
Platform Initialization (PI) Specification

Volume 1:
Pre-EFI Initialization Core Interface

Version 1.6

May 2017

Platform Initialization Specification, Vol. 1

ii May 2017 Version 1.6

The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or to any
contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the
maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties
and conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and
of lack of negligence, all with regard to this material and any contribution thereto. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION
OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY
CONTRIBUTION THERETO.
IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY
CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS
OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING
IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright 2017 Unified EFI, Inc. All Rights Reserved.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 iii

Revision History

Revision Mantis ID / Description Date

1.6 • 1567 Layered SPI bus

• 1648 PI Binding for RISC-V

• 1746 Add an FV Extended Header entry that contains the used size of the
FV

• 1763 MM Handler state notification protocol

• 1764 Add additional alignment

• 1768 Update the PI Spec to 1.6

• 1777 Update Revision History

• 1778 Update front matter

April 2017

1.5 Errata A • 1587 pre permanent memory page allocation

• 1665 Incorrect status code for an AP calling
EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

• 1734 Outdated EFI spec reference in Save State Write

• 1735 Several copy & paste errors in Save State Write

• 1747 Clarify that MM_ACCESS_PROTOCOL should cover all MMRAM
region used by the platform

April 2017

1.5 • 1315 SMM Environment to Support Newer Architecture/Platform Designs

• 1317 additional I2C PPI's (vol5)

• 1321 ARM Extensions to Volume 4

• 1330 Add PPI to allow SEC pass HOBs into PEI

• 1336 Provide For Pre-DXE Initialization Of The SM Foundation

• 1369 Handling PEI PPI descriptor notifications from SEC

• 1387 Variable services errors not consistent

• 1390 SM stand-alone infrastructure

• 1396 Update SEC HOB Capabilities of 1330 with additional guidance

• 1413 Communicate protocol enhancements

• 1506 New MP protocol

• 1513 Need a way to propagate PEI-phase FV verification status to DXE

• 1563 Update MM PPIs to match existing implementations

• 1566 PI.next - update the specification revisions

• 1568 Add SD/MMC GUID to DiskInfo protocol

• 1592 Add EFI_FV_FILETYPE_SMM_CORE_STANDALONE file type

• 1593 coalesce language enhancements

• 1594 Pei GetVaiable M1387 issue

• 1595 M1568 Disk Info issue

• 1596 M1489 GCD issue

• 1603 Minor erratas in Vol4 PI 1.5 draft related to ECR 0001506

• 1607 Update MM guid def'n to match edkII impl

• 1626 Add new Status Code for BDS Attempting UEFI BootOrder entries

• 1628 Minor feedback for PI 1.5 Vol 4 SMM Draft

• 1666 Graphics Device Info Hob

4/26/16

Platform Initialization Specification, Vol. 1

iv May 2017 Version 1.6

1.4 Errata A • 1574 Fix artificial limitation in the PCD.SetSku support

• 1565 Update status code to include AArch64 exception error codes

• 1564 SMM Software Dispatch Protocol Errata

• 1562 Errata to remove statement from DXE vol about PEI dispatch
behavior

• 1561 Errata to provide Equivalent of DXE-CIS Mantis 247 for the PEI-CIS

• 1532 Allow S3 Resume without having installed permanent memory (via
InstallPeiMemory)

• 1530 errata on dxe report status code

• 1529 address space granularity errata

• 1525 PEI Services Table Retrieval for AArch64

• 1515 EFI_PEIM_NOTIFY_ENTRY_POINT return values are undefined

• 1497 Fixing language in SMMStartupThisAP

• 1489 GCD Conflict errata

• 1485 Minor Errata in SMM Vo2 description of SMMStartupThisAP

• 1397 PEI 1.4 specification revision errata

• 1394 Errata to Relax requirements on CPU rendez in SEC

• 1351 EndOfDxe and SmmReadyToLock

• 1322 Minor Updates to handle Asynchronous CPU Entry Into SMM

3/15/16

1.4 • 1210 Adding persistence attribute to GCD

• 1235 PI.Next Feature - no execute support

• 1236 PI.Next feature - Graphics PPI

• 1237 PI.Next feature - add reset2 PPI

• 1239 PI.Next feature - Disk Info Guid UFS

• 1240 PI.Next feature - Recovery Block IO PPI - UFS

• 1259 PI.Next feature - MP PPI

• 1273 PI.Next feature - capsule PPI

• 1274 Recovery Block I/O PPI Update

• 1275 GetMemoryMap Update

• 1277 PI1.next feature - multiple CPU health info

• 1278 PI1.next - Memory relative reliability definition

• 1305 PI1.next - specification number encoding

• 1331 Remove left-over Boot Firmware Volume references in the SEC
Platform Information PPI

• 1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record needs to be
indexed / CPU.

2/20/15

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 v

1.3 Errata A • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

2/19/15

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958

• 969Vol 1 errata: TE Header parameters

10/26/12

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

vi May 2017 Version 1.6

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP) clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM Migration is not
required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 vii

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState() return code

• 737 Remove SMM Communication ACPI Table definition .

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• 753 SIO PEI and UEFI-Driver Model Architecture

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT,
Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

viii May 2017 Version 1.6

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl has
EFI_STATUS w/o return code & errror on stage 3 recovery description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 ix

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

x May 2017 Version 1.6

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489 (from
USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

1.1 Errata • 247 Clarification regarding use of dependency expression section types
with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xi

1.1 Errata • 204 Stack HOB update 1.1errata

• 225 Correct references from EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 - return error
language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

•

01/13/09

1.1 Errata Revises typographical errors and minor omissions--see Errata for details 04/25/08

1.1 correction Restore (missing) MP protocol 03/12/08

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter 12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

xii May 2017 Version 1.6

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to th:e
original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in the
Metronome

• M178 Remove references to tail in file header and made file checksum for
the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and update
all FV

10/29/07

1.0 Initial public release. 8/21/06

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xiii

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth,
and printing convenience. The Platform Initialization Specification consists of the following volumes:

Volume 1: Pre-EFI Initialization Core Interface

Volume 2: Driver Execution Environment Core Interface

Volume 3: Shared Architectural Elements

Volume 4: System Management Mode

Volume 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult
the entire specification when researching areas of interest. Additionally, a single-file version of the Platform
Initialization Specification is available to aid search functions through the entire specification.

Platform Initialization Specification, Vol. 1

xiv May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xv

Table of Contents

Revision History ...iii
Table of Contents ..xv
List of Figures ...xxiii
List of Tables..xxv

1 Introduction.. 1
1.1 Overview ... 1
1.2 Organization of the PEI CIS.. 1
1.3 Conventions Used in this Document... 2

1.3.1 Data Structure Descriptions .. 2
1.3.2 Procedure Descriptions... 2
1.3.3 Instruction Descriptions... 3
1.3.4 PPI Descriptions.. 3
1.3.5 Pseudo-Code Conventions ... 4
1.3.6 Typographic Conventions ... 4

1.4 Requirements.. 5
1.5 Conventions used in this document .. 6

1.5.1 Number formats .. 6
1.5.2 Binary prefixes .. 6

2 Overview... 9
2.1 Introduction ... 9
2.2 Design Goals .. 9
2.3 Pre-EFI Initialization (PEI) Phase ... 10
2.4 PEI Services ... 11
2.5 PEI Foundation ... 12
2.6 PEI Dispatcher .. 12
2.7 Pre-EFI Initialization Modules (PEIMs) ... 13
2.8 PEIM-to-PEIM Interfaces (PPIs) ... 13
2.9 Firmware Volumes .. 14

3 PEI Services Table... 15
3.1 Introduction ... 15
3.2 PEI Services Table ... 15

3.2.1 EFI_PEI_SERVICES... 15

4 Services - PEI... 21
4.1 Introduction ... 21
4.2 PPI Services ... 21

InstallPpi() ... 22
ReinstallPpi() ... 23
LocatePpi() .. 24
NotifyPpi().. 25

4.3 Boot Mode Services.. 26

Platform Initialization Specification, Vol. 1

xvi May 2017 Version 1.6

GetBootMode().. 26
SetBootMode() .. 28

4.4 HOB Services ... 29
GetHobList() .. 29
CreateHob()... 30

4.5 Firmware Volume Services ... 31
FfsFindNextVolume() .. 31
FfsFindNextFile()... 32
FfsFindSectionData() .. 33
FfsFindSectionData3() .. 34
FfsFindFileByName() .. 36
FfsGetFileInfo() ... 37
FfsGetFileInfo2() ... 38
FfsGetVolumeInfo() ... 39
RegisterForShadow() .. 41

4.6 PEI Memory Services ... 41
InstallPeiMemory() .. 42
AllocatePages() ... 43
AllocatePool() .. 44
CopyMem().. 45
FreePages() .. 46
SetMem()... 47

4.7 Status Code Service ... 48
ReportStatusCode() .. 48

4.8 Reset Services.. 51
ResetSystem()... 51

4.9 I/O and PCI Services .. 52

5 PEI Foundation .. 53
5.1 Introduction ... 53

5.1.1 Prerequisites ... 53
5.1.2 Processor Execution Mode ... 53

5.2 PEI Foundation Entry Point... 55
5.2.1 PEI Foundation Entry Point... 55

5.3 PEI Calling Convention Processor Binding... 57
5.4 PEI Services Table Retrieval .. 58

5.4.1 X86.. 58
5.4.2 x64 .. 58
5.4.3 Itanium Processor Family – Register Mechanism... 59
5.4.4 ARM Processor Family – Register Mechanism... 60
5.4.5 AArch64 Processor Family – Register Mechanism... 60
5.4.6 RISC-V Processor Family – Register Mechanism .. 60

5.5 PEI Dispatcher Introduction .. 61
5.6 Ordering .. 62

5.6.1 Requirements.. 62
5.6.2 Requirement Representation and Notation... 62
5.6.3 PEI a priori File Overview.. 62

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xvii

PEI_APRIORI_FILE_NAME_GUID... 64
5.6.4 Firmware Volume Image Files .. 65
5.6.5 PEIM Dependency Expressions.. 65
5.6.6 Types of Dependencies .. 65

5.7 Dependency Expressions ... 65
5.7.1 Introduction ... 65

PUSH .. 67
AND... 69
OR... 70
NOT... 71
TRUE... 72
FALSE... 73
END... 74

5.7.2 Dependency Expression with No Dependencies .. 75
5.7.3 Empty Dependency Expressions .. 75
5.7.4 Dependency Expression Reverse Polish Notation (RPN)................................... 75

5.8 Dispatch Algorithm.. 75
5.8.1 Overview ... 75
5.8.2 Requirements.. 76
5.8.3 Example Dispatch Algorithm ... 78
5.8.4 Dispatching When Memory Exists .. 79
5.8.5 PEIM Dispatching.. 79
5.8.6 PEIM Authentication.. 80

6 Architectural PPIs.. 81
6.1 Introduction ... 81
6.2 Required Architectural PPIs.. 81

6.2.1 Master Boot Mode PPI (Required) .. 81
EFI_PEI_MASTER_BOOT_MODE_PPI (Required) ... 81

6.2.2 DXE IPL PPI (Required).. 82
EFI_DXE_IPL_PPI (Required) .. 82
EFI_DXE_IPL_PPI.Entry() .. 83

6.2.3 Memory Discovered PPI (Required) ... 85
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)..................... 85

6.3 Optional Architectural PPIs ... 86
6.3.1 Boot in Recovery Mode PPI (Optional) ... 86

EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)................................. 86
6.3.2 End of PEI Phase PPI (Optional) ... 87

EFI_PEI_END_OF_PEI_PHASE_PPI (Optional).. 87
6.3.3 PEI Reset PPI ... 88

EFI_PEI_RESET_PPI (Optional) .. 88
6.3.4 PEI Reset2 PPI ... 88

EFI_PEI_RESET2_PPI (Optional) .. 88
ResetSystem() .. 90

6.3.5 Status Code PPI (Optional)... 92
EFI_PEI_PROGRESS_CODE_PPI (Optional).. 92

6.3.6 Security PPI (Optional).. 93

Platform Initialization Specification, Vol. 1

xviii May 2017 Version 1.6

EFI_PEI_SECURITY2_PPI (Optional) .. 93
EFI_PEI_SECURITY2_PPI.AuthenticationState() .. 94

6.3.7 Temporary RAM Support PPI (Optional)... 95
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional) 95
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI.TemporaryRamMigration()...... 97

6.3.8 Temporary RAM Done PPI (Optional)... 98
EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional) 98
EFI_PEI_TEMPORARY_RAM_DONE_PPI.TemporaryRamDone () 100

7 PEIMs.. 101
7.1 Introduction ... 101
7.2 PEIM Structure.. 101

7.2.1 PEIM Structure Overview.. 101
7.2.2 Relocation Information .. 102
7.2.3 Authentication Information .. 103

7.3 PEIM Invocation Entry Point ... 104
7.3.1 EFI_PEIM_ENTRY_POINT2... 104

7.4 PEIM Descriptors .. 105
7.4.1 PEIM Descriptors Overview .. 105

EFI_PEI_DESCRIPTOR ... 106
EFI_PEI_NOTIFY_DESCRIPTOR .. 107
EFI_PEI_PPI_DESCRIPTOR.. 109

7.5 PEIM-to-PEIM Communication ... 110
7.5.1 Overview ... 110
7.5.2 Dynamic PPI Discovery... 111

8 Additional PPIs .. 113
8.1 Introduction ... 113
8.2 Required Additional PPIs .. 113

8.2.1 PCI Configuration PPI (Required) ... 113
EFI_PEI_PCI_CFG2_PPI.. 115
EFI_PEI_PCI_CFG2_PPI.Read().. 117
EFI_PEI_PCI_CFG2_PPI.Write().. 119
EFI_PEI_PCI_CFG2_PPI.Modify().. 120

8.2.2 Stall PPI (Required) .. 121
EFI_PEI_STALL_PPI (Required) .. 121
EFI_PEI_STALL_PPI.Stall().. 122

8.2.3 Variable Services PPI (Required) ... 123
EFI_PEI_READ_ONLY_VARIABLE2_PPI.. 123
EFI_PEI_READ_ONLY_VARIABLE2_PPI.GetVariable.................................... 124
EFI_PEI_READ_ONLY_VARIABLE2_PPI.NextVariableName......................... 126

8.3 Optional Additional PPIs ... 128
8.3.1 SEC Platform Information PPI (Optional).. 128

EFI_SEC_PLATFORM_INFORMATION_PPI (Optional) 128
EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation() 129
EFI_SEC_PLATFORM_INFORMATION2_PPI (Optional) 133
EFI_SEC_PLATFORM_INFORMATION2_PPI.PlatformInformation2() 134

8.3.2 Loaded Image PPI (Optional).. 136

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xix

EFI_PEI_LOADED_IMAGE_PPI... 136
8.3.3 SEC HOB PPI ... 136

EFI_SEC_HOB_DATA_PPI .. 136
EFI_SEC_HOB_DATA_PPI.GetHobs()... 138

8.3.4 Recovery .. 138
EFI_PEI_RECOVERY_MODULE_PPI.. 139
EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()...................... 141
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI .. 141
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.

GetNumberRecoveryCapsules() ... 143
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsuleInfo().. 144
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule() 146
EFI_PEI_RECOVERY_BLOCK_IO_PPI ... 147
EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()........... 148
EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo() 149
 EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks() 151

8.3.5 EFI PEI Recovery Block IO2 PPI .. 152
EFI_PEI_RECOVERY_BLOCK_IO2_PPI ... 153
EFI_PEI_RECOVERY_BLOCK_IO2_PPI.GetNumberOfBlockDevices().......... 154
EFI_PEI_RECOVERY_BLOCK_IO2_PPI.GetBlockDeviceMediaInfo() 155
EFI_PEI_RECOVERY_BLOCK_IO2_PPI.ReadBlocks() 158

8.3.6 EFI PEI Vector Handoff Info PPI ... 159
EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional) 160

8.3.7 CPU I/O PPI (Optional) ... 161
EFI_PEI_CPU_IO_PPI (Optional) ... 161
EFI_PEI_CPU_IO_PPI.Mem() .. 165
EFI_PEI_CPU_IO_PPI.Io() ... 167
EFI_PEI_CPU_IO_PPI.IoRead8()... 168
EFI_PEI_CPU_IO_PPI.IoRead16()... 169
EFI_PEI_CPU_IO_PPI.IoRead32()... 170
EFI_PEI_CPU_IO_PPI.IoRead64()... 171
EFI_PEI_CPU_IO_PPI.IoWrite8() ... 172
EFI_PEI_CPU_IO_PPI.IoWrite16() ... 173
EFI_PEI_CPU_IO_PPI.IoWrite32() ... 174
EFI_PEI_CPU_IO_PPI.IoWrite64() ... 175
EFI_PEI_CPU_IO_PPI.MemRead8().. 176
EFI_PEI_CPU_IO_PPI.MemRead16().. 177
EFI_PEI_CPU_IO_PPI.MemRead32().. 178
EFI_PEI_CPU_IO_PPI.MemRead64().. 179
EFI_PEI_CPU_IO_PPI.MemWrite8() .. 180
EFI_PEI_CPU_IO_PPI.MemWrite16() .. 181
EFI_PEI_CPU_IO_PPI.MemWrite32() .. 182
EFI_PEI_CPU_IO_PPI.MemWrite64() .. 183

8.3.8 EFI Pei Capsule PPI ... 183
EFI_PEI_CAPSULE_PPI (Optional).. 184
EFI_PEI_CAPSULE_PPI.Coalesce .. 185
EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CheckCapsuleUpdate().. 186

Platform Initialization Specification, Vol. 1

xx May 2017 Version 1.6

EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CapsuleCreateState() 187
8.3.9 EFI MP Services PPI... 187

EFI_MP_SERVICES_PPI (Optional)... 188
 EFI_MP_SERVICES_PPI.GetNumberOfProcessors()..................................... 190
EFI_MP_SERVICES_PPI.GetProcessorInfo() .. 192
EFI_MP_SERVICES_PPI.StartupAllAPs ()... 193
EFI_MP_SERVICES_PPI.StartupThisAP ().. 195
EFI_MP_SERVICES_PPI.SwitchBSP () ... 197
EFI_MP_SERVICES_PPI.WhoAmI () ... 200

8.4 Graphics PEIM Interfaces ... 201
8.4.1 Pei Graphics PPI... 201

GraphicsPpiInit .. 202
GraphicsPpiGetMode .. 203

8.4.2 EFI PEI Graphics INFO HOB .. 207
EFI_PEI_GRAPHICS_INFO_HOB.. 208

9 PEI to DXE Handoff ... 211
9.1 Introduction ... 211
9.2 Discovery and Dispatch of the DXE Foundation... 211
9.3 Passing the Hand-Off Block (HOB) List .. 211
9.4 Handoff Processor State to the DXE IPL PPI ... 212

10 Boot Paths.. 213
10.1 Introduction ... 213
10.2 Code Flow... 213

10.2.1 Reset Boot Paths .. 213
10.3 Normal Boot Paths... 214

10.3.1 Basic G0-to-S0 and S0 Variation Boot Paths... 214
10.3.2 S-State Boot Paths.. 215

10.4 Recovery Paths... 215
10.4.1 Discovery .. 216
10.4.2 General Recovery Architecture ... 216

10.5 Defined Boot Modes ... 216
10.6 Priority of Boot Paths .. 216
10.7 Assumptions ... 217
10.8 Architectural Boot Mode PPIs ... 217
10.9 Recovery... 218

10.9.1 Scope .. 218
10.9.2 Discovery .. 218
10.9.3 General Recovery Architecture ... 218
10.9.4 Finding and Loading the Recovery DXE Image .. 219

11 PEI Physical Memory Usage... 223
11.1 Introduction ... 223
11.2 Before Permanent Memory Is Installed... 223

11.2.1 Discovering Physical Memory ... 223
11.2.2 Using Physical Memory... 223

11.3 After Permanent Memory Is Installed.. 224

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xxi

11.3.1 Allocating Physical Memory .. 224
11.3.2 Allocating Memory Using GUID Extension HOBs ... 224
11.3.3 Allocating Memory Using PEI Service... 224

12 Special Paths Unique to the
Itanium® Processor Family.. 225
12.1 Introduction ... 225
12.2 Unique Boot Paths for Itanium Architecture.. 225
12.3 Min-State Save Area... 226

EFI_PEI_MIN_STATE_DATA ... 228
12.4 Dispatching Itanium Processor Family PEIMs .. 230

13 Security (SEC) Phase Information ... 233
13.1 Introduction ... 233
13.2 Responsibilities ... 233

13.2.1 Handling All Platform Restart Events .. 233
13.2.2 Creating a Temporary Memory Store.. 233
13.2.3 Serving As the Root of Trust in the System .. 234
13.2.4 Passing Handoff Information to the PEI Foundation 234

13.3 SEC Platform Information PPI .. 234
13.4 SEC HOB Data PPI .. 234
13.5 Health Flag Bit Format .. 234

13.5.1 Self-Test State Parameter... 236
13.6 Processor-Specific Details .. 237

13.6.1 SEC Phase in IA-32 Intel Architecture .. 237
13.6.2 SEC Phase in the Itanium Processor Family .. 237

14 Dependency Expression Grammar.. 239
14.1 Dependency Expression Grammar... 239

14.1.1 Example Dependency Expression BNF Grammar.. 239
14.1.2 Sample Dependency Expressions .. 240

15 TE Image... 241
15.1 Introduction ... 241
15.2 PE32 Headers... 241

TE Header ... 243

16 TE Image Creation ... 245
16.1 Introduction ... 245
16.2 TE Image Utility Requirements ... 245
16.3 TE Image Relocations... 245

17 TE Image Loading.. 247
17.1 Introduction ... 247
17.2 XIP Images ... 247
17.3 Relocated Images ... 247
17.4 PIC Images ... 247

Platform Initialization Specification, Vol. 1

xxii May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xxiii

List of Figures

Figure 1. PEI Operations Diagram.. 11
Figure 2. Typical PEIM Layout in a Firmware File .. 102
Figure 3. Itanium Processor Boot Path (INIT and MCHK) .. 226
Figure 4. Min-State Buffer Organization ... 227
Figure 5. Boot Path in Itanium Processors ... 231
Figure 6. Health Flag Bit Format... 235
Figure 7. PEI Initialization Steps in IA-32.. 237
Figure 8. Security (SEC) Phase in the Itanium Processor Family 238

Platform Initialization Specification, Vol. 1

xxiv May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 xxv

List of Tables

Table 1. Organization of the PEI CIS.. 1
Table 2. SI prefixes ... 7
Table 3. Binary prefixes ... 7
Table 4. PEI Foundation Classes of Service .. 12
Table 5. PEI Services ... 21
Table 6. Boot Mode Register .. 28
Table 7. Dependency Expression Opcode Summary ... 67
Table 8. PUSH Instruction Encoding .. 68
Table 9. AND Instruction Encoding... 69
Table 10. OR Instruction Encoding ... 70
Table 11. NOT Instruction Encoding... 71
Table 12. TRUE Instruction Encoding... 72
Table 13. FALSE Instruction Encoding ... 73
Table 14. END Instruction Encoding... 74
Table 15. Example Dispatch Map ... 78
Table 16. PEI PPI Services List Descriptors... 110
Table 17. Organization of the Code Definitions Section ... 139
Table 18. Required HOB Types in the HOB List... 211
Table 19. Handoff Processor State to the DXE IPL PPI ... 212
Table 20. Boot Path Assumptions... 217
Table 21. Architectural Boot Mode PPIs ... 218
Table 22. Device Recovery Module Functions ... 221
Table 23. Device Recovery Block I/O Functions... 221
Table 24. Health Flag Bit Field Description... 235
Table 25. Self-Test State Bit Values ... 236
Table 26. COFF Header Fields Required for TE Images.. 241
Table 27. Optional Header Fields Required for TE Images .. 241

Platform Initialization Specification, Vol. 1

xxvi May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 1

1 Introduction

1.1 Overview
This specification defines the core code and services that are required for an implementation of the
Pre-EFI Initialization (PEI) phase of the Platform Initialization (PI) specifications (hereafter referred
to as the “PI Architecture”). This PEI core interface specification (CIS) does the following:

• Describes the basic components of the PEI phase

• Provides code definitions for services and functions that are architecturally required by the UEFI
PI working group (PIWG)

• Describes the machine preparation that is required for subsequent phases of firmware execution

• Discusses state variables that describe the system restart type

See “Organization of the PEI CIS,” below, for more information.

1.2 Organization of the PEI CIS
This PEI core interface specification is organized as shown in Table 1. Because the PEI Foundation
is just one component of a PI Architecture-based firmware solution, there are a number of additional
specifications that are referred to throughout this document.

Table 1. Organization of the PEI CIS

Section Description

“Overview” on page 9 Describes the major components of PEI, including the PEI Services,
boot mode, PEI Dispatcher, and PEIMs.

“PEI Services Table” on page 15 Describes the data structure that maintains the PEI Services.

“Services - PEI” on page 21 Details each of the functions that comprise the PEI Services.

“PEI Foundation” on page 53 Describes the PEI Foundation and its methods of operation and the
PEI Dispatcher and its associated dependency expression
grammar..

“PEIMs” on page 101 Describes the format and use of the Pre-EFI Initialization Module
(PEIM).

“Architectural PPIs” on page 81 Contains PEIM-to-PEIM Interfaces (PPIs) that are used by the PEI
Foundation.

“Additional PPIs” on page 113 Contains PPIs that can exist on a platform.

“PEI to DXE Handoff” on page 211 Describes the state of the machine and memory when the PEI phase
invokes the DXE phase.

“Boot Paths” on page 213 Describes the restart modalities and behavior supported in the PEI
phase.

“PEI Physical Memory Usage” on
page 223

Describes the memory map and memory usage during the PEI
phase.

Introduction Platform Initialization Specification, Vol. 1

2 May 2017 Version 1.6

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Procedure Descriptions
The procedures described in this document generally have the following format:

“Special Paths Unique to the

Itanium® Processor Family” on
page 225

Contains flow during PEI that is unique to the Itanium® processor
family.

“Security (SEC) Phase Information”
on page 233

Contains an overview of the phase of execution that occurs prior to
PEI.

“Dependency Expression Grammar”
on page 239

Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
PEIM stored in a firmware volume.

“TE Image” on page 241 Describes the format of the TE executable.

“TE Image Creation” on page 245 Describes how TE executables are created from PE32+ executables.

“TE Image Loading” on page 247 Describes how TE executables are loaded into memory.

Section Description

Platform Initialization Specification, Vol. 1 Introduction

Version 1.6 May 2017 3

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.3 Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by a table that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.3.4 PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name: The formal name of the PPI.

Summary: A brief description of the PPI.

GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

Protocol Interface Structure:
A “C-style” procedure template defining the PPI calling structure.

Parameters: A brief description of each field in the PPI structure.

Introduction Platform Initialization Specification, Vol. 1

4 May 2017 Version 1.6

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
interface.

Status Codes Returned: A description of any codes returned by the interface. The PPI is
required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.5 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Platform Initialization Specification, Vol. 1 Introduction

Version 1.6 May 2017 5

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.4 Requirements
This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and

Introduction Platform Initialization Specification, Vol. 1

6 May 2017 Version 1.6

exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

1.5 Conventions used in this document

1.5.1 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).
Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by 0x preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between characters in
hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xB
FD8C FA23 or 0xB_FD8C_FA23).

