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Today’s Attack Scenarios
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Example: UEFI Variable Attack from privileged ring 3 process 
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Unprivileged Software Attack



Possible Security Impacts

• Overwrite early firmware code/data if (physical 
address) pointers are stored in unprotected variables

• Bypass UEFI and OS Secure Boot if its configuration or 
keys are stored in unprotected variables

• Bypass or disable hardware protections if their policies 
are stored in unprotected variables

• Make the system unable to boot (brick) if boot-
essential settings are stored in unprotected variables

• Communication Channel if malware uses variables for 
retrieval of data at a later time (e.g. after OS wipe) 
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Authenticated Variables

EDK II Variable Lock Protocol (Read-only Variables)

VarCheckLib
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UEFI Variable Mitigation Options



Variables Protection Attributes

Boot Service (BS)
– Accessible to DXE drivers / Boot Loaders at boot time

– No longer accessible at run-time (after ExitBootServices)

Authenticated Write Access
– Digitally signed with MonotonicCount incrementing each successive variable update to 

protect from replay attacks

– List of signatures supported by the firmware is stored in SignatureSupport variable

Time Based Authenticated Write Access
– Signed with TimeStamp (time at signing) to protect from replay attacks

– TimeStamp should be greater than TimeStamp in existing variable

– Used by Secure Boot: PK verifies PK/KEK update, KEK verifies db/dbx update

– certdb variable stores certificates to verify non PK/KEK/db(x) variables
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EDK II Read-Only Variables

• EDK II implements VARIABLE_LOCK_PROTOCOL which provides a 
mechanism to make some variables “Read-Only” during Run-time OS

• DXE drivers make UEFI variables Read-Only using 
RequestToLock() API before EndOfDxe event

• After EndOfDxe event (e.g. during OS runtime), all registered 
variables cannot be updated or removed (enforced by SetVariable
API)

• Lock is transient, firmware has to request locking variables every boot. 
Before EndOfDxe variables are not locked



VarCheckLib

A single place to check for acceptable variable contents

– Each variable name/GUID is mapped to rules 

– Return appropriate error when attempting to set invalid data 
to a given variable

– Begin checking at EndOfDxe (prior to execution of 3rd party 
code)

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Library/VarCheckLib/VarCheckLib.c
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https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Library/VarCheckLib/VarCheckLib.c


chipsec_util uefi var-write
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Attack: Storing Data in UEFI Variables



Example: SMM Confused Deputy
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Privileged Software Attack



SMI Input Pointer Vulnerabilities
• When OS triggers SMI (e.g. SW SMI via I/O port 0xB2) it passes 

arguments to SMI handler via general purpose registers
• OS may also pass an address (pointer) to a structure through 

which an SMI handler can read arguments & returns result
• SMI handlers traditionally were not validating that such pointers 

are outside of SMRAM
• If an exploit passes an address which is inside SMRAM, SMI 

handler may write onto itself on behalf of the exploit

• References: A New Class of Vulnerability in SMI Handlers (2015)

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjtk_7-2uXXAhWLv1QKHUfSDtEQFggnMAA&url=https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf


SMI “Confused Deputy” Attacks
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Limiting SMI Handler Memory Map to Addresses Reserved for Firmware

CHIPSEC Testing
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Mitigation Options



SMI Handler Memory Map 

Restriction
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Finding SMM “Pointer” vulnerabilities
[x][ =======================================================================

[x][ Module: Testing SMI handlers for pointer validation vulnerabilities

[x][ =======================================================================

...

[*] Allocated memory buffer (to pass to SMI handlers) : 0x00000000DAAC3000

[*] >>> Testing SMI handlers defined in 'smm_config.ini'..

...

[*] testing SMI# 0x1F (data: 0x00) SW SMI 0x1F

[*] writing 0x500 bytes at 0x00000000DAAC3000

> SMI 1F (data: 00)

RAX: 0x5A5A5A5A5A5A5A5A

RBX: 0x00000000DAAC3000

RCX: 0x0000000000000000

RDX: 0x5A5A5A5A5A5A5A5A

RSI: 0x5A5A5A5A5A5A5A5A

RDI: 0x5A5A5A5A5A5A5A5A

< checking buffers contents changed at 0x00000000DAAC3000 +[29,32,33,34,35]

[!] DETECTED: SMI# 1F data 0 (rax=5A5A5A5A5A5A5A5A rbx=DAAC3000 rcx=0 rdx=...)

