

UEFI 2.4 Errata B
Self-Certification Test (SCT) II

User Guide

December, 2014

UEFI SCT User Guide

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or controlled by any of the authors or developers of

this material or to any contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law,

this information is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other warranties and conditions,

either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular

purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material and

any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." The Unified EFI

Forum, Inc. reserves any features or instructions so marked for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising

from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,

CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY

FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,

CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING

IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE

NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2007 - 2014 Unified EFI, Inc. All Rights Reserved

ii

UEFI SCT User Guide

2BRevision History

Revision Revision History Date

1.0 Initial Release May, 2010

1.1 Mantis

626 content integration

700 new features: verbose function

January,
2011

1.2 Mantis

947 UEFI 2.3.1 implementation alignment

August, 2012

1.3 Mantis 1297 The UEFI SCT User Guide update for
the UEFI 2.4 B SCT II Final Candidate

December
2014

iii

UEFI SCT User Guide

Contents

1 Introduction ...1
1.1 Overview ... 1
1.2 System Requirements ... 1
1.3 Installation ... 1

2 Usage Model – Native Mode ...3
2.1 Using the Command Line Interface .. 3
2.2 Using the Menu-Driven Interface ... 4

2.2.1 Main Menu .. 4
2.2.2 Managing Test Cases.. 6
2.2.3 Configuring the Test Environment ... 8
2.2.4 Generating a Test Report .. 9
2.2.5 Loading and Saving a Test Sequence ... 10

2.3 Sample Usage Models ... 12
2.3.1 Executing from the Command Line Interface ... 12
2.3.2 Executing from the Menu-Driven Interface ... 12

2.4 Frequently Asked Questions .. 12
2.4.1 Stopping Automatic Test Execution When the System Restarts 12
2.4.2 Stopping SCT Execution While Tests Are Running 13
2.4.3 Removing a Test Case that Always Causes the System to Hang 14
2.4.4 When There Are No Test Results after Test Execution 16
2.4.5 When Test Assertion Totals Are Different on Different Platforms 16

3 Usage Model – Passive Mode ... 19
3.1 Configuring UEFI SCT Agent ... 19
3.2 Configuring EMS ... 23

3.2.1 Configuring the EMS Interface ... 24
3.2.2 Configuring Base Information .. 24
3.2.3 RemoteExecution & RemoteValidation .. 26
3.2.4 Reflushing the Case Tree .. 27
3.2.5 Running Test Cases .. 28
3.2.6 Loading and Saving a Sequence File .. 30
3.2.7 Generating Log Files ... 32
3.2.8 Using the Tools Menu.. 32
3.2.9 Using the Help Menu ... 33

4 UEFI SCT For IHV ... 35
4.1 IHV SCT Installation3B55B .. 35

4.1.1 Installing the IHV SCT ... 35
4.2 The Usage of IHV SCT .. 35

4.2.1 Using the Command Line Interface ... 35
4.2.2 Using the Menu-Driven Interface ... 36

5 UEFI SCRT .. 43
5.1 Introduction .. 43
5.2 The Usage of SCRT .. 43

5.2.1 System Requirement ... 43

iv

5.2.2 The location of SCRT Utility... 43
5.2.3 Run SCRT Utility ... 43
5.2.4 Configuration File .. 44
5.2.5 Analyze SCRT Test Result .. 45
5.2.6 System Hang ... 47

5.3 How to Add SCRT Test Cases... 47
5.3.1 The Framework of SCRT Utility ... 47
5.3.2 Example: Adding a Test Case ... 48

A.1 Test Report Format ... 51

A.2 Test Category .. 53

A.3 SCRT Assertion Information .. 55

1BTables

Table 1. SCT Parameters ... 3
Table 2. Major Items in the Main Menu of the SCT ... 5
Table 3. User-Configurable Items for Setting Up the Test Environment 8
Table 4. Sub-Frame in the EMS OS application window ... 28
Table 5. Each Element in the Case Tree Sub-frame ... 30
Table 6. Submenus of the Tools Menu ... 33
Table 7. Submenus of the Help Menu .. 34
Table 8. SCT Parameters ... 35
Table 9. Major Items in the Main Menu of the SCT ... 37
Table 10. The Items in the Menu of the Test Device Configuration 39
Table 11. Test Case, Port 80 Display and Log file Relationship for Each Assertion 55

 v

UEFI SCT User Guide

Figures

Figure 1 SCT without parameters ... 4
Figure 2. Main Menu Screen. ... 5
Figure 3. Test Case Management Screen. ... 6
Figure 4. Run Time Services Screen. ... 7
Figure 5. Test Environment Configuration. ... 8
Figure 6. Generating a Test Report. ... 10
Figure 7. Press the <F5> Key to Load a Test Sequence. ... 11
Figure 8. Press the <F6> Key to Save a Test Sequence. ... 11
Figure 9. Press any Key within 10 Seconds to Stop the Auto Run. 13
Figure 10. System Reset Records Message: “System Hangs or Stops Abnormally”. 14
Figure 11. Press any Key to Stop Auto Run.. 15
Figure 12. Select [No] to Discontinue Execution. .. 15
Figure 13. Press <SPACE> to Deselect the Test. ... 16
Figure 14 Load Network Drivers in Internal EFI Shell. .. 20
Figure 15 Auto Load Network Drivers by modifying startup.nsh script. 21
Figure 16 Choose the NIC. ... 22
Figure 17 Using SCT Passive mode ... 23
Figure 18 EMS Interface Configuration window. ... 24
Figure 19 EMS Preference window. ... 25
Figure 20 EMS Preference window. ... 26
Figure 21 The Menu of Reflush Case Tree. .. 27
Figure 22 EMS OS application window running the Remote Validation test cases.............. 28
Figure 23 EMS OS application window-Case Tree Sub-frame. .. 30
Figure 24 Sequence File Saving Window. .. 31
Figure 25 Sequence File Loading Window. .. 32
Figure 26 Editing File Window. ... 33
Figure 27 ENTS Case Writer’s Guide Window. ... 34
Figure 28 Main Menu of IHV SCT ... 37
Figure 29 Test Device Configuration .. 39
Figure 30 Run SCRT Utility with configure file .. 44
Figure 31 Excel® File Containing Test Report in CSV Format. ... 52

vi

1
Introduction

1.1 Overview
The UEFI Self-Certification Test (SCT) II is a toolset for platform firmware
developers to validate UEFI implementations on IA32, X64, and ARM platforms
for compliance to the UEFI Specification. The toolset features a Test Harness for
executing built-in EFI Compliance Tests, as well as for integrating user-defined
tests that were developed using the UEFI SCT open source code.
The UEFI SCT Test Harness provides two different usage models as native mode
and passive mode. Please note that most network-related protocols (except SNP &
PXEBC) can be tested only in passive mode.
This document also provides descriptions of the IHV SCT. The IHV SCT is
designed to aid the testing of UEFI drivers that follow the UEFI Driver Model
described in the UEFI Specification. There are several different classes of UEFI
drivers, each with many variations. Also, this document provides guidelines on
testing for Independent Hardware Vendors (IHV) for UEFI Specification
Compliance.

1.2 System Requirements
The UEFI SCT must be executed on a target system that meets the following
requirements:
• The target system must have an X64 platform, an IA-32, or an ARM platform.
• The target system firmware must have EFI implemented per the UEFI

Specification.
• The EFI implementation on the target system must include an EFI Shell.
• The target system must have at least 1000MB of disk space in the EFI file

system to contain the SCT test and log files.
The UEFI SCT must have another host machine for passive mode usage. This
machine must the following requirements:
• Installing Microsoft Windows 7® or Microsoft Windows 8® operating system
• The target machine and host machine must be connected directly by network

cable.
Refer to the latest UEFI SCT Release Notes for other possible system requirements.