 A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

• the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.

1.5.2 Binary prefixes
This standard uses the prefixes defined in the International System of Units (SI) (see http://
www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Platform Initialization Specification, Vol. 1 Introduction

Version 1.6 May 2017 7

Table 2. SI prefixes

Factor Factor Name Symbol

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Table 3. Binary prefixes

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

Introduction Platform Initialization Specification, Vol. 1

8 May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 9

2 Overview

2.1 Introduction
The Pre-EFI Initialization (PEI) phase of the PI Architecture specifications (hereafter referred to as
the “PI Architecture”) is invoked quite early in the boot flow. Specifically, after some preliminary
processing in the Security (SEC) phase, any machine restart event will invoke the PEI phase.

The PEI phase will initially operate with the platform in a nascent state, leveraging only on-
processor resources, such as the processor cache as a call stack, to dispatch Pre-EFI Initialization
Modules (PEIMs). These PEIMs are responsible for the following:

• Initializing some permanent memory complement

• Describing the memory in Hand-Off Blocks (HOBs)

• Describing the firmware volume locations in HOBs

• Passing control into the Driver Execution Environment (DXE) phase

Philosophically, the PEI phase is intended to be the thinnest amount of code to achieve the ends
listed above. As such, any more sophisticated algorithms or processing should be deferred to the
DXE phase of execution.

The PEI phase is also responsible for crisis recovery and resuming from the S3 sleep state. For crisis
recovery, the PEI phase should reside in some small, fault-tolerant block of the firmware store. As a
result, it is imperative to keep the footprint of the PEI phase as small as possible. In addition, for a
successful S3 resume, the speed of the resume is of utmost importance, so the code path through the
firmware should be minimized. These two boot flows also speak to the need to keep the processing
and code paths in the PEI phase to a minimum.

The implementation of the PEI phase is more dependent on the processor architecture than any other
phase. In particular, the more resources the processor provides at its initial or near initial state, the
richer the interface between the PEI Foundation and PEIMs. As such, there are several parts of the
following discussion that note requirements on the architecture but are otherwise left architecturally
dependent.

2.2 Design Goals
The PI Architecture requires the PEI phase to configure a system to meet the minimum prerequisites
for the Driver Execution Environment (DXE) phase of the PI Architecture architecture. In general,
the PEI phase is required to initialize a linear array of RAM large enough for the successful
execution of the DXE phase elements.

The PEI phase provides a framework to allow vendors to supply separate initialization modules for
each functionally distinct piece of system hardware that must be initialized prior to the DXE phase
of execution in the PI Architecture. The PEI phase provides a common framework through which
the separate initialization modules can be independently designed, developed, and updated. The PEI
phase was developed to meet the following goals in the PI architecture:

Overview Platform Initialization Specification, Vol. 1

10 May 2017 Version 1.6

• Enable maintenance of the “chain of trust.” This includes protection against unauthorized
updates to the PEI phase or its modules, as well as a form of authentication of the PEI
Foundation and its modules during the PEI phase.

• Provide a core PEI module (the PEI Foundation) that will remain more or less constant for a
particular processor architecture but that will support add-in modules from various vendors,
particular for processors, chipsets, RAM initialization, and so on.

• Allow independent development of early initialization modules.

2.3 Pre-EFI Initialization (PEI) Phase
The design for the Pre-EFI Initialization (PEI) phase of a PI Architecture-compliant boot is as an
essentially miniature version of the DXE phase of the PI Architecture and addresses many of the
same issues. The PEI phase is designed to be developed in several parts. The PEI phase consists of
the following:

• Some core code known as the PEI Foundation

• Specialized plug-ins known as Pre-EFI Initialization Modules (PEIMs)

Unlike DXE, the PEI phase cannot assume the availability of reasonable amounts of RAM, so the
richness of the features in DXE does not exist in PEI. The PEI phase limits its support to the
following actions:

• Locating, validating, and dispatching PEIMs

• Facilitating communication between PEIMs

• Providing handoff data to subsequent phases

Figure 1 below shows a diagram of the process completed during the PEI phase.

Platform Initialization Specification, Vol. 1 Overview

Version 1.6 May 2017 11

Figure 1. PEI Operations Diagram

2.4 PEI Services
The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
Pre-EFI Initialization Modules (PEIMs) in the system. A PEI Service is defined as a function,
command, or other capability manifested by the PEI Foundation when that service’s initialization
requirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM’s entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

The PEI Foundation provides the classes of services listed in Table 4.

Overview Platform Initialization Specification, Vol. 1

12 May 2017 Version 1.6

Table 4. PEI Foundation Classes of Service

PPI Services: Manages PPIs to facilitate intermodule calls between PEIMs.
Interfaces are installed and tracked on a database maintained in
temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, etc.) of the
system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that are used
to pass information to the next phase of the PI Architecture.

Firmware Volume Services: Finds PEIMs and other firmware files in the firmware volumes.

PEI Memory Services: Provides a collection of memory management services for use both
before and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services (for
example, port 080h or a serial port for simple text output for debug).

Reset Services: Provides a common means by which to initiate a warm or cold restart
of the system.

2.5 PEI Foundation
The PEI Foundation is the entity that is responsible for the following:

• Successfully dispatching Pre-EFI Initialization Modules (PEIMs)

• Maintaining the boot mode

• Initializing permanent memory

• Invoking the Driver Execution Environment (DXE) loader

The PEI Foundation is written to be portable across all platforms of a given instruction-set

architecture. As such, a binary for 32-bit Intel® architecture (IA-32) should work across all

Pentium® processors, from the Pentium II processor with MMX™ technology through the latest

Pentium 4 processors. Similarly, the PEI Foundation binary for the Itanium® processor family
should work across all Itanium processors.

Regardless of the processor microarchitecture, the set of services exposed by the PEI Foundation
should be the same. This uniform surface area around the PEI Foundation allows PEIMs to be
written in the C programming language and compiled across any microarchitecture.

2.6 PEI Dispatcher
The PEI Dispatcher is essentially a state machine that is implemented in the PEI Foundation. The
PEI Dispatcher evaluates the dependency expressions in Pre-EFI Initialization Modules (PEIMs)
that are in the firmware volume(s) being examined.

The dependency expressions are logical combinations of PEIM-to-PEIM Interfaces (PPIs). These
expressions describe the PPIs that must be available before a given PEIM can be invoked. To
evaluate the dependency expression for the PEIM, the PEI Dispatcher references the PPI database in
the PEI Foundation to determine which PPIs have been installed. If the PPI has been installed, the

Platform Initialization Specification, Vol. 1 Overview

Version 1.6 May 2017 13

dependency expression will evaluate to TRUE, which tells the PEI Dispatcher it can run the PEIM.
At this point, the PEI Foundation passes control to the PEIM with a true dependency expression.

Once the PEI Dispatcher has evaluated all of the PEIMs in all of the exposed firmware volumes and
no more PEIMs can be dispatched (i.e., the dependency expressions do not evaluate from FALSE to
TRUE), the PEI Dispatcher will exit. It is at this point that the PEI Dispatcher cannot invoke any
additional PEIMs. The PEI Foundation then reassumes control from the PEI Dispatcher and invokes
the DXE IPL PPI to pass control to the DXE phase of execution.

2.7 Pre-EFI Initialization Modules (PEIMs)
Pre-EFI Initialization Modules (PEIMs) are specialized drivers that personalize the PEI Foundation
to the platform. They are analogous to DXE drivers and generally correspond to the components
being initialized. It is the responsibility of the PEI Foundation code to dispatch the PEIMs in a
sequenced order and provide basic services. The PEIMs are intended to mirror the components
being initialized.

Communication between PEIMs is not easy in a “memory poor” environment. Nonetheless, PEIMs
cannot be coded without some interaction between one another and, even if they could, it would be
inefficient to do so. The PEI phase provides mechanisms for PEIMs to locate and invoke interfaces
from other PEIMs.

Because the PEI phase exists in an environment where minimal hardware resources are available and
execution is performed from the boot firmware device, it is strongly recommended that PEIMs do
the minimum necessary work to initialize the system to a state that meets the prerequisites of the
DXE phase.

It is expected that, in the future, common practice will be that the vendor of a software or hardware
component will provide the PEIM (possibly in source form) so the customer can debug integration
problems quickly.

2.8 PEIM-to-PEIM Interfaces (PPIs)
PEIMs communicate with each other using a structure called a PEIM-to-PEIM Interface (PPI). PPIs
are contained in a EFI_PEI_PPI_DESCRIPTOR data structure, which is composed of a GUID/
pointer pair. The GUID “names” the interface and the associated pointer provides the associated
data structure and/or service set for that PPI. A consumer of a PPI must use the PEI Service
LocatePpi() to discover the PPI of interest. The producer of a PPI publishes the available PPIs
in its PEIM using the PEI Services InstallPpi() or ReinstallPpi().

All PEIMs are registered and located in the same fashion, namely through the PEI Services listed
above. Within this name space of PPIs, there are two classes of PPIs:

• Architectural PPIs

• Additional PPIs

An architectural PPI is a PPI whose GUID is described in the PEI CIS and is a GUID known to the
PEI Foundation. These architectural PPIs typically provide a common interface to the PEI
Foundation of a service that has a platform-specific implementation, such as the PEI Service
ReportStatusCode().

Overview Platform Initialization Specification, Vol. 1

14 May 2017 Version 1.6

Additional PPIs are PPIs that are important for interoperability but are not depended upon by the PEI
Foundation. They can be classified as mandatory or optional. Specifically, to have a large class of
interoperable PEIMs, it would be good to signal that the final boot mode was installed in some
standard fashion so that PEIMs could use this PPI in their dependency expressions. The alternative
to defining these additional PPIs in the PEI CIS would be to have a proliferation of similar services
under different names.

2.9 Firmware Volumes
Pre-EFI Initialization Modules (PEIMs) reside in firmware volumes (FVs). The PEI Foundation,
defined here, must reside in the Boot Firmware Volume (BFV). The PEI phase supports the ability
for PEIMs to reside in multiple firmware volumes.. Other PEIMs can expose firmware volumes for
use by the PEI Foundation.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 15

3 PEI Services Table

3.1 Introduction
The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
Pre-EFI Initialization Modules (PEIMs) in the system. A PEI Service is defined as a function,
command, or other capability manifested by the PEI Foundation when that service’s initialization
requirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM's entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

Note: In the PEI Foundation use of the EFI_TABLE_HEADER for the PEI Services Table, there is
special treatment of the CRC32 field. This value is ignorable for PEI and should be set to zero.

3.2 PEI Services Table

3.2.1 EFI_PEI_SERVICES

Summary
The PEI Services Table includes a list of function pointers in a table. The table is located in the
temporary or permanent memory, depending upon the capabilities and phase of execution of PEI.
The functions in this table are defined in “Services - PEI” on page 21.

Related Definitions
//
// PEI Specification Revision information
//
#define PEI_SPECIFICATION_MAJOR_REVISION 1
#define PEI_SPECIFICATION_MINOR_REVISION 60

//
// UEFI PEI Services Table
//
#define PEI_SERVICES_SIGNATURE 0x5652455320494550
#define ((PEI_SPECIFICATION_MAJOR_REVISION<<16) |
(PEI_SPECIFICATION_MINOR_REVISION))

typedef EFI_PEI_SERVICES {
 EFI_TABLE_HEADER Hdr;

 //
 // PPI Functions

PEI Services Table Platform Initialization Specification, Vol. 1

16 May 2017 Version 1.6

 //
 EFI_PEI_INSTALL_PPI InstallPpi;
 EFI_PEI_REINSTALL_PPI ReInstallPpi;
 EFI_PEI_LOCATE_PPI LocatePpi;
 EFI_PEI_NOTIFY_PPI NotifyPpi;

 //
 // Boot Mode Functions
 //
 EFI_PEI_GET_BOOT_MODE GetBootMode;
 EFI_PEI_SET_BOOT_MODE SetBootMode;

 //
 // HOB Functions
 //
 EFI_PEI_GET_HOB_LIST GetHobList;
 EFI_PEI_CREATE_HOB CreateHob;

 //
 // Firmware Volume Functions
 //
 EFI_PEI_FFS_FIND_NEXT_VOLUME2 FfsFindNextVolume;
 EFI_PEI_FFS_FIND_NEXT_FILE2 FfsFindNextFile;
 EFI_PEI_FFS_FIND_SECTION_DATA2 FfsFindSectionData;

 //
 // PEI Memory Functions
 //
 EFI_PEI_INSTALL_PEI_MEMORY InstallPeiMemory;
 EFI_PEI_ALLOCATE_PAGES AllocatePages;
 EFI_PEI_ALLOCATE_POOL AllocatePool;
 EFI_PEI_COPY_MEM CopyMem;
 EFI_PEI_SET_MEM SetMem;

 //
 // Status Code
 EFI_PEI_REPORT_STATUS_CODE ReportStatusCode;

 //
 // Reset
 //
 EFI_PEI_RESET_SYSTEM ResetSystem;

 //
 // (the following interfaces are installed by publishing PEIM)
 //
 // I/O Abstractions

Platform Initialization Specification, Vol. 1 PEI Services Table

Version 1.6 May 2017 17

 //
 EFI_PEI_CPU_IO_PPI *CpuIo;
 EFI_PEI_PCI_CFG2_PPI *PciCfg;

 //
 // Additional File System-Related Services
 //
 EFI_PEI_FFS_FIND_BY_NAME FfsFindFileByName;
 EFI_PEI_FFS_GET_FILE_INFO FfsGetFileInfo;
 EFI_PEI_FFS_GET_VOLUME_INFO FfsGetVolumeInfo;
 EFI_PEI_REGISTER_FOR_SHADOW RegisterForShadow;

 EFI_PEI_FFS_FIND_SECTION_DATA3 FindSectionData3;
 EFI_PEI_FFS_GET_FILE_INFO2 FfsGetFileInfo2;
 EFI_PEI_RESET2_SYSTEM ResetSystem2;
 EFI_PEI_FREE_PAGES FreePages;

} EFI_PEI_SERVICES;

Parameters
Hdr

The table header for the PEI Services Table. This header contains the
PEI_SERVICES_SIGNATURE and PEI_SERVICES_REVISION values along
with the size of the EFI_PEI_SERVICES structure and a 32-bit CRC to verify that
the contents of the PEI Foundation Services Table are valid.

InstallPpi

Installs an interface in the PEI PEIM-to-PEIM Interface (PPI) database by GUID. See
the InstallPpi() function description in this document.

ReInstallPpi

Reinstalls an interface in the PEI PPI database by GUID. See the
ReinstallPpi() function description in this document.

LocatePpi

Locates an interface in the PEI PPI database by GUID. See the LocatePpi()
function description in this document.

NotifyPpi

Installs the notification service to be called back upon the installation or reinstallation
of a given interface. See the NotifyPpi() function description in this document.

GetBootMode

Returns the present value of the boot mode. See the GetBootMode() function
description in this document.

SetBootMode

Sets the value of the boot mode. See the SetBootMode() function description in
this document.

PEI Services Table Platform Initialization Specification, Vol. 1

18 May 2017 Version 1.6

GetHobList

Returns the pointer to the list of Hand-Off Blocks (HOBs) in memory. See the
GetHobList() function description in this document.

CreateHob

Abstracts the creation of HOB headers. See the CreateHob() function description
in this document.

FfsFindNextVolume

Discovers instances of firmware volumes in the system. See the
FfsFindNextVolume() function description in this document.

FfsFindNextFile

Discovers instances of firmware files in the system. See the FfsFindNextFile()
function description in this document.

FfsFindSectionData

Searches for a section in a firmware file. See the FfsFindSectionData()
function description in this document.

InstallPeiMemory

Registers the found memory configuration with the PEI Foundation. See the
InstallPeiMemory() function description in this document.

AllocatePages

Allocates memory ranges that are managed by the PEI Foundation. See the
AllocatePages() function description in this document.

AllocatePool

Frees memory ranges that are managed by the PEI Foundation. See the
AllocatePool() function description in this document.

CopyMem

Copies the contents of one buffer to another buffer. See the CopyMem() function
description in this document.

SetMem

Fills a buffer with a specified value. See the SetMem() function description in this
document.

ReportStatusCode

Provides an interface that a PEIM can call to report a status code. See the
ReportStatusCode() function description in this document. This is installed by
provider PEIM by copying the interface into the PEI Service table.

ResetSystem

Resets the entire platform. See the ResetSystem() function description in this
document. This is installed by provider PEIM by copying the interface into the PEI
Service table.

Platform Initialization Specification, Vol. 1 PEI Services Table

Version 1.6 May 2017 19

ResetSystem2

Resets the entire platform. See the ResetSystem2() function description in this
document. This is installed by provider PEIM by copying the interface into the PEI
Service table.

CpuIo

Provides an interface that a PEIM can call to execute an I/O transaction. This
interface is installed by provider PEIM by copying the interface into the PEI Service
table.

PciCfg

Provides an interface that a PEIM can call to execute PCI Configuration transactions.
This interface is installed by provider PEIM by copying the interface into the
EFI_PEI_SERVICES table.

FfsFindFileByName

Discovers firmware files within a volume by name. See FfsFindFileByName()
in this document.

FfsGetFileInfo

Return information about a particular file. See FfsGetFileInfo() in this
document.

FfsGetFileInfo2

Return information about a particular file. See FfsGetFileInfo2() in this
document.

FfsGetVolumeInfo

Return information about a particular volume. See FfsGetVolumeInfo() in this
document.

RegisterForShadow

Register a driver to be re-loaded when memory is available. See
RegisterForShadow() in this document.

FindSectionData3

Searches for a section in a firmware file. See the FfsFindSectionData3()

function description in this document.

FreePages

Releases memory previously allocated using AllocatePages().

Description
EFI_PEI_SERVICES is a collection of functions whose implementation is provided by the PEI
Foundation. These services fall into various classes, including the following:

• Managing the boot mode

PEI Services Table Platform Initialization Specification, Vol. 1

20 May 2017 Version 1.6

• Allocating both early and permanent memory

• Supporting the Firmware File System (FFS)

• Abstracting the PPI database abstraction

• Creating Hand-Off Blocks (HOBs)

A pointer to the EFI_PEI_SERVICES table is passed into each PEIM when the PEIM is invoked
by the PEI Foundation. As such, every PEIM has access to these services. Unlike the UEFI Boot
Services, the PEI Services have no calling restrictions, such as the UEFI 2.0 Task Priority Level
(TPL) limitations. Specifically, a service can be called from a PEIM or notification service.

Some of the services are also a proxy to platform-provided services, such as the Reset Services,
Status Code Services, and I/O abstractions. This partitioning has been designed to provide a
consistent interface to all PEIMs without encumbering a PEI Foundation implementation with
platform-specific knowledge. Any callable services beyond the set in this table should be invoked
using a PPI. The latter PEIM-installed services will return EFI_NOT_AVAILABLE_YET until a
PEIM copies an instance of the interface into the EFI_PEI_SERVICES table.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 21

4 Services - PEI

4.1 Introduction
A PEI Service is defined as a function, command, or other capability created by the PEI Foundation
during a phase that remains available after the phase is complete. Because the PEI phase has no
permanent memory available until nearly the end of the phase, the range of PEI Foundation Services
created during the PEI phase cannot be as rich as those created during later phases.

Table 5 shows the PEI Services described in this section:

Table 5. PEI Services

PPI Services: Manages PEIM-to-PEIM Interface (PPIs) to facilitate intermodule calls
between PEIMs. Interfaces are installed and tracked on a database
maintained in temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, etc.) of the
system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that are used to
pass information to the next phase of the PI Architecture.

Firmware Volume Services Walks the Firmware File Systems (FFS) in firmware volumes to find PEIMs
and other firmware files in the flash device.

PEI Memory Services: Provides a collection of memory management services for use both before
and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services (for
example, port 080h or a serial port for simple text output for debug).

Reset Services: Provides a common means by which to initiate a warm or cold restart of
the system.

The calling convention for PEI Services is similar to PPIs. See “PEIM-to-PEIM Communication”
on page 110 for more details on PPIs.

The means by which to bind a service call into a service involves a dispatch table,
EFI_PEI_SERVICES.A pointer to the table is passed into the PEIM entry point.

4.2 PPI Services
The following services provide the interface set for abstracting the PPI database:

• InstallPpi()

• ReinstallPpi()

• LocatePpi()

• NotifyPpi()

Services - PEI Platform Initialization Specification, Vol. 1

22 May 2017 Version 1.6

InstallPpi()

Summary
This service is the first one provided by the PEI Foundation. This function installs an interface in the
PEI PPI database by GUID. The purpose of the service is to publish an interface that other parties
can use to call additional PEIMs.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_INSTALL_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

PpiList

A pointer to the list of interfaces that the caller shall install. Type
EFI_PEI_PPI_DESCRIPTOR is defined in “PEIM Descriptors” on page 105.

Description
This service enables a given PEIM to register an interface with the PEI Foundation. The interface
takes a pointer to a list of records that adhere to the format of a EFI_PEI_PPI_DESCRIPTOR.
Since the PEI Foundation maintains a pointer to the list rather than copying the list, the list must
either be in the body of the PEIM or else allocated from temporary or permanent RAM.

The length of the list of described by the EFI_PEI_PPI_DESCRIPTOR that has the
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST flag set in its Flags field. There shall be at
least one EFI_PEI_PPI_DESCRIPTOR in the list.

There are two types of EFI_PEI_PPI_DESCRIPTORs that can be installed, including the
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH and
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 23

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The PpiList pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have the

EFI_PEI_PPI_DESCRIPTOR_PPI bit set in the

Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

ReinstallPpi()

Summary
This function reinstalls an interface in the PEI PPI database by GUID. The purpose of the service is
to publish an interface that other parties can use to replace an interface of the same name in the
protocol database with a different interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REINSTALL_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *OldPpi,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *NewPpi
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

OldPpi

A pointer to the former PPI in the database. Type EFI_PEI_PPI_DESCRIPTOR is
defined in “PEIM Descriptors” on page 105.

NewPpi

A pointer to the new interfaces that the caller shall install.

Description
This service enables PEIMs to replace an entry in the PPI database with an alternate entry.

Services - PEI Platform Initialization Specification, Vol. 1

24 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The OldPpi or NewPpi pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have the
EFI_PEI_PPI_DESCRIPTOR_PPI bit set in the

Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

EFI_NOT_FOUND The PPI for which the reinstallation was requested has not
been installed.

LocatePpi()

Summary
This function locates an interface in the PEI PPI database by GUID.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOCATE_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_GUID *Guid,
 IN UINTN Instance,
 IN OUT EFI_PEI_PPI_DESCRIPTOR **PpiDescriptor OPTIONAL,
 IN OUT VOID **Ppi
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES published by the PEI Foundation.

Guid

A pointer to the GUID whose corresponding interface needs to be found.

Instance

The N-th instance of the interface that is required.

PpiDescriptor

A pointer to instance of the EFI_PEI_PPI_DESCRIPTOR.

Ppi

A pointer to the instance of the interface.

Description
This service enables PEIMs to discover a given instance of an interface. This interface differs from
the interface discovery mechanism in the UEFI 2.0 specification, namely HandleProtocol(), in

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 25

that the PEI PPI database does not expose the handle's name space. Instead, PEI manages the
interface set by maintaining a partial order on the interfaces such that the Instance of the
interface, among others, can be traversed.

LocatePpi() provides the ability to traverse all of the installed instances of a given GUID-named
PPI. For example, there can be multiple instances of a PPI named Foo in the PPI database. An
Instance value of 0 will provide the first instance of the PPI that is installed. Correspondingly, an
Instance value of 2 will provide the second, 3 the third, and so on. The Instance value
designates when a PPI was installed. For an implementation that must reference all possible
manifestations of a given GUID-named PPI, the code should invoke LocatePpi() with a
monotonically increasing Instance number until EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS The interface was successfully returned.

EFI_NOT_FOUND The PPI descriptor is not found in the database.

NotifyPpi()

Summary
This function installs a notification service to be called back when a given interface is installed or
reinstalled. The purpose of the service is to publish an interface that other parties can use to call
additional PPIs that may materialize later.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_NOTIFY_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_NOTIFY_DESCRIPTOR *NotifyList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

NotifyList

A pointer to the list of notification interfaces that the caller shall install. Type
EFI_PEI_NOTIFY_DESCRIPTOR is defined in “PEIM Descriptors” on page 105.

Description
This service enables PEIMs to register a given service to be invoked when another service is
installed or reinstalled. This service will fire notifications on PPIs installed prior to this service
invocation. This is different behavior than the RegisterProtocolNotify of UEFI2.0, for example
EFI_PEI_NOTIFY_DESCRIPTOR is defined in “PEIM Descriptors” on page 105.

Services - PEI Platform Initialization Specification, Vol. 1

26 May 2017 Version 1.6

In addition, the PPI pointer is passed back to the agent that registered for the notification so that it
can deference private data, if so needed.

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The NotifyList pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI notify descriptors in the list do not have the

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES bit

set in the Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

4.3 Boot Mode Services
These services provide abstraction for ascertaining and updating the boot mode:

• GetBootMode()

• SetBootMode()

See “Boot Paths” on page 213 for additional information on the boot mode.

GetBootMode()

Summary
This function returns the present value of the boot mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_BOOT_MODE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 OUT EFI_BOOT_MODE *BootMode
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

BootMode

A pointer to contain the value of the boot mode. Type EFI_BOOT_MODE is defined
in “Related Definitions” below.

Description
This service enables PEIMs to ascertain the present value of the boot mode. The list of possible boot
modes is described in “Related Definitions” below.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 27

Related Definitions
//**
// EFI_BOOT_MODE
//**
typedef UINT32 EFI_BOOT_MODE;

#define BOOT_WITH_FULL_CONFIGURATION 0x00
#define BOOT_WITH_MINIMAL_CONFIGURATION 0x01
#define BOOT_ASSUMING_NO_CONFIGURATION_CHANGES 0x02
#define BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS 0x03
#define BOOT_WITH_DEFAULT_SETTINGS 0x04
#define BOOT_ON_S4_RESUME 0x05
#define BOOT_ON_S5_RESUME 0x06
#define BOOT_WITH_MFG_MODE_SETTINGS 0x07
#define BOOT_ON_S2_RESUME 0x10
#define BOOT_ON_S3_RESUME 0x11
#define BOOT_ON_FLASH_UPDATE 0x12
#define BOOT_IN_RECOVERY_MODE 0x20
0x21 – 0xF..F Reserved Encodings

Table 6 describes the bit values in the Boot Mode Register.

Services - PEI Platform Initialization Specification, Vol. 1

28 May 2017 Version 1.6

Table 6. Boot Mode Register

Register Bits Values Descriptions

MSBit-0 000000b Boot with full configuration

000001b Boot with minimal configuration

000010b Boot assuming no configuration changes from last boot

000011b Boot with full configuration plus diagnostics

000100b Boot with default settings

000101b Boot on S4 resume

000110b Boot in S5 resume

000111b Boot with manufacturing mode settings

000111b-001111b Reserved for boot paths that configure memory

010000b Boot on S2 resume

010001b Boot on S3 resume

010010b Boot on flash update restart

010011c-011111b Reserved for boot paths that preserve memory context

100000b Boot in recovery mode

100001b-111111b Reserved for special boots

Status Codes Returned

EFI_SUCCESS The boot mode was returned successfully.