[-] <<< Done: found 2 potential occurrences of unchecked input pointers 

https://www.youtube.com/watch?v=z2Qf45nUeaA

https://www.youtube.com/watch?v=z2Qf45nUeaA


Example: Supply Chain Attack
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Limited Physical Access Attack



PoC SmmBackdoor by Dmytro Oleksiuk

• Installed by adding 
additional sections to 
existing SMM driver

• Provides SMI interfaces 
for OS level caller

• Provides read/write 
memory access. Easily 
extensible

Building reliable SMM backdoor for UEFI based platforms

http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html


First Commercial UEFI Rootkit from 
HackingTeam



From Secure Boot, Network Boot, Verified Boot, oh my and almost every publication on UEFI

https://docs.google.com/file/d/0BxgB4JDywk3MdnRsbnh6NW9rYU0/edit?pli=1


Attacking without Physical Access
(targeting vulnerable firmware)
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CHIPSEC Vulnerability testing

CHIPSEC Whitelist testing

Hardware Root of Trust
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Protection and Mitigation Options



Checking for BIOS Write Protection

[*] running module: chipsec.modules.common.bios_wp

[x][ =======================================================================

[x][ Module: BIOS Region Write Protection

[x][ =======================================================================

[*] BIOS Control = 0x02

[05] SMM_BWP = 0 (SMM BIOS Write Protection)

[04] TSS     = 0 (Top Swap Status)

[01] BLE     = 1 (BIOS Lock Enable)

[00] BIOSWE  = 0 (BIOS Write Enable)

[!] Enhanced SMM BIOS region write protection has not been enabled (SMM_BWP is not used)

[*] BIOS Region: Base = 0x00500000, Limit = 0x007FFFFF

SPI Protected Ranges

------------------------------------------------------------

PRx (offset) | Value    | Base     | Limit    | WP? | RP?

------------------------------------------------------------

PR0 (74)     | 87FF0780 | 00780000 | 007FF000 | 1   | 0 

PR1 (78)     | 00000000 | 00000000 | 00000000 | 0   | 0 

PR2 (7C)     | 00000000 | 00000000 | 00000000 | 0   | 0 

PR3 (80)     | 00000000 | 00000000 | 00000000 | 0   | 0 

PR4 (84)     | 00000000 | 00000000 | 00000000 | 0   | 0 

[!] SPI protected ranges write-protect parts of BIOS region (other parts of BIOS can be modified)

[!] BIOS should enable all available SMM based write protection mechanisms or configure SPI protected 

ranges to protect the entire BIOS region

[-] FAILED: BIOS is NOT protected completely

# chipsec_main.py --module common.bios_wp



CHIPSEC: Detecting Firmware Modification

• Use CHIPSEC to generate and check hashes of 
firmware modules
– Use whitelists to detect changes from the original 

firmware
– Whitelist can be generated by user or manufacturer
– Whitelists can be signed to verify source of 

information

• More info including full module source and blog:
– https://github.com/chipsec/chipsec/blob/master/chipsec/modules/tools/uefi/whitelist.py
– https://software.intel.com/en-us/blogs/2017/12/05/using-whitelists-to-improve-firmware-security
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https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec/blob/master/chipsec/modules/tools/uefi/whitelist.py
https://software.intel.com/en-us/blogs/2017/12/05/using-whitelists-to-improve-firmware-security


Generating Whitelist…
chipsec_main -n -m tools.uefi.whitelist -a generate,orig.json,fw.bin

Assumes there is a way to generate clean (uninfected) list of EFI executables. For example, from 
the update image downloaded from the vendor web-site



Checking Against Whitelist…
chipsec_main –n –m tools.uefi.whitelist –a check,orig.json,fw.bin

Extra EFI executables belong to 

HackingTeam’s UEFI rootkit



Firmware Forensic Artifacts to Consider

1. Layout and entire contents of SPI Flash 
memory

2. BIOS/UEFI firmware including EFI 
binaries and NVRAM

3. Runtime or Boot UEFI Variables (non-
volatile and volatile)

4. UEFI Secure Boot certificates (PK, KEK, 
db/dbx ..)

5. UEFI system and configuration tables 
(Runtime, Boot and DXE services)

6. UEFI S3 resume boot script table
7. PCIe Option (Expansion) ROMs
8. Settings stored in RTC-backed CMOS 

memory
9. ACPI tables

10. SMBIOS table
11. HW protection settings (e.g. SPI W/P)
12. System security settings (Secure Boot, 

etc.)
13. Contents of TPM Platform 

Configuration Registers (PCR)
14. Firmware images from other 

components: Embedded Controller, 
HDD/SSD, NIC, Baseboard 
Management Controller (BMC) etc. 

15. MBR/VBR or UEFI GUID Partition Table 
(GPT)

16. Files on EFI system partition (boot 
loaders)
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Conclusions
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Thanks for attending the Spring 2018 UEFI 
Plugfest

For more information on the UEFI Forum and 
UEFI Specifications, visit http://www.uefi.org
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