exists
in Types. For example, the value 0x01010301 would indicate that there would be
five total entries in Types for file types 0xC0 (bit 0), 0xC8 (bit 4), 0xC9 (bit 5), 0xD0
(bit 16), and 0xD8 (bit 24).

Types

An array of GUIDs, each GUID representing an OEM file type.

This extension header provides a mapping between a GUID and an OEM file type.
#define EFI_FV_EXT_TYPE_GUID_TYPE 0x0002
typedef struct {
 EFI_FIRMWARE_VOLUME_EXT_ENTRY Hdr;

Firmware Storage Code Definitions

Version 1.3 3/29/2013 37

 EFI_GUID FormatType;
 //UINT8 Data[];
} EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE;

Hdr

Standard extension entry, with the type EFI_FV_EXT_TYPE_OEM_TYPE.

FormatType

Vendor-specific GUID

Length

Length of the data following this field

Data

An arry of bytes of length Length.

This extension header EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE provides a vendor-
specific GUID FormatType type which includes a length and a successive series of data bytes.
Values 0x00, 0x03..0xffff are reserved by the specification.

3.2.1.1 EFI Signed Firmware Volumes
There may be one or more headers with a FormatType of value
EFI_FIRMWARE_CONTENTS_SIGNED_GUID.

A signed firmware volume is a cryptographic signature across the entire volume. To process the
contents and verify the integrity of the volume, the
EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE Data[]shall contain an instance of
WIN_CERTIFICATE_UEFI_GUID where the CertType =
EFI_CERT_TYPE_PKCS7_GUIDor EFI_CERT_TYPE_RSA2048_SHA256_GUID.

3.2.2 Firmware File System

EFI_FIRMWARE_FILE_SYSTEM2_GUID

Summary
The firmware volume header contains a data field for the file system GUID. See the
EFI_FIRMWARE_VOLUME_HEADER on page 31 for more information on the firmware volume
header.

GUID
// {8C8CE578-8A3D-4f1c-9935-896185C32DD3}
#define EFI_FIRMWARE_FILE_SYSTEM2_GUID \
 { 0x8c8ce578, 0x8a3d, 0x4f1c, \
 0x99, 0x35, 0x89, 0x61, 0x85, 0xc3, 0x2d, 0xd3 }

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

38 3/29/2013 Version 1.3

EFI_FIRMWARE_FILE_SYSTEM3_GUID

Summary
The firmware volume header contains a data field for the file system GUID. See the
EFI_FIRMWARE_VOLUME_HEADER on page 31 for more information on the firmware volume
header.

EFI_FIRMWARE_FILE_SYSTEM3_GUID indicates support for FFS_ATTRIB_LARGE_SIZE
and thus support for files 16MB or larger. EFI_FIRMWARE_FILE_SYSTEM2_GUID volume does
not contain large files. Files 16 MB or larger use a EFI_FFS_FILE_HEADER2 and smaller files
use EFI_FFS_FILE_HEADER. EFI_FIRMWARE_FILE_SYSTEM2_GUID allows backward
compatibility with previous versions of this specification

GUID
// {5473C07A-3DCB-4dca-BD6F-1E9689E7349A}
#define EFI_FIRMWARE_FILE_SYSTEM3_GUID \
 { 0x5473c07a, 0x3dcb, 0x4dca, \
 { 0xbd, 0x6f, 0x1e, 0x96, 0x89, 0xe7, 0x34, 0x9a } }

Firmware Storage Code Definitions

Version 1.3 3/29/2013 39

EFI_FFS_VOLUME_TOP_FILE_GUID

Summary
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID as defined below.

GUID
// {1BA0062E-C779-4582-8566-336AE8F78F09}

#define EFI_FFS_VOLUME_TOP_FILE_GUID \
 { 0x1BA0062E, 0xC779, 0x4582, 0x85, 0x66, 0x33, 0x6A, \
 0xE8, 0xF7, 0x8F, 0x9 }

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

40 3/29/2013 Version 1.3

3.2.3 Firmware File

EFI_FFS_FILE_HEADER

Summary
Each file begins with a header that describes the state and contents of the file. The header is 8-byte
aligned with respect to the beginning of the firmware volume.

Prototype
typedef struct {
 EFI_GUID Name;
 EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
 EFI_FV_FILETYPE Type;
 EFI_FFS_FILE_ATTRIBUTES Attributes;
 UINT8 Size[3];
 EFI_FFS_FILE_STATE State;
} EFI_FFS_FILE_HEADER;

typedef struct {
 EFI_GUID Name;
 EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
 EFI_FV_FILETYPE Type;
 EFI_FFS_FILE_ATTRIBUTES Attributes;
 UINT8 Size[3];
 EFI_FFS_FILE_STATE State;
 UINT12 ExtendedSize;
} EFI_FFS_FILE_HEADER2;

Parameters
Name

This GUID is the file name. It is used to uniquely identify the file. There may be only
one instance of a file with the file name GUID of Name in any given firmware
volume, except if the file type is EFI_FV_FILETYPE_FFS_PAD.

IntegrityCheck

Used to verify the integrity of the file. Type EFI_FFS_INTEGRITY_CHECK is
defined in “Related Definitions” below.

Type

Identifies the type of file. Type EFI_FV_FILETYPE is defined in “Related
Definitions,” below. FFS-specific file types are defined in
EFI_FV_FILETYPE_FFS_PAD.

Attributes

Declares various file attribute bits. Type EFI_FFS_FILE_ATTRIBUTES is defined
in “Related Definitions” below.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 41

Size

The length of the file in bytes, including the FFS header. The length of the file data is
either (Size – sizeof(EFI_FFS_FILE_HEADER)). This calculation means a
zero-length file has a Size of 24 bytes, which is
sizeof(EFI_FFS_FILE_HEADER).

Size is not required to be a multiple of 8 bytes. Given a file F, the next file header is
located at the next 8-byte aligned firmware volume offset following the last byte of
the file F.

State

Used to track the state of the file throughout the life of the file from creation to
deletion. Type EFI_FFS_FILE_STATE is defined in “Related Definitions” below.
See “File Integrity and State” on page 25 for an explanation of how these bits are
used.

ExtendedSize

If FFS_ATTRIB_LARGE_FILE is set in Attributes then ExtendedSize
exists and Size must be set to zero.

If FFS_ATTRIB_LARGE_FILE is not set then EFI_FFS_FILE_HEADER is used.

Description
The file header may use one of two structures to define the file. If the size of the file is larger than
0xFFFFFF the EFI_FFS_FILE_HEADER2 structure must be used, otherwise the
EFI_FFS_FILE_HEADER structure must be used. The structure used is determined by the
FFS_ATTRIB_LARGE_FILE attribute in the Attributes member. Note that all of the structure
elements other than ExtendedSize are the same in the two structures. The ExtendedSize
member is used instead of the Size member when the EFI_FFS_FILE_HEADER2 structure is used
(FFS_ATTRIB_LARGE_FILE is set).

Related Definitions
//**
// EFI_FFS_INTEGRITY_CHECK
//**
typedef union {
 struct {
 UINT8 Header;
 UINT8 File;
 } Checksum;
 UINT16 Checksum16;
} EFI_FFS_INTEGRITY_CHECK;

Header

The IntegrityCheck.Checksum.Header field is an 8-bit checksum of the file
header. The State and IntegrityCheck.Checksum.File fields are assumed
to be zero and the checksum is calculated such that the entire header sums to zero. The

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

42 3/29/2013 Version 1.3

IntegrityCheck.Checksum.Header field is valid anytime the
EFI_FILE_HEADER_VALID bit is set in the State field. See “File Integrity and
State” on page 25 for more details.

If the FFS_ATTRIB_LARGE_FILE bit of the Attributes field is set the header
size is sizeof (EFI_FFS_FILE_HEADER2), if it is clear the header size is sizeof
(EFI_FFS_FILE_HEADER).

File

If the FFS_ATTRIB_CHECKSUM (see definition below) bit of the Attributes
field is set to one, the IntegrityCheck.Checksum.File field is an 8-bit
checksum of the file data. If the FFS_ATTRIB_CHECKSUM bit of the Attributes
field is cleared to zero, the IntegrityCheck.Checksum.File field must be
initialized with a value of 0xAA. The IntegrityCheck.Checksum.File field
is valid any time the EFI_FILE_DATA_VALID bit is set in the State field. See
“File Integrity and State” on page 25 for more details.

Checksum

IntegrityCheck. Checksum16 is the full 16 bits of the IntegrityCheck
field.

//**
// EFI_FV_FILETYPE
//**
typedef UINT8 EFI_FV_FILETYPE;

//**
// EFI_FFS_FILE_ATTRIBUTES
//**
typedef UINT8 EFI_FFS_FILE_ATTRIBUTES;

// FFS File Attributes
#define FFS_ATTRIB_LARGE_FILE 0x01
#define FFS_ATTRIB_FIXED 0x04
#define FFS_ATTRIB_DATA_ALIGNMENT 0x38
#define FFS_ATTRIB_CHECKSUM 0x40

Figure 9 depicts the bit allocation of the Attributes field in an FFS file’s header.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 43

Figure 9. Bit Allocation of FFS Attributes

7 56 4 3 2 1 0

Reserved. M
ust be set to 0

FFS_ATTRIB _CH
ECKSU

M

FFS_ATTRIB _LA
RG

E_FILE

FFS_ATTRIB_D
ATA

_A
LIG

N
M

EN
T

FFS_ATTRIB _FIXED

Reserved. M
ust be set to 0

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

44 3/29/2013 Version 1.3

Table 6 provides descriptions of the fields in the above definition.

Table 6. Bit Allocation Definitions

Table 7 maps all FFS-supported alignments to FFS_ATTRIB_DATA_ALIGNMENT values and
firmware volume interface alignment values.

Table 7. Supported FFS Alignments

//**
// EFI_FFS_FILE_STATE
//**
typedef UINT8 EFI_FFS_FILE_STATE;

Value Definition

FFS_ATTRIB_FIXED Indicates that the file may not be moved from its present location.

FFS_ATTRIB_LARGE_FILE Indicates that large files are supported and the

EFI_FFS_FILE_HEADER2 is in use.

FFS_ATTRIB_DATA_ALIGNMENT Indicates that the beginning of the file data (not the file header) must
be aligned on a particular boundary relative to the firmware volume
base. The three bits in this field are an enumeration of alignment
possibilities. The firmware volume interface allows alignments based
on powers of two from byte alignment to 64KB alignment. FFS does
not support this full range. The table below maps all FFS supported

alignments to FFS_ATTRIB_DATA_ALIGNMENT values and

firmware volume interface alignment values. No other alignments are
supported by FFS. When a file with an alignment requirement is
created, a pad file may need to be created before it to ensure proper
data alignment. See “EFI_FV_FILETYPE_FFS_PAD” on page 12 for
more information regarding pad files.

FFS_ATTRIB_CHECKSUM Determines the interpretation of

IntegrityCheck.Checksum.File. See the

IntegrityCheck definition above for specific usage.

Required Alignment (bytes) Alignment Value in FFS

Attributes Field

Alignment Value in Firmware
Volume Interfaces

1 0 0

16 1 4

128 2 7

512 3 9

1KiB 4 10

4KiB 5 12

32KiB 6 15

64KiB 7 16

Firmware Storage Code Definitions

Version 1.3 3/29/2013 45

// FFS File State Bits
#define EFI_FILE_HEADER_CONSTRUCTION 0x01
#define EFI_FILE_HEADER_VALID 0x02
#define EFI_FILE_DATA_VALID 0x04
#define EFI_FILE_MARKED_FOR_UPDATE 0x08
#define EFI_FILE_DELETED 0x10
#define EFI_FILE_HEADER_INVALID 0x20

All other State bits are reserved and must be set to EFI_FVB_ERASE_POLARITY. See “File
Integrity and State” on page 25 for an explanation of how these bits are used. Type
EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on page 31.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

46 3/29/2013 Version 1.3

3.2.4 Firmware File Section

EFI_COMMON_SECTION_HEADER

Summary
Defines the common header for all the section types.

Prototype
typedef struct {
 UINT8 Size[3];
 EFI_SECTION_TYPE Type;
} EFI_COMMON_SECTION_HEADER;

typedef struct {
 UINT8 Size[3];
 EFI_SECTION_TYPE Type;
 UINT32 ExtendedSize;
} EFI_COMMON_SECTION_HEADER2;

Parameters
Size

A 24-bit unsigned integer that contains the total size of the section in bytes, including
the EFI_COMMON_SECTION_HEADER. For example, a zero-length section has a
Size of 4 bytes.

Type

Declares the section type. Type EFI_SECTION_TYPE is defined in “Related
Definitions” below.

ExtendedSize

If Size is 0xFFFFFF then ExtendedSize contains the size of the section. If
Size is not equal to 0xFFFFFF then this field does not exist.

Description
The type EFI_COMMON_SECTION_HEADER defines the common header for all the section types.

If Size is 0xFFFFFF the size of the section header is sizeof
(EFI_COMMON_SECTION_HEADER2). If Size is not equal to 0xFFFFFF then the size of the
section header is sizeof (EFI_COMMON_SECTION_HEADER).

The EFI_COMMON_SECTION_HEADER2 structure is only used if the section is too large to
be described using EFI_COMMON_SECTION_HEADER. Large sections using
EFI_COMMON_SECTION_HEADER2 can only exist in a file using
EFI_FFS_FILE_HEADER2, the FFS_ATTRIB_LARGE_FILE attribute in the file header is
set.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 47

Related Definitions
//**
// EFI_SECTION_TYPE
//**
typedef UINT8 EFI_SECTION_TYPE;

//**
// The section type EFI_SECTION_ALL is a pseudo type. It is
// used as a wild card when retrieving sections. The section
// type EFI_SECTION_ALL matches all section types.
//**
#define EFI_SECTION_ALL 0x00

//**
// Encapsulation section Type values
//**
#define EFI_SECTION_COMPRESSION 0x01
#define EFI_SECTION_GUID_DEFINED 0x02
#define EFI_SECTION_DISPOSABLE 0x03

//**
// Leaf section Type values
//**
#define EFI_SECTION_PE32 0x10
#define EFI_SECTION_PIC 0x11
#define EFI_SECTION_TE 0x12
#define EFI_SECTION_DXE_DEPEX 0x13
#define EFI_SECTION_VERSION 0x14
#define EFI_SECTION_USER_INTERFACE 0x15
#define EFI_SECTION_COMPATIBILITY16 0x16
#define EFI_SECTION_FIRMWARE_VOLUME_IMAGE 0x17
#define EFI_SECTION_FREEFORM_SUBTYPE_GUID 0x18
#define EFI_SECTION_RAW 0x19
#define EFI_SECTION_PEI_DEPEX 0x1B
#define EFI_SECTION_SMM_DEPEX 0x1C

All other values are reserved for future use.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

48 3/29/2013 Version 1.3

3.2.5 Firmware File Section Types

EFI_SECTION_COMPATIBILITY16

Summary
A leaf section type that contains an IA-32 16-bit executable image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_COMPATIBILITY16_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_COMPATIBILITY16_SECTION2;

Description
A Compatibility16 image section is a leaf section that contains an IA-32 16-bit executable image.
IA-32 16-bit legacy code that may be included in PI Architecture firmware is stored in a 16-bit
executable image. EFI_COMPATIBILITY16_SECTION2 is used if the section is 16MB or
larger.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 49

EFI_SECTION_COMPRESSION

Summary
An encapsulation section type in which the section data is compressed.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 UINT32 UncompressedLength;
 UINT8 CompressionType;
} EFI_COMPRESSION_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 UINT32 UncompressedLength;
 UINT8 CompressionType;
} EFI_COMPRESSION_SECTION2;

Parameters
CommonHeader

Usual common section header. CommonHeader.Type =
EFI_SECTION_COMPRESSION.

UncompressedLength

UINT32 that indicates the size of the section data after decompression.

CompressionType

Indicates which compression algorithm is used.

Description
A compression section is an encapsulation section in which the section data is compressed. To
process the contents and extract the enclosed section stream, the section data must be decompressed
using the decompressor indicated by the CompressionType parameter. The decompressed
image is then interpreted as a section stream. EFI_COMPRESSION_SECTION2 is used if the
section is 16MB or larger.

Related Definitions
//**
// CompressionType values
//**
#define EFI_NOT_COMPRESSED 0x00
#define EFI_STANDARD_COMPRESSION 0x01

Table 8 describes the fields in the above definition.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

50 3/29/2013 Version 1.3

Table 8. Description of Fields for CompressionType

Field Description

EFI_NOT_COMPRESSED Indicates that the encapsulated section stream is not
compressed. This type is useful to grouping sections together
without requiring a decompressor.

EFI_STANDARD_COMPRESSION Indicates that the encapsulated section stream is compressed
using the compression standard defined by the UEFI 2.0
specification.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 51

EFI_SECTION_DISPOSABLE

Summary
An encapsulation section type in which the section data is disposable.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_DISPOSABLE_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_DISPOSABLE_SECTION2;

Parameters
None

Description
A disposable section is an encapsulation section in which the section data may be disposed of during
the process of creating or updating a firmware image without significant impact on the usefulness of
the file. The Type field in the section header is set to EFI_SECTION_DISPOSABLE. This
allows optional or descriptive data to be included with the firmware file which can be removed in
order to conserve space. The contents of this section are implementation specific, but might contain
debug data or detailed integration instructions. EFI_DISPOSABLE_SECTION2 is used if the
section is 16MB or larger.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

52 3/29/2013 Version 1.3

EFI_SECTION_DXE_DEPEX

Summary
A leaf section type that is used to determine the dispatch order for a DXE driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_DXE_DEPEX_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_DXE_DEPEX_SECTION2;

Description
The DXE dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for a DXE driver. See the Platform Initialization Driver
Execution Environment Core Interface Specification for details regarding the format of the
dependency expression. EFI_DXE_DEPEX_SECTION2 must be used if the section is 16MB or
larger.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 53

EFI_SECTION_FIRMWARE_VOLUME_IMAGE

Summary
A leaf section type that contains a PI Firmware Volume.

Prototype
typedef EFI_COMMON_SECTION_HEADER
EFI_FIRMWARE_VOLUME_IMAGE_SECTION;

typedef EFI_COMMON_SECTION_HEADER2
EFI_FIRMWARE_VOLUME_IMAGE_SECTION2;

Description
A firmware volume image section is a leaf section that contains a PI Firmware Volume Image.
EFI_FIRMWARE_VOLUME_IMAGE_SECTION2 must be used if the section is 16MB or larger.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

54 3/29/2013 Version 1.3

EFI_SECTION_FREEFORM_SUBTYPE_GUID

Summary
A leaf section type that contains a single EFI_GUID in the header to describe the raw data.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 EFI_GUID SubTypeGuid;
} EFI_FREEFORM_SUBTYPE_GUID_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 EFI_GUID SubTypeGuid;
} EFI_FREEFORM_SUBTYPE_GUID_SECTION2;

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_FREEFORM_SUBTYPE_GUID.

SubtypeGuid

This GUID is defined by the creator of the file. It is a vendor-defined file type. Type
EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

Description
A free-form subtype GUID section is a leaf section that contains a single EFI_GUIDin the header to
describe the raw data. It is typically used in files of type EFI_FV_FILETYPE_FREEFORM to
provide an extensibility mechanism for file types. See “EFI_FV_FILETYPE_FREEFORM” on
page 12 for more details about EFI_FV_FILETYPE_FREEFORM files.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 55

EFI_SECTION_GUID_DEFINED

Summary
An encapsulation section type in which the method of encapsulation is defined by an identifying
GUID.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 EFI_GUID SectionDefinitionGuid;
 UINT16 DataOffset;
 UINT16 Attributes;
 // GuidSpecificHeaderFields;
} EFI_GUID_DEFINED_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 EFI_GUID SectionDefinitionGuid;
 UINT16 DataOffset;
 UINT16 Attributes;
 // GuidSpecificHeaderFields;
} EFI_GUID_DEFINED_SECTION2;

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_GUID_DEFINED.

SectionDefinitionGuid

GUID that defines the format of the data that follows. It is a vendor-defined section
type. Type EFI_GUID is defined in InstallProtocolInterface() in the
UEFI 2.0 specification.

DataOffset

Contains the offset in bytes from the beginning of the common header to the first byte
of the data.

Attributes

Bit field that declares some specific characteristics of the section contents. The bits are
defined in “Related Definitions” below.

GuidSpecificHeaderFields

Zero or more bytes of data that are defined by the section’s GUID. An example of this
data would be a digital signature and manifest.

Data

Zero or more bytes of arbitrary data. The format of the data is defined by
SectionDefinitionGuid.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

56 3/29/2013 Version 1.3

Description
A GUID-defined section contains a section-type-specific header that contains an identifying GUID,
followed by an arbitrary amount of data. It is an encapsulation section in which the method of
encapsulation is defined by the GUID. A matching instance of
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL (DXE) or
EFI_GUIDED_SECTION_EXTRACTION_PPI (PEI) is required to extract the contents of this
encapsulation section.

The GUID-defined section enables custom encapsulation section types for any purpose. One
commonly expected use is creating an encapsulation section to enable a cryptographic authentication
of the section contents. EFI_GUID_DEFINED_SECTION2 must be used if the section is 16MB or
larger.

Related Definitions
//***
// Bit values for GuidedSectionHeader.Attributes
//***
#define EFI_GUIDED_SECTION_PROCESSING_REQUIRED 0x01
#define EFI_GUIDED_SECTION_AUTH_STATUS_VALID 0x02

Table 9 describes the fields in the above definition.

Table 9. Descriptions of Fields for GuidedSectionHeader.Attributes

Field Description

EFI_GUIDED_SECTION_
PROCESSING_REQUIRED

Set to 1 if the section requires processing to obtain meaningful
data from the section contents. Processing would be required, for
example, if the section contents were encrypted or compressed.
If the

EFI_GUIDED_SECTION_PROCESSING_REQUIRED

bit is cleared to zero, it is possible to retrieve the section’s
contents without processing in the absence of an associated
instance of the

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

(DXE) or

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI

(PEI).. In this case, the beginning of the encapsulated section

stream is indicated by the value of DataOffset.

EFI_GUIDED_SECTION_AUTH_
STATUS_VALID

Set to 1 if the section contains authentication data that is reported

through the AuthenticationStatus parameter returned

from the GUIDed Section Extraction
Protocol. If the

EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit is

clear, the AuthenticationStatus parameter is not

used.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 57

All other bits are reserved and must be set to zero. Together, the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED and
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bits provide the necessary data to set the
proper bits of the AuthenticationStatus output parameter in the event that no
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL is available and the data is still returned.

EFI Signed Sections

For EFI_GUID_DEFINED_SECTION and EFI_GUID_DEFINED_SECTION2 there is a
SectionDefinitionGuid of type EFI_SECTION_SIGNED_GUID.

The GuidSpecificHeaderFields shall include an entry SignatureInfo of type
WIN_CERTIFICATE_UEFI_GUID.

#define EFI_FIRMWARE_CONTENTS_SIGNED_GUID \
{ 0xf9d89e8, 0x9259, 0x4f76, \
{ 0xa5, 0xaf, 0xc, 0x89, 0xe3, 0x40, 0x23, 0xdf } }

The signed section is an encapsulation section in which the section data is cryptographically signed.
To process the contents and extract the enclosed section stream, the section data integrity must be
accessed by evaluating the enclosed data via the cryptographic information in the
SignatureInfo. The CertType = EFI_CERT_TYPE_PKCS7_GUID or
EFI_CERT_TYPE_RSA2048_SHA256_GUID.

The signed image is then interpreted as a section stream. EFI_GUID_DEFINED_SECTION2 is
used if the section is 16MB or larger.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

58 3/29/2013 Version 1.3

EFI_SECTION_PE32

Summary
A leaf section type that contains a complete PE32+ image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PE32_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_PE32_SECTION2;

Description
The PE32+ image section is a leaf section that contains a complete PE32+ image. Normal UEFI
executables are stored within PE32+ images. EFI_PE32_SECTION2 must be used if the section is
16MB or larger.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 59

EFI_SECTION_PEI_DEPEX

Summary
A leaf section type that is used to determine dispatch order for a PEIM.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PEI_DEPEX_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_PEI_DEPEX_SECTION2;

Description
The PEI dependency expression section is a leaf section that contains a dependency expression that
is used to determine dispatch order for a PEIM. See the Platform Initialization Pre-EFI Initialization
Core Interface Specification for details regarding the format of the dependency expression.
EFI_PEI_DEPEX_SECTION2 must be used if the section is 16MB or larger.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

60 3/29/2013 Version 1.3

EFI_SECTION_PIC

Summary
A leaf section type that contains a position-independent-code (PIC) image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PIC_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_PIC_SECTION2;

Description
A PIC image section is a leaf section that contains a position-independent-code (PIC) image.

In addition to normal PE32+ images that contain relocation information, PEIM executables may be
PIC and are referred to as PIC images. A PIC image is the same as a PE32+ image except that all
relocation information has been stripped from the image and the image can be moved and will
execute correctly without performing any relocation or other fix-ups. EFI_PIC_SECTION2 must
be used if the section is 16MB or larger.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 61

EFI_SECTION_RAW

Summary
A leaf section type that contains an array of zero or more bytes.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_RAW_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_RAW_SECTION2;

Description
A raw section is a leaf section that contains an array of zero or more bytes. No particular formatting
of these bytes is implied by this section type. EFI_RAW_SECTION2 must be used if the section is
16MB or larger.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

62 3/29/2013 Version 1.3

EFI_SECTION_SMM_DEPEX

Summary

A leaf section type that is used to determine the dispatch order for an SMM driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_SMM_DEPEX_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_SMM_DEPEX_SECTION2;

Description

The SMM dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for SMM drivers. Before the SMRAM invocation of the
SMM driver’s entry point, this dependency expression must evaluate to TRUE. See the Platform
Initialization Specification, Volume 2for details regarding the format of the dependency expression.

The dependency expression may refer to protocols installed in either the UEFI or the SMM protocol
database. EFI_SMM_DEPEX_SECTION2 must be used if the section is 16MB or larger.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 63

EFI_SECTION_TE

Summary
A leaf section that contains a Terse Executable (TE) image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_TE_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_TE_SECTION2;

Description
The terse executable section is a leaf section that contains a Terse Executable (TE) image. A TE
image is an executable image format specific to the PI Architecture that is used for storing
executable images in a smaller amount of space than would be required by a full PE32+ image. Only
PEI Foundation and PEIM files may contain a TE section. EFI_TE_SECTION2 must be used if the
section is 16MB or larger.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

64 3/29/2013 Version 1.3

EFI_SECTION_USER_INTERFACE

Summary
A leaf section type that contains a Unicode string that contains a human-readable file name.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 CHAR16 FileNameString[];
} EFI_USER_INTERFACE_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 CHAR16 FileNameString[];
} EFI_USER_INTERFACE_SECTION2;

Description
The user interface file name section is a leaf section that contains a Unicode string that contains a
human-readable file name.

This section is optional and is not required for any file types. There must never be more than one
user interface file name section contained within a file. EFI_USER_INTERFACE_SECTION2
must be used if the section is 16MB or larger.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 65

EFI_SECTION_VERSION

Summary
A leaf section type that contains a numeric build number and an optional Unicode string that
represents the file revision.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 UINT16 BuildNumber;
 CHAR16 VersionString[];
} EFI_VERSION_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 UINT16 BuildNumber;
 CHAR16 VersionString[];
} EFI_VERSION_SECTION2;

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_VERSION.

BuildNumber

A UINT16 that represents a particular build. Subsequent builds have monotonically
increasing build numbers relative to earlier builds.

VersionString

A null-terminated Unicode string that contains a text representation of the version. If
there is no text representation of the version, then an empty string must be provided.

Description
A version section is a leaf section that contains a numeric build number and an optional Unicode
string that represents the file revision.

To facilitate versioning of PEIMs, DXE drivers, and other files, a version section may be included in
a file. There must never be more than one version section contained within a file.
EFI_VERSION_SECTION2 must be used if the section is 16MB or larger.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

66 3/29/2013 Version 1.3

3.3 PEI

EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

Summary
Provides location and format of a firmware volume.

GUID
#define EFI_PEI_FIRMWARE_VOLUME_INFO_PPI_GUID \
 { 0x49edb1c1, 0xbf21, 0x4761, \
 0xbb, 0x12, 0xeb, 0x0, 0x31, 0xaa, 0xbb, 0x39 }

Prototype
typedef struct _EFI_PEI_FIRMWARE_VOLUME_INFO2_PPI {
 EFI_GUID FvFormat;
 VOID *FvInfo;
 UINT32 FvInfoSize;
 EFI_GUID *ParentFvName;
 EFI_GUID *ParentFileName;
 UINT32 AuthenticationStatus;
} EFI_PEI_FIRMWARE_VOLUME_INFO_PPI ;

Parameters
FvFormat

Unique identifier of the format of the memory-mapped firmware volume.

FvInfo

Points to a buffer which allows the EFI_PEI_FIRMWARE_VOLUME_PPI to
process the volume. The format of this buffer is specific to the FvFormat. For
memory-mapped firmware volumes, this typically points to the first byte of the
firmware volume.

FvInfoSize

Size of the data provided by FvInfo. For memory-mapped firmware volumes, this is
typically the size of the firmware volume.

ParentFvName, ParentFileName

If the firmware volume originally came from a firmware file, then these point to the
parent firmware volume name and firmware volume file. If it did not originally come
from a firmware file, these should be NULL.

AuthenticationStatus

Authentication status for this file.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 67

Description
This PPI describes the location and format of a firmware volume. The FvFormat can be
EFI_FIRMWARE_FILE_SYSTEM2_GUID or the GUID for a user-defined format. The
EFI_FIRMWARE_FILE_SYSTEM2_GUID is the PI Firmware Volume format.

3.3.1 PEI Firware Volume PPI

EFI_PEI_FIRMWARE_VOLUME_PPI

Summary
Provides functions for accessing a memory-mapped firmware volume of a specific format.

GUID
The GUID for this PPI is the same as the firmware volume format GUID.

Prototype
typedef struct _EFI_PEI_FIRMWARE_VOLUME_PPI2 {
 EFI_PEI_FV_PROCESS_FV ProcessVolume;
 EFI_PEI_FV_FIND_FILE_TYPE FindFileByType;
 EFI_PEI_FV_FIND_FILE_NAME FindFileByName;
 EFI_PEI_FV_GET_FILE_INFO GetFileInfo2;
 EFI_PEI_FV_GET_INFO GetVolumeInfo2;
 EFI_PEI_FV_FIND_SECTION FindSectionByType2;
} EFI_PEI_FIRMWARE_VOLUME_PPI;

Parameters
ProcessVolume

Process a firmware volume and create a volume handle.

FindFileByType

Find all files of a specific type.

FindFileByName

Find the file with a specific name.

GetFileInfo2

Return the information about a specific file

GetVolumeInfo2

Return the firmware volume attributes.

FindSectionByType2

Find all sections of a specific type.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

68 3/29/2013 Version 1.3

EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume()

Summary
Process a firmware volume and create a volume handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_PROCESS_FV) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN VOID *Buffer,
 IN UINTN BufferSize,
 OUT EFI_PEI_FV_HANDLE *FvHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

Buffer

Points to the start of the buffer.

BufferSize

Size of the buffer.

FvHandle

Points to the returned firmware volume handle. The firmware volume handle must be
unique within the system. The type EFI_PEI_FV_HANDLE is defined in the PEI
Services FfsFindNextVolume().

Description
Create a volume handle from the information in the buffer. For memory-mapped firmware volumes,
Buffer and BufferSize refer to the start of the firmware volume and the firmware volume size.
For non memory-mapped firmware volumes, this points to a buffer which contains the necessary
information for creating the firmware volume handle. Normally, these values are derived from the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI.

Status Codes Returned

EFI_SUCCESS Firmware volume handle created.

EFI_VOLUME_CORRUPTED Volume was corrupt.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 69

EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType()

Summary
Finds the next file of the specified type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_FILE_TYPE) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_FV_FILETYPE SearchType,
 IN EFI_PEI_FV_HANDLE FvHandle,
 IN OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

SearchType

A filter to find only files of this type. Type EFI_FV_FILETYPE_ALL causes no
filtering to be done.

FvHandle

Handle of firmware volume in which to search.

FileHandle

Points to the current handle from which to begin searching or NULL to start at the
beginning of the firmware volume. Updated upon return to reflect the file found.

Description
This service enables PEI modules to discover additional firmware files. The FileHandle must be
unique within the system.

Status Codes Returned

EFI_SUCCESS The file was found.

EFI_NOT_FOUND The file was not found. FileHandle contains NULL.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

70 3/29/2013 Version 1.3

EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName()

Summary
Find a file within a volume by its name.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_FILE_NAME) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN CONST EFI_GUID *FileName,
 IN EFI_PEI_FV_HANDLE *FvHandle,
 OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FileName

A pointer to the name of the file to find within the firmware volume.

FvHandle

Upon entry, the pointer to the firmware volume to search or NULL if all firmware
volumes should be searched. Upon exit, the actual firmware volume in which the file
was found.

FileHandle

Upon exit, points to the found file’s handle or NULL if it could not be found.

Description
This service searches for files with a specific name, within either the specified firmware volume or
all firmware volumes. The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS File was found.

EFI_NOT_FOUND File was not found.

EFI_INVALID_PARAMETER FileHandle or FileName was NULL.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 71

EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_GET_FILE_INFO2) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_FV_FILE_INFO *FileInfo2
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FileHandle

Handle of the file.

FileInfo2

Upon exit, points to the file’s information.

Description
This function returns information about a specific file, including its file name, type, attributes,
starting address and size.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo2 is NULL

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

72 3/29/2013 Version 1.3

EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo()

Summary
Return information about the firmware volume.

Prototypes
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_GET_INFO)(
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_PEI_FV_HANDLE FvHandle,
 OUT EFI_FV_INFO *VolumeInfo
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FvHandle

Handle to the firmware handle.

VolumeInfo

Points to the returned firmware volume information.

Description
This function returns information about the firmware volume.

Status Codes Returned

EFI_SUCCESS Information returned successfully.

EFI_INVALID_PARAMETER FvHandle does not indicate a valid firmware volume or

VolumeInfo is NULL

Firmware Storage Code Definitions

Version 1.3 3/29/2013 73

EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType()

Summary
Find the next matching section in the firmware file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_SECTION) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_SECTION_TYPE SearchType,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT VOID **SectionData
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

SearchType

A filter to find only sections of this type.

FileHandle

Handle of firmware file in which to search.

SectionData

Updated upon return to point to the section found.

Description
This service enables PEI modules to discover sections of a given type within a valid file.

Status Codes Returns

3.3.2 PEI Load File PPI

EFI_PEI_LOAD_FILE_PPI

Summary
Installed by a PEIM that supports the Load File PPI.

EFI_SUCCESS Section was found.

EFI_NOT_FOUND Section of the specified type was not found. SectionData contains

NULL.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

74 3/29/2013 Version 1.3

GUID
#define EFI_PEI_LOAD_FILE_PPI_GUID \
 { 0xb9e0abfe, 0x5979, 0x4914, \
 0x97, 0x7f, 0x6d, 0xee, 0x78, 0xc2, 0x78, 0xa6 }

Prototype
typedef struct _EFI_PEI_LOAD_FILE_PPI {

EFI_PEI_LOAD_FILE LoadFile;
} EFI_PEI_LOAD_FILE_PPI;

Parameters
LoadFile

Loads a PEIM into memory for subsequent execution. See the LoadFile() function
description.

Description
This PPI is a pointer to the Load File service. This service will be published by a PEIM. The PEI
Foundation will use this service to launch the known PEI module images.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 75

EFI_PEI_LOAD_FILE_PPI.LoadFile()

Summary
Loads a PEIM into memory for subsequent execution.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOAD_FILE) (
 IN CONST EFI_PEI_LOAD_FILE_PPI *This,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
 OUT UINT64 *ImageSize,
 OUT EFI_PHYSICAL_ADDRESS *EntryPoint,
 OUT UINT32 *AuthenticationState
);

Parameters
This

Interface pointer that implements the Load File PPI instance.

FileHandle

File handle of the file to load. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile().

ImageAddress

Pointer to the address of the loaded image.

ImageSize

Pointer to the size of the loaded image.

EntryPoint

Pointer to the entry point of the image.

AuthenticationState

On exit, points to the attestation authentication state of the image or 0 if no attestation
was performed. The format of AuthenticationState is defined in
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() on
page 78

Description
This service is the single member function of EFI_LOAD_FILE_PPI. This service separates
image loading and relocating from the PEI Foundation. For example, if there are compressed images
or images that need to be relocated into memory for performance reasons, this service performs that
transformation. This service is very similar to the EFI_LOAD_FILE_PROTOCOL in the UEFI 2.0
specification. The abstraction allows for an implementation of the LoadFile() service to support
different image types in the future. There may be more than one instance of this PPI in the system.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

76 3/29/2013 Version 1.3

For example, the PEI Foundation might support only XIP images natively, but another PEIM might
contain support for relocatable images. There must be an LoadFile() instance that at least
supports the PE/COFF and Terse Executable (TE) image format.

For sectioned files, this function should use FfsFindSectionData in order to find the
executable image section.

This service must support loading of XIP images with or without copying them to a permanent
memory. If the image within the specified file cannot be loaded because it must be copied into
memory (either because the FV is not memory mapped or because the image contains relocations),
and the permanent memory is not available, the function will return EFI_NOT_SUPPORTED. If
permanent memory is available, then the PEIM should be loaded into permanent memory unless the
image is not relocatable. If the image cannot be loaded into permanent memory due to insufficient
amount of the available permanent memory, the function will return
EFI_WARN_BUFFER_TOO_SMALL in case of XIP image, and EFI_OUT_OF_RESOURCES in
case of non-XIP image. When EFI_WARN_BUFFER_TOO_SMALL is returned, all the output
parameters are valid and the image can be invoked.

Any behavior PEIM which requires to be executed from code permanent memory should include
wait for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI and
EFI_PEI_LOAD_FILE_PPI to be installed.

Status Codes Returned

3.3.3 PEI Guided Section Extraction PPI

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI

Summary
If a GUID-defined section is encountered when doing section extraction, the PEI Foundation or the
EFI_PEI_FILE_LOADER_PPI instance calls the appropriate instance of the GUIDed Section
Extraction PPI to extract the section stream contained therein.

GUID
Typically, protocol interface structures are identified by associating them with a GUID. Each
instance of a protocol with a given GUID must have the same interface structure. While all instances
of the GUIDed Section Extraction PPI must have the same interface structure, they do not all have

EFI_SUCCESS The image was loaded successfully.

EFI_OUT_OF_RESOURCES There was not enough memory.

EFI_LOAD_ERROR There was no supported image in the file

EFI_INVALID_PARAMETER FileHandle was not a valid firmware file handle.

EFI_INVALID_PARAMETER EntryPoint was NULL.

EFI_UNSUPPORTED An image requires relocations or is not memory mapped.

EFI_WARN_BUFFER_TOO_SMALL There is not enough heap to allocate the requested size.
This will not prevent the XIP image from being invoked.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 77

the same GUID. The GUID that is associated with an instance of the GUIDed Section Extraction
Protocol is used to correlate it with the GUIDed section type that it is intended to process.