SetBootMode()

Summary
This function sets the value of the boot mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SET_BOOT_MODE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_BOOT_MODE BootMode
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 29

BootMode

The value of the boot mode to set. Type EFI_BOOT_MODE is defined in
GetBootMode().

Description
This service enables PEIMs to update the boot mode variable. This would be used by either the boot
mode PPIs described in “Architectural PPIs” on page 81 or by a PEIM that needs to engender a
recovery condition. It is permissible to change the boot mode at any point during the PEI phase.

Status Codes Returned

EFI_SUCCESS The value was successfully updated.

4.4 HOB Services
The following services describe the capabilities in the PEI Foundation for providing Hand-Off Block
(HOB) manipulation:

• GetHobList()

• CreateHob()

The purpose of the abstraction is to automate the common case of HOB creation and manipulation.
See the Volume 3 for details on HOBs and their type definitions.

GetHobList()

Summary
This function returns the pointer to the list of Hand-Off Blocks (HOBs) in memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_HOB_LIST) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN OUT VOID **HobList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

HobList

A pointer to the list of HOBs that the PEI Foundation will initialize.

Services - PEI Platform Initialization Specification, Vol. 1

30 May 2017 Version 1.6

Description
This service enables a PEIM to ascertain the address of the list of HOBs in memory. This service
should not be required by many modules in that the creation of HOBs is provided by the PEI Service
CreateHob().

Status Codes Returned

EFI_SUCCESS The list was successfully returned.

EFI_NOT_AVAILABLE_YET The HOB list is not yet published.

CreateHob()

Summary
This service published by the PEI Foundation abstracts the creation of a Hand-Off Block's (HOB’s)
headers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CREATE_HOB) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN UINT16 Type,
 IN UINT16 Length,
 IN OUT VOID **Hob
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Type

The type of HOB to be installed. See the Volume 3 for a definition of this type.

Length

The length of the HOB to be added.

Hob

The address of a pointer that will contain the HOB header.

Description
This service enables PEIMs to create various types of HOBs. This service handles the common
work of allocating memory on the HOB list, filling in the type and length fields, and building the end
of the HOB list. The final aspect of this service is to return a pointer to the newly allocated HOB.
At this point, the caller can fill in the type-specific data. This service is always available because the
HOBs can also be created on temporary memory.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 31

There will be no error checking on the Length input argument. Instead, the PI Architecture
implementation of this service will round up the allocation size that is specified in the Length field
to be a multiple of 8 bytes in length. This rounding is consistent with the requirement that all of the
HOBs, including the PHIT HOB, begin on an 8-byte boundary. See the PHIT HOB definition in the
Platform Initialization Specification, Volume 3, for more information.

Status Codes Returned

EFI_SUCCESS The HOB was successfully created.

EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

4.5 Firmware Volume Services
The following services abstract traversing the Firmware File System (FFS):

• FfsFindNextVolume()

• FfsFindNextFile()

• FfsFindSectionData()

• FfsFindFileByName()

• FfsGetFileInfo()

• FfsGetVolumeInfo()

The description of the FFS can be found in the Platform Initialization Specification, Volume 3.

FfsFindNextVolume()

Summary
The purpose of the service is to abstract the capability of the PEI Foundation to discover instances of
firmware volumes in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_NEXT_VOLUME2) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN UINTN Instance,
 OUT EFI_PEI_FV_HANDLE *VolumeHandle
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Services - PEI Platform Initialization Specification, Vol. 1

32 May 2017 Version 1.6

Instance

This instance of the firmware volume to find. The value 0 is the Boot Firmware
Volume (BFV).

VolumeHandle

On exit, points to the next volume handle or NULL if it does not exist.

Description
This service enables PEIMs to discover additional firmware volumes. The core uses
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI to discover these volumes. The service returns a
volume handle of type EFI_PEI_FV_HANDLE, which must be unique within the system.

Related Definitions
typedef VOID *EFI_PEI_FV_HANDLE;

Status Codes Returned

EFI_SUCCESS The volume was found.

EFI_NOT_FOUND The volume was not found.

EFI_INVALID_PARAMETER VolumeHandle is NULL

FfsFindNextFile()

Summary
Searches for the next matching file in the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_NEXT_FILE2) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_FV_FILETYPE SearchType,
 IN CONST EFI_PEI_FV_HANDLE FvHandle,
 IN OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

SearchType

A filter to find files only of this type. Type EFI_FV_FILETYPE is defined in the
Platform Initialization Specification, Volume 3. Type EFI_FV_FILETYPE_ALL
causes no filtering to be done.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 33

FvHandle

Handle of firmware volume in which to search. The type EFI_PEI_FV_HANDLE is
defined in the PEI Services FfsFindNextVolume().

FileHandle

On entry, points to the current handle from which to begin searching or NULL to start
at the beginning of the firmware volume. On exit, points the file handle of the next file
in the volume or NULL if there are no more files. The type
EFI_PEI_FILE_HANDLE is defined in “Related Defintions” below.

Description
This service enables PEIMs to discover firmware files within a specified volume. To find the first
instance of a firmware file, pass a FileHandle value of NULL into the service.

The service returns a file handle of type EFI_PEI_FILE_HANDLE, which must be unique within
the system.

The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Related Definitions
typedef VOID *EFI_PEI_FILE_HANDLE;

Status Codes Returned

EFI_SUCCESS The file was found.

EFI_NOT_FOUND The file was not found.

EFI_NOT_FOUND The header checksum was not zero.

FfsFindSectionData()

Summary
Searches for the next matching section within the specified file. Prototype

Services - PEI Platform Initialization Specification, Vol. 1

34 May 2017 Version 1.6

typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_SECTION_DATA2) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_SECTION_TYPE SectionType,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT VOID **SectionData
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

SectionType

The value of the section type to find. Type EFI_SECTION_TYPE is defined in the
Platform Initialization Specification, Volume 3.

FileHandle

Handle of the firmware file to search. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile(), “Related Definitions.” A pointer to the file header that
contains the set of sections to be searched.

SectionData

A pointer to the discovered section, if successful.

Description
This service enables PEI modules to discover the first section of a given type within a valid file. This
service will search within encapsulation sections (compression and GUIDed) as well. It will search
inside of a GUIDed section or a compressed section, but may not, for example, search a GUIDed
section inside a GUIDes section.

This service will not search within compression sections or GUIDed sections which require
extraction if memory is not present.

Status Codes Returned

EFI_SUCCESS The section was found.

EFI_NOT_FOUND The section was not found.

FfsFindSectionData3()

Summary
Searches for the next matching section within the specified file.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 35

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_SECTION_DATA3) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_SECTION_TYPE SectionType,
 In UINTN SectionInstance
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT VOID **SectionData
 OUT UINT32 *AuthenticationStatus
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

SectionType

The value of the section type to find. Type EFI_SECTION_TYPE is defined in the
Platform Initialization Specification, Volume 3.

SectionInstance

Section instance to find.

FileHandle

Handle of the firmware file to search. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile(), “Related Definitions.” A pointer to the file header that
contains the set of sections to be searched.

SectionData

A pointer to the discovered section, if successful.

AuthenticationStatus

A pointer to the authentication status for this section.

Description
This service enables PEI modules to discover the section of a given type within a valid file. This
service will search within encapsulation sections (compression and GUIDed) as well. It will search
inside of a GUIDed section or a compressed section, but may not, for example, search a GUIDed
section inside a GUIDes section.

This service will not search within compression sections or GUIDed sections which require
extraction if memory is not present.

Services - PEI Platform Initialization Specification, Vol. 1

36 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The section was found.

EFI_NOT_FOUND The section was not found.

FfsFindFileByName()

Summary
Find a file within a volume by its name.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_BY_NAME) (
 IN CONST EFI_GUID *FileName,
 IN EFI_PEI_FV_HANDLE VolumeHandle,
 OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
FileName

A pointer to the name of the file to find within the firmware volume.

VolumeHandle

The firmware volume to search

FileHandle

Upon exit, points to the found file’s handle or NULL if it could not be found.

Description
This service searches for files with a specific name, within either the specified firmware volume or
all firmware volumes.

The service returns a file handle of type EFI_PEI_FILE_HANDLE, which must be unique within
the system.

The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 37

Status Codes Returned

EFI_SUCCESS File was found.

EFI_NOT_FOUND File was not found.

EFI_INVALID_PARAMETER VolumeHandle or FileHandle or FileName was

NULL.

FfsGetFileInfo()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_GET_FILE_INFO) (
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_FV_FILE_INFO *FileInfo
);

Parameters
FileHandle

Handle of the file.

FileInfo

Upon exit, points to the file’s information.

Description
This function returns information about a specific file, including its file name, type, attributes,
starting address and size. If the firmware volume is not memory mapped then the Buffer member
will be NULL.

Related Definitions
typedef struct {
 EFI_GUID FileName;
 EFI_FV_FILETYPE FileType;
 EFI_FV_FILE_ATTRIBUTES FileAttributes;
 VOID *Buffer;
 UINT32 BufferSize;
 } EFI_FV_FILE_INFO;

FileName

Name of the file.

Services - PEI Platform Initialization Specification, Vol. 1

38 May 2017 Version 1.6

FileType

File type. See EFI_FV_FILETYPE, which is defined in the Platform Initialization
Firmware Storage Specification.

FileAttributes

Attributes of the file. Type EFI_FV_FILE_ATTRIBUTES is defined in the Platform
Initialization Firmware Storage Specification.

Buffer

Points to the file’s data (not the header). Not valid if
EFI_FV_FILE_ATTRIB_MEMORY_MAPPED is zero.

BufferSize

Size of the file’s data.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo is NULL

FfsGetFileInfo2()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_GET_FILE_INFO2) (
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT EFI_FV_FILE_INFO2 *FileInfo
);

Parameters
FileHandle

Handle of the file.

FileInfo

Upon exit, points to the file's information.

Description
This function returns information about a specific file, including its file name, type, attributes,

starting address, size and authentication status. If the firmware volume is not memory mapped then
the Buffer member will be NULL.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 39

Related Definitions
typedef struct {
 EFI_GUID FileName;
 EFI_FV_FILETYPE FileType;
 EFI_FV_FILE_ATTRIBUTES FileAttributes;
 VOID *Buffer;
 UINT32 BufferSize;
 UINT32 AuthenticationStatus;
} EFI_FV_FILE_INFO2;

FileName

Name of the file.

FileType

File type. See EFI_FV_FILETYPE, which is defined in the Platform Initialization
Firmware Storage Specification.

FileAttributes

Attributes of the file. Type EFI_FV_FILE_ATTRIBUTES is defined in the Platform
Initialization Firmware Storage Specification.

Buffer

Points to the file's data (not the header). Not valid if
EFI_FV_FILE_ATTRIB_MEMORY_MAPPED is zero.

BufferSize

Size of the file's data.

AuthenticationStatus

Authentication status for this file.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo is NULL

FfsGetVolumeInfo()

Summary
Returns information about the specified volume.

Services - PEI Platform Initialization Specification, Vol. 1

40 May 2017 Version 1.6

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_GET_VOLUME_INFO) (
 IN EFI_PEI_FV_HANDLE VolumeHandle,
 OUT EFI_FV_INFO *VolumeInfo
);

Parameters
VolumeHandle

Handle of the volume.

VolumeInfo

Upon exit, points to the volume’s information.

Related Definitions
typedef struct {
 EFI_FVB_ATTRIBUTES_2 FvAttributes;
 EFI_GUID FvFormat;
 EFI_GUID FvName;
 VOID* FvStart;
 UINT64 FvSize;
} EFI_FV_INFO;

FvAttributes

Attributes of the firmware volume. Type EFI_FVB_ATTRIBUTES_2 is defined in
the Platform Initialization Firmware Storage Specficiation.

FvFormat

Format of the firmware volume. For PI Architecture Firmware Volumes, this can be
copied from FileSystemGuid in EFI_FIRMWARE_VOLUME_HEADER.

FvName

Name of the firmware volume. For PI Architecture Firmware Volumes, this can be
copied from VolumeName in the extended header of
EFI_FIRMWARE_VOLUME_HEADER.

FvStart

Points to the first byte of the firmware volume, if bit EFI_FVB_MEMORY_MAPPED
is set in FvAttributes.

FvSize

Size of the firmware volume.

 Description
This function returns information about a specific firmware volume, including its name, type,
attributes, starting address and size.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 41

Status Codes Returned

EFI_SUCCESS Volume information returned.

EFI_INVALID_PARAMETER If VolumeHandle does not represent a valid volume.

EFI_INVALID_PARAMETER If VolumeInfo is NULL.

EFI_SUCCESS Information successfully returned

EFI_INVALID_PARAMETER The volume designated by the VolumeHandle is not available

RegisterForShadow()

Summary
Register a PEIM so that it will be shadowed and called again.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REGISTER_FOR_SHADOW) (
 IN EFI_PEI_FILE_HANDLE FileHandle
);

Parameters
FileHandle

PEIM’s file handle. Must be the currently executing PEIM.

Description
This service registers a file handle so that after memory is available, the PEIM will be re-loaded into
permanent memory and re-initialized. The PEIM registered this way will always be initialized twice.
The first time, this function call will return EFI_SUCCESS. The second time, this function call will
return EFI_ALREADY_STARTED.

Depending on the order in which PEIMs are dispatched, the PEIM making this call may be
initialized after permanent memory is installed, even the first time.

Status Codes Returned

EFI_SUCCESS The PEIM was successfully registered for shadowing.

EFI_ALREADY_STARTED The PEIM was previously registered for shadowing.

EFI_NOT_FOUND The FileHandle does not refer to a valid file handle.

4.6 PEI Memory Services
The following services are a collection of memory management services for use both before and
after permanent memory has been discovered:

• InstallPeiMemory()

Services - PEI Platform Initialization Specification, Vol. 1

42 May 2017 Version 1.6

• AllocatePages()

• AllocatePool()

• CopyMem()

• SetMem()

• FreePages()

InstallPeiMemory()

Summary
This function registers the found memory configuration with the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_INSTALL_PEI_MEMORY) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_PHYSICAL_ADDRESS MemoryBegin,
 IN UINT64 MemoryLength
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

MemoryBegin

The value of a region of installed memory.

MemoryLength

The corresponding length of a region of installed memory.

Description
This service enables PEIMs to register the permanent memory configuration that has been initialized
with the PEI Foundation. The result of this call-set is the creation of the appropriate Hand-Off Block
(HOB) describing the physical memory.

The usage model is that the PEIM that discovers the permanent memory shall invoke this service.
The memory reported is a single contiguous run. It should be enough to allocate a PEI stack and
some HOB list. The full memory map will be reported using the appropriate memory HOBs. The
PEI Foundation will follow up with an installation of
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI.

Any invocations of this service after the first invocation which returns EFI_SUCCESS will be
ignored.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 43

Status Codes Returned

EFI_SUCCESS The region was successfully installed in a HOB or this service
was successfully invoked earlier and no HOB modification will
occur.

EFI_INVALID_PARAMETER MemoryBegin and MemoryLength are illegal for this

system.

EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

AllocatePages()

Summary
The purpose of the service is to publish an interface that allows PEIMs to allocate memory ranges
that are managed by the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ALLOCATE_PAGES) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT EFI_PHYSICAL_ADDRESS *Memory,
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

MemoryType

The type of memory to allocate. The only types allowed are EfiLoaderCode,
EfiLoaderData, EfiRuntimeServicesCode,
EfiRuntimeServicesData, EfiBootServicesCode,
EfiBootServicesData, EfiACPIReclaimMemory,
EfiReservedMemoryType, and EfiACPIMemoryNVS.

Pages

The number of contiguous 4 KiB pages to allocate. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

Memory

Pointer to a physical address. On output, the address is set to the base of the page
range that was allocated.

Services - PEI Platform Initialization Specification, Vol. 1

44 May 2017 Version 1.6

Description
This service allocates the requested number of pages and returns a pointer to the base address of the
page range in the location referenced by Memory. The service scans the available memory to locate
free pages. When it finds a physically contiguous block of pages that is large enough it creates a
memory allocation HOB describing the region with the requested MemoryType.

Allocation made prior to permanent memory will be migrated to permanent memory and the HOB
updated.

The expectation is that the implementation of this service will automate the creation of the Memory
Allocation HOB types. As such, this is in the same spirit as the PEI Services to create the FV HOB,
for example.
Prior to InstallPeiMemory() being called, PEI will allocate pages from the heap. After
InstallPeiMemory() is called, PEI will allocate pages within the region of memory provided by
InstallPeiMemory() service in a best-effort fashion. Location-specific allocations are not managed
by the PEI foundation code.

The service also supports the creation of Memory Allocation HOBs that describe the stack, boot-
strap processor (BSP) BSPStore (“Backing Store Pointer Store”), and the DXE Foundation
allocation. This additional information is conveyed through the final two arguments in this API and
the description of the appropriate HOB types can be found in the Platform Initialization
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS The memory range was successfully allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not equal to EfiLoaderCode,

EfiLoaderData, EfiRuntimeServicesCode,

EfiRuntimeServicesData,

EfiBootServicesCode,

EfiBootServicesData,

EfiACPIReclaimMemory,
EfiReservedMemoryType, or

EfiACPIMemoryNVS.

AllocatePool()

Summary
The purpose of this service is to publish an interface that allows PEIMs to allocate memory ranges
that are managed by the PEI Foundation.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 45

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ALLOCATE_POOL) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN UINTN Size,
 OUT VOID **Buffer
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Size

The number of bytes to allocate from the pool.

Buffer

If the call succeeds, a pointer to a pointer to the allocated buffer; undefined otherwise.

Description
This service allocates memory from the Hand-Off Block (HOB) heap. Because HOBs can be
allocated from either temporary or permanent memory, this service is available throughout the entire
PEI phase.

This service allocates memory in multiples of eight bytes to maintain the required HOB alignment.
The early allocations from temporary memory will be migrated to permanent memory when
permanent main memory is installed; this migration shall occur when the HOB list is migrated to
permanent memory.

Status Codes Returned

EFI_SUCCESS The allocation was successful.

EFI_OUT_OF_RESOURCES There is not enough heap to allocate the requested size.

CopyMem()

Summary
This service copies the contents of one buffer to another buffer.

Services - PEI Platform Initialization Specification, Vol. 1

46 May 2017 Version 1.6

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_COPY_MEM) (
 IN VOID *Destination,
 IN VOID *Source,
 IN UINTN Length
);

Parameters
Destination

Pointer to the destination buffer of the memory copy.

Source

Pointer to the source buffer of the memory copy.

Length

Number of bytes to copy from Source to Destination.

Description
This function copies Length bytes from the buffer Source to the buffer Destination.

Status Codes Returned
None.

FreePages()

Summary
Frees memory pages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FREE_PAGES) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_PHYSICAL_ADDRESS Memory
 IN UINTN Pages
);

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 47

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI Foundation.

Memory

The base physical address of the pages to be freed. Type EFI_PHYSICAL_ADDRESS is defined in
the EFI_BOOT_SERVICES.AllocatePages()function description.

Pages

The number of contiguous 4KiB pages to free.

Description
The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or
Pages is invalid.

SetMem()

Summary
The service fills a buffer with a specified value.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_SET_MEM) (
 IN VOID *Buffer,
 IN UINTN Size,
 IN UINT8 Value
);

Parameters
Buffer

Pointer to the buffer to fill.

Size

Number of bytes in Buffer to fill.

Value

Value to fill Buffer with.

Services - PEI Platform Initialization Specification, Vol. 1

48 May 2017 Version 1.6

Description
This function fills Size bytes of Buffer with Value.

Status Codes Returned
None.

4.7 Status Code Service
The PEI Foundation publishes the following status code service:

• ReportStatusCode()

This service will report EFI_NOT_AVAILABLE_YET until a PEIM publishes the services for other
modules. For the GUID of the PPI, see EFI_PEI_PROGRESS_CODE_PPI.

ReportStatusCode()

Summary
This service publishes an interface that allows PEIMs to report status codes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REPORT_STATUS_CODE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId OPTIONAL,
 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Type

Indicates the type of status code being reported. The type
EFI_STATUS_CODE_TYPE is defined in “Related Definitions” below.

Value

Describes the current status of a hardware or software entity. This includes
information about the class and subclass that is used to classify the entity as well as an
operation. For progress codes, the operation is the current activity. For error codes, it
is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in “Related Definitions” below.

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 49

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in “Related Definitions“ below. The
contents of this data type may have additional GUID-specific data.

Description
ReportStatusCode() is called by PEIMs that wish to report status information on their
progress. The principal use model is for a PEIM to emit one of the standard 32-bit error codes. This
will allow a platform owner to ascertain the state of the system, especially under conditions where
the full consoles might not have been installed.

This is the entry point that PEIMs shall use. This service can use all platform PEI Services, and
when main memory is available, it can even construct a GUIDed HOB that conveys the pre-DXE
data. This service can also publish an interface that is usable only from the DXE phase. This entry
point should not be the same as that published to the PEIMs, and the implementation of this code
path should not do the following:

• Use any PEI Services or PPIs from other modules.

• Make any presumptions about global memory allocation.

It can only operate on its local stack activation frame and must be careful about using I/O and
memory-mapped I/O resources. These concerns, including the latter warning, arise because this
service could be used during the “blackout” period between the termination of PEI and the beginning
of DXE, prior to the loading of the DXE progress code driver. As such, the ownership of the
memory map and platform resource allocation is indeterminate at this point in the platform
evolution.

Related Definitions
//
// Status Code Type Definition
//
typedef UINT32 EFI_STATUS_CODE_TYPE;

//
// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_CODE_RESERVED_MASK are
// reserved for use by this specification.
//
#define EFI_STATUS_CODE_TYPE_MASK 0x000000FF

Services - PEI Platform Initialization Specification, Vol. 1

50 May 2017 Version 1.6

#define EFI_STATUS_CODE_SEVERITY_MASK 0xFF000000
#define EFI_STATUS_CODE_RESERVED_MASK 0x00FFFF00

//
// Definition of code types, all other values masked by
// EFI_STATUS_CODE_TYPE_MASK are reserved for use by
// this specification.
//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR_CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003

//
// Definitions of severities, all other values masked by
// EFI_STATUS_CODE_SEVERITY_MASK are reserved for use by
// this specification.
// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error
// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.
//
#define EFI_ERROR_MINOR 0x40000000
#define EFI_ERROR_MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR_UNCONTAINED 0xa0000000

//
// Status Code Value Definition
//
typedef UINT32 EFI_STATUS_CODE_VALUE;

//
// A Status Code Value is made up of the class, subclass, and
// an operation.
//
#define EFI_STATUS_CODE_CLASS_MASK 0xFF000000
#define EFI_STATUS_CODE_SUBCLASS_MASK 0x00FF0000
#define EFI_STATUS_CODE_OPERATION_MASK 0x0000FFFF

//
// Definition of Status Code extended data header.
// The data will follow HeaderSize bytes from the beginning of
// the structure and is Size bytes long.
//
typedef struct {
 UINT16 HeaderSize;
 UINT16 Size;

Platform Initialization Specification, Vol. 1 Services - PEI

Version 1.6 May 2017 51

 EFI_GUID Type;
} EFI_STATUS_CODE_DATA;

HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_AVAILABLE_YET No progress code provider has installed an interface in the
system.

4.8 Reset Services
The PEI Foundation publishes the following reset service:

• ResetSystem()

ResetSystem()

Summary
Resets the entire platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RESET_SYSTEM) (
 IN CONST EFI_PEI_SERVICES **PeiServices
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Description
This service resets the entire platform, including all processors and devices, and reboots the system.
It is important to have a standard variant of this function for cases such as the following:

• Resetting the processor to change frequency settings

• Restarting hardware to complete chipset initialization

Services - PEI Platform Initialization Specification, Vol. 1

52 May 2017 Version 1.6

• Responding to exceptions from a catastrophic errorReturned Status Codes

Status Codes Returned

EFI_NOT_AVAILABLE_YET The service has not been installed yet.

4.9 I/O and PCI Services
• The PEI Foundation publishes CPU I/O and PCI Configuration services.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 53

5 PEI Foundation

5.1 Introduction
The PEI Foundation centers around the PEI Dispatcher. The dispatcher’s job is to hand control to
the PEIMs in an orderly manner. The PEI Foundation also assists in PEIM-to-PEIM
communication. The central resource for the module-to-module communication involves the PPI.
The marshalling of references to PPIs can occur using the installable or notification interface.

The PEI Foundation is constructed as an autonomous binary image that is of file type
EFI_FV_FILETYPE_PEI_CORE and is composed of the following:

• An authentication section

• A code image that is possibly PE32+

See the Platform Initialization Specification, Volume 3, for information on section and file types. If
the code that comprises the PEI Foundation is not a PE32+ image, then it is a raw binary whose
lowest address is the entry point to the PEI Foundation. The PEI Foundation is discovered and
authenticated by the Security (SEC) phase.

5.1.1 Prerequisites
The PEI phase is handed control from the Security (SEC) phase of the PI Architecture-compliant
boot process. The PEI phase must satisfy the following minimum prerequisites before it can begin
execution:

• Processor execution mode

• Access to the Boot Firmware Volume (BFV) that contains the PEI Foundation

It is expected that the SEC infrastructure code and PEI Foundation are not linked together as a single
ROMable executable image. The entry point from SEC into PEI is not architecturally fixed but is
instead dependent on the PEI Foundation location within FV0, or the Boot Firmware Volume.

5.1.2 Processor Execution Mode

5.1.2.1 Processor Execution Mode in IA-32 Intel® Architecture
In IA-32 Intel architecture, the Security (SEC) phase of the PI Architecture is responsible for placing
the processor in a native linear address mode by which the full address range of the processor is
accessible for code, data, and stack. For example, “flat 32” is the IA-32 processor generation mode
in which the PEI phase will execute. The processor must be in its most privileged “ring 0” mode, or
equivalent, and be able to access all memory and I/O space.

This prerequisite is strictly dependent on the processor generation architecture.

5.1.2.2 Processor Execution Mode in Itanium® Processor Family
The PEI Foundation will begin executing after the Security (SEC) phase has completed. The SEC
phase subsumed the System Abstraction Layer entry point (SALE_ENTRY) in Itanium®

PEI Foundation Platform Initialization Specification, Vol. 1

54 May 2017 Version 1.6

architecture. In addition, the SEC phase makes the appropriate Processor Abstraction Layer (PAL)
calls or platform services to enable the temporary memory store. The SEC passes its handoff state to
the PEI Foundation in physical mode with some configured memory stack, such as the processor
cache configured as memory.

5.1.2.3 Access to the Boot Firmware Volume
The program that the Security (SEC) phase hands control to is known as the PEI Foundation. The
firmware volume (FV) in which the PEI Foundation resides is known as the Boot Firmware Volume
(BFV). PEIMs may reside in the BFV or other FVs. A “special” PEIM must be resident in the BFV
to provide information about the location of the other FVs.

Each file contained in the BFV that is required to boot must be able to be discovered and validated
by the PEI phase. This allows the PEI phase to determine if the FV has been corrupted.

