
presented by

Attacking and Defending the Platform

Spring 2018 UEFI Seminar and Plugfest
March 26-30, 2018

Presented by Erik Bjorge and Maggie Jauregui (Intel)

Legal Notice
No computer system can be absolutely secure.

Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

3

Today’s Attack Scenarios

Physical

Unlimited Limited

Software

Privileged Unprivileged

Decreasing Attacker Power

Boot Media
(SPI)

NVRAMSMM

Open Case Access IO, MSR, MMIO, etc Ring 3 SW

UEFI
Variables

Attack

Supply Chain
Attack

SMM
Confused
Deputy

Example: UEFI Variable Attack from privileged ring 3 process

4

Unprivileged Software Attack

Possible Security Impacts

• Overwrite early firmware code/data if (physical
address) pointers are stored in unprotected variables

• Bypass UEFI and OS Secure Boot if its configuration or
keys are stored in unprotected variables

• Bypass or disable hardware protections if their policies
are stored in unprotected variables

• Make the system unable to boot (brick) if boot-
essential settings are stored in unprotected variables

• Communication Channel if malware uses variables for
retrieval of data at a later time (e.g. after OS wipe)

5

Authenticated Variables

EDK II Variable Lock Protocol (Read-only Variables)

VarCheckLib

6

UEFI Variable Mitigation Options

Variables Protection Attributes

Boot Service (BS)
– Accessible to DXE drivers / Boot Loaders at boot time

– No longer accessible at run-time (after ExitBootServices)

Authenticated Write Access
– Digitally signed with MonotonicCount incrementing each successive variable update to

protect from replay attacks

– List of signatures supported by the firmware is stored in SignatureSupport variable

Time Based Authenticated Write Access
– Signed with TimeStamp (time at signing) to protect from replay attacks

– TimeStamp should be greater than TimeStamp in existing variable

– Used by Secure Boot: PK verifies PK/KEK update, KEK verifies db/dbx update

– certdb variable stores certificates to verify non PK/KEK/db(x) variables

7

EDK II Read-Only Variables

• EDK II implements VARIABLE_LOCK_PROTOCOL which provides a
mechanism to make some variables “Read-Only” during Run-time OS

• DXE drivers make UEFI variables Read-Only using
RequestToLock() API before EndOfDxe event

• After EndOfDxe event (e.g. during OS runtime), all registered
variables cannot be updated or removed (enforced by SetVariable
API)

• Lock is transient, firmware has to request locking variables every boot.
Before EndOfDxe variables are not locked

VarCheckLib

A single place to check for acceptable variable contents

– Each variable name/GUID is mapped to rules

– Return appropriate error when attempting to set invalid data
to a given variable

– Begin checking at EndOfDxe (prior to execution of 3rd party
code)

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Library/VarCheckLib/VarCheckLib.c

9

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Library/VarCheckLib/VarCheckLib.c

chipsec_util uefi var-write

10

Attack: Storing Data in UEFI Variables

Example: SMM Confused Deputy

11

Privileged Software Attack

SMI Input Pointer Vulnerabilities
• When OS triggers SMI (e.g. SW SMI via I/O port 0xB2) it passes

arguments to SMI handler via general purpose registers
• OS may also pass an address (pointer) to a structure through

which an SMI handler can read arguments & returns result
• SMI handlers traditionally were not validating that such pointers

are outside of SMRAM
• If an exploit passes an address which is inside SMRAM, SMI

handler may write onto itself on behalf of the exploit

• References: A New Class of Vulnerability in SMI Handlers (2015)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjtk_7-2uXXAhWLv1QKHUfSDtEQFggnMAA&url=https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf

SMI “Confused Deputy” Attacks

Phys Memory

SMI Handler

VMM Memory

Guest OS Memory

Guest OS Memory

Attacker can target SMM itself or bypass VMM protections, writing to VMM or

other Guest VM memory

RAX (code)

RBX (pointer)

RCX (function)

SMI
Saved SMBASE value SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

SMBASE

Limiting SMI Handler Memory Map to Addresses Reserved for Firmware

CHIPSEC Testing

14

Mitigation Options

SMI Handler Memory Map

Restriction

15

SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

Phys Memory

SMRAM

Comm Buffer

OS/VMM Memory

SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

Phys Memory

SMRAM

Comm Buffer

OS/VMM Memory

S
M

I
H

a
n
d

le
r

A
c
c
e

s
s

S
M

I
H

a
n
d

le
r

A
c
c
e

s
s

Finding SMM “Pointer” vulnerabilities
[x][===

[x][Module: Testing SMI handlers for pointer validation vulnerabilities

[x][===

...

[*] Allocated memory buffer (to pass to SMI handlers) : 0x00000000DAAC3000

[*] >>> Testing SMI handlers defined in 'smm_config.ini'..

...

[*] testing SMI# 0x1F (data: 0x00) SW SMI 0x1F

[*] writing 0x500 bytes at 0x00000000DAAC3000

> SMI 1F (data: 00)

RAX: 0x5A5A5A5A5A5A5A5A

RBX: 0x00000000DAAC3000

RCX: 0x0000000000000000

RDX: 0x5A5A5A5A5A5A5A5A

RSI: 0x5A5A5A5A5A5A5A5A

RDI: 0x5A5A5A5A5A5A5A5A

< checking buffers contents changed at 0x00000000DAAC3000 +[29,32,33,34,35]

[!] DETECTED: SMI# 1F data 0 (rax=5A5A5A5A5A5A5A5A rbx=DAAC3000 rcx=0 rdx=...)