PPI Structure
typedef struct _EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI {
 EFI_PEI_EXTRACT_GUIDED_SECTION ExtractSection;
} EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI;

Parameters
ExtractSection

Takes the GUIDed section as input and produces the section stream data. See the
ExtractSection() function description.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

78 3/29/2013 Version 1.3

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection()

Summary
Processes the input section and returns the data contained therein along with the authentication
status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_EXTRACT_GUIDED_SECTION)(
 IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
 IN CONST VOID *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI instance.

InputSection

Buffer containing the input GUIDed section to be processed.

OutputBuffer

*OutputBuffer is allocated from PEI permanent memory and contains the new
section stream.

OutputSize

A pointer to a caller-allocated UINTN in which the size of *OutputBuffer
allocation is stored. If the function returns anything other than EFI_SUCCESS, the
value of *OutputSize is undefined.

AuthenticationStatus

A pointer to a caller-allocated UINT32 that indicates the authentication status of the
output buffer. If the input section’s GuidedSectionHeader.Attributes field
has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear,
*AuthenticationStatus must return zero. These bits reflect the status of the
extraction operation. If the function returns anything other than EFI_SUCCESS, the
value of *AuthenticationStatus is undefined.

Description
The ExtractSection() function processes the input section and returns a pointer to the section
contents. If the section being extracted does not require processing (if the section’s
GuidedSectionHeader.Attributes has the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED field cleared), then OutputBuffer is

Firmware Storage Code Definitions

Version 1.3 3/29/2013 79

just updated to point to the start of the section’s contents. Otherwise, *Buffer must be allocated
from PEI permanent memory.

If the section being extracted contains authentication information (the section’s
GuidedSectionHeader.Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set), the values returned in
AuthenticationStatus must reflect the results of the authentication operation.

If the section contains other encapsulation sections, their contents do not need to be extracted or
decompressed.

Related Definitions
//**
// Bit values for AuthenticationStatus
//**
#define EFI_AUTH_STATUS_PLATFORM_OVERRIDE 0x01
#define EFI_AUTH_STATUS_IMAGE_SIGNED 0x02
#define EFI_AUTH_STATUS_NOT_TESTED 0x04
#define EFI_AUTH_STATUS_TEST_FAILED 0x08

// all other bits are reserved and must be 0

The bit definitions above lead to the evaluations of AuthenticationStatus: in Table 10.

Table 10. AuthenticationStatus Bit Definitions

Bit Definition

xx00 Image was not signed.

xxx1 Platform security policy override. Assumes same meaning as 0010 (the image was signed, the
signature was tested, and the signature passed authentication test).

0010 Image was signed, the signature was tested, and the signature passed authentication test.

0110 Image was signed and the signature was not tested. This can occur if there is no GUIDed Section
Extraction Protocol available to process a GUID-defined section, but it was still possible to retrieve
the data from the GUID-defined section directly.

1010 Image was signed, the signature was tested, and the signature failed the authentication test.

1110 To generate this code, there must be at least two layers of GUIDed encapsulations. In one layer, the

AuthenticationStatus was returned as 0110; in another layer, it was returned as 1010.

When these two results are OR-ed together, the aggregate result is 1110.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

80 3/29/2013 Version 1.3

Status Codes Returned

3.3.4 PEI Decompress PPI

EFI_PEI_DECOMPRESS_PPI

Summary
Provides decompression services to the PEI Foundatoin.

GUID
#define EFI_PEI_DECOMPRESS_PPI_GUID \
 { 0x1a36e4e7, 0xfab6, 0x476a, \
 { 0x8e, 0x75, 0x69, 0x5a, 0x5, 0x76, 0xfd, 0xd7 } }

PPI Structure
typedef struct _EFI_PEI_DECOMPRESS_PPI {
 EFI_PEI_DECOMPRESS_DECOMPRESS Decompress;
} EFI_PEI_DECOMPRESS_PPI;

Members
Decompress

Decompress a single compression section in a firmware file. See Decompress()
for more information.

Description
This PPI’s single member function decompresses a compression encapsulated section. It is used by
the PEI Foundation to process sectioned files. Prior to the installation of this PPI, compression
sections will be ignored.

EFI_SUCCESS The InputSection was successfully processed and the section

contents were returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the

GUIDed Section Extraction PPI.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 81

EFI_PEI_DECOMPRESS_PPI.Decompress()

Summary
Decompress a single section.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DECOMPRESS_DECOMPRESS)(
 IN CONST EFI_PEI_DECOMPRESS_PPI *This,
 IN CONST EFI_COMPRESSION_SECTION *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize
);

Parameters
This

Points to this instance of the EFI_PEI_DECOMPRESS_PEI PPI.

InputSection

Points to the compressed section.

OutputBuffer

Holds the returned pointer to the decompressed sections.

OutputSize

Holds the returned size of the decompress section streams.

Description
Decompresses the data in a compressed section and returns it as a series of standard PI Firmware
File Sections. The required memory is allocated from permanent memory.

Status Codes Returned

EFI_SUCCESS The section was decompressed successfully.

OutputBuffer contains the resulting data and

OutputSize contains the resulting size.

EFI_OUT_OF_RESOURCES Unable to allocate sufficient memory to hold the decompressed
data.

EFI_UNSUPPORTED The compression type specified in the compression header is
unsupported.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

82 3/29/2013 Version 1.3

3.4 DXE

3.4.1 Firmware Volume2 Protocol

EFI_FIRMWARE_VOLUME2_PROTOCOL

Summary
The Firmware Volume Protocol provides file-level access to the firmware volume. Each firmware
volume driver must produce an instance of the Firmware Volume Protocol if the firmware volume is
to be visible to the system during the DXE phase. The Firmware Volume Protocol also provides
mechanisms for determining and modifying some attributes of the firmware volume.

GUID
#define EFI_FIRMWARE_VOLUME2_PROTOCOL_GUID \
 { 0x220e73b6, 0x6bdb, 0x4413, 0x84, 0x5, 0xb9, 0x74, \
 0xb1, 0x8, 0x61, 0x9a }

Protocol Interface Structure
typedef struct_EFI_FIRMWARE_VOLUME_PROTOCOL {
 EFI_FV_GET_ATTRIBUTES GetVolumeAttributes;
 EFI_FV_SET_ATTRIBUTES SetVolumeAttributes;
 EFI_FV_READ_FILE ReadFile;
 EFI_FV_READ_SECTION ReadSection;
 EFI_FV_WRITE_FILE WriteFile;
 EFI_FV_GET_NEXT_FILE GetNextFile;
 UINT32 KeySize;
 EFI_HANDLE ParentHandle;
 EFI_FV_GET_INFO GetInfo;
 EFI_FV_SET_INFO SetInfo;
} EFI_FIRMWARE_VOLUME2_PROTOCOL;

Parameters
GetVolumeAttributes

Retrieves volume capabilities and current settings. See the
GetVolumeAttributes() function description.

SetVolumeAttributes

Modifies the current settings of the firmware volume. See the
SetVolumeAttributes() function description.

ReadFile

Reads an entire file from the firmware volume. See the ReadFile() function
description.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 83

ReadSection

Reads a single section from a file into a buffer. See the ReadSection() function
description.

WriteFile

Writes an entire file into the firmware volume. See the WriteFile() function
description.

GetNextFile

Provides service to allow searching the firmware volume. See the GetNextFile()
function description.

KeySize

Data field that indicates the size in bytes of the Key input buffer for the
GetNextFile() API.

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

GetInfo

Gets the requested file or volume information. See the GetInfo() function
description.

SetInfo

Sets the requested file information. See the SetInfo() function description.

Description
The Firmware Volume Protocol contains the file-level abstraction to the firmware volume as well as
some firmware volume attribute reporting and configuration services. The Firmware Volume
Protocol is the interface used by all parts of DXE that are not directly involved with managing the
firmware volume itself. This abstraction allows many varied types of firmware volume
implementations. A firmware volume may be a flash device or it may be a file in the UEFI system
partition, for example. This level of firmware volume implementation detail is not visible to the
consumers of the Firmware Volume Protocol.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

84 3/29/2013 Version 1.3

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes()

Summary
Returns the attributes and current settings of the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_GET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

FvAttributes

Pointer to an EFI_FV_ATTRIBUTES in which the attributes and current settings are
returned. Type EFI_FV_ATTRIBUTES is defined in “Related Definitions” below.

Description
Because of constraints imposed by the underlying firmware storage, an instance of the Firmware
Volume Protocol may not be to able to support all possible variations of this architecture. These
constraints and the current state of the firmware volume are exposed to the caller using the
GetVolumeAttributes() function.

GetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the UEFI 2.0 specification.

Related Definitions
//**
// EFI_FV_ATTRIBUTES
//**
typedef UINT64 EFI_FV_ATTRIBUTES;

//**
// EFI_FV_ATTRIBUTES bit definitions
//**

// EFI_FV_ATTRIBUTES bit semantics
#define EFI_FV2_READ_DISABLE_CAP 0x0000000000000001
#define EFI_FV2_READ_ENABLE_CAP 0x0000000000000002
#define EFI_FV2_READ_STATUS 0x0000000000000004

Firmware Storage Code Definitions

Version 1.3 3/29/2013 85

#define EFI_FV2_WRITE_DISABLE_CAP 0x0000000000000008
#define EFI_FV2_WRITE_ENABLE_CAP 0x0000000000000010
#define EFI_FV2_WRITE_STATUS 0x0000000000000020

#define EFI_FV2_LOCK_CAP 0x0000000000000040
#define EFI_FV2_LOCK_STATUS 0x0000000000000080
#define EFI_FV2_WRITE_POLICY_RELIABLE 0x0000000000000100

#define EFI_FV2_READ_LOCK_CAP 0x0000000000001000
#define EFI_FV2_READ_LOCK_STATUS 0x0000000000002000
#define EFI_FV2_WRITE_LOCK_CAP 0x0000000000004000
#define EFI_FV2_WRITE_LOCK_STATUS 0x0000000000008000
#define EFI_FV2_ALIGNMENT 0x00000000001F0000

#define EFI_FV2_ALIGNMENT_1 0x0000000000000000
#define EFI_FV2_ALIGNMENT_2 0x0000000000010000
#define EFI_FV2_ALIGNMENT_4 0x0000000000020000
#define EFI_FV2_ALIGNMENT_8 0x0000000000030000
#define EFI_FV2_ALIGNMENT_16 0x0000000000040000
#define EFI_FV2_ALIGNMENT_32 0x0000000000050000
#define EFI_FV2_ALIGNMENT_64 0x0000000000060000
#define EFI_FV2_ALIGNMENT_128 0x0000000000070000
#define EFI_FV2_ALIGNMENT_256 0x0000000000080000
#define EFI_FV2_ALIGNMENT_512 0x0000000000090000
#define EFI_FV2_ALIGNMENT_1K 0x00000000000A0000
#define EFI_FV2_ALIGNMENT_2K 0x00000000000B0000
#define EFI_FV2_ALIGNMENT_4K 0x00000000000C0000
#define EFI_FV2_ALIGNMENT_8K 0x00000000000D0000
#define EFI_FV2_ALIGNMENT_16K 0x00000000000E0000
#define EFI_FV2_ALIGNMENT_32K 0x00000000000F0000
#define EFI_FV2_ALIGNMENT_64K 0x0000000000100000
#define EFI_FV2_ALIGNMENT_128K 0x0000000000110000
#define EFI_FV2_ALIGNMENT_256K 0x0000000000120000
#define EFI_FV2_ALIGNMENT_512K 0x0000000000130000
#define EFI_FV2_ALIGNMENT_1M 0x0000000000140000
#define EFI_FV2_ALIGNMENT_2M 0x0000000000150000
#define EFI_FV2_ALIGNMENT_4M 0x0000000000160000
#define EFI_FV2_ALIGNMENT_8M 0x0000000000170000
#define EFI_FV2_ALIGNMENT_16M 0x0000000000180000
#define EFI_FV2_ALIGNMENT_32M 0x0000000000190000
#define EFI_FV2_ALIGNMENT_64M 0x00000000001A0000
#define EFI_FV2_ALIGNMENT_128M 0x00000000001B0000
#define EFI_FV2_ALIGNMENT_256M 0x00000000001C0000
#define EFI_FV2_ALIGNMENT_512M 0x00000000001D0000
#define EFI_FV2_ALIGNMENT_1G 0x00000000001E0000

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

86 3/29/2013 Version 1.3

#define EFI_FV2_ALIGNMENT_2G 0x00000000001F0000

Table 11 describes the fields in the above definition.

Table 11. Descriptions of Fields for EFI_FV_ATTRIBUTES

All other bits are reserved and are cleared to zero.

Status Codes Returned

Field Description

EFI_FV_READ_DISABLED_CAP Set to 1 if it is possible to disable reads from the firmware volume.

EFI_FV_READ_ENABLED_CAP Set to 1 if it is possible to enable reads from the firmware volume.

EFI_FV_READ_STATUS Indicates the current read state of the firmware volume. Set to 1 if
reads from the firmware volume are enabled.

EFI_FV_WRITE_DISABLED_CAP Set to 1 if it is possible to disable writes to the firmware volume.

EFI_FV_WRITE_ENABLED_CAP Set to 1 if it is possible to enable writes to the firmware volume.

EFI_FV_WRITE_STATUS Indicates the current state of the firmware volume. Set to 1 if writes
to the firmware volume are enabled.

EFI_FV_LOCK_CAP Set to 1 if it is possible to lock firmware volume read/write attributes.

EFI_FV_LOCK_STATUS Set to 1 if firmware volume attributes are locked down.

EFI_FV_WRITE_POLICY_RELIABLE Set to 1 if the firmware volume supports “reliable” writes..

EFI_FV_READ_LOCK_CAP Set to 1 if it is possible to lock the read status for the firmware
volume.

EFI_FV_READ_LOCK_STATUS Indicates the current read lock state of the firmware volume. Set to
1 if the read lock is currently enabled.

EFI_FV_WRITE_LOCK_CAP Set to 1 if it is possible to lock the write status for the firmware
volume.

EFI_FV_WRITE_LOCK_STATUS Indicates the current write lock state of the firmware volume. Set to
1 if the write lock is currently enabled.

EFI_FV_ALIGNMENT The first byte of the firmware volume must be at an address which is
an even multiple of the alignment specified.

EFI_SUCCESS The firmware volume attributes were returned.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 87

EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes()

Summary
Modifies the current settings of the firmware volume according to the input parameter.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_SET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

FvAttributes

On input, FvAttributes is a pointer to an EFI_FV_ATTRIBUTES containing
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. On unsuccessful return, FvAttributes is not
modified and the firmware volume settings are not changed. Type
EFI_FV_ATTRIBUTES is defined in GetVolumeAttributes().

Description
The SetVolumeAttributes() function is used to set configurable firmware volume attributes.
Only EFI_FV_READ_STATUS, EFI_FV_WRITE_STATUS, and EFI_FV_LOCK_STATUS may
be modified, and then only in accordance with the declared capabilities. All other bits of
*FvAttributes are ignored on input. On successful return, all bits of *FvAttributes are
valid and it contains the completed EFI_FV_ATTRIBUTES for the volume.

To modify an attribute, the corresponding status bit in the EFI_FV_ATTRIBUTES is set to the
desired value on input. The EFI_FV_LOCK_STATUS bit does not affect the ability to read or write
the firmware volume. Rather, once the EFI_FV_LOCK_STATUS bit is set, it prevents further
modification to all the attribute bits.

SetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
SetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The requested firmware volume attributes were set and the resulting

EFI_FV_ATTRIBUTES is returned in FvAttributes.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

88 3/29/2013 Version 1.3

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is set to 1 on input, but

the device does not support enabling reads

(FvAttributes:EFI_FV_READ_ENABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is cleared to 0 on

input, but the device does not support disabling reads

(FvAttributes:EFI_FV_READ_DISABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is set to 1 on input,

but the device does not support enabling writes

(FvAttributes:EFI_FV_WRITE_ENABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is cleared to 0 on

input, but the device does not support disabling writes

(FvAttributes:EFI_FV_WRITE_DISABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_LOCK_STATUS is set on input, but the

device does not support locking

(FvAttributes:EFI_FV_LOCK_CAP is clear on return from

GetVolumeAttributes()). Actual volume attributes are

unchanged.

EFI_ACCESS_DENIED Device is locked and does not allow attribute modification

(FvAttributes:EFI_FV_LOCK_STATUS is set on return from

GetVolumeAttributes()). Actual volume attributes are

unchanged.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 89

EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile()

Summary
Retrieves a file and/or file information from the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_READ_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *NameGuid,
 IN OUT VOID **Buffer,
 IN OUT UINTN *BufferSize,
 OUT EFI_FV_FILETYPE *FoundType,
 OUT EFI_FV_FILE_ATTRIBUTES *FileAttributes,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which is the file name. All firmware file names are
EFI_GUIDs. A single firmware volume must not have two valid files with the same
file name EFI_GUID. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Buffer

Pointer to a pointer to a buffer in which the file contents are returned, not including
the file header. See “Description” below for more details on the use of the Buffer
parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented by
*Buffer. See “Description” below for more details on the use of the BufferSize
parameter.

FoundType

Pointer to a caller-allocated EFI_FV_FILETYPE. See “Firmware File Types” on
page 9 for EFI_FV_FILETYPE related definitions.

FileAttributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. Type
EFI_FV_FILE_ATTRIBUTES is defined in “Related Definitions” below.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

90 3/29/2013 Version 1.3

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See “Related Definitions” in
EFI_SECTION_EXTRACTION_PROCOCOL.ExtractSection() for more
information.

Description
ReadFile() is used to retrieve any file from a firmware volume during the DXE phase. The
actual binary encoding of the file in the firmware volume media may be in any arbitrary format as
long as it does the following:

• It is accessed using the Firmware Volume Protocol.

• The image that is returned follows the image format defined in Code Definitions: PI Firmware
File Format.

If the input value of Buffer==NULL, it indicates the caller is requesting only that the type,
attributes, and size of the file be returned and that there is no output buffer. In this case, the
following occurs:

• *BufferSize is returned with the size that is required to successfully complete the read.

• The output parameters *FoundType and *FileAttributes are returned with valid values.

• The returned value of *AuthenticationStatus is undefined.

If the input value of Buffer!=NULL, the output buffer is specified by a double indirection of the
Buffer parameter. The input value of *Buffer is used to determine if the output buffer is caller
allocated or is dynamically allocated by ReadFile().

If the input value of *Buffer!=NULL, it indicates the output buffer is caller allocated. In this case,
the input value of *BufferSize indicates the size of the caller-allocated output buffer. If the
output buffer is not large enough to contain the entire requested output, it is filled up to the point that
the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and then
*BufferSize is returned with the size required to successfully complete the read. All other output
parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadFile(). In this case, ReadFile() will allocate an appropriately sized buffer from boot
services pool memory, which will be returned in *Buffer. The size of the new buffer is returned in
*BufferSize and all other output parameters are returned with valid values.

ReadFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of ReadFile() at
any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL() in the UEFI 2.0 specification.

 The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Related Definitions
//**
// EFI_FV_FILE_ATTRIBUTES

Firmware Storage Code Definitions

Version 1.3 3/29/2013 91

//**
typedef UINT32 EFI_FV_FILE_ATTRIBUTES;

#define EFI_FV_FILE_ATTRIB_ALIGNMENT 0x0000001F
#define EFI_FV_FILE_ATTRIB_FIXED 0x00000100
#define EFI_FV_FILE_ATTRIB_MEMORY_MAPPED 0x00000200

Figure 10. EFI_FV_FILE_ATTRIBUTES fields

This value is returned by EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile() and the PEI
Service FfsGetFileInfo(). It is not the same as EFI_FFS_FILE_ATTRIBUTES.

The Reserved field must be set to zero.

The EFI_FV_FILE_ATTRIB_ALIGNMENT field indicates that the beginning of the file data (not
the file header) must be aligned on a particular boundary relative to the beginning of the firmware
volume. This alignment only makes sense for block-oriented firmware volumes. This field is an
enumeration of alignment possibilities. The allowable alignments are powers of two from byte
alignment to 2GB alignment. The supported alignments are described in Table 12. All other values
are reserved.

Table 12. Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT

Required Alignment (bytes) Alignment Value in Attributes Field

1 0

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512 9

1KiB 10

2KiB 11

4KiB 12

8KiB 13

16KiB 14

R ESERVED ALIGN MENT

FIX
E

D

M
E

M
 M

AP
P

E
D

R ESER VED

31 10 89 5 0

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

92 3/29/2013 Version 1.3

The EFI_FV_FILE_ATTRIB_FIXED attribute indicates that the file has a fixed location and
should not be moved (1) or may be moved to any address consistent with the alignment specified in
EFI_FV_FILE_ATTRIB_ALIGNMENT.

The EFI_FV_FILE_ATTRIB_MEMORY_MAPPED attribute indicates that the file is memory
mapped in the firmware volume and thus its contents may be accessed directly. If this is clear, then
Buffer is invalid. This value can be derived from the EFI_FV_ATTRIBUTES value returned by
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes() or the PEI Service
FfsGetVolumeInfo().

Status Codes Returned

32KiB 15

64KiB 16

128 KiB 17

256 KiB 18

512 KiB 19

1 MiB 20

2 MiB 21

4 MiB 22

8 MiB 23

16 MiB 24

32 MiB 25

64 MiB 26

128 MiB 27

256 MiB 28

512 MiB 29

1 GiB 30

2 GiB 31

EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_TOO_SMALL The buffer is too small to contain the requested output. The buffer is
filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND Name was not found in the firmware volume.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware
volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

Required Alignment (bytes) Alignment Value in Attributes Field

Firmware Storage Code Definitions

Version 1.3 3/29/2013 93

EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()

Summary
Locates the requested section within a file and returns it in a buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_READ_SECTION) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *NameGuid,
 IN EFI_SECTION_TYPE SectionType,
 IN UINTN SectionInstance,
 IN OUT VOID **Buffer,
 IN OUT UINTN *BufferSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which indicates the file name from which the requested
section will be read. Type EFI_GUID is defined in
InstallProtocolInterface() in the Related Definitions for section 3.2.4.

SectionType

Indicates the section type to return. SectionType in conjunction with
SectionInstance indicates which section to return. Type
EFI_SECTION_TYPE is defined in EFI_COMMON_SECTION_HEADER.

SectionInstance

Indicates which instance of sections with a type of SectionType to return.
SectionType in conjunction with SectionInstance indicates which section to
return. SectionInstance is zero based.

Buffer

Pointer to a pointer to a buffer in which the section contents are returned, not
including the section header. See “Description” below for more details on the usage of
the Buffer parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented by
*Buffer. See “Description” below for more details on the usage of the
BufferSize parameter.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

94 3/29/2013 Version 1.3

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() for more
information.

Description
ReadSection() is used to retrieve a specific section from a file within a firmware volume. The
section returned is determined using a depth-first, left-to-right search algorithm through all sections
found in the specified file. See “Firmware File Sections” on page 14 for more details about sections.

The output buffer is specified by a double indirection of the Buffer parameter. The input value of
*Buffer is used to determine if the output buffer is caller allocated or is dynamically allocated by
ReadSection().

If the input value of *Buffer!=NULL, it indicates that the output buffer is caller allocated. In this
case, the input value of *BufferSize indicates the size of the caller-allocated output buffer. If the
output buffer is not large enough to contain the entire requested output, it is filled up to the point that
the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and then
*BufferSize is returned with the size that is required to successfully complete the read. All other
output parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadSection(). In this case, ReadSection() will allocate an appropriately sized buffer from
boot services pool memory, which will be returned in *Buffer. The size of the new buffer is
returned in *BufferSize and all other output parameters are returned with valid values.

ReadSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ReadSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_
TOO_SMALL

The caller-allocated buffer is too small to contain the requested output. The
buffer is filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND The requested file was not found in the firmware volume.

EFI_NOT_FOUND The requested section was not found in the specified file.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

EFI_PROTOCOL_ERROR The requested section was not found, but the file could not be fully parsed
because a required

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL was not

found. It is possible the requested section exists within the file and could be
successfully extracted once the required

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL is

published.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 95

EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile()

Summary
Writes one or more files to the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_WRITE_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN UINT32 NumberOfFiles,
 IN EFI_FV_WRITE_POLICY WritePolicy,
 IN EFI_FV_WRITE_FILE_DATA *FileData
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NumberOfFiles

Indicates the number of elements in the array pointed to by FileData.

WritePolicy

Indicates the level of reliability for the write in the event of a power failure or other
system failure during the write operation. Type EFI_FV_WRITE_POLICY is
defined in “Related Definitions” below.

FileData

Pointer to an array of EFI_FV_WRITE_FILE_DATA. Each element of
FileData[] represents a file to be written. Type EFI_FV_WRITE_FILE_DATA
is defined in “Related Definitions” below.

Description
WriteFile() is used to write one or more files to a firmware volume. Each file to be written is
described by an EFI_FV_WRITE_FILE_DATA structure.

The caller must ensure that any required alignment for all files listed in the FileData array is
compatible with the firmware volume. Firmware volume capabilities can be determined using the
GetVolumeAttributes() call.

Similarly, if the WritePolicy is set to EFI_FV_RELIABLE_WRITE, the caller must check the
firmware volume capabilities to ensure EFI_FV_RELIABLE_WRITE is supported by the firmware
volume. EFI_FV_UNRELIABLE_WRITE must always be supported.

Writing a file with a size of zero (FileData[n].BufferSize == 0) deletes the file from the
firmware volume if it exists. Deleting a file must be done one at a time. Deleting a file as part of a
multiple file write is not allowed.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

96 3/29/2013 Version 1.3

WriteFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of WriteFile()
at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL() in the UEFI 2.0 specification.

Related Definitions
//**
// EFI_FV_WRITE_POLICY
//**
typedef UINT32 EFI_FV_WRITE_POLICY

#define EFI_FV_UNRELIABLE_WRITE 0x00000000
#define EFI_FV_RELIABLE_WRITE 0x00000001

All other values of EFI_FV_WRITE_POLICY are reserved. Table 13 describes the fields in the
above definition.

Table 13. Description of fields for EFI_FV_WRITE_POLICY

//**
// EFI_FV_WRITE_FILE_DATA
//**

typedef struct {
 EFI_GUID *NameGuid,
 EFI_FV_FILETYPE Type,
 EFI_FV_FILE_ATTRIBUTES FileAttributes
 VOID *Buffer,
 UINT32 BufferSize
} EFI_FV_WRITE_FILE_DATA;

Field Description

EFI_FV_UNRELIABLE_WRITE This value in the WritePolicy parameter indicates that there is no

required reliability if a power failure or other system failure occurs during a
write operation. Updates may leave a combination of old and new files.
Data loss, including complete loss of all files involved, is also permissible.
In essence, no guarantees are made regarding what files will be present

following a system failure during a write with a WritePolicy of

EFI_FV_UNRELIABLE_WRITE. The advantage of this mode is that

it can be implemented to use much less space in the storage media.
Space-constrained firmware volumes may be able to support writes where
it would be otherwise impossible.

EFI_FV_RELIABLE_WRITE This value in the WritePolicy parameter indicates that, on the next

initialization of the firmware volume following a power failure or other

system failure during a write, all files listed in the FileData array are

completely written and are valid, or none is written and the state of the
firmware volume is the same as it was before the write operation was
attempted.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 97

NameGuid

Pointer to a GUID, which is the file name to be written. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Type

Indicates the type of file to be written. Type EFI_FV_FILETYPE is defined in
“Related Definitions” of EFI_FFS_FILE_HEADER on page 40.

FileAttributes

Indicates the attributes for the file to be written. Type
EFI_FV_FILE_ATTRIBUTES is defined in ReadFile().

Buffer

Pointer to a buffer containing the file to be written.

BufferSize

Indicates the size of the file image contained in Buffer.

Status Codes Returned

Other than EFI_DEVICE_ERROR, all error codes imply the firmware volume has not been
modified. In the case of EFI_DEVICE_ERROR, the firmware volume may have been corrupted and
appropriate repair steps must be taken.

EFI_SUCCESS The write completed successfully.

EFI_OUT_OF_RESOURCES The firmware volume does not have enough free space to storefile(s).

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_WRITE_PROTECTED The firmware volume is configured to disallow writes.

EFI_NOT_FOUND A delete was requested, but the requested file was not found in the firmware
volume.

EFI_INVALID_PARAMETER A delete was requested with a multiple file write.

EFI_INVALID_PARAMETER An unsupported WritePolicy was requested.

EFI_INVALID_PARAMETER An unknown file type was specifiedspecified or the specified file type is not
supported by the firmware file system.

EFI_INVALID_PARAMETER A file system specific error has occurred.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

98 3/29/2013 Version 1.3

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile()

Summary
Retrieves information about the next file in the firmware volume store that matches the search
criteria.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_GET_NEXT_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN OUT VOID *Key,
 IN OUT EFI_FV_FILETYPE *FileType,
 OUT EFI_GUID *NameGuid,
 OUT EFI_FV_FILE_ATTRIBUTES *Attributes,
 OUT UINTN *Size
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

Key

Pointer to a caller-allocated buffer that contains implementation-specific data that is
used to track where to begin the search for the next file. The size of the buffer must be
at least This->KeySize bytes long. To re-initialize the search and begin from the
beginning of the firmware volume, the entire buffer must be cleared to zero. Other
than clearing the buffer to initiate a new search, the caller must not modify the data in
the buffer between calls to GetNextFile().

FileType

Pointer to a caller-allocated EFI_FV_FILETYPE. The GetNextFile() API can
filter its search for files based on the value of the *FileType input. A *FileType
input of EFI_FV_FILETYPE_ALL causes GetNextFile() to search for files of
all types. If a file is found, the file’s type is returned in *FileType. *FileType is
not modified if no file is found. See“Related Definitions” of
EFI_FFS_FILE_HEADER on page 40.

NameGuid

Pointer to a caller-allocated EFI_GUID. If a matching file is found, the file’s name is
returned in *NameGuid. If no matching file is found, *NameGuid is not modified.
Type EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

Attributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. If a matching file is
found, the file’s attributes are returned in *Attributes. If no matching file is

Firmware Storage Code Definitions

Version 1.3 3/29/2013 99

found, *Attributes is not modified. Type EFI_FV_FILE_ATTRIBUTES is
defined in ReadFile().

Size

Pointer to a caller-allocated UINTN. If a matching file is found, the file’s size is
returned in *Size. If no matching file is found, *Size is not modified.

Description
GetNextFile() is the interface that is used to search a firmware volume for a particular file. It is
called successively until the desired file is located or the function returns EFI_NOT_FOUND.

To filter uninteresting files from the output, the type of file to search for may be specified in
*FileType. For example, if *FileType is EFI_FV_FILETYPE_DRIVER, only files of this
type will be returned in the output. If *FileType is EFI_FV_FILETYPE_ALL, no filtering of
file types is done.The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

The Key parameter is used to indicate a starting point of the search. If the buffer *Key is completely
initialized to zero, the search re-initialized and starts at the beginning. Subsequent calls to
GetNextFile() must maintain the value of *Key returned by the immediately previous call. The
actual contents of *Key are implementation specific and no semantic content is implied.

GetNextFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetNextFile() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The output parameters are filled with data obtained from the first matching
file that was found.

EFI_NOT_FOUND No files of type FileType were found.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

100 3/29/2013 Version 1.3

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()

Summary
Return information about a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FV_GET_INFO) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *InformationType,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_FIRMWARE_VOLUME2_PROTOCOL instance that is the file
handle the requested information is for.

InformationType

The type identifier for the information being requested. Type EFI_GUID is defined in
the UEFI 2.0 specification.

BufferSize

On input, the size of Buffer. On output, the amount of data returned in Buffer. In
both cases, the size is measured in bytes.

Buffer

A pointer to the data buffer to return. The buffer’s type is indicated by
InformationType.

Description
The GetInfo() function returns information of type InformationType for the requested
firmware volume. If the volume does not support the requested information type, then
EFI_UNSUPPORTED is returned. If the buffer is not large enough to hold the requested structure,
EFI_BUFFER_TOO_SMALL is returned and the BufferSize is set to the size of buffer that is
required to make the request. The information types defined by this specification are required
information types that all file systems must support.

Status Codes Returned

EFI_SUCCESS The information was retrieved.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 101

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.

BufferSize has been updated with the size needed to complete the

request.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

102 3/29/2013 Version 1.3

EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo()

Summary
Sets information about a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FV_SET_INFO) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *InformationType,
 IN UINTN BufferSize,
 IN CONST VOID *Buffer
);

Parameters
This

A pointer to the EFI_FIRMWARE_VOLUME2_PROTOCOL instance that is the file
handle the information is for.

InformationType

The type identifier for the information being set. Type EFI_GUID is defined in the
UEFI 2.0 specification.

BufferSize

The size, in bytes, of Buffer.

Buffer

A pointer to the data buffer to write. The buffer’s type is indicated by
InformationType.

Description
The SetInfo() function sets information of type InformationType on the requested
firmware volume.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 103

Status Codes Returned

3.4.2 Firmware Volume Block2 Protocol

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL

Summary
This optional protocol provides control over block-oriented firmware devices.

GUID
//{8F644FA9-E850-4db1-9CE2-0B44698E8DA4}
#define EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL_GUID \
 {0x8f644fa9, 0xe850, 0x4db1, 0x9c, 0xe2, 0xb, 0x44, \
 0x69, 0x8e, 0x8d, 0xa4}

Protocol Interface Structure
typedef struct _EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL {
 EFI_FVB_GET_ATTRIBUTES GetAttributes;
 EFI_FVB_SET_ATTRIBUTES SetAttributes;
 EFI_FVB_GET_PHYSICAL_ADDRESS GetPhysicalAddress;
 EFI_FVB_GET_BLOCK_SIZE GetBlockSize;
 EFI_FVB_READ Read;
 EFI_FVB_WRITE Write;
 EFI_FVB_ERASE_BLOCKS EraseBlocks;
 EFI_HANDLE ParentHandle;
} EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL;

Parameters
GetAttributes

Retrieves the current volume attributes. See the GetAttributes() function
description.

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The media is read only.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type

indicated by InformationType.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

104 3/29/2013 Version 1.3

SetAttributes

Sets the current volume attributes. See the SetAttributes() function
description.

GetPhysicalAddress

Retrieves the memory-mapped address of the firmware volume. See the
GetPhysicalAddress() function description.

GetBlockSize

Retrieves the size for a specific block. Also returns the number of consecutive
similarly sized blocks. See the GetBlockSize() function description.

Read

Reads n bytes into a buffer from the firmware volume hardware. See the Read()
function description.

Write

Writes n bytes from a buffer into the firmware volume hardware. See the Write()
function description.

EraseBlocks

Erases specified block(s) and sets all values as indicated by the
EFI_FVB_ERASE_POLARITY bit. See the EraseBlocks() function description.
Type EFI_FVB_ERASE_POLARITY is defined in
EFI_FIRMWARE_VOLUME_HEADER.

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The Firmware Volume Block Protocol is the low-level interface to a firmware volume. File-level
access to a firmware volume should not be done using the Firmware Volume Block Protocol.
Normal access to a firmware volume must use the Firmware Volume Protocol. Typically, only the
file system driver that produces the Firmware Volume Protocol will bind to the Firmware Volume
Block Protocol.

The Firmware Volume Block Protocol provides the following:

• Byte-level read/write functionality.

• Block-level erase functionality.

• It further exposes device-hardening features, such as may be required to protect the firmware
from unwanted overwriting and/or erasure.

• It is useful to layer a file system driver on top of the Firmware Volume Block Protocol. This file
system driver produces the Firmware Volume Protocol, which provides file-level access to a
firmware volume. The Firmware Volume Protocol abstracts the file system that is used to format
the firmware volume and the hardware device-hardening features that may be present.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 105

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes()

Summary
Returns the attributes and current settings of the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Attributes

Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and current settings
are returned. Type EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.

Description
The GetAttributes() function retrieves the attributes and current settings of the block.

Status Codes Returned

EFI_SUCCESS The firmware volume attributes were returned.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

106 3/29/2013 Version 1.3

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()

Summary
Modifies the current settings of the firmware volume according to the input parameter.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_SET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Attributes

On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2 that contains
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. Type EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.

Description
The SetAttributes() function sets configurable firmware volume attributes and returns the
new settings of the firmware volume.

Status Codes Returned

EFI_SUCCESS The firmware volume attributes were returned.

EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities as
declared in the firmware volume header.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 107

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress
()

Summary
Retrieves the physical address of a memory-mapped firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_PHYSICAL_ADDRESS) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 OUT EFI_PHYSICAL_ADDRESS *Address
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Address

Pointer to a caller-allocated EFI_PHYSICAL_ADDRESS that, on successful return
from GetPhysicalAddress(), contains the base address of the firmware
volume. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the UEFI 2.0 specification.

Description
The GetPhysicalAddress() function retrieves the base address of a memory-mapped
firmware volume. This function should be called only for memory-mapped firmware volumes.

Status Codes Returned

EFI_SUCCESS The firmware volume base address is returned.

EFI_UNSUPPORTED The firmware volume is not memory mapped.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

108 3/29/2013 Version 1.3

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()

Summary
Retrieves the size in bytes of a specific block within a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_BLOCK_SIZE) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 OUT UINTN *BlockSize,
 OUT UINTN *NumberOfBlocks
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

Indicates the block for which to return the size. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

BlockSize

Pointer to a caller-allocated UINTN in which the size of the block is returned.

NumberOfBlocks

Pointer to a caller-allocated UINTN in which the number of consecutive blocks,
starting with Lba, is returned. All blocks in this range have a size of BlockSize.

Description
The GetBlockSize() function retrieves the size of the requested block. It also returns the
number of additional blocks with the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).

Status Codes Returned

EFI_SUCCESS The firmware volume base address is returned.

EFI_INVALID_PARAMETER The requested LBA is out of range.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 109

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()

Summary
Reads the specified number of bytes into a buffer from the specified block.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_READ) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 OUT UINT8 *Buffer,
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

The starting logical block index from which to read. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

Offset

Offset into the block at which to begin reading.

NumBytes

Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At
exit, *NumBytes contains the total number of bytes read.

Buffer

Pointer to a caller-allocated buffer that will be used to hold the data that is read.

Description
The Read() function reads the requested number of bytes from the requested block and stores them
in the provided buffer.

Implementations should be mindful that the firmware volume might be in the ReadDisabled
state. If it is in this state, the Read() function must return the status code EFI_ACCESS_DENIED
without modifying the contents of the buffer.

The Read() function must also prevent spanning block boundaries. If a read is requested that
would span a block boundary, the read must read up to the boundary but not beyond. The output
parameter NumBytes must be set to correctly indicate the number of bytes actually read. The caller
must be aware that a read may be partially completed.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

110 3/29/2013 Version 1.3

Status Codes Returned

EFI_SUCCESS The firmware volume was read successfully and contents are in Buffer.

EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary. On output, NumBytes

contains the total number of bytes returned in Buffer.

EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 111

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()

Summary
Writes the specified number of bytes from the input buffer to the block.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_WRITE) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 IN UINT8 *Buffer
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

The starting logical block index to write to. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

Offset

Offset into the block at which to begin writing.

NumBytes

Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At
exit, *NumBytes contains the total number of bytes actually written.

Buffer

Pointer to a caller-allocated buffer that contains the source for the write.

Description
The Write() function writes the specified number of bytes from the provided buffer to the
specified block and offset.