The PEI Foundation and the PEIMs are expected to be stored in some reasonably tamper-proof
(albeit not necessarily in the strict security-based definition of the term) nonvolatile storage (NVS).
The storage is expected to be fairly analogous to a flat file system with the unique IDs substituting
for names. Rules for using the particular NVS might affect certain storage considerations, but a
standard data-only mechanism for locating PEIMs by ID is required. The PI Architecture
architecture describes the PI Firmware Volume format and PI Firmware File System format, with
the GUID convention of naming files. These standards are architectural for PEI inasmuch as the PEI
phase needs to directly support this file system.

The BFV can only be constructed of type EFI_FIRMWARE_FILE_SYSTEM2_GUID.

The PEI Foundation and some PEIMs required for recovery must be either locked into a
nonupdateable BFV or must be able to be updated via a “fault-tolerant” mechanism. The fault-
tolerant mechanism is designed such that, if the system halts at any point, either the old (preupdate)
PEIM or the newly updated PEIM is entirely valid and that the PEI phase can determine which is
valid.

5.1.2.4 Access to the Boot Firmware Volume in IA-32 Intel Architecture
In IA-32 Intel architecture, the Security (SEC) file is at the top of the Boot Firmware Volume (BFV).
This SEC file will have the 16-byte entry point for IA-32 and restarts at address 0xFFFFFFF0.

5.1.2.5 Access to the Boot Firmware Volume in Itanium Processor Family
In the Itanium processor family, the microcode starts up the Processor Abstraction Layer A (PAL-A)
code, which is the first layer of PAL code and is provided by the processor vendor, that resides in the
Boot Firmware Volume (BFV). This code minimally initializes the processor and then finds and
authenticates the second layer of PAL code, called PAL-B. The location of both PAL-A and PAL-B
can be found by consulting either of the following:

• The architected pointers in the ROM (near the 4 GiB region)

• The Firmware Interface Table (FIT) pointer in the ROM

The PAL layer communicates with the OEM boot firmware using a single entry point called the
System Abstraction Layer entry point (SALE_ENTRY). The PEI Foundation will be located at the
SALE_ENTRY point on the boot firmware device for an Itanium-based system. The Itanium
processor family PEIMs, like other PEIMs, may reside in the BFV or other firmware volumes. A
“special” PEIM must be resident in the BFV to provide information about the location of the other

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 55

firmware volumes; this will be described in the context of the EFI_PEI_FIND_FV_PPI
description. It must also be noted that in an Itanium-based system, all the processors in each node
start up and execute the PAL code and subsequently enter the PEI Foundation. The BFV of a
particular node must be accessible by all the processors running in that node. This also means that
some of the PEIMs in the Itanium® architecture boot path will be multiprocessor (MP) aware.

In an Itanium-based system, it is also imperative that the organization of firmware modules in the
BFV must be such that at least the PAL-A is contained in the fault-tolerant regions. This processor-
specific PAL-A code authenticates the PAL-B code, which is usually contained in the non-fault-
tolerant regions of the firmware system. The PAL-A and PAL-B binary components are always
visible to all the processors in a node at the time of power-on; the system fabric should not need to be
initialized.

5.2 PEI Foundation Entry Point

5.2.1 PEI Foundation Entry Point
The Security (SEC) phase calls the entry point to the PEI Foundation with the following
information:

• A set of PPIs

• Size and location of the Boot Firmware Volume (BFV)

• Size and location of the temporary RAM

• Size and location of the temporary RAM available for use by the PEI Foundation

• Size and location of the stack

The entry point is described in “Code Definitions” below.

Prototype
typedef
VOID
EFIAPI
(*EFI_PEI_CORE_ENTRY_POINT)(
 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList
);

Parameters
SecCoreData

Points to a data structure containing information about the PEI core’s operating
environment, such as the size and location of temporary RAM, the stack location and
the BFV location. The type EFI_SEC_PEI_HAND_OFF is defined in “Related
Definitions” below.

PpiList

Points to a list of one or more PPI descriptors to be installed initially by the PEI core.
An empty PPI list consists of a single descriptor with the end-tag

PEI Foundation Platform Initialization Specification, Vol. 1

56 May 2017 Version 1.6

EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST. As part of its initialization
phase, the PEI Foundation will add these SEC-hosted PPIs to its PPI database such
that both the PEI Foundation and any modules can leverage the associated service
calls and/or code in these early PPIs.

Description
This function is the entry point for the PEI Foundation, which allows the SEC phase to pass
information about the stack, temporary RAM and the Boot Firmware Volume. In addition, it also
allows the SEC phase to pass services and data forward for use during the PEI phase in the form of
one or more PPIs. These PPI's will be installed and/or immediately signaled if they are notification
type.

There is no limit to the number of additional PPIs that can be passed from SEC into the PEI
Foundation. As part of its initialization phase, the PEI Foundation will add these SEC-hosted PPIs to
its PPI database such that both the PEI Foundation and any modules can leverage the associated
service calls and/or code in these early PPIs.

Finally, later phases of platform evolution might need many of the features and data that the SEC
phase might possibly have. To support this, the SEC phase can construct a
EFI_PEI_PPI_DESCRIPTOR and pass its address into the PEI Foundation as the final argument.

Among these PPIs, the SEC can pass an optional PPI,
EFI_SEC_PLATFORM_INFORMATION_PPI, as part of the PPI list that is passed to the PEI
Foundation entry point. This PPI abstracts platform-specific information that the PEI Foundation
needs to discover where to begin dispatching PEIMs. Other possible values to pass into the PEI
Foundation would include any security or verification services, such as the Trusted Computing
Group (TCG) access services, because the SEC would constitute the Core Root-of-Trust Module
(CRTM) in a TCG-conformant system.

Further, SEC can pass the EFI_SEC_HOB_DATA_PPI as a part of the PPI list. This PPI can
retrieve zero or more HOBs to be added to the HOB list before any PEIMs are dispatched.

Related Definitions
typedef struct _EFI_SEC_PEI_HAND_OFF {
 UINT16 DataSize;
 VOID *BootFirmwareVolumeBase;
 UINTN BootFirmwareVolumeSize;
 VOID *TemporaryRamBase;
 UINTN TemporaryRamSize;
 VOID *PeiTemporaryRamBase;
 UINTN PeiTemporaryRamSize;
 VOID *StackBase;
 UINTN StackSize;
} EFI_SEC_PEI_HAND_OFF;

DataSize

Size of the data structure.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 57

BootFirmwareVolumeBase

Points to the first byte of the boot firmware volume, which the PEI Dispatcher should
search for PEI modules.

BootFirmwareVolumeSize

Size of the boot firmware volume, in bytes.

TemporaryRamBase

Points to the first byte of the temporary RAM.

TemporaryRamSize

Size of the temporary RAM, in bytes.

PeiTemporaryRamBase

Points to the first byte of the temporary RAM available for use by the PEI Foundation.
The area described by PeiTemporaryRamBase and PeiTemporaryRamSize
must not extend outside beyond the area described by TemporaryRamBase &
TemporaryRamSize. This area should not overlap with the area reported by
StackBase and StackSize.

PeiTemporaryRamSize

Size of the available temporary RAM available for use by the PEI Foundation, in
bytes.

StackBase

Points to the first byte of the stack. This are may be part of the memory described by
TemporaryRamBase and TemporaryRamSize or may be an entirely separate
area.

StackSize

Size of the stack, in bytes.

The information from SEC is mandatory information that is placed on the stack by the SEC phase to
invoke the PEI Foundation.

The SEC phase provides the required processor and/or platform initialization such that there is a
temporary RAM region available to the PEI phase. This temporary RAM could be a particular
configuration of the processor cache, SRAM, or other source. What is important with respect to this
handoff is that the PEI ascertain the available amount of cache as RAM from this data structure.

Similarly, the PEI Foundation needs to receive a priori information about where to commence the
dispatch of PEIMs. A platform can have various size BFVs. As such, the
BootFirmwareVolume value tells the PEI Foundation where it can expect to discover a firmware
volume header data structure, and it is this firmware volume that contains the PEIMs necessary to
perform the basic system initialization.

5.3 PEI Calling Convention Processor Binding
Unless otherwise specified, the calling convention used for PEI functions is the same as the one
specified in the UEFI specification. However, for certain processors, an alternate calling convention
is recommended for new PPI definitions.

PEI Foundation Platform Initialization Specification, Vol. 1

58 May 2017 Version 1.6

5.4 PEI Services Table Retrieval
This section describes processor-specific mechanisms for retrieving a pointer to a pointer to the PEI
Services Table (EFI_PEI_SERVICES**) such as is commonly used in PEIMs. The means of
storage and retrieval are processor specific.

5.4.1 X86
For X86 processors, the EFI_PEI_SERVICES** is stored in the 4 bytes immediately preceding
the Interrupt Descriptor Table.

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which should be
placed in a library routine for portability between architectures:

IDTR32 STRUCT
Limit DW 1 DUP (?)
BaseAddress DD 1 DUP (?)
IDTR32 ENDS

sub esp, SIZEOF IDTR32
sidt FWORD PTR ss:[esp]
mov eax, [esp].IDTR32.BaseAddress
mov eax, DWORD PTR [eax – 4]
add esp, SIZEOF IDTR32

5.4.1.1 Interrupt Descriptor Table Initialization and Ownership Rules.
1. The SEC Core must initialize the IDT using the lidt command and ensure that the four-bytes

field immediately preceding the IDT base address resides within temporary memory.

2. The PEI Foundation initializes or updates the four-byte field immediately preceding the
currently loaded IDT base address.

3. Any PEIM can reinitialize the IDT with the following restrictions:

• The four-bytes field immediately prior to new IDT base address must reside within the
temporary or permanent memory.

• The four-byte field immediately preceding the old IDT base address must be copied to the
four-byte field immediately preceding the new IDT base address.

5.4.2 x64
For x64 processors, the EFI_PEI_SERVICES** is stored in eight bytes immediately preceding
the Interrupt Descriptor Table

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which should be
placed in a library routine for portability between architectures:

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 59

IDTR64 STRUCT
Limit DW 1 DUP (?)
BaseAddress DQ 1 DUP (?)
IDTR64 ENDS

sub rsp, SIZEOF IDTR64
sidt [rsp]
mov rax, [rsp].IDTR64.BaseAddress
mov rax, QWORD PTR [rax – 8]
add rsp, SIZEOF IDTR64

5.4.2.1 Interrupt Descriptor Table Initialization and Ownership Rules.
1. The SEC Core must initialize the IDT using the lidt command and ensure that the eight-bytes

field immediately preceding the IDT base address resides within temporary memory.

2. The PEI initializes or updates the eight-byte field immediately preceding the currently loaded
IDT base address.

3. Any PEIM can reinitialize the IDT with the following restrictions:

• The eight-bytes field immediately prior to new IDT base address must reside within the
temporary or permanent memory

• The eight-byte field immediately preceding the old IDT base address must be copied to the
eight-byte field immediately preceding the new IDT base address.

5.4.3 Itanium Processor Family – Register Mechanism
For Itanium Processor Family processors, the EFI_PEI_SERVICES** is stored in kernel register
7 (ar.kr7). Information on the kernel registers for IPF can be found at http://www.intel.com/design/
itanium/downloads/245358.htm.

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which may be
placed in a library routine for portability between architectures:

AsmReadKr7
 mov r8, ar.kr7;;
 br.ret b0;;

EFI_PEI_SERVICES **
GetPeiServicesTablePointer (
 VOID
)
{
 return (EFI_PEI_SERVICES **)(UINTN)AsmReadKr7 ();
}

http://www.intel.com/design/itanium/downloads/245358.htm
http://www.intel.com/design/itanium/downloads/245358.htm

PEI Foundation Platform Initialization Specification, Vol. 1

60 May 2017 Version 1.6

Note: Compilers should not be using KRs, they are reserved for OS use (i.e.,this is the overlap w/ the
Software Development Manual). Also, priv. level 3 code can only read KRs and not write them
anyway, only PL0 code can write these.

5.4.4 ARM Processor Family – Register Mechanism
For the ARM Processor Family processors, the EFI_PEI_SERVICES** is stored in a the
TPIDRURW read/write Software Thread ID register defined in the ARMv7-A Architectural
Reference Manual.

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which may be
placed in a library routine for portability between architectures:

CpuReadTPIDRURW:
 MRC p15, 0, r0, c13, c0, 2
 bx lr

EFI_PEI_SERVICES **
GetPeiServicesTablePointer (
 VOID
)
{
 return (EFI_PEI_SERVICES **)(UINTN)CpuReadTPIDRURW ();
}

5.4.4.1 ARM Vector Table
For ARM processors the vector table entries are instructions, and thus are limited to 24-bit relative
offset of a branch instruction. The PI specification requires that the 8 defined vectors contain the
following instruction LDR pc, [pc, #0x20]. This means the 32-bit address of the handler is contained
at a 32-byte offset from the address of the vector. When PI code hooks into the vector table it must
ensure that the 32-bit absolute address offset 32-bytes from the vector is what is updated. The first
code in the platform that initializes the vector table must fill it with 8 LDR pc, [pc, #0x20]
instructions.

5.4.5 AArch64 Processor Family – Register Mechanism
For AArch64 architecture processors, the EFI_PEI_SERVICES** is stored in the TPIDR_EL0
register. Information on this register can be found in the "ARM Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile".

5.4.6 RISC-V Processor Family – Register Mechanism
For the RISC-V processor, the EFI_PEI_SERVICES ** is stored in the
RISCV_MACHINE_MODE_CONTEXT structure and the pointer to this structure is stored in the
Machine mode Control and Status register MSCRATCH. EFI_PEI_SERVICES ** is one of the
structure member in RISCV_MACHINE_MODE_CONTEXT. The contents in this structure will be
kept across all UEFI execution phases during the entire system life. MSCRATCH is a readable and
writable CSR which is initiated to maintain various pointers for each UEFI execution phase. The

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 61

pointers in this structure includes EFI_PEI_SERVICES ** and the interrupt handlers of each
RISC-V privilege level.

/// Machine mode context used for saving hart-local context.
typedef struct _RISCV_MACHINE_MODE_CONTEXT {
 EFI_PHYSICAL_ADDRESS PeiService;/// PEI service.
 EFI_PHYSICAL_ADDRESS MachineModeTrapHandler;/// Machine mode
trap

/// handler.
 EFI_PHYSICAL_ADDRESS HypervisorModeTrapHandler;/// Hypervisor
mode trap

/// handler.
 EFI_PHYSICAL_ADDRESS SupervisorModeTrapHandler;/// Supervisor
mode trap

/// handler.
 EFI_PHYSICAL_ADDRESS UserModeTrapHandler;/// User mode trap
handler.
 TRAP_HANDLER_CONTEXT MModeHandler;/// Handler for machine

/// mode.
} RISCV_MACHINE_MODE_CONTEXT;

EFI_PEI_SERVICES ** can be retrieved through below function
which is provided by RISC-V library.

CONST EFI_PEI_SERVICES **
EFIAPI
GetPeiServicesTablePointer (
 VOID
)
{
 RISCV_MACHINE_MODE_CONTEXT *Context;
 EFI_PEI_SERVICES **PeiServices;

 Context = (RISCV_MACHINE_MODE_CONTEXT *) UINTN)
RiscVGetScratch ();
 PeiServices = (EFI_PEI_SERVICES **) Context->PeiService;
 return (CONST EFI_PEI_SERVICES **)PeiServices;
}

5.5 PEI Dispatcher Introduction
The PEI Dispatcher’s job is to hand control to the PEIMs in an orderly manner. The PEI Dispatcher
consists of a single phase. It is during this phase that the PEI Foundation will examine each file in
the firmware volumes that contain files of type EFI_FV_FILETYPE_PEIM or
EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER (see the Platform Initialization Specification,
Volume 3, for file type definitions). It will examine the dependency expression (depex) and the

PEI Foundation Platform Initialization Specification, Vol. 1

62 May 2017 Version 1.6

optional a priori file within each firmware file to decide when a PEIM is eligible to be dispatched.
The binary encoding of the depex will be the same as that of a depex associated with a PEIM.

5.6 Ordering

5.6.1 Requirements
Except for the order imposed by an a priori file, it is not reasonable to expect PEIMs to be executed
in any order. A chipset initialization PEIM usually requires processor initialization and a memory
initialization PEIM usually requires chipset initialization. On the other hand, the PEIMs that satisfy
these requirements might have been authored by different organizations and might reside in different
FVs. The requirement is thus to, without memory, create a mechanism to allow for the definition of
ordering among the different PEIMs so that, by the time a PEIM executes, all of the requirements for
it to execute have been met.

Although the update and build processes assist in resolving ordering issues, they cannot be relied
upon completely. Consider a system with a removable processor card containing a processor and
firmware volume that plugs into a main system board. If the processor card is upgraded, it is entirely
reasonable that the user should expect the system to work even though no update program was
executed.

5.6.2 Requirement Representation and Notation
Requirements are represented by GUIDs, with each GUID representing a particular requirement.
The requirements are represented by two sets of data structures:

• The dependency expression (depex) of a given PEIM

• The installed set of PPIs maintained by the PEI Foundation in the PPI database

This mechanism provides for a “weak ordering” among PEIMs. If PEIMs A and B consume X
(written AcX and BcX), once a PEIM (C) that produces X (CpX) is executed, A and B can be
executed. There is no definition about the order in which A and B are executed.

5.6.3 PEI a priori File Overview
The PEI a priori file is a special file that may optionally be present in a firmware volume, and its
main purpose is to provide a greater degree of flexibility in the firmware design of a platform.
Specifically, the a priori file complements the dependency expression mechanism of PEI by
stipulating a series of modules which need be dispatched in a prescribed order.

There may be at most one PEI a priori file per firmware volume present in a platform. The a priori
file has a known GUID file name PEI_APRIORI_FILE_NAME_GUID, enabling the PEI
Foundation dispatch behavior to find the a priori file if it is present. The contents of the file shall
contain data of the format PEI_APRIORI_FILE_CONTENTS, with possibly zero entries. Every
time the PEI Dispatcher discovers a firmware volume, it first looks for the a priori file. The PEIM’s
enumerated in a an a priori file must exist in the same firmware volume as the a priori file iteself; no
cross-volume mapping is allowed. The PEI Foundation will invoke the PEIM’s listed in the
PEI_APRIORI_FILE_CONTENTS in the order found in this file.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 63

Without the a priori file, PEIMs executed solely because of their dependency expressions are
weakly ordered. This means that the execution order is not completely deterministic between boots
or between platforms. In some cases a deterministic execution order is required. The PEI a priori file
provides a deterministic execution order of PEIMs using the following two implementation
methods.

The a priori model must be supported by all PEI Foundation implementations, but it does not
preclude additional a priori dispatch methodologies, as long as the latter models use a different
mechanism and/or file name GUID for the alternate a priori module listing. The a priori file format
follows below.

PEI Foundation Platform Initialization Specification, Vol. 1

64 May 2017 Version 1.6

PEI_APRIORI_FILE_NAME_GUID

Summary
The GUID PEI_APRIORI_FILE_NAME_GUID definition is the file name of the PEI a priori file
that is stored in a firmware volume.

GUID
#define PEI_APRIORI_FILE_NAME_GUID \
 {0x1b45cc0a,0x156a,0x428a,0xaf62,0x49,0x86,\
 0x4d,0xa0,0xe6,0xe6}

typedef struct {
EFI_GUID FileNamesWithinVolume[NumberOfModulesInVolume];
 // Optional list of file-names
} PEI_APRIORI_FILE_CONTENTS;

Parameters
FileNamesWithinVolume[]

An array of zero or more EFI_GUID type entries that match the file names of PEIM
modules in the same Firmware Volume. The maximum number of entries
NumberOfModulesInVolume is determined by the number of modules in the FV.

Description
This file must be of type EFI_FV_FILETYPE_FREEFORM and must contain a single section of
type EFI_SECTION_RAW. For details on firmware volumes, firmware file types, and firmware file
section types, see the Platform Initialization Specification, Volume 3.

5.6.3.1 Dispatch Behavior
The a priori file can contain a list of the EFI_GUIDs, which are the names of the PEIM files within
the same firmware volume. Herein, the PEI Foundation dispatch logic reads the list of names from
the a priori file and invokes the appropriately named module in the order enumerated in the a priori
file. This value can be calculated by means of the size of PEI_APRIORI_FILE_CONTENTS.
This shall be an integral number of GUID sizes.

If there is a file name within PEI_APRIORI_FILE_CONTENTS which is in the deleted state or
does not exist, the specific file name shall be ignored by the PEI Foundation dispatch logic and the
successive entry invoked.

During dispatch of PEIM’s in the a priori file, any PEIMs in newly published firmware volumes will
be ignored until completion of the a priori file dispatch. These interfaces would be assessed during
subsequent module dispatch, though.

In addition to ignoring any additional volumes published during a priori dispatch, any dependency
expressions associated with PEIMs listed within PEI_APRIORI_FILE_CONTENTS are ignored.

During dispatch of the a priori PEIM list, the PEI Dispatcher shall invoke the
EFI_PEI_SECURITY2_PPI AuthenticationState service, if it exists, to qualify the
dispatch of each module. This is the same behavior as the normal dependency-based dispatch. For

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 65

the a priori file in the boot firmware volume, for example, the EFI_PEI_SECURITY2_PPI could
be passed by the SEC into the PEI Foundation via the optional EFI_PEI_PPI_DESCRIPTOR list.
This latter scenario allows authentication of PEIMs in the a priori file.

After executing all of the PEIMs specified in the a priori file, the PEI Dispatcher searches the
firmware volume for any additional PEIMs and executes them according to their dependency
expressions.

5.6.4 Firmware Volume Image Files
For PEI, while processing a firmware volume, if a file of type
EFI_FV_FIRMWARE_VOLUME_IMAGE is found, the PEI Dispatcher will check whether this
firmware volume image file was already processed. If it was, then the file is ignored.

Otherwise, the PEI Dispatcher will search the file for a section with the type
EFI_SECTION_PEI_DEPEX, and if found, evaluate the expression against the presently installed
entries in the PPI database. If the file has a dependency expression that evaluates to TRUE (or no
EFI_SECTION_PEI_DEPEX section), then the PEI Dispatcher will search the file for a section
with the type EFI_SECTION_FIRMWARE_VOLUME_IMAGE, copy its contents into memory, and
install the EFI_PEI_FIRMWARE_VOLUME_INFO_PPI and
EFI_PEI_FIRMWARE_VOLUME_INFO2_PPI for the firmware volume image, and add HOBs of
type EFI_HOB_FIRMWARE_VOLUME and EFI_HOB_FIRMWARE_VOLUME2 to the hob list for
the firmware volume image.

5.6.5 PEIM Dependency Expressions
The sequencing of PEIMs is determined by evaluating a dependency expression associated with each
PEIM. This expression describes the requirements necessary for that PEIM to run, which imposes a
weak ordering on the PEIMs. Within this weak ordering, the PEIMs may be initialized in any order.

5.6.6 Types of Dependencies
The base unit of the dependency expression is a dependency. A representative syntax (used in this
document for descriptive purposes) for each dependency is shown in the following section. The
syntax is case-insensitive and mnemonics are used in place of non-human-readable data such as
GUIDs. White space is optional.

The operands are GUIDs of PPIs. The operand becomes “true” when a PPI with the GUID is
registered.

5.7 Dependency Expressions

5.7.1 Introduction
A PEIM is stored in a firmware volume as a file with one or more sections. One of the sections must
be a PE32+ image. If a PEIM has a dependency expression, then it is stored in a dependency
section. A PEIM may contain additional sections for compression and security wrappers. The PEI
Dispatcher can identify the PEIMs by their file type. In addition, the PEI Dispatcher can look up the
dependency expression for a PEIM by looking for a dependency section in a PEIM file. The

PEI Foundation Platform Initialization Specification, Vol. 1

66 May 2017 Version 1.6

dependency section contains a section header followed by the actual dependency expression that is
composed of a packed byte stream of opcodes and operands.

Dependency expressions stored in dependency sections are designed to meet the following goals:

• Be small to conserve space.

• Be simple and quick to evaluate to reduce execution overhead.

These two goals are met by designing a small, stack-based instruction set to encode the dependency
expressions. The PEI Dispatcher must implement an interpreter for this instruction set to evaluate
dependency expressions. The instruction set is defined in the following topics.

See “Dependency Expression Grammar” on page 239 for an example BNF grammar for a
dependency expression compiler. There are many possible methods of specifying the dependency
expression for a PEIM. This example grammar demonstrates one possible design for a tool that can
be used to help build PEIM images.

5.7.1.1 Dependency Expression Instruction Set
The following topics describe each of the dependency expression (depex) opcodes in detail.
Information includes a description of the instruction functionality, binary encoding, and any
limitations or unique behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that matches
the type EFI_GUID that is described in Chapter 2 of the UEFI 2.0 specification. These GUIDs
represent PPIs that are produced by PEIMs and the file names of PEIMs stored in firmware volumes.
A dependency expression is a packed byte stream of opcodes and operands. As a result, some of the
GUID operands will not be aligned on natural boundaries. Care must be taken on processor
architectures that do allow unaligned accesses.

The dependency expression is stored in a packed byte stream using postfix notation. As a
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped off
the stack to perform an operation. After the last operation is performed, the value on the top of the
stack represents the evaluation of the entire dependency expression. If a push operation causes a
stack overflow, then the entire dependency expression evaluates to FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluates to FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions about
the maximum stack size it will support. Instead, it should be designed to grow the dependency
expression stack as required. In addition, PEIMs that contain dependency expressions should make
an effort to keep their dependency expressions as small as possible to help reduce the size of the
PEIM.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 67

Note: NoteThe PEI Foundation will only support the evaluation of dependency expressions that are less
than or equal to 256 terms.

Table 7 is a summary of the opcodes that are used to build dependency expressions. The following
sections describe each of these instructions in detail.

Table 7. Dependency Expression Opcode Summary

Opcode Description

0x02 PUSH <PPI GUID>

0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

PUSH

Syntax
PUSH <PPI GUID>

Description
Pushes a Boolean value onto the stack. If the GUID is present in the handle database, then a TRUE is
pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service LocatePpi().

Operation
Status = (*PeiServices)->LocatePpi (PeiServices, GUID, 0, NULL,
&Interface);
if (EFI_ERROR (Status)) {
 PUSH FALSE;
} Else {
 PUSH TRUE;
}

The following table defines the PUSH instruction encoding.

PEI Foundation Platform Initialization Specification, Vol. 1

68 May 2017 Version 1.6

Table 8. PUSH Instruction Encoding

Byte Description

0 0x02

1..16 A 16-byte GUID that represents a protocol that is
produced by a different PEIM. The format is the same

at type EFI_GUID.

Behaviors and Restrictions
None.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 69

AND

Syntax
AND

Description
Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 AND Operand2
PUSH Result

Table 9 defines the AND instruction encoding.

Table 9. AND Instruction Encoding

Byte Description

0 0x03

Behaviors and Restrictions
None.

PEI Foundation Platform Initialization Specification, Vol. 1

70 May 2017 Version 1.6

OR

Syntax
OR

Description
Pops two Boolean operands off the stack, performs a Boolean OR operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 OR Operand2
PUSH Result

Table 10 defines the OR instruction encoding.