[-] <<< Done: found 2 potential occurrences of unchecked input pointers

https://www.youtube.com/watch?v=z2Qf45nUeaA

https://www.youtube.com/watch?v=z2Qf45nUeaA

Example: Supply Chain Attack

17

Limited Physical Access Attack

PoC SmmBackdoor by Dmytro Oleksiuk

• Installed by adding
additional sections to
existing SMM driver

• Provides SMI interfaces
for OS level caller

• Provides read/write
memory access. Easily
extensible

Building reliable SMM backdoor for UEFI based platforms

http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html

First Commercial UEFI Rootkit from
HackingTeam

From Secure Boot, Network Boot, Verified Boot, oh my and almost every publication on UEFI

https://docs.google.com/file/d/0BxgB4JDywk3MdnRsbnh6NW9rYU0/edit?pli=1

Attacking without Physical Access
(targeting vulnerable firmware)

Hardware

I/O Memory Network Graphics

UEFI DXE Core / Dispatcher

UEFI OS Loaders

System Firmware (SEC/PEI)

DXE

Driver

UEFI

Boot Loader

Bootx64.efi

Bootmgfw.efi

Signed BIOS
Update

DXE

Driver

OS Kernel

OS Driver OS Exploit

Modify UEFI BIOS

Firmware in ROM

CHIPSEC Vulnerability testing

CHIPSEC Whitelist testing

Hardware Root of Trust

22

Protection and Mitigation Options

Checking for BIOS Write Protection

[*] running module: chipsec.modules.common.bios_wp

[x][===

[x][Module: BIOS Region Write Protection

[x][===

[*] BIOS Control = 0x02

[05] SMM_BWP = 0 (SMM BIOS Write Protection)

[04] TSS = 0 (Top Swap Status)

[01] BLE = 1 (BIOS Lock Enable)

[00] BIOSWE = 0 (BIOS Write Enable)

[!] Enhanced SMM BIOS region write protection has not been enabled (SMM_BWP is not used)

[*] BIOS Region: Base = 0x00500000, Limit = 0x007FFFFF

SPI Protected Ranges

--

PRx (offset) | Value | Base | Limit | WP? | RP?

--

PR0 (74) | 87FF0780 | 00780000 | 007FF000 | 1 | 0

PR1 (78) | 00000000 | 00000000 | 00000000 | 0 | 0

PR2 (7C) | 00000000 | 00000000 | 00000000 | 0 | 0

PR3 (80) | 00000000 | 00000000 | 00000000 | 0 | 0

PR4 (84) | 00000000 | 00000000 | 00000000 | 0 | 0

[!] SPI protected ranges write-protect parts of BIOS region (other parts of BIOS can be modified)

[!] BIOS should enable all available SMM based write protection mechanisms or configure SPI protected

ranges to protect the entire BIOS region

[-] FAILED: BIOS is NOT protected completely

chipsec_main.py --module common.bios_wp

CHIPSEC: Detecting Firmware Modification

• Use CHIPSEC to generate and check hashes of
firmware modules
– Use whitelists to detect changes from the original

firmware
– Whitelist can be generated by user or manufacturer
– Whitelists can be signed to verify source of

information

• More info including full module source and blog:
– https://github.com/chipsec/chipsec/blob/master/chipsec/modules/tools/uefi/whitelist.py
– https://software.intel.com/en-us/blogs/2017/12/05/using-whitelists-to-improve-firmware-security

24

https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec/blob/master/chipsec/modules/tools/uefi/whitelist.py
https://software.intel.com/en-us/blogs/2017/12/05/using-whitelists-to-improve-firmware-security

Generating Whitelist…
chipsec_main -n -m tools.uefi.whitelist -a generate,orig.json,fw.bin

Assumes there is a way to generate clean (uninfected) list of EFI executables. For example, from
the update image downloaded from the vendor web-site

Checking Against Whitelist…
chipsec_main –n –m tools.uefi.whitelist –a check,orig.json,fw.bin

Extra EFI executables belong to

HackingTeam’s UEFI rootkit

Firmware Forensic Artifacts to Consider

1. Layout and entire contents of SPI Flash
memory

2. BIOS/UEFI firmware including EFI
binaries and NVRAM

3. Runtime or Boot UEFI Variables (non-
volatile and volatile)

4. UEFI Secure Boot certificates (PK, KEK,
db/dbx ..)

5. UEFI system and configuration tables
(Runtime, Boot and DXE services)

6. UEFI S3 resume boot script table
7. PCIe Option (Expansion) ROMs
8. Settings stored in RTC-backed CMOS

memory
9. ACPI tables

10. SMBIOS table
11. HW protection settings (e.g. SPI W/P)
12. System security settings (Secure Boot,

etc.)
13. Contents of TPM Platform

Configuration Registers (PCR)
14. Firmware images from other

components: Embedded Controller,
HDD/SSD, NIC, Baseboard
Management Controller (BMC) etc.

15. MBR/VBR or UEFI GUID Partition Table
(GPT)

16. Files on EFI system partition (boot
loaders)

28

Conclusions

29

Resilient Defense

Boot Media

Runtime Firmware
(eg. SMM)

HW Configuration

Detect

Recover

Protect

Physical

Unlimited Limited

Software

Privileged Unprivileged

Decreasing Attacker Power

Thanks for attending the Spring 2018 UEFI
Plugfest

For more information on the UEFI Forum and
UEFI Specifications, visit http://www.uefi.org

presented by

www.uefi.org 30UEFI Plugfest – Spring 2018

http://www.uefi.org/

