
presented by

An Introduction to Platform Security

Spring 2018 UEFI Seminar and Plugfest
March 26-30, 2018

Presented by Brent Holtsclaw and John Loucaides (Intel)

Legal Notice
No computer system can be absolutely secure.

Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

Note: Contents are meant as examples. This does not represent an exhaustive analysis. 3

Building a Threat Model…

Why Attack Firmware?
• Persistent Compromise

• Update firmware image with malicious content

• Stealthy Compromise

• System Management Mode (SMM) code injection

• Bypass of Security Features

• Hypervisor / Virtual Machine Monitor (VMM) Bypass

• Denial of Service

• Corrupt/Delete critical configuration settings

“These draft guidelines promote resiliency in

the platform by describing security mechanisms

for protecting the platform against unauthorized

changes, detecting unauthorized changes that

occur, and secure recovery from attacks.”

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-highly-secure

Firmware-related features

Systems must have firmware that implements Unified Extension Firmware Interface (UEFI) version 2.4+

Systems must have firmware that implements UEFI Class 2 or UEFI Class 3

System's firmware must support UEFI Secure Boot and must have UEFI Secure Boot enabled by default

System's firmware must implement Secure MOR revision 2

Systems must support the Windows* UEFI Firmware Capsule Update specification

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-highly-secure

Attacks and Platform Assets

• Persistent Compromise

• Update firmware image with malicious content

• Stealthy Compromise

• SMM code injection

• Bypass of Security Features

• VMM Bypass

• Denial of Service

• Corrupt/Delete critical configuration settings

Boot Media
(e.g. SPI Flash)
including:
• Firmware code
• NVRAM data

Runtime Firmware
(e.g. SMM)

HW Configuration
(e.g. locked registers)

These are examples. Not an exhaustive list.

8

Classes of Attacker

Physical

Unlimited Limited

Software

Privileged Unprivileged

Decreasing Attacker Power

9

Resilient Defense

Boot Media

Runtime Firmware
(eg. SMM)

HW Configuration

Detect

Recover

Protect

Physical

Unlimited Limited

Software

Privileged Unprivileged

Decreasing Attacker Power

10

Attack Surface (Interfaces to access/attack assets)

Boot Media

Runtime Firmware
(eg. SMM)

HW Configuration

SPI programmer

SW SMI

UEFI Variables

Register Access

Device Drivers

HW/SW
Sequencing

Debug Access

Physical

Unlimited Limited

Software

Privileged Unprivileged

Decreasing Attacker Power

Note: Contents are meant as examples. This does not represent an exhaustive analysis.

Do Firmware Attacks Require

Kernel Privileges?

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

OS Kernel

OS Driver

Malicious App
A matter of finding

legitimate signed kernel

driver which can be used

on behalf of user-mode

exploit as a confused

deputy.

RWEverything driver

signed for Windows 64bit

versions (co-discovered

with researchers from

MITRE)

11

Securing the Platform

12

Defending the Boot Media Asset

Boot Media Resiliency
Attack Protect Mechanism Detect Mechanism Recover Mechanism

Direct Write to Boot
Media (eg. unlocked
SPI, Speed Racer, etc.)

• SPI Controller
Config

• SMM-based
Protection

• TCB reduction

• UEFI Secure
(Verified) Boot

• Measured Boot
• HW Root of

Trust

• Capsule Update
and Recovery

• Independent
hardware

UEFI Plugfest – Spring 2018 www.uefi.org 13

These are examples. Not an exhaustive list.

https://bromiumlabs.files.wordpress.com/2015/01/speed_racer_whitepaper.pdf

Boot Media Protections

• SPI Controller
– Descriptor regions and permissions

– Protected Range Registers

• SMM-Based BIOS Write Protection
– SMI when enabling write access

– Enable write access from SMM

• Reducing the TCB

14

Software

SPI
Controller

SPI

Detection: Verified and Measured Boot

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed
BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Driver

DXE

OROM

DXE

OROM

UEFI App

UEFI App
Signature

Check

and Hashing

Driver

Signing

TPM

Detection: Hardware Root of Trust

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed
BIOS

Update

DXE

Driver

OS Kernel

OS Driver OS Driver

DXE

OROM

DXE

OROM

UEFI App

UEFI App
Signature

Check

and Hashing

Driver

Signing

TPM
Move the root of
trust from FW to

HW by having HW
check FW integrity

Securing the Platform

17

Defending the Runtime Firmware Assets

Runtime Firmware Resiliency
Attack Protect Mechanism Detect Mechanism Recover Mechanism

Call-Outs • Limited Page Table
Access

• No Execute Pages
• Hardware Check

• Debugger
• Fuzzing

• Firmware Update

Confused Deputy • Limited Page Table
Access

• Fuzzing (e.g.
CHIPSEC)

• Firmware Update

Malicious DMA • TSEG
• IOMMU

• Reboot
• Firmware Update

UEFI Plugfest – Spring 2018 www.uefi.org 18

System Management Mode (SMM)
• CPU enters System Management Mode (SMM) upon receiving System Management Interrupt (SMI#) from the

chipset or other logical CPU

• CPU (OS) state is saved in SMRAM upon entry to SMM and restored upon exit from SMM. SMRAM is a range

of DRAM reserved by BIOS and protected from other runtime code.
• CPU exits SMM to the interrupted OS when SMI handler executes RSM instruction (“Resume from SMM”)

These are examples. Not an exhaustive list.