Table 10. OR Instruction Encoding

Byte Description

0 0x04

Behaviors and Restrictions
None.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 71

NOT

Syntax
NOT

Description
Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

Operation
Operand <= POP Boolean stack element
Result <= NOT Operand
PUSH Result

Table 11 defines the NOT instruction encoding.

Table 11. NOT Instruction Encoding

Byte Description

0 0x05

Behaviors and Restrictions
None.

PEI Foundation Platform Initialization Specification, Vol. 1

72 May 2017 Version 1.6

TRUE

Syntax
TRUE

Description
Pushes a Boolean TRUE onto the stack.

Operation
PUSH TRUE

Table 12 defines the TRUE instruction encoding.

Table 12. TRUE Instruction Encoding

Byte Description

0 0x06

Behaviors and Restrictions
None.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 73

FALSE

Syntax
FALSE

Description
Pushes a Boolean FALSE onto the stack.

Operation
PUSH FALSE

Table 13 defines the FALSE instruction encoding.

Table 13. FALSE Instruction Encoding

Byte Description

0 0x07

Behaviors and Restrictions
None.

PEI Foundation Platform Initialization Specification, Vol. 1

74 May 2017 Version 1.6

END

Syntax
END

Description
Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

Operation
POP Result
RETURN Result

Table 14 defines the END instruction encoding.

Table 14. END Instruction Encoding

Byte Description

0 0x08

Behaviors and Restrictions
This opcode must be the last one in a dependency expression.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 75

5.7.2 Dependency Expression with No Dependencies
A PEIM that does not have any dependencies will have a dependency expression that evaluates to
TRUE with no dependencies on any PPI GUIDs.

5.7.3 Empty Dependency Expressions
If a PEIM file does not contain a dependency section, then the PEIM has an empty dependency
expression.

5.7.4 Dependency Expression Reverse Polish Notation (RPN)
The actual equations will be presented by the PEIM in a simple-to-evaluate form, namely postfix.

The following is a BNF encoding of this grammar. See “Dependency Expression Instruction Set” on
page 66 for definitions of the dependency expressions.
<statement> ::= <expression> END

<expression> ::= PUSH <guid> |
 TRUE |
 FALSE |
 <expression> NOT |
 <expression> <expression> OR |

 <expression> <expression> AND

5.8 Dispatch Algorithm

5.8.1 Overview

5.8.1.1 Ordering Algorithm
The dispatch algorithm repeatedly scans through the PEIMs to find those that have not been
dispatched. For each PEIM that is found, it scans through the PPI database of PPIs that have been
published, searching for elements in the yet-to-be-dispatched PEIM's depex. If all of the elements in
the depex are in the PEI Foundation's PPI database, the PEIM is dispatched. The phase terminates
when all PEIMs are scanned and none dispatched.

Note: The PEIM may be dispatched without a search if its depex is NULL.

5.8.1.2 Multiple Firmware Volume Support
In order to expose a new firmware volume, a PEIM should install an instance of
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI containing the firmware volume format GUID, the
starting address and the size of the firmware volume’s window. PEIMs exposing firmware volumes
which have a firmware volume format other than the PI Architecture Firmware Volume format
should include the firmware volume format GUID in their dependency expression.

PEIMs exposing memory-mapped firmware volumes should create a memory resource descriptor
HOB for the memory occupied by the firmware volume if it is outside of the PEI memory.

PEI Foundation Platform Initialization Specification, Vol. 1

76 May 2017 Version 1.6

For each new exposed firmware volume, the PEI Foundation will take the following steps:

1. Create a new firmware volume handle. The firmware volume handle may be created by the PEI
Foundation or by the optional EFI_PEI_FIRMWARE_VOLUME_PPI.

2. Create a new firmware volume HOB.

3. If the firmware volume’s format (identified by its GUID) is not supported directly by the PEI
Foundation and it is not supported by any installed EFI_PEI_FIRMWARE_VOLUME_PPI, the
firmware volume is skipped.

4. Otherwise, all PEIMs in the firmware volume are scheduled for dispatching.

5. Find the a priori file, if it exists, and dispatch any PEIMs listed in it.

5.8.2 Requirements

5.8.2.1 Requirements of a Dispatching Algorithm
The dispatching algorithm must meet the following requirements:

1. Preserve the dispatch weak ordering.

2. Prevent an infinite loop.

3. Control processor resources.

4. Preserve proper dispatch order.

5. Make use of available memory.

6. Invoke each PEIM’s entry point.

7. Know when the PEI Dispatcher tasks are finished.

5.8.2.2 Preserving Weak Ordering
The algorithm must preserve the weak ordering implied by the depex.

5.8.2.3 Preventing Infinite Loops
It is illegal for AcXpY (A consumes X and produces Y) and BcYpX. This is known as a cycle and is
unresolvable even if memory is available. At a minimum, the dispatching algorithm must not end up
in an infinite loop in such a scenario. With the algorithm described above, neither PEIM would be
executed.

5.8.2.4 Controlling Processor Register Resources
The algorithm must require that a minimum of the processor's register resources be preserved while
PEIMs are dispatched.

5.8.2.5 Preserving Proper Dispatch Order
The algorithm must preserve proper dispatch order in cases such as the following:

 AcQpZ BcLpR CpL DcRpQ

The issue with the above scenario is that A and B are not obviously related until D is processed. If A
and B were in one firmware volume and C and D were in another, the ordering could not be resolved
until execution. The proper dispatch order in this case is CBDA. The algorithm must resolve this
type of case.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 77

5.8.2.6 Using Available Memory
The PEI Foundation begins operation using a temporary memory store that contains the initial call
stack from the Security (SEC) phase. The SEC phase must pass the size and location of the stack
and the size and location of the temporary memory store.

The PEI stack will be available for subsequent PEIM invocations, and the PEI heap will be used for
PEIM memory allocations and Hand-Off Block (HOB) creation.

There can be no memory writes to the address space beyond this initial temporary memory until a
PEIM registers a permanent memory range using the PEI Service InstallPeiMemory(). When
permanent memory is installed, the PEI Foundation will copy the call stack that is located in
temporary memory into a segment of permanent memory. If necessary, the size of the call stack can
be expanded to to support the subsequent transition into DXE.

In addition to the call stack, the PEI Foundation will copy the following from temporary to
permanent memory:

• PEI Foundation private data

• PEI Foundation heap

• HOB list

Any permanent memory consumed in this fashion by the PEI Foundation will be described in a
HOB, which the PEI Foundation will create.

In addition, if there were any EFI_PEI_PPI_DESCRIPTORs created in the temporary memory
heap, their respective locations have been translated by an offset equal to the difference between the
original heap location in temporary memory and the destination location in permanent memory. In
addition to this heap copy, the PEI Foundation will traverse the PEI PPI database. Any references to
EFI_PEI_PPI_DESCRIPTORs that are in temporary memory will be fixed up by the PEI
Foundation to reflect the location of the EFI_PEI_PPI_DESCRIPTORs destination in permanent
memory.

The PEI Foundation will invoke the DXE IPL PPI after dispatching all candidate PEIMs. The
DXE IPL PPI may have to allocate additional regions from permanent memory to be able to load
and relocate the DXE Foundation from its firmware store. The DXE IPL PPI will describe these
memory allocations in the appropriate HOB such that when control is passed to DXE, an accurate
record of the memory usage will be known to the DXE Foundation.

5.8.2.7 Invoking the PEIM's Entry Point
The entry point of a PEIM uses the calling conventions specified in the UEFI 2.0 specification,
which detail how parameters are passed to a function. After assessing a PEIM's dependency
expression to see if it can be invoked, the PEI Foundation will pass control to the PEIM's entry point.
This entry point is a value described in the PEIM's image header.

The PEI Foundation will pass an indirect pointer to the PEI Services Table and the handle of the
firmware file when it invokes the PEIM.

In the entry point of the PEIM, the PEIM has the opportunity do the following:

• Locate other PPIs

• Install PPIs that reference services within the body of this PEIM

• Register for a notification

PEI Foundation Platform Initialization Specification, Vol. 1

78 May 2017 Version 1.6

• Upon return from the PEIM’s entry point, it returns back to the PEI Foundation.

• See the Microsoft Portable Executable and Common Object File Format Specification for
information on PE/COFF images; see “TE Image” on page 241 for information on TE images.

5.8.2.8 Knowing When Dispatcher Tasks Are Finished
The PEI Dispatcher is finished with a pass when it has finished dispatching all the PEIMs that it can.
During a pass, some PEIMs might not have been dispatched if they had requirements that no other
PEIM has met.

However, with the weak ordering defined in previous requirements, system RAM could possibly be
initialized before all PEIMs are given a chance to run. This situation can occur because the system
RAM initialization PEIM is not required to consume all resources provided by all other PEIMs. The
PEI Dispatcher must recognize that its tasks are not complete until all PEIMs have been given an
opportunity to run.

5.8.2.9 Reporting PEI Core Location
If the EFI_PEI_LOADED_IMAGE_PPI is supported by the PEI Dispatcher, then the PEI
Foundation must first report its own location by using the PEI Service InstallPpi() and the
EFI_PEI_LOADED_IMAGE_PPI. If the FileHandle is unknown, then NULL can be used. PEI
Foundation must also report the location of the PEIM loaded by creating the
EFI_PEI_LOADED_IMAGE_PPI and call the PEI Service ReinstallPpi().

5.8.3 Example Dispatch Algorithm
The following pseudo code is an example of an algorithm that uses few registers and implements the
requirements listed in the previous section. The pseudo code uses simple C-like statements but more
assembly-like flow-of-control primitives.

The dispatch algorithm’s main data structure is the DispatchedBitMap as described in Table 15.

Table 15. Example Dispatch Map

PEIM# Item PEIM# Item

FV0 4 FV1

PEI Foundation <non PEIM>

<non PEIM> <non PEIM>

0 PEIM <non PEIM>

1 PEIM 5 PEIM

2 PEIM with

EFI_PEI_FIRMWARE_VOLUME_PPI
<non PEIM>

<non PEIM> 6 PEIM

3 PEIM 7 PEIM

Table 15 is an example of a dispatch in a given set of firmware volumes (FVs). Following are the
steps in this dispatch:

1. The algorithm scans through the PEIMs that it knows about.

Platform Initialization Specification, Vol. 1 PEI Foundation

Version 1.6 May 2017 79

2. When it comes to a PEIM that has not been dispatched, it verifies that all of the required PPIs
listed in the dependency expression (depex) are in the PPI database.

3. If all of the GUIDed interfaces listed in the depex are available, the PEIM is invoked.

4. Create the EFI_PEI_LOADED_IMAGE_PPI and call the PEI Service ReinstallPpi()

5. Iterations continue through all known PEIMs in all known FVs until a pass is made with no
PEIMs dispatched, thus signifying completion.

6. After the dispatch completes, the PEI Foundation locates and invokes the GUID for the
DXE IPL PPI, passing in the HOB address and a valid stack. Failing to discover the GUID for
the DXE IPL PPI shall be an error.

5.8.4 Dispatching When Memory Exists
The purpose of the PEI phase of execution is to discover and initialize main memory. As such, a
large number of the modules execute from the nonvolatile firmware store and cannot be shadowed.
However, there are several circumstances in which the shadowing of a PEIM and the relocation of
this image into memory are of interest. This can include but is not limited to compressing PEIMs,
such as the DXE IPL PPI, and those modules that are required for crisis recovery.

The PEI architecture shall not dictate what compression mechanism is to be used, but there will be a
Decompress service that is published by some PEIM that the PEI Foundation will discover and use
when it becomes available. In addition, loading images also requires a full image-relocation service
and the ability to flush the cache. The former will allow the PEIM that was relocated into RAM to
have its relocations adjust pursuant to the new load address. The latter service will be invoked by
the PEI Foundation so that this relocated code can be run, especially on Itanium-based platforms that
do not have a coherent data and code cache.

A compressed section shall have an implied dependency on permanent memory having been
installed. To speed up boot time, however, there can be an explicit annotation of this dependency.

5.8.5 PEIM Dispatching
When the PEI Dispatcher has decided to invoke a PEIM, the following steps are taken:

1. If any instances of EFI_PEI_LOAD_FILE_PPI are installed, they are called, one at a time,
until one reports EFI_SUCCESS.

2. If no instance reports EFI_SUCCESS or there are no instances installed, then the built-in
support for (at least) the PE32+/TE XIP image formats is used.

3. If any instances of EFI_PEI_SECURITY2_PPI are installed, they are called, one at a time, as
long as none returns an EFI_SECURITY_VIOLATION error. If such an error is returned, then
the PEIM is marked as dispatched, but is never invoked.

4. The PEIM’s entry point is invoked with the file’s handle and the PEI Services Table pointer.

5. The PEIM is marked as dispatched.

The PEI Core may decide, because of memory constraints or performance reasons, to dispatch XIP
instead of shadowing into memory.

PEI Foundation Platform Initialization Specification, Vol. 1

80 May 2017 Version 1.6

5.8.6 PEIM Authentication
The PEI specification provides three methods which the PEI Foundation can use to authenticate a
PEIM:

1. The authentication information could be encoded as part of a GUIDed section. In this case, the
provider of the EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI (see the Platform
Initialization Specification, Volume 3) can check the authentication data and return the results
in AttestationState.

2. The authentication information can be checked by the provider of the
EFI_PEI_LOAD_FILE_PPI (see the Platform Initialization Specification, Volume 3) and
the results returned in AttestationState.

3. The PEI Foundation may implement the digital signing as described in the UEFI 2.0
specification.

In all cases, the result of the authentication must be passed to any instances of the
EFI_PEI_SECURITY2_PPI.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 81

6 Architectural PPIs

6.1 Introduction
The PEI Foundation and PEI Dispatcher rely on the following PEIM-to-PEIM Interfaces (PPIs) to
perform its work. The abstraction provided by these interfaces allows dispatcher algorithms to be
improved over time or have some platform variability without affecting the rest of PEI.

The key to these PPIs is that they are architecturally defined interfaces consumed by the PEI
Foundation, but they may not be published by the PEI Foundation.

6.2 Required Architectural PPIs

6.2.1 Master Boot Mode PPI (Required)

EFI_PEI_MASTER_BOOT_MODE_PPI (Required)

Summary
The Master Boot Mode PPI is installed by a PEIM to signal that a final boot has been determined and
set. This signal is useful in that PEIMs with boot-mode-specific behavior (for example, S3 versus
normal) can put this PPI in their dependency expression.

GUID
#define EFI_PEI_MASTER_BOOT_MODE_PEIM_PPI \
 {0x7408d748, 0xfc8c, 0x4ee6, 0x92, 0x88, 0xc4, 0xbe, \
 0xc0, 0x92, 0xa4, 0x10}

PPI Interface Structure
None.

Description
The Master Boot Mode PPI is a PPI GUID and must be in the dependency expression of every PEIM
that modifies the basic hardware. The dispatch, or entry point, of the module that installs the Master
Boot Mode PPI modifies the boot path value in the following ways:

• Directly, through the PEI Service SetBootMode()

• Indirectly through its optional subordinate boot path modules

The PEIM that publishes the Master Boot Mode PPI has a non-null dependency expression if there
are subsidiary modules that publish alternate boot path PPIs. The primary reason for this PPI is to be
the root of dependencies for any child boot mode provider PPIs.

Status Codes Returned
None.

Architectural PPIs Platform Initialization Specification, Vol. 1

82 May 2017 Version 1.6

6.2.2 DXE IPL PPI (Required)

EFI_DXE_IPL_PPI (Required)

Summary
Final service to be invoked by the PEI Foundation.

GUID
#define EFI_DXE_IPL_PPI_GUID \
 { 0xae8ce5d, 0xe448, 0x4437, 0xa8, 0xd7, 0xeb, 0xf5, \
 0xf1, 0x94, 0xf7, 0x31 }

PPI Interface Structure
typedef struct _EFI_DXE_IPL_PPI {
 EFI_DXE_IPL_ENTRY Entry;
} EFI_DXE_IPL_PPI;

Parameters
Entry

The entry point to the DXE IPL PPI. See the Entry() function description.

Description
After completing the dispatch of all available PEIMs, the PEI Foundation will invoke this PPI
through its entry point using the same handoff state used to invoke other PEIMs. This special
treatment by the PEI Foundation effectively makes the DXE IPL PPI the last PPI to execute during
PEI. When this PPI is invoked, the system state should be as follows:

• Single thread of execution

• Interrupts disabled

• Processor mode as defined for PEI

The DXE IPL PPI is responsible for locating and loading the DXE Foundation. The DXE IPL PPI
may use PEI services to locate and load the DXE Foundation. As long as the DXE IPL PPI is using
PEI Services, it must obey all PEI interoperability rules of memory allocation, HOB list usage, and
PEIM-to-PEIM communication mechanisms.

For S3 resume boot modes DXE IPL must be prepared to execute without permanent memory
installed and invoke the S3 resume modules.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 83

EFI_DXE_IPL_PPI.Entry()

Summary
The architectural PPI that the PEI Foundation invokes when there are no additional PEIMs to
invoke.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DXE_IPL_ENTRY) (
 IN CONST EFI_DXE_IPL_PPI *This,
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_HOB_POINTERS HobList
);

Parameters
This

Pointer to the DXE IPL PPI instance.

PeiServices

Pointer to the PEI Services Table.

HobList

Pointer to the list of Hand-Off Block (HOB) entries.

Related Definitions

//
// Union of all the possible HOB Types
//
typedef union {
 EFI_HOB_GENERIC_HEADER *Header;
 EFI_HOB_HANDOFF_INFO_TABLE *HandoffInformationTable;
 EFI_HOB_MEMORY_ALLOCATION *MemoryAllocation;
 EFI_HOB_MEMORY_ALLOCATION_BSP_STORE *MemoryAllocationBspStore;
 EFI_HOB_MEMORY_ALLOCATION_STACK *MemoryAllocationStack;
 EFI_HOB_MEMORY_ALLOCATION_MODULE *MemoryAllocationModule;
 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceDescriptor;
 EFI_HOB_GUID_TYPE *Guid;
 EFI_HOB_FIRMWARE_VOLUME *FirmwareVolume;
 EFI_HOB_CPU *Cpu;
 EFI_HOB_MEMORY_POOL *Pool;
 UINT8 *Raw;
} EFI_PEI_HOB_POINTERS;

Architectural PPIs Platform Initialization Specification, Vol. 1

84 May 2017 Version 1.6

Description
This function is invoked by the PEI Foundation. The PEI Foundation will invoke this service when
there are no additional PEIMs to invoke in the system. If this PPI does not exist, it is an error
condition and an ill-formed firmware set. The DXE IPL PPI should never return after having been
invoked by the PEI Foundation. The DXE IPL PPI can do many things internally, including the
following:

• Invoke the DXE entry point from a firmware volume.

• Invoke the recovery processing modules.

• Invoke the S3 resume modules.

Status Codes Returned

EFI_SUCCESS Upon this return code, the PEI Foundation should enter some
exception handling. Under normal circumstances, the DXE IPL
PPI should not return.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 85

6.2.3 Memory Discovered PPI (Required)

EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)

Summary
This PPI is published by the PEI Foundation when the main memory is installed. It is essentially a
PPI with no associated interface. Its purpose is to be used as a signal for other PEIMs who can
register for a notification on its installation.

GUID
#define EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI_GUID \
 {0xf894643d, 0xc449, 0x42d1, 0x8e, 0xa8, 0x85, 0xbd, \
 0xd8, 0xc6, 0x5b, 0xde}

PPI Interface Structure
None.

Description
This PPI is installed by the PEI Foundation at the point of system evolution when the permanent
memory size has been registered and waiting PEIMs can use the main memory store. Using this
GUID allows PEIMs to do the following:

• Be notified when this PPI is installed.

• Include this PPI's GUID in the EFI_DEPEX.

The expectation is that a compressed PEIM would depend on this PPI, for example. The PEI
Foundation will relocate the temporary cache to permanent memory prior to this installation.

Status Codes Returned
None.

Architectural PPIs Platform Initialization Specification, Vol. 1

86 May 2017 Version 1.6

6.3 Optional Architectural PPIs

6.3.1 Boot in Recovery Mode PPI (Optional)

EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)

Summary
This PPI is installed by the platform PEIM to designate that a recovery boot is in progress.

GUID
#define EFI_PEI_BOOT_IN_RECOVERY_MODE_PEIM_PPI \
 {0x17ee496a, 0xd8e4, 0x4b9a, 0x94, 0xd1, 0xce, 0x82, \
 0x72, 0x30, 0x8, 0x50}

PPI Interface Structure
None.

Description
This optional PPI is installed by the platform PEIM to designate that a recovery boot is in progress.
Its purpose is to allow certain PEIMs that wish to be dispatched only during a recovery boot to
include this PPI in their dependency expression (depex). Including this PPI in the depex allows the
PEI Dispatcher to skip recovery-specific PEIMs during normal restarts and thus save on boot time.
This PEIM has no associated PPI and is used only to designate the system state as being “in a crisis
recovery dispatch.”

Status Codes Returned
None.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 87

6.3.2 End of PEI Phase PPI (Optional)

EFI_PEI_END_OF_PEI_PHASE_PPI (Optional)

Summary
This PPI will be installed at the end of PEI for all boot paths, including normal, recovery, and S3. It
allows for PEIMs to possibly quiesce hardware, build handoff information for the next phase of
execution, or provide some terminal processing behavior.

GUID
#define EFI_PEI_END_OF_PEI_PHASE_PPI_GUID \
 {0x605EA650, 0xC65C, 0x42e1, 0xBA, 0x80, 0x91, 0xA5, \
 0x2A, 0xB6,0x18, 0xC6}

PPI Interface Structure
None.

Description
This PPI is installed by the DXE IPL PPI to indicate the end of the PEI usage of memory and
ownership of memory allocation by the DXE phase.

For the BOOT_ON_S3_RESUME boot mode, this PPI is installed by the
EFI_PEI_S3_RESUME_PPI.S3RestoreConfig() (Section 8.6 of the PI1.2 Specification,
Volume 5) just before jump to OS waking vector.

The intended use model is for any agent that needs to do cleanup, such as memory services to
convert internal metadata for tracking memory allocation into HOBs, to have some distinguished
point in which to do so. The PEI Memory Services would register for a callback on the installation
of this PPI.

Status Codes Returned
None.

Architectural PPIs Platform Initialization Specification, Vol. 1

88 May 2017 Version 1.6

6.3.3 PEI Reset PPI

EFI_PEI_RESET_PPI (Optional)

Summary
This PPI is installed by some platform- or chipset-specific PEIM that abstracts the Reset Service to
other agents.

GUID
#define EFI_PEI_RESET_PPI_GUID \
 {0xef398d58, 0x9dfd, 0x4103, 0xbf, 0x94, 0x78, 0xc6, \
 0xf4, 0xfe, 0x71, 0x2f}

PPI Interface Structure
typedef struct _EFI_PEI_RESET_PPI {
 EFI_PEI_RESET_SYSTEM ResetSystem;
} EFI_PEI_RESET_PPI;

Parameters
ResetSystem

A service to reset the platform. See the ResetSystem() function description in
“Reset Services” on page 51.

Description
These services provide a simple reset service. See the ResetSystem() function description for a
description of this service.

6.3.4 PEI Reset2 PPI

EFI_PEI_RESET2_PPI (Optional)

Summary
This PPI is installed by some platform- or chipset-specific PEIM that abstracts the ability to reset the
platform.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 89

GUID
#define EFI_PEI_RESET2_PPI_GUID \
{0x6cc45765, 0xcce4, 0x42fd, \
 {0xbc, 0x56, 0x1, 0x1a,0xaa, 0xc6, 0xc9, 0xa8}}

PPI Interface Structure
typedef struct _EFI_PEI_RESET2_PPI {
EFI_PEI_RESET2_SYSTEM ResetSystem;
} EFI_PEI_RESET_PPI;

Parameters
ResetSystem

A service to reset the platform.

Description
These services provide a simple reset service. This is equivalent to the ResetSystem() API call
in the UEFI2.4 specification.

Architectural PPIs Platform Initialization Specification, Vol. 1

90 May 2017 Version 1.6

ResetSystem()

Summary
Resets the entire platform.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_RESET2_SYSTEM) (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
);

Parameters.

ResetType

The type of reset to perform. Type EFI_RESET_TYPE is defined in “Related
Definitions” below.

ResetStatus

The status code for the reset. If the system reset is part of a normal operation, the
status code would be EFI_SUCCESS. If the system reset is due to some type of
failure the most appropriate EFI Status code would be used.

DataSize

The size, in bytes, of ResetData.

ResetData

For a ResetType of EfiResetCold, EfiResetWarm, or
EfiResetShutdown the data buffer starts with a Null-terminated string,
optionally followed by additional binary data. The string is a description that the caller
may use to further indicate the reason for the system reset. ResetData is only valid
if ResetStatus is something other than EFI_SUCCESS unless the ResetType
is EfiResetPlatformSpecific where a minimum amount of ResetData is
always required.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 91

Related Definitions
//***
// EFI_RESET_TYPE //

typedef enum {
 EfiResetCold,
 EfiResetWarm,
 EfiResetShutdown,
 EfiResetPlatformSpecific
} EFI_RESET_TYPE;

Description
The ResetSystem() function resets the entire platform, including all processors and devices, and
reboots the system.

Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets
all circuitry within the system to its initial state. This type of reset is asynchronous to system
operation and operates without regard to cycle boundaries. EfiResetCold is tantamount to a
system power cycle.

Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization.
The processors are set to their initial state, and pending cycles are not corrupted. If the system does
not support this reset type, then an EfiResetCold must be performed.

Calling this interface with ResetType of EfiResetShutdown causes the system to enter a
power state equivalent to the ACPI G2/S5 or G3 states. If the system does not support this reset type,
then when the system is rebooted, it should exhibit the EfiResetCold attributes.

Calling this interface with ResetType of EfiResetPlatformSpecific causes a system-wide reset.
The exact type of the reset is defined by the EFI_GUID that follows the Null-terminated Unicode
string passed into ResetData. If the platform does not recognize the EFI_GUID in ResetData
the platform must pick a supported reset type to perform.The platform may optionally log the
parameters from any non-normal reset that occurs.

The ResetSystem() function does not return.

Architectural PPIs Platform Initialization Specification, Vol. 1

92 May 2017 Version 1.6

6.3.5 Status Code PPI (Optional)

EFI_PEI_PROGRESS_CODE_PPI (Optional)

Summary
This service is published by a PEIM. There can be only one instance of this service in the system. If
there are multiple variable access services, this PEIM must multiplex these alternate accessors and
provide this single, read-only service to the other PEIMs and the PEI Foundation. This singleton
nature is important because the PEI Foundation will notify when this service is installed.

GUID
#define EFI_PEI_REPORT_PROGRESS_CODE_PPI_GUID \
 {0x229832d3, 0x7a30, 0x4b36, 0xb8, 0x27, 0xf4, 0xc, \
 0xb7, 0xd4, 0x54, 0x36);

PPI Interface Structure
typedef struct _EFI_PEI_PROGRESS_CODE_PPI {
 EFI_PEI_REPORT_STATUS_CODE ReportStatusCode;
} EFI_PEI_PROGRESS_CODE_PPI;

Parameters
ReportStatusCode

Service that allows PEIMs to report status codes. See the ReportStatusCode()
function description in “Status Code Service” on page 48.

