presented by

An Introduction to Platform Security

Spring 2018 UEFI Seminar and Plugfest
March 26-30, 2018

Presented by Brent Holtsclaw and John Loucaides (Intel)

Legal Notice

No computer system can be absolutely secure.

Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others

© Intel Corporation.

Building a Threat Model...

Note: Contents are meant as examples. This does not represent an exhaustive analysis.

Why Attack Firmware?

* Persistent Compromise
e Update firmware image with malicious content
e Stealthy Compromise
e System Management Mode (SMM) code injection
* Bypass of Security Features
e Hypervisor / Virtual Machine Monitor (VMM) Bypass
* Denial of Service

* Corrupt/Delete critical configuration settings

National Institute of Standards and Technology SEAR _-
NE information Technology Laboratory L Search

CONTACT SITE MAP

Computer Security Division
Computer Security Resource Center

May 30, 2017
SP 800-147B August 2014 BIOS Protection Guidelines for Servers SP 800-193
E SP 800-1478 M DRAFT Platform Fi Resili Guideli
doi:10.6028/NIST.SP.800-147B [Direct Link] atform Firmware festliency Guldelines
NIST announces the public comment release of Draft Special
. . . . Publication 800-193, Platform Firmware Resiliency Guidelines. The
SP 800-147 April 2011 BIOS Protection Guidelines platform is a collection of fundamental hardware and firmware
E SP 800-147 FAQ components needed to boot and operate a computer system. This
doi:10.6028/NIST.SP.800-147 [Direct Link] document provides technical guidelines and recommendations
supporting resiliency of platform firmware and data against potentially __

platform by describing security mechanisms for protecting the platform |
against unauthorized changes, detecting unauthorized changes that :

“These draft guidelines promote resiliency in
the platform by describing security mechanisms

- — e = ———— - o —— - - -

/ guide implementers, including system manufacturers and and

i i)/ component s_uppliersi on hpw to use these mechanisms to build a
for protecting the platform against unauthorized | | Sy budeionmopefoms

!] . vy The public comment period closed on July 14, 2017

i Changes, detect”’]g unauthonzed Changes tha‘t] 7 Questions? Send email to - 5p800-193comments@nist.gov

| 3 ' Draft SP 800-193

~occur, and secure recovery from attacks. 5 = Comment Template

Standards for a highly secure Windows 10 device

51 11/05/2017 = ® 2 minutes to read

These standards are for general purpose desktops, laptops, tablets, 2-in-1's, mobile workstations, and desktops. g+
This topic applies specifically and uniquely for Windows 10 version 1709, Fall Creators Update. Windows

security features are enabled when you meet or exceed these standards and your device is able to provide a

highly secure experience.

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-highly-secure

Firmware-related features

Systems must have firmware that implements Unified Extension Firmware Interface (UEFI) version 2.4+

Systems must have firmware that implements UEFI Class 2 or UEFI Class 3

System's firmware must support UEFI Secure Boot and must have UEFI Secure Boot enabled by default

System's firmware must implement Secure MOR revision 2

Systems must support the Windows* UEFI Firmware Capsule Update specification

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-highly-secure

Attacks and Platform Assets

Persistent Compromise =y e

* Update firmware image with malicious content (e.g. SPI Flash)
Stealthy Compromise =————"" including:

 SMM code injection * Firmware code
Bypass of Security Features = * NVRAM data

* VMM Bypass
Denial of Service

Runtime Firmware
* Corrupt/Delete critical configuration settings (e.g. SMM)

HW Configuration

(e.g. locked registers)

These are examples. Not an exhaustive list.

8

Classes of Attacker

Decreasing Attac

Resilient Defense

Boot Media l

Runtime Firmware
(eg. SMM)

HW Configuration I

I Decreasing Attacker Power

- Unprivileged

Atta C k S u rfa Ce (Interfaces to access/attack assets)

Boot Media

SPI| programmer HW/SW UEFI Variables
Sequencing

Runtime Firmware

(eg. SMM) SW SMI
Debug Access Device Drivers

HW Configuration Register Access

I Decreasing Attacker Power

DI sowee

Note: Contents are meant as examples. This does not represent an exhaustive analysis.

Do Firmware Attacks Require
Kernel Privileges?

lici A T
Amatter of finding

‘ legitimate signed kernel
driver which can be used
OS Driver
on behalf of user-mode

deputy.

... .
RWEverything driver

UEFI DXE Core / Dispatcher signed for Windows 64bit

versions (co-discovered

System Firmware (SEC/PEI) with researchers from
Hardware MITR E)

8

Securing the Platform

Defending the Boot Media Asset

Boot Media Resiliency

m Protect Mechanism | Detect Mechanism

Direct Write to Boot ¢ SPI Controller UEFI Secure Capsule Update

Media (eg. unlocked Config (Verified) Boot and Recovery
SPI, Speed Racer, etc.) * SMM-based e Measured Boot ¢ Independent
Protection e HW Root of hardware
e TCB reduction Trust

These are examples. Not an exhaustive list.