SMI “Confused Deputy” Attacks

Phys Memory

SMI Handler

VMM Memory

Guest OS Memory

Guest OS Memory

Attacker can target SMM itself or bypass VMM protections, writing to VMM or other Guest VM memory

RAX (code)

RBX (pointer)

RCX (function)

SMI
Saved SMBASE value SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

SMBASE

SMI Handler Memory Map Restriction

20

SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

Phys Memory

SMRAM

Comm Buffer

OS/VMM Memory

SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

Phys Memory

SMRAM

Comm Buffer

OS/VMM Memory

S
M

I
H

a
n

d
le

r
A

c
c
e

s
s

S
M

I
H

a
n
d

le
r

A
c
c
e

s
s

Finding SMM “Pointer” Vulnerabilities

[x][===

[x][Module: Testing SMI handlers for pointer validation vulnerabilities

[x][===

...

[*] Allocated memory buffer (to pass to SMI handlers) : 0x00000000DAAC3000

[*] >>> Testing SMI handlers defined in 'smm_config.ini'..

...

[*] testing SMI# 0x1F (data: 0x00) SW SMI 0x1F

[*] writing 0x500 bytes at 0x00000000DAAC3000

> SMI 1F (data: 00)

RAX: 0x5A5A5A5A5A5A5A5A

RBX: 0x00000000DAAC3000

RCX: 0x0000000000000000

RDX: 0x5A5A5A5A5A5A5A5A

RSI: 0x5A5A5A5A5A5A5A5A

RDI: 0x5A5A5A5A5A5A5A5A

< checking buffers contents changed at 0x00000000DAAC3000 +[29,32,33,34,35]

[!] DETECTED: SMI# 1F data 0 (rax=5A5A5A5A5A5A5A5A rbx=DAAC3000 rcx=0 rdx=...)

[-] <<< Done: found 2 potential occurrences of unchecked input pointers

https://www.youtube.com/watch?v=z2Qf45nUeaA

https://www.youtube.com/watch?v=z2Qf45nUeaA

Software/DMA Access to SMRAM

4GB

SMRAM

CPU software

access to SMRAM is

blocked by SMRR

SMRR

CPU

DMA access to

SMRAM is blocked

due to TSEG

covering SMRAM

23

Preboot DMA Protection

https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pd

f

https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf

Securing the Platform

24

Defending the HW Configuration Assets

Hardware Configuration Resiliency
Attack Protect Mechanism Detect Mechanism Recover Mechanism

Memory
Reconfiguration (e.g.
Remap)

• Configuration
Guidance &
Locking

• CHIPSEC • Reboot
• Firmware Update

Controller
Reconfiguration (e.g.
SPI)

• Configuration
Guidance &
Locking

• CHIPSEC • Reboot
• Firmware Update

Feature
Enable/Disable or
Reconfiguration (e.g.
IOMMU, instructions,
etc)

• Configuration
Guidance &
Locking

• CHIPSEC • Reboot
• Firmware Update

UEFI Plugfest – Spring 2018 www.uefi.org 25

These are examples. Not an exhaustive list.

https://invisiblethingslab.com/resources/bh08/part2-full.pdf

CHIPSEC: Platform Security Assessment Framework

CHIPSEC is a framework for analyzing the security of PC platforms
including hardware, system firmware (e.g. BIOS/UEFI), and the
configuration of platform components.
Research Testing Risk Assessment

Research

• Access to hardware from the OS

• Reusable Python based framework

Testing/Validation

• Implement test modules that support

multiple platforms

• Ability to provide both positive and

negative test cases

Risk Assessment

• Evaluate new systems for

vulnerabilities and mitigations

• Evaluate the state of existing systems

*Other names and brands may be claimed as the property of others.

Chipsec Main Chipsec Util

Modules Tools Commands

HAL

OS Helper

Linux Helper

Linux Driver

Windows Helper

Windows Driver

UEFI Helper

UEFI Code

Config

OSX Helper

OSX Driver

CHIPSEC Architecture

Testing Against Known Issues

• CHIPSEC - Framework for Platform
Security Assessment
– Tests for known security issues

(ex: locking SPI ROM at runtime)

– Runs under Microsoft Windows,
Linux, Mac OS X, and the UEFI Shell

– chipsec@intel.com

• Open Source (GPLv2 License)
– https://github.com/chipsec/chipsec

– Released in 2014

– Part of Intel’s Linux UEFI Validation
(LUV) suite: https://01.org/linux-uefi-
validation

mailto:chipsec@intel.com
https://github.com/chipsec/chipsec
https://01.org/linux-uefi-validation

Examples: Checking Locks with CHIPSEC

HW Configuration Test

Memory Controller memconfig

SPI Descriptor spi_access

SPI Controller spi_lock

BIOS Write Protection bios_wp

Debug Enable/Disable debug_interface

Architectural Features ia32cfg

29
These are examples. Not an exhaustive list.

30

Resilient Defense

Boot Media

Runtime Firmware
(eg. SMM)

HW Configuration

Detect

Recover

Protect

Physical

Unlimited Limited

Software

Privileged Unprivileged

Decreasing Attacker Power

Thanks for attending the Spring 2018 UEFI
Plugfest

For more information on the UEFI Forum and
UEFI Specifications, visit http://www.uefi.org

presented by

www.uefi.org 31UEFI Plugfest – Spring 2018

http://www.uefi.org/