Description
See the ReportStatusCode() function description for a description of this service.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 93

6.3.6 Security PPI (Optional)

EFI_PEI_SECURITY2_PPI (Optional)

Summary
This PPI is installed by some platform PEIM that abstracts the security policy to the PEI Foundation,
namely the case of a PEIM’s authentication state being returned during the PEI section extraction
process.

GUID
#define EFI_PEI_SECURITY2_PPI_GUID \
 { 0xdcd0be23, 0x9586, 0x40f4, 0xb6, 0x43, 0x6, 0x52, \
 0x2c, 0xed, 0x4e, 0xde }

PPI Interface Structure
typedef struct _EFI_PEI_SECURITY2_PPI {
 EFI_PEI_SECURITY_AUTHENTICATION_STATE AuthenticationState;
} EFI_PEI_SECURITY2_PPI;

Parameters
AuthenticationState

Allows the platform builder to implement a security policy in response to varying file
authentication states. See the AuthenticationState() function description.

Description
This PPI is a means by which the platform builder can indicate a response to a PEIM's authentication
state. This can be in the form of a requirement for the PEI Foundation to skip a module using the
DeferExecution Boolean output in the AuthenticationState() member function.
Alternately, the Security PPI can invoke something like a cryptographic PPI that hashes the PEIM
contents to log attestations, for which the FileHandle parameter in
AuthenticationState() will be useful. If this PPI does not exist, PEIMs will be considered
trusted.

Architectural PPIs Platform Initialization Specification, Vol. 1

94 May 2017 Version 1.6

EFI_PEI_SECURITY2_PPI.AuthenticationState()

Summary
Allows the platform builder to implement a security policy in response to varying file authentication
states.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SECURITY_AUTHENTICATION_STATE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_SECURITY2_PPI *This,
 IN UINT32 AuthenticationStatus,
 IN EFI_PEI_FV_HANDLE FvHandle,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 IN OUT BOOLEAN *DeferExecution
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Interface pointer that implements the particular EFI_PEI_SECURITY2_PPI
instance.

AuthenticationStatus

Authentication status of the file.

FvHandle

Handle of the volume in which the file resides. Type EFI_PEI_FV_HANDLE is
defined in FfsFindNextVolume. This allows different policies depending on
different firmware volumes.

FileHandle

Handle of the file under review. Type EFI_PEI FILE HANDLE is defined in
FfsFindNextFile.

DeferExecution

Pointer to a variable that alerts the PEI Foundation to defer execution of a PEIM.

Description
This service is published by some platform PEIM. The purpose of this service is to expose a given
platform's policy-based response to the PEI Foundation. For example, if there is a PEIM in a
GUIDed encapsulation section and the extraction of the PEI file section yields an authentication
failure, there is no a priori policy in the PEI Foundation. Specifically, this situation leads to the

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 95

question whether PEIMs that are either not in GUIDed sections or are in sections whose
authentication fails should still be executed.

In fact, it is the responsibility of the platform builder to make this decision. This platform-scoped
policy is a result that a desktop system might not be able to skip or not execute PEIMs because the
skipped PEIM could be the agent that initializes main memory. Alternately, a system may require
that unsigned PEIMs not be executed under any circumstances. In either case, the PEI Foundation
simply multiplexes access to the Section Extraction PPI and the Security PPI. The Section
Extraction PPI determines the contents of a section, and the Security PPI tells the PEI Foundation
whether or not to invoke the PEIM.

The PEIM that publishes the AuthenticationState() service uses its parameters in the
following ways:

• AuthenticationStatus conveys the source information upon which the PEIM acts.

• The DeferExecution value tells the PEI Foundation whether or not to dispatch the PEIM.

In addition, between receiving the AuthenticationState() from the PEI Foundation and
returning with the DeferExecution value, the PEIM that publishes
AuthenticationState() can do the following:

• Log the file state.

• Lock the firmware hubs in response to an unsigned PEIM being discovered.

These latter behaviors are platform- and market-specific and thus outside the scope of the PEI CIS.

Status Codes Returned

EFI_SUCCESS The service performed its action successfully.

EFI_SECURITY_VIOLATION The object cannot be trusted

6.3.7 Temporary RAM Support PPI (Optional)

EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional)

Summary
This service allows for migrating from some contents of Temporary RAM store, which is
instantiated during the SEC phase, into permanent RAM. The latter store will persist unmodified
into the subsequent phase of execution, such as DXE. This service may be published by the SEC as
part of the SEC-to-PEI handoff or published by any other PEIM.

Architectural PPIs Platform Initialization Specification, Vol. 1

96 May 2017 Version 1.6

GUID
#define EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI_GUID \
 {0xdbe23aa9, 0xa345, 0x4b97,\
 0x85, 0xb6, 0xb2, 0x26, 0xf1, 0x61, 0x73, 0x89}

Prototype
typedef struct _EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI {
 TEMPORARY_RAM_MIGRATION TemporaryRamMigration;
} EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI;

Parameters
TemporaryRamMigration

Perform the migration of contents of Temporary RAM to Permanent RAM. This
service may terminate the Temporary RAM, for example, if it cannot coexist with the
Permanent RAM. See the TemporaryRamMigration() function description.

Description
This service abstracts the ability to migrate contents of the platform early memory store. This is an
optional PPI that is only required for platforms that may have side effects when both Temporary
RAM and Permanent RAM are enabled. This PPI provides a service that orchestrates the complete
transition from Temporary RAM to Permanent RAM that avoids side effects. This includes the
migration of all data, a stack switch action, and possibly the disabling of Temporary RAM.

If a platform does not have any side effects when both Temporary RAM and Permanent RAM are
enabled, and the platform is required to disable the use of Temporary RAM, then
EFI_PEI_TEMPORARY_RAM_DONE should be produced.

If a platform does not have any side effects when both Temporary RAM and Permanent RAM are
enabled, and the platform is not required to disable the use of Temporary RAM, then neither
EFI_PEI_TEMPORARY_RAM_DONE nor EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI should
be produced.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 97

EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI.TemporaryRamMigration
()

Summary
This service of the EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI that migrates temporary RAM
into permanent memory.

Prototype
typedef
EFI_STATUS
(EFIAPI * TEMPORARY_RAM_MIGRATION) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
 IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
 IN UINTN CopySize
);

Parameters
PeiServices

Pointer to the PEI Services Table.

TemporaryMemoryBase

Source Address in temporary memory from which the SEC or PEIM will copy the
Temporary RAM contents.

PermanentMemoryBase

Destination Address in permanent memory into which the SEC or PEIM will copy the
Temporary RAM contents.

CopySize

Amount of memory to migrate from temporary to permanent memory.

Description
This service is published by the SEC module or a PEIM. It migrates the Temporary RAM contents
into Permanent RAMRAM and performs all actions required to switch the active stack from
Temporary RAM to Permanent RAM. The address range from PermanentMemoryBase to
PermanentMemoryBase + CopySize should fix within the range of memory provided to the
PEI Foundation as part of the InstallPeiMemory()core services. Also, since the SEC may
have sequestered some of the Temporary RAM for its own data storage and PPI’s, the SEC handoff
now includes addresses and sizes of both the "available" (PeiTemporaryRamBase/
PeiTemporaryRamSize) and "total" (TemporaryRamBase/TemporaryRamSize)
Temporary RAM as separate numbers.

PeiTemporaryRamBase is used by the PEI foundation for its resource management;
TemporaryRamBase is used by the foundation as an input to this
TemporaryRamMigration() service call. As such, the PEI foundation is the only agent who
knows the full extent of the Temporary RAM store that needs migration to Permanent RAM. It will

Architectural PPIs Platform Initialization Specification, Vol. 1

98 May 2017 Version 1.6

use this full extent as the CopySize argument in this PPI invocation. At minimum, the CopySize
must include the portion of the Temporary RAM used by the SEC.

The PEI Foundation implementation will invoke this PPI service TemporaryRamMigration(),
if present, after InstallPeiMemory() is invoked.
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI is installed after the PPI service
TemporaryRamMigration()is invoked, providing a signal to PEIMs that permanent memory
is available.

If the EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI service is not available, a PEI foundation
implementation shall copy the contents of the Temporary RAM to Permanent RAM directly and
perform the stack switch action. The lack of this PPI is not an error condition.

The stack switch action, namely the beginning of usage of the permanent RAM as stack in lieu of the
temporary RAM stack, is an integral capability of any PEI foundation implementation and need not
have an API in this PPI or any other to externally-installed abstraction.

Status Codes Returned

EFI_SUCCESS The data was successfully returned.

EFI_INVALID_PARAMETER PermanentMemoryBase + CopySize >
TemporaryMemoryBase when TemporaryMemoryBase >
PermanentMemoryBase.

6.3.8 Temporary RAM Done PPI (Optional)

EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional)

Summary
The PPI that provides a service to disable the use of Temporary RAM.

GUID
#define EFI_PEI_TEMPORARY_RAM_DONE_PPI_GUID \
 { 0xceab683c, 0xec56, 0x4a2d, \
 { 0xa9, 0x6, 0x40, 0x53, 0xfa, 0x4e, 0x9c, 0x16 } }

Protocol Interface Structure
typedef struct _EFI_PEI_TEMPORARY_RAM_DONE_PPI {
 EFI_PEI_TEMPORARY_RAM_DONE TemporaryRamDone;
} EFI_PEI_TEMPORARY_RAM_DONE_PPI;

Parameters
TemporaryRamDone

Disable the use of Temporary RAM.

Platform Initialization Specification, Vol. 1 Architectural PPIs

Version 1.6 May 2017 99

Description
This is an optional PPI that may be produced by SEC or a PEIM. If present, it provide a service to
disable the use of Temporary RAM. This service may only be called by the PEI Foundation after the
transition from Temporary RAM to Permanent RAM is complete. This PPI provides an alternative
to the Temporary RAM Migration PPI for system architectures that allow Temporary RAM and
Permanent RAM to be enabled and accessed at the same time with no side effects.

Architectural PPIs Platform Initialization Specification, Vol. 1

100 May 2017 Version 1.6

EFI_PEI_TEMPORARY_RAM_DONE_PPI.TemporaryRamDone ()

Summary
Disable the use of Temporary RAM.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PEI_TEMPORARY_RAM_DONE) (
 VOID
);

Description
TemporaryRamDone() disables the use of Temporary RAM. If present, this service is invoked
by the PEI Foundation after the EFI_PEI_PERMANANT_MEMORY_INSTALLED_PPI is
installed.

Status Codes Returned

EFI_SUCCESS Use of Temporary RAM was disabled.

EFI_DEVICE_ERROR Temporary RAM could not be disabled.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 101

7 PEIMs

7.1 Introduction
A Pre-EFI Initialization Module (PEIM) represents a unit of code and/or data. It abstracts domain-
specific logic and is analogous to a DXE driver. As such, a given group of PEIMs for a platform
deployment might include a set of the following:

• Platform-specific PEIMs

• Processor-specific PEIMs

• Chipset-specific PEIMs

• PEI CIS–prescribed architectural PEIMs

• Miscellaneous PEIMs

The PEIM encapsulation allows for a platform builder to use services for a given hardware
technology without having to build the source of this technology or necessarily understand its
implementation. A PEIM-to-PEIM Interface (PPI) is the means by which to abstract hardware-
specific complexities to a platform builder's PEIM. As such, PEIMs can work in concert with other
PEIMs using PPIs.

In addition, PEIMs can ascertain a fixed set of services that are always available through the PEI
Services Table.

Finally, because the PEIM represents the basic unit of execution beyond the Security (SEC) phase
and the PEI Foundation, there will always be some non-zero-sized collection of PEIMs in a
platform.

7.2 PEIM Structure

7.2.1 PEIM Structure Overview
Each PEI Module (PEIM) is stored in a file. It consists of the following:

• Standard header

• Execute-in-place code/data section

• Optional relocation information

• Authentication information, if present

The PEIM binary image can be executed in place from its location in the firmware volume (FV) or
from a compressed component that will be shadowed after permanent memory has been installed.
The executable section of the PEIM may be either position-dependent or position-independent code.
If the executable section of the PEIM is position-dependent code, relocation information must be
provided in the PEIM image to allow FV store software to relocate the image to a different location
than it is compiled.

Figure 2 depicts the typical layout of a PEIM.

PEIMs Platform Initialization Specification, Vol. 1

102 May 2017 Version 1.6

Figure 2. Typical PEIM Layout in a Firmware File

7.2.2 Relocation Information

7.2.2.1 Position-Dependent Code
PEIMs that are developed using position-dependent code require relocation information. When an
image in a firmware volume (FV) is updated, the update software will use the relocation information
to fix the code image according to the module’s location in the FV. The relocation is done on the
authenticated image; therefore, software verifying the integrity of the image must undo the
relocation during the verification process.

There is no explicit pointer to this data. Instead, the update and verification tool will know that the
image is actually stored as PE32 if the Pe32Image bit is set in the header
EFI_COMMON_SECTION_HEADER or EFI_COMMON_SECTION_HEADER2; types
EFI_COMMON_SECTION_HEADER and EFI_COMMON_SECTION_HEADER2 are defined in the
Platform Initialization Specification, Volume 3. The PE32 specification, in turn, will be used to
ascertain the relocation records.

7.2.2.2 Position-Independent Code
If the PEIM is written in position-independent code, then its entry point shall be at the lowest
address in the section. This method is useful for creating PEIMs for the Itanium® processor family.

7.2.2.3 Relocation Information Format
The relocations will be contained in a TE or PE32+ image. See the Microsoft Portable Executable
and Common Object File Format Specification for more information. The determination of whether

Platform Initialization Specification, Vol. 1 PEIMs

Version 1.6 May 2017 103

the image subscribes to the PE32 image format or is position-independent assembly language is
provided by the firmware volume section type. The PEIM that is formatted as PE/COFF will always
be linked against a base address of zero. This allows for support of signature checking.

The section may also be compressed if there is a compression encapsulation section.

7.2.3 Authentication Information
This section describes in more detail, the means by which authentication information could be
contained in a section of type EFI_SECTION_GUID_DEFINED (see the Platform Initialization
Specification, Volume 3, for more information on section types). The information contained in this
section could be one of the following:

• A cryptographic-quality hash computed across the PEIM image

• A simple checksum

• A CRC

The GUID defines the meaning of the associated encapsulated data. The relocation section is
needed to undo the fix-ups done on the image so the hash that was computed at build time can be
confirmed. In other words, the build of a PEIM image is linked against zero, but the update tool will
relocate the PEIM image for its execute-in-place address (at least for images that are not position-
independent code). Any signing information is calculated on the image after the image has been
linked against an address of zero. The relocations on the image will have to be “undone” to
determine if the image has been modified.

The image must be linked against address zero by the PEIM provider. The build or update tool will
apply the appropriate relocations. The linkage against address zero is key because it allows a
subsequent undoing of the relocations.

PEIMs Platform Initialization Specification, Vol. 1

104 May 2017 Version 1.6

7.3 PEIM Invocation Entry Point

7.3.1 EFI_PEIM_ENTRY_POINT2

Summary
The PEI Dispatcher will invoke each PEIM one time.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEIM_ENTRY_POINT2) (
 IN EFI_PEI_FILE_HANDLE FileHandle,
 IN CONST EFI_PEI_SERVICES **PeiServices
);

Parameters
FileHandle

Handle of the file being invoked. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile().

PeiServices

Describes the list of possible PEI Services.

Description
This function is the entry point for a PEIM. EFI_IMAGE_ENTRY_POINT2 is the equivalent of
this state in the UEFI/DXE environment; see the DXE CIS for its definition.

The motivation behind this definition is that the firmware file system has the provision to mark a file
as being both a PEIM and DXE driver. The result of this name would be that both the PEI
Dispatcher and the DXE Dispatcher would attempt to execute the module. In doing so, it is
incumbent upon the code in the entry point of the driver to decide what services are exposed, namely
whether to make boot service and runtime calls into the UEFI System Table or to make calls into the
PEI Services Table. The means by which to make this decision entail examining the second
argument on entry, which is a pointer to the respective foundation's exported service-call table. Both
PEI and UEFI/DXE have a common header, EFI_TABLE_HEADER, for the table. The code in the
PEIM or DXE driver will examine the Arg2->Hdr->Signature. If it is
EFI_SYSTEM_TABLE_SIGNATURE, the code will assume DXE driver behavior; if it is
PEI_SERVICES_SIGNATURE, the code will assume PEIM behavior.

Status Codes Returned

EFI_SUCCESS The service completed successfully

< 0 There was an error

Platform Initialization Specification, Vol. 1 PEIMs

Version 1.6 May 2017 105

7.4 PEIM Descriptors

7.4.1 PEIM Descriptors Overview
A PEIM descriptor is the data structure used by PEIMs to export service entry points and data. The
descriptor contains the following:

• Flags

• A pointer to a GUID

• A pointer to data

The latter data can include a list of pointers to functions and/or data. It is the function pointers that
are commonly referred to as PEIM-to-PEIM Interfaces (PPIs), and the PPI is the unit of software
across which PEIMs can invoke services from other PEIMs.

A PEIM also uses a PEIM descriptor to export a service to the PEI Foundation into which the PEI
Foundation will pass control in response to an event, namely “notifying” the callback when a PPI is
installed or reinstalled. As such, PEIM descriptors serve the dual role of exposing the following:

• A callable interface/data for other PEIMs

• A callback interface from the perspective of the PEI Foundation

PEIMs Platform Initialization Specification, Vol. 1

106 May 2017 Version 1.6

EFI_PEI_DESCRIPTOR

Summary
This data structure is the means by which callable services are installed and notifications are
registered in the PEI phase.

Prototype
typedef union {
 EFI_PEI_NOTIFY_DESCRIPTOR Notify;
 EFI_PEI_PPI_DESCRIPTOR Ppi;
} EFI_PEI_DESCRIPTOR;

Parameters
Notify

The typedef structure of the notification descriptor. See the
EFI_PEI_NOTIFY_DESCRIPTOR type definition.

Ppi

The typedef structure of the PPI descriptor. See the EFI_PEI_PPI_DESCRIPTOR
type definition.

Description
EFI_PEI_DESCRIPTOR is a data structure that can be either a PPI descriptor or a notification
descriptor. A PPI descriptor is used to expose callable services to other PEIMs. A notification
descriptor is used to register for a notification or callback when a given PPI is installed.

Platform Initialization Specification, Vol. 1 PEIMs

Version 1.6 May 2017 107

EFI_PEI_NOTIFY_DESCRIPTOR

Summary
The data structure in a given PEIM that tells the PEI Foundation where to invoke the notification
service.

Prototype
typedef struct _EFI_PEI_NOTIFY_DESCRIPTOR {
 UINTN Flags;
 EFI_GUID *Guid;
 EFI_PEIM_NOTIFY_ENTRY_POINT Notify;
} EFI_PEI_NOTIFY_DESCRIPTOR;

Parameters
Flags

Details if the type of notification is callback or dispatch.

Guid

The address of the EFI_GUID that names the interface.

Notify

Address of the notification callback function itself within the PEIM. Type
EFI_PEIM_NOTIFY_ENTRY_POINT is defined in “Related Definitions” below.

Description
EFI_PEI_NOTIFY_DESCRIPTOR is a data structure that is used by a PEIM that needs to be
called back when a PPI is installed or reinstalled. The notification is similar to the
RegisterProtocolNotify() function in the UEFI 2.0 Specification. The use model is
complementary to the dependency expression (depex) and is as follows:

• A PEIM expresses the PPIs that it must have to execute in its depex list.

• A PEIM expresses any other PEIMs that it needs, perhaps at some later time, in
EFI_PEI_NOTIFY_DESCRIPTOR.

The latter data structure includes the GUID of the PPI for which the PEIM publishing the
notification would like to be reinvoked.

Following is an example of the notification use model for
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI. In this example, a PEIM called
SamplePeim executes early in the PEI phase before main memory is available. However,
SamplePeim also needs to create some large data structure later in the PEI phase. As such,
SamplePeim has a NULL depex, but after its entry point is processed, it needs to call
NotifyPpi() with a EFI_PEI_NOTIFY_DESCRIPTOR, where the notification descriptor
includes the following:

• A reference to EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI

• A reference to a function within this same PEIM called SampleCallback

PEIMs Platform Initialization Specification, Vol. 1

108 May 2017 Version 1.6

When the PEI Foundation finally migrates the system from temporary to permanent memory and
installs the EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI, the PEI Foundation assesses if
there are any pending notifications on this PPI. After the PEI Foundation discovers the descriptor
from SamplePeim, the PEI Foundation invokes SampleCallback.

With respect to the Flags parameter, the difference between callback and dispatch mode is as
follows:

• Callback mode: Invokes all of the agents that are registered for notification immediately after
the PPI is installed.

• Dispatch mode: Calls the agents that are registered for notification only after the PEIM that
installs the PPI in question has returned to the PEI Foundation.

The callback mechanism will give a better quality of service, but it has the downside of possibly
deepening the use of the stack (i.e., the agent that installed the PPI that engenders the notification is
a PEIM itself that has used the stack already). The dispatcher mode, however, is better from a stack-
usage perspective in that when the PEI Foundation invokes the agents that want notification, the
stack has returned to the minimum stack usage of just the PEI Foundation.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEIM_NOTIFY_ENTRY_POINT) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor,
 IN VOID *Ppi
);

PeiServices

Indirect reference to the PEI Services Table.

NotifyDescriptor

Address of the notification descriptor data structure. Type
EFI_PEI_NOTIFY_DESCRIPTOR is defined above.

Ppi

Address of the PPI that was installed.

The status code returned from this function is ignored.

Platform Initialization Specification, Vol. 1 PEIMs

Version 1.6 May 2017 109

EFI_PEI_PPI_DESCRIPTOR

Summary
The data structure through which a PEIM describes available services to the PEI Foundation.

Prototype
typedef struct {
 UINTN Flags;
 EFI_GUID *Guid;
 VOID *Ppi;
} EFI_PEI_PPI_DESCRIPTOR;

Parameters
Flags

This field is a set of flags describing the characteristics of this imported table entry.
See “Related Definitions” below for possible flag values.

Guid

The address of the EFI_GUID that names the interface.

Ppi

A pointer to the PPI. It contains the information necessary to install a service.

Description
EFI_PEI_PPI_DESCRIPTOR is a data structure that is within the body of a PEIM or created by a
PEIM. It includes the following:

• Information about the nature of the service

• A reference to a GUID naming the service

• An associated pointer to either a function or data related to the service

There can be a catenation of one or more of these EFI_PEI_PPI_DESCRIPTORs. The final
descriptor will have the EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST flag set to indicate
to the PEI Foundation how many of the descriptors need to be added to the PPI database within the
PEI Foundation. The PEI Services that references this data structure include InstallPpi(),
ReinstallPpi(), and LocatePpi().

Related Definitions
//
// PEI PPI Services List Descriptors
//

#define EFI_PEI_PPI_DESCRIPTOR_PIC 0x00000001
#define EFI_PEI_PPI_DESCRIPTOR_PPI 0x00000010
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK 0x00000020
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH 0x00000040
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES 0x00000060

PEIMs Platform Initialization Specification, Vol. 1

110 May 2017 Version 1.6

#define EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST 0x80000000

Table 16 provides descriptions of the fields in the above definition:

Table 16.

Descriptor Description

EFI_PEI_PPI_DESCRIPTOR_PIC When set to 1, this designates that the PPI
described by the structure is position-independent
code (PIC).

EFI_PEI_PPI_DESCRIPTOR_PPI When set to 1, this designates that the PPI
described by this structure is a normal PPI. As
such, it should be callable by the conventional PEI
infrastructure.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
callback. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be immediately invoked. The
danger herein is that the callback will inherit
whatever depth had been traversed up to and
including this call.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
dispatch. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be deferred until the PEIM
calling context returns to the PEI Foundation. Prior
to invocation of the next PEIM, the notifications will
be dispatched. The advantage herein is that the
callback will have the maximum available stack
depth as any other PEIM.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES When set to 1, this flag designates that this is a
notification-style PPI.

EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST This flag is set to 1 in the last structure entry in the
list of PEI PPI descriptors. This flag is used by the
PEI Foundation Services to know that there are no
additional interfaces to install.

PEI PPI Services List Descriptors

7.5 PEIM-to-PEIM Communication

7.5.1 Overview
PEIMs may invoke other PEIMs. The interfaces themselves are named using GUIDs. Because the
PEIMs may be authored by different organizations at different times and updated at different times,
references to these interfaces cannot be resolved during their execution by referring to the PEI PPI
database. The database is loaded and queried using PEI Services such as InstallPpi() and
LocatePpi().

Platform Initialization Specification, Vol. 1 PEIMs

Version 1.6 May 2017 111

7.5.2 Dynamic PPI Discovery

7.5.2.1 PPI Database
The PPI database is a data structure that PEIMs can use to discover what interfaces are available or
to manage a specific interface. The actual layout of the PPI database is opaque to a PEIM but its
contents can be queried and manipulated using the following PEI Services:

• InstallPpi()

• ReinstallPpi()

• LocatePpi()

• NotifyPpi()

7.5.2.2 Invoking a PPI
When the PEI Foundation examines a PEIM for dispatch eligibility, it examines the dependency
expression section of the firmware file. If there are non-NULL contents, the Reverse Polish
Notation (RPN) expression is evaluated. Any requested PPI GUIDs in this data structure are queried
in the PPI database. The existence in the database of the particular PUSH_GUID depex opcode
leads to this expression evaluating to true.

7.5.2.3 Address Resolution
When a PEIM needs to leverage a PPI, it uses the PEI Foundation Service LocatePpi() to
discover if an instance of the interface exists. The PEIM could do either of the following:

• Install the PPI in its depex to ensure that its entry point will not be invoked until the needed PPI
is already installed

• Have a very thin set of code in its entry point that simply registers a notification on the desired
PPI.

In the case of either the depex or the notification, the LocatePpi() call will then succeed and the
pointer returned on this call references the EFI_PEI_PPI_DESCRIPTOR. It is through this data
structure that the actual code entry point can be discovered. If this PEIM is being loaded before
permanent memory is available, it will not have resources to cache this discovered interface and will
have to search for this interface every time it needs to invoke the service.

It should also be noted that you cannot uninstall a PPI, so the services will be left in the database. If
a PPI needs to be shrouded, a version can be “reinstalled” that just returns failure.

Also, there is peril in caching a PPI. For example, if you cache a PPI and the producer of the PPI
“reinstalls” it to be something else (i.e., shadows to memory), then you have the possibility that the
agent who cached the data will have “stale” or “illegal” data. For example, imagine the Stall PPI,
EFI_PEI_STALL_PPI, relocating itself to memory using the Load File PPI,
EFI_PEI_LOAD_FILE_PPI, and reinstalling the interface for performance considerations. A
way to solve the latter issue, as a platform builder, is by having a different stall PPI for the memory-
based one versus that of the Execute In Place (XIP) one.

PEIMs Platform Initialization Specification, Vol. 1

112 May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 113

8 Additional PPIs

8.1 Introduction
Architectural PPIs described a collection of architecturally required PPIs. These were interfaces
consumed by the PEI Foundation and are not intended to be consumed by other PEIMs.