1.3 Installation
A typical installation of the UEFI SCT involves the following:
• Ensuring that the target system is configured to boot to the EFI Shell upon

power-on/reset without user intervention.

1

Introduction

Setting the boot options is usually done using EFI Boot Manager during the
target system’s EFI implementation.

• Copying the UEFI SCT executable files into a default directory in the EFI file
system of the target system.
The default directory is where the target system automatically boots to after
bringing up the EFI Shell. The default directory must be on a Read/Write
storage medium. In order to get better performance, a hard disk is
recommended as the storage location for the default directory.

The UEFI SCT comes in three versions: one for ARM platforms, one for X64
platforms and another for IA-32 platforms. In general, all three versions bundled
with each UEFI SCT release. The user must ensure that the appropriate version of
the UEFI SCT is installed on the target platform prior to use.
The above is a general description of the UEFI SCT installation process. Detailed
installation instructions are provided in the UEFI SCT Release Notes that
accompany each UEFI SCT release. The person performing the installation must
make sure that the UEFI SCT Release Notes match the UEFI SCT release being
used.

2

UEFI SCT User Guide

2
Usage Model – Native Mode

The native mode is invoked as an EFI application from the EFI Shell. The
executable filename is SCT.efi. This executable provides a command line
interface (CLI) as well as a menu-driven interface. These are further described
below.

2.1 Using the Command Line Interface

Syntax
SCT [-a | -c | -s <seq> | -u] | -p <MNP | IP4 |
Serial>] [-r] [-g <report>][-v]

Description of SCT Parameters
XTable 1X provides a description of SCT parameters.

Table 1. SCT Parameters
Options Description
-a Execute all test cases that are recognized by the UEFI SCT Test

Harness.
-c Continue execution of the test case in progress. This option is used to

continue execution of test cases that perform system resets as part of
their test routine.

-g
<report>

Generate test report in .CSV format. The filename of the report is
specified by report.

-r Resets the environment for a fresh execution of the tests. This option
removes results of previous test executions. Generally, it is used with
the -a or -s options.

-s <seq> Execute test cases in the sequence specified in the file seq.

-u Start the Test Harness with the menu-driven interface.

-p Passive Mode with specified communication layer

-f Force the operation execution, no confirmation from user.

-v Disables the display of test log information on the screen.

Test log display on screen is enabled by default. In command line interface, -v
option can be used both in native mode & passive mode to disable display of test
log information on the screen. It can be used combined with –a / -c / -r / -s / -p.
Parameter -v only effects until the end of this command execution.

 3

Selecting SCT without parameters will produce the screen display shown inU XFigure
1XU.

Figure 1 SCT without parameters

2.2 Using the Menu-Driven Interface

Syntax
SCT -u

Description
Type SCT -u to produce the Main Menu of the menu-driven interface.

2.2.1 Main Menu
The Main Menu (see XUFigure 2 UX) contains user-selectable items for initiating a
number of UEFI SCT actions.

4

Figure 2. Main Menu Screen.

XTable 2X lists and describes the major items found in the Main Menu.

Table 2. Major Items in the Main Menu of the SCT
Items Description

Test Case
Management

Selects and executes specific test cases

Test
Environment
Configuration

Sets the parameters for test execution, including the maximum run
times for each test case, enabling/disabling screen output, etc.

Test Report
Generator

Generates a test report in .CSV format. This test report can be opened
by the Microsoft® Excel* or the other compatible utilities.

F4 (Reset
Results)

Resets all test results. It is equivalent to invoking “SCT –r” in the
command line.

F5 (Load
Sequence)

Loads a test sequence file from the storage device. This function
allows user to load, edit or execute an existing test sequence file.

F6 (Save
Sequence)

Saves a user-specified test sequence into a file. This function allows
the user to save selected test cases into a file, which can then be used
for later test execution via “SCT –s <seq>” from the command
line.

 5

2.2.2 Managing Test Cases
The UEFI SCT includes a set of test cases for UEFI Specification compliance
testing. Note that in XUFigure 3 UX the list of test cases corresponds to the major elements
of EFI as described in the UEFI Specification. Note how in UXFigure 4 X Ueach test case
can have lower-level test cases in a tree-like structure.

Figure 3. Test Case Management Screen.

6

Figure 4. Run Time Services Screen.

Appendix B describes the method to specify such a tree-like hierarchy of tests for
user-defined test cases. Refer to the UEFI SCT Test Writer’s Guide for information
on developing user-defined test cases.
In the menu-driven interface, the boxes on the left indicate the selected or
unselected status of the corresponding test category.
[X] All test cases in this test category are selected.
[x] One or more test cases in this test category are selected, but not all test
cases.
[] No test case in this test category has been selected.
The middle boxes below #Iter indicate the number of iterations to be executed
for the corresponding test category.
[N] All test cases in this test category will be executed N times.
[*] The test cases in this test category have different numbers of execution
iterations.
The summary results (result) show the execution results for the corresponding
test category.
PASS All test assertions for all test cases in this test category have passed.
FAIL One or more test assertions within the test cases for this test category has
failed.
test One test case in this test category was still executing.

 7

“ ” No test case in this test category was executed.
The number of passed test assertions and the number of failed test assertions is
displayed in the lower right corner as shown in the screenshot above. Note that the
test case’s place in the order of execution is also displayed. Note also that the order
of execution of test cases is based on the user’s order of selection of test cases to
execute.

2.2.3 Configuring the Test Environment
The test environment has user-configurable items for set up, as shown in the screen
display in XUFigure 5 UX.

Figure 5. Test Environment Configuration.

 XTable 3X describes the user-configurable items for setting up the test environment.

Table 3. User-Configurable Items for Setting Up the Test Environment
Items Description

Test Case Max
Run Time

Sets the maximum execution time for the specified test case. This
feature helps prevent system hangs that may occur during execution of
a particular test case from indefinitely suspending the entire SCT
execution run. Basically, a watchdog timer is set for every test case
during execution. If the timer expires, the system automatically restarts
and SCT execution automatically continues starting with the next test
case in the order of execution.

Enable Screen
Output

Enables/disables display of test log information on the screen.

8

Bios Id A string that can be used to identify the BIOS or firmware stack of the
target system under test. This information will be included in the log
files of the test execution. Generally, Bios Id is used in conjunction with
the other strings (identified in this table) for specifying user-controlled
parameters for the test execution.

Platform
Number

A number to identify the platform under test. (e.g., 865, 915). This
information is included in the log files of the test execution. Generally,
Platform Number is used in conjunction with the other strings (identified
in this table) for specifying user-controlled parameters for the test
execution.

Configuration
Number

A number to specify the configuration under test. The numbers used to
identify different configurations are entirely up to the user. Generally, a
standard configuration is set as 0, a full configuration is set to 1, and so
on. This information will be included in the log files of the test
execution. Generally, Configuration Number is used in conjunction with
the other strings (identified in this table) for specifying user-controlled
parameters for the test execution.

Scenario String A string to provide additional information about or further description of
the test scenario for the next test execution. This information is
included in the log files of the test execution. Generally, this is used in
conjunction with the other strings (identified in this table) for specifying
user-controlled parameters for the test execution.

2.2.4 Generating a Test Report
As shown in XUFigure 6 UX below, the user specifies the file name of the test report to be
generated for the test execution. The test report file is created in the same directory
where the SCT was invoked.

 9

Figure 6. Generating a Test Report.