If the firmware volume is sticky write, the caller must ensure that all the bits of the specified range to
write are in the EFI_FVB_ERASE_POLARITY state before calling the Write() function, or else
the result will be unpredictable. This unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY state but it cannot flip it
back again. In general, before calling the Write() function, the caller should call the
EraseBlocks() function first to erase the specified block to write. A block erase cycle will
transition bits from the (NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

112 3/29/2013 Version 1.3

Implementations should be mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the firmware volume.

The Write() function must also prevent spanning block boundaries. If a write is requested that
spans a block boundary, the write must store up to the boundary but not beyond. The output
parameter NumBytes must be set to correctly indicate the number of bytes actually written. The
caller must be aware that a write may be partially completed.

All writes, partial or otherwise, must be fully flushed to the hardware before the Write() service
returns.

Status Codes Returned

EFI_SUCCESS The firmware volume was written successfully.

EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary. On output, NumBytes

contains the total number of bytes actually written.

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.

EFI_DEVICE_ERROR The block device is malfunctioning and could not be written.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 113

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks()

Summary
Erases and initializes a firmware volume block.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_ERASE_BLOCKS) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 …
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

…

The variable argument list is a list of tuples. Each tuple describes a range of LBAs to
erase and consists of the following:

• An EFI_LBA that indicates the starting LBA

• A UINTN that indicates the number of blocks to erase

The list is terminated with an EFI_LBA_LIST_TERMINATOR. Type
EFI_LBA_LIST_TERMINATOR is defined in “Related Definitions” below.

For example, the following indicates that two ranges of blocks (5–7 and 10–11) are to
be erased:

EraseBlocks (This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);

Description
The EraseBlocks() function erases one or more blocks as denoted by the variable argument list.
The entire parameter list of blocks must be verified before erasing any blocks. If a block is requested
that does not exist within the associated firmware volume (it has a larger index than the last block of
the firmware volume), the EraseBlocks() function must return the status code
EFI_INVALID_PARAMETER without modifying the contents of the firmware volume.

Implementations should be mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the EraseBlocks() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the firmware volume.

All calls to EraseBlocks() must be fully flushed to the hardware before the EraseBlocks()
service returns.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

114 3/29/2013 Version 1.3

Related Definitions
//***
// EFI_LBA_LIST_TERMINATOR
//***
#define EFI_LBA_LIST_TERMINATOR 0xFFFFFFFFFFFFFFFF

Status Codes Returned

3.4.3 Guided Section Extraction Protocol

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

Summary
If a GUID-defined section is encountered when doing section extraction, the section extraction
driver calls the appropriate instance of the GUIDed Section Extraction Protocol to extract the section
stream contained therein.

GUID
Typically, protocol interface structures are identified by associating them with a GUID. Each
instance of a protocol with a given GUID must have the same interface structure. While all instances
of the GUIDed Section Extraction Protocol must have the same interface structure, they do not all
have the same GUID. The GUID that is associated with an instance of the GUIDed Section
Extraction Protocol is used to correlate it with the GUIDed section type that it is intended to process.

Protocol Interface Structure
typedef struct _EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL {
 EFI_EXTRACT_GUIDED_SECTION ExtractSection;
} EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL;

Parameters
ExtractSection

Takes the GUIDed section as input and produces the section stream data. See the
ExtractSection() function description.

EFI_SUCCESS The erase request was successfully completed.

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written.
The firmware device may have been partially erased.

EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do not exist
in the firmware volume.

Firmware Storage Code Definitions

Version 1.3 3/29/2013 115

EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

Summary
Processes the input section and returns the data contained therein along with the authentication
status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXTRACT_GUIDED_SECTION)(
 IN CONST EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL *This,
 IN CONST VOID *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL instance.

InputSection

Buffer containing the input GUIDed section to be processed.

OutputBuffer

*OutputBuffer is allocated from boot services pool memory and contains the new
section stream. The caller is responsible for freeing this buffer.

OutputSize

A pointer to a caller-allocated UINTN in which the size of *OutputBuffer
allocation is stored. If the function returns anything other than EFI_SUCCESS, the
value of *OutputSize is undefined.

AuthenticationStatus

A pointer to a caller-allocated UINT32 that indicates the authentication status of the
output buffer. If the input section’s GuidedSectionHeader.Attributes field
has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear,
*AuthenticationStatus must return zero. Both local bits (19:16) and
aggregate bits (3:0) in AuthenticationStatus are returned by
ExtractSection(). These bits reflect the status of the extraction operation. The
bit pattern in both regions must be the same, as the local and aggregate authentication
statuses have equivalent meaning at this level. If the function returns anything other
than EFI_SUCCESS, the value of *AuthenticationStatus is undefined.

Description
The ExtractSection() function processes the input section and allocates a buffer from the
pool in which it returns the section contents.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

116 3/29/2013 Version 1.3

If the section being extracted contains authentication information (the section’s
GuidedSectionHeader.Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set), the values returned in
AuthenticationStatus must reflect the results of the authentication operation.

Depending on the algorithm and size of the encapsulated data, the time that is required to do a full
authentication may be prohibitively long for some classes of systems. To indicate this, use
EFI_SECURITY_POLICY_PROTOCOL_GUID, which may be published by the security policy
driver (see the Platform Initialization Driver Execution Environment Core Interface Specification
for more details and the GUID definition). If the EFI_SECURITY_POLICY_PROTOCOL_GUID
exists in the handle database, then, if possible, full authentication should be skipped and the section
contents simply returned in the OutputBuffer. In this case, the
EFI_AUTH_STATUS_PLATFORM_OVERRIDE bit AuthenticationStatus must be set on
return. See “Related Definitions” in
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() on page 78 for the
definition of type EFI_AUTH_STATUS_PLATFORM_OVERRIDE.

ExtractSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ExtractSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL
is defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The InputSection was successfully processed and the section

contents were returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the GUIDed

Section Extraction Protocol.

Version 1.3 3/29/2013 117

4
HOB Design Discussion

4.1 Explanation of HOB Terms
Because HOBs are the key architectural mechanism that is used to hand off system information in
the early preboot stages and because not all implementations of the PI Architecture will use the Pre-
EFI Initialization (PEI) and Driver Execution Environment (DXE) phases, this specification refrains
from using the PEI and DXE nomenclature used in other PI specifications.

Instead, this specification uses the following terms to refer to the phases that deal with HOBs:

• HOB producer phase

• HOB consumer phase

The HOB producer phase is the preboot phase in which HOBs and the HOB list are created. The
HOB consumer phase is the preboot phase to which the HOB list is passed and then consumed.

If the PI Architecture implementation incorporates the PEI and DXE, the HOB producer phase is the
PEI phase and the HOB consumer phase is the DXE phase. The producer and consumer can change,
however, depending on the implementation.

The following table translates the terminology used in this specification with that used in other PI
specifications.

Table 14. Translation of HOB Specification Terminology

4.2 HOB Overview
The HOB producer phase provides a simple mechanism to allocate memory for data storage during
the phase’s execution. The data store is architecturally defined and described by HOBs. This data
store is also passed to the HOB producer phase when it is invoked from the HOB producer phase.

The basic container of data storage is named a Hand-Off Block, or HOB. HOBs are allocated
sequentially in memory that is available to executable content in the HOB producer phase. There are
a series of services that facilitate HOB manipulation. The sequential list of HOBs in memory will be
referred to as the HOB list.

For definitions of the various HOB types and the semantics for creating them, see section 4.1 above.

Term Used in the HOB Specification Term Used in Other PI Specifications

HOB producer phase PEI phase

HOB consumer phase DXE phase

executable content in the HOB producer
phase

Pre-EFI Initialization Module (PEIM)

hand-off into the HOB consumer phase DXE Initial Program Load (IPL) PEIM or
DXE IPL PEIM-to-PEIM Interface (PPI)

platform boot-policy phase Boot Device Selection (BDS) phase

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

118 3/29/2013 Version 1.3

4.3 Example HOB Producer Phase Memory Map and Usage
Figure 11 shows an example of the HOB producer phase memory map and its usage. This map is a
possible means by which to subdivide the region.

Figure 11. Example HOB Producer Phase Memory Map and Usage

4.4 HOB List
The first HOB in the HOB list must be the Phase Handoff Information Table (PHIT) HOB. The last
HOB in the HOB list must be the End of HOB List HOB.

Only HOB producer phase components are allowed to make additions or changes to HOBs. Once the
HOB list is passed into the HOB consumer phase, it is effectively read only. The ramification of a
read-only HOB list is that handoff information, such as boot mode, must be handled in a
distinguished fashion. For example, if the HOB consumer phase were to engender a recovery
condition, it would not update the boot mode but instead would implement the action using a special
type of reset call. The HOB list contains system state data at the time of HOB consumer–to–HOB
producer handoff and does not represent the current system state during the HOB consumer phase.

HOB Design Discussion

Version 1.3 3/29/2013 119

4.5 Constructing the HOB List

4.5.1 Constructing the Initial HOB List
The HOB list is initially built by the HOB producer phase. The HOB list is created in memory that is
present, initialized, and tested. Once the initial HOB list has been created, the physical memory
cannot be remapped, interleaved, or otherwise moved by a subsequent software agent.

The HOB producer phase must build the following three HOBs in the initial HOB list before
exposing the list to other modules:

• The PHIT HOB

• A memory allocation HOB describing where the boot-strap processor (BSP) stack for permanent
memory is located

or

A memory allocation HOB describing where the BSP store for permanent memory is located
(Itanium® processor family only)

• A resource descriptor HOB that describes a physical memory range encompassing the HOB
producer phase memory range with its attributes set as present, initialized, and tested

The HOB list creator may build more HOBs into the initial HOB list, such as additional HOBs to
describe other physical memory ranges. There can also be additional modules, which might include
a HOB producer phase–specific HOB to record memory errors discovered during initialization.

When the HOB producer phase completes its list creation, it exposes a pointer to the PHIT HOB to
other modules.

4.5.2 HOB Construction Rules
HOB construction must obey the following rules:

1. All HOBs must start with a HOB generic header. This requirement allows users to locate the
HOBs in which they are interested while skipping the rest. See the
EFI_HOB_GENERIC_HEADER definition.

2. HOBs may contain boot services data that is available during the HOB producer and consumer
phases only until the HOB consumer phase is terminated.

3. HOBs may be relocated in system memory by the HOB consumer phase. HOBs must not
contain pointers to other data in the HOB list, including that in other HOBs. The table must be
able to be copied without requiring internal pointer adjustment.

4. All HOBs must be multiples of 8 bytes in length. This requirement meets the alignment
restrictions of the Itanium® processor family.

5. The PHIT HOB must always begin on an 8-byte boundary. Due to this requirement and
requirement #4 in this list, all HOBs will begin on an 8-byte boundary.

6. HOBs are added to the end of the HOB list. HOBs can only be added to the HOB list during the
HOB producer phase, not the HOB consumer phase.

7. HOBs cannot be deleted. The generic HOB header of each HOB must describe the length of the
HOB so that the next HOB can be found. A private GUIDed HOB may provide a mechanism to

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

120 3/29/2013 Version 1.3

mark some or its entire contents invalid; however, this mechanism is beyond the scope of this
document.

Note: The HOB list must be valid (i.e., no HOBs “under construction”) when any HOB producer phase
service is invoked. Another HOB producer phase component’s function might walk the HOB list,
and if a HOB header contains invalid data, it might cause unreliable operation.

4.5.3 Adding to the HOB List
To add a HOB to the HOB list, HOB consumer phase software must obtain a pointer to the
PHIT HOB (start of the HOB list) and follow these steps:

1. Determine NewHobSize, where NewHobSize is the size in bytes of the HOB to be created.

2. Check free memory to ensure that there is enough free memory to allocate the new HOB. This
test is performed by checking that NewHobSize <= PHIT->EfiFreeMemoryTop -
PHIT->EfiFreeMemoryBottom).

3. Construct the HOB at PHIT->EfiFreeMemoryBottom.

4. Set PHIT->EfiFreeMemoryBottom = PHIT->EfiFreeMemoryBottom +
NewHobSize.

Version 1.3 3/29/2013 121

5
HOB Code Definitions

5.1 HOB Introduction
This section contains the basic definitions of various HOBs. All HOBs consist of a generic header,
EFI_HOB_GENERIC_HEADER, that specifies the type and length of the HOB. Each HOB has
additional data beyond the generic header, according to the HOB type. The following data types and
structures are defined in this section:

• EFI_HOB_GENERIC_HEADER

• EFI_HOB_HANDOFF_INFO_TABLE

• EFI_HOB_MEMORY_ALLOCATION

• EFI_HOB_MEMORY_ALLOCATION_STACK

• EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

• EFI_HOB_MEMORY_ALLOCATION_MODULE

• EFI_HOB_RESOURCE_DESCRIPTOR

• EFI_HOB_GUID_TYPE

• EFI_HOB_FIRMWARE_VOLUME

• EFI_HOB_FIRMWARE_VOLUME2

• EFI_HOB_CPU

• EFI_HOB_MEMORY_POOL

• EFI_HOB_UEFI_CAPSULE

• EFI_HOB_TYPE_UNUSED

• EFI_HOB_TYPE_END_OF_HOB_LIST

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in “Related
Definitions” of the parent data structure definition:

• EFI_HOB_MEMORY_ALLOCATION_HEADER

• EFI_RESOURCE_TYPE

• EFI_RESOURCE_ATTRIBUTE_TYPE

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

122 3/29/2013 Version 1.3

5.2 HOB Generic Header

EFI_HOB_GENERIC_HEADER

Summary
Describes the format and size of the data inside the HOB. All HOBs must contain this generic HOB
header.

Prototype
typedef struct _EFI_HOB_GENERIC_HEADER{
 UINT16 HobType;
 UINT16 HobLength;
 UINT32 Reserved;
} EFI_HOB_GENERIC_HEADER;

Parameters
HobType

Identifies the HOB data structure type. See “Related Definitions” below for the HOB
types that are defined in this specification.

HobLength

The length in bytes of the HOB.

Reserved

For this version of the specification, this field must always be set to zero.

Description
All HOBs have a common header that is used for the following:

• Traversing to the next HOB

• Describing the format and size of the data inside the HOB

Related Definitions
The following values for HobType are defined by this specification.

HOB Code Definitions

Version 1.3 3/29/2013 123

//**
// HobType values
//**

#define EFI_HOB_TYPE_HANDOFF 0x0001
#define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002
#define EFI_HOB_TYPE_RESOURCE_DESCRIPTOR 0x0003
#define EFI_HOB_TYPE_GUID_EXTENSION 0x0004
#define EFI_HOB_TYPE_FV 0x0005
#define EFI_HOB_TYPE_CPU 0x0006
#define EFI_HOB_TYPE_MEMORY_POOL 0x0007
#define EFI_HOB_TYPE_FV2 0x0009
#define EFI_HOB_TYPE_LOAD_PEIM_UNUSED 0x000A
#define EFI_HOB_TYPE_UEFI_CAPSULE 0x000B
#define EFI_HOB_TYPE_UNUSED 0xFFFE
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Other values for HobType are reserved for future use by this specification.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

124 3/29/2013 Version 1.3

5.3 PHIT HOB

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

Summary
Contains general state information used by the HOB producer phase. This HOB must be the first
one in the HOB list.

Prototype
typedef struct _EFI_HOB_HANDOFF_INFO_TABLE {
 EFI_HOB_GENERIC_HEADER Header;
 UINT32 Version;
 EFI_BOOT_MODE BootMode;
 EFI_PHYSICAL_ADDRESS EfiMemoryTop;
 EFI_PHYSICAL_ADDRESS EfiMemoryBottom;
 EFI_PHYSICAL_ADDRESS EfiFreeMemoryTop;
 EFI_PHYSICAL_ADDRESS EfiFreeMemoryBottom;
 EFI_PHYSICAL_ADDRESS EfiEndOfHobList;
} EFI_HOB_HANDOFF_INFO_TABLE;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_HANDOFF.

Version

The version number pertaining to the PHIT HOB definition. See “Related
Definitions” below for the version numbers defined by this specification. This value is
4 bytes in length to provide an 8-byte aligned entry when it is combined with the
4-byte BootMode.

BootMode

The system boot mode as determined during the HOB producer phase. Type
EFI_BOOT_MODE is a UINT32; if the PI Architecture-compliant implementation
incorporates the PEI phase, the possible bit values are defined in the Platform
Initialization Pre-EFI Initialization Core Interface Specification (PEI CIS).

EfiMemoryTop

The highest address location of memory that is allocated for use by the HOB producer
phase. This address must be 4-KiB aligned to meet page restrictions of UEFI. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

EfiMemoryBottom

The lowest address location of memory that is allocated for use by the HOB producer
phase.

HOB Code Definitions

Version 1.3 3/29/2013 125

EfiFreeMemoryTop

The highest address location of free memory that is currently available for use by the
HOB producer phase. This address must be 4-KiB aligned to meet page restrictions of
UEFI.

EfiFreeMemoryBottom

The lowest address location of free memory that is available for use by the HOB
producer phase.

EfiEndOfHobList

The end of the HOB list.

Description
The Phase Handoff Information Table (PHIT) HOB must be the first one in the HOB list. A pointer
to this HOB is available to a HOB producer phase component through some service. This
specification commonly refers to this HOB as the PHIT HOB, or sometimes the handoff HOB.

The HOB consumer phase reads the PHIT HOB during its initialization.

Related Definitions
//***
// Version values
//***

#define EFI_HOB_HANDOFF_TABLE_VERSION 0x0009

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

126 3/29/2013 Version 1.3

5.4 Memory Allocation HOB

5.4.1 Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION

Summary
Describes all memory ranges used during the HOB producer phase that exist outside the HOB list.
This HOB type describes how memory is used, not the physical attributes of memory.

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
 //
 // Additional data pertaining to the “Name” Guid memory
 // may go here.
 //
} EFI_HOB_MEMORY_ALLOCATION;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in “Related Definitions”
below.

Description
The memory allocation HOB is used to describe memory usage outside the HOB list. The HOB
consumer phase does not make assumptions about the contents of the memory that is allocated by
the memory allocation HOB, and it will not move the data unless it has explicit knowledge of the
memory allocation HOB’s Name (EFI_GUID). Memory may be allocated in either the HOB
producer phase memory area or other areas of present and initialized system memory.

The HOB consumer phase reads all memory allocation HOBs and allocates memory into the system
memory map based on the following fields of EFI_HOB_MEMORY_ALLOCATION_HEADER of
each memory allocation HOB:

• MemoryBaseAddress

• MemoryLength

• MemoryType

HOB Code Definitions

Version 1.3 3/29/2013 127

The HOB consumer phase does not parse the GUID-specific data identified by the Name field of
each memory allocation HOB, except for a specific set of memory allocation HOBs that defined by
this specification. A HOB consumer phase driver that corresponds to the specific Name GUIDed
memory allocation HOB can parse the HOB list to find the specifically named memory allocation
HOB and then manipulate the memory space as defined by the usage model for that GUID.

Note: Special design care should be taken to ensure that two HOB consumer phase components do not
modify memory space that is described by a memory allocation HOB, because unpredictable
behavior might result.

This specification defines a set of memory allocation HOBs that are architecturally used to allocate
memory used by the HOB producer and consumer phases. Additionally, the following memory
allocation HOBs are defined specifically for use by the final stage of the HOB producer phase to
describe the processor state prior to handoff into the HOB consumer phase:

• BSP stack memory allocation HOB

• BSP store memory allocation HOB

• Memory allocation module HOB

Related Definitions
//**
// EFI_HOB_MEMORY_ALLOCATION_HEADER
//**

typedef struct _EFI_HOB_MEMORY_ALLOCATION_HEADER {
 EFI_GUID Name;
 EFI_PHYSICAL_ADDRESS MemoryBaseAddress;
 UINT64 MemoryLength;
 EFI_MEMORY_TYPE MemoryType; // UINT32
 UINT8 Reserved[4]; // Padding for Itanium®
 // processor family
} EFI_HOB_MEMORY_ALLOCATION_HEADER;

Name

A GUID that defines the memory allocation region’s type and purpose, as well as
other fields within the memory allocation HOB. This GUID is used to define the
additional data within the HOB that may be present for the memory allocation HOB.
Type EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

MemoryBaseAddress

The base address of memory allocated by this HOB. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

MemoryLength

The length in bytes of memory allocated by this HOB.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

128 3/29/2013 Version 1.3

MemoryType

Defines the type of memory allocated by this HOB. The memory type definition
follows the EFI_MEMORY_TYPE definition. Type EFI_MEMORY_TYPE is defined
in AllocatePages() in the UEFI 2.0 specification.

Reserved

For this version of the specification, this field will always be set to zero.

Note: MemoryBaseAddress and MemoryLength must each have 4-KiB granularity to meet the
page size requirements of UEFI.

HOB Code Definitions

Version 1.3 3/29/2013 129

5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_STACK

Summary
Describes the memory stack that is produced by the HOB producer phase and upon which all post-
memory-installed executable content in the HOB producer phase is executing.

GUID
#define EFI_HOB_MEMORY_ALLOC_STACK_GUID \
 {0x4ed4bf27, 0x4092, 0x42e9, 0x80, 0x7d, 0x52, 0x7b, \
 0x1d, 0x0, 0xc9, 0xbd}

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_STACK {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
} EFI_HOB_MEMORY_ALLOCATION_STACK;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in
EFI_HOB_MEMORY_ALLOCATION.

Description
This HOB describes the memory stack that is produced by the HOB producer phase and upon which
all post-memory-installed executable content in the HOB producer phase is executing. It is
necessary for the hand-off into the HOB consumer phase to know this information so that it can
appropriately map this stack into its own execution environment and describe it in any subsequent
memory maps.

The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s stack to meet size and location requirements that are defined by
the HOB consumer phase’s implementation. Therefore, other HOB consumer phase components
cannot rely on the BSP stack memory allocation HOB to describe where the BSP stack is located
during execution of the HOB consumer phase.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

130 3/29/2013 Version 1.3

Note: BSP stack memory allocation HOB must be valid at the time of hand off to the HOB consumer
phase. If BSP stack is reallocated during HOB producer phase, the component that reallocates the
stack must also update BSP stack memory allocation HOB.

The BSP stack memory allocation HOB without any additional qualification describes either of the
following:

• The stack that is currently consumed by the BSP.

• The processor that is currently executing the HOB producer phase and its executable content.

• The model for the PI architecture and the HOB producer phase is that of a single-threaded
execution environment, so it is this single, distinguished thread of control whose environment is

described by this HOB. The Itanium® processor family has the additional requirement of having
to describe the value of the BSPSTORE (AR18) (“Backing Store Pointer Store”) register,
which holds the successive location in memory where the Itanium processor family Register
Stack Engine (RSE) will spill its values.

• In addition, Itanium®-based systems feature a system architecture where all processors come out
of reset and execute the reset path concurrently. As such, the stack resources that are consumed
by these alternate agents need to be described even though they are not responsible for executing
the main thread of control through the HOB producer and consumer phases.

HOB Code Definitions

Version 1.3 3/29/2013 131

5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

Note: This HOB is valid for the Itanium® processor family only.

Summary
Defines the location of the boot-strap processor (BSP) BSPStore (“Backing Store Pointer Store”)
register overflow store.

GUID
#define EFI_HOB_MEMORY_ALLOC_BSP_STORE_GUID \
 {0x564b33cd, 0xc92a, 0x4593, 0x90, 0xbf, 0x24, 0x73, \
 0xe4, 0x3c, 0x63, 0x22}

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_BSP_STORE {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
} EFI_HOB_MEMORY_ALLOCATION_BSP_STORE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

Description
The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s register store to meet size and location requirements that are
defined by the HOB consumer phase’s implementation. Therefore, other HOB consumer phase
components cannot rely on the BSP store memory allocation HOB to describe where the BSP store
is located during execution of the HOB consumer phase.

Note: BSP BSPSTORE memory allocation HOB must be valid at the time of hand off to the HOB
consumer phase. If BSP BSPSTORE is reallocated during HOB producer phase, the component
that reallocates the stack must also update BSP BSPSTORE memory allocation HOB.

This HOB is valid for the Itanium processor family only.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

132 3/29/2013 Version 1.3

5.4.4 Memory Allocation Module HOB

EFI_HOB_MEMORY_ALLOCATION_MODULE

Summary
Defines the location and entry point of the HOB consumer phase.

GUID
#define EFI_HOB_MEMORY_ALLOC_MODULE_GUID \
 {0xf8e21975, 0x899, 0x4f58, 0xa4, 0xbe, 0x55, 0x25, \
 0xa9, 0xc6, 0xd7, 0x7a}

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER MemoryAllocationHeader;
 EFI_GUID ModuleName;
 EFI_PHYSICAL_ADDRESS EntryPoint;
} EFI_HOB_MEMORY_ALLOCATION_MODULE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

MemoryAllocationHeader

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

ModuleName

The GUID specifying the values of the firmware file system name that contains the
HOB consumer phase component. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

EntryPoint

The address of the memory-mapped firmware volume that contains the HOB
consumer phase firmware file. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI 2.0 specification.

Description
The HOB consumer phase reads the memory allocation module HOB during its initialization. This
HOB describes the memory location of the HOB consumer phase. The HOB consumer phase should
use the information to create the image handle for the HOB consumer phase.

HOB Code Definitions

Version 1.3 3/29/2013 133

5.5 Resource Descriptor HOB

EFI_HOB_RESOURCE_DESCRIPTOR

Summary
Describes the resource properties of all fixed, nonrelocatable resource ranges found on the processor
host bus during the HOB producer phase.

Prototype
typedef struct _EFI_HOB_RESOURCE_DESCRIPTOR {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_GUID Owner;
 EFI_RESOURCE_TYPE ResourceType;
 EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 UINT64 ResourceLength;
} EFI_HOB_RESOURCE_DESCRIPTOR;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_RESOURCE_DESCRIPTOR.

Owner

A GUID representing the owner of the resource. This GUID is used by HOB
consumer phase components to correlate device ownership of a resource.

ResourceType

Resource type enumeration as defined by EFI_RESOURCE_TYPE. Type
EFI_RESOURCE_TYPE is defined in “Related Definitions” below.

ResourceAttribute

Resource attributes as defined by EFI_RESOURCE_ATTRIBUTE_TYPE. Type
EFI_RESOURCE_ATTRIBUTE_TYPE is defined in “Related Definitions” below.

PhysicalStart

Physical start address of the resource region. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI 2.0 specification.

ResourceLength

Number of bytes of the resource region.

Description
The resource descriptor HOB describes the resource properties of all fixed, nonrelocatable resource
ranges found on the processor host bus during the HOB producer phase. This HOB type does not
describe how memory is used but instead describes the attributes of the physical memory present.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

134 3/29/2013 Version 1.3

The HOB consumer phase reads all resource descriptor HOBs when it established the initial Global
Coherency Domain (GCD) map. The minimum requirement for the HOB producer phase is that
executable content in the HOB producer phase report one of the following:

• The resources that are necessary to start the HOB consumer phase

• The fixed resources that are not captured by HOB consumer phase driver components that were
started prior to the dynamic system configuration performed by the platform boot-policy phase

For example, executable content in the HOB producer phase should report any physical memory
found during the HOB producer phase. Another example is reporting the Boot Firmware Volume
(BFV) that contains firmware volume(s). Executable content in the HOB producer phase does not
need to report fixed system resources such as I/O port 70h/71h (real-time clock) because these fixed
resources can be allocated from the GCD by a platform-specific chipset driver loading in the HOB
consumer phase prior to the platform boot-policy phase, for example.

Current thinking is that the GCD does not track the HOB’s Owner GUID, so a HOB consumer
phase component that assumes ownership of a device’s resource must deallocate the resource
initialized by the HOB producer phase from the GCD before attempting to assign the devices
resource to itself in the HOB consumer phase.

Related Definitions
There can only be a single ResourceType field, characterized as follows.

//***
// EFI_RESOURCE_TYPE
//***

typedef UINT32 EFI_RESOURCE_TYPE;

#define EFI_RESOURCE_SYSTEM_MEMORY 0x00000000
#define EFI_RESOURCE_MEMORY_MAPPED_IO 0x00000001
#define EFI_RESOURCE_IO 0x00000002
#define EFI_RESOURCE_FIRMWARE_DEVICE 0x00000003
#define EFI_RESOURCE_MEMORY_MAPPED_IO_PORT 0x00000004
#define EFI_RESOURCE_MEMORY_RESERVED 0x00000005
#define EFI_RESOURCE_IO_RESERVED 0x00000006
#define EFI_RESOURCE_MAX_MEMORY_TYPE 0x00000007

The following table describes the fields listed in the above definition.

EFI_RESOURCE_SYSTEM_MEMORY Memory that persists out of the HOB producer
phase.

EFI_RESOURCE_MEMORY_MAPPED_IO Memory-mapped I/O that is programmed in the
HOB producer phase.

EFI_RESOURCE_IO Processor I/O space.

EFI_RESOURCE_FIRMWARE_DEVICE Memory-mapped firmware devices.

EFI_RESOURCE_MEMORY_MAPPED_IO_PORT Memory that is decoded to produce I/O cycles.

EFI_RESOURCE_MEMORY_RESERVED Reserved memory address space.

EFI_RESOURCE_IO_RESERVED Reserved I/O address space.

HOB Code Definitions

Version 1.3 3/29/2013 135

EFI_RESOURCE_MAX_MEMORY_TYPE Any reported HOB value of this type or greater
should be deemed illegal. This value could
increase with successive revisions of this
specification, so the “illegality” will also be based
upon the revision field of the PHIT HOB.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

136 3/29/2013 Version 1.3

The ResourceAttribute field is characterized as follows:
//***
// EFI_RESOURCE_ATTRIBUTE_TYPE
//***

typedef UINT32 EFI_RESOURCE_ATTRIBUTE_TYPE;

// These types can be ORed together as needed.
//
// The following attributes are used to describe settings
//
#define EFI_RESOURCE_ATTRIBUTE_PRESENT 0x00000001
#define EFI_RESOURCE_ATTRIBUTE_INITIALIZED 0x00000002
#define EFI_RESOURCE_ATTRIBUTE_TESTED 0x00000004

#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED 0x00000080
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED 0x00000100
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
 0x00000200

// The rest of the attributes are used to describe capabilities
//
#define EFI_RESOURCE_ATTRIBUTE_SINGLE_BIT_ECC 0x00000008
#define EFI_RESOURCE_ATTRIBUTE_MULTIPLE_BIT_ECC 0x00000010
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_1 0x00000020
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_2 0x00000040
#define EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE 0x00000400
#define EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE 0x00000800
#define EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE
 0x00001000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
 0x00002000
#define EFI_RESOURCE_ATTRIBUTE_16_BIT_IO 0x00004000
#define EFI_RESOURCE_ATTRIBUTE_32_BIT_IO 0x00008000
#define EFI_RESOURCE_ATTRIBUTE_64_BIT_IO 0x00010000
#define EFI_RESOURCE_ATTRIBUTE_UNCACHED_EXPORTED 0x00020000
#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTABLE
 0x00100000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTABLE
 0x00200000
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTABLE
 0x00400000

HOB Code Definitions

Version 1.3 3/29/2013 137

Table 15. EFI_RESOURCE_ATTRIBUTE_TYPE fields

EFI_RESOURCE_ATTRIBUTE_
PRESENT

Physical memory attribute: The memory region
exists.

EFI_RESOURCE_ATTRIBUTE_
INITIALIZED

Physical memory attribute: The memory region
has been initialized.

EFI_RESOURCE_ATTRIBUTE_
TESTED

Physical memory attribute: The memory region
has been tested.

EFI_RESOURCE_ATTRIBUTE_SINGLE_
BIT_ECC

Physical memory attribute: The memory region
supports single-bit ECC.

EFI_RESOURCE_ATTRIBUTE_
MULTIPLE_BIT_ECC

Physical memory attribute: The memory region
supports multibit ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_1

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_2

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_READ_
PROTECTED

Physical memory protection attribute: The
memory region is read protected.

EFI_RESOURCE_ATTRIBUTE_WRITE_
PROTECTED

Physical memory protection attribute: The
memory region is write protected.

EFI_RESOURCE_ATTRIBUTE_
EXECUTION_PROTECTED

Physical memory protection attribute: The
memory region is execution protected.

EFI_RESOURCE_ATTRIBUTE_
UNCACHEABLE

Memory cacheability attribute: The memory does
not support caching.

EFI_RESOURCE_ATTRIBUTE_READ_PROTECT
ABLE

Memory capability attribute: The memory supports
being protected from processor reads.

EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECT
ABLE

Memory capability attribute: The memory supports
being protected from processor writes.

EFI_RESOURCE_ATTRIBUTE_EXECUTION_PRO
TECTABLE

Memory capability attribute: The memory supports
being protected from processor execution.

EFI_RESOURCE_ATTRIBUTE_WRITE_
THROUGH_CACHEABLE

Memory cacheability attribute: The memory
supports being programmed with a write-through
cacheable attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
COMBINEABLE

Memory cacheability attribute: The memory
supports a write-combining attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
BACK_CACHEABLE

Memory cacheability attribute: The memory region
supports being configured as cacheable with a
write-back policy. Reads and writes that hit in the
cache do not propagate to main memory. Dirty
data is written back to main memory when a new
cache line is allocated.

EFI_RESOURCE_ATTRIBUTE_16_
BIT_IO

Memory physical attribute: The memory supports
16-bit I/O.

EFI_RESOURCE_ATTRIBUTE_32_
BIT_IO

Memory physical attribute: The memory supports
32-bit I/O.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

138 3/29/2013 Version 1.3

 Table 16 specifies the resource attributes applicable to each resource type.

Table 16. HOB Producer Phase Resource Types

EFI_RESOURCE_ATTRIBUTE_64_
BIT_IO

Memory physical attribute: The memory supports
64-bit I/O.

EFI_RESOURCE_ATTRIBUTE_
UNCACHED_EXPORTED

Memory cacheability attribute: The memory region
is uncacheable and exported and supports the
fetch and add semaphore mechanism.

EFI_RESOURCE_ATTRIBUTE_TYPE HOB Producer
Phase System
Memory

HOB Producer
Phase Memory-
Mapped I/O

HOB Producer
Phase I/O

Present X

Initialized X

Tested X

SingleBitEcc X

MultipleBitEcc X

EccReserved1 X

EccReserved2 X

ReadProtected X X

WriteProtected X X

ExecutionProtected X

Uncacheable X X

WriteThroughCacheable X X

WriteCombineable X X

WriteBackCacheable X X

16bitIO X

32bitIO X

64bitIO X

UncachedExported X X

HOB Code Definitions

Version 1.3 3/29/2013 139

5.6 GUID Extension HOB

EFI_HOB_GUID_TYPE

Summary
Allows writers of executable content in the HOB producer phase to maintain and manage HOBs
whose types are not included in this specification. Specifically, writers of executable content in the
HOB producer phase can generate a GUID and name their own HOB entries using this module-
specific value.

Prototype
typedef struct _EFI_HOB_GUID_TYPE {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_GUID Name;

 //
 // Guid specific data goes here
 //
} EFI_HOB_GUID_TYPE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_GUID_EXTENSION.

Name

A GUID that defines the contents of this HOB. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The GUID extension HOB allows writers of executable content in the HOB producer phase to create
their own HOB definitions using a GUID. This HOB type should be used by all executable content
in the HOB producer phase to define implementation-specific data areas that are not architectural.
This HOB type may also pass implementation-specific data from executable content in the HOB
producer phase to drivers in the HOB consumer phase.

A HOB consumer phase component such as a HOB consumer phase driver will read the GUID
extension HOB during the HOB consumer phase. The HOB consumer phase component must
inherently know the GUID for the GUID extension HOB for which it is scanning the HOB list. This
knowledge establishes a contract on the HOB’s definition and usage between the executable content
in the HOB producer phase and the HOB consumer phase driver.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

140 3/29/2013 Version 1.3

5.7 Firmware Volume HOB

EFI_HOB_FIRMWARE_VOLUME

Summary
Details the location of firmware volumes that contain firmware files.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
} EFI_HOB_FIRMWARE_VOLUME;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

Length

The length in bytes of the firmware volume.

Description
The firmware volume HOB details the location of firmware volumes that contain firmware files. It
includes a base address and length. In particular, the HOB consumer phase will use these HOBs to
discover drivers to execute and the hand-off into the HOB consumer phase will use this HOB to
discover the location of the HOB consumer phase firmware file.

The firmware volume HOB is produced in the following ways:

• By the executable content in the HOB producer phase in the Boot Firmware Volume (BFV) that
understands the size and layout of the firmware volume(s) that are present in the platform.

• By a module that has loaded a firmware volume from some media into memory. The firmware
volume HOB details this memory location.

Firmware volumes described by the firmware volume HOB must have a firmware volume header as
described in this specification.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the PI Firmware Image Format. The HOB
producer phase is required to describe any firmware volumes that may contain the HOB consumer
phase or platform drivers that are required to discover other firmware volumes.

HOB Code Definitions

Version 1.3 3/29/2013 141

EFI_HOB_FIRMWARE_VOLUME2

Summary
Details the location of a firmware volume which was extracted from a file within another firmware
volume.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
 EFI_GUID FvName;
 EFI_GUID FileName;
} EFI_HOB_FIRMWARE_VOLUME2;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV2.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the Unified
Extensible Firmware Interface Specification, version 2.0.

Length

The length in bytes of the firmware volume.

FvName

The name of the firmware volume.

FileName

The name of the firmware file which contained this firmware volume.

Description
The firmware volume HOB details the location of a firmware volume that was extracted prior to the
HOB consumer phase from a file within a firmware volume. By recording the volume and file name,
the HOB consumer phase can avoid processing the same file again.

This HOB is created by a module that has loaded a firmware volume from another file into memory.
This HOB details the base address, the length, the file name and volume name.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the PI Firmware Image format.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

142 3/29/2013 Version 1.3

5.8 CPU HOB

EFI_HOB_CPU

Summary
Describes processor information, such as address space and I/O space capabilities.

Prototype
typedef struct _EFI_HOB_CPU {
 EFI_HOB_GENERIC_HEADER Header;
 UINT8 SizeOfMemorySpace;
 UINT8 SizeOfIoSpace;
 UINT8 Reserved[6];
} EFI_HOB_CPU;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_CPU.

SizeOfMemorySpace

Identifies the maximum physical memory addressability of the processor.

SizeOfIoSpace

Identifies the maximum physical I/O addressability of the processor.

Reserved

For this version of the specification, this field will always be set to zero.

Description
The CPU HOB is produced by the processor executable content in the HOB producer phase. It
describes processor information, such as address space and I/O space capabilities. The HOB
consumer phase consumes this information to describe the extent of the GCD capabilities.

HOB Code Definitions

Version 1.3 3/29/2013 143

5.9 Memory Pool HOB

EFI_HOB_MEMORY_POOL

Summary
Describes pool memory allocations.

Prototype
typedef struct _EFI_HOB_MEMORY_POOL {
 EFI_HOB_GENERIC_HEADER Header;
} EFI_HOB_MEMORY_POOL;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_POOL.

Description
The memory pool HOB is produced by the HOB producer phase and describes pool memory
allocations. The HOB consumer phase should be able to ignore these HOBs. The purpose of this
HOB is to allow for the HOB producer phase to have a simple memory allocation mechanism within
the HOB list. The size of the memory allocation is stipulated by the HobLength field in
EFI_HOB_GENERIC_HEADER.