In addition to these architectural PPIs, however, there is another name space of PPIs that are optional
or mandatory for a given platform. This section describes these additional PPIs:

• Required PPIs:
— CPU I/O PPI
— PCI Configuration PPI
— Stall PPI
— PEI Variable Services

• Optional PPIs:
— Security (SEC) Platform Information PPI

These shall be referred to as first-class PEIMs in some contexts.

8.2 Required Additional PPIs

8.2.1 PCI Configuration PPI (Required)
The PEI phase provides limited support for initializing and configuring PCI devices through the
EFI_PEI_PCI_CFG2_PPI. The PEI module which supports a PCI root bridge may install this PPI to
allow access to the PCI configuration space for a particular PCI segment. The PEI module
responsible for the PCI root bridge representing segment 0 should also install a pointer to the PPI in
the PEI Services Table.

The PEI modules which control devices on segment 0 may use the pointer provided in the PEI
Services Table. The PEI modules for devices residing on other segments may find the correct PPI by
iterating through PPI instances using the LocatePpi() function. For example:

Additional PPIs Platform Initialization Specification, Vol. 1

114 May 2017 Version 1.6

EFI_STATUS Status;
UINTN Instance = 0;
EFI_PEI_PPI_DESCRIPTOR *PciCfgDescriptor = NULL;
EFI_PEI_PCI_CFG2_PPI *PciCfg = NULL;

/* Loop through all instances of the PPI */
for (;;) {
 Status = PeiServices->LocatePpi(PeiServices,
 &gPeiPciCfg2PpiGuid,
 Instance,
 &PciCfgDescriptor,
 (VOID**) &PciCfg
);
 if (Status != EFI_SUCCESS ||
 PciCfg->Segment == MySegment) {
 break;
 }
 Instance++;
}
if (Status == EFI_SUCCESS) {
 ...PciCfg contains pointer…
}

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 115

EFI_PEI_PCI_CFG2_PPI

Summary
Provides platform or chipset-specific access to the PCI configuration space for a specific PCI
segment.

Guid
static const EFI_GUID EFI_PEI_PCI_CFG2_PPI_GUID = \
{ 0x57a449a, 0x1fdc, 0x4c06, \
{ 0xbf, 0xc9, 0xf5, 0x3f, 0x6a, 0x99, 0xbb, 0x92 }}

Prototype
typedef struct _EFI_PEI_PCI_CFG2_PPI {

EFI_PEI_PCI_CFG2_PPI_IO Read;
EFI_PEI_PCI_CFG2_PPI_IO Write;
EFI_PEI_PCI_CFG2_PPI_RW Modify;
UINT16 Segment;

} EFI_PEI_PCI_CFG2_PPI

Parameters
Read

PCI read services. See the Read() function description.

Write

PCI write services. See the Write() function description.

Modify

PCI read-modify-write services. See the Modify() function description.

Segment

The PCI bus segment which the specified functions will access.

Description
The EFI_PEI_PCI_CFG2_PPI interfaces are used to abstract accesses to the configuration
space of PCI controllers behind a PCI root bridge controller. There can be multiple instances of this
PPI in the system, one for each segment. The pointer to the instance which describes segment 0 is
installed in the PEI Services Table.

The assignment of segment numbers is implementation specific.

The Modify() service allows for space-efficient implementation of the following common
operations:

• Reading a register

• Changing some bit fields within the register

• Writing the register value back into the hardware

The Modify() service is a composite of the Read() and Write() services.

Additional PPIs Platform Initialization Specification, Vol. 1

116 May 2017 Version 1.6

Parameters
Register

Register number in PCI configuration space.

Function

Function number in the PCI device (0-7).

Device

Device number in the PCI device (0-31).

Bus

PCI bus number (0-255).

ExtendedRegister

Register number in PCI configuration space. If this field is zero, then Register is used
for the register number. If this field is non-zero, then Register is ignored and this field
is used for the register number.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 117

EFI_PEI_PCI_CFG2_PPI.Read()

Summary
PCI read operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_IO) (

IN CONST EFI_PEI_SERVICES **PeiServices,
IN CONST EFI_PEI_PCI_CFG2_PPI *This,
IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
IN UINT64 Address,
IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in “Related Definitions” below.

Address

The physical address of the access. The format of the address is described by
EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS, which is defined in “Related
Definitions” below.

Buffer

A pointer to the buffer of data.

Description
The Read() function reads from a given location in the PCI configuration space.

Related Definitions
//**
// EFI_PEI_PCI_CFG_PPI_WIDTH
//**
typedef enum {

EfiPeiPciCfgWidthUint8 = 0,
EfiPeiPciCfgWidthUint16 = 1,
EfiPeiPciCfgWidthUint32 = 2,
EfiPeiPciCfgWidthUint64 = 3,

Additional PPIs Platform Initialization Specification, Vol. 1

118 May 2017 Version 1.6

EfiPeiPciCfgWidthMaximum
} EFI_PEI_PCI_CFG_PPI_WIDTH;

//**
// EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS
//**
typedef struct {

UINT8 Register;
UINT8 Function;
UINT8 Device;
UINT8 Bus;
UINT32 ExtendedRegister;

} EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS;

Register

8-bit register offset within the PCI configuration space for a given device's function
space.

Function

Only the 3 least-significant bits are used to encode one of 8 possible functions within a
given device.

Device

Only the 5 least-significant bits are used to encode one of 32 possible devices.

Bus

8-bit value to encode between 0 and 255 buses.

ExtendedRegister

Register number in PCI configuration space. If this field is zero, then Register is used
for the register number. If this field is non-zero, then Register is ignored and this field
is used for the register number.

#define EFI_PEI_PCI_CFG_ADDRESS(bus,dev,func,reg) \
 (((bus) << 24) | \
 ((dev) << 16) | \
 ((func) << 8) | \
 ((reg) < 256 ? (reg) : ((UINT64) (reg) << 32)))

Status Codes Returned

EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 119

EFI_PEI_PCI_CFG2_PPI.Write()

Summary
PCI write operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_IO) (

IN CONST EFI_PEI_SERVICES **PeiServices,
IN CONST EFI_PEI_PCI_CFG2_PPI *This,
IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
IN UINT64 Address,
IN OUT VOID *Buffer

);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in Read().

Address

The physical address of the access.

Buffer

A pointer to the buffer of data.

Description
The Write() function writes to a given location in the PCI configuration space.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

Additional PPIs Platform Initialization Specification, Vol. 1

120 May 2017 Version 1.6

EFI_PEI_PCI_CFG2_PPI.Modify()

Summary
PCI read-modify-write Operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_RW) (

IN CONST EFI_PEI_SERVICES **PeiServices,
IN CONST EFI_PEI_PCI_CFG_PPI *This,
IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
IN UINT64 Address,
IN VOID *SetBits,
IN VOID *ClearBits

);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in Read().

Address

The physical address of the access.

SetBits

Points to value to bitwise-OR with the read configuration value. The size of the value
is determined by Width.

ClearBits

Points to the value to negate and bitwise-AND with the read configuration value. The
size of the value is determined by Width.

Description
The Modify() function performs a read-modify-write operation on the contents from a given
location in the PCI configuration space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 121

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

8.2.2 Stall PPI (Required)

EFI_PEI_STALL_PPI (Required)

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts the blocking stall
service to other agents.

GUID
#define EFI_PEI_STALL_PPI_GUID \
 { 0x1f4c6f90, 0xb06b, 0x48d8, {0xa2, 0x01, 0xba, 0xe5, \
 0xf1, 0xcd, 0x7d, 0x56} }

PPI Interface Structure
typedef
struct _EFI_PEI_STALL_PPI {
 UINTN Resolution;
 EFI_PEI_STALL Stall;
} EFI_PEI_STALL_PPI;

Parameters
Resolution

The resolution in microseconds of the stall services.

Stall

The actual stall procedure call. See the Stall() function description.

Description
This service provides a simple, blocking stall with platform-specific resolution.

Additional PPIs Platform Initialization Specification, Vol. 1

122 May 2017 Version 1.6

EFI_PEI_STALL_PPI.Stall()

Summary
Blocking stall.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_STALL) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_STALL_PPI *This,
 IN UINTN Microseconds
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to the local data for the interface.

Microseconds

Number of microseconds for which to stall.

Description
The Stall() function provides a blocking stall for at least the number of microseconds stipulated
in the final argument of the API.

Status Codes Returned

EFI_SUCCESS The service provided at least the required delay.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 123

8.2.3 Variable Services PPI (Required)

EFI_PEI_READ_ONLY_VARIABLE2_PPI

Summary
Permits read-only access to the UEFI variable store during the PEI phase.

GUID
#define EFI_PEI_READ_ONLY_VARIABLE2_PPI_GUID \
 { 0x2ab86ef5, 0xecb5, 0x4134, \
 0xb5, 0x56, 0x38, 0x54, 0xca, 0x1f, 0xe1, 0xb4 }

Prototype
typedef struct _EFI_PEI_READ_ONLY_VARIABLE2_PPI {
 EFI_PEI_GET_VARIABLE2 GetVariable;
 EFI_PEI_GET_NEXT_VARIABLE_NAME2 NextVariableName;
} EFI_PEI_READ_ONLY_VARIABLE2_PPI;

Parameters
GetVariable

A service to read the value of a particular variable using its name.

NextVariableName

Find the next variable name in the variable store.

Description
These services provide a light-weight, read-only variant of the full UEFI variable services.

Additional PPIs Platform Initialization Specification, Vol. 1

124 May 2017 Version 1.6

EFI_PEI_READ_ONLY_VARIABLE2_PPI.GetVariable

Summary
This service retrieves a variable’s value using its name and GUID.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_VARIABLE2)(
 IN CONST EFI_PEI_READ_ONLY_VARIABLE2_PPI *This,
 IN CONST CHAR16 *VariableName,
 IN CONST EFI_GUID *VariableGuid,
 OUT UINT32 *Attributes,
 IN OUT UINTN *DataSize,
 OUT VOID *Data OPTIONAL
);

Parameters
This

A pointer to this instance of the EFI_PEI_READ_ONLY_VARIABLE2_PPI.

VariableName

A pointer to a null-terminated string that is the variable’s name.

VariableGuid

A pointer to an EFI_GUID that is the variable’s GUID. The combination of
VariableGuid and VariableName must be unique.

Attributes

If non-NULL, on return, points to the variable’s attributes. See “Related Definitons”
below for possible attribute values.

DataSize

On entry, points to the size in bytes of the Data buffer. On return, points to the size of
the data returned in Data.

Data

Points to the buffer which will hold the returned variable value. May be NULL with a
zero DataSize in order to determine the size of the buffer needed.

Description
Read the specified variable from the UEFI variable store. If the Data buffer is too small to hold the
contents of the variable, the error EFI_BUFFER_TOO_SMALL is returned and DataSize is set to
the required buffer size to obtain the data.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 125

Status Codes Returned

EFI_SUCCESS The variable was read successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the result. DataSize has

been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER VariableName is NULL.

EFI_INVALID_PARAMETER DataSize is NULL.

EFI_INVALID_PARAMETER The DataSize is not too small and Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.

EFI_INVALID_PARAMETER VariableGuid is NULL.

Additional PPIs Platform Initialization Specification, Vol. 1

126 May 2017 Version 1.6

EFI_PEI_READ_ONLY_VARIABLE2_PPI.NextVariableName

Summary
Return the next variable name and GUID.

Prototype
typedef
EFI_STATUS
(EFIAPI EFI_PEI_GET_NEXT_VARIABLE_NAME2) (
 IN CONST EFI_PEI_READ_ONLY_VARIABLE2_PPI *This,
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VariableGuid
);

Parameters
This

A pointer to this instance of the EFI_PEI_READ_ONLY_VARIABLE2_PPI.

VariableNameSize

On entry, points to the size of the buffer pointed to by VariableName. On return,
the size of the variable name buffer

VariableName

On entry, a pointer to a null-terminated string that is the variable’s name. On return,
points to the next variable’s null-terminated name string.

VariableGuid

On entry, a pointer to an EFI_GUID that is the variable’s GUID. On return, a pointer
to the next variable’s GUID.

Description
This function is called multiple times to retrieve the VariableName and VariableGuid of all
variables currently available in the system. On each call, the previous results are passed into the
interface, and, on return, the interface returns the data for the next interface. When the entire variable
list has been returned, EFI_NOT_FOUND is returned.

Note: If EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small for the
name of the next variable. When such an error occurs, VariableNameSize is updated to
reflect the size of the buffer needed. In all cases when calling GetNextVariableName() the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

To start the search, a null-terminated string is passed in VariableName; that is, VariableName
is a pointer to a null Unicode character. This is always done on the initial call. When
VariableName is a pointer to a null Unicode character, VariableGuid is ignored.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 127

Status Codes Returned

EFI_SUCCESS The variable was read successfully.

EFI_NOT_FOUND The variable could not be found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the resulting

data. VariableNameSize is updated with the size

required for the specified variable.

EFI_INVALID_PARAMETER VariableName, VariableGuid or

VariableNameSize is NULL

EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.

Additional PPIs Platform Initialization Specification, Vol. 1

128 May 2017 Version 1.6

8.3 Optional Additional PPIs

8.3.1 SEC Platform Information PPI (Optional)

EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)

Summary
This service is the platform information for the PEI Foundation.

GUID
#define EFI_SEC_PLATFORM_INFORMATION_GUID \
 {0x6f8c2b35, 0xfef4, 0x448d, 0x82, 0x56, 0xe1, \
 0x1b, 0x19, 0xd6, 0x10, 0x77}

Prototype
typedef struct _EFI_SEC_PLATFORM_INFORMATION_PPI {
 EFI_SEC_PLATFORM_INFORMATION PlatformInformation;
} EFI_SEC_PLATFORM_INFORMATION_PPI;

Parameters
PlatformInformation

Conveys state information out of the SEC phase into PEI. See the
PlatformInformation() function description.

Description
This service abstracts platform-specific information.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 129

EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation()

Summary
This service is the single member of the EFI_SEC_PLATFORM_INFORMATION_PPI that
conveys state information out of the Security (SEC) phase into PEI.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SEC_PLATFORM_INFORMATION) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN OUT UINT64 *StructureSize,
 OUT EFI_SEC_PLATFORM_INFORMATION_RECORD
 *PlatformInformationRecord
);

Parameters
PeiServices

Pointer to the PEI Services Table.

StructureSize

Pointer to the variable describing size of the input buffer.

PlatformInformationRecord

Pointer to the EFI_SEC_PLATFORM_INFORMATION_RECORD. Type
EFI_SEC_PLATFORM_INFORMATION_RECORD is defined in “Related
Definitions” below.

Description
This service is published by the SEC phase. The SEC phase handoff has an optional
EFI_PEI_PPI_DESCRIPTOR list as its final argument when control is passed from SEC into the
PEI Foundation. As such, if the platform supports the built-in self test (BIST) on IA-32 Intel

architecture or the PAL-A handoff state for Itanium® architecture, this information is encapsulated
into the data structure abstracted by this service. This information is collected for the boot-strap
processor (BSP) on IA-32, and for Itanium architecture, it is available on all processors that execute
the PEI Foundation.

The motivation for this service is that a specific processor register contains this information for each
microarchitecture, but the PEI CIS avoids using specific processor registers. Instead, the PEI CIS
describes callable interfaces across which data is conveyed. As such, this processor state information
that is collected at the reset of the machine is mapped into a common interface. The expectation is
that a manageability agent, such as a platform PEIM that logs information for the platform, would
use this interface to determine the viability of the BSP and possibly select an alternate BSP if there
are significant errors.

Additional PPIs Platform Initialization Specification, Vol. 1

130 May 2017 Version 1.6

Related Definitions
//**
// EFI_SEC_PLATFORM_INFORMATION_RECORD
//**
typedef union {
 IA32_HANDOFF_STATUS IA32HealthFlags;
 X64_HANDOFF_STATUS x64HealthFlags;
 ITANIUM_HANDOFF_STATUS ItaniumHealthFlags;
} EFI_SEC_PLATFORM_INFORMATION_RECORD;

HealthFlags

Contains information generated by microcode, or hardware, about the state of the
processor upon reset. Type EFI_HEALTH_FLAGS is defined below.

//**
// EFI_HEALTH_FLAGS
//**
typedef union {
 struct {
 UINT32 Status : 2;
 UINT32 Tested : 1;
 UINT32 Reserved1 :13;
 UINT32 VirtualMemoryUnavailable : 1;
 UINT32 Ia32ExecutionUnavailable : 1;
 UINT32 FloatingPointUnavailable : 1;
 UINT32 MiscFeaturesUnavailable : 1;
 UINT32 Reserved2 :12;
 } Bits;
 UINT32 Uint32;
} EFI_HEALTH_FLAGS;

IA-32 and X64 have the BIST. See “Health Flag Bit Format” on page 234 for more information on
EFI_HEALTH_FLAGS.

The following two structures are for IA32 and x64.

typedef EFI_HEALTH_FLAGS X64_HANDOFF_STATUS;
typedef EFI_HEALTH_FLAGS IA32_HANDOFF_STATUS;

There is no instance of an EFI_SEC_PLATFORM_INFORMATION_RECORD for the ARM PI
binding.

For Itanium, the structure is as follows:

For details, see the Itanium Software Developers Manual, Volume 2, Rev 2.2, Document Number:
245318-005 (SwDevMan) Section 11.2.2.1 "Definition of SALE_ENTRY State Parameter" as
indicated below.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 131

typedef struct {
 UINT8 BootPhase; // SALE_ENTRY state : 3 = Recovery_Check
 // and 0 = RESET or Normal_Boot phase.
 // See 'function' in SwDevMan Fig 11-8 and
 // Table 11-3.
 UINT8 FWStatus; // Firmware status on entry to SALE.
 // See 'Status' in SwDevMan Fig 11-8 and
 // Table 11-4.
 UINT16 Reserved1;
 UINT32 Reserved2;
 UINT16 ProcId; // Geographically significant unique
 // processor ID assigned by PAL.
 // See 'proc_id' in SwDevMan Fig 11-9
 // and Table 11-5.
 UINT16 Reserved3;
 UINT8 IdMask; // See 'id_mask' in SwDevMan
 // Fig 11-9 and Table 11-5.
 UINT8 EidMask; // See 'eid_mask' in SwDevMan
 // Fig 11-9 and Table 11-5
 UINT16 Reserved4;
 UINT64 PalCallAddress; // Address to make PAL calls.
 UINT64 PalSpecialAddress; // If the entry state is
 // RECOVERY_CHECK, this
 // contains the PAL_RESET
 // return address, and if entry
 // state is RESET, this contains
 // address for PAL_authentication
 // call.
 UINT64 SelfTestStatus; // GR35 from PALE_EXIT state,
 // See 'Self Test State' in
 // SwDevMan Fig 11-10 and
 // Table 11-6.
 UINT64 SelfTestControl; // GR37 from PALE_EXIT state:
 // See 'Self Test Control' in
 // SwDevMan Fig 11-11.
 UINT64 MemoryBufferRequired; // See GR38 Reset Layout
 // in SwDevMan Table 11-2.
} ITANIUM_HANDOFF_STATUS;

Consult the PALE_RESET Exit State in Software Development Manual for Itanium regarding an
interpretation of these fields.

Additional PPIs Platform Initialization Specification, Vol. 1

132 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The data was successfully returned.

EFI_BUFFER_TOO_SMALL The buffer was too small. The current buffer size needed to

hold the record is returned in StructureSize.

8.3.1.1 SEC Platform Information 2 PPI (Optional)

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 133

EFI_SEC_PLATFORM_INFORMATION2_PPI (Optional)

Summary
This service is the primary handoff state into the PEI Foundation. The Security (SEC) component
creates the early, transitory memory environment and also encapsulates knowledge of at least the
location of the Boot Firmware Volume (BFV).

GUID
#define EFI_SEC_PLATFORM_INFORMATION2_GUID \
{0x9e9f374b, 0x8f16, 0x4230,
{ 0x98, 0x24, 0x58, 0x46, 0xee, 0x76, 0x6a, 0x97}};

Prototype
typedef struct _EFI_SEC_PLATFORM_INFORMATION2_PPI {
 EFI_SEC_PLATFORM_INFORMATION2 PlatformInformation2;
} EFI_SEC_PLATFORM_INFORMATION2_PPI;

Parameters
PlatformInformation2

Conveys state information out of the SEC phase into PEI for many CPU’s. See the
PlatformInformation2() function description.

Description
This service abstracts platform-specific information for many CPU’s. It is the multi-processor
equivalent of PlatformInformation for implementations that synchronize some, if not all
CPU’s in the SEC phase.

Additional PPIs Platform Initialization Specification, Vol. 1

134 May 2017 Version 1.6

EFI_SEC_PLATFORM_INFORMATION2_PPI.PlatformInformation2()

Summary
This service is the single member of the EFI_SEC_PLATFORM_INFORMATION2_PPI that
conveys state information out of the Security (SEC) phase into PEI.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SEC_PLATFORM_INFORMATION2) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN OUT UINT64 *StructureSize,
 OUT EFI_SEC_PLATFORM_INFORMATION_RECORD2
 *PlatformInformationRecord2
);

Parameters
PeiServices

Pointer to the PEI Services Table.

StructureSize

Pointer to the variable describing size of the input buffer.

PlatformInformationRecord2

Pointer to the EFI_SEC_PLATFORM_INFORMATION_RECORD2. Type

EFI_SEC_PLATFORM_INFORMATION_RECORD2 is defined in “Related

Definitions” below.

Description
This service is published by the SEC phase.

Related Definitions
//**
// EFI_SEC_PLATFORM_INFORMATION_RECORD2
//**

typedef struct {
 UINT32 CpuLocation;
 EFI_SEC_PLATFORM_INFORMATION_RECORD InfoRecord;
 } EFI_SEC_PLATFORM_INFORMATION_CPU;

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 135

typedef struct {
 UINT32 NumberOfCpus.
 EFI_SEC_PLATFORM_INFORMATION_CPU CpuInstance [1];
} EFI_SEC_PLATFORM_INFORMATION_RECORD2;

The CPU location would be the local API ID.

Status Codes Returned

EFI_SUCCESS The data was successfully returned.

EFI_BUFFER_TOO_SMALL The buffer was too small. The current buffer size needed to

hold the record is returned in StructureSize.

Additional PPIs Platform Initialization Specification, Vol. 1

136 May 2017 Version 1.6

8.3.2 Loaded Image PPI (Optional)

EFI_PEI_LOADED_IMAGE_PPI

Summary
Notifies other drivers of the PEIM being initialized by the PEI Dispatcher.

GUID
#define EFI_PEI_LOADED_IMAGE_PPI_GUID \
 { 0xc1fcd448, 0x6300, 0x4458, \
 0xb8, 0x64, 0x28, 0xdf, 0x1, 0x53, 0x64, 0xbc }

Prototype
typedef struct _EFI_PEI_LOADED_IMAGE_PPI {
 EFI_PHYSICAL_ADDRESS ImageAddress,
 UINT64 ImageSize,
 EFI_PEI_FILE_HANDLE FileHandle
} EFI_PEI_LOADED_IMAGE_PPI;

Parameters
ImageAddress

Address of the image at the address where it will be executed.

ImageSize

Size of the image as it will be executed.

FileHandle

File handle from which the image was loaded. Can be NULL, indicating the image
was not loaded from a handle.

Description
This interface is installed by the PEI Dispatcher after the image has been loaded and after all security
checks have been performed, to notify other PEIMs of the files which are being loaded.

Note: The same PEIM may be initialized twice.

8.3.3 SEC HOB PPI

EFI_SEC_HOB_DATA_PPI

Summary
This PPI allows the SEC code to install HOBs into the HOB list.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 137

GUID
#define EFI_SEC_HOB_DATA_PPI_GUID \
{0x3ebdaf20, 0x6667, 0x40d8,\
{0xb4, 0xee, 0xf5, 0x99, 0x9a, 0xc1, 0xb7, 0x1f}};

Protocol Interface Structure
typedef struct _EFI_SEC_HOB_DATA_PPI {
 EFI_SEC_HOB_DATA_GET GetHobs;
} EFI_SEC_HOB_DATA_PPI;

Parameters
GetHobs

Retrieves a list of HOBs to install into the PEI HOB list.

Description
This PPI provides a way for the SEC code to pass zero or more HOBs in a HOB list.

Additional PPIs Platform Initialization Specification, Vol. 1

138 May 2017 Version 1.6

EFI_SEC_HOB_DATA_PPI.GetHobs()

Summary
Return a pointer to a buffer containing zero or more HOBs that will be installed into the PEI HOB
List.

Prototype
EFI_STATUS
(EFIAPI *EFI_SEC_HOB_DATA_GET) (
 IN CONST EFI_SEC_HOB_DATA_PPI *This,
 OUT EFI_HOB_GENERIC_HEADER **HobList
);

Parameters
This

Pointer to this PPI structure.

HobList

A pointer to a returned pointer to zero or more HOBs. If no HOBs are to be returned,
then the returned pointer is a pointer to a HOB of type
EFI_HOB_TYPE_END_OF_HOB_LIST.

Description
This function returns a pointer to a pointer to zero or more HOBs, terminated with a HOB of type
EI_HOB_TYPE_END_OF_HOB_LIST.

Note: The HobList must not contain a EFI_HOB_HANDOFF_INFO_TABLE HOB (PHIT) HOB.

Note: The HOBs pointed to by HobList must be formed as described in section 4.5.2 of Volume 3, “HOB
Construction Rules” including the requirement that the list start on an 8-byte boundary.

Status Codes

EFI_SUCCESS This function completed successfully.

EFI_UNSUPPORTED No HOBS are available.

8.3.4 Recovery
This section contains the definitions of the PPIs that are required on platforms that support firmware
recovery. The table below explains the organization of this section and lists the PPIs that are defined
in this section.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 139

Table 17. Organization of the Code Definitions Section

Section Summary PPI Definition

Recovery Module
PPI

Describes the main Recovery
Module PPI.

EFI_PEI_RECOVERY_MODULE_PPI

Device Recovery
Module PPI

Describes the Device Recovery
Module PPI.

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI

Device Recovery
Block I/O PPI

Describes the Device Recovery
Block I/O PPI. This section is
device specific and addresses the
most common form of recovery
media—block I/O devices such
as legacy floppy, CD-ROM, or
IDE devices.

EFI_PEI_RECOVERY_BLOCK_IO_PPI

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent protocol or function definition:

• EFI_PEI_BLOCK_IO_MEDIA

• EFI_PEI_BLOCK_DEVICE_TYPE

• EFI_PEI_LBA

8.3.4.1 Recovery Module PPI

EFI_PEI_RECOVERY_MODULE_PPI

Summary
Finds and loads the recovery files.

GUID
#define EFI_PEI_RECOVERY_MODULE_PPI_GUID \
 {0xFB6D9542, 0x612D, 0x4f45, 0x87, 0x2F, 0x5C, \
 0xFF, 0x52, 0xE9, 0x3D, 0xCF}

PPI Interface Structure
typedef struct _EFI_PEI_RECOVERY_MODULE_PPI {
 EFI_PEI_LOAD_RECOVERY_CAPSULE LoadRecoveryCapsule;
} EFI_PEI_RECOVERY_MODULE_PPI;

Parameters
LoadRecoveryCapsule

Loads a DXE binary capsule into memory.