UEFI Plugfest — Spring 2018 www.uefi.org

https://bromiumlabs.files.wordpress.com/2015/01/speed_racer_whitepaper.pdf

Boot Media Protections

* SPI Controller
— Descriptor regions and permissions
— Protected Range Registers

* SMM-Based BIOS Write Protection -
— SMI when enabling write access sontroler
— Enable write access from SMM

* Reducing the TCB

Software

Detection: Verified and Measured Boot

. Driver

OS Kernel
UEFI OS Loaders \
DXE DXE
UEFI A

Driver / OROM / Bootmgfw.efi

UEEI Signature

Boot Loader Check
and Hashing

~~! UEFI DXE Cort / Dispatcher

System Firmware (SEC/PEI)

Hardware

Detection: Hardware Root of Trust

! Driver

OS Kernel
UEFI OS Loaders \
DXE DN=
UEFI A

DXE DXE Bootx64.efi

UEFI A
Driver / OROM / A Bootmgfw.efi \

\ ~~ UEFI DXE Cort / Dispatcher

l=l= Signature

Boot Loader Check
and Hashing

System Firmware (SEC/PEI)
Move the root of

trust from FW to Hardware
HW by having HW

check FW inegrit

Securing the Platform

Defending the Runtime Firmware Assets

Runtime Firmware Resiliency

m Protect Mechanism | Detect Mechanism

Call-Outs Limited Page Table Debugger Firmware Update
Access * Fuzzing
* No Execute Pages
Hardware Check

Confused Deputy Limited Page Table Fuzzing (e.g. * Firmware Update
Access CHIPSEC)
Malicious DMA e TSEG * Reboot
« |OMMU Firmware Update

These are examples. Not an exhaustive list.

System Management Mode (SMM)

 CPU enters System Management Mode (SMM) upon receiving System Management Interrupt (SMI#) from the
chipset or other logical CPU

« CPU (OS) state is saved in SMRAM upon entry to SMM and restored upon exit from SMM. SMRAM is a range

of DRAM reserved by BIOS and protected from other runtime code.
* CPU exits SMM to the interrupted OS when SMI handler executes RSM instruction (“Resume from SMM”)

UEFI Plugfest — Spring 2018 www.uefi.org

SMI “Confused Deputy” Attacks

Phys Memory

s) (—

SMM State Save Area

SMI Entry Point
(SMBASE + 8000h)

SMBASE

Attacker can target SMM itself or bypass VMM protections, writing to VMM or other Guest VM memory

SMI Handler Access

SMI Handler Memory Map Restriction

Phys Memory

S\ LAWY

Comm Buffer

OS/VMM Memory

Phys Memory

SMRAM

Comm Buffer

SMI Handler Access

OS/VMM Memory

8

Finding SMM “Pointer” Vulnerabilities

[x] [

[x][Module: Testing SMI handlers for pointer validation vulnerabilities

[x] [

[*] Allocated memory buffer (to pass to SMI handlers) : 0x00000000DAAC3000
[*] >>> Testing SMI handlers defined in 'smm config.ini'..

[*] testing SMI# Ox1lF (data: 0x00) SW SMI Ox1F
[*] writing 0x500 bytes at 0x00000000DAAC3000
> SMI 1F (data: 00)
RAX: Ox5ALA5A5A5A5A5A5LA
RBX: 0x00000000DAAC3000
RCX: 0x0000000000000000
RDX: Ox5ALA5A5A5A5A5A5A
RSI: Ox5A5A5A5A5A5A5A5A
RDI: Ox5ALA5A5A5A5A5ALA
< checking buffers contents changed at 0x00000000DAAC3000 +[29,32,33,34,35]
['] DETECTED: SMI# 1F data 0 (rax=5A5A5A5A5A5A5A5A rbx=DAAC3000 rcx=0 rdx=...)