Note: The <F2> key is used to move the cursor between the list box and the edit box.
The <TAB> key is used in the EFI Shell to pause execution of an EFI application.

2.2.5 Loading and Saving a Test Sequence
To load a test sequence file, press the <F5> key (see XUFigure 7 UX). To save a test
sequence file, press the <F6> key (see XUFigure 8 UX). The test sequence file is created in
the same directory where the SCT was started.

10

Figure 7. Press the <F5> Key to Load a Test Sequence.

Figure 8. Press the <F6> Key to Save a Test Sequence.

 11

2.3 Sample Usage Models

2.3.1 Executing from the Command Line Interface
1. To select the test cases to execute, invoke SCT –r –u from the EFI Shell.
2. To save the test case selection into a test sequence file, press <F6>.
3. To start the test execution, return to the EFI Shell and invoke SCT –s

<seq>.
4. When test execution completes, invoke SCT –g <report> to generate the

test report.

Note: If the same test execution is to be repeated, Steps 1 and 2 can be skipped.

2.3.2 Executing from the Menu-Driven Interface
1. Invoke SCT –r –u from the EFI Shell; select the test cases to execute.
2. Press <F9> to start test execution.
3. When test execution completes, select “Test Report Generator” to generate the

test report.

2.4 Frequently Asked Questions

2.4.1 Stopping Automatic Test Execution When the System
Restarts

The UEFI SCT Test Harness uses a startup script to continue test execution
automatically when the system restarts. As shown in XUFigure 9 UX, the startup script
prompts the user to stop the Auto Run by pressing any key. (The user is given only
a few seconds to press any key.) After canceling an Auto Run, the user can
manually restart the test execution by typing startup.nsh or sct –c.

12

Figure 9. Press any Key within 10 Seconds to Stop the Auto Run.

2.4.2 Stopping SCT Execution While Tests Are Running
The user can manually reset the system to force a test execution to stop. In this
case, a message of “system hangs or stops abnormally” is recorded for the
interrupted test (see XUFigure 10UX), and the interrupted test is skipped and continued in
the next restart of test execution.

 13

Figure 10. System Reset Records Message: “System Hangs or Stops
Abnormally”.

2.4.3 Removing a Test Case that Always Causes the System
to Hang

A test case can be disabled using the menu-driven interface. This is useful when the
user needs to disable, or to re-enable, test cases after manually stopping an Auto
Run that was causing the system hang. If the test case has been executed after being
disabled, there will be no effect on the test execution or to the test results. If the
execution of the test case to be disabled is incomplete, or is waiting its turn in the
order of execution, the test case is skipped when test execution is continued.
The following are screenshots showing the steps to removing a test case:
1. Press any key to stop Auto Run.

14

Figure 11. Press any Key to Stop Auto Run.

2. Type Sct –u to bring up the Menu-driven interface. Select [No] to
discontinue execution.

Figure 12. Select [No] to Discontinue Execution.

 15

3. Remove the test using Test Case Management. Press <F8> to continue
execution. Press <SPACE> to deselect the test. This effectively removes the
test from the execution run.

Figure 13. Press <SPACE> to Deselect the Test.

2.4.4 When There Are No Test Results after Test Execution
Some tests may not have results in the menu-driven interface or in the test report
even after execution. There are two possible reasons for this.
1. The test is unable to execute at all. For example, the “Network Support Test”

will not execute on a platform that has no network devices.
2. The test case does not record results in conformance to the UEFI SCT Test

Development Kit. A user-defined test case can generate its own test output
independent of the UEFI SCT test output format.

2.4.5 When Test Assertion Totals Are Different on Different
Platforms

The total numbers in the UEFI SCT test reports show the total number of passed
test assertions as well as failed test assertions. The number of applicable test
assertions depends on the results of checkpoints in the tests. Platforms of different
configuration or devices will cause different results for these checkpoints, and thus
different sets of applicable test assertions. For example, the Block I/O test will
verify the Read-Only capability when there is a CD in the CD-ROM drive. Another

16

example is when the PCI test verifies resource allocation only if a PCI device
requires memory-mapped IO space.

 17

18

3

Usage Model – Passive Mode
The UEFI SCT Agent runs in the passive mode. All the test cases can be run on the
UEFI Management Side (EMS) with the UEFI SCT Agent running in the passive
mode.

Note: The following description assumes the user has built the environment on both UEFI SCT
Agent side and EMS side.

3.1 Configuring UEFI SCT Agent
This section describes the steps that are necessary to configure the UEFI SCT
Agent side.
The following descriptions show the steps to configure the UEFI SCT Agent run in
the passive mode. If all of the network drivers are built-in, skip the operation
following immediately below:
1. Install UEFI SCT Agent. Refer to Chapter 5 in the "UEFI SCT Getting Started"

document.
2. Switch to the EFI shell.
3. Put all network drivers under the "NetworkDrivers" folder of the installation

disk of SCT. In this example, we assume the folder is "NetworkDrivers". You
can choose any location you like.

4. Open startup.nsh under the installation disk of SCT.
5. Go to the line "if exist FS%i:\Sct\.passive.mode then", insert the following lines

after it:
load \NetworkDrivers\Undi.efi
load \NetworkDrivers\Snp.efi
load \NetworkDrivers\Mnp.efi
load \NetworkDrivers\Arp.efi
load \NetworkDrivers\Ip4.efi
load \NetworkDrivers\Ip4Config.efi
load \NetworkDrivers\Udp4.efi
load \NetworkDrivers\Dhcp4.efi
load \NetworkDrivers\Mtftp4.efi
load \NetworkDrivers\Tcp4.efi
load \NetworkDrivers\Ip6.efi
load \NetworkDrivers\Ip6Config.efi
load \NetworkDrivers\Udp6.efi
load \NetworkDrivers\Dhcp6.efi
load \NetworkDrivers\Mtftp6.efi
load \NetworkDrivers\Tcp6.efi

 19

Use the following steps below to enter SCT passive mode.
1. Assume all network drivers are under the "NetworkDrivers" folder of the

installation disk of SCT.
2. In the EFI shell environment, load all network drivers as shown inU XXUFigure 14

and Figure 15X. (One may also write an nsh script to load the network drives.)

Figure 14 Load Network Drivers in Internal EFI Shell.

20

Figure 15 Auto Load Network Drivers by modifying startup.nsh script.

3. Enter the SCT folder and type sct -p mnp to run the SCT passive mode and
choose the NIC as shown in HUFigure 16UH that will be used for communication
between test machine and host machine.

4. Choose the NIC as shown in HFigure 17H that will be used for communication
between test machine and host machine.

 21

Figure 16 Choose the NIC.

22

 Figure 17 Using SCT Passive mode

Note: Systems without network drivers cannot use SCT passive mode, but you can use the
compatible usage as EFI SCT. Refer to Chapter 2.

Note: When running UEFI SCT Remote Validation, it is important to keep the test topology
environment clean. For example, use one switch (hub) to connect the EFI target machine
and the management host machine, but don't connect the switch (hub) to a public network
or other LANs.

Note: To run UEFI SCT with local execution usage, make sure the "\Sct\.passive.mode" file is
removed.

3.2 Configuring EMS
The EMS side provides a Graphic User Interface (GUI) to run all the test cases.
This section describes the steps that are necessary to configure the EMS side and all
the menu functions in the EMS OS application window.

 23

3.2.1 Configuring the EMS Interface
Run the Microsoft Visual Studio 2008 Command Prompt to go to the command line
environment. Use the following commands to run the EMS OS application.
1. cd \test\ems\bin
2. Ems Main.Tcl
When the EMS OS application starts, two windows open. Before the main window
is available, choose the host interface in the EMS Interface Configuration window.
If there are more than one Network Interface cards on your local host, you need to
specify the one connected to the EFI target machine. XFigure 18 shows the EMS
Interface Configuration window.