5.10 UEFI Capsule HOB

EFI_HOB_UEFI_ CAPSULE

Summary
Details the location of coalesced each UEFI capsule memory pages.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
} EFI_HOB_UEFI_CAPSULE;

Parameters
Header

The HOB generic header where Header.HobType =
EFI_HOB_TYPE_UEFI_CAPSULE.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

144 3/29/2013 Version 1.3

BaseAddress

The physical memory-mapped base address of an UEFI capsule. This value is set to
point to the base of the contiguous memory of the UEFI capsule.

The length of the contiguous memory in bytes

Description
Each UEFI capsule HOB details the location of a UEFI capsule. It includes a base address and length
which is based upon memory blocks with a EFI_CAPSULE_HEADER and the associated
CapsuleImageSize-based payloads. These HOB’s shall be created by the PEI PI firmware
sometime after the UEFI UpdateCapsule service invocation with the
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag set in the EFI_CAPSULE_HEADER.

HOB Code Definitions

Version 1.3 3/29/2013 145

5.11 Unused HOB

EFI_HOB_TYPE_UNUSED

Summary
Indicates that the contents of the HOB can be ignored.

Prototype
#define EFI_HOB_TYPE_UNUSED 0xFFFE

Description
This HOB type means that the contents of the HOB can be ignored. This type is necessary to
support the simple, allocate-only architecture of HOBs that have no delete service. The consumer of
the HOB list should ignore HOB entries with this type field.

An agent that wishes to make a HOB entry ignorable should set its type to the prototype defined
above.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

146 3/29/2013 Version 1.3

5.12 End of HOB List HOB

EFI_HOB_TYPE_END_OF_HOB_LIST

Summary
Indicates the end of the HOB list. This HOB must be the last one in the HOB list.

Prototype
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Description
This HOB type indicates the end of the HOB list. This HOB type must be the last HOB type in the
HOB list and terminates the HOB list. A HOB list should be considered ill formed if it does not have
a final HOB of type EFI_HOB_TYPE_END_OF_HOB_LIST.

Version 1.3 3/29/2013 147

6
Platform Intialization

Status Codes

6.1 Status Codes Overview
This specification defines the status code architecture that is required for an implementation of the
Platform Initialization (PI) specifications (hereafter referred to as the “PI Architecture”). Status
codes enable system components to report information about their current state. This specification
does the following:

• Describes the basic components of status codes

• Defines the status code classes; their subclasses; and the progress, error, and debug code
operations for each

• Provides code definitions for the data structures that are common to all status codes

• Provides code definitions for the status code classes; subclasses; progress, error, and debug code
enumerations; and extended error data that are architecturally required by the PI Architecture.

The basic definition of a status code is contained in the ReportStatusCode() definition in
volume 2 of this specification.

6.1.1 Organization of the Status Codes Specification
This specification is organized as listed below. Because status codes are just one component of a PI
Architecture-based firmware solution, there are a number of references to the PI Specifications
throughout this document.

Table 17. Organization of This Specification

6.2 Terms
The following terms are used throughout this document:

debug code

Data produced by various software entities that contains information specifically intended to
assist in debugging. The format of the debug code data is governed by this specification.

Book Description

Status Codes Overview Provides a high-level explanation of status codes and the status code
classes and subclasses that are defined in this specification.

Status Code Classes Provides detailed explanations of the defined status code classes.

Code Definitions Provides the code definitions for all status code classes; subclasses;
extended error data structures; and progress, error, and debug code
enumerations that are included in this specification.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

148 3/29/2013 Version 1.3

error code

Data produced by various software entities that indicates an abnormal condition. The format of
the error code data is governed by this specification.

progress code

Data produced by various software entities that indicates forward progress. The format of the
progress code data is governed by this specification.

status code

One of the three types of codes: progress code, error code, or debug code.

status code driver

The driver that produces the Status Code Runtime Protocol
(EFI_STATUS_CODE_PROTOCOL). The status code driver receives status codes and
notifies registered listeners upon receipt. Status codes handled by this driver are different from
the EFI_STATUS returned by various functions. The term EFI_STATUS is defined in the
UEFI Specification.

6.3 Types of Status Codes
For each entity classification (class/subclass pair) there are three sets of operations:

• Progress codes

• Error codes

• Debug codes

For progress codes, operations correspond to activities related to the component classification. For
error codes, operations correspond to exception conditions (errors). For debug codes, operations
correspond to the basic nature of the debug information.

The values 0x00–0x0FFF are common operations that are shared by all subclasses in a class. There
are also subclass-specific operations/error codes. Out of the subclass-specific operations, the values
0x1000–0x7FFF are reserved by this specification. The remaining values (0x8000–0xFFFF) are not
defined by this specification and OEMs can assign meaning to values in this range. The combination
of class and subclass operations provides the complete set of operations that may be reported by an
entity. The figure below demonstrates the hierarchy of class and subclass and progress, error, and
debug operations.

Platform Intialization Status Codes

Version 1.3 3/29/2013 149

Figure 12. Hierarchy of Status Code Operations

The organization of status codes, progress versus error, class, subclass, and operation facilitate a
flexible reporting of status codes. In the simplest case, reporting the status code might only convey
that an event occurred. In a slightly more complex system, it might be possible to report the class
and if it is a progress, error, or debug Code. In such a case, it is at least possible to understand that
the system is executing a software activity or that an error occurred with a computing unit. If more
reporting capability is present, the error could be isolated to include the subclass—for example, an
error occurred related to memory, or the system is currently executing the PEI Foundation software.
If yet more capability is present, information about the type of error or activity is available—for

Status Code:
Progress, Error, Debug

Class:
Computing Unit

Class:
User-Accessible

Peripheral

Class:
I/O Bus

Class:
Host Software

Status Code Classes:
Class # 0x0-0x7f controlled
by this specification

Software Subclasses:

Subclass 0x0-0x7f controlled
by this specification

Computing Unit Subclasses:

Subclass 0x0-0x7f controlled
by this specificationI/O Processor

Subclass

Cache
Subclass

Memory
Subclass

Computing Unit:
Class Progress Codes

Computing Unit:
Class Error Codes

Computing Unit:
Memory Subclass
Progress Codes

Computing Unit:
Memory Subclass

Error Codes

Computing Unit:
Class Debug Codes

Computing Unit:
Memory Subclass

Debug Codes

Operations: 0x0-0x7fff controlled by this specification

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

150 3/29/2013 Version 1.3

example, single-bit ECC error or PEIM dispatch in progress. If the reporting capability is complete,
it can provide the detailed error information about the single-bit ECC error, including the location
and a string describing the failure. A large spectrum of consumer capability can be supported with a
single interface for the producers of progress and error information.

6.3.1 Status Code Classes
The PI architecture defines four classes of status codes—three classes for hardware and one class for
software. These classes are listed in the table below and described in detail in the rest of this section.
Each class is made up of several subclasses, which are also defined later in this section.

See Code Definitions for all the definitions of all data types and enumerations listed in this section.

Table 18. Class Definitions

Class/subclass pairing should be able to classify any system entity, whether software or hardware.
For example, the boot-strap processor (BSP) in a system would be a member of the computing unit
class and host processor subclass, while a graphics processor would also be a member of the
computing unit class, but a member of the I/O processor subclass.

6.3.2 Instance Number
Because a system may contain multiple entities matching a class/subclass pairing, there is an
instance number. Instance numbers have different meanings for different classes. However, an
instance number of 0xFFFFFFFF always indicates that instance information is unavailable, not
applicable, or not provided.

Valid instance numbers start from 0. So a 4-processor server would logically have four instances of
the class/subclass pairing, computing unit/host processor, instance numbers 0 to 3.

Due to the complexity of system design, it is outside of the scope of this specification how to pair
instance numbers with the actual component—for instance, determining which processor is
number 3. However, this specification mandates that the numbering be consistent with the other
agents in the system. For example, the processor numbering scheme that is followed by status codes
must be consistent with the one followed by the ACPI tables.

Type of Class Class Name Data Type Name

Hardware Computing Unit EFI_COMPUTING_UNIT

User-Accessible Peripheral EFI_PERIPHERAL

I/O Bus EFI_IO_BUS

Software Host Software EFI_SOFTWARE

Platform Intialization Status Codes

Version 1.3 3/29/2013 151

6.4 Hardware Classes

6.4.1 Computing Unit Class
The Computing Unit class covers components directly related to system computational capabilities.
Subclasses correspond to types of computational devices and resources. See the following for the
computing unit class:

• Instance Number

• Progress Code Operations

• Error Code Operations

• Defined Subclasses

6.4.1.1 Instance Number
The instance number refers to the computing unit's geographic location in some manner. An
instance number of 0xFFFFFFFF means that the instance number information is not available or the
provider of the information is not interested in providing the instance number.

6.4.1.2 Progress Code Operations
All computing unit subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: Computing Unit Class for the definitions of these progress codes.

Table 19. Progress Code Operations: Computing Unit Class

6.4.1.3 Error Code Operations
All computing unit subclasses share the error codes listed in the table below. See Error Code
Definitions in section 6.7.1 for the definitions of these error codes.

Table 20. Error Code Operations: Computing Unit Class

Operation Description Extended Data

EFI_CU_PC_INIT_BEGIN General computing unit initialization begins. No details
regarding operation are made available.

See subclass.

EFI_CU_PC_INIT_END General computing unit initialization ends. No details
regarding operation are made available.

See subclass.

0x0002–0x0FFF Reserved for future use by this specification for
Computing Class progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the subclass definitions
within this specification for value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

Operation Description Extended Data

EFI_CU_EC_NON_SPECIFIC No error details available. See subclass.

EFI_CU_EC_DISABLED Instance is disabled. See subclass.

EFI_CU_EC_NOT_SUPPORTED Instance is not supported. See subclass.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

152 3/29/2013 Version 1.3

6.4.1.4 Subclasses

6.4.1.4.1 Defined Subclasses

The table below lists the subclasses in the Computing Unit class. The following topics describe each
subclass in more detail.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definitions of these
subclasses.

Table 21. Computing Unit Class: Subclasses

6.4.1.4.2 Unspecified Subclass

This subclass can be used for any computing unit type of component that does not belong in one of
the other subclasses.

EFI_CU_EC_NOT_DETECTED Instance not detected when it was expected to
be present.

See subclass.

EFI_CU_EC_NOT_CONFIGURED Instance could not be properly or completely
initialized or configured.

See subclass.

0x0005–0x0FFF Reserved for future use by this specification for
Computing Class error codes.

NA

0x1000–0x7FFF Subclass defined: See the subclass definitions
within this specification.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

Subclass Code Name Description

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED The computing unit type is unknown,
undefined, or unspecified.

Host processor EFI_COMPUTING_UNIT_HOST_
PROCESSOR

The computing unit is a full-service
central processing unit.

Firmware
processor

EFI_COMPUTING_UNIT_FIRMWARE_
PROCESSOR

The computing unit is a limited service
processor, typically designed to handle
tasks of limited scope.

I/O processor EFI_COMPUTING_UNIT_IO_PROCESSO
R

The computing unit is a processor
designed specifically to handle I/O
transactions.

Cache EFI_COMPUTING_UNIT_CACHE The computing unit is a cache. All types
of cache qualify.

Memory EFI_COMPUTING_UNIT_MEMORY The computing unit is memory. Many
types of memory qualify.

Chipset EFI_COMPUTING_UNIT_CHIPSET The computing unit is a chipset
component.

0x07–0x7F Reserved for future use by this
specification.

0x80–0xFF Reserved for OEM use.

Platform Intialization Status Codes

Version 1.3 3/29/2013 153

See section 6.7.1.1for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

Table 22. Progress and Error Code Operations: Computing Unit Unspecified Subclass

Related Definitions
None.

6.4.1.4.3 Host Processor Subclass

This subclass is used for computing units that provide the system’s main processing power and their
associated hardware. These are general-purpose processors capable of a wide range of
functionality. The instance number matches the processor handle number that is assigned to the
processor by the Multiprocessor (MP) Services Protocol. They often contain multiple levels of
embedded cache.

See Subclass Definitions in section 6.7.1.1for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 23. Progress and Error Code Operations: Host Processor Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of
Code

Operation Description Extended Data

Progress EFI_CU_HP_PC_POWER_ON_INIT Power-on
initialization

None

EFI_CU_HP_PC_CACHE_INIT Embedded cache
initialization
including cache
controller hardware
and cache memory.

EFI_CACHE_INIT_DATA

Progress
(cont.)

EFI_CU_HP_PC_RAM_INIT Embedded RAM
initialization

None

EFI_CU_HP_PC_MEMORY_
CONTROLLER_INIT

Embedded memory
controller
initialization

None

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

154 3/29/2013 Version 1.3

EFI_CU_HP_PC_IO_INIT Embedded I/O
complex
initialization

None

EFI_CU_HP_PC_BSP_SELECT BSP selection None

EFI_CU_HP_PC_BSP_RESELECT BSP reselection None

EFI_CU_HP_PC_AP_INIT AP initialization (this
operation is
performed by the
current BSP)

None

EFI_CU_HP_PC_SMM_INIT SMM initialization None

0x000B–0x7FFF Reserved for future
use by this
specification

NA

Error EFI_CU_EC_DISABLED Instance is
disabled. This is a
standard error code
for this class.

EFI_COMPUTING_UNIT_
CPU_DISABLED_ERROR_
DATA

EFI_CU_HP_EC_INVALID_TYPE Instance is not a
valid type.

None

EFI_CU_HP_EC_INVALID_SPEED Instance is not a
valid speed.

None

EFI_CU_HP_EC_MISMATCH Mismatch detected
between two
instances.

EFI_HOST_PROCESSOR_
MISMATCH_ERROR_DATA

EFI_CU_HP_EC_TIMER_EXPIRED A watchdog timer
expired.

None

EFI_CU_HP_EC_SELF_TEST Instance detected
an error during BIST

None

EFI_CU_HP_EC_INTERNAL Instance detected
an IERR.

None

EFI_CU_HP_EC_THERMAL An over
temperature
condition was
detected with this
instance.

EFI_COMPUTING_UNIT_
THERMAL_ERROR_DATA

Error
(cont.)

EFI_CU_HP_EC_LOW_VOLTAGE Voltage for this
instance dropped
below the low
voltage threshold.

EFI_COMPUTING_UNIT_
VOLTAGE_ERROR_DATA

EFI_CU_HP_EC_HIGH_VOLTAGE Voltage for this
instance surpassed
the high voltage
threshold

EFI_COMPUTING_UNIT_
VOLTAGE_ERROR_DATA

EFI_CU_HP_EC_CACHE The instance
suffered a cache
failure.

None

Platform Intialization Status Codes

Version 1.3 3/29/2013 155

Related Definitions
See the following topics in section 6.7.1.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.1 for definitions of the extended error data listed above.

6.4.1.4.4 Firmware Processor Subclass

This subclass applies to processors other than the Host Processors that provides services to the
system.

See section 6.7.1.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 24. Progress and Error Code Operations: Service Processor Subclass

EFI_CU_HP_EC_MICROCODE_
UPDATE

Instance microcode
update failed

EFI_COMPUTING_UNIT_
MICROCODE_
UPDATE_ERROR_DATA

EFI_CU_HP_EC_CORRECTABLE Correctable error
detected

None

EFI_CU_HP_EC_UNCORRECTABLE Uncorrectable ECC
error detected

None

EFI_CU_HP_EC_NO_MICROCODE_UPD
ATE

No matching
microcode update is
found

None

0x100D–0x7FFF Reserved for future
use by this
specification

NA

Type of
Code

Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_FP_EC_HARD_FAIL Firmware processor detected a
hardware error during initialization.

None

EFI_CU_FP_EC_SOFT_FAIL Firmware processor detected an error
during initialization. E.g. Firmware
processor NVRAM contents are invalid.

None

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

156 3/29/2013 Version 1.3

Related Definitions
See the following topics in section 6.7.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.4.1.4.5 I/O Processor Subclass

This subclass applies to system I/O processors and their associated hardware. These processors are
typically designed to offload I/O tasks from the central processors in the system. Examples would
include graphics or I20 processors. The subclass is identical to the host processor subclass. See
Host Processor Subclass for more information.

See section 6.7.1.1 for the definition of this subclass.

6.4.1.4.6 Cache Subclass

The cache subclass applies to any external/system level caches. Any cache embedded in a
computing unit would not be counted in this subclass, but would be considered a member of that
computing unit subclass.

See Subclass Definitions in section 6.7.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 25. Progress and Error Code Operations: Cache Subclass

EFI_CU_FP_EC_COMM_ERROR The host processor encountered an error
while communicating with the firmware
processor.

None

0x1004–0x7FFF Reserved for future use by this
specification.

NA

Type of
Code

Operation Description Extended
Data

Progress EFI_CU_CACHE_PC_PRESENCE_DETE
CT

Detecting cache presence. None

EFI_CU_CACHE_PC_CONFIGURATION Configuring cache. None

0x1002–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_CACHE_EC_INVALID_TYPE Instance is not a valid type. None

EFI_CU_CACHE_EC_INVALID_SPEED Instance is not a valid speed. None

EFI_CU_CACHE_EC_INVALID_SIZE Instance size is invalid. None

EFI_CU_CACHE_EC_MISMATCH Instance does not match other
caches.

None

Platform Intialization Status Codes

Version 1.3 3/29/2013 157

Related Definitions
See the following topics in section 6.7.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.4.1.4.7 Memory Subclass

The memory subclass applies to any external/system level memory and associated hardware. Any
memory embedded in a computing unit would not be counted in this subclass, but would be
considered a member of that computing unit subclass.

See Subclass Definitions in section 6.7.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

For all operations and errors, the instance number specifies the DIMM number unless stated
otherwise. Some of the operations may affect multiple memory devices and multiple memory
controllers. The specification provides mechanisms
(EFI_MULTIPLE_MEMORY_DEVICE_OPERATION and others) to describe such group
operations. See EFI_STATUS_CODE_DIMM_NUMBER in section 6.7.1 for details.

Table 26. Progress and Error Code Operations: Memory Subclass

0x1004–0x7FFF Reserved for future use by this
specification.

NA

Type of
Code

Operation Description Extended Data

Progress EFI_CU_MEMORY_PC_SPD_READ Reading configuration data (e.g.
SPD) from memory devices.

None

EFI_CU_MEMORY_PC_PRESENCE_DE
TECT

Detecting presence of memory
devices (e.g. DIMMs).

None

EFI_CU_MEMORY_PC_TIMING Determining optimum
configuration e.g. timing for
memory devices.

None

EFI_CU_MEMORY_PC_CONFIGURING Initial configuration of memory
device and memory controllers.

None

EFI_CU_MEMORY_PC_OPTIMIZING Programming the memory
controller and memory devices
with optimized settings.

None

Progress
(cont.)

EFI_CU_MEMORY_PC_INIT Memory initialization such as
ECC initialization.

EFI_MEMORY_
RANGE_
EXTENDED_DA
TA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

158 3/29/2013 Version 1.3

Related Definitions
See the following topics in section 6.7.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See section 6.7.1.4 for definitions of the extended error data listed above.

6.4.1.4.8 Chipset Subclass

This subclass can be used for any chipset components and their related hardware.

EFI_CU_MEMORY_PC_TEST Performing memory test. EFI_MEMORY_
RANGE_
EXTENDED_DA
TA

0x1007–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_MEMORY_EC_INVALID_TYPE Instance is not a valid type. None

EFI_CU_MEMORY_EC_INVALID_SPEE
D

Instance is not a valid speed. None

EFI_CU_MEMORY_EC_CORRECTABLE Correctable error detected. EFI_MEMORY_
EXTENDED_
ERROR_DATA

EFI_CU_MEMORY_EC_UNCORRECTA
BLE

Uncorrectable error detected.
This included memory
miscomparisions during the
memory test.

EFI_MEMORY_
EXTENDED_
ERROR_DATA

EFI_CU_MEMORY_EC_SPD_FAIL Instance SPD failure detected. None

EFI_CU_MEMORY_EC_INVALID_SIZE Instance size is invalid. None

EFI_CU_MEMORY_EC_MISMATCH Mismatch detected between two
instances.

EFI_MEMORY_
MODULE_
MISMATCH_ER
ROR_DATA

EFI_CU_MEMORY_EC_S3_RESUME_F
AIL

Resume from S3 failed. None

EFI_CU_MEMORY_EC_UPDATE_FAIL Flash Memory Update failed. None

EFI_CU_MEMORY_EC_NONE_DETECT
ED

Memory was not detected in the
system. Instance field is ignored.

None

Error
(cont.)

EFI_CU_MEMORY_EC_NONE_USEFUL No useful memory was detected
in the system. E.g., Memory was
detected, but cannot be used due
to errors. Instance field is
ignored.

None

0x1009–0x7FFF Reserved for future use by this
specification.

NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 159

See Subclass Definitions in section 6.7.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

Table 27. Progress and Error Code Operations: Chipset Subclass

Related Definitions
None.

Type of
Code

Operation Description Extended
Data

Progress EFI_CHIPSET_PC_PEI_CAR_SB_INIT South Bridge initialization prior to
memory detection

None

EFI_CHIPSET_PC_PEI_CAR_NB_INIT North Bridge initialization prior to
memory detection

None

EFI_CHIPSET_PC_PEI_MEM_SB_INIT South Bridge initialization after
memory detection

None

EFI_CHIPSET_PC_PEI_MEM_NB_INIT North Bridge initialization after
memory detection

None

EFI_CHIPSET_PC_DXE_HB_INIT PCI Host Bridge DXE initialization None

EFI_CHIPSET_PC_DXE_NB_INIT North Bridge DXE initialization None

EFI_CHIPSET_PC_DXE_NB_SMM_INIT North Bridge specific SMM
initialization in DXE

None

EFI_CHIPSET_PC_DXE_SB_RT_INIT Initialization of the South Bridge
specific UEFI Runtime Services

None

EFI_CHIPSET_PC_DXE_SB_INIT South Bridge DXE initialization None

EFI_CHIPSET_PC_DXE_SB_SMM_INIT South Bridge specific SMM
initialization in DXE

None

EFI_CHIPSET_PC_DXE_SB_DEVICES_I
NIT

Initialization of the South Bridge
devices

None

Progress 0x100B–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CHIPSET_EC_BAD_BATTERY Bad battery status has been
detected

None

EFI_CHIPSET_EC_DXE_NB_ERROR North Bridge initialization error in
DXE

None

EFI_CHIPSET_EC_DXE_NB_ERROR South Bridge initialization error in
DXE

None

Error 0x1003–0x7FFF Reserved for future use by this
specification.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

160 3/29/2013 Version 1.3

6.4.2 User-Accessible Peripheral Class
The User-Accessible Peripheral class refers to any peripheral with which the user interacts.
Subclass elements correspond to general classes of peripherals. See the following for the User-
Accessible Peripheral class:

• Instance Number

• Progress Code Operations

• rror Code Operations

• Defined Subclasses

6.4.2.1 Instance Number
The instance number refers to the peripheral’s geographic location in some manner. Instance
number of 0 means that instance number information is not available or the provider of the
information is not interested in providing the instance number.

6.4.2.2 Progress Code Operations
All peripheral subclasses share the operation codes listed in the table below. See Progress Code
Definitions for the definitions of these progress codes.

Table 28. Progress Code Operations: User-Accessible Peripheral Class

6.4.2.3 Error Code Operations
All peripheral subclasses share the error codes listed in the table below. See section 6.7.2 for the
definitions of these error codes.

Table 29. Error Code Operations: User-Accessible Peripheral Class

Operation Description Extended Data

EFI_P_PC_INIT General Initialization. No details regarding operation
are made available.

See subclass.

EFI_P_PC_RESET Resetting the peripheral. See subclass.

EFI_P_PC_DISABLE Disabling the peripheral. See subclass.

EFI_P_PC_PRESENCE_DETECT Detecting the presence. See subclass.

EFI_P_PC_ENABLE Enabling the peripheral. See subclass.

EFI_P_PC_RECONFIG Reconfiguration. See subclass.

EFI_P_PC_DETECTED Peripheral was detected. See subclass.

0x0006–0x0FFF Reserved for future use by this specification for
Peripheral Class progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the subclass
definitions within this specification for value
definitions.

See subclass.

0x8000–0xFFFF Reserved for OEM use. NA

Operation Description Extended Data

Platform Intialization Status Codes

Version 1.3 3/29/2013 161

6.4.3 Subclasses

6.4.3.1 Defined Subclasses
The table below lists the subclasses in the User-Accessible Peripheral class. The following topics
describe each subclass in more detail.

See Subclass Definitions in section 6.7.2 for the definitions of these subclasses.

Table 30. Defined Subclasses: User-Accessible Peripheral Class

EFI_P_EC_NON_SPECIFIC No error details available. See subclass

EFI_P_EC_DISABLED Instance is disabled. See subclass

EFI_P_EC_NOT_SUPPORTED Instance is not supported. See subclass

EFI_P_EC_NOT_DETECTED Instance not detected when it was expected
to be present.

See subclass

EFI_P_EC_NOT_CONFIGURED Instance could not be properly or completely
initialized or configured.

See subclass

EFI_P_EC_INTERFACE_ERROR An error occurred with the peripheral
interface.

See subclass

EFI_P_EC_CONTROLLER_ERROR An error occurred with the peripheral
controller.

See subclass

EFI_P_EC_INPUT_ERROR An error occurred getting input from the
peripheral.

See subclass.

EFI_P_EC_OUTPUT_ERROR An error occurred putting output to the
peripheral.

See subclass.

EFI_P_EC_RESOURCE_CONFLIC
T

A resource conflict exists with this
instance’s resource requirements.

See
EFI_RESOURCE_ALLOC_
FAILURE_ERROR_DATA
for all subclasses.

0x0006–0x0FFF Reserved for future use by this specification
for User-Accessible Peripheral class error
codes.

NA

0x1000–0x7FFF See the subclass definitions within this
specification.

See subclass

0x8000–0xFFFF Reserved for OEM use. NA

Subclass Code Name Description

Unspecified EFI_PERIPHERAL_UNSPECIFIED The peripheral type is unknown, undefined, or
unspecified.

Keyboard EFI_PERIPHERAL_KEYBOARD The peripheral referred to is a keyboard.

Mouse EFI_PERIPHERAL_MOUSE The peripheral referred to is a mouse.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

162 3/29/2013 Version 1.3

6.4.3.1.1 Unspecified Subclass

This subclass applies to any user-accessible peripheral not belonging to any of the other subclasses.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 31. Progress and Error Code Operations: Peripheral Unspecified Subclass

Related Definitions
None.

Local console EFI_PERIPHERAL_LOCAL_CONSOLE The peripheral referred to is a console directly
attached to the system.

Remote console EFI_PERIPHERAL_REMOTE_CONSOLE The peripheral referred to is a console that can
be remotely accessed.

Serial port EFI_PERIPHERAL_SERIAL_PORT The peripheral referred to is a serial port.

Parallel port EFI_PERIPHERAL_PARALLEL_PORT The peripheral referred to is a parallel port.

Fixed media EFI_PERIPHERAL_FIXED_MEDIA The peripheral referred to is a fixed media
device—e.g., an IDE hard disk drive.

Removable media EFI_PERIPHERAL_REMOVABLE_MEDIA The peripheral referred to is a removable
media device—e.g., a DVD-ROM drive.

Audio input EFI_PERIPHERAL_AUDIO_INPUT The peripheral referred to is an audio input
device—e.g., a microphone.

Audio output EFI_PERIPHERAL_AUDIO_OUTPUT The peripheral referred to is an audio output
device—e.g., speakers or headphones.

LCD device EFI_PERIPHERAL_LCD_DEVICE The peripheral referred to is an LCD device.

Network device EFI_PERIPHERAL_NETWORK The peripheral referred to is a network
device—e.g., a network card.

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Type of
Code

Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 163

6.4.3.1.2 Keyboard Subclass

This subclass applies to any keyboard style interfaces. ExtendedData contains the device path to
the keyboard device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is
ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 32. Progress and Error Code Operations: Keyboard Subclass

Related Definitions
See the following topics in section 6.7.2s for definitions of the subclass-specific operations listed
above:

Progress Code Definitions

Error Code Definitions

See Extended Error Data in section 6.7.2 for definitions of the extended error data listed above.

Type of
Code

Operation Description Extended Data

Progress EFI_P_KEYBOARD_PC_CLEAR_BUFF
ER

Clearing the
input keys from
keyboard.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

EFI_P_KEYBOARD_PC_SELF_TEST Keyboard self-
test.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1002–0x7FFF Reserved for
future use by this
specification.

NA

Error EFI_P_KEYBOARD_EC_LOCKED The keyboard
input is locked.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

EFI_P_KEYBOARD_EC_STUCK_KEY A stuck key was
detected.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

0x1002–0x7FFF Reserved for
future use by this
specification.

NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

164 3/29/2013 Version 1.3

6.4.3.1.3 Mouse Subclass

This subclass applies to any mouse or pointer peripherals. ExtendedData contains the device
path to the mouse device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance
is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 33. Progress and Error Code Operations: Mouse Subclass

Related Definitions
See the following topics in section 6.7.2 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.2 for definitions of the extended error data listed above.

6.4.3.1.4 Local Console Subclass

This subclass applies to all console devices directly connected to the system. This would include
VGA/UGA devices. ExtendedData contains the device path to the console device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored. LCD devices have their
own subclass.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Type of
Code

Operation Description Extended Data

Progress EFI_P_MOUSE_PC_SELF_TES
T

Mouse self-test. The device path to the mouse device.
See EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1001–0x7FFF Reserved for future
use by this
specification.

NA

Error EFI_P_MOUSE_EC_LOCKED The mouse input is
locked.

The device path to the mouse device.
See EFI_DEVICE_PATH_
EXTENDED_DATA

0x1001–0x7FFF Reserved for future
use by this
specification.

NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 165

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 34. Progress and Error Code Operations: Local Console Subclass

Related Definitions
None.

6.4.3.1.5 Remote Console Subclass

This subclass applies to any console not directly connected to the system. This would include
consoles displayed via serial or LAN connections. ExtendedData contains the device path to the
console device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 35. Progress and Error Code Operations: Remote Console Subclass

Related Definitions
None.

6.4.3.1.6 Serial Port Subclass

This subclass applies to devices attached to a system serial port, such as a modem.
ExtendedData contains the device path to the device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–
0x7FFF

Reserved for future use by this specification. NA

Error 0x1000–
0x7FFF

Reserved for future use by this specification. NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

166 3/29/2013 Version 1.3

Table 36. Progress and Error Code Operations: Serial Port Subclass

Related Definitions
See the following topics in section 6.7.2 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.2 for definitions of the extended error data listed above.

6.4.3.1.7 Parallel Port Subclass

This subclass applies to devices attached to a system parallel port, such as a printer.
ExtendedData contains the device path to the device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 37. Progress and Error Code Operations: Parallel Port Subclass

Related Definitions
None.

Type of
Code

Operation Description Extended Data

Progress EFI_P_SERIAL_PORT_PC_CLEAR_BUFF
ER

Clearing the
serial port input
buffer.

The device handle. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1001–0x7FFF Reserved for
future use by
this
specification.

NA

Error 0x1000–0x7FFF Reserved for
future use by
this
specification.

NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 167

6.4.3.1.8 Fixed Media Subclass

This subclass applies to fixed media peripherals such as hard drives. These peripherals are capable
of producing the EFI_BLOCK_IO Protocol. ExtendedData contains the device path to the
device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 38. Progress and Error Code Operations: Fixed Media Subclass

Related Definitions
None.

6.4.3.1.9 Removable Media Subclass

This subclass applies to removable media peripherals such as floppy disk drives or LS-120 drives.
These peripherals are capable of producing the EFI_BLOCK_IO Protocol. ExtendedData
contains the device path to the device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and
the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 39. Progress and Error Code Operations: Removable Media Subclass

Related Definitions
None.

6.4.3.1.10 Audio Input Subclass

This subclass applies to audio input devices such as microphones.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

168 3/29/2013 Version 1.3

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 40. Progress and Error Code Operations: Audio Input Subclass

Related Definitions
None.

6.4.3.1.11 Audio Output Subclass

This subclass applies to audio output devices like speakers or headphones.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 41. Progress and Error Code Operations: Audio Output Subclass

Related Definitions
None.

6.4.3.1.12 LCD Device Subclass

This subclass applies to LCD display devices attached to the system.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 42. Progress and Error Code Operations: LCD Device Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 169

Related Definitions
None.

6.4.3.1.13 Network Device Subclass

This subclass applies to network adapters attached to the system. These devices are capable of
producing standard UEFI networking protocols such as the EFI_SIMPLE_NETWORK Protocol.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 43. Progress and Error Code Operations: Network Device Subclass

Related Definitions
None.

6.4.3.1.14 I/O Bus Class

The I/O bus class covers hardware buses irrespective of any software protocols that are used. At a
broad level, everything that connects the computing unit to the user peripheral can be covered by this
class. Subclass elements correspond to industry-standard hardware buses. See the following for the
I/O Bus class:

• Instance Number

• Progress Code Operations

• Error Code Operations

• Defined Subclasses

6.4.3.1.15 Instance Number

The instance number is ignored and the ExtendedData describes the device path to the controller
or the device as defined in EFI_DEVICE_PATH_EXTENDED_DATA.

6.4.3.2 Progress Code Operations
All I/O bus subclasses share the operation codes listed in the table below. See Progress Code
Definitions in section 6.7.3 for the definitions of these progress codes.

Table 44. Progress Code Operations: I/O Bus Class

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Operation Description Extended Data

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

170 3/29/2013 Version 1.3

6.4.3.3 Error Code Operations
All I/O bus subclasses share the error codes listed in the table below. See Error Code Definitions in
section 6.7.3 for the definitions of these error codes.

Table 45. Error Code Operations: I/O Bus Class

EFI_IOB_PC_INIT General initialization. No details
regarding operation are made
available.

The device path corresponding to the host bus
controller (the controller that produces this
bus). For the PCI bus, it is the PCI root bridge.
The format of the device path extended data is
defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_RESET Resetting the bus. Generally,
this operation resets all the
devices on the bus as well.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_DISABLE Disabling all the devices on the
bus prior to enumeration.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_DETECT Detecting devices on the bus. The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_ENABLE Configuring the bus and
enabling device on the bus.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_RECONFIG Bus reconfiguration including
resource re-enumeration.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_HOTPLUG A hot-plug event was detected
on the bus and the hot-plugged
device was initialized.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

0x0007–0x0FFF Reserved for future use by this
specification for I/O Bus class
progress codes.

NA

0x1000–0x7FFF Reserved for subclass use.
See the subclass definitions
within this specification for
value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

Operation Description Extended Data

EFI_IOB_EC_NON_SPECIFIC No error details available None.

Platform Intialization Status Codes

Version 1.3 3/29/2013 171

EFI_IOB_EC_DISABLED A device is disabled due to
bus-level errors.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_SUPPORTED A device is not supported on
this bus.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_DETECTED Instance not detected when it
was expected to be present.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_CONFIGURED Instance could not be properly
or completely
initialized/configured.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_INTERFACE_ERROR An error occurred with the bus
interface.

The device path corresponding
to the failing device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_CONTROLLER_ERROR An error occurred with the host
bus controller (the controller
that produces this bus).

The device path corresponding
to the bus controller. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_READ_ERROR A bus specific error occurred
getting input from a device on
the bus.

The device path corresponding
to the failing device or the
closest device path. See
EFI_DEVICE_PATH_

EFI_IOB_EC_WRITE_ERROR An error occurred putting
output to the bus.

The device path corresponding
to the failing device or the
closest device path. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_RESOURCE_CONFLICT A resource conflict exists with
this instance’s resource
requirements.

See
EFI_RESOURCE_ALLOC_
FAILURE ERROR_DATA.

0x000A–0x0FFF Reserved for future use by this
specification for I/O Bus class
error codes.

NA

0x1000–0x7FFF See the subclass definitions
within this specification.

NA

0x8000–0xFFFF Reserved for OEM use. NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

172 3/29/2013 Version 1.3

6.4.3.4 Subclasses

6.4.3.4.1 Defined Subclasses

The table below lists the subclasses in the . The following topics describe each subclass in more
detail.

See Subclass Definitions in section 6.7.3 for the definitions of these subclasses.

Table 46. Defined Subclasses: I/O Bus Class

6.4.3.4.2 Unspecified Subclass

This subclass applies to any I/O bus not belonging to any of the other I/O bus subclasses.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 47. Progress and Error Code Operations: I/O Bus Unspecified Subclass

Subclass Code Name Description

Unspecified EFI_IO_BUS_UNSPECIFIED The bus type is unknown,
undefined, or unspecified.

PCI EFI_IO_BUS_PCI The bus is a PCI bus.

USB EFI_IO_BUS_USB The bus is a USB bus.

InfiniBand* architecture EFI_IO_BUS_IBA The bus is an IBA bus.

AGP EFI_IO_BUS_AGP The bus is an AGP bus.

PC card EFI_IO_BUS_PC_CARD The bus is a PC Card bus.

Low pin count (LPC) EFI_IO_BUS_LPC The bus is a LPC bus.

SCSI EFI_IO_BUS_SCSI The bus is a SCSI bus.

ATA/ATAPI/SATA EFI_IO_BUS_ATA_ATAPI The bus is a ATA/ATAPI bus.

Fibre Channel EFI_IO_BUS_FC The bus is an EC bus.

IP network EFI_IO_BUS_IP_NETWORK The bus is an IP network bus.

SMBus EFI_IO_BUS_SMBUS The bus is a SMBUS bus.

I2C EFI_IO_BUS_I2C The bus is an I2C bus.

0x0D–0x7F Reserved for future use by this
specification.

0x80–0xFF Reserved for OEM use.

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 173

Related Definitions
None.

6.4.3.4.3 PCI Subclass

This subclass applies to PCI buses and devices. It also includes different variations of PCI bus
including PCI-X and PCI Express.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 48. Progress and Error Code Operations: PCI Subclass

Type of
Code

Operation Description Extended Data

Progress EFI_IOB_PCI_BUS_ENUM Enumerating buses
under a root bridge.

The device path corresponding to the PCI root
bridge. See EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_PCI_RES_ALLO
C

Allocating
resources to
devices under a
host bridge.

The host bridge handle as defined in
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_IOB_PCI_HPC_INIT Initializing a PCI
hot-plug controller.

The device path to the controller as defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1003–0x7FFF Reserved for future
use by this
specification.

NA

Error EFI_IOB_PCI_EC_PERR Parity error; see
PCI Specification.

The device path to the controller that generated
the PERR. The data format is defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_PCI_EC_SERR System error; see
PCI Specification.

The device path to the controller that generated
the SERR. The data format is defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1002–0x7FFF Reserved for future
use by this
specification.

NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

174 3/29/2013 Version 1.3

Related Definitions
See the following topics in section 6.7.2 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.3 for definitions of the extended error data listed above.

6.4.3.5 USB Subclass
This subclass applies to USB buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 49. Progress and Error Code Operations: USB Subclass

Related Definitions
None.

6.4.3.5.1 InfiniBand* Architecture Subclass

This subclass applies to InfiniBand* (IBA) buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 50. Progress and Error Code Operations: IBA Subclass

Related Definitions
None.

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 175

6.4.3.5.2 AGP Subclass

This subclass applies to AGP buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 51. Progress and Error Code Operations: AGP Subclass

Related Definitions
None.

6.4.3.5.3 PC Card Subclass

This subclass applies to PC Card buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 52. Progress and Error Code Operations: PC Card Subclass

Related Definitions
None.

6.4.3.5.4 LPC Subclass

This subclass applies to LPC buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

176 3/29/2013 Version 1.3

Table 53. Progress and Error Code Operations: LPC Subclass

Related Definitions
None.

6.4.3.5.5 SCSI Subclass

This subclass applies to SCSI buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 54. Progress and Error Code Operations: SCSI Subclass

Related Definitions
None.

6.4.3.5.6 ATA/ATAPI/SATA Subclass

This subclass applies to ATA and ATAPI buses and devices. It also includes Serial ATA (SATA)
buses.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 55. Progress and Error Code Operations: ATA/ATAPI/SATA Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of
code

Operation Description Extend
ed data

Progress EFI_IOB_ATA_BUS_SMART_ENABLE SMART is enabled on the
storage device

NA

EFI_IOB_ATA_BUS_SMART_DISABLE SMART is disabled on the
storage device

NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 177

Related Definitions
None.

6.4.3.5.7 Fibre Channel (FC) Subclass

This subclass applies to Fibre Channel buses and devices.

See Subclass Definitions in section 6.7.3for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 56. Progress and Error Code Operations: FC Subclass

Related Definitions
None.

6.4.3.5.8 IP Network Subclass

This subclass applies to IP network buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

EFI_IOB_ATA_BUS_SMART_OVERTHRESHOLD SMART records are over
threshold on the storage
device

NA

EFI_IOB_ATA_BUS_SMART_UNDERTHRESHOLD SMART records are under
threshold on the storage
device

NA

0x1004–0x7FFF Reserved for future use by
this specification.

NA

Error EFI_IOB_ATA_BUS_SMART_NOTSUPPORTED SMART is not supported on
the storage device

NA

EFI_IOB_ATA_BUS_SMART_DISABLED SMART is disabled on the
storage device

NA

0x1002–0x7FFF Reserved for future use by
this specification.

NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of
code

Operation Description Extend
ed data

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

178 3/29/2013 Version 1.3

Table 57. Progress and Error Code Operations: IP Network Subclass

Related Definitions
None.

6.4.3.5.9 3SMBus Subclass

This subclass applies to SMBus buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 58. Progress and Error Code Operations: SMBus Subclass

Related Definitions
None.

6.4.3.5.10 I2C Subclass

This subclass applies to I2C buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 59. Progress and Error Code Operations: I2C Subclass

Related Definitions
None.

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 179

6.5 Software Classes

6.5.1 Host Software Class
The Host Software class covers any software-generated codes. Subclass elements correspond to
common software types in a PI Architecture system. See the following for the Host Software class:

• Instance Number

• Progress Code Operations

• rror Code Operations

• Defined Subclasses

6.5.2 Instance Number
The instance number is not used for software subclasses unless otherwise stated.

6.5.3 Progress Code Operations
All host software subclasses share the operation codes listed in the table below. See Progress Code
Definitions in section 6.7.4 for the definitions of these progress codes.

Table 60. Progress Code Operations: Host Software Class

Operation Description Extended Data

EFI_SW_PC_INIT General initialization. No details
regarding operation are made
available.

None.

EFI_SW_PC_LOAD Loading a software module in the
preboot phase by using LoadImage()
or an equivalent PEI service. May
include a PEIM, DXE drivers, UEFI
application, etc.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_INIT_BEGIN Initializing software module by using
StartImage() or an equivalent PEI
service.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_INIT_END Software module returned control
back after initialization.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_
AUTHENTICATE_BEGIN

Performing authentication
(passwords, biometrics, etc.).

None.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

180 3/29/2013 Version 1.3

6.5.4 Error Code Operations
All host software subclasses share the error codes listed in the table below. See Error Code
Definitions in section 6.7.4 for the definitions of these progress codes.

Table 61. Error Code Operations: Host Software Class

EFI_SW_PC_
AUTHENTICATE_END

Authentication completed. None.

EFI_SW_PC_INPUT_WAIT Waiting for user input. None.

EFI_SW_PC_USER_SETU
P

Executing user setup. None.

0x0008–0x0FFF Reserved for future use by this
specification for Host Software class
progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the
subclass definitions within this
specification for value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. NA

Operation Description Extended Data

EFI_SW_EC_NON_SPECIFIC No error details are available. None

EFI_SW_EC_LOAD_ERROR The software module load failed. Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_EXTENDED
_
DATA.

EFI_SW_EC_INVALID_
PARAMETER

An invalid parameter was passed
to the instance.

None.

EFI_SW_EC_UNSUPPORTED An unsupported operation was
requested.

None.

EFI_SW_EC_INVALID_BUFF
ER

The instance encountered an
invalid buffer (too large, small, or
nonexistent).

None.

EFI_SW_EC_OUT_OF_
RESOURCES

Insufficient resources exist. None.

EFI_SW_EC_ABORTED The instance was aborted. None.

EFI_SW_EC_ILLEGAL_
SOFTWARE_STATE

The instance detected an illegal
software state.

See EFI_DEBUG_ ASSERT_DATA

EFI_SW_EC_ILLEGAL_
HARDWARE_STATE

The instance detected an illegal
hardware state.

None.

Platform Intialization Status Codes

Version 1.3 3/29/2013 181

6.5.5 Subclasses

6.5.5.1 Defined Subclasses
The table below lists the subclasses in the Host Software class. The following topics describe each
subclass in more detail.

See Subclass Definitions in section 6.7.4 for the definitions of these subclasses.

EFI_SW_EC_START_ERROR The software module returned an
error when started via StartImage()
or equivalent.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_EXTENDED
_
DATA.

EFI_SW_EC_BAD_DATE_TIM
E

The system date/time is invalid None.

EFI_SW_EC_CFG_INVALID Invalid configuration settings were
detected.

None.

EFI_SW_EC_CFG_CLR_
REQUEST

User requested that configuration
defaults be loaded (via a physical
jumper, for example).

None.

EFI_SW_EC_CFG_DEFAULT Configuration defaults were
loaded.

None.

EFI_SW_EC_PWD_INVALID Invalid password settings were
detected.

None.

EFI_SW_EC_PWD_CLR_
REQUEST

User requested that the passwords
be cleared (via a physical jumper,
for example).

None.

EFI_SW_EC_PWD_CLEARED Passwords were cleared. None.

EFI_SW_EC_EVENT_LOG_
FULL

System event log is full. None.

0x0012–0x00FF Reserved for future use by this
specification for Host Software
class error codes.

None.

0x0100–0x01FF Unexpected EBC exceptions. See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0200–0x02FF Unexpected IA-32 processor
exceptions.

See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0300–0x03FF Unexpected Itanium® processor
family exceptions.

See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0400–0x7FFF See the subclass definitions within
this specification.

0x8000–0xFFFF Reserved for OEM use.

Operation Description Extended Data

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

182 3/29/2013 Version 1.3

Table 62. Defined Subclasses: Host Software Class

Subclass Code Name Description

Unspecified EFI_SOFTWARE_UNSPECIFIED The software type is unknown, undefined,
or unspecified.

Security (SEC) EFI_SOFTWARE_SEC The software is a part of the SEC phase.

PEI Foundation EFI_SOFTWARE_PEI_CORE The software is the PEI Foundation
module.

PEI module EFI_SOFTWARE_PEI_MODULE The software is a PEIM.

DXE Foundation EFI_SOFTWARE_DXE_CORE The software is the DXE Foundation
module.

DXE Boot
Service driver

EFI_SOFTWARE_DXE_BS_DRIVER The software is a DXE Boot Service driver. Boot
service drivers are not available once

ExitBootServices() is called.

DXE Runtime
Service driver

EFI_SOFTWARE_DXE_RT_DRIVER The software is a DXE Runtime Service
driver. These drivers execute during
runtime phase.

SMM driver EFI_SOFTWARE_SMM_DRIVER The software is a SMM driver.

EFI application EFI_SOFTWARE_EFI_APPLICATION The software is a UEFI application.

OS loader EFI_SOFTWARE_EFI_OS_LOADER The software is an OS loader.

Runtime (RT) EFI_SOFTWARE_EFI_RT The software is a part of the RT phase.

EBC exception EFI_SOFTWARE_EBC_EXCEPTION The status code is directly related to an
EBC exception.

IA-32 exception EFI_SOFTWARE_IA32_EXCEPTION The status code is directly related to an IA-
32 exception.

Itanium®
processor family
exception

EFI_SOFTWARE_IPF_EXCEPTION The status code is directly related to an
Itanium processor family exception.

x64 software
exception

EFI_SOFTWARE_X64_EXCEPTION The status code is directly related to anx64
exception.

ARM software
exception

EFI_SOFTWARE_ARM_EXCEPTION The status code is directly related to an
ARM exception

PEI Services EFI_SOFTWARE_PEI_SERVICE The status code is directly related to a PEI
Services function.

EFI Boot
Services

EFI_SOFTWARE_EFI_BOOT_SERVICE The status code is directly related to a
UEFI Boot Services function.

EFI Runtime
Services

EFI_SOFTWARE_EFI_RUNTIME_SERVIC
E

The status code is directly related to a
UEFI Runtime Services function.

DXE Services EFI_SOFTWARE_EFI_DXE_SERVICE The status code is directly related to a
DXE Services function.

0x13–0x7F Reserved for future use by this specification. NA

0x80–0xFF Reserved for OEM use. NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 183

6.5.5.2 Unspecified Subclass
This subclass applies to any software entity not belonging to any of the other software subclasses. It
may also be used if the caller is unable to determine the exact subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 63. Progress and Error Code Operations: Host Software Unspecified Subclass

Related Definitions
None.

6.5.5.3 SEC Subclass
This subclass applies to the Security (SEC) phase in software.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. In most platforms, status code services may
be unavailable during the SEC phase.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 64. Progress and Error Code Operations: SEC Subclass

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of
Code

Operation Description Extended Data

Progress EFI_SW_SEC_PC_ENTRY_POINT Entry point of the phase. None

EFI_SW_SEC_PC_HANDOFF_TO_NEXT Handing off to the next phase None

0x1002–0x7FFF Reserved for future use by
this specification.

Reserved for future
use by this
specification.

Error 0x1000–0x7FFF Reserved for future use by
this specification.

NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

184 3/29/2013 Version 1.3

6.5.5.4 PEI Foundation Subclass
This subclass applies to the PEI Foundation. The PEI Foundation is responsible for starting and
ending the PEI phase as well as dispatching Pre-EFI Initialization Modules (PEIMs).

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 65. Progress and Error Code Operations: PEI Foundation Subclass

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.5.5.5 PEI Module Subclass
This subclass applies to Pre-EFI Initialization Modules (PEIMs).

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Type of
Code

Operation Description Extended
Data

Progres
s

EFI_SW_PEI_CORE_PC_ENTRY_POINT Entry point of the phase. None

EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT Handing off to the next phase
(DXE).

None

EFI_SW_PEI_CORE_PC_RETURN_TO_LAST Returning to the last phase. None

0x1003–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_SW_PEI_CORE_EC_DXE_CORRUPT Unable to hand off to DXE
because the DXE Foundation
could not be found.

None

EFI_SW_PEI_CORE_EC_DXEIPL_NOT_FOUND DXE IPL PPI could not be
found.

None

EFI_SW_PEI_CORE_EC_MEMORY_NOT_INSTA
LLED

PEIM dispatching is over and
InstallPeiMemory() PEI
Service has not been called

None

0x1003–0x7FFF Reserved for future use by this
specification.

NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 185

Table 66. Progress and Error Code Operations: PEI Module Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_PEI_PC_RECOVERY_BEGIN Crisis recovery has been
initiated.

NULL

EFI_SW_PEI_PC_CAPSULE_LOAD Found a recovery capsule.
About to load the recovery
capsule.

NULL

EFI_SW_PEI_PC_CAPSULE_START Loaded the recovery
capsule. About to hand off
control to the capsule.

NULL

EFI_SW_PEI_PC_RECOVERY_USER Recovery was forced by
the user via a jumper, for
example. Reported by the
PEIM that detects the
jumpers and updates the
boot mode.

NULL

EFI_SW_PEI_PC_RECOVERY_AUTO Recovery was forced by
the software based on
some policy. Reported by
the PEIM that updates the
boot mode to force
recovery.

NULL

EFI_SW_PEI_PC_S3_BOOT_SCRIPT S3 boot script execution NULL

EFI_SW_PEI_PC_OS_WAKE Calling OS S3 wake up
vector

NULL

0x1007–0x7FFF Reserved for future use by
this specification.

NULL

Error EFI_SW_PEI_EC_NO_RECOVERY_CAPSULE Unable to continue with
the crisis recovery
because no recovery
capsule was found.

NULL

EFI_SW_PEI_EC_INVALID_CAPSULE_DESCRIPT
OR

An invalid or corrupt
capsule descriptor was
detected.

NULL

EFI_SW_PEI_EC_S3_RESUME_PPI_NOT_FOUND S3 Resume PPI is not
found

NULL

EFI_SW_PEI_EC_S3_BOOT_SCRIPT_ERROR Error during boot script
execution

NULL

EFI_SW_PEI_EC_S3_OS_WAKE_ERROR Error related to the OS
wake up vector (no valid
vector found or vector
returned control back to
the firmware)

NULL

EFI_SW_PEI_EC_S3_RESUME_FAILED Unspecified S3 resume
failure

NULL

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

186 3/29/2013 Version 1.3

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.5.5.6 DXE Foundation Subclass
This subclass applies to DXE Foundation software. The DXE Foundation is responsible for
providing core services, dispatching DXE drivers, and calling the Boot Device Selection (BDS)
phase.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 67. Progress and Error Code Operations: DXE Foundation Subclass

EFI_SW_PEI_EC_RECOVERY_PPI_NOT_FOUND Recovery failed because
Recovery Module PPI is
not found

NULL

EFI_SW_PEI_EC_RECOVERY_FAILED Unspecified Recovery
failure

NULL

0x1008–0x7FFF Reserved for future use by
this specification.

Type of
Code

Operation Description Extended Data

Progress EFI_SW_DXE_CORE_PC_ENTRY_POINT Entry point of the
phase.

None

EFI_SW_DXE_CORE_PC_HANDOFF
_TO_NEXT

Handing off to the next
phase (Runtime).

None

EFI_SW_DXE_CORE_PC_RETURN_
TO_LAST

Returning to the last
phase.

None

EFI_SW_DXE_CORE_PC_START_DRIVER Calling the Start()
function of the
EFI_DRIVER_BINDIN
G Protocol.

See
EFI_STATUS_
CODE_START_
EXTENDED_DATA

EFI_SW_DXE_CORE_PC_ARCH_READY All architectural
protocols are available

None

0x1005–0x7FFF Reserved for future use
by this specification.

NA

Type of
Code

Operation Description Extended
Data

Platform Intialization Status Codes

Version 1.3 3/29/2013 187

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

See Extended Error Data in section 6.7.4 for definitions of the extended error data listed above.

6.5.5.7 DXE Boot Service Driver Subclass
This subclass applies to DXE boot service drivers. If a driver provides both boot services and
runtime services, it is considered a runtime service driver.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 68. Progress and Error Code Operations: DXE Boot Service Driver Subclass

Error EFI_SW_DXE_CORE_EC_NO_ARCH Driver dispatching is
over and some of the
architectural protocols
are not available

None

0x1001–0x7FFF Reserved for future use
by this specification.

NA

Type of
Code

Operation Description Extended Data

Progress EFI_SW_DXE_BS_PC_LEGACY_
OPROM_INIT

Initializing a legacy Option
ROM (OpROM).

See
EFI_LEGACY_OPR
OM_
EXTENDED_DATA
.

EFI_SW_DXE_BS_PC_READY_TO_
BOOT_EVENT

The
EFI_EVENT_GROUP_READ
Y_TO_BOOT event was
signaled. See the UEFI

Specification.

None

EFI_SW_DXE_BS_PC_LEGACY_
BOOT_EVENT

The event with GUID
EFI_EVENT_LEGACY_BOO
T_GUID was signaled. See
the DXE CIS.

None

EFI_SW_DXE_BS_PC_EXIT_BOOT_
SERVICES_EVENT

The
EVT_SIGNAL_EXIT_BOOT_
SERVICES event was
signaled. See the UEFI
Specification.

None

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

188 3/29/2013 Version 1.3

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.4 for definitions of the extended error data listed above.

6.5.5.8 DXE Runtime Service Driver Subclass
This subclass applies to DXE runtime service drivers.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

EFI_SW_DXE_BS_PC_VIRTUAL_
ADDRESS_CHANGE_EVENT

The
EVT_SIGNAL_VIRTUAL_AD
DRESS_CHANGE event
was signaled. See the UEFI
Specification.

None

0x1000–0x7FFF Reserved for future use by
this specification.

NA

Error EFI_SW_DXE_BS_EC_LEGACY_
OPROM_NO_SPACE

Not enough memory
available to shadow a legacy
option ROM.

See
EFI_LEGACY_OPR
OM_
EXTENDED_DATA
. RomImageBase
corresponds to the
ROM image in the
regular memory as
opposed to shadow
RAM.

EFI_SW_DXE_BS_EC_INVALID_PASS
WORD

Invalid password has been
provided

None

EFI_SW_DXE_BS_EC_BOOT_OPTIO
N_LOAD_ERROR

Error during boot option
loading (LoadImage returned
error)

EFI_SW_DXE_BS_EC_BOOT_OPTIO
N_FAILED

Error during boot option
launch (StartImage returned
error)

EFI_SW_DXE_BS_EC_INVALID_IDE_
PASSWORD

Invalid hard driver password
has been provided

None

0x1005–0x7FFF Reserved for future use by
this specification.

NA

Type of
Code

Operation Description Extended Data

Platform Intialization Status Codes

Version 1.3 3/29/2013 189

Table 69. Progress and Error Code Operations: DXE Runtime Service Driver Subclass

Related Definitions
None.

6.5.5.9 SMM Driver Subclass
This subclass applies to SMM code.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 70. Progress and Error Code Operations: SMM Driver Subclass

Related Definitions
None.

6.5.5.10 EFI Application Subclass
This subclass applies to UEFI applications.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 71. Progress and Error Code Operations: UEFI Application Subclass

Related Definitions
None.

Type of
Code

Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

190 3/29/2013 Version 1.3

6.5.5.11 OS Loader Subclass
This subclass applies to any OS loader application. Although OS loaders are UEFI applications, they
are very special cases and merit a separate subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 72. Progress and Error Code Operations: OS Loader Subclass

Related Definitions
None.

6.5.6 Runtime (RT) Subclass
This subclass applies to runtime software. Runtime software is made up of the UEFI-aware
operating system and the non-UEFI software running under the operating system environment.
Other firmware components, such as SAL code or ASL code, are also executing during this phase
but cannot call a UEFI runtime service. Hence no codes are reserved for them.

Progress and Error Code Operations
• In addition to the standard progress and error codes that are defined for the Host Software class,

the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 73. Progress and Error Code Operations: Runtime Subclass

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_RT_PC_ENTRY_POINT Entry point of the phase. None

EFI_SW_RT_PC_RETURN_TO_LAST Returning to the last phase. None

EFI_SW_RT_PC_HANDOFF_TO_NEXT

0x1003–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 191

• Progress Code Definitions

6.5.6.1 PEI Services Subclass
This subclass applies to any PEI Service present in the PEI Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the code
that provides the specified boot service and not by the module that invokes the given boot service.

Many of the descriptions below refer to the Platform Initialization Pre-EFI Initialization Core
Interface Specification, or PEI CIS. Also, see "Related Definitions" below for links to the definitions
of code listed in this table.

Table 74. Progress and Error Code Operations: PEI Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_PS_PC_INSTALL_PPI Install a PPI. See the PEI CIS. None.

EFI_SW_PS_PC_REINSTALL_PPI Reinstall a PPI. See the PEI
CIS.

None.

EFI_SW_PS_PC_LOCATE_PPI Locate an existing PPI. See the
PEI CIS.

None.

EFI_SW_PS_PC_NOTIFY_PPI Install a notification callback.
See the PEI CIS.

None.

EFI_SW_PS_PC_GET_BOOT_MODE Get the current boot mode. See
the PEI CIS.

None.

EFI_SW_PS_PC_SET_BOOT_MODE Set the current boot mode. See
the PEI CIS.

None.

EFI_SW_PS_PC_GET_HOB_LIST Get the HOB list. See the PEI
CIS.

None.

EFI_SW_PS_PC_CREATE_HOB Create a HOB. See the PEI CIS. None.

Progress
(cont.)

EFI_SW_PS_PC_FFS_FIND_
NEXT_VOLUME

Find the next FFS formatted
firmware volume. See the PEI
CIS.

None.

EFI_SW_PS_PC_FFS_FIND_NEXT_
FILE

Find the next FFS file. See the
PEI CIS.

None

EFI_SW_PS_PC_FFS_FIND_
SECTION_DATA

Find a section in an FFS file.
See the PEI CIS.

None.

EFI_SW_PS_PC_INSTALL_PEI_ MEMORY Install the PEI memory. See the
PEI CIS.

None.

EFI_SW_PS_PC_ALLOCATE_PAGES Allocate pages from the memory
heap. See the PEI CIS.

None.

EFI_SW_PS_PC_ALLOCATE_POOL Allocate from the memory heap.
See the PEI CIS.

None.

EFI_SW_PS_PC_COPY_MEM Copy memory. See the PEI CIS. None

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

192 3/29/2013 Version 1.3

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

6.5.6.2 Boot Services Subclass
This subclass applies to any boot service present in the UEFI Boot Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the code
that provides the specified boot service and not by the module that invokes the given boot service.

See "Related Definitions" below for links to the definitions of code listed in this table.

EFI_SW_PS_PC_SET_MEM Set a memory range to a specific
value. See the PEI CIS.

None.

EFI_SW_PS_PC_RESET_SYSTEM System reset. See the PEI CIS. None

EFI_SW_PS_PC_FFS_FIND_FILE_BY_NAME Find a file in a firmware volume
by name. See the PEI CIS.

None

EFI_SW_PS_PC_FFS_GET_FILE_INFO Get information about a file in a
firmware volume. See the PEI
CIS.

None

EFI_SW_PS_PC_FFS_GET_VOLUME_INFO Get information about a firmware

volume. See the PEI CIS.
None

EFI_SW_PS_PC_FFS_REGISTER_FOR_SHA
DOW

Register a module to be
shadowed after permanent
memory is discovered. See the
PEI CIS.

None

0x1017-0x7fff Reserved for future use by this
specification.

NA

Error EFI_SW_PS_EC_RESET_NOT_AVAILABLE ResetSystem() PEI Service is
failed because Reset PPI is not
available

None

EFI_SW_PS_EC_MEMORY_INSTALLED_TW
ICE

InstallPeiMemory() PEI Service
is called more than once

None

0x1002–0x7FFF Reserved for future use by this
specification.

NA

Type of
Code

Operation Description Extended
Data

Platform Intialization Status Codes

Version 1.3 3/29/2013 193

Table 75. Progress and Error Code Operations: Boot Services Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_BS_PC_RAISE_TPL Raise the task priority level service;
see UEFI Specification. This code
is an invalid operation because the
status code driver uses this boot
service. The status code driver
cannot report its own status codes.

None.

EFI_SW_BS_PC_RESTORE_TPL Restore the task priority level
service; see UEFI Specification.
This code is an invalid operation
because the status code driver
uses this boot service. The status
code driver cannot report its own
status codes.

None.

EFI_SW_BS_PC_ALLOCATE_PAGE Allocate page service; see UEFI
Specification.

None.

EFI_SW_BS_PC_FREE_PAGES Free page service; see UEFI
Specification.

None.

EFI_SW_BS_PC_GET_MEMORY_MAP Get memory map service; see UEFI
Specification.

None.

EFI_SW_BS_PC_ALLOCATE_POOL Allocate pool service; see UEFI
Specification.

None.

EFI_SW_BS_PC_FREE_POOL Free pool service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CREATE_EVENT CreateEvent service; see UEFI
Specification.

None.

EFI_SW_BS_PC_SET_TIMER Set timer service; see UEFI
Specification.

None.

EFI_SW_BS_PC_WAIT_FOR_EVENT Wait for event service; see UEFI
Specification.

None.

Progress
(cont.)

EFI_SW_BS_PC_SIGNAL_EVENT Signal event service; see UEFI
Specification. This code is an
invalid operation because the
status code driver uses this boot
service. The status code driver
cannot report its own status codes.

None.

EFI_SW_BS_PC_CLOSE_EVENT Close event service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CHECK_EVENT Check event service; see UEFI
Specification.

None.

EFI_SW_BS_PC_INSTALL_
PROTOCOL_INTERFACE

Install protocol interface service;
see UEFI Specification.

None.

EFI_SW_BS_PC_REINSTALL_
PROTOCOL_INTERFACE

Reinstall protocol interface service;
see UEFI Specification.

None.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

194 3/29/2013 Version 1.3

EFI_SW_BS_PC_UNINSTALL_
PROTOCOL_INTERFACE

Uninstall protocol interface service;
see UEFI Specification.

None.

EFI_SW_BS_PC_HANDLE_
PROTOCOL

Handle protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_PC_HANDLE_
PROTOCOL

PC handle protocol service; see
UEFI Specification.

None.

EFI_SW_BS_PC_REGISTER_
PROTOCOL_ NOTIFY

Register protocol notify service; see
UEFI Specification.

None.

EFI_SW_BS_PC_LOCATE_HANDLE Locate handle service; see UEFI
Specification.

None.

EFI_SW_BS_PC_INSTALL_
CONFIGURATION_TABLE

Install configuration table service;
see UEFI Specification.

None.

EFI_SW_BS_PC_LOAD_IMAGE Load image service; see UEFI
Specification.

None.

EFI_SW_BS_PC_START_IMAGE Start image service; see UEFI
Specification.

None.

EFI_SW_BS_PC_EXIT Exit service; see UEFI
Specification.

None.

EFI_SW_BS_PC_UNLOAD_IMAGE Unload image service; see UEFI
Specification.

None.

EFI_SW_BS_PC_EXIT_BOOT_
SERVICES

Exit boot services service; see
UEFI Specification.

None.

EFI_SW_BS_PC_GET_NEXT_
MONOTONIC_COUNT

Get next monotonic count service;
see UEFI Specification.

None.

EFI_SW_BS_PC_STALL Stall service; see UEFI
Specification.

None.

EFI_SW_BS_PC_SET_WATCHDOG_
TIMER

Set watchdog timer service; see
UEFI Specification.

None.

EFI_SW_BS_PC_CONNECT_
CONTROLLER

Connect controller service; see
UEFI Specification.

None.

Progress
(cont.)

EFI_SW_BS_PC_DISCONNECT_
CONTROLLER

Disconnect controller service; see
UEFI Specification.

None.

EFI_SW_BS_PC_OPEN_PROTOCOL Open protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CLOSE_PROTOCOL Close protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_OPEN_PROTOCOL_
INFORMATION

Open protocol Information service;
see UEFI Specification.

None.

EFI_SW_BS_PC_PROTOCOLS_PER_
HANDLE

Protocols per handle service; see
UEFI Specification.

None.

EFI_SW_BS_PC_LOCATE_HANDLE_
BUFFER

Locate handle buffer service; see
UEFI Specification.

None.

Type of
Code

Operation Description Extended
Data

Platform Intialization Status Codes

Version 1.3 3/29/2013 195

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

6.5.6.3 Runtime Services Subclass
This subclass applies to any runtime service present in the UEFI Runtime Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. For obvious reasons, the runtime service
ReportStatusCode() cannot report status codes related to the progress of the
ReportStatusCode() function.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 76. Progress and Error Code Operations: Runtime Services Subclass

EFI_SW_BS_PC_LOCATE_PROTOCOL Locate protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_INSTALL_MULTIPLE_
PROTOCOL_INTERFACES

Install multiple protocol interfaces
service; see UEFI Specification.

None.

EFI_SW_BS_PC_UNINSTALL_
MULTIPLE_PROTOCOL_INTERFACES

Uninstall multiple protocol
interfaces service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CALCULATE_
CRC_32

Calculate CRC32 service; see UEFI
Specification.

None.

EFI_SW_BS_PC_COPY_MEM Copy memory; see UEFI
Specification.

None.

EFI_SW_BS_PC_SET_MEM Set memory to a specific value; see
UEFI Specification.

None.

EFI_SW_BS_PC_CREATE_EVENT_EX Create an event and, optionally,
associate it with an event group.
See the UEFI Specification.

None.

0x102b-0x7fff Reserved for future use by this
specification.

NA.

Error 0x1000 – 0x7FFF Reserved for future use by this
specification.

NA.

Type of
Code

Operation Description Extende
d Data

Progress EFI_SW_RS_PC_GET_TIME Get time service; see UEFI
Specification.

None.

Type of
Code

Operation Description Extended
Data

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

196 3/29/2013 Version 1.3

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

6.5.6.4 DXE Services Subclass
This subclass applies to any DXE Service that present in the UEFI DXE Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

EFI_SW_RS_PC_SET_TIME Set time service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_WAKEUP_TIME Get wakeup time service; see UEFI
Specification.

None

EFI_SW_RS_PC_SET_WAKEUP_TIME Set wakeup time service; see UEFI
Specification.

None

EFI_SW_RS_PC_SET_VIRTUAL_
ADDRESS_MAP

Set virtual address map service; see
UEFI Specification.

None

EFI_SW_RS_PC_CONVERT_POINTER Convert pointer service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_ VARIABLE Get variable service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_NEXT_
VARIABLE_NAME

Get next variable name service; see
UEFI Specification.

None

EFI_SW_RS_PC_SET_VARIABLE Set variable service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_NEXT_HIGH_
MONOTONIC_COUNT

Get next high monotonic count service;
see UEFI Specification.

None

EFI_SW_RS_PC_RESET_SYSTEM Reset system service; see UEFI
Specification.

None

EFI_SW_RS_PC_UPDATE_CAPSULE Update a capsule. See the UEFI
Specification.

None

EFI_SW_RS_PC_QUERY_CAPSULE_C
APABILITIES

Query firmware support for capsulate
capabilities. See the UEFI specification.

None

EFI_SW_RS_PC_QUERY_VARIABLE_I
NFO

Query firmware support for EFI
variables. See the UEFI specification.

None

0x100E Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Platform Intialization Status Codes

Version 1.3 3/29/2013 197

Table 77. Progress and Error Code Operations: DXE Services Subclass

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

Progress Code Definitions

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_DS_PC_ADD_
MEMORY_SPACE

Add memory to GCD. See DXE
CIS.

None

EFI_SW_DS_PC_ALLOCATE_MEMORY_
SPACE

Allocate memory from GCD. See
DXE CIS.

None

EFI_SW_DS_PC_FREE_MEMORY_SPACE Free memory from GCD. See
DXE CIS.

None

EFI_SW_DS_PC_REMOVE_MEMORY_
SPACE

Remove memory from GCD. See
DXE CIS.

None

EFI_SW_DS_PC_GET_MEMORY_SPACE_
DESCRIPTOR

Get memory descriptor from GCD.
See DXE CIS.

None

EFI_SW_DS_PC_SET_MEMORY_SPACE_
ATTRIBUTES

Set attributes of memory in GCD.
See DXE CIS.

None

EFI_SW_DS_PC_GET_MEMORY_SPACE_
MAP

Get map of memory space from
GCD. See DXE CIS.

None

EFI_SW_DS_PC_ADD_IO_SPACE Add I/O to GCD. See DXE CIS. None

EFI_SW_DS_PC_ALLOCATE_IO_SPACE Allocate I/O from GCD. See DXE
CIS.

None

EFI_SW_DS_PC_FREE_IO_SPACE Free I/O from GCD. See DXE CIS. None

EFI_SW_DS_PC_REMOVE_IO_SPACE Remove I/O space from GCD.
See DXE CIS.

None

EFI_SW_DS_PC_GET_IO_SPACE_
DESCRIPTOR

Get I/O space descriptor from
GCD. See DXE CIS.

None

EFI_SW_DS_PC_GET_IO_SPACE_MAP Get map of I/O space from the
GCD. See DXE CIS.

None

EFI_SW_DS_PC_DISPATCH Dispatch DXE drivers from a
firmware volume. See DXE CIS.

None

EFI_SW_DS_PC_SCHEDULE Clear the schedule on request flag
for a driver. See DXE CIS.

None

EFI_SW_DS_PC_TRUST Promote a file to trusted state.
See DXE CIS.

None

EFI_SW_DS_PC_PROCESS_FIRMWARE_
VOLUME

Dispatch all drivers in a firmware
volume. See DXE CIS.

None

0x1011–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

198 3/29/2013 Version 1.3

6.6 Code Definitions
This section provides the code definitions for the following data types and structures for status
codes:

• Data structures and types that are common to all status codes

• Progress, error, and debug codes that are common to all classes

• Class definitions

• Subclass definitions for each status code class

• Extended error data

This section defines the data structures that are common to all status codes. For class- and subclass-
specific information, see section 6.7.

6.6.1 Data Structures
See the ReportStatusCode() declaration in Volume 2 of this specification for definitions and
details on the following basic data structures:

• EFI_STATUS_CODE_TYPE and defined severities

• EFI_PROGRESS_CODE

• EFI_ERROR_CODE

• EFI_DEBUG_CODE

• EFI_STATUS_CODE_VALUE

6.6.2 Extended Data Header

EFI_STATUS_CODE_DATA

Summary
The definition of the status code extended data header. The data will follow HeaderSize bytes
from the beginning of the structure and is Size bytes long.

Related Definitions
typedef struct {
 UINT16 HeaderSize;
 UINT16 Size;
 EFI_GUID Type;

} EFI_STATUS_CODE_DATA;

Parameters
HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Platform Intialization Status Codes

Version 1.3 3/29/2013 199

Type

The GUID defining the type of the data. The standard GUIDs and their associated
data structures are defined in this specification.

Description
The status code information may be accompanied by optional extended data. The extended data
begins with a header. The header contains a Type field that represents the format of the extended
data following the header. This specification defines two GUIDs and their meaning. If these GUIDs
are used, the extended data contents must follow this specification. Extended data formats that are
not compliant with this specification are permitted, but they must use different GUIDs. The format
of the extended data header is defined in Platform Initialization DXE CIS, but it is duplicated here
for convenience.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

200 3/29/2013 Version 1.3

 EFI_STATUS_CODE_DATA_TYPE_STRING_GUID

Summary
Defines a string type of extended data.

GUID
 #define EFI_STATUS_CODE_DATA_TYPE_STRING_GUID \
 { 0x92D11080, 0x496F, 0x4D95, 0xBE, 0x7E, 0x03, 0x74, \
 0x88, 0x38, 0x2B, 0x0A }

Prototype
typedef struct {
EFI_STATUS_CODE_DATA DataHeader;
EFI_STRING_TYPE StringType;
EFI_STATUS_CODE_STRING String;

} EFI_STATUS_CODE_STRING_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_STRING_DATA) – HeaderSize, and
DataHeader.Type should be
EFI_STATUS_CODE_DATA_TYPE_STRING_GUID.

StringType

Specifies the format of the data in String. Type EFI_STRING_TYPE is defined in
"Related Definitions" below.

String

A pointer to the extended data. The data follows the format specified by
StringType. Type EFI_STRING_TYPE is defined in "Related Definitions"
below.

Description
This data type defines a string type of extended data. A string can accompany any status code. The
string can provide additional information about the status code. The string can be ASCII, Unicode,
or a Human Interface Infrastructure (HII) token/GUID pair.

Related Definitions
//**
// EFI_STRING_TYPE
//**

typedef enum {
 EfiStringAscii,

Platform Intialization Status Codes

Version 1.3 3/29/2013 201

 EfiStringUnicode,
 EfiStringToken

} EFI_STRING_TYPE;

EfiStringAscii

A NULL-terminated ASCII string.

EfiStringUnicode

A double NULL-terminated Unicode string.

EfiStringToken

An EFI_STATUS_CODE_STRING_TOKEN representing the string. The actual
string can be obtained by querying the HII database.

//**
// EFI_STATUS_CODE_STRING_TOKEN
//**

//
// HII string token
//
typedef struct {
EFI_HII_HANDLE Handle;
EFI_STRING_ID Token;

} EFI_STATUS_CODE_STRING_TOKEN;

Handle

The HII package list which contains the string. Handle is a dynamic value that may
not be the same for different boots. Type EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the UEFI
Specification.

Token

When combined with Handle, the string token can be used to retrieve the string.
Type EFI_STRING_ID is defined in EFI_IFR_OP_HEADER in the UEFI
Specification.

//**
// EFI_STATUS_CODE_STRING
//**

//
// String structure
//
typedef union {
CHAR8 *Ascii;

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

202 3/29/2013 Version 1.3

CHAR16 *Unicode;
EFI_STATUS_CODE_STRING_TOKEN Hii;

} EFI_STATUS_CODE_STRING;

Ascii

ASCII formatted string.

Unicode

Unicode formatted string.

Hii

HII handle/token pair. Type EFI_STATUS_CODE_STRING_TOKEN is defined
above.

Platform Intialization Status Codes

Version 1.3 3/29/2013 203

EFI_STATUS_CODE_SPECIFIC_DATA_GUID

Summary
Indicates that the format of the accompanying data depends upon the status code value but follows
this specification.

GUID
#define EFI_STATUS_CODE_SPECIFIC_DATA_GUID \
 {0x335984bd,0xe805,0x409a,0xb8,0xf8,0xd2,0x7e, \
 0xce,0x5f,0xf7,0xa6}

Description
This GUID indicates that the format of the accompanying data depends upon the status code value
but follows this specification. This specification defines the format of the extended data for several
status code values. For example, EFI_DEBUG_ASSERT_DATA defines the extended error data for
the error code EFI_SW_EC_ILLEGAL_SOFTWARE_STATE. The agent reporting this error
condition can use this GUID if the extended data follows the format defined in
EFI_DEBUG_ASSERT_DATA.

If the consumer of the status code detects this GUID, it must look up the status code value to
correctly interpret the contents of the extended data.

This specification declares certain ranges of status code values as OEM specific. Because this
specification does not define the meaning of status codes in these ranges, the extended data for these
cannot use this GUID. The OEM defining the meaning of the status codes is responsible for defining
the GUID that is to be used for associated extended data.

6.6.3 Enumeration Schemes

6.6.3.1 Operation Code Enumeration Scheme

Summary
All operation codes (regardless of class and subclass) use the progress code partitioning scheme
listed in the table below.

Table 78. Progress Code Enumeration Scheme

Operation Description

0x0000–0x0FFF These operation codes are common to all the subclasses in a given class.
These values are used to represent operations that are common to all
subclasses in a given class. For example, all the I/O buses in the I/O Bus
subclasses share an operation code that represents the reset operation, which
is a common operation for most buses. It is possible that certain operation
codes in this range will not be applicable to certain subclasses. It is also
possible that the format of the extended data will vary from one subclass to
another. If the subclass does not define the format of the extended data,
extended data is not required.
These codes are reserved by this specification.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

204 3/29/2013 Version 1.3

Prototype
//
// General partitioning scheme for Progress and Error Codes
// 0x0000-0x0FFF - Shared by all subclasses in a given class
// 0x1000-0x7FFF - Subclass Specific
// 0x8000-0xFFFF - OEM specific
//
#define EFI_SUBCLASS_SPECIFIC 0x1000
#define EFI_OEM_SPECIFIC 0x8000

6.6.3.2 Debug Code Enumeration Scheme

Summary
All classes share these debug operation codes. It is not currently expected that operation codes have
a lot of meaning for debug information. Only one debug code is currently defined by this
specification and it is shared by all classes and subclasses.