[-] <<< Done: found 2 potential occurrences of unchecked input pointers

https://www.youtube.com/watch?v=z20f45nUeaA

https://www.youtube.com/watch?v=z2Qf45nUeaA

8

Software/DMA Access to SMRAM

4GB DMA access to
SMRAM is blocked
due to TSEG

- covering SMRAM

CPU software
access to SMRAM is

blocked by SMRR

Preboot DMA Protection
Eﬂgsvpﬂmswmy @ DRAM Top ’m' «—— PHMR.Limit

DMA Protection in UEFI

A Tour Beyond BIOS:

.] . . — D EfiMemoryTop
Using IOMMU for DMA Protection in UEFI Firmware PEI Allocated
= +— PHMR.Base
This paper presents the idea of using an input-output memory management unit (IOMMU) to DMA
resist Direct Memory Access (DMA) attacks in firmware. The example presented uses Intel® Memory DMA Free
Virtualization Technology (Intel® VT) for Directed 1/O (Intel® VT-d), and the concept can be
applied to other IOMMU engines. PEI _
” - “— PLMR.Limit
Memory PEI Allocated
4----—--- EfiFreeMemoryTop
PEI Free
--mmmee- EfiFreeMemoryBottom
Hob
Stack

- --oeeee- EfiMemoryBottom

Allocation Hob

DRAM Bottom

+— PLMR.Base

Figure 9 - Memory Map Example

https://firmware.intel.com/sites/default/files/Intel WhitePaper Using IOMMU for DMA Protection in UEFI.pd
f

https://firmware.intel.com/sites/default/files/Intel_WhitePaper_Using_IOMMU_for_DMA_Protection_in_UEFI.pdf

Securing the Platform

Defending the HW Configuration Assets

Hardware Configuration Resiliency @/’ﬂ

m Protect Mechanism | Detect Mechanism

Memory Configuration * CHIPSEC Reboot
Reconfiguration (e.g. Guidance & * Firmware Update
Remap) Locking

Controller Configuration e CHIPSEC e Reboot
Reconfiguration (e.g. Guidance & * Firmware Update
SPI) Locking

Feature Configuration * CHIPSEC e Reboot
Enable/Disable or Guidance & * Firmware Update
Reconfiguration (e.g. Locking

IOMMU, instructions,

etc)

These are examples. Not an exhaustive list.

UEFI Plugfest — Spring 2018 www.uefi.org

https://invisiblethingslab.com/resources/bh08/part2-full.pdf

”
CHIPSEC: Platform Security Assessment Framework @(ﬂ

CHIPSEC is a framework for analyzing the security of PC platforms
including hardware, system firmware (e.g. BIOS/UEFI), and the
configuration of platform components.

Research = Testing =2 Risk Assessment

Research Risk Assessment

* Access to hardware from the OS « Evaluate new systems for
 Reusable Python based framework vulnerabilities and mitigations
Testing/Validation « Evaluate the state of existing systems

« Implement test modules that support
multiple platforms

* Abillity to provide both positive and
negative test cases

CHIPSEC Architecture

Chipsec Main Chipsec Util

Config Commands

OS Helper

Linux Helper Windows Helper UEFI Helper OSX Helper
Linux Driver UEFI Code OSX Driver

*Other names and brands may be claimed as the property of others.

Testing Against Known Issues

e CHIPSEC - Framework for Platform
Security Assessment

Tests for known security issues
(ex: locking SPI ROM at runtime)

Runs under Microsoft Windows,
Linux, Mac OS X, and the UEFI Shell

chipsec@intel.com

 Open Source (GPLv2 License)

https://github.com/chipsec/chipsec
Released in 2014

Part of Intel’s Linux UEFI Validation
(LUV) suite: https://01.org/linux-uefi-

validation

[chipsec / chipsec @® Watch v

<> Code Issues 30 Pull requests 3 Projects 0 Wiki Insights +

Platform Security Assessment Framework

® 331 commits ¥ 4 branches © 5 releases 48 21 contribu

Branch: master = New pull request Create new file =~ Upl

deja-nmooney committed with ErikBjorge Add mmap support to kernel module

B install_/UEFI Version 1.2.2

B chipsec Add mmap support to kernel module

8 chipsec_tools Fixed x64 calling convention for SW SMI generation. (#255)

i debian Cleaned up PR (#188)

i docs Sphinx sources for chipsec-manual (#185)

i drivers Add mmap support to kernel module

il scripts change setup.py build driver by default. change root directory of chi...
Bl tests More operation in chipsec_util reg command (#238)

E .travis.yml Move to Trusty for Travis build (#216)

mailto:chipsec@intel.com
https://github.com/chipsec/chipsec
https://01.org/linux-uefi-validation

Examples: Checking Locks with CHIPSEC @';ﬂ

HW Configuration

Memory Controller memconfig
SPI Descriptor Spl_access
SPI Controller spi_lock

BIOS Write Protection bios wp
Debug Enable/Disable debug interface
Architectural Features ila32cfg

These are examples. Not an exhaustive list.

Resilient Defense

Boot Media l

Runtime Firmware
(eg. SMM)

HW Configuration I

I Decreasing Attacker Power

Thanks for attending the Spring 2018 UEFI
Plugfest

For more information on the UEFI Forum and
UEFI Specifications, visit http://www.uefi.org

presented by

UEFI Plugfest — Spring 2018 www.uefi.org

http://www.uefi.org/