Figure 18 EMS Interface Configuration window.

3.2.2 Configuring Base Information
If you are starting the EMS OS application for the first time, configure the base
information. Select the menu “File->Preference…”. The “EMS Preference”
window opens. The following list describes each item in the window. The “EMS
Preference” window is shown inU XFigure 19 X.

24

 Figure 19 EMS Preference window.

• ENTS Testcase Root Dir...
This item refers to the root directory of all the Remote Validation test cases.
Press the Browse button on the right to choose the root directory of the Remote
Validation test cases.

• Communication Type
This item refers to the communication type between the EMS side and the
UEFI SCT Agent side. Currently, MNP is the only supported communication
type.

• New Target MAC
This item refers to the target host MAC address you want to configure. You can
type dh –p net in the EFI Shell to get the target host MAC address as
shown inU XFigure 20X.

 25

Figure 20 EMS Preference window.

After configuring, click “OK” to confirm the configurations, or click “Cancel” to
abort. Clicking “OK” saves the configurations as the default settings.

3.2.3 RemoteExecution & RemoteValidation
There are two methods to validate the EFI-based machine in UEFI SCT passive
mode. One is Remote Execution, and the other is Remote Validation.
• All Remote Execution test case files are located on the UEFI SCT Agent side.

All cases are executed on the EFI side. The EMS performs case management
tasks.

• All Remote Validation test case files are in Tcl scripts stored on the EMS side.
All Remote Validation test cases use Remote Procedure Call (RPC) to perform
the validation.

When the user selects the menu Windows-> RemoteExecution, the EMS side will
download the CaseTree information file from the target host and generate the
remote case tree by parsing the file.
When the user selects the menu Windows-> RemoteValidation, the EMS side will
traverse all subdirectories under the test case root directory and generate the local
case tree.

26

3.2.4 Reflushing the Case Tree
The case tree can change after the EMS application starts. So you must reflush the
case tree when it changes. Select the menu Windows->Reflush Case Tree to
regenerate the case tree.U XFigure 21 shows the menu in the EMS OS application
window.

Note: When reflushing case tree, the case tree GUI will be re-generated so current case
selection and running result will be cleaned up on GUI.

Note: For Remote Execution, the EMS side will download the file CaseTree.ini from the target
host again and then regenerate a remote case tree by reading the file.

Note: For Remote Validation, the EMS side will traverse all the subdirectories of the test case
root directory again and then regenerate a local case tree. (Refer to section XU3.2.2UX.)

Figure 21 The Menu of Reflush Case Tree.

 27

3.2.5 Running Test Cases
When the EMS configuration is complete and the UEFI SCT Agent is running in
the passive mode, run the test cases. XUFigure 22 UX shows the EMS OS application
window running the Remote Validation test cases.

Figure 22 EMS OS application window running the Remote Validation test
cases.

Table 4 describes the sub-frames in the EMS OS application window.

Table 4. Sub-Frame in the EMS OS application window
Items Description

Case Tree Both the RemoteExecution and the RemoteValidation case tree will be
generated in this sub-frame. Select the menu Windows->
RemoteExecution or Windows-> RemoteValidation to switch the case
tree.

28

Items Description

Case File List Lists all the case files in the selected case tree directory.

Each case file has 3 elements:

Case Name: Case name.

Count: Running iteration of the corresponding test case.

Result: The result of running the selected test case. If the test case is
not selected, it will show “Not started”. If the test case is still running, it
will show “Running”. If error occurs, it will show “Case Error”. If the test
case has been run, it will show the record assertion number of passes,
warnings, and failures as shown in XFigure 23 X.

Output Shows the running log for the test cases. There are two kinds of log
files: [Case Name].log and [Case Name].ekl. The log files are
generated under the directory \bin\log\[Case Directory Name].

In the Case Tree sub-frame, each case directory has 3 elements: an icon, a check
box, and a directory name text.U Figure 23shows each element and the status of each
element.

 29

Figure 23 EMS OS application window-Case Tree Sub-frame.

XTable 5X describes the usage and the different status meanings of each element for
the Case Tree directory.

Table 5. Each Element in the Case Tree Sub-frame
Items Description

Icon You can click the Icon of a case directory to change the current
directory.

Status meanings:

Green Color: no case file was selected.

Black Color: one or more case files were selected.

Check Box You can click the Check Box to select all the case files in the case
directory.

Status meanings:

Unchecked: no case file was selected.

Checked: one or more case files were selected.

Directory Name
Text

Status meanings

Bold: Current case directory.

Regular: Not current case directory.

After selecting the cases to run, select the menu Run->Start to run the test cases.
Status meanings
To stop the case when running, click the menu Run->Stop, and the test will stop
after the current running test case has finished. This is to make sure the case
running context is clean and that test cases won’t affect each other.

3.2.6 Loading and Saving a Sequence File
Selected test cases can be saved as a sequence file. Sometimes it is more convenient
to run some test cases more than one time, and this function allows one selection,
rather than reselecting all the test cases again. Select all the test cases the first time,
save the selection as a sequence file, and when running those test cases again, one
can load the sequence file to select test cases automatically. The test sequence file is
created in the same directory where the SCT was invoked.
To save a sequence file, select one or more test cases, and then select the menu
“File->Save sequence file as…” XUFigure 24UX shows the sequence file Save As
window.

30

 Figure 24 Sequence File Saving Window.

To load a sequence file, select the test case, then select the menu “File->Load
sequence file”. XUFigure 25UX shows the sequence file loading window.

 31

Figure 25 Sequence File Loading Window.

3.2.7 Generating Log Files
For Remote Validation, the test report file is created in the “Report” subdirectory
where the EMS was invoked. Two kinds of reports are generated: one is in case-
level and the other is in assertion-level.
For Remote Execution, the test report is created remotely on the EFI target machine
and the test report file is transferred back to the report subdirectory where the EMS
was invoked.

Note: The report file is in CSV format and the report file is named by date and time.

3.2.8 Using the Tools Menu
XTable 6X describes each submenu function of the Tools menu.

32

Table 6. Submenus of the Tools Menu
Items Description

Edit Opens an editing window. This is a simple text editor and it provides
highlighting display for UEFI SCT remote validation test
cases. XFigure 26X shows the functions in detail.

Clear Output Clears current records in the Output sub-frame of the EMS OS
application window.

Figure 26 Editing File Window.

3.2.9 Using the Help Menu
XTable 7X describes each submenu function of the Help menu.

 33

Table 7. Submenus of the Help Menu
Items Description

Index Provides a quick reference on Remote Validation Tcl commands for
case developers. Find detailed usage information about the
commands used in the Tcl script. Figure 27shows the functions in
detail.

About ENTS… Provides the version and copyright information about EMS.

Figure 27 ENTS Case Writer’s Guide Window.

34

4
UEFI SCT For IHV

4.1 IHV SCT Installation3B55B

4.1.1 Installing the IHV SCT
1. The IHV SCT agent is a shell application, so the EFI Shell environment is a

must to run IHV SCT agent. Please boot to the specified shell environment, and
do the following installation steps, according to different target platforms.

4.1.1.1 Installing the IHV SCT Agent on an IA32 Platform
1. Copy the contents of the IA32 build directory SctPackageIA32 to a USB

device.
2. Put the USB device into the USB port and boot the system to the EFI Shell

environment.
3. In EFI Shell environment, change the current drive and directory to the USB

device drive and SctPackageIA32 directory.
4. Run installIA32.efi and follow the instructions on the screen.