Table 79. Debug Code Enumeration Scheme

Prototype
//
// Debug Code definitions for all classes and subclass
// Only one debug code is defined at this point and should
// be used for anything that gets sent to debug stream.
//
#define EFI_DC_UNSPECIFIED 0x0

6.6.4 Common Extended Data Formats
This section specifies formats for the extended data included in a variety of status codes.

0x1000–0x7FFF These operation codes are specific to the subclass and represent operations
that are specific to the subclass. These codes are reserved by this
specification.

0x8000–0xFFFF Reserved for OEM use.

Debug Code Description

0x0000–0x7FFF Reserved for future use by this specification.

0x8000–0xFFFF Reserved for OEM use.

Platform Intialization Status Codes

Version 1.3 3/29/2013 205

EFI_DEVICE_PATH_EXTENDED_DATA

Summary
Extended data about the device path, which is used for many errors and progress codes to point to
the device.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 // EFI_DEVICE_PATH_PROTOCOL DevicePath;
} EFI_DEVICE_PATH_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA). DataHeader.Size should be the size
of variable-length DevicePath, and DataHeader.Size is zero for a virtual
device that does not have a device path. DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

DevicePath

The device path to the controller or the hardware device. Note that this parameter is a
variable-length device path structure and not a pointer to such a structure. This
structure is populated only if it is a physical device. For virtual devices, the Size
field in DataHeader is set to zero and this field is not populated.

Description
The device path is used to point to the physical device in case there is more than one device
belonging to the same subclass. For example, the system may contain two USB keyboards and one
PS/2* keyboard. The driver that parses the status code can use the device path extended data to
differentiate between the three. The index field is not useful in this case because there is no standard
numbering convention. Device paths are preferred over using device handles because device handles
for a given device can change from one boot to another and do not mean anything beyond Boot
Services time. In certain cases, the bus driver may not create a device handle for a given device if it
detects a critical error. In these cases, the device path extended data can be used to refer to the
device, but there may not be any device handles with an instance of
EFI_DEVICE_PATH_PROTOCOL that matches DevicePath. The variable device path structure
is included in this structure to make it self sufficient.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

206 3/29/2013 Version 1.3

EFI_DEVICE_HANDLE_EXTENDED_DATA

Summary
Extended data about the device handle, which is used for many errors and progress codes to point to
the device.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE Handle;
} EFI_DEVICE_HANDLE_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_DEVICE_HANDLE_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Handle

The device handle.

Description
The handle of the device with which the progress or error code is associated. The handle is
guaranteed to be accurate only at the time the status code is reported. Handles are dynamic entities
between boots, so handles cannot be considered to be valid if the system has reset subsequent to the
status code being reported. Handles may be used to determine a wide variety of useful information
about the source of the status code.

Platform Intialization Status Codes

Version 1.3 3/29/2013 207

EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

Summary
This structure defines extended data describing a PCI resource allocation error.

Prototype

Note: The following structure contains variable-length fields and cannot be defined as a C-style
structure.

typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Bar;
 UINT16 DevicePathSize;
 UINT16 ReqResSize;
 UINT16 AllocResSize;
 // EFI_DEVICE_PATH_PROTOCOL DevicePath;
 // UINT8 ReqRes[…];
 // UINT8 AllocRes[…];

} EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be sizeof
(EFI_STATUS_CODE_DATA), DataHeader.Size should be
(DevicePathSize + DevicePathSize + DevicePathSize +
sizeof(UINT32) + 3 * sizeof (UINT16)), and DataHeader.Type
should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Bar

The PCI BAR. Applicable only for PCI devices. Ignored for all other devices.

DevicePathSize

DevicePathSize should be zero if it is a virtual device that is not associated with
a device path. Otherwise, this parameter is the length of the variable-length
DevicePath.

ReqResSize

Represents the size the ReqRes parameter. ReqResSize should be zero if the
requested resources are not provided as a part of extended data.

AllocResSize

Represents the size the AllocRes parameter. AllocResSize should be zero if the
allocated resources are not provided as a part of extended data.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

208 3/29/2013 Version 1.3

DevicePath

The device path to the controller or the hardware device that did not get the requested
resources. Note that this parameter is the variable-length device path structure and not
a pointer to this structure.

ReqRes

The requested resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

AllocRes

The allocated resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

Description
This extended data conveys details for a PCI resource allocation failure error. See the PCI
specification and the ACPI specification for details on PCI resource allocations and the format for
resource descriptors. This error does not detail why the resource allocation failed. It may be due to a
bad resource request or a lack of available resources to satisfy a valid request. The variable device
path structure and the resource structures are included in this structure to make it self sufficient.

6.7 Class Definitions

Summary
Classes correspond to broad types of system pieces. These types are chosen to provide a reasonable
initial classification of the system entity whose status is represented. There are three classes of
hardware and one class for software. These classes are listed in the table below. Each class is made
up of several subclasses. See section 6.3for descriptions of each of these classes.

Table 80. Class Definitions

Prototype
//
// Class definitions
// Values of 4-127 are reserved for future use by this
// specification.
// Values in the range 127-255 are reserved for OEM use.
//
#define EFI_COMPUTING_UNIT 0x00000000
#define EFI_PERIPHERAL 0x01000000

Type of Class Class Name Data Type Name

Hardware Computing Unit EFI_COMPUTING_UNIT

User-Accessible Peripherals EFI_PERIPHERAL

I/O Bus EFI_IO_BUS

Software Host Software EFI_SOFTWARE

Platform Intialization Status Codes

Version 1.3 3/29/2013 209

#define EFI_IO_BUS 0x02000000
#define EFI_SOFTWARE 0x03000000

6.7.1 Computing Unit Class
The table below lists the subclasses defined in the Computing Unit class. See the following section
for their code definitions.

Table 81. Defined Subclasses: Computing Unit Class

6.7.1.1 Subclass Definitions

Summary
Definitions for the Computing Unit subclasses. See Subclasses in section 6.7.1 for descriptions of
these subclasses.

Prototype
//
// Computing Unit Subclass definitions.
// Values of 8-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_COMPUTING_UNIT_UNSPECIFIED \
 (EFI_COMPUTING_UNIT | 0x00000000)
#define EFI_COMPUTING_UNIT_HOST_PROCESSOR \
 (EFI_COMPUTING_UNIT | 0x00010000)
#define EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR \
 (EFI_COMPUTING_UNIT | 0x00020000)
#define EFI_COMPUTING_UNIT_IO_PROCESSOR \
 (EFI_COMPUTING_UNIT | 0x00030000)
#define EFI_COMPUTING_UNIT_CACHE \
 (EFI_COMPUTING_UNIT | 0x00040000)
#define EFI_COMPUTING_UNIT_MEMORY \
 (EFI_COMPUTING_UNIT | 0x00050000)

Subclass Code Name

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED

Host processor EFI_COMPUTING_UNIT_HOST_PROCESSOR

Firmware processor EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR

Service processor EFI_COMPUTING_UNIT_SERVICE_PROCESSOR

I/O processor EFI_COMPUTING_UNIT_IO_PROCESSOR

Cache EFI_COMPUTING_UNIT_CACHE

Memory EFI_COMPUTING_UNIT_MEMORY

Chipset EFI_COMPUTING_UNIT_CHIPSET

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

210 3/29/2013 Version 1.3

#define EFI_COMPUTING_UNIT_CHIPSET \
 (EFI_COMPUTING_UNIT | 0x00060000)

6.7.1.2 Progress Code Definitions

Summary
Progress code definitions for the Computing Unit class and all subclasses. See Progress Code
Operations in section 6.7.1 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• Host processor

• Cache

• Memory

Prototype
//
// Computing Unit Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_CU_PC_INIT_BEGIN 0x00000000
#define EFI_CU_PC_INIT_END 0x00000001

//
// Computing Unit Unspecified Subclass Progress Code
// definitions.
//

//
// Computing Unit Host Processor Subclass Progress Code
// definitions.
//
#define EFI_CU_HP_PC_POWER_ON_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_HP_PC_CACHE_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_HP_PC_RAM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_HP_PC_MEMORY_CONTROLLER_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_HP_PC_IO_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_HP_PC_BSP_SELECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)

Platform Intialization Status Codes

Version 1.3 3/29/2013 211

#define EFI_CU_HP_PC_BSP_RESELECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_HP_PC_AP_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_HP_PC_SMM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)

//
// Computing Unit Firmware Processor Subclass Progress Code
// definitions.
//

//
// Computing Unit IO Processor Subclass Progress Code
// definitions.
//

//
// Computing Unit Cache Subclass Progress Code definitions.
//
#define EFI_CU_CACHE_PC_PRESENCE_DETECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_CACHE_PC_CONFIGURATION \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Computing Unit Memory Subclass Progress Code definitions.
//
#define EFI_CU_MEMORY_PC_SPD_READ \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_MEMORY_PC_PRESENCE_DETECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_MEMORY_PC_TIMING \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_MEMORY_PC_CONFIGURING \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_MEMORY_PC_OPTIMIZING \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_MEMORY_PC_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_MEMORY_PC_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

212 3/29/2013 Version 1.3

//
// Computing Unit Chipset Subclass Progress Code definitions.
//
#define EFI_CHIPSET_PC_PEI_CAR_SB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CHIPSET_PC_PEI_CAR_NB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CHIPSET_PC_PEI_MEM_SB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CHIPSET_PC_PEI_MEM_NB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CHIPSET_PC_DXE_HB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CHIPSET_PC_DXE_NB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CHIPSET_PC_DXE_NB_SMM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CHIPSET_PC_DXE_SB_RT_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CHIPSET_PC_DXE_SB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CHIPSET_PC_DXE_SB_SMM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CHIPSET_PC_DXE_SB_DEVICES_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)

6.7.1.3 Error Code Definitions

Summary
Error code definitions for the Computing Unit class and all subclasses. See Error Code Operations in
section 6.7.1 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• Host processor

• Firmware processor

• Cache

• Memory

Prototype
//
// Computing Unit Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_CU_EC_NON_SPECIFIC 0x00000000

Platform Intialization Status Codes

Version 1.3 3/29/2013 213

#define EFI_CU_EC_DISABLED 0x00000001
#define EFI_CU_EC_NOT_SUPPORTED 0x00000002
#define EFI_CU_EC_NOT_DETECTED 0x00000003
#define EFI_CU_EC_NOT_CONFIGURED 0x00000004

//
// Computing Unit Unspecified Subclass Error Code definitions.
//

//
// Computing Unit Host Processor Subclass Error Code
definitions.
//
#define EFI_CU_HP_EC_INVALID_TYPE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_HP_EC_INVALID_SPEED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_HP_EC_MISMATCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_HP_EC_TIMER_EXPIRED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_HP_EC_SELF_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_HP_EC_INTERNAL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_HP_EC_THERMAL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_HP_EC_LOW_VOLTAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_HP_EC_HIGH_VOLTAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CU_HP_EC_CACHE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CU_HP_EC_MICROCODE_UPDATE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_CU_HP_EC_CORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_CU_HP_EC_UNCORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_CU_HP_EC_NO_MICROCODE_UPDATE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)

//
// Computing Unit Firmware Processor Subclass Error Code
// definitions.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

214 3/29/2013 Version 1.3

//
#define EFI_CU_FP_EC_HARD_FAIL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_FP_EC_SOFT_FAIL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_FP_EC_COMM_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Computing Unit IO Processor Subclass Error Code definitions.
//

//
// Computing Unit Cache Subclass Error Code definitions.
//
#define EFI_CU_CACHE_EC_INVALID_TYPE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_CACHE_EC_INVALID_SPEED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_CACHE_EC_INVALID_SIZE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_CACHE_EC_MISMATCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)

//
// Computing Unit Memory Subclass Error Code definitions.
//
#define EFI_CU_MEMORY_EC_INVALID_TYPE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_MEMORY_EC_INVALID_SPEED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_MEMORY_EC_CORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_MEMORY_EC_UNCORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_MEMORY_EC_SPD_FAIL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_MEMORY_EC_INVALID_SIZE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_MEMORY_EC_MISMATCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_MEMORY_EC_S3_RESUME_FAIL\
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_MEMORY_EC_UPDATE_FAIL \

Platform Intialization Status Codes

Version 1.3 3/29/2013 215

 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CU_MEMORY_EC_NONE_DETECTED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CU_MEMORY_EC_NONE_USEFUL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)

//
// Computing Unit Chipset Subclass Error Code definitions.
//
#define EFI_CHIPSET_EC_BAD_BATTERY \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CHIPSET_EC_DXE_NB_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CHIPSET_EC_DXE_SB_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

6.7.1.4 Extended Data Formats

6.7.1.4.1 Host Processor Subclass

EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA

Summary
This structure provides details about the computing unit voltage error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA Voltage;
 EFI_EXP_BASE10_DATA Threshold;
} EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Voltage

The voltage value at the time of the error.

Threshold

The voltage threshold.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

216 3/29/2013 Version 1.3

Description
This structure provides the voltage at the time of error. It also provides the threshold value indicating
the minimum or maximum voltage that is considered an error. If the voltage is less than the
threshold, the error indicates that the voltage fell below the minimum acceptable value. If the voltage
is greater than the threshold, the error indicates that the voltage rose above the maximum acceptable
value.

Platform Intialization Status Codes

Version 1.3 3/29/2013 217

EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA

Summary
This structure provides details about the microcode update error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Version;

} EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Version

The version of the microcode update from the header.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

218 3/29/2013 Version 1.3

EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA

Summary
This structure provides details about the computing unit timer expiration error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA TimerLimit;

} EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

TimerLimit

The number of seconds that the computing unit timer was configured to expire.

Description
The timer limit provides the timeout value of the timer prior to expiration.

Platform Intialization Status Codes

Version 1.3 3/29/2013 219

EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA

Summary
This structure defines extended data for processor mismatch errors.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Instance;
 UINT16 Attributes;

} EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_ HOST_PROCESSOR_MISMATCH_ERROR_DATA) -
HeaderSize , and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Instance

The unit number of the computing unit that does not match.

Attributes

The attributes describing the failure. See “Related Definitions” below for the type
declarations.

Description
This provides information to indicate which processors mismatch, and how they mismatch. The
status code contains the instance number of the processor that is in error. This structure's Instance
indicates the second processor that does not match. This differentiation allows the consumer to
determine which two processors do not match. The Attributes indicate what mismatch is being
reported. Because Attributes is a bit field, more than one mismatch can be reported with one
error code.

Related Definitions
//***
// EFI_COMPUTING_UNIT_MISMATCH_ATTRIBUTES
//***
//
// All other attributes are reserved for future use and
// must be initialized to 0.
//
#define EFI_COMPUTING_UNIT_MISMATCH_SPEED 0x0001
#define EFI_COMPUTING_UNIT_MISMATCH_FSB_SPEED 0x0002
#define EFI_COMPUTING_UNIT_MISMATCH_FAMILY 0x0004

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

220 3/29/2013 Version 1.3

#define EFI_COMPUTING_UNIT_MISMATCH_MODEL 0x0008
#define EFI_COMPUTING_UNIT_MISMATCH_STEPPING 0x0010
#define EFI_COMPUTING_UNIT_MISMATCH_CACHE_SIZE 0x0020
#define EFI_COMPUTING_UNIT_MISMATCH_OEM1 0x1000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM2 0x2000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM3 0x4000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM4 0x8000

Platform Intialization Status Codes

Version 1.3 3/29/2013 221

EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA

Summary
This structure provides details about the computing unit thermal failure.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA Temperature;
 EFI_EXP_BASE10_DATA Threshold;

} EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA) -
HeaderSize , and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Temperature

The thermal value at the time of the error.

Threshold

The thermal threshold.

Description
This structure provides the temperature at the time of error. It also provides the threshold value
indicating the minimum temperature that is considered an error.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

222 3/29/2013 Version 1.3

EFI_CACHE_INIT_DATA

Summary
This structure provides cache initialization data.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Level;
 EFI_INIT_CACHE_TYPE Type;

} EFI_CACHE_INIT_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_CACHE_INIT_DATA) - HeaderSize , and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Level

The cache level. Starts with 1 for level 1 cache.

Type

The type of cache. Type EFI_INIT_CACHE_TYPE is defined in "Related
Definitions" below.

Description
This structure contains the cache level and type information.

Related Definitions
//***
// EFI_INIT_CACHE_TYPE
//***

// Valid cache types

typedef enum {
 EfiInitCacheDataOnly,
 EfiInitCacheInstrOnly,
 EfiInitCacheBoth,
 EfiInitCacheUnspecified

} EFI_INIT_CACHE_TYPE;

Platform Intialization Status Codes

Version 1.3 3/29/2013 223

EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA

Summary
This structure provides information about the disabled computing unit.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Cause;
 BOOLEAN SoftwareDisabled;

} EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Cause

The reason for disabling the processor. See "Related Definitions" below for defined
values.

SoftwareDisabled

TRUE if the processor is disabled via software means such as not listing it in the ACPI
tables. Such a processor will respond to Interprocessor Interrupts (IPIs). FALSE if the
processor is hardware disabled, which means it is invisible to software and will not
respond to IPIs.

Description
This structure provides details as to why and how the computing unit was disabled. The causes
should cover the typical reasons a processor would be disabled. How the processor was disabled is
important because there are distinct differences between hardware and software disabling.

Related Definitions
//**
// EFI_CPU_STATE_CHANGE_CAUSE
//**
typedef UINT32 EFI_CPU_STATE_CHANGE_CAUSE;

//
// The reason a processor was disabled
//
#define EFI_CPU_CAUSE_INTERNAL_ERROR 0x0001
#define EFI_CPU_CAUSE_THERMAL_ERROR 0x0002

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

224 3/29/2013 Version 1.3

#define EFI_CPU_CAUSE_SELFTEST_FAILURE 0x0004
#define EFI_CPU_CAUSE_PREBOOT_TIMEOUT 0x0008
#define EFI_CPU_CAUSE_FAILED_TO_START 0x0010
#define EFI_CPU_CAUSE_CONFIG_ERROR 0x0020
#define EFI_CPU_CAUSE_USER_SELECTION 0x0080
#define EFI_CPU_CAUSE_BY_ASSOCIATION 0x0100
#define EFI_CPU_CAUSE_UNSPECIFIED 0x8000

Table 82. Decription of EFI_CPU_STATE_CHANGE_CAUSE fields

Memory Subclass

EFI_MEMORY_EXTENDED_ERROR_DATA

Summary
This structure defines extended data describing a memory error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_MEMORY_ERROR_GRANULARITY Granularity;
 EFI_MEMORY_ERROR_OPERATION Operation;
 UINT32 Syndrome;
 EFI_PHYSICAL_ADDRESS Address;
 UINTN Resolution;

} EFI_MEMORY_EXTENDED_ERROR_DATA;

EFI_CPU_CAUSE_INTERNAL_ERROR The processor was disabled because it signaled an internal
error (IERR).

EFI_CPU_CAUSE_THERMAL_ERROR The processor was disabled because of a thermal error.

EFI_CPU_CAUSE_SELFTEST_FAILURE The processor was disabled because it failed BIST.

EFI_CPU_CAUSE_PREBOOT_TIMEOUT The processor started execution, but it timed out during a
particular task and was therefore disabled.

EFI_CPU_CAUSE_FAILED_TO_START The processor was disabled because it failed to start
execution (FRB-3 timeout).

EFI_CPU_CAUSE_CONFIG_ERROR The processor was disabled due to a configuration error.

EFI_CPU_CAUSE_USER_SELECTION The processor state was changed due to user selection.
Applicable to enabling and disabling of processors.

EFI_CPU_CAUSE_BY_ASSOCIATION The processor state was changed due because it shared the
state with another processor and the state of the other
processor was changed.

EFI_CPU_CAUSE_UNSPECIFIED The CPU state was changed due to unspecified reason.
Applicable to enabling and disabling of processors.

Platform Intialization Status Codes

Version 1.3 3/29/2013 225

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_EXTENDED_ERROR_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Granularity

The error granularity type. Type EFI_MEMORY_ERROR_GRANULARITY is defined
in "Related Definitions" below.

Operation

The operation that resulted in the error being detected. Type
EFI_MEMORY_ERROR_OPERATION is defined in "Related Definitions" below.

Syndrome

The error syndrome, vendor-specific ECC syndrome, or CRC data associated with the
error. If unknown, should be initialized to 0.

Address

The physical address of the error. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI Specification.

Resolution

The range, in bytes, within which the error address can be determined.

Description
This structure provides specific details about the memory error that was detected. It provides enough
information so that consumers can identify the exact failure and provides enough information to
enable corrective action if necessary.

Related Definitions
//***
// EFI_MEMORY_ERROR_GRANULARITY
//***
typedef UINT8 EFI_MEMORY_ERROR_GRANULARITY;

//
// Memory Error Granularities
//
#define EFI_MEMORY_ERROR_OTHER 0x01
#define EFI_MEMORY_ERROR_UNKNOWN 0x02
#define EFI_MEMORY_ERROR_DEVICE 0x03
#define EFI_MEMORY_ERROR_PARTITION 0x04

//***
// EFI_MEMORY_ERROR_OPERATION

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

226 3/29/2013 Version 1.3

//***
typedef UINT8 EFI_MEMORY_ERROR_OPERATION;

//
// Memory Error Operations
//
#define EFI_MEMORY_OPERATION_OTHER 0x01
#define EFI_MEMORY_OPERATION_UNKNOWN 0x02
#define EFI_MEMORY_OPERATION_READ 0x03
#define EFI_MEMORY_OPERATION_WRITE 0x04
#define EFI_MEMORY_OPERATION_PARTIAL_WRITE 0x05

Platform Intialization Status Codes

Version 1.3 3/29/2013 227

EFI_STATUS_CODE_DIMM_NUMBER

Summary
This structure defines extended data describing a DIMM.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT16 Array;
 UINT16 Device;

} EFI_STATUS_CODE_DIMM_NUMBER;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_DIMM_NUMBER) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Array

The memory array number.

Device

The device number within that Array.

Description
This extended data provides some context that consumers can use to locate a DIMM within the
overall memory scheme. The Array and Device numbers may indicate a specific DIMM, or they
may be populated with the group definitions in "Related Definitions" below.

Related Definitions
//
// Definitions to describe Group Operations
// Many memory init operations are essentially group
// operations.
//
#define EFI_MULTIPLE_MEMORY_DEVICE_OPERATION 0xfffe
#define EFI_ALL_MEMORY_DEVICE_OPERATION 0xffff
#define EFI_MULTIPLE_MEMORY_ARRAY_OPERATION 0xfffe
#define EFI_ALL_MEMORY_ARRAY_OPERATION 0xffff

Table 83. Definitions to describe Group Operations

EFI_MULTIPLE_MEMORY_DEVICE_OPERATION A definition to describe that the operation is performed
on multiple devices within the array.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

228 3/29/2013 Version 1.3

EFI_ALL_MEMORY_DEVICE_OPERATION A definition to describe that the operation is performed
on all devices within the array.

EFI_MULTIPLE_MEMORY_ARRAY_OPERATION A definition to describe that the operation is performed
on multiple arrays.

EFI_ALL_MEMORY_ARRAY_OPERATION A definition to describe that the operation is performed
on all the arrays

Platform Intialization Status Codes

Version 1.3 3/29/2013 229

EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA

Summary
This structure defines extended data describing memory modules that do not match.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STATUS_CODE_DIMM_NUMBER Instance;

} EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Instance

The instance number of the memory module that does not match. See the definition
for type EFI_STATUS_CODE_DIMM_NUMBER.

Description
This extended data may be used to convey the specifics of memory modules that do not match.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

230 3/29/2013 Version 1.3

EFI_MEMORY_RANGE_EXTENDED_DATA

Summary
This structure defines extended data describing a memory range.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_PHYSICAL_ADDRESS Start;
 EFI_PHYSICAL_ADDRESS Length;

} EFI_MEMORY_RANGE_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_RANGE_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Start

The starting address of the memory range. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI Specification.

Length

The length in bytes of the memory range.

Description
This extended data may be used to convey the specifics of a memory range. Ranges are specified
with a start address and a length.

6.7.2 User-Accessible Peripherals Class
The table below lists the subclasses defined in the User-Accessible Peripheral class. See the
following subsection for their code definitions.

Table 84. Defined Subclasses: User-Accessible Peripheral Class

Subclass Code Name

Unspecified EFI_PERIPHERAL_UNSPECIFIED

Keyboard EFI_PERIPHERAL_KEYBOARD

Mouse EFI_PERIPHERAL_MOUSE

Local console EFI_PERIPHERAL_LOCAL_CONSOLE

Remote console EFI_PERIPHERAL_REMOTE_CONSOLE

Serial port EFI_PERIPHERAL_SERIAL_PORT

Parallel port EFI_PERIPHERAL_PARALLEL_PORT

Fixed media EFI_PERIPHERAL_FIXED_MEDIA

Platform Intialization Status Codes

Version 1.3 3/29/2013 231

6.7.2.1 Subclass Definitions

Summary
Definitions for the User-Accessible Peripheral subclasses. See Subclasses in section 6.7.2 for
descriptions of these subclasses.

Prototype
//
// Peripheral Subclass definitions.
// Values of 12-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_PERIPHERAL_UNSPECIFIED \
 (EFI_PERIPHERAL | 0x00000000)
#define EFI_PERIPHERAL_KEYBOARD \
 (EFI_PERIPHERAL | 0x00010000)
#define EFI_PERIPHERAL_MOUSE \
 (EFI_PERIPHERAL | 0x00020000)
#define EFI_PERIPHERAL_LOCAL_CONSOLE \
 (EFI_PERIPHERAL | 0x00030000)
#define EFI_PERIPHERAL_REMOTE_CONSOLE \
 (EFI_PERIPHERAL | 0x00040000)
#define EFI_PERIPHERAL_SERIAL_PORT \
 (EFI_PERIPHERAL | 0x00050000)
#define EFI_PERIPHERAL_PARALLEL_PORT \
 (EFI_PERIPHERAL | 0x00060000)
#define EFI_PERIPHERAL_FIXED_MEDIA \
 (EFI_PERIPHERAL | 0x00070000)
#define EFI_PERIPHERAL_REMOVABLE_MEDIA \
 (EFI_PERIPHERAL | 0x00080000)
#define EFI_PERIPHERAL_AUDIO_INPUT \
 (EFI_PERIPHERAL | 0x00090000)
#define EFI_PERIPHERAL_AUDIO_OUTPUT \
 (EFI_PERIPHERAL | 0x000A0000)
#define EFI_PERIPHERAL_LCD_DEVICE \
 (EFI_PERIPHERAL | 0x000B0000)

Removable media EFI_PERIPHERAL_REMOVABLE_MEDIA

Audio input EFI_PERIPHERAL_AUDIO_INPUT

Audio output EFI_PERIPHERAL_AUDIO_OUTPUT

LCD device EFI_PERIPHERAL_LCD_DEVICE

Network device EFI_PERIPHERAL_NETWORK

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

232 3/29/2013 Version 1.3

#define EFI_PERIPHERAL_NETWORK \
 (EFI_PERIPHERAL | 0x000C0000)

6.7.2.2 Progress Code Definitions

Summary
Progress code definitions for the User-Accessible Peripheral class and all subclasses. See Progress
Code Operations in section 6.7.2 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• Keyboard

• Mouse

• Serial port

Prototype
//
// Peripheral Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_P_PC_INIT 0x00000000
#define EFI_P_PC_RESET 0x00000001
#define EFI_P_PC_DISABLE 0x00000002
#define EFI_P_PC_PRESENCE_DETECT 0x00000003
#define EFI_P_PC_ENABLE 0x00000004
#define EFI_P_PC_RECONFIG 0x00000005
#define EFI_P_PC_DETECTED 0x00000006

//
// Peripheral Class Unspecified Subclass Progress Code
// definitions.
//

//
// Peripheral Class Keyboard Subclass Progress Code definitions.
//
#define EFI_P_KEYBOARD_PC_CLEAR_BUFFER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD_PC_SELF_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Peripheral Class Mouse Subclass Progress Code definitions.

Platform Intialization Status Codes

Version 1.3 3/29/2013 233

//
#define EFI_P_MOUSE_PC_SELF_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Local Console Subclass Progress Code
// definitions.
//

//
// Peripheral Class Remote Console Subclass Progress Code
// definitions.
//

//
// Peripheral Class Serial Port Subclass Progress Code
// definitions.
//
#define EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Parallel Port Subclass Progress Code
// definitions.
//

//
// Peripheral Class Fixed Media Subclass Progress Code
// definitions.
//

//
// Peripheral Class Removable Media Subclass Progress Code
// definitions.
//

//
// Peripheral Class Audio Input Subclass Progress Code
// definitions.
//

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

234 3/29/2013 Version 1.3

//
// Peripheral Class Audio Output Subclass Progress Code
// definitions.
//

//
// Peripheral Class LCD Device Subclass Progress Code
// definitions.
//

//
// Peripheral Class Network Subclass Progress Code definitions.
//

6.7.2.3 Error Code Definitions

Summary
Error code definitions for the User-Accessible Peripheral class and all subclasses. See Error Code
Operations in section 6.7.2 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• Keyboard

• Mouse

Prototype
//
// Peripheral Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_P_EC_NON_SPECIFIC 0x00000000
#define EFI_P_EC_DISABLED 0x00000001
#define EFI_P_EC_NOT_SUPPORTED 0x00000002
#define EFI_P_EC_NOT_DETECTED 0x00000003
#define EFI_P_EC_NOT_CONFIGURED 0x00000004
#define EFI_P_EC_INTERFACE_ERROR 0x00000005
#define EFI_P_EC_CONTROLLER_ERROR 0x00000006
#define EFI_P_EC_INPUT_ERROR 0x00000007
#define EFI_P_EC_OUTPUT_ERROR 0x00000008
#define EFI_P_EC_RESOURCE_CONFLICT \
 0x00000009

Platform Intialization Status Codes

Version 1.3 3/29/2013 235

//
// Peripheral Class Unspecified Subclass Error Code definitions.
//

//
// Peripheral Class Keyboard Subclass Error Code definitions.
//
#define EFI_P_KEYBOARD_EC_LOCKED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD_EC_STUCK_KEY \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Peripheral Class Mouse Subclass Error Code definitions.
//
#define EFI_P_MOUSE_EC_LOCKED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Local Console Subclass Error Code
// definitions.
//

//
// Peripheral Class Remote Console Subclass Error Code
// definitions.
//

//
// Peripheral Class Serial Port Subclass Error Code definitions.
//

//
// Peripheral Class Parallel Port Subclass Error Code
// definitions.
//

//
// Peripheral Class Fixed Media Subclass Error Code definitions.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

236 3/29/2013 Version 1.3

//

//
// Peripheral Class Removable Media Subclass Error Code
// definitions.
//

//
// Peripheral Class Audio Input Subclass Error Code definitions.
//

//
// Peripheral Class Audio Output Subclass Error Code
// definitions.
//

//
// Peripheral Class LCD Device Subclass Error Code definitions.
//

//
// Peripheral Class Network Subclass Error Code definitions.
//

6.7.2.4 Extended Data Formats
The User-Accessible Peripheral class uses the following extended error data definitions:

• EFI_DEVICE_PATH_EXTENDED_DATA

• EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

See section 6.6.4 for definitions.

6.7.3 I/O Bus Class
The table below lists the subclasses defined in the I/O Bus class. See Subclass Definitions for their
code definitions.

Table 85. Defined Subclasses: I/O Bus Class

Subclass Code Name

Unspecified EFI_IO_BUS_UNSPECIFIED

PCI EFI_IO_BUS_PCI

USB EFI_IO_BUS_USB

Platform Intialization Status Codes

Version 1.3 3/29/2013 237

6.7.3.1 Subclass Definitions

Summary
Definitions for the I/O Bus subclasses. See Subclasses in section 6.7.3 for descriptions of these
subclasses.

Prototype
//
// IO Bus Subclass definitions.
// Values of 14-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_IO_BUS_UNSPECIFIED \
 (EFI_IO_BUS | 0x00000000)
#define EFI_IO_BUS_PCI \
 (EFI_IO_BUS | 0x00010000)
#define EFI_IO_BUS_USB \
 (EFI_IO_BUS | 0x00020000)
#define EFI_IO_BUS_IBA \
 (EFI_IO_BUS | 0x00030000)
#define EFI_IO_BUS_AGP \
 (EFI_IO_BUS | 0x00040000)
#define EFI_IO_BUS_PC_CARD \
 (EFI_IO_BUS | 0x00050000)
#define EFI_IO_BUS_LPC \
 (EFI_IO_BUS | 0x00060000)
#define EFI_IO_BUS_SCSI \
 (EFI_IO_BUS | 0x00070000)
#define EFI_IO_BUS_ATA_ATAPI \
 (EFI_IO_BUS | 0x00080000)

InfiniBand* architecture EFI_IO_BUS_IBA

AGP EFI_IO_BUS_AGP

PC card EFI_IO_BUS_PC_CARD

Low pin count (LPC) EFI_IO_BUS_LPC

SCSI EFI_IO_BUS_SCSI

ATA/ATAPI/SATA EFI_IO_BUS_ATA_ATAPI

Fibre Channel EFI_IO_BUS_FC

IP network EFI_IO_BUS_IP_NETWORK

SMBus EFI_IO_BUS_SMBUS

I2C EFI_IO_BUS_I2C

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

238 3/29/2013 Version 1.3

#define EFI_IO_BUS_FC \
 (EFI_IO_BUS | 0x00090000)
#define EFI_IO_BUS_IP_NETWORK \
 (EFI_IO_BUS | 0x000A0000)
#define EFI_IO_BUS_SMBUS \
 (EFI_IO_BUS | 0x000B0000)
#define EFI_IO_BUS_I2C \
 (EFI_IO_BUS | 0x000C0000)

6.7.3.2 Progress Code Definitions

Summary
Progress code definitions for the I/O Bus class and all subclasses. See Progress Code Operations in
section 6.7.2 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• PCI

Prototype
//
// IO Bus Class Progress Code definitions.
// These are shared by all subclasses.
//
typedef struct _EFI_SIO_PROTOCOL EFI_SIO_PROTOCOL;

#define EFI_IOB_PC_INIT 0x00000000
#define EFI_IOB_PC_RESET 0x00000001
#define EFI_IOB_PC_DISABLE 0x00000002
#define EFI_IOB_PC_DETECT 0x00000003
#define EFI_IOB_PC_ENABLE 0x00000004
#define EFI_IOB_PC_RECONFIG 0x00000005
#define EFI_IOB_PC_HOTPLUG 0x00000006

//
// IO Bus Class Unspecified Subclass Progress Code definitions.
//

//
// IO Bus Class PCI Subclass Progress Code definitions.
//
#define EFI_IOB_PCI_BUS_ENUM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_PCI_RES_ALLOC \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

Platform Intialization Status Codes

Version 1.3 3/29/2013 239

#defineEFI_IOB_PCI_HPC_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// IO Bus Class USB Subclass Progress Code definitions.
//

//
// IO Bus Class IBA Subclass Progress Code definitions.
//

//
// IO Bus Class AGP Subclass Progress Code definitions.
//

//
// IO Bus Class PC Card Subclass Progress Code definitions.
//

//
// IO Bus Class LPC Subclass Progress Code definitions.
//

//
// IO Bus Class SCSI Subclass Progress Code definitions.
//

//
// IO Bus Class ATA/ATAPI Subclass Progress Code definitions.
//
#define EFI_IOB_ATA_BUS_SMART_ENABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_ATA_BUS_SMART_DISABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_IOB_ATA_BUS_SMART_OVERTHRESHOLD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_IOB_ATA_BUS_SMART_UNDERTHRESHOLD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
//
// IO Bus Class FC Subclass Progress Code definitions.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

240 3/29/2013 Version 1.3

//

//
// IO Bus Class IP Network Subclass Progress Code definitions.
//

//
// IO Bus Class SMBUS Subclass Progress Code definitions.
//

//
// IO Bus Class I2C Subclass Progress Code definitions.
//

6.7.3.3 Error Code Definitions

Summary
Error code definitions for the I/O Bus class and all subclasses. See Error Code Operations in
section 6.7.2 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• PCI

Prototype
// IO Bus Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_IOB_EC_NON_SPECIFIC 0x00000000
#define EFI_IOB_EC_DISABLED 0x00000001
#define EFI_IOB_EC_NOT_SUPPORTED 0x00000002
#define EFI_IOB_EC_NOT_DETECTED 0x00000003
#define EFI_IOB_EC_NOT_CONFIGURED 0x00000004
#define EFI_IOB_EC_INTERFACE_ERROR 0x00000005
#define EFI_IOB_EC_CONTROLLER_ERROR 0x00000006
#define EFI_IOB_EC_READ_ERROR 0x00000007
#define EFI_IOB_EC_WRITE_ERROR 0x00000008
#define EFI_IOB_EC_RESOURCE_CONFLICT 0x00000009

//
// IO Bus Class Unspecified Subclass Error Code definitions.
//

Platform Intialization Status Codes

Version 1.3 3/29/2013 241

//
// IO Bus Class PCI Subclass Error Code definitions.
//
#define EFI_IOB_PCI_EC_PERR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_PCI_EC_SERR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// IO Bus Class USB Subclass Error Code definitions.
//

//
// IO Bus Class IBA Subclass Error Code definitions.
//

//
// IO Bus Class AGP Subclass Error Code definitions.
//

//
// IO Bus Class PC Card Subclass Error Code definitions.
//

//
// IO Bus Class LPC Subclass Error Code definitions.
//

//
// IO Bus Class SCSI Subclass Error Code definitions.
//

//
// IO Bus Class ATA/ATAPI Subclass Error Code definitions.
//
#define EFI_IOB_ATA_BUS_SMART_NOTSUPPORTED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_ATA_BUS_SMART_DISABLED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

242 3/29/2013 Version 1.3

//
// IO Bus Class FC Subclass Error Code definitions.
//

//
// IO Bus Class IP Network Subclass Error Code definitions.
//

//
// IO Bus Class SMBUS Subclass Error Code definitions.
//

//
// IO Bus Class I2C Subclass Error Code definitions.
//

6.7.3.4 Extended Data Formats
The I/O Bus class uses the following extended data definitions:

• EFI_DEVICE_PATH_EXTENDED_DATA

• EFI_DEVICE_HANDLE_EXTENDED_DATA

• EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

See section 6.6.4 for definitions.

6.7.4 Software Classes
The table below lists the subclasses defined in the Host Software class. See Subclass Definitions for
their code definitions.

Table 86. Defined Subclasses: Host Software Class

Subclass Code Name

Unspecified EFI_SOFTWARE_UNSPECIFIED

Security (SEC) EFI_SOFTWARE_SEC

PEI Foundation EFI_SOFTWARE_PEI_CORE

PEI module EFI_SOFTWARE_PEI_MODULE

DXE Foundation EFI_SOFTWARE_DXE_CORE

DXE Boot Service driver EFI_SOFTWARE_DXE_BS_DRIVER

DXE Runtime Service driver EFI_SOFTWARE_DXE_RT_DRIVER

SMM driver EFI_SOFTWARE_SMM_DRIVER

EFI application EFI_SOFTWARE_EFI_APPLICATION

Platform Intialization Status Codes

Version 1.3 3/29/2013 243

6.7.4.1 Subclass Definitions

Summary
Definitions for the Host Software subclasses. See Subclasses in section 6.5.1 for descriptions of
these subclasses.

Prototype
//
// Software Subclass definitions.
// Values of 14-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_SOFTWARE_UNSPECIFIED \
 (EFI_SOFTWARE | 0x00000000)
#define EFI_SOFTWARE_SEC \
 (EFI_SOFTWARE | 0x00010000)
#define EFI_SOFTWARE_PEI_CORE \
 (EFI_SOFTWARE | 0x00020000)
#define EFI_SOFTWARE_PEI_MODULE \
 (EFI_SOFTWARE | 0x00030000)
#define EFI_SOFTWARE_DXE_CORE \
 (EFI_SOFTWARE | 0x00040000)
#define EFI_SOFTWARE_DXE_BS_DRIVER \
 (EFI_SOFTWARE | 0x00050000)
#define EFI_SOFTWARE_DXE_RT_DRIVER \
 (EFI_SOFTWARE | 0x00060000)
#define EFI_SOFTWARE_SMM_DRIVER \
 (EFI_SOFTWARE | 0x00070000)
#define EFI_SOFTWARE_EFI_APPLICATION \

OS loader EFI_SOFTWARE_EFI_OS_LOADER

Runtime (RT) EFI_SOFTWARE_EFI_RT

EBC exception EFI_SOFTWARE_EBC_EXCEPTION

IA-32 exception EFI_SOFTWARE_IA32_EXCEPTION

Itanium® processor family exception EFI_SOFTWARE_IPF_EXCEPTION

PEI Services EFI_SOFTWARE_PEI_SERVICE

EFI Boot Service EFI_SOFTWARE_EFI_BOOT_SERVICE

EFI Runtime Service EFI_SOFTWARE_EFI_RUNTIME_SERVICE

DXE Service EFI_SOFTWARE_EFI_DXE_SERVICE

0x13–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

x64 software exception EFI_SOFTWARE_X64_EXCEPTION

ARM software exception EFI_SOFTWARE_ARM_EXCEPTION

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

244 3/29/2013 Version 1.3

 (EFI_SOFTWARE | 0x00080000)
#define EFI_SOFTWARE_EFI_OS_LOADER\
 (EFI_SOFTWARE | 0x00090000)
#define EFI_SOFTWARE_RT \
 (EFI_SOFTWARE | 0x000A0000)
#define EFI_SOFTWARE_AL \
 (EFI_SOFTWARE | 0x000B0000)
#define EFI_SOFTWARE_EBC_EXCEPTION \
 (EFI_SOFTWARE | 0x000C0000)
#define EFI_SOFTWARE_IA32_EXCEPTION \
 (EFI_SOFTWARE | 0x000D0000)
#define EFI_SOFTWARE_IPF_EXCEPTION \
 (EFI_SOFTWARE | 0x000E0000)
#define EFI_SOFTWARE_PEI_SERVICE \
 (EFI_SOFTWARE | 0x000F0000
#define EFI_SOFTWARE_EFI_BOOT_SERVICE \
 (EFI_SOFTWARE | 0x00100000)
#define EFI_SOFTWARE_EFI_RUNTIME_SERVICE \
 (EFI_SOFTWARE | 0x00110000)
#define EFI_SOFTWARE_EFI_DXE_SERVICE \
 (EFI_SOFTWARE | 0x00120000)
#define EFI_SOFTWARE_X64_EXCEPTION \
 (EFI_SOFTWARE | 0x00130000)
#define EFI_SOFTWARE_ARM_EXCEPTION \
 (EFI_SOFTWARE | 0x00140000)

6.7.4.2 Progress Code Definitions

Summary
Progress code definitions for the Host Software class and all subclasses. See Progress Code
Operations in section 6.5.1 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• SEC

• PEI Foundation

• PEI Module

• DXE Foundation

• DXE Boot Service Driver

• Runtime (RT)

• PEI Services

• Boot Services

• Runtime Services

Platform Intialization Status Codes

Version 1.3 3/29/2013 245

• DXE Services

Prototype
//
// Software Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_SW_PC_INIT \
 0x00000000
#define EFI_SW_PC_LOAD \
 0x00000001
#define EFI_SW_PC_INIT_BEGIN \
 0x00000002
#define EFI_SW_PC_INIT_END \
 0x00000003
#define EFI_SW_PC_AUTHENTICATE_BEGIN \
 0x00000004
#define EFI_SW_PC_AUTHENTICATE_END \
 0x00000005
#define EFI_SW_PC_INPUT_WAIT \
 0x00000006
#define EFI_SW_PC_USER_SETUP \
 0x00000007

//
// Software Class Unspecified Subclass Progress Code
// definitions.
//

//
// Software Class SEC Subclass Progress Code definitions.
//
#define EFI_SW_SEC_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_SEC_PC_HANDOFF_TO_NEXT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class PEI Foundation Subclass Progress Code
// definitions.
//
#define EFI_SW_PEI_CORE_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT \

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

246 3/29/2013 Version 1.3

 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_CORE_PC_RETURN_TO_LAST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Software Class PEI Module Subclass Progress Code definitions.
//
#define EFI_SW_PEI_PC_RECOVERY_BEGIN\
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_PC_CAPSULE_LOAD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_PC_CAPSULE_START \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_PC_RECOVERY_USER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PEI_PC_RECOVERY_AUTO \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_PEI_PC_S3_BOOT_SCRIPT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_PEI_PC_OS_WAKE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)

//
// Software Class DXE Foundation Subclass Progress Code
// definitions.
//
#define EFI_SW_DXE_CORE_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_CORE_PC_HANDOFF_TO_NEXT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_CORE_PC_RETURN_TO_LAST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_CORE_PC_START_DRIVER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_CORE_PC_ARCH_READY \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE BS Driver Subclass Progress Code
// definitions.
//
#define EFI_SW_DXE_BS_PC_LEGACY_OPROM_INIT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_BS_PC_READY_TO_BOOT_EVENT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_BS_PC_LEGACY_BOOT_EVENT\

Platform Intialization Status Codes

Version 1.3 3/29/2013 247

 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_BS_PC_EXIT_BOOT_SERVICES_EVENT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_BS_PC_VIRTUAL_ADDRESS_CHANGE_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE RT Driver Subclass Progress Code
// definitions.
//

//
// Software Class SMM Driver Subclass Progress Code definitions.
//

//
// Software Class EFI Application Subclass Progress Code
// definitions.
//

//
// Software Class EFI OS Loader Subclass Progress Code
// definitions.
//

//
// Software Class EFI RT Subclass Progress Code definitions.
//
#define EFI_SW_RT_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RT_PC_HANDOFF_TO_NEXT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RT_PC_RETURN_TO_LAST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Software Class X64 Exception Subclass Progress Code
// definitions.
//

//
// Software Class ARM Exception Subclass Progress Code

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

248 3/29/2013 Version 1.3

// definitions.

//
// Software Class EBC Exception Subclass Progress Code
// definitions.
//

//
// Software Class IA32 Exception Subclass Progress Code
// definitions.
//

//
// Software Class IPF Exception Subclass Progress Code
// definitions.
//

//
// Software Class PEI Services Subclass Progress Code
definitions.
//

#define EFI_SW_PS_PC_INSTALL_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PS_PC_REINSTALL_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PS_PC_LOCATE_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_PS_PC_NOTIFY_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PS_PC_GET_BOOT_MODE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_PS_PC_SET_BOOT_MODE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_PS_PC_GET_HOB_LIST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_PS_PC_CREATE_HOB \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_PS_PC_FFS_FIND_NEXT_VOLUME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_PS_PC_FFS_FIND_NEXT_FILE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)

Platform Intialization Status Codes

Version 1.3 3/29/2013 249

#define EFI_SW_PS_PC_FFS_FIND_SECTION_DATA\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_PS_PC_INSTALL_PEI_MEMORY \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_PS_PC_ALLOCATE_PAGES \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_PS_PC_ALLOCATE_POOL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_PS_PC_COPY_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_PS_PC_SET_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_PS_PC_RESET_SYSTEM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000010)
#define EFI_SW_PS_PC_FFS_FIND_FILE_BY_NAME \
 (EFI_SUBCLASS_SPECIFIC|0x00000013)
#define EFI_SW_PS_PC_FFS_GET_FILE_INFO \
 (EFI_SUBCLASS_SPECIFIC|0x00000014)
#define EFI_SW_PS_PC_FFS_GET_VOLUME_INFO \
 (EFI_SUBCLASS_SPECIFIC|0x00000015)
#define EFI_SW_PS_PC_FFS_REGISTER_FOR_SHADOW \
 (EFI_SUBCLASS_SPECIFIC|0x00000016)
//
// Software Class EFI Boot Services Subclass Progress Code
// definitions.
//
#define EFI_SW_BS_PC_RAISE_TPL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_BS_PC_RESTORE_TPL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_BS_PC_ALLOCATE_PAGES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_BS_PC_FREE_PAGES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_BS_PC_GET_MEMORY_MAP \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_BS_PC_ALLOCATE_POOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_BS_PC_FREE_POOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_BS_PC_CREATE_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_BS_PC_SET_TIMER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_BS_PC_WAIT_FOR_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_BS_PC_SIGNAL_EVENT \

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

250 3/29/2013 Version 1.3

 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_BS_PC_CLOSE_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_BS_PC_CHECK_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_BS_PC_INSTALL_PROTOCOL_INTERFACE\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_BS_PC_REINSTALL_PROTOCOL_INTERFACE\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_BS_PC_UNINSTALL_PROTOCOL_INTERFACE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_BS_PC_HANDLE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000010)
#define EFI_SW_BS_PC_PC_HANDLE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000011)
#define EFI_SW_BS_PC_REGISTER_PROTOCOL_NOTIFY\
 (EFI_SUBCLASS_SPECIFIC | 0x00000012)
#define EFI_SW_BS_PC_LOCATE_HANDLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000013)
#define EFI_SW_BS_PC_INSTALL_CONFIGURATION_TABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000014)
#define EFI_SW_BS_PC_LOAD_IMAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000015)
#define EFI_SW_BS_PC_START_IMAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000016)
#define EFI_SW_BS_PC_EXIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000017)
#define EFI_SW_BS_PC_UNLOAD_IMAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000018)
#define EFI_SW_BS_PC_EXIT_BOOT_SERVICES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000019)
#define EFI_SW_BS_PC_GET_NEXT_MONOTONIC_COUNT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001A)
#define EFI_SW_BS_PC_STALL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001B)
#define EFI_SW_BS_PC_SET_WATCHDOG_TIMER \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001C)
#define EFI_SW_BS_PC_CONNECT_CONTROLLER \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001D)
#define EFI_SW_BS_PC_DISCONNECT_CONTROLLER\
 (EFI_SUBCLASS_SPECIFIC | 0x0000001E)
#define EFI_SW_BS_PC_OPEN_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001F)
#define EFI_SW_BS_PC_CLOSE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000020)
#define EFI_SW_BS_PC_OPEN_PROTOCOL_INFORMATION\
 (EFI_SUBCLASS_SPECIFIC | 0x00000021)

Platform Intialization Status Codes

Version 1.3 3/29/2013 251

#define EFI_SW_BS_PC_PROTOCOLS_PER_HANDLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000022)
#define EFI_SW_BS_PC_LOCATE_HANDLE_BUFFER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000023)
#define EFI_SW_BS_PC_LOCATE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000024)
#define EFI_SW_BS_PC_INSTALL_MULTIPLE_INTERFACES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000025)
#define EFI_SW_BS_PC_UNINSTALL_MULTIPLE_INTERFACES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000026)
#define EFI_SW_BS_PC_CALCULATE_CRC_32 \
 (EFI_SUBCLASS_SPECIFIC | 0x00000027)
#define EFI_SW_BS_PC_COPY_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000028)
#define EFI_SW_BS_PC_SET_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000029)
#define EFI_SW_BS_PC_CREATE_EVENT_EX \
 (EFI_SUBCLASS_SPECIFIC|0x0000002a)

//
// Software Class EFI Runtime Services Subclass Progress Code
// definitions.
//
#define EFI_SW_RS_PC_GET_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RS_PC_SET_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RS_PC_GET_WAKEUP_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_RS_PC_SET_WAKEUP_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_RS_PC_SET_VIRTUAL_ADDRESS_MAP\
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_RS_PC_CONVERT_POINTER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_RS_PC_GET_VARIABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_RS_PC_GET_NEXT_VARIABLE_NAME\
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_RS_PC_SET_VARIABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_RS_PC_GET_NEXT_HIGH_MONOTONIC_COUNT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_RS_PC_RESET_SYSTEM \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_RS_PC_UPDATE_CAPSULE \

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

252 3/29/2013 Version 1.3

 (EFI_SUBCLASS_SPECIFIC| 0x0000000B)
#define EFI_SW_RS_PC_QUERY_CAPSULE_CAPABILITIES \
 (EFI_SUBCLASS_SPECIFIC| 0x0000000C)
#define EFI_SW_RS_PC_QUERY_VARIABLE_INFO \
 (EFI_SUBCLASS_SPECIFIC| 0x0000000D)

//
// Software Class EFI DXE Services Subclass Progress Code
// definitions
//
#define EFI_SW_DS_PC_ADD_MEMORY_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DS_PC_ALLOCATE_MEMORY_SPACE\
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DS_PC_FREE_MEMORY_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DS_PC_REMOVE_MEMORY_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DS_PC_GET_MEMORY_SPACE_DESCRIPTOR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_DS_PC_SET_MEMORY_SPACE_ATTRIBUTES\
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_DS_PC_GET_MEMORY_SPACE_MAP \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_DS_PC_ADD_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_DS_PC_ALLOCATE_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_DS_PC_FREE_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_DS_PC_REMOVE_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_DS_PC_GET_IO_SPACE_DESCRIPTOR \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_DS_PC_GET_IO_SPACE_MAP \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_DS_PC_DISPATCH\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_DS_PC_SCHEDULE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_DS_PC_TRUST \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_DS_PC_PROCESS_FIRMWARE_VOLUME\
 (EFI_SUBCLASS_SPECIFIC | 0x00000010)

Platform Intialization Status Codes

Version 1.3 3/29/2013 253

6.7.4.3 Error Code Definitions

Summary
Error code definitions for the Host Software class and all subclasses. See Error Code Operations in
section 6.5.1 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• PEI Foundation

• PEIM

• DxeBootServiceDriver

• EFI Byte Code (EBC) exception

• IA-32 exception

• Itanium® processor family exception

Prototype
//
// Software Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_SW_EC_NON_SPECIFIC 0x00000000
#define EFI_SW_EC_LOAD_ERROR 0x00000001
#define EFI_SW_EC_INVALID_PARAMETER 0x00000002
#define EFI_SW_EC_UNSUPPORTED 0x00000003
#define EFI_SW_EC_INVALID_BUFFER 0x00000004
#define EFI_SW_EC_OUT_OF_RESOURCES 0x00000005
#define EFI_SW_EC_ABORTED 0x00000006
#define EFI_SW_EC_ILLEGAL_SOFTWARE_STATE 0x00000007
#define EFI_SW_EC_ILLEGAL_HARDWARE_STATE 0x00000008
#define EFI_SW_EC_START_ERROR 0x00000009
#define EFI_SW_EC_BAD_DATE_TIME 0x0000000A
#define EFI_SW_EC_CFG_INVALID 0x0000000B
#define EFI_SW_EC_CFG_CLR_REQUEST 0x0000000C
#define EFI_SW_EC_CFG_DEFAULT 0x0000000D
#define EFI_SW_EC_PWD_INVALID 0x0000000E
#define EFI_SW_EC_PWD_CLR_REQUEST 0x0000000F
#define EFI_SW_EC_PWD_CLEARED 0x00000010
#define EFI_SW_EC_EVENT_LOG_FULL 0x00000011

//
// Software Class Unspecified Subclass Error Code definitions.
//

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

254 3/29/2013 Version 1.3

//
// Software Class SEC Subclass Error Code definitions.
//

//
// Software Class PEI Foundation Subclass Error Code
// definitions.
//
#define EFI_SW_PEI_CORE_EC_DXE_CORRUPT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_CORE_EC_DXEIPL_NOT_FOUND \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_CORE_EC_MEMORY_NOT_INSTALLED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Software Class PEI Module Subclass Error Code definitions.
//
#define EFI_SW_PEI_EC_NO_RECOVERY_CAPSULE\
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_EC_INVALID_CAPSULE_DESCRIPTOR\
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_EC_S3_RESUME_PPI_NOT_FOUND \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_PEI_EC_S3_BOOT_SCRIPT_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PEI_EC_S3_OS_WAKE_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_PEI_EC_S3_RESUME_FAILED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_PEI_EC_RECOVERY_PPI_NOT_FOUND \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_PEI_EC_RECOVERY_FAILED (\
 EFI_SUBCLASS_SPECIFIC | 0x00000007)

//
// Software Class DXE Foundation Subclass Error Code
// definitions.
//
#define EFI_SW_DXE_CORE_EC_NO_ARCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Software Class DXE Boot Service Driver Subclass Error Code
// definitions.
//

Platform Intialization Status Codes

Version 1.3 3/29/2013 255

#define EFI_SW_DXE_BS_EC_LEGACY_OPROM_NO_SPACE\
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_BS_EC_INVALID_PASSWORD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_BS_EC_BOOT_OPTION_LOAD_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_BS_EC_BOOT_OPTION_FAILED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_BS_EC_INVALID_IDE_PASSWORD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE Runtime Service Driver Subclass Error Code
// definitions.
//

//
// Software Class SMM Driver Subclass Error Code definitions.
//

//
// Software Class EFI Application Subclass Error Code
// definitions.
//

//
// Software Class EFI OS Loader Subclass Error Code definitions.
//

//
// Software Class EFI RT Subclass Error Code definitions.
//

//
// Software Class EBC Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI specification.
//
#define EFI_SW_EC_EBC_UNDEFINED \
 0x00000000
#define EFI_SW_EC_EBC_DIVIDE_ERROR \
 EXCEPT_EBC_DIVIDE_ERROR

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

256 3/29/2013 Version 1.3

#define EFI_SW_EC_EBC_DEBUG \
 EXCEPT_EBC_DEBUG
#define EFI_SW_EC_EBC_DEBUG \
 EXCEPT_EBC_DEBUG
#define EFI_SW_EC_EBC_BREAKPOINT \
 EXCEPT_EBC_BREAKPOINT
#define EFI_SW_EC_EBC_OVERFLOW \
 EXCEPT_EBC_OVERFLOW
#define EFI_SW_EC_EBC_INVALID_OPCODE \
 EXCEPT_EBC_INVALID_OPCODE
#define EFI_SW_EC_EBC_STACK_FAULT \
 EXCEPT_EBC_STACK_FAULT
#define EFI_SW_EC_EBC_ALIGNMENT_CHECK \
 EXCEPT_EBC_ALIGNMENT_CHECK
#define EFI_SW_EC_EBC_INSTRUCTION_ENCODING \
 EXCEPT_EBC_INSTRUCTION_ENCODING
#define EFI_SW_EC_EBC_BAD_BREAK \
 EXCEPT_EBC_BAD_BREAK
#define EFI_SW_EC_EBC_STEP EXCEPT_EBC_STEP

//
// Software Class IA32 Exception Subclass Error Code
// definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI specification.
//
#define EFI_SW_EC_IA32_DIVIDE_ERROR \
 EXCEPT_IA32_DIVIDE_ERROR
#define EFI_SW_EC_IA32_DEBUG \
 EXCEPT_IA32_DEBUG
#define EFI_SW_EC_IA32_NMI EXCEPT_IA32_NMI
#define EFI_SW_EC_IA32_BREAKPOINT \
 EXCEPT_IA32_BREAKPOINT
#define EFI_SW_EC_IA32_OVERFLOW \
 EXCEPT_IA32_OVERFLOW
#define EFI_SW_EC_IA32_BOUND \
 EXCEPT_IA32_BOUND
#define EFI_SW_EC_IA32_INVALID_OPCODE \
 EXCEPT_IA32_INVALID_OPCODE
#define EFI_SW_EC_IA32_DOUBLE_FAULT \
 EXCEPT_IA32_DOUBLE_FAULT
#define EFI_SW_EC_IA32_INVALID_TSS \
 EXCEPT_IA32_INVALID_TSS
#define EFI_SW_EC_IA32_SEG_NOT_PRESENT \
 EXCEPT_IA32_SEG_NOT_PRESENT
#define EFI_SW_EC_IA32_STACK_FAULT \

Platform Intialization Status Codes

Version 1.3 3/29/2013 257

 EXCEPT_IA32_STACK_FAULT
#define EFI_SW_EC_IA32_GP_FAULT \
 EXCEPT_IA32_GP_FAULT
#define EFI_SW_EC_IA32_PAGE_FAULT \
 EXCEPT_IA32_PAGE_FAULT
#define EFI_SW_EC_IA32_FP_ERROR \
 EXCEPT_IA32_FP_ERROR
#define EFI_SW_EC_IA32_ALIGNMENT_CHECK \
 EXCEPT_IA32_ALIGNMENT_CHECK
#define EFI_SW_EC_IA32_MACHINE_CHECK \
 EXCEPT_IA32_MACHINE_CHECK
#define EFI_SW_EC_IA32_SIMD EXCEPT_IA32_SIMD

//
// Software Class IPF Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI specification.
//
#define EFI_SW_EC_IPF_ALT_DTLB \
 EXCEPT_IPF_ALT_DTLB
#define EFI_SW_EC_IPF_DNESTED_TLB \
 EXCEPT_IPF_DNESTED_TLB
#define EFI_SW_EC_IPF_BREAKPOINT \
 EXCEPT_IPF_BREAKPOINT
#define EFI_SW_EC_IPF_EXTERNAL_INTERRUPT \
 EXCEPT_IPF_EXTERNAL_INTERRUPT
#define EFI_SW_EC_IPF_GEN_EXCEPT \
 EXCEPT_IPF_GEN_EXCEPT
#define EFI_SW_EC_IPF_NAT_CONSUMPTION \
 EXCEPT_IPF_NAT_CONSUMPTION
#define EFI_SW_EC_IPF_DEBUG_EXCEPT \
 EXCEPT_IPF_DEBUG_EXCEPT
#define EFI_SW_EC_IPF_UNALIGNED_ACCESS \
 EXCEPT_IPF_UNALIGNED_ACCESS
#define EFI_SW_EC_IPF_FP_FAULT \
 EXCEPT_IPF_FP_FAULT
#define EFI_SW_EC_IPF_FP_TRAP \
 EXCEPT_IPF_FP_TRAP
#define EFI_SW_EC_IPF_TAKEN_BRANCH \
 EXCEPT_IPF_TAKEN_BRANCH
#define EFI_SW_EC_IPF_SINGLE_STEP \
 EXCEPT_IPF_SINGLE_STEP

//
// Software Class PEI Service Subclass Error Code definitions.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

258 3/29/2013 Version 1.3

//
#define EFI_SW_PS_EC_RESET_NOT_AVAILABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PS_EC_MEMORY_INSTALLED_TWICE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class EFI Boot Service Subclass Error Code
// definitions.
//

//
// Software Class EFI Runtime Service Subclass Error Code \
// definitions.

//
//
// Software Class EFI DXE Service Subclass Error Code \
// definitions.
//

#define EFI_SW_DXE_BS_PC_BEGIN_CONNECTING_DRIVERS \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_DXE_BS_PC_VERIFYING_PASSWORD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)

//
// Software Class DXE RT Driver Subclass Progress Code
// definitions.
//
#define EFI_SW_DXE_RT_PC_S0 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_RT_PC_S1 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_RT_PC_S2 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_RT_PC_S3 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_RT_PC_S4 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_DXE_RT_PC_S5 (EFI_SUBCLASS_SPECIFIC | 0x00000005)

//
// Software Class X64 Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI
// specification.
//

Platform Intialization Status Codes

Version 1.3 3/29/2013 259

#define EFI_SW_EC_X64_DIVIDE_ERROR EXCEPT_X64_DIVIDE_ERROR
#define EFI_SW_EC_X64_DEBUG EXCEPT_X64_DEBUG
#define EFI_SW_EC_X64_NMI EXCEPT_X64_NMI
#define EFI_SW_EC_X64_BREAKPOINT EXCEPT_X64_BREAKPOINT
#define EFI_SW_EC_X64_OVERFLOW EXCEPT_X64_OVERFLOW
#define EFI_SW_EC_X64_BOUND EXCEPT_X64_BOUND
#define EFI_SW_EC_X64_INVALID_OPCODE EXCEPT_X64_INVALID_OPCODE
#define EFI_SW_EC_X64_DOUBLE_FAULT EXCEPT_X64_DOUBLE_FAULT
#define EFI_SW_EC_X64_INVALID_TSS EXCEPT_X64_INVALID_TSS
#define EFI_SW_EC_X64_SEG_NOT_PRESENT \
 EXCEPT_X64_SEG_NOT_PRESENT
#define EFI_SW_EC_X64_STACK_FAULT EXCEPT_X64_STACK_FAULT
#define EFI_SW_EC_X64_GP_FAULT EXCEPT_X64_GP_FAULT
#define EFI_SW_EC_X64_PAGE_FAULT EXCEPT_X64_PAGE_FAULT
#define EFI_SW_EC_X64_FP_ERROR EXCEPT_X64_FP_ERROR
#define EFI_SW_EC_X64_ALIGNMENT_CHECK \
 EXCEPT_X64_ALIGNMENT_CHECK
#define EFI_SW_EC_X64_MACHINE_CHECK EXCEPT_X64_MACHINE_CHECK
#define EFI_SW_EC_X64_SIMD EXCEPT_X64_SIMD

//
// Software Class ARM Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI
// specification.
//
#define EFI_SW_EC_ARM_RESET EXCEPT_ARM_RESET
#define EFI_SW_EC_ARM_UNDEFINED_INSTRUCTION \
 EXCEPT_ARM_UNDEFINED_INSTRUCTION
#define EFI_SW_EC_ARM_SOFTWARE_INTERRUPT \
 EXCEPT_ARM_SOFTWARE_INTERRUPT
#define EFI_SW_EC_ARM_PREFETCH_ABORT \
 EXCEPT_ARM_PREFETCH_ABORT
#define EFI_SW_EC_ARM_DATA_ABORT EXCEPT_ARM_DATA_ABORT
#define EFI_SW_EC_ARM_RESERVED EXCEPT_ARM_RESERVED
#define EFI_SW_EC_ARM_IRQ EXCEPT_ARM_IRQ
#define EFI_SW_EC_ARM_FIQ EXCEPT_ARM_FIQ

6.7.4.4 Extended Data Formats
In addition to the other class-specific error definitions in this subsection, the Host Software class
uses the following extended error data definition:

• EFI_DEVICE_HANDLE_EXTENDED_DATA

See section 6.6.4 for its definition.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

260 3/29/2013 Version 1.3

EFI_DEBUG_ASSERT_DATA

Summary
This structure provides the assert information that is typically associated with a debug assertion
failing.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 LineNumber;
 UINT32 FileNameSize;
 EFI_STATUS_CODE_STRING_DATA *FileName;

} EFI_DEBUG_ASSERT_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_DEBUG_ASSERT_DATA) – HeaderSize , and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

LineNumber

The line number of the source file where the fault was generated.

FileNameSize

The size in bytes of FileName.

FileName

A pointer to a NULL-terminated ASCII or Unicode string that represents the file name
of the source file where the fault was generated. Type
EFI_STATUS_CODE_STRING_DATA is defined in section 6.6.2.

Description
The data indicates the location of the assertion that failed in the source code. This information
includes the file name and line number that are necessary to find the failing assertion in source code.

Platform Intialization Status Codes

Version 1.3 3/29/2013 261

EFI_STATUS_CODE_EXCEP_EXTENDED_DATA

Summary
This structure defines extended data describing a processor exception error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT Context;

} EFI_STATUS_CODE_EXCEP_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_EXCEP_EXTENDED_DATA) – HeaderSize,
and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Context

The system context. Type EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT is
defined in “Related Definitions” below.

Description
This extended data allows the processor context that is present at the time of the exception to be
reported with the exception. The format and contents of the context data varies depending on the
processor architecture.

Related Definitions
//**
// EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT
//**
typedef union {
 EFI_SYSTEM_CONTEXT_EBC SystemContextEbc;
 EFI_SYSTEM_CONTEXT_IA32 SystemContextIa32;
 EFI_SYSTEM_CONTEXT_IPF SystemContextIpf;
 EFI_SYSTEM_CONTEXT_X64 SystemContextX64;
 EFI_SYSTEM_CONTEXT_ARM SystemContextArm;

} EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT;

SystemContextEbc

The context of the EBC virtual machine when the exception was generated. Type
EFI_SYSTEM_CONTEXT_EBC is defined in EFI_DEBUG_SUPPORT_PROTOCOL
in the UEFI Specification.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

262 3/29/2013 Version 1.3

SystemContextIa32

The context of the IA-32 processor when the exception was generated. Type
EFI_SYSTEM_CONTEXT_IA32 is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextIpf

The context of the Itanium® processor when the exception was generated. Type
EFI_SYSTEM_CONTEXT_IPF is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextX64

The context of the X64 processor when the exception was generated. Type

EFI_SYSTEM_CONTEXT_X64 is defined in the

EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextArm

The context of the ARM processor when the exception was generated. Type

EFI_SYSTEM_CONTEXT_ARM is defined in the

EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

Platform Intialization Status Codes

Version 1.3 3/29/2013 263

EFI_STATUS_CODE_START_EXTENDED_DATA

Summary
This structure defines extended data describing a call to a driver binding protocol start function.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE ControllerHandle;
 EFI_HANDLE DriverBindingHandle;
UINT16 DevicePathSize;
// EFI_DEVICE_PATH_PROTOCOL RemainingDevicePath;

} EFI_STATUS_CODE_START_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_START_EXTENDED_DATA) - HeaderSize,
and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

ControllerHandle

The controller handle.

DriverBindingHandle

The driver binding handle.

DevicePathSize

The size of the RemainingDevicePath. It is zero if the Start() function is
called with RemainingDevicePath = NULL. The UEFI Specification allows
that the Start() function of bus drivers can be called in this way.

RemainingDevicePath

Matches the RemainingDevicePath parameter being passed to the Start()
function. Note that this parameter is the variable-length device path and not a pointer
to the device path.

Description
This extended data records information about a Start() function call. Start() is a member of
the UEFI Driver Binding Protocol.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

264 3/29/2013 Version 1.3

EFI_LEGACY_OPROM_EXTENDED_DATA

Summary
This structure defines extended data describing a legacy option ROM (OpROM).

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE DeviceHandle;
 EFI_PHYSICAL_ADDRESS RomImageBase;

} EFI_LEGACY_OPROM_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_LEGACY_OPROM_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

DeviceHandle

The handle corresponding to the device that this legacy option ROM is being invoked.

RomImageBase

The base address of the shadowed legacy ROM image. May or may not point to the
shadow RAM area. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI Specification.

Description
The device handle and ROM image base can be used by consumers to determine which option ROM
failed. Due to the black-box nature of legacy option ROMs, the amount of information that can be
obtained may be limited.

Version 1.3 3/29/2013 265

7
Report Status Code Routers

7.1 Overview
This section provides the code definitions for the PPI and Protocols used in a Report Status Code
Router. These interfaces allow multiple platform dependent drivers for displaying status code
information to coexist without prior knowledge of one another.

Figure 13. Status Code Services

There is a generic status code driver in each phase. In each case the driver consumes the Report
Status Code Protocol and produces the Report Status Code Handler PPI or Protocol. Each consumer
of the Report Status Code Handler PPI or Protocol will register a callback to receive notification of
new Status Codes from the Generic Status Code Driver.

7.2 Code Definitions

7.2.1 Report Status Code Handler Protocol

EFI_RSC_HANDLER_PROTOCOL

Summary
Provide registering and unregistering services to status code consumers while in DXE.

Status Code Producer

Generic Status Code Driver

ReportStatusCode

Status Code
Consumer

Status Code
Consumer

Status Code
Consumer

Call each Callback

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

266 3/29/2013 Version 1.3

GUID
#define EFI_RSC_HANDLER_PROTOCOL_GUID \
 { \
 0x86212936, 0xe76, 0x41c8, \
 0xa0, 0x3a, 0x2a, 0xf2, 0xfc, 0x1c, 0x39, 0xe2 \
 }

Protocol Interface Structure
typedef struct {
 EFI_RSC_HANDLER_REGISTER Register;
 EFI_RSC_HANDLER_UNREGISTER Unregister;
} EFI_RSC_HANDLER_PROTOCOL;

Members
Register

Register the callback for notification of status code messages.

Unregister

Unregister the callback.

Description
Once registered, status code messages will be forwarded to the callback. The callback must be
unregistered before it is deallocated.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_RSC_HANDLER_CALLBACK) (
 IN EFI_STATUS_CODE_TYPE CodeType,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN EFI_GUID * CallerId,
 IN EFI_STATUS_CODE_DATA * Data
);

For parameter descriptions, function descriptions and status code values, see
ReportStatusCode() in the PI Specification,Volume 2, section 14.2.

Report Status Code Routers

Version 1.3 3/29/2013 267

EFI_RSC_HANDLER_PROTOCOL.Register()

Summary
Register the callback function for ReportStatusCode() notification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RSC_HANDLER_REGISTER) (
 IN EFI_RSC_HANDLER_CALLBACK Callback,
 IN EFI_TPL Tpl
);

Parameters
Callback

A pointer to a function of type EFI_RSC_HANDLER_CALLBACK that is called when
a call to ReportStatusCode() occurs.

Tpl

TPL at which callback can be safely invoked.

Description
When this function is called the function pointer is added to an internal list and any future calls to
ReportStatusCode() will be forwarded to the Callback function. During the boot-
services, this is the callback for which this service can be invoked. The report status code router
will create an event such that the callback function is only invoked at the TPL for which it was
registered. The entity that registers for the callback should also register for an event upon
generation of exit boot services and invoke the unregister service.

If the handler does not have a TPL dependency, it should register for a callback at TPL high. The
router infrastructure will support making callbacks at runtime, but the caller for runtime invocation
must meet the following criteria:

1. must be a runtime driver type so that its memory is not reclaimed

2. not unregister at exit boot services so that the router will still have its callback address

3. the caller must be self-contained (eg. Not call out into any boot-service interfaces) and be
runtime safe, in general.

Status Codes Returned

EFI_SUCCESS Function was successfully registered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_OUT_OF_RESOURCES The internal buffer ran out of space. No more functions can be
registered.

EFI_ALREADY_STARTED The function was already registered. It can’t be registered again.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

268 3/29/2013 Version 1.3

EFI_RSC_HANDLER_PROTOCOL.Unregister()

Summary
Remove a previously registered callback function from the notification list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RSC_HANDLER_UNREGISTER) (
 IN EFI_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_RSC_HANDLER_CALLBACK that is to be
unregistered.

Description
A callback function must be unregistered before it is deallocated. It is important that any registered
callbacks that are not runtime complaint be unregistered when ExitBootServices() is called.

Status Codes Returned

7.2.2 Report Status Code Handler PPI

EFI_PEI_RSC_HANDLER_PPI

Summary
Provide registering and unregistering services to status code consumers.

EFI_SUCCESS The function was successfully unregistered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_NOT_FOUND The callback function was not found to be unregistered.

Report Status Code Routers

Version 1.3 3/29/2013 269

GUID
#define EFI_PEI_RSC_HANDLER_PPI_GUID \
 { \
 0x65d394, 0x9951, 0x4144, \
 0x82, 0xa3, 0xa, 0xfc, 0x85, 0x79, 0xc2, 0x51 \
 }

PPI Interface Structure
typedef struct _EFI_PEI_RSC_HANDLER_PPI {
 EFI_PEI_RSC_HANDLER_REGISTER Register;
 EFI_PEI_RSC_HANDLER_UNREGISTER Unregister;
} EFI_PEI_RSC_HANDLER_PPI;

Members
Register

Register the callback for notification of status code messages.

Unregister

Unregister the callback.

Description
Once registered, status code messages will be forwarded to the callback.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RSC_HANDLER_CALLBACK) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId,
 IN CONST EFI_STATUS_CODE_DATA *Data
);

For parameter descriptions, function descriptions and status code values, see
ReportStatusCode() in the PI specification Volume 1, section 4.5.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

270 3/29/2013 Version 1.3

EFI_PEI_RSC_HANDLER_PPI.Register()

Summary
Register the callback function for ReportStatusCode() notification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RSC_HANDLER_REGISTER) (
 IN EFI_PEI_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_PEI_RSC_HANDLER_CALLBACK that is called
when a call to ReportStatusCode() occurs.

Description
When this function is called the function pointer is added to an internal list and any future calls to
ReportStatusCode() will be forwarded to the Callback function.

Status Codes Returned

EFI_SUCCESS Function was successfully registered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_OUT_OF_RESOURCES The internal buffer ran out of space. No more functions can be
registered.

EFI_ALREADY_STARTED The function was already registered. It can’t be registered again.

Report Status Code Routers

Version 1.3 3/29/2013 271

EFI_PEI_RSC_HANDLER_PPI.Unregister()

Summary
Remove a previously registered callback function from the notification list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RSC_HANDLER_UNREGISTER) (
 IN EFI_PEI_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_PEI_RSC_HANDLER_CALLBACK that is to be
unregistered.

Description
ReportStatusCode() messages will no longer be forwarded to the Callback function.

Status Codes Returned

7.2.3 SMM Report Status Code Handler Protocol

EFI_SMM_RSC_HANDLER_PROTOCOL

Summary
Provide registering and unregistering services to status code consumers while in DXE SMM.

EFI_SUCCESS The function was successfully unregistered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_NOT_FOUND The callback function was not found to be unregistered.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

272 3/29/2013 Version 1.3

GUID
#define EFI_SMM_RSC_HANDLER_PROTOCOL_GUID \
 { \
0x2ff29fa7, 0x5e80, 0x4ed9, 0xb3, 0x80, 0x1, 0x7d, 0x3c, 0x55,
0x4f, 0xf4
 }

Protocol Interface Structure
typedef struct _EFI_SMM_RSC_HANDLER_PROTOCOL {
 EFI_SMM_RSC_HANDLER_REGISTER Register;
 SMM_RSC_HANDLER_UNREGISTER Unregister;
} EFI_SMM_RSC_HANDLER_PROTOCOL;

Members
Register

Register the callback for notification of status code messages.

Unregister

Unregister the callback.

Description
Once registered, status code messages will be forwarded to the callback. The callback must be
unregistered before it is deallocated.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_RSC_HANDLER_CALLBACK) (
 IN EFI_STATUS_CODE_TYPE CodeType,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN EFI_GUID * CallerId,
 IN EFI_STATUS_CODE_DATA * Data
);

For parameter descriptions, function descriptions and status code values, see
ReportStatusCode() in the PI specification Volume 2, section 14.2.

Report Status Code Routers

Version 1.3 3/29/2013 273

EFI_SMM_RSC_HANDLER_PROTOCOL.Register()

Summary
Register the callback function for ReportStatusCode() notification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_RSC_HANDLER_REGISTER) (
 IN EFI_SMM_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_RSC_HANDLER_CALLBACK that is called when
a call to ReportStatusCode() occurs.