Additional PPIs Platform Initialization Specification, Vol. 1

140 May 2017 Version 1.6

Description
This module has many roles and is responsible for the following:

1. Calling the driver recovery PPI
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetNumberRecoveryCapsules() to
determine if one or more DXE recovery entities exist.

2. If no capsules exist, then performing appropriate error handling.

3. Allocating a buffer of MaxRecoveryCapsuleSize as determined by
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetRecoveryCapsuleInfo() or
larger.

4. Determining the policy in which DXE recovery capsules are loaded.

5. Calling the driver recovery PPI
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() for capsule
number x.

6. If the load failed, performing appropriate error handling.

7. Performing security checks for a loaded DXE recovery capsule.

8. If the security checks failed, then logging the failure in a data HOB.

9. If the security checks failed, then determining the next
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()capsule
number; otherwise, go to step 11.

10. If more DXE recovery capsules exist, then go to step 5; otherwise, perform error handling.

11. Decomposing the capsule loaded by
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() into its
components. It is assumed that the path parameters are redundant for recovery and Setup
parameters are either redundant or canned.

12. Invalidating all HOB entries for updateable firmware volume entries. This invalidation prevents
possible errant drivers from being executed.

13. Updating the HOB table with the recovery DXE firmware volume information generated from
the capsule decomposition.

14. Returning to the PEI Dispatcher.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 141

EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()

Summary
Loads a DXE capsule from some media into memory and updates the HOB table with the DXE
firmware volume information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOAD_RECOVERY_CAPSULE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_MODULE_PPI *This
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_MODULE_PPI instance.

Description

This function, by whatever mechanism, retrieves a DXE capsule from some device
and loads it into memory. Note that the published interface is device neutral.

Status Codes Returned

EFI_SUCCESS The capsule was loaded correctly.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.

8.3.4.2 Device Recovery Module PPI

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI

Summary
Presents a standard interface to EFI_PEI_RECOVERY_MODULE_PPI, regardless of the
underlying device(s).

Additional PPIs Platform Initialization Specification, Vol. 1

142 May 2017 Version 1.6

GUID
#define EFI_PEI_DEVICE_RECOVERY_MODULE_PPI_GUID \
 { 0x0DE2CE25, 0x446A, 0x45a7, 0xBF, 0xC9, 0x37, 0xDA, \
 0x26, 0x34, 0x4B, 0x37}

PPI Interface Structure
typedef struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI {
 EFI_PEI_DEVICE_GET_NUMBER_RECOVERY_CAPSULE
 GetNumberRecoveryCapsules;
 EFI_PEI_DEVICE_GET_RECOVERY_CAPSULE_INFO
 GetRecoveryCapsuleInfo;
 EFI_PEI_DEVICE_LOAD_RECOVERY_CAPSULE
 LoadRecoveryCapsule;
} EFI_PEI_DEVICE_RECOVERY_MODULE_PPI;

Parameters
GetNumberRecoveryCapsules

Returns the number of DXE capsules that were found. See the
GetNumberRecoveryCapsules() function description.

GetRecoveryCapsuleInfo

Returns the capsule image type and the size of a given image. See the
GetRecoveryCapsuleInfo() function description.

LoadRecoveryCapsule

Loads a DXE capsule into memory. See the LoadRecoveryCapsule() function
description.

Description
The role of this module is to present a standard interface to
EFI_PEI_RECOVERY_MODULE_PPI, regardless of the underlying device(s). The interface does
the following:

• Reports the number of recovery DXE capsules that exist on the associated device(s)

• Finds the requested firmware binary capsule

• Loads that capsule into memory

A device can be either a group of devices, such as a block device, or an individual device. The
module determines the internal search order, with capsule number 1 as the highest load priority and
number N as the lowest priority.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 143

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.
GetNumberRecoveryCapsules()

Summary
Returns the number of DXE capsules residing on the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_GET_NUMBER_RECOVERY_CAPSULE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
 OUT UINTN *NumberRecoveryCapsules
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

NumberRecoveryCapsules

Pointer to a caller-allocated UINTN. On output, *NumberRecoveryCapsules
contains the number of recovery capsule images available for retrieval from this PEIM
instance.

Description
This function, by whatever mechanism, searches for DXE capsules from the associated device and
returns the number and maximum size in bytes of the capsules discovered. Entry 1 is assumed to be
the highest load priority and entry N is assumed to be the lowest priority.

Status Codes Returned

EFI_SUCCESS One or more capsules were discovered.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.

Additional PPIs Platform Initialization Specification, Vol. 1

144 May 2017 Version 1.6

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.
GetRecoveryCapsuleInfo()

Summary
Returns the size and type of the requested recovery capsule.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_GET_RECOVERY_CAPSULE_INFO) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
 IN UINTN CapsuleInstance,
 OUT UINTN *Size,
 OUT EFI_GUID *CapsuleType
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

CapsuleInstance

Specifies for which capsule instance to retrieve the information. This parameter must
be between one and the value returned by GetNumberRecoveryCapsules() in
NumberRecoveryCapsules.

Size

A pointer to a caller-allocated UINTN in which the size of the requested recovery
module is returned.

CapsuleType

A pointer to a caller-allocated EFI_GUID in which the type of the requested recovery
capsule is returned. The semantic meaning of the value returned is defined by the
implementation. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This function returns the size and type of the capsule specified by CapsuleInstance.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 145

Status Codes Returned

EFI_SUCCESS One or more capsules were discovered.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.

Additional PPIs Platform Initialization Specification, Vol. 1

146 May 2017 Version 1.6

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule()

Summary
Loads a DXE capsule from some media into memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_LOAD_RECOVERY_CAPSULE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
 IN UINTN CapsuleInstance,
 OUT VOID *Buffer
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

CapsuleInstance

Specifies which capsule instance to retrieve.

Buffer

Specifies a caller-allocated buffer in which the requested recovery capsule will be
returned.

Description
This function, by whatever mechanism, retrieves a DXE capsule from some device and loads it into
memory. Note that the published interface is device neutral.

Status Codes Returned

EFI_SUCCESS The capsule was loaded correctly.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND The requested recovery DXE capsule cannot be found.

8.3.4.3 Device Recovery Block I/O PPI
The Recovery Module PPI and the Device Recovery Module PPI subsections earlier in Code
Definitions are device neutral. This section is device specific and addresses the most common form
of recovery media-block I/O devices such as legacy floppy, CD-ROM, or IDE devices.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 147

The Recovery Block I/O PPI is used to access block devices. Because the Recovery Block I/O PPIs
that are provided by the PEI ATAPI driver and PEI legacy floppy driver are the same, here we define
a set of general PPIs for both drivers to use.

EFI_PEI_RECOVERY_BLOCK_IO_PPI

Summary
Provides the services required to access a block I/O device during PEI recovery boot mode.

GUID
#define EFI_PEI_RECOVERY_BLOCK_IO_PPI_GUID \
 { 0x695d8aa1, 0x42ee, 0x4c46, 0x80, 0x5c,0x6e, 0xa6, \
 0xbc, 0xe7, 0x99, 0xe3 }

PPI Interface Structure
typedef struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI {
 EFI_PEI_GET_NUMBER_BLOCK_DEVICES GetNumberOfBlockDevices;
 EFI_PEI_GET_DEVICE_MEDIA_INFORMATION
 GetBlockDeviceMediaInfo;
 EFI_PEI_READ_BLOCKS ReadBlocks;
} EFI_PEI_RECOVERY_BLOCK_IO_PPI;

Parameters
GetNumberOfBlockDevices

Gets the number of block I/O devices that the specific block driver manages. See the
GetNumberOfBlockDevices()function description.

GetBlockDeviceMediaInfo

Gets the specified media information. See the GetBlockDeviceMediaInfo() function
description.

ReadBlocks

Reads the requested number of blocks from the specified block device. See the
ReadBlocks() function description.

Description
This function provides the services that are required to access a block I/O device during PEI
recovery boot mode.

Additional PPIs Platform Initialization Specification, Vol. 1

148 May 2017 Version 1.6

EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()

Summary
Gets the count of block I/O devices that one specific block driver detects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_NUMBER_BLOCK_DEVICES) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
 OUT UINTN *NumberBlockDevices
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

NumberBlockDevices

The number of block I/O devices discovered.

Description
This function is used for getting the count of block I/O devices that one specific block driver detects.
To the PEI ATAPI driver, it returns the number of all the detected ATAPI devices it detects during
the enumeration process. To the PEI legacy floppy driver, it returns the number of all the legacy
devices it finds during its enumeration process. If no device is detected, then the function will return
zero.

Status Codes Returned

EFI_SUCCESS Operation performed successfully

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 149

EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo()

Summary
Gets a block device's media information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_DEVICE_MEDIA_INFORMATION) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
 IN UINTN DeviceIndex,
 OUT EFI_PEI_BLOCK_IO_MEDIA *MediaInfo
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

MediaInfo

The media information of the specified block media. Type
EFI_PEI_BLOCK_IO_MEDIA is defined in "Related Definitions" below. The caller
is responsible for the ownership of this data structure.

Note: This structure describes an enumeration of possible block device types. This enumeration exists
because no device paths are actually passed across interfaces that describe the type or class of
hardware that is publishing the block I/O interface. This enumeration will allow for policy decisions
in the Recovery PEIM, such as "Try to recover from legacy floppy first, LS-120 second, CD-ROM
third." If there are multiple partitions abstracted by a given device type, they should be reported in
ascending order; this order also applies to nested partitions, such as legacy MBR, where the
outermost partitions would have precedence in the reporting order. The same logic applies to
systems such as IDE that have precedence relationships like "Master/Slave" or "Primary/
Secondary"; the master device should be reported first, the slave second.

Description
This function will provide the caller with the specified block device's media information. If the
media changes, calling this function will update the media information accordingly.

Additional PPIs Platform Initialization Specification, Vol. 1

150 May 2017 Version 1.6

Related Definitions
//***
// EFI_PEI_BLOCK_IO_MEDIA
//***

typedef struct {
 EFI_PEI_BLOCK_DEVICE_TYPE DeviceType;
 BOOLEAN MediaPresent;
 UINTN LastBlock;
 UINTN BlockSize;
} PEI_BLOCK_IO_MEDIA;

DevType

The type of media device being referenced by DeviceIndex. Type
EFI_PEI_BLOCK_DEVICE_TYPE is defined below.

MediaPresent

A flag that indicates if media is present. This flag is always set for nonremovable
media devices.

LastBlock

The last logical block that the device supports.

BlockSize

The size of a logical block in bytes.

//***
// EFI_PEI_BLOCK_DEVICE_TYPE
//***
typedef enum {
 LegacyFloppy = 0,
 IdeCDROM = 1,
 IdeLS120 = 2,
 UsbMassStorage = 3,
 SD = 4,
 EMMC = 5,
 UfsDevice = 6,
 MaxDeviceType
} EFI_PEI_BLOCK_DEVICE_TYPE;

Status Codes Returned

EFI_SUCCESS Media information about the specified block device was obtained
successfully.

EFI_DEVICE_ERROR Cannot get the media information due to a hardware error.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 151

 EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks()

Summary
Reads the requested number of blocks from the specified block device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_READ_BLOCKS) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
 IN UINTN DeviceIndex,
 IN EFI_PEI_LBA StartLBA,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

StartLBA

The starting logical block address (LBA) to read from on the device. Type
EFI_PEI_LBA is defined in "Related Definitions" below.

BufferSize

The size of the Buffer in bytes. This number must be a multiple of the intrinsic
block size of the device.

Buffer
A pointer to the destination buffer for the data. The caller is responsible for the ownership of the
buffer.

Description
The function reads the requested number of blocks from the device. All the blocks are read, or an
error is returned. If there is no media in the device, the function returns EFI_NO_MEDIA.

Additional PPIs Platform Initialization Specification, Vol. 1

152 May 2017 Version 1.6

Related Definitions
//***
// EFI_PEI_LBA
//***

typedef UINT64 EFI_PEI_LBA;

EFI_PEI_LBA is the UINT64 LBA number.

Status Codes Returned

EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
properly aligned.

EFI_NO_MEDIA There is no media in the device.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of
the device.

8.3.5 EFI PEI Recovery Block IO2 PPI

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 153

EFI_PEI_RECOVERY_BLOCK_IO2_PPI

Summary
Provides the services required to access a block I/O device during PEI recovery boot mode.

GUID
#define EFI_PEI_RECOVERY_BLOCK_IO2_PPI_GUID \
 { 0x26cc0fad, 0xbeb3, 0x478a,\
 { 0x91, 0xb2, 0xc, 0x18, 0x8f, 0x72, 0x61, 0x98 } }

PPI Interface Structure
typedef struct _EFI_PEI_RECOVERY_BLOCK_IO2_PPI {
 UINT64 Revision;
 EFI_PEI_GET_NUMBER_BLOCK_DEVICES2 GetNumberOfBlockDevices;
 EFI_PEI_GET_DEVICE_MEDIA_INFORMATION2
 GetBlockDeviceMediaInfo;
 EFI_PEI_READ_BLOCKS2 ReadBlocks;
} EFI_PEI_RECOVERY_BLOCK_IO2_PPI;

Parameters
Revision

The revision to which the interface adheres. All future revisions must be backwards
compatible.

GetNumberOfBlockDevices

Gets the number of block I/O devices that the specific block driver manages. See the
GetNumberOfBlockDevices() function description.

GetBlockDeviceMediaInfo

Gets the specified media information. See the GetBlockDeviceMediaInfo()
function description.

ReadBlocks

Reads the requested number of blocks from the specified block device. See the
ReadBlocks() function description.

Related Definitions
#define EFI_PEI_RECOVERY_BLOCK_IO2_PPI_REVISION 0x00010000

Description
This function provides the services that are required to access a block I/O device during PEI
recovery boot mode.

Additional PPIs Platform Initialization Specification, Vol. 1

154 May 2017 Version 1.6

EFI_PEI_RECOVERY_BLOCK_IO2_PPI.GetNumberOfBlockDevices()

Summary
Gets the count of block I/O devices that one specific block driver detects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_NUMBER_BLOCK_DEVICES2) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_RECOVERY_BLOCK_IO2_PPI *This,
 OUT UINTN *NumberBlockDevices
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

NumberBlockDevices

The number of block I/O devices discovered.

Description
This function is used for getting the count of block I/O devices that one specific block driver detects.
To the PEI ATAPI driver, it returns the number of all the detected ATAPI devices it detects during
the enumeration process. To the PEI legacy floppy driver, it returns the number of all the legacy
devices it finds during its enumeration process. If no device is detected, then the function will return
zero.

Status Codes Returned

EFI_SUCCESS Operation performed successfully

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 155

EFI_PEI_RECOVERY_BLOCK_IO2_PPI.GetBlockDeviceMediaInfo()

Summary
Gets a block device’s media information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_DEVICE_MEDIA_INFORMATION2) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_RECOVERY_BLOCK_IO2_PPI *This,
 IN UINTN DeviceIndex,
 OUT EFI_PEI_BLOCK_IO2_MEDIA *MediaInfo
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

MediaInfo

The media information of the specified block media. Type
EFI_PEI_BLOCK_IO2_MEDIA is defined in “Related Definitions” below. The
caller is responsible for the ownership of this data structure.

Note that this structure describes an enumeration of possible block device types. This
enumeration exists because no device paths are actually passed across interfaces that
describe the type or class of hardware that is publishing the block I/O interface. This
enumeration will allow for policy decisions in the Recovery PEIM, such as “Try to
recover from legacy floppy first, USB mass storage device second, CD-ROM third.”
If there are multiple partitions abstracted by a given device type, they should be
reported in ascending order; this order also applies to nested partitions, such as legacy
MBR, where the outermost partitions would have precedence in the reporting order.
The same logic applies to systems such as IDE that have precedence relationships like
“Master/Slave” or “Primary/Secondary”; the master device should be reported first,
the slave second.

Additional PPIs Platform Initialization Specification, Vol. 1

156 May 2017 Version 1.6

Description
This function will provide the caller with the specified block device’s media information. If the
media changes, calling this function will update the media information accordingly.

Related Definitions
//***
// EFI_PEI_BLOCK_IO2_MEDIA
//***

typedef struct {
 UINT8 InterfaceType;
 BOOLEAN RemovablaMedia;
 BOOLEAN MediaPresent;
 BOOLEAN ReadOnly;
 UINT32 BlockSize;
 EFI_PEI_LBA LastBlock;
} PEI_BLOCK_IO2_MEDIA;

InterfaceType

A type of interface that the device being referenced by DeviceIndex is attached to.
This field re-uses Messaging Device Path Node sub-type values as defined by Section
“9.3.5 Messaging Device Path” of UEFI Specification. When more than one sub-type
is associated with the interface, sub-type with the smallest number must be used. For
example, InterfaceType must be set to 5 for USB devices.

RemovablaMedia

A flag that indicates if media is removable.

MediaPresent

A flag that indicates if media is present. This flag is always set for non-removable
media devices.

ReadOnly

A flag that indicates if media is read-only.

LastBlock

The last logical block that the device supports.

BlockSize

The size of a logical block in bytes. Type EFI_PEI_LBA is defined below.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 157

Related Definitions
//***
// EFI_PEI_LBA
//***
typedef UINT64 EFI_PEI_LBA;

EFI_PEI_LBA is the UINT64 LBA number.

Status Codes Returned

EFI_SUCCESS Media information about the specified block device was obtained
successfully.

EFI_DEVICE_ERROR Cannot get the media information due to a hardware error.

Additional PPIs Platform Initialization Specification, Vol. 1

158 May 2017 Version 1.6

EFI_PEI_RECOVERY_BLOCK_IO2_PPI.ReadBlocks()

Summary
Reads the requested number of blocks from the specified block device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_READ_BLOCKS2) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_RECOVERY_BLOCK_IO2_PPI *This,
 IN UINTN DeviceIndex,
 IN EFI_PEI_LBA StartLBA,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

StartLBA

The starting logical block address (LBA) to read from on the device. Type
EFI_PEI_LBA is defined in in the GetBlockDeviceMediaInfo() function
description.

BufferSize

The size of the Buffer in bytes. This number must be a multiple of the intrinsic
block size of the device.

Buffer

A pointer to the destination buffer for the data. The caller is responsible for the
ownership of the buffer.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 159

Description
The function reads the requested number of blocks from the device. All the blocks are read, or an
error is returned. If there is no media in the device, the function returns EFI_NO_MEDIA.

Status Codes Returned

EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
properly aligned.

EFI_NO_MEDIA There is no media in the device.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block

size of the device.

8.3.6 EFI PEI Vector Handoff Info PPI

Additional PPIs Platform Initialization Specification, Vol. 1

160 May 2017 Version 1.6

EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional)

Summary
The PPI that describes an array of interrupt and/or exception vectors that are in use and need to
persist.

GUID
#define EFI_PEI_VECTOR_HANDOFF_INFO_PPI_GUID \
 { 0x3cd652b4, 0x6d33, 0x4dce, \
 { 0x89, 0xdb, 0x83, 0xdf, 0x97, 0x66, 0xfc, 0xca } }

Protocol Interface Structure
typedef struct _EFI_PEI_VECTOR_HANDOFF_INFO_PPI {
 EFI_VECTOR_HANDOFF_INFO *Info;
} EFI_PEI_VECTOR_HANDOFF_INFO_PPI;

Parameters
Info

Pointer to an array of interrupt and /or exception vectors.

Description
This is an optional PPI that may be produced by SEC. If present, it provides a description of the
interrupt and/or exception vectors that were established in the SEC Phase and need to persist into
PEI and DXE. This PPI is an array of entries that is terminated by an entry whose Attribute is
set to EFI_VECTOR_HANDOFF_LAST_ENTRY.

If Attribute is set to EFI_VECTOR_HANDOFF_DO_NOT_HOOK, then the associated handler
for VectorNumber must be preserved in PEI and DXE.

If Attribute is set to EFI_VECTOR_HANDOFF_HOOK_BEFORE, then VectorNumber may
be used in PEI and DXE, but new handlers must be invoked prior to when the existing handler is
called.

If Attribute is set to EFI_VECTOR_HANDOFF_HOOK_AFTER, then the associated
VectorNumber may be used in PEI and DXE, but new handlers must be called after the existing
handler is called.

EFI_PEI_VECTOR_HANDOFF_INFO_PPI_GUID can also be used in the PEI Phase to build a
GUIDed HOB that contains an array of EFI_VECTOR_HANDOFF_INFO entries that describes the
interrupt and/or exception vectors in use in the PEI Phase. This may be identical to the array passed
up from SEC, or it could be an array that is augmented with additional vectors used in PEI Phase.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 161

Related Definitions
//
// System configuration table entry that points to the table
// in case an entity in DXE wishes to update/change the vector
// table contents.
//
#define EFI_VECTOR_HANDOFF_TABLE_GUID \
{0x996ec11c, 0x5397, 0x4e73, \
 {0xb5, 0x8f, 0x82, 0x7e, 0x52, 0x90, 0x6d, 0xef}}

typedef struct {
 UINT32 VectorNumber;
 UINT32 Attribute;
 EFI_GUID Owner;
} EFI_VECTOR_HANDOFF_INFO;

Parameters
VectorNumber

The interrupt or exception vector that is in use and must be preserved.

Attribute

A bitmask that describes the attributes of the interrupt or exception vector.

Owner

The GUID identifies the party who created the entry. For the
EFI_VECTOR_HANDOFF_DO_NOT_HOOK case, this establishes the single owner.

8.3.7 CPU I/O PPI (Optional)

EFI_PEI_CPU_IO_PPI (Optional)

If the service is not available, the PEI Core service EFI_PEI_CPU_IO_PPI *CpuIo member
functions will have a dummy function that return EFI_NOT_AVAILABLE_YET;

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts the processor-visible
I/O operations.

GUID
#define EFI_PEI_CPU_IO_PPI_INSTALLED_GUID \
 {0xe6af1f7b, 0xfc3f, 0x46da, 0xa8, 0x28, 0xa3, 0xb4, \
 0x57, 0xa4, 0x42, 0x82}

This is an indicator GUID without any data. It represents the fact that a PEIM has written the
address of the EFI_PEI_CPU_IO_PPI into the EFI_PEI_SERVICES table.

Additional PPIs Platform Initialization Specification, Vol. 1

162 May 2017 Version 1.6

PPI Interface Structure
typedef
struct _EFI_PEI_CPU_IO_PPI {
 EFI_PEI_CPU_IO_PPI_ACCESS Mem;
 EFI_PEI_CPU_IO_PPI_ACCESS Io;
 EFI_PEI_CPU_IO_PPI_IO_READ8 IoRead8;
 EFI_PEI_CPU_IO_PPI_IO_READ16 IoRead16;
 EFI_PEI_CPU_IO_PPI_IO_READ32 IoRead32;
 EFI_PEI_CPU_IO_PPI_IO_READ64 IoRead64;
 EFI_PEI_CPU_IO_PPI_IO_WRITE8 IoWrite8;
 EFI_PEI_CPU_IO_PPI_IO_WRITE16 IoWrite16;
 EFI_PEI_CPU_IO_PPI_IO_WRITE32 IoWrite32;
 EFI_PEI_CPU_IO_PPI_IO_WRITE64 IoWrite64;
 EFI_PEI_CPU_IO_PPI_MEM_READ8 MemRead8;
 EFI_PEI_CPU_IO_PPI_MEM_READ16 MemRead16;
 EFI_PEI_CPU_IO_PPI_MEM_READ32 MemRead32;
 EFI_PEI_CPU_IO_PPI_MEM_READ64 MemRead64;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE8 MemWrite8;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE16 MemWrite16;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE32 MemWrite32;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE64 MemWrite64;
} EFI_PEI_CPU_IO_PPI;

Parameters
Mem

Collection of memory-access services. See the Mem() function description. Type
EFI_PEI_CPU_IO_PPI_ACCESS is defined in “Related Definitions” below.

Io

Collection of I/O-access services. See the Io() function description. Type
EFI_PEI_CPU_IO_PPI_ACCESS is defined in “Related Definitions” below.

IoRead8

8-bit read service. See the IoRead8() function description.

IoRead16

16-bit read service. See the IoRead16() function description.

IoRead32

32-bit read service. See the IoRead32() function description.

IoRead64

64-bit read service. See the IoRead64() function description.

IoWrite8

8-bit write service. See the IoWrite8() function description.

IoWrite16

16-bit write service. See the IoWrite16() function description.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 163

IoWrite32

32-bit write service. See the IoWrite32() function description.

IoWrite64

64-bit write service. See the IoWrite64() function description.

MemRead8

8-bit read service. See the MemRead8() function description.

MemRead16

16-bit read service. See the MemRead16() function description.

MemRead32

32-bit read service. See the MemRead32() function description.

MemRead64

64-bit read service. See the MemRead64() function description.

MemWrite8

8-bit write service. See the MemWrite8() function description.

MemWrite16

16-bit write service. See the MemWrite16() function description.

MemWrite32

32-bit write service. See the MemWrite32() function description.

MemWrite64

64-bit write service. See the MemWrite64() function description.

Description
This PPI provides a set of memory- and I/O-based services. The perspective of the services is that of
the processor, not the bus or system.

Related Definitions
//***
// EFI_PEI_CPU_IO_PPI_ACCESS
//***

typedef
struct {
 EFI_PEI_CPU_IO_PPI_IO_MEM Read;
 EFI_PEI_CPU_IO_PPI_IO_MEM Write;
} EFI_PEI_CPU_IO_PPI_ACCESS;

Read

This service provides the various modalities of memory and I/O read.

Additional PPIs Platform Initialization Specification, Vol. 1

164 May 2017 Version 1.6

Write

This service provides the various modalities of memory and I/O write.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 165

EFI_PEI_CPU_IO_PPI.Mem()

Summary
Memory-based access services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_CPU_IO_PPI_WIDTH is defined in “Related Definitions” below.

Address

The physical address of the access.

Count

The number of accesses to perform.

Buffer

A pointer to the buffer of data.

Description
The Mem() function provides a list of memory-based accesses.

Additional PPIs Platform Initialization Specification, Vol. 1

166 May 2017 Version 1.6

Related Definitions
//***
// EFI_PEI_CPU_IO_PPI_WIDTH
//***

typedef enum {
 EfiPeiCpuIoWidthUint8,
 EfiPeiCpuIoWidthUint16,
 EfiPeiCpuIoWidthUint32,
 EfiPeiCpuIoWidthUint64,
 EfiPeiCpuIoWidthFifoUint8,
 EfiPeiCpuIoWidthFifoUint16,
 EfiPeiCpuIoWidthFifoUint32,
 EfiPeiCpuIoWidthFifoUint64,
 EfiPeiCpuIoWidthFillUint8,
 EfiPeiCpuIoWidthFillUint16,
 EfiPeiCpuIoWidthFillUint32,
 EfiPeiCpuIoWidthFillUint64,
 EfiPeiCpuIoWidthMaximum
} EFI_PEI_CPU_IO_PPI_WIDTH;

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 167

EFI_PEI_CPU_IO_PPI.Io()

Summary
I/O-based access services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_CPU_IO_PPI_WIDTH is defined in Mem().

Address

The physical address of the access.

Count

The number of accesses to perform.

Buffer

A pointer to the buffer of data.

Description
The Io() function