4.1.1.2 Installing the IHV SCT Agent on an X64 Platform
1. Copy the contents of the X64 build directory SctPackageX64 to a USB device.
2. Put the USB device into the USB port and boot the system to the EFI Shell

environment.
3. In EFI Shell environment, change the current drive and directory to the USB

device drive and SctPackageX64 directory.
4. Run installX64.efi and follow the instructions on the screen.

4.2 The Usage of IHV SCT

4.2.1 Using the Command Line Interface
The command line interface of the IHV SCT agent is similar to the UEFI SCT’s
(see the “UEFI SCT User Guide”), but the IHV SCT does not support the passive
mode. The syntax of the IHV SCT’s command line is:
SCT [-a | -c | -s <seq> | -u][-r] [-g <report>][-v]

XTable 8X provides a description of SCT parameters.

Table 8. SCT Parameters
Options Description
-a Execute all test cases that are recognized by the IHV SCT Test

Harness.

35

-c Continue execution of the test case in progress. This option is used to
continue execution of test cases that perform system resets as part of
their test routine.

-g
<report>

Generate test report in .CSV format. The filename of the report is
specified by report.

-r Resets the environment for a fresh execution of the tests. This option
removes results of previous test executions. Generally, it is used with
the -a or -s options.

-s <seq> Execute test cases in the sequence specified in the file seq.

-u Start the Test Harness with the menu-driven interface.

-v Disables the display of test log information on the screen.

Test log display on the screen is enabled by default. In command line interface, -v
option can be used both in native mode & passive mode to disable display of test
log information on the screen. It can be used combined with –a / -c / -r / -s / -p.
Parameter -v only effects until the end of this command execution.

4.2.2 Using the Menu-Driven Interface

Syntax
SCT -u

Description
Type SCT -u to produce the Main Menu of the menu-driven interface.

4.2.2.1 Main Menu
The Main Menu (Figure 28H) contains user selectable items for initiating a number
of IHV SCT actions.

36

Figure 28 Main Menu of IHV SCT

XTable 9X lists and describes the major items found in the Main Menu.

Table 9. Major Items in the Main Menu of the SCT
Items Description

Test Case
Management

Selects and executes specific test cases

Test
Environment
Configuration

Sets the parameters for test execution, including the maximum run
times for each test case, enabling/disabling screen output, etc.

Test Device
Configuration

Selects the devices that should be tested.

Test Report
Generator

Generates a test report in .CSV format. This test report can be opened
by the Microsoft® Excel* or the other compatible utilities.

F4 (Reset
Results)

Resets all test results. It is equivalent to invoking “SCT –r” in the
command line.

F5 (Load
Sequence)

Loads a test sequence file from the storage device. This function
allows user to load, edit or execute an existing test sequence file.

 37

F6 (Save
Sequence)

Saves a user-specified test sequence into a file. This function allows
the user to save selected test cases into a file that can then be used for
later test execution via “SCT –s <seq>” from the command line.

4.2.2.2 65BManaging Test Cases
The UEFI compliance IHV SCT includes a set of test cases for UEFI Specification
compliance testing. The method to manage the test cases and to specify test cases in
the tree-like hierarchy is described in “UEFI SCT User Guide”.
In IHV SCT, only selecting the test cases in the tree-like menu is not enough to test.
Selecting cases in tree-like menu just tells IHV SCT which cases should be run, in
IHV SCT, users must choose which devices they want to test through “Test Device
Configuration”(see section X4.2.2.3X).

4.2.2.3 66BTest Device Configuration
The IHV SCT provides the utility of Test Device Configuration. This allows users
to choose the devices for testing. The IHV SCT uses a configuration file to save a
list of devices that users have chosen. During IHV SCT testing, it will only test the
supported devices listed in the configuration file instead of all the supported devices
in the system. In other words if the users only select the test cases through the tree-
like menu but do not choose any device though the “Test Device configuration”, no
checkpoints in the cases will be tested.
In the IHV SCT, selecting cases in tree-like menu tells IHV SCT which cases
should be run; and choosing devices through the “Test Device Configuration” tells
the IHV SCT which devices should be test. The usage of Test Device Configuration
is shown in HUFigure 29UH:

38

Figure 29 Test Device Configuration

Table 10. The Items in the Menu of the Test Device Configuration
Items Description

H Print the help information

I <Handle> Insert one device into the configuration file

L List all devices in the configuration file

R <Index> Remove one device from the configuration file

S <Type> Scan devices in the system
(Type 0: All, Type 1: With Option ROM)

V <Index> List one device in the configuration file in verbose mode

In the IHV SCT, the usual way to test an add-in card as follows: The first thing
users should do is let the SCT scan devices in the system by typing the command
line “S 0” or “S 1” in the Test Device Configuration’s window. “S 0” means scan
all devices, “S 1” means scan devices with option ROM. See Table 10.

 39

After SCT scan, the “Handle” of the device sought can be known, so users can
insert the device sought into SCT’s configuration file by typing the command line
”I <Handle>”;

40

 41

At this time, users can select test cases in the tree-like menu. The SCT can run the
test only if all the operations of test device configuration are done.

Note: If users want to start a new test because the test device configuration has been changed,
the “SCT -r” operation is suggested.

42

5
UEFI SCRT

5.1 Introduction
This chapter introduces the Self-Certification Runtime Test (SCRT) Utility and
focuses on how to use it.
As a supplement to SCT, SCRT is invoked under the EFI shell environment and
used to validate UEFI Runtime Services implementations for compliance to the
UEFI Specification. The source code of SCRT has been included in UEFI SCT
release package and the binary of SCRT utility is generated automatically in the
build process of UEFI SCT. Please refer to the instructions in the document UEFI
SCT Getting Started. This document is included in the UEFI SCT release package
to build the UEFI SCT Agent.

5.2 The Usage of SCRT

5.2.1 System Requirement
To ensure SCRT runs in the runtime environment without unexpected behavior, for
targeted platforms the physical memory on the target machine is limited to the
following rules:
• IA32 architecture-based platform: Physical memory <= 4G.
• X64 architecture-based platform: Physical memory <= 32G

5.2.2 The location of SCRT Utility
After UEFI SCT is built successfully, the SCRT Utility is generated automatically
and located at specified path below, including SCRTDRIVER.efi,
SCRTAPP.efi, SCRT.conf:

UefiSct\Build\UefiSct\DEBUG_VS2008x86\SctPackageIA32\I
A32\SCRT IA32 Version
UefiSct\Build\UefiSct\DEBUG_VS2008x86\SctPackageX64\X6
4\SCRT X64 Version

5.2.3 Run SCRT Utility
SCRT is invoked under the EFI shell environment:
1. Copy SCRT Utility into discretionary directory in EFI shell environment.
2. Change execution path to the directory that SCRT Utility is located.
3. type ‘Load SCRTDRIVER.efi’
4. type ‘SCRTAPP –f SCRT.conf’

 43

Figure 30 Run SCRT Utility with configure file

5.2.4 Configuration File
Following is an example for the usage model of the configuration file named
SCRT.conf. SCRT check points are divided into five groups, Variable Service,
Time Service, Capsule Service, MonotonicCount Service, and Reset Service.
In SCRT.conf, FALSE means to disable a runtime service test, and TRUE means
to enable a runtime service test.
With the help of this configuration file, SCRT obtains information regarding which
runtime services are needed to test in the runtime environment.

44

UEFI Runtime Test Utility SCRT Configuration file.

[variable]
SetVariable = TRUE
GetVariable = TRUE
GetNextVariableName = TRUE
QueryVariableInfo = FALSE

[time]
GetTime = TRUE
SetTime = TRUE
SetWakeupTime = TRUE
GetWakeupTime = TRUE

[capsule]
QueryCapsuleCapabilities = FALSE
UpdateCapsule = FALSE

[monotonicCount]
GetNextHighMonotonicCount = TRUE

[reset]
ColdReset = TRUE
WarmReset = FALSE
ShutDown = FALSE

Note: For three reset sub-items, only one item is allowed at a time.

5.2.5 Analyze SCRT Test Result
Unlike SCT, SCRT cannot create a test log file automatically in a runtime
environment because it lacks certain boot services. To solve this issue, SCRT
records the results in a variable. After runtime test, user can run “SCRTAPP.efi
–g SCRT.log” in shell environment to analyze the variable and generate a log
file which is named as ‘SCRT.log’. It lists all requested test points and separate
test results. From these messages, users can easily find which test point fails.
Besides this method, SCRT can send debug messages to Port 80 at the execution
time. Using these messages, the user can analyze the failure reason.

5.2.5.1 Log File Overview
SCRT log file is divided into several groups:

 45

Variable Services Test
Time Services Test
Capsule Service Test
Misc Services Test
Reset Services Test

The following is an example of the log file:

Note: Sometimes the result of Reset Services Test is not correct. Please note the platform
behavior to judge

********************Variable Test
Group*******************

SetVariable Requested
SetVariable Pass
GetVariable Requested
GetVariable Pass
GetNextVariable Requested
GetNextVariable Pass

********************Time Test Group*******************

GetTime Requested
GetTime Pass
SetTime Requested
SetTime Pass
SetWakeupTime Requested
SetWakeupTime Pass
GetWakeupTime Requested
GetWakeupTime Fail

********************Capsule Test
Group*******************

********************Misc Test Group*******************

GetNextCount Requested
GetNextCount Not Test

********************Reset Test
Group*******************

ColdReset Requested
ColdReset Not Test

Please note the following”

46

• Requested means this test point is requested to test in runtime environment.
• Pass means this test point is tested successfully in runtime environment.
• Fail means this test point is failed during runtime test, usually it causes

system hang.
• Not Test means this test point is not tested because some test point prior to it

causes system hang.

5.2.5.2 Port 80 Display
If the target machine under test has Port 80, the hex number displayed with Port80
can be used to trace the test case workflow. For every checkpoint, Port 80 will
display a unique hex number. Please refer to Appendix C for more details.

5.2.6 System Hang
SCRT validates the Runtime Services implementation in the runtime environment.
If some pointers are not converted, the system hangs. If the system hangs at Nth
checkpoint, the SCRT records the (N-1)th information in the test log file and
displays the corresponding hex number in Port 80. Using this relationship with the
enabled checkpoint sequences, users can find which checkpoint hangs.

5.3 How to Add SCRT Test Cases
SCRT is used to validate Runtime Services in a runtime environment. If a more
detailed test case for runtime services is needed, users may develop the required test
case, and add it to the SCRT infrastructure.

5.3.1 The Framework of SCRT Utility
SCRTDriver in the SCRT utility is responsible for performing the test cases. In
SCRTDriver module, GUID definition for the checkpoints is declared in
Guid.h and Guid.c, and test cases are located in TestCase.c.
To extend the test coverage, the user can add the test cases in TestCase.c and
add the new GUID definitions in Guid.h/Guid.c.

 47

SCRTDriver\
 |----Guid.h
 |----Guid.c
 |----TestCase.c
 |----Debug.c
 |----Print.c
 |----SCRTDriver.c
 |----SCRTDriver.h
 |----SCRTDriver.inf
 |----ia32
 |----Dump.c
 |----Io.c
 |----Io.h
 |----IoAccess.asm
 |----Port80.asm
 |----ipf
 |----Dump.c
 |----Io.c
 |----Io.h
 |----Port80.c
 |----x64
 |----Dump.c
 |----Io.c
 |----Io.h
 |----IoAccess.asm
 |----Port80.asm

Note: Guid.h/Guid.c declares GUID definition.

Note: TestCase.c consists of the test cases.
In TestCase.c, we allow for adding more checkpoints. For each new
checkpoint, the user needs to create a new GUID for it and declare it in
Guid.h/Guid.c.

5.3.2 Example: Adding a Test Case
Because the call Runtime Service UpdateCapsule behaves differently for
different platforms—for example, a system reset—this checkpoint is not included in
TestCase.c as a common test case. Users can add a case in TestCase.c to
verify the service, per the example shown below.
Following is sample code to add the checkpoint in
EfiCapsuleTestVirtual(), TestCase.c:

48

Port80(xxx);

Status = VRT->UpdateCapsule (
 xxxxx,
 xxxxx,
 xxxxx
);

RecordAssertion (
 Status,
 gSCRTAssertionGuidxxx,
 "RT. UpdateCapsule – should be EFI_SUCCESS",
 "%a:%d:Status - %r, Expected - %r",
 __FILE__,
 __LINE__,
 Status,
 EFI_SUCCESS
);

In addition, define gSCRTAssertionGuidxxx in Guide.h and Guide.c as
shown below:
In Guide.c:

EFI_GUID gSCRTAssertionGuidxxx =
EFI_TEST_SCRT_ASSERTION_xxx_GUID;

In Guide.h:

#define EFI_TEST_SCRT_ASSERTION_xxx_GUID \
{ xxxxxxxx, xxxx, xxxx, { xx, xx, xx, xx, xx, xx, xx,
xx } }

extern EFI_GUID gSCRTAssertionGuidxxx;

 49

50

A.1
Test Report Format

A summary of SCT test results is recorded into a test report file in CSV format. The
output information includes the number of passed and failed test assertions for each
executed test category, as well as detailed information for each executed test
assertion, passed or failed.
Below are the contents of a sample test report file:

“Self Certification Test Report”
“Service/Protocol Name”,“Total”,“Failed”,“Passed”
“Boot Services Test\Event, Timer, and Task Priority
Services Test”,“16”,“0”,“16”
“Boot Services Test\Image Services
Test”,“121”,“1”,“120”
“Driver Model Test\Driver Binding Protocol
Test”,“15”,“1”,“14”
“Total”,“152”,“2”,“150”

“Index”,“Instance”,“Iteration”,“Guid”,“Result”,“Title”
,“Runtime Information”,“Case Revision”,“Case Guid”
“3.1.2.1”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-
C38AFE2BBDEB”,“FAIL”,“BS.LoadImage() – Load image fail
via LOAD_FILE protocol”,“Status – Unsupported, TPL –
4”,“0x00010000”,“256456BC-D9E1-476c-B4AD-BE37E53F7940”
“3.1.2.2”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-
C38AFE2BBDEC”,“FAIL”,“BS.LoadImage() – Load image fail
via Device and File path”,“Status – Not found, TPL –
8”,“0x00010000”,“256456BC-D9E1-476c-B4AD-BE37E53F7940”

“Index”,“Instance”,“Iteration”,“Guid”,“Result”,“Title”
,“Runtime Information”,“Case Revision”,“Case Guid”
“3.1.1.1”,“0”,“0”,“3D3BEE76-3BE8-40DD-BD34-
C38AFE2BBDEA”,“PASS”,“BS.CreateEvent() – Create event
with invalid event type”,“Status – Invalid
parameter”,“0x00010000”,“75634025-6B30-4cc4-AC5C-
6D031AE4D74C”

When viewed in Microsoft Excel ®, the contents of the report file appear as shown
in Figure 31X.

 51

Figure 31 Excel® File Containing Test Report in CSV Format.

52

A.2
Test Category

Information on each test category that the EFI SCT Test Harness will need for
execution is provided using a category file in INI format. This file is created in the
Data subdirectory.
Below are the contents of a sample category file:

[Category Data]
Revision = 0x00010000
CategoryGuid = 7AB1E93F-B439-4e2e-B773-CA540CEBCFEF
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = Boot Services Test\Event, Timer,
and Priority Services Test
Description = Event, Timer, and Priority Services
Test. Related to EFI Spec 5.1.

[Category Data]
Revision = 0x00010000
CategoryGuid = CC129459-A197-4c8f-9422-2441E88C559A
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = Boot Services Test\Memory
Allocation Services Test
Description = Memory Allocation Services Test.
Related to EFI Spec 5.2.

The CategoryGuid is the GUID of a corresponding test file. For user-defined
test cases, the GUID is defined when using the Black-Box or White-Box test
interface. The InterfaceGuid is made up of EFI Protocol GUIDs that are
currently in testing. For example, there are three GUIDs specially defined in the
EFI 1.10 Specification for the EFI services.
Boot Services: E9EF7553-F833-4e56-96E8-38AE679523CC
Runtime Services: AFF115FB-387B-4c18-8C41-6AFC7F03BB90
Generic Services: 71652D04-BF38-434a-BCB8-6547D7FD8384
Using the category file, the list of test categories can be changed to suit your
requirements. For example, the current UEFI SCT release provides test cases for
testing protocol interfaces defined in the UEFI Specification. You can integrate
additional test cases for these depending on the EFI implementation on the target
platform. A sample category file is shown below. The highlighting marks the places
where the file can be modified.

 53

[Category Data]
Revision = 0x00010000
CategoryGuid = 7AB1E93F-B439-4e2e-B773-CA540CEBCFEF
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = EFI Spec\Boot Services
Test\Event, Timer, and Priority Services Test
Description = Event, Timer, and Priority Services
Test. Related to EFI Spec 5.1.

[Category Data]
Revision = 0x00010000
CategoryGuid = CC129459-A197-4c8f-9422-2441E88C559A
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = EFI Spec\Boot Services
Test\Memory Allocation Services Test
Description = Memory Allocation Services Test.
Related to EFI Spec 5.2.

[Category Data]
Revision = 0x00010000
CategoryGuid = {GUID of user-defined test}
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = User-defined\Boot Services
Test\Event, Timer, and Priority Services Test
Description = Event, Timer, and Priority Services
Test. Related to XXX design document.

[Category Data]
Revision = 0x00010000
CategoryGuid = {GUID of user-defined test}
InterfaceGuid = E9EF7553-F833-4e56-96E8-38AE679523CC
Name = User-defined\Boot Services
Test\Memory Allocation Services Test
Description = Memory Allocation Services Test.
Related to XXX design document.

54

A.3
SCRT Assertion Information

To accomplish a runtime service test, sometimes more than one step is required. For
example, to test GetVariable service, set a certain variable first, and then get it
to test. Encode the Port 80 number as XY. Here X stands for the runtime service
sequence and Y stands for the step sequence in this service test. Corresponding to a
unique Port 80 hex number, a unique GUID and the test description are printed out
to COM1/COM2.The relationship is shown in XTable 11X.
XTable 11X shows the detailed information for each assertion in the UEFI SCRT tests.
It can be used by UEFI SCRT users as a case assertion reference.

Table 11. Test Case, Port 80 Display and Log file Relationship for Each
Assertion

Test Case Port80
Display

GUID Assertion Test Description

SetVariable 11 0xbff7e548,

0xf13a,

0x497c,

0x8e, 0x21,
0xae, 0xc2,
0x37, 0xa6,
0xcc, 0xe3

RT.SetVaria
ble - Set a test
variable named
UEFIRuntime
Variable,
should be
EFI_SUCCESS

Call RT.SetVariable
with the special name and
Guid. And the variable is set
with 8 Bytes data size. The
return status should be
EFI_SUCCESS.

12 0xf556b5ad,

0xaace,

0x4bf0,

0xb7, 0x24,
0xe1, 0x29,
0xee, 0x0,
0xea, 0x37

RT.SetVaria
ble - Clear a test
variable named
UEFIRuntime
Variable,
should be
EFI_SUCCESS

Call RT.SetVariable
to clear the test variable. The
return status should be
EFI_SUCCESS.

GetVariable 21 0xd66e4a7f,

0x6d54,

0x4cc0,

0xb9, 0x3b,
0xf6, 0x2f,
0x48, 0x57,
0xa6, 0xff

RT.SetVaria
ble - Set a test
variable named
UEFIRuntime
Variable,
should be
EFI_SUCCESS

Call RT.SetVariable
with the special name and
Guid. And the variable is set
with 8 Bytes data size. The
return status should be
EFI_SUCCESS.

 55

Test Case Port80
Display

GUID Assertion Test Description

22 0xaa5c5763,

0x36cd,

0x4f00,

0x84, 0x36,
0xf4, 0xa9,
0xd5, 0xaf,
0x12, 0xfb

RT.GetVaria
ble - Get the test
variable named
UEFIRuntime
Variable,
should be
EFI_SUCCESS

Call RT.GetVariable
to get the test variable. The
return status should be
EFI_SUCCESS

23 0xbac20972,

0x9662,

0x4f24,

0x8a, 0xac,
0x66, 0x41,
0x42, 0xb5,
0x6d, 0xde

RT.SetVaria
ble - Clear a test
variable named
UEFIRuntime
Variable,
should be
EFI_SUCCESS

Call RT.SetVariable
to clear the test variable. The
return status should be
EFI_SUCCESS.

GetNextVari
ableName

31 0x8bcda7a3,

0x2848,

0x413d,

0xbf, 0x5, 0x7,
0xe1, 0x9,
0x8d, 0x42,
0xd2

RT.SetVaria
ble - Set a test
variable named
UEFIRuntime
Variable,
should be
EFI_SUCCESS

Call RT.SetVariable
with the special name and
Guid. And the variable is set
with 8 Bytes data size. The
return status should be
EFI_SUCCESS.

32 0x67b4e72a,

0xc792,

0x4f74,

0x92, 0x1d,
0xea, 0xb3,
0x66, 0x4f,
0x95, 0x3b

RT.GetNextV
ariableName
- Get the next
variable name
should be
EFI_SUCCESS
/EFI_NOT_FO
UND

Loop call
RT.GetNextVariabl
eName get the next
variable. The return status
should be
EFI_SUCCESS/EFI_N
OT_FOUND.

33 0xdbb5195f,

0x3584,

0x427d,

0xa1, 0x68,
0x3f, 0x5e,
0x1d, 0x24,
0x3b, 0xb9

RT.SetVaria
ble - Clear a test
variable named
UEFIRuntime
Variable,
should be
EFI_SUCCESS

Call RT.SetVariable
to clear the test variable. The
return status should be
EFI_SUCCESS.

56

Test Case Port80
Display

GUID Assertion Test Description

QueryVariabl
eInfo

41 0x8e75d9a9,

0x3c14,

0x4095,

0xbe, 0x76,
0xad, 0xcf,
0x55, 0xab,
0x8e, 0x6c

RT.QueryVar
iableInfo -
Query Variable
Information of the
platform should be
EFI_SUCCESS
.

Call
RT.QueryVariableI
nfo to query variable
information. The return status
should be EFI_SUCCESS.

GetTime 51 0xe8cd357a,

0xd254,

0x4f7b,

0x92, 0xc3,
0x23, 0xfd,
0x4d, 0xd6,
0xc0, 0xa3

RT.GetTime -
Get the current
time and date
information should
be
EFI_SUCCESS

Call RT.GetTime with
NULL capabilities. The
return status should be
EFI_SUCCESS.

SetTime 61 0x6417f479,

0xa174,

0x4614,

0x80, 0xcd,
0xe6, 0x96,
0x85, 0x8c,
0xd9, 0xfa

RT.GetTime -
Get the current
time and date
information should
be
EFI_SUCCESS

Call RT.GetTime with
NULL capabilities. The
return status should be
EFI_SUCCESS.

62 0xd6a3c41a,

0xe6cf,

0x42fc,

0xa0, 0x39,
0x68, 0xf8,
0x39, 0xbb,
0xbf, 0xe3

RT.SetTime –
set the same time
as just got. should
be
EFI_SUCCESS

Set time. The return status
should be EFI_SUCCESS.

SetWakeupT
ime

71 0xd6b952a9,

0x3d54,

0x4277,

0xbf, 0x60,
0xab, 0xfb,
0x3, 0x71, 0x5,
0xd5

RT.GetTime -
Get the current
time and date
information should
be
EFI_SUCCESS

Call RT.GetTime with
NULL capabilities. The
return status should be
EFI_SUCCESS.

 57

Test Case Port80
Display

GUID Assertion Test Description

72 0x3f65c680,

0xae51,

0x4830,

0xb3, 0xd1,
0xd7, 0xc9,
0x2a, 0xcd,
0x14, 0x8a

RT.SetWakeu
pTime - Set
wakeup time in 1
hour later from
now on, should be
EFI_SUCCESS

Call
RT.SetWakeupTime to
set wake up time, the time is
1 hour later from now on.
The return status should be
EFI_SUCCESS.

GetWakeupT
ime

81 0x4611524b,

0xbfd2,

0x42d4,

0x85, 0xa8,
0x9b, 0xf,
0xd1, 0xc6,
0x27, 0xd3

RT.GetWakeu
pTime - Get the
current wakeup
alarm clock setting
information, should
be
EFI_SUCCESS
.

Call
RT.GetWakeupTime to
get the current wake up time.
The return status should be
EFI_SUCCESS.

QueryCapsul
eCapabilities

91 0x5c2cbd54,

0x1388,

0x4e87,

0xab, 0x11,
0x2c, 0x12,
0x3d, 0x24,
0x5, 0xbd

RT.QueryCap
suleCapabil
ities - Query
the capsule
capabilities with a
NULL
MaxCapsuleS
ize, should be
EFI_INVALID
_PARAMETER.

Call
RT.QueryCapsuleCa
pabilities to query the
capsule capabilities with a
NULL
MaxCapsuleSize. The
return status should be
EFI_INVALID_PARAM
ETER.

UpdateCaps
ule

A1 0x9e39a3e3,

0xcbb6,

0x4fcc,

0xb2, 0x21,
0x73, 0x24,
0x79, 0xf1,
0x21, 0x77

RT.UpdateCa
psule – Update
Capsules with 0
CapsuleCoun
t, should be
EFI_INVALID
_PARAMETER.

Because this case
brings on some
reset or update
flash behavior, it is
recommended
disable as default.
Users can
enhance this test
case for their own
test platform.

Call
RT.UpdateCapsule
with 0 CapsuleCount.
The return status should be
EFI_INVALID_PARAM
ETER.

58

Test Case Port80
Display

GUID Assertion Test Description

GetNextHigh
MonotonicCo
unt

B1 0xda790c1e,

0xdcbf,

0x4c0e,

0xaf, 0xf7,
0x46, 0x3a,
0xc4, 0x47,
0xb0, 0x6e

RT.GetNextH
ighMonotoni
cCount - First
get next high
monotonic
counter, should be
EFI_SUCCESS
.

Call
RT.GetNextHighMon
otonicCount to get
next high monotonic counter.
The return status should be
EFI_SUCCESS.

ResetSyste
m

C1 0x1bc049bb,

0xc371,
0x46cc,

0x8d, 0x98

0xef, 0x56

0xc, 0x35

0x7f, 0x1

RT.ResetSys
tem - Machine
should have code
reset! We should
never come here.

RT.ResetSystem -
Machine should have code
reset! We should never come
here.

C2 0x11a541a4,

0xf75d,

0x42e0,

0xa8, 0x97,
0xe7, 0x92,
0xd4, 0x37,
0xc2, 0xfc

RT.ResetSys
tem - Machine
should have warm
reset! We should
never come here

RT.ResetSystem -
Machine should have warm
reset! We should never come
here

C3 0xe5818568,
0x4723,

0x473f,

0xbc, 0x8f,

0xb5, 0x86,

0x2e, 0xd2,

0x5e, 0xb1

RT.ResetSys
tem - Machine
should have shut
down! We should
never come here

RT.ResetSystem -
Machine should have shut
down! We should never
come here

 59

	UEFI 2.4 Errata B Self-Certification Test (SCT) II User Guide
	1 Introduction
	1.1 Overview
	1.2 System Requirements
	1.3 Installation

	2 Usage Model – Native Mode
	2.1 Using the Command Line Interface
	2.2 Using the Menu-Driven Interface
	2.2.1 Main Menu
	2.2.2 Managing Test Cases
	2.2.3 Configuring the Test Environment
	2.2.4 Generating a Test Report
	2.2.5 Loading and Saving a Test Sequence

	2.3 Sample Usage Models
	2.3.1 Executing from the Command Line Interface
	2.3.2 Executing from the Menu-Driven Interface

	2.4 Frequently Asked Questions
	2.4.1 Stopping Automatic Test Execution When the System Restarts
	2.4.2 Stopping SCT Execution While Tests Are Running
	2.4.3 Removing a Test Case that Always Causes the System to Hang
	2.4.4 When There Are No Test Results after Test Execution
	2.4.5 When Test Assertion Totals Are Different on Different Platforms

	3 Usage Model – Passive Mode
	3.1 Configuring UEFI SCT Agent
	3.2 Configuring EMS
	3.2.1 Configuring the EMS Interface
	3.2.2 Configuring Base Information
	3.2.3 RemoteExecution & RemoteValidation
	3.2.4 Reflushing the Case Tree
	3.2.5 Running Test Cases
	3.2.6 Loading and Saving a Sequence File
	3.2.7 Generating Log Files
	3.2.8 Using the Tools Menu
	3.2.9 Using the Help Menu

	4 UEFI SCT For IHV
	4.1 IHV SCT Installation3B55B
	4.1.1 Installing the IHV SCT
	4.1.1.1 Installing the IHV SCT Agent on an IA32 Platform
	4.1.1.2 Installing the IHV SCT Agent on an X64 Platform

	4.2 The Usage of IHV SCT
	4.2.1 Using the Command Line Interface
	4.2.2 Using the Menu-Driven Interface
	4.2.2.1 Main Menu
	4.2.2.2 65BManaging Test Cases
	4.2.2.3 66BTest Device Configuration

	5 UEFI SCRT
	5.1 Introduction
	5.2 The Usage of SCRT
	5.2.1 System Requirement
	5.2.2 The location of SCRT Utility
	5.2.3 Run SCRT Utility
	5.2.4 Configuration File
	5.2.5 Analyze SCRT Test Result
	5.2.5.1 Log File Overview
	5.2.5.2 Port 80 Display

	5.2.6 System Hang

	5.3 How to Add SCRT Test Cases
	5.3.1 The Framework of SCRT Utility
	5.3.2 Example: Adding a Test Case

	A.1 Test Report Format
	A.2 Test Category
	A.3 SCRT Assertion Information