Description
When this function is called the function pointer is added to an internal list and any future calls to
ReportStatusCode() will be forwarded to the Callback function.

Status Codes Returned

EFI_SUCCESS Function was successfully registered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_OUT_OF_RESOURCES The internal buffer ran out of space. No more functions can be
registered.

EFI_ALREADY_STARTED The function was already registered. It can’t be registered again.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

274 3/29/2013 Version 1.3

EFI_SMM_RSC_HANDLER_PROTOCOL.Unregister()

Summary
Remove a previously registered callback function from the notification list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_RSC_HANDLER_UNREGISTER) (
 IN EFI_SMM_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_SMM_RSC_HANDLER_CALLBACK that is to be
unregistered.

Description
A callback function must be unregistered before it is deallocated. It is important that any registered
callbacks that are not runtime complaint be unregistered when ExitBootServices() is called.

Status Codes Returned

EFI_SUCCESS The function was successfully unregistered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_NOT_FOUND The callback function was not found to be unregistered.

Version 1.3 3/29/2013 277

8
PCD

8.1 PCD Protocol Definitions

8.1.1 PCD Protocol

EFI_PCD_PROTOCOL

Summary

A platform database that contains a variety of current platform settings or directives that can be
accessed by a driver or application.

GUID
#define EFI_PCD_PROTOCOL_GUID \
 { 0x13a3f0f6, 0x264a, 0x3ef0, \
 { 0xf2, 0xe0, 0xde, 0xc5, 0x12, 0x34, 0x2f, 0x34 } }

Protocol Interface Structure
typedef struct _EFI_PCD_PROTOCOL {
 EFI_PCD_PROTOCOL_SET_SKU SetSku;

 EFI_PCD_PROTOCOL_GET_8 Get8;
 EFI_PCD_PROTOCOL_GET_16 Get16;
 EFI_PCD_PROTOCOL_GET_32 Get32;
 EFI_PCD_PROTOCOL_GET_64 Get64;
 EFI_PCD_PROTOCOL_GET_POINTER GetPtr;
 EFI_PCD_PROTOCOL_GET_BOOLEAN GetBool;
 EFI_PCD_PROTOCOL_GET_SIZE GetSize;

 EFI_PCD_PROTOCOL_SET_8 Set8;
 EFI_PCD_PROTOCOL_SET_16 Set16;
 EFI_PCD_PROTOCOL_SET_32 Set32;
 EFI_PCD_PROTOCOL_SET_64 Set64;
 EFI_PCD_PROTOCOL_SET_POINTER SetPtr;
 EFI_PCD_PROTOCOL_SET_BOOLEAN SetBool;

 EFI_PCD_PROTOCOL_CALLBACK_ON_SET CallbackOnSet;
 EFI_PCD_PROTOCOL_CANCEL_CALLBACK CancelCallback;
 EFI_PCD_PROTOCOL_GET_NEXT_TOKEN GetNextToken;
 EFI_PCD_PROTOCOL_GET_NEXT_TOKEN_SPACE GetNextTokenSpace;
} EFI_PCD_PROTOCOL;

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

278 3/29/2013 Version 1.3

Parameters
SetSku

Establish a current SKU value for the PCD service to use for subsequent data Get/Set
requests.

Get8

Retrieve an 8-bit value from the PCD service using a GUIDed token namespace.

Get16

Retrieve a 16-bit value from the PCD service using a GUIDed token namespace.

Get32

Retrieve a 32-bit value from the PCD service using a GUIDed token namespace.

Get64

Retrieve a 64-bit value from the PCD service using a GUIDed token namespace.

GetPtr

Retrieve a pointer to a value from the PCD service using a GUIDed token namespace.
Can be used to retrieve an array of bytes that may represent a data structure, ASCII
string, or Unicode string

GetBool

Retrieve a Boolean value from the PCD service using a GUIDed token namespace.

GetSize

Retrieve the size of a particular PCD Token value using a GUIDed token namespace.

Set8

Set an 8-bit value in the PCD service using a GUIDed token namespace

 Set16

Set a 16-bit value in the PCD service using a GUIDed token namespace.

Set32

Set a 32-bit value in the PCD service using a GUIDed token namespace.

Set64

Set a 64-bit value in the PCD service using a GUIDed token namespace.

SetPtr

Set a pointer to a value in the PCD service using a GUIDed token namespace. Can be
used to set an array of bytes that may represent a data structure, ASCII string, or
Unicode string

SetBool

Set a Boolean value in the PCD service using a GUIDed token namespace.

CallBackOnSet

Establish a notification to alert when a particular PCD Token value is set.

PCD

Version 1.3 3/29/2013 279

CancelCallBackOnSet

Cancel a previously set notification for a particular PCD Token value.

GetNextToken

Retrieve the next token number that is contained in the PCD name-space.

GetNextTokenSpace

Retrieve the next valid PCD token namespace for a given name-space.

Description
Callers to this protocol must be at a TPL_APPLICATION task priority level.

This is the base PCD service API that provides an abstraction for accessing configuration content in
the platform. It a seamless mechanism for extracting information regardless of where the
information is stored (such as in Read-only data, or an EFI Variable).

This protocol allows access to data through size-granular APIs and provides a mechanism for a
firmware component to monitor specific settings and be alerted when a setting is changed.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

280 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.SetSku ()

Summary
Sets the SKU value for subsequent calls to set or get PCD token values.

Prototype
typedef
VOID
(EFIAPI *EFI_PCD_PROTOCOL_SET_SKU) (
 IN UINTN SkuId
);

Parameters
SkuId

The SKU value to set.

Description
SetSku() sets the SKU Id to be used for subsequent calls to set or get PCD values. SetSku() is
normally called only once by the system.

For each item (token), the database can hold a single value that applies to all SKUs, or multiple
values, where each value is associated with a specific SKU Id. Items with multiple, SKU-specific
values are called SKU enabled.

The SKU Id of zero is reserved as a default. The valid SkuId range is 1 to 255. For tokens that are
not SKU enabled, the system ignores any set SKU Id and works with the single value for that token.
For SKU-enabled tokens, the system will use the SKU Id set by the last call to SetSku(). If no SKU
Id is set or the currently set SKU Id isn’t valid for the specified token, the system uses the default
SKU Id. If the system attempts to use the default SKU Id and no value has been set for that Id, the
results are unpredictable.

PCD

Version 1.3 3/29/2013 281

EFI_PCD_PROTOCOL.Get8 ()

Summary
Retrieves an 8-bit value for a given PCD token.

Prototype
typedef
UINT8
(EFIAPI *EFI_PCD_PROTOCOL_GET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current byte-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

282 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.Get16 ()

Summary
Retrieves a 16-bit value for a given PCD token.

Prototype
typedef
UINT16
(EFIAPI *EFI_PCD_PROTOCOL_GET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current word-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

PCD

Version 1.3 3/29/2013 283

EFI_PCD_PROTOCOL.Get32 ()

Summary
Retrieves a 32-bit value for a given PCD token.

Prototype
typedef
UINT32
(EFIAPI *EFI_PCD_PROTOCOL_GET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current 32-bit sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

284 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.Get64 ()

Summary
Retrieves a 64 -bit value for a given PCD token.

Prototype
typedef
UINT64
(EFIAPI *EFI_PCD_PROTOCOL_GET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the 64-bit sized value for a PCD token number. If the TokenNumber is invalid, the
results are unpredictable.

PCD

Version 1.3 3/29/2013 285

EFI_PCD_PROTOCOL.GetPtr ()

Summary
Retrieves a pointer to a value for a given PCD token.

Prototype
typedef
VOID *
(EFIAPI *EFI_PCD_PROTOCOL_GET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current pointer to the value for a PCD token number. Do not make any assumptions
about the alignment of the pointer that is returned by this function call. If the TokenNumber is
invalid, the results are unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

286 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.GetBool ()

Summary
Retrieves a Boolean value for a given PCD token.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_PCD_PROTOCOL_GET_BOOLEAN) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current BOOLEAN-sized value for a PCD token number. If the TokenNumber is
invalid, the results are unpredictable.

PCD

Version 1.3 3/29/2013 287

EFI_PCD_PROTOCOL.GetSize ()

Summary
Retrieves the size of the value for a given PCD token.

Prototype
typedef
UINTN
(EFIAPI *EFI_PCD_PROTOCOL_GET_SIZE) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current size of a particular PCD token. If the TokenNumber is invalid, the results are
unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

288 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.Set8 ()

Summary
Sets an 8-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT 8 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 289

EFI_PCD_PROTOCOL.Set16 ()

Summary
Sets a 16-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT16 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.The 128-bit unique value that designates the
namespace from which to extract the value.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to retrieve the

size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

290 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.Set32 ()

Summary
Sets a 32-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT32 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token's existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to retrieve the

size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 291

EFI_PCD_PROTOCOL.Set64 ()

Summary
Sets a 64-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT64 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token's existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to retrieve the

size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

292 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.SetPtr ()

Summary
Sets a value of a specified size for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN OUT UINTN *SizeOfValue,
 IN VOID *Buffer
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

SizeOfValue

The length of the value being set for the PCD token. If too large of a length is
specified, upon return from this function the value of SizeOfValue will
reflect the maximum size for the PCD token.

Buffer

A pointer to the buffer containing the value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token's existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. The SizeofValue

parameter reflects the maximum size of the PCD token referenced.

Use GetSize() to retrieve

the current size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 293

EFI_PCD_PROTOCOL.SetBool ()

Summary
Sets a Boolean value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_BOOLEAN) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN BOOLEAN Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

Token

NumberThe PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was incom-

patible with a call to this function. Use GetBool() to retrieve the size

of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

294 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.CallbackOnSet ()

Summary
Specifies a function to be called anytime the value of a designated token is changed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_CALLBACK_ON_SET) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PCD_PROTOCOL_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number to monitor.

CallBackFunction

The function prototype called when the value associated with the CallBackToken
is set.

Related Definitions
typedef
VOID
(EFIAPI *EFI_PCD_PROTOCOL_CALLBACK) {
 IN EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN OUT VOID *TokenData,
 IN UINTN TokenDataSize
 };

Description
Specifies a function to be called anytime the value of a designated token is changed.

Status Codes Returned

EFI_SUCCESS The PCD service has successfully established a call event for the

CallBackToken requested.

EFI_NOT_FOUND The PCD service could not find the referenced token number.

PCD

Version 1.3 3/29/2013 295

EFI_PCD_PROTOCOL.CancelCallback ()

Summary
Cancels a previously set callback function for a particular PCD token number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_CANCEL_CALLBACK) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PCD_PROTOCOL_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number for which to cancel monitoring.

CallBackFunction

The function prototype that was originally passed to the CallBackOnSet function.

Description
Cancels a callback function that was set through a previous call to the CallBackOnSet function.

Status Codes Returned

EFI_SUCCESS The PCD service has cancelled the call event associated with the

CallBackToken.

EFI_INVALID_PARAMETER The PCD service did not match the CallBackFunction to one

that is currently being monitored.

EFI_NOT_FOUND The PCD service could not find data the requested token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

296 3/29/2013 Version 1.3

EFI_PCD_PROTOCOL.GetNextToken ()

Summary
Retrieves the next valid PCD token for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_GET_NEXT_TOKEN) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN *TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to retrieve the
next token.

TokenNumber

A pointer to the PCD token number to use to find the subsequent token number. To
retrieve the "first" token, have the pointer reference a TokenNumber value of 0.

Description
Gets the next valid token number in a given namespace. This is useful since the PCD infrastructure
contains a sparse list of token numbers, and one cannot a priori know what token numbers are valid
in the database.

Status Codes Returned

EFI_SUCCESS The PCD service has retrieved the value requested

EFI_NOT_FOUND The PCD service could not find data from the requested token
number.

PCD

Version 1.3 3/29/2013 297

EFI_PCD_PROTOCOL.GetNextTokenSpace ()

Summary
Retrieves the next valid PCD token namespace for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_GET_NEXT_TOKEN_SPACE) (
 IN OUT CONST EFI_GUID **Guid
);

Parameters
Guid

An indirect pointer to EFI_GUID. On input it designates a known token namespace
from which the search will start. On output, it designates the next valid token
namespace on the platform. If *Guid is NULL, then the GUID of the first token
space of the current platform is returned. If the search cannot locate the next valid
token namespace, an error is returned and the value of *Guid is undefined.

Description
Gets the next valid token namespace for a given namespace. This is useful to traverse the valid
token namespaces on a platform.

Status Codes Returned

8.1.2 Get PCD Information Protocol

EFI_GET_PCD_INFO_PROTOCOL

Summary
The protocol that provides additional information about items that reside in the PCD database.

GUID
#define EFI_GET_PCD_INFO_PROTOCOL_GUID \
 { 0xfd0f4478, 0xefd, 0x461d, \
 { 0xba, 0x2d, 0xe5, 0x8c, 0x45, 0xfd, 0x5f, 0x5e } }

Protocol Interface Structure
typedef struct _EFI_GET_PCD_INFO_PROTOCOL {
 EFI_GET_PCD_INFO_PROTOCOL_GET_INFO GetInfo;

EFI_SUCCESS The PCD service retrieved the value requested.

EFI_NOT_FOUND The PCD service could not find the next valid token namespace.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

298 3/29/2013 Version 1.3

 EFI_GET_PCD_INFO_PROTOCOL_GET_SKU GetSku;
} EFI_GET_PCD_INFO_PROTOCOL;

Parameters
GetInfo

Retrieve additional information associated with a PCD.

GetSku

Retrieve the currently set SKU Id.

Description
Callers to this protocol must be at a TPL_APPLICATION task priority level.

This is the PCD service to use when querying for some additional data that can be contained in the
PCD database.

PCD

Version 1.3 3/29/2013 299

EFI_GET_PCD_INFO_PROTOCOL.GetInfo ()

Summary
Retrieve additional information associated with a PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_PCD_INFO_PROTOCOL_GET_INFO) (
 IN CONST UINTN *Guid,
 IN UINTN TokenNumber,
 OUT EFI_PCD_INFO *PcdInfo
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

PcdInfo

The returned information associated with the requested TokenNumber. See related
definitions below.

Description
GetInfo() retrieves additional information associated with a PCD token. This includes
information such as the type of value the TokenNumber is associated with as well as possible
human readable name that is associated with the token.

Related Definitions
typedef struct {
 EFI_PCD_TYPE PcdType;
 UINTN PcdSize;
 CHAR8 *PcdName;
} EFI_PCD_INFO;

PcdType

The returned information associated with the requested TokenNumber. If
TokenNumber is 0, then PcdType is set to EFI_PCD_TYPE_8.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

300 3/29/2013 Version 1.3

PcdSize

The size of the data in bytes associated with the TokenNumber specified. If
TokenNumber is 0, then PcdSize is set 0.

PcdName

The null-terminated ASCII string associated with a given token. If the
TokenNumber specified was 0, then this field corresponds to the null-terminated
ASCII string associated with the token’s namespace Guid. If NULL, there is no
name associated with this request.

typedef enum {
 EFI_PCD_TYPE_8,
 EFI_PCD_TYPE_16,
 EFI_PCD_TYPE_32,
 EFI_PCD_TYPE_64,
 EFI_PCD_TYPE_BOOL,
 EFI_PCD_TYPE_PTR
 } EFI_PCD_TYPE;

Status Codes Returned

EFI_SUCCESS The PCD information was returned successfully

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 301

EFI_GET_PCD_INFO_PROTOCOL.GetSku ()

Summary
Retrieve the currently set SKU Id.

Prototype
typedef
UINTN
(EFIAPI *EFI_GET_PCD_INFO_PROTOCOL_GET_SKU) (
 VOID
);

Description
GetSku() returns the currently set SKU Id. If the platform has not set at a SKU Id, then the
default SKU Id value of 0 is returned. If the platform has set a SKU Id, then the currently set SKU
Id is returned.

8.2 PCD PPI Definitions

8.2.1 PCD PPI

EFI_PEI_PCD_PPI

Summary
A platform database that contains a variety of current platform settings or directives that can be
accessed by a driver or application.

GUID
#define EFI_PEI_PCD_PPI_GUID \
 { 0x1f34d25, 0x4de2, 0x23ad, \
 { 0x3f, 0xf3, 0x36, 0x35, 0x3f, 0xf3, 0x23, 0xf1 } }

PPI Structure
typedef struct {
 EFI_PEI_PCD_PPI_SET_SKU SetSku;

 EFI_PEI_PCD_PPI_GET_8 Get8;
 EFI_PEI_PCD_PPI_GET_16 Get16;
 EFI_PEI_PCD_PPI_GET_32 Get32;
 EFI_PEI_PCD_PPI_GET_64 Get64;
 EFI_PEI_PCD_PPI_GET_POINTER GetPtr;
 EFI_PEI_PCD_PPI_GET_BOOLEAN GetBool;
 EFI_PEI_PCD_PPI_GET_SIZE GetSize;

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

302 3/29/2013 Version 1.3

 EFI_PEI_PCD_PPI_SET_8 Set8;
 EFI_PEI_PCD_PPI_SET_16 Set16;
 EFI_PEI_PCD_PPI_SET_32 Set32;
 EFI_PEI_PCD_PPI_SET_64 Set64;
 EFI_PEI_PCD_PPI_SET_POINTER SetPtr;
 EFI_PEI_PCD_PPI_SET_BOOLEAN SetBool;

 EFI_PEI_PCD_PPI_CALLBACK_ON_SET CallbackOnSet;
 EFI_PEI_PCD_PPI_CANCEL_CALLBACK CancelCallback;
 EFI_PEI_PCD_PPI_GET_NEXT_TOKEN GetNextToken;
 EFI_PEI_PCD_PPI_GET_NEXT_TOKEN_SPACE GetNextTokenSpace;
} EFI_PEI_PCD_PPI;

Parameters
SetSku

Establish a current SKU value for the PCD service to use for subsequent data Get/Set
requests.

Get8

Retrieve an 8-bit value from the PCD service using a GUIDed token namespace.

Get16

Retrieve a 16-bit value from the PCD service using a GUIDed token namespace.

Get32

Retrieve a 32-bit value from the PCD service using a GUIDed token namespace.

Get64

Retrieve a 64-bit value from the PCD service using a GUIDed token namespace.

GetPtr

Retrieve a pointer to a value from the PCD service using a GUIDed token namespace.
Can be used to retrieve an array of bytes that represents a data structure, ASCII string,
or Unicode string

GetBool

Retrieve a Boolean value from the PCD service using a GUIDed token namespace.

GetBool

Retrieve the size of a particular PCD Token value using a GUIDed token namespace.

Set8

Set an 8-bit value in the PCD service using a GUIDed token namespace.

Set16

Set a 16-bit value in the PCD service using a GUIDed token namespace.

Set32

Set a 32-bit value in the PCD service using a GUIDed token namespace.

PCD

Version 1.3 3/29/2013 303

Set64

Set a 64-bit value in the PCD service using a GUIDed token namespace.

SetPtr

Set a pointer to a value in the PCD service using a GUIDed token namespace. Can be
used to set an array of bytes that represents a data structure, ASCII string, or Unicode
string

SetBool

Set a Boolean value in the PCD service using a GUIDed token namespace.

CallBackOnSet

Establish a notification when a particular PCD Token value is set.

CancelCallBackOnSet

Cancel a previously set notification for a particular PCD Token value.

GetNextToken

Retrieve the next token number that is contained in the PCD name -space.

Description
Callers to this protocol must be at a TPL_APPLICATION task priority level.

This is the base PCD service API that provides an abstraction for accessing configuration content in
the platform. It is a seamless mechanism for extracting information regardless of where the
information is stored (such as in Read-only data in an EFI Variable).

This protocol provides access to data through size-granular APIs and provides a mechanism for a
firmware component to monitor specific settings and be alerted when a setting is changed.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

304 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.SetSku ()

Summary
Sets the SKU value for subsequent calls to set or get PCD token values.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_PCD_PPI_SET_SKU) (
 IN UINTN SkuId
);

Parameters
SkuId

The SKU value to set.

Description
SetSku() sets the SKU Id to be used for subsequent calls to set or get PCD values. SetSku() is
normally called only once by the system.

For each item (token), the database can hold a single value that applies to all SKUs, or multiple
values, where each value is associated with a specific SKU Id. Items with multiple, SKU-specific
values are called SKU enabled.

The SKU Id of zero is reserved as a default. The valid SkuId range is 1 to 255. For tokens that are
not SKU enabled, the system ignores any set SKU Id and works with the single value for that token.
For SKU-enabled tokens, the system will use the SKU Id set by the last call to SetSku(). If no
SKU Id is set or the currently set SKU Id isn’t valid for the specified token, the system uses the
default SKU Id. If the system attempts to use the default SKU Id and no value has been set for that
Id, the results are unpredictable.

PCD

Version 1.3 3/29/2013 305

EFI_PEI_PCD_PPI.Get8 ()

Summary
Retrieves an 8-bit value for a given PCD token.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_PCD_PPI_GET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates which namespace to extract the value from.

TokenNumber

The PCD token number.

Description
Retrieves the current byte-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

306 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.Get16 ()

Summary
Retrieves a value for a given PCD token.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_PCD_PPI_GET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current word-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

PCD

Version 1.3 3/29/2013 307

EFI_PEI_PCD_PPI.Get32 ()

Summary
Retrieves a 32-bit value for a given PCD token.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_PCD_PPI_GET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current 32-bit value for a PCD token number. If the TokenNumber is invalid, the
results are unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

308 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.Get64 ()

Summary

Retrieves a 64-bit value for a given PCD token.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_PCD_PPI_GET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the 64-bit value for a PCD token number. If the TokenNumber is invalid, the results are
unpredictable.

PCD

Version 1.3 3/29/2013 309

EFI_PEI_PCD_PPI.GetPtr ()

Summary
Retrieves a pointer to the value for a given PCD token.

Prototype
typedef
VOID *
(EFIAPI *EFI_PEI_PCD_PPI_GET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current pointer to the value for a PCD token number. There should not be any
alignment assumptions about the pointer that is returned by this function call. If the TokenNumber
is invalid, the results are unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

310 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.GetBool ()

Summary
Retrieves a Boolean value for a given PCD token.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_PEI_PCD_PPI_GET_BOOLEAN) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current Boolean-sized value for a PCD token number. If the TokenNumber is
invalid, the results are unpredictable.

PCD

Version 1.3 3/29/2013 311

EFI_PEI_PCD_PPI.GetSize ()

Summary
Retrieves the size of the value for a given PCD token.

Prototype
typedef
UINTN
(EFIAPI *EFI_PEI_PCD_PPI_GET_SIZE) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current size of a particular PCD token. If the TokenNumber is invalid, the results are
unpredictable.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

312 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.Set8 ()

Summary
Sets an 8-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT8 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 313

EFI_PEI_PCD_PPI.Set16 ()

Summary
Sets a 16-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT16 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

314 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.Set32 ()

Summary
Sets a 32-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT32 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 315

EFI_PEI_PCD_PPI.Set64 ()

Summary
Sets a 64-bit value for a given PCD token.

Prototype
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT64 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

316 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.SetPtr ()

Summary
Sets a value of the specified size for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN OUT UINTN *SizeOfValue,
 IN VOID *Buffer
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

SizeOfValue

The length of the value being set for the PCD token. If too large of a length is
specified, upon return from this function the value of SizeOfValue will reflect the
maximum size for the PCD token.

Buffer

A pointer to the buffer containing the value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. The SizeofValue

parameter reflects the maximum size of the PCD token referenced.

Use GetSize() to retrieve

the current size of the target data.

PCD

Version 1.3 3/29/2013 317

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

318 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.SetBool()

Summary
Sets a Boolean value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_BOOLEAN) (
 IN CONST EFI_GUID Guid,
 IN UINTN TokenNumber,
 IN BOOLEAN Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 319

EFI_PEI_PCD_PPI.CallbackOnSet ()

Summary
Specifies a function to be called anytime the value of a designated token is changed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_CALLBACK_ON_SET) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PEI_PCD_PPI_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number to monitor.

CallBackFunction

The function prototype that will be called when the value associated with the
CallBackToken is set.

Related Definitions
typedef
VOID
(EFIAPI * EFI_PEI_PCD_PPI_CALLBACK) {
IN EFI_GUID *Guid, OPTIONAL,
IN UINTN CallBackToken,
IN OUT VOID *TokenData,
IN UINTN TokenDatSize
 };

Description
Specifies a function to be called anytime the value of a designated token is changed.

Status Codes Returned

EFI_SUCCESS The PCD service has successfully established a call event for the

CallBackToken requested.

EFI_NOT_FOUND The PCD service could not find the referenced token number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

320 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.CancelCallback ()

Summary
Cancels a previously set callback function for a particular PCD token number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_CANCEL_CALLBACK) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PEI_PCD_PPI_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number to cancel monitoring.

CallBackFunction

The function prototype that was originally passed to the CallBackOnSet function.

Description
Cancels a callback function that was set through a previous call to the CallBackOnSet function.

Status Codes Returned

EFI_SUCCESS The PCD service has cancelled the call event associated with the

CallBackToken.

EFI_INVALID_PARAMETER The PCD service did not match the CallBackFunction to one

that is currently being monitored.

EFI_NOT_FOUND The PCD service could not find data the requested token number.

PCD

Version 1.3 3/29/2013 321

EFI_PEI_PCD_PPI.GetNextToken ()

Summary
Retrieves the next valid PCD token for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_GET_NEXT_TOKEN) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN *TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

A pointer to the PCD token number to use to find the subsequent token number. To
retrieve the “first” token, have the pointer reference a TokenNumber value of 0.

Description
This provides a means by which to get the next valid token number in a given namespace. This is
useful since the PCD infrastructure has a sparse list of token numbers in it, and one cannot a priori
know what token numbers are valid in the database.

Status Codes Returned

EFI_SUCCESS The PCD service has retrieved the value requested

EFI_NOT_FOUND The PCD service could not find data from the requested token
number.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

322 3/29/2013 Version 1.3

EFI_PEI_PCD_PPI.GetNextTokenSpace ()

Summary
Retrieves the next valid PCD token namespace for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PROTOCOL_GET_NEXT_TOKEN_SPACE) (
 IN OUT CONST EFI_GUID **Guid
);

Parameters
Guid

An indirect pointer to EFI_GUID. On input it designates a known token
namespace from which the search will start. On output, it designates the next valid
token namespace on the platform. If *Guid is NULL, then the GUID of the first token
space of the current platform is returned. If the search cannot locate the next valid
token namespace, an error is returned and the value of *Guid is undefined.

Description
Gets the next valid token namespace for a given namespace. This is useful to traverse the valid
token namespaces on a platform.

Status Codes Returned

8.2.2 Get PCD Information PPI

EFI_GET_PCD_INFO_PPI

Summary
The PPI that provides additional information about items that reside in the PCD database.

GUID
#define EFI_GET_PCD_INFO_PPI_GUID \
 { 0xa60c6b59, 0xe459, 0x425d, \
 { 0x9c, 0x69, 0xb, 0xcc, 0x9c, 0xb2, 0x7d, 0x81 } }

Protocol Interface Structure
typedef struct _EFI_GET_PCD_INFO_PPI {
 EFI_GET_PCD_INFO_PPI_GET_INFO GetInfo;

EFI_SUCCESS The PCD service retrieved the value requested.

EFI_NOT_FOUND The PCD service could not find the next valid token namespace.

PCD

Version 1.3 3/29/2013 323

 EFI_GET_PCD_INFO_PPI_GET_SKU GetSku;
} EFI_GET_PCD_INFO_PPI;

Parameters
GetInfo

Retrieve additional information associated with a PCD.

GetSku

Retrieve the currently set SKU Id.

Description
This is the PCD service to use when querying for some additional data that can be contained in the
PCD database.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

324 3/29/2013 Version 1.3

EFI_GET_PCD_INFO_PPI.GetInfo ()

Summary
Retrieve additional information associated with a PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_PCD_INFO_PPI_GET_INFO) (
 IN CONST UINTN *Guid,
 IN UINTN TokenNumber,
 OUT EFI_PCD_INFO *PcdInfo
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

PcdInfo

The returned information associated with the requested TokenNumber.

Description
GetInfo() retrieves additional information associated with a PCD token. This includes
information such as the type of value the TokenNumber is associated with as well as possible
human readable name that is associated with the token.

Status Codes Returned

EFI_SUCCESS The PCD information was returned successfully

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD

Version 1.3 3/29/2013 325

EFI_GET_PCD_INFO_PPI.GetSku ()

Summary
Retrieve the currently set SKU Id.

Prototype
typedef
UINTN
(EFIAPI *EFI_GET_PCD_INFO_PPI_GET_SKU) (
 VOID
);

Description
GetSku() returns the currently set SKU Id. If the platform has not set at a SKU Id, then the
default SKU Id value of 0 is returned. If the platform has set a SKU Id, then the currently set SKU
Id is returned.

Platform Initialization Specification VOLUME 3 Shared Architectural Elements

326 3/29/2013 Version 1.3

	Revision History
	Contents
	Figures
	Tables
	1 Platform Intialization Shared Architectural Elements
	1.1 Overview
	1.2 Target Audience
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Pseudo-Code Conventions
	1.3.3 Typographic Conventions

	1.4 Conventions used in this document
	1.4.1 Number formats
	1.4.2 Binary prefixes

	2 Firmware Storage Design Discussion
	2.1 Firmware Storage Introduction
	2.1.1 Firmware Devices
	2.1.2 Firmware Volumes
	2.1.3 Firmware File System
	2.1.4 Firmware Files
	2.1.5 Firmware File Sections

	2.2 PI Architecture Firmware File System Format
	2.2.1 Firmware Volume Format
	2.2.2 Firmware File System Format
	2.2.3 Firmware File Format
	2.2.4 Firmware File Section Format
	2.2.5 File System Initialization
	2.2.6 Traversal and Access to Files
	2.2.7 File Integrity and State
	2.2.8 File State Transitions

	3 Firmware Storage Code Definitions
	3.1 Firmware Storage Code Definitions Introduction
	3.2 Firmware Storage Formats
	3.2.1 Firmware Volume
	EFI_FIRMWARE_VOLUME_HEADER

	3.2.2 Firmware File System
	EFI_FIRMWARE_FILE_SYSTEM2_GUID
	EFI_FIRMWARE_FILE_SYSTEM3_GUID
	EFI_FFS_VOLUME_TOP_FILE_GUID

	3.2.3 Firmware File
	EFI_FFS_FILE_HEADER

	3.2.4 Firmware File Section
	EFI_COMMON_SECTION_HEADER

	3.2.5 Firmware File Section Types
	EFI_SECTION_COMPATIBILITY16
	EFI_SECTION_COMPRESSION
	EFI_SECTION_DISPOSABLE
	EFI_SECTION_DXE_DEPEX
	EFI_SECTION_FIRMWARE_VOLUME_IMAGE
	EFI_SECTION_FREEFORM_SUBTYPE_GUID
	EFI_SECTION_GUID_DEFINED
	EFI Signed Sections
	EFI_SECTION_PE32
	EFI_SECTION_PEI_DEPEX
	EFI_SECTION_PIC
	EFI_SECTION_RAW
	EFI_SECTION_SMM_DEPEX
	EFI_SECTION_TE
	EFI_SECTION_USER_INTERFACE
	EFI_SECTION_VERSION

	3.3 PEI
	EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
	3.3.1 PEI Firware Volume PPI
	EFI_PEI_FIRMWARE_VOLUME_PPI
	EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName()
	EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo()
	EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType()

	3.3.2 PEI Load File PPI
	EFI_PEI_LOAD_FILE_PPI
	EFI_PEI_LOAD_FILE_PPI.LoadFile()

	3.3.3 PEI Guided Section Extraction PPI
	EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI
	EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection()

	3.3.4 PEI Decompress PPI
	EFI_PEI_DECOMPRESS_PPI
	EFI_PEI_DECOMPRESS_PPI.Decompress()

	3.4 DXE
	3.4.1 Firmware Volume2 Protocol
	EFI_FIRMWARE_VOLUME2_PROTOCOL
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo()

	3.4.2 Firmware Volume Block2 Protocol
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress ()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks()

	3.4.3 Guided Section Extraction Protocol
	EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL
	EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

	4 HOB Design Discussion
	4.1 Explanation of HOB Terms
	4.2 HOB Overview
	4.3 Example HOB Producer Phase Memory Map and Usage
	4.4 HOB List
	4.5 Constructing the HOB List
	4.5.1 Constructing the Initial HOB List
	4.5.2 HOB Construction Rules
	4.5.3 Adding to the HOB List

	5 HOB Code Definitions
	5.1 HOB Introduction
	5.2 HOB Generic Header
	EFI_HOB_GENERIC_HEADER

	5.3 PHIT HOB
	EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

	5.4 Memory Allocation HOB
	5.4.1 Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION

	5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_STACK

	5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

	5.4.4 Memory Allocation Module HOB
	EFI_HOB_MEMORY_ALLOCATION_MODULE

	5.5 Resource Descriptor HOB
	EFI_HOB_RESOURCE_DESCRIPTOR

	5.6 GUID Extension HOB
	EFI_HOB_GUID_TYPE

	5.7 Firmware Volume HOB
	EFI_HOB_FIRMWARE_VOLUME
	EFI_HOB_FIRMWARE_VOLUME2

	5.8 CPU HOB
	EFI_HOB_CPU

	5.9 Memory Pool HOB
	EFI_HOB_MEMORY_POOL

	5.10 UEFI Capsule HOB
	EFI_HOB_UEFI_ CAPSULE

	5.11 Unused HOB
	EFI_HOB_TYPE_UNUSED

	5.12 End of HOB List HOB
	EFI_HOB_TYPE_END_OF_HOB_LIST

	6 Platform Intialization Status Codes
	6.1 Status Codes Overview
	6.1.1 Organization of the Status Codes Specification

	6.2 Terms
	6.3 Types of Status Codes
	6.3.1 Status Code Classes
	6.3.2 Instance Number

	6.4 Hardware Classes
	6.4.1 Computing Unit Class
	6.4.2 User-Accessible Peripheral Class
	6.4.3 Subclasses

	6.5 Software Classes
	6.5.1 Host Software Class
	6.5.2 Instance Number
	6.5.3 Progress Code Operations
	6.5.4 Error Code Operations
	6.5.5 Subclasses
	6.5.6 Runtime (RT) Subclass

	6.6 Code Definitions
	6.6.1 Data Structures
	6.6.2 Extended Data Header
	EFI_STATUS_CODE_DATA
	EFI_STATUS_CODE_DATA_TYPE_STRING_GUID
	EFI_STATUS_CODE_SPECIFIC_DATA_GUID

	6.6.3 Enumeration Schemes
	6.6.4 Common Extended Data Formats
	EFI_DEVICE_PATH_EXTENDED_DATA
	EFI_DEVICE_HANDLE_EXTENDED_DATA
	EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

	6.7 Class Definitions
	6.7.1 Computing Unit Class
	EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA
	EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA
	EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA
	EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA
	EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA
	EFI_CACHE_INIT_DATA
	EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA
	EFI_MEMORY_EXTENDED_ERROR_DATA
	EFI_STATUS_CODE_DIMM_NUMBER
	EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA
	EFI_MEMORY_RANGE_EXTENDED_DATA

	6.7.2 User-Accessible Peripherals Class
	6.7.3 I/O Bus Class
	6.7.4 Software Classes
	EFI_DEBUG_ASSERT_DATA
	EFI_STATUS_CODE_EXCEP_EXTENDED_DATA
	EFI_STATUS_CODE_START_EXTENDED_DATA
	EFI_LEGACY_OPROM_EXTENDED_DATA

	7 Report Status Code Routers
	7.1 Overview
	7.2 Code Definitions
	7.2.1 Report Status Code Handler Protocol
	EFI_RSC_HANDLER_PROTOCOL
	EFI_RSC_HANDLER_PROTOCOL.Register()
	EFI_RSC_HANDLER_PROTOCOL.Unregister()

	7.2.2 Report Status Code Handler PPI
	EFI_PEI_RSC_HANDLER_PPI
	EFI_PEI_RSC_HANDLER_PPI.Register()
	EFI_PEI_RSC_HANDLER_PPI.Unregister()

	7.2.3 SMM Report Status Code Handler Protocol
	EFI_SMM_RSC_HANDLER_PROTOCOL
	EFI_SMM_RSC_HANDLER_PROTOCOL.Register()
	EFI_SMM_RSC_HANDLER_PROTOCOL.Unregister()

	8 PCD
	8.1 PCD Protocol Definitions
	8.1.1 PCD Protocol
	EFI_PCD_PROTOCOL
	EFI_PCD_PROTOCOL.SetSku ()
	EFI_PCD_PROTOCOL.Get8 ()
	EFI_PCD_PROTOCOL.Get16 ()
	EFI_PCD_PROTOCOL.Get32 ()
	EFI_PCD_PROTOCOL.Get64 ()
	EFI_PCD_PROTOCOL.GetPtr ()
	EFI_PCD_PROTOCOL.GetBool ()
	EFI_PCD_PROTOCOL.GetSize ()
	EFI_PCD_PROTOCOL.Set8 ()
	EFI_PCD_PROTOCOL.Set16 ()
	EFI_PCD_PROTOCOL.Set32 ()
	EFI_PCD_PROTOCOL.Set64 ()
	EFI_PCD_PROTOCOL.SetPtr ()
	EFI_PCD_PROTOCOL.SetBool ()
	EFI_PCD_PROTOCOL.CallbackOnSet ()
	EFI_PCD_PROTOCOL.CancelCallback ()
	EFI_PCD_PROTOCOL.GetNextToken ()
	EFI_PCD_PROTOCOL.GetNextTokenSpace ()

	8.1.2 Get PCD Information Protocol
	EFI_GET_PCD_INFO_PROTOCOL
	EFI_GET_PCD_INFO_PROTOCOL.GetInfo ()
	EFI_GET_PCD_INFO_PROTOCOL.GetSku ()

	8.2 PCD PPI Definitions
	8.2.1 PCD PPI
	EFI_PEI_PCD_PPI
	EFI_PEI_PCD_PPI.SetSku ()
	EFI_PEI_PCD_PPI.Get8 ()
	EFI_PEI_PCD_PPI.Get16 ()
	EFI_PEI_PCD_PPI.Get32 ()
	EFI_PEI_PCD_PPI.Get64 ()
	EFI_PEI_PCD_PPI.GetPtr ()
	EFI_PEI_PCD_PPI.GetBool ()
	EFI_PEI_PCD_PPI.GetSize ()
	EFI_PEI_PCD_PPI.Set8 ()
	EFI_PEI_PCD_PPI.Set16 ()
	EFI_PEI_PCD_PPI.Set32 ()
	EFI_PEI_PCD_PPI.Set64 ()
	EFI_PEI_PCD_PPI.SetPtr ()
	EFI_PEI_PCD_PPI.SetBool()
	EFI_PEI_PCD_PPI.CallbackOnSet ()
	EFI_PEI_PCD_PPI.CancelCallback ()
	EFI_PEI_PCD_PPI.GetNextToken ()
	EFI_PEI_PCD_PPI.GetNextTokenSpace ()

	8.2.2 Get PCD Information PPI
	EFI_GET_PCD_INFO_PPI
	EFI_GET_PCD_INFO_PPI.GetInfo ()
	EFI_GET_PCD_INFO_PPI.GetSku ()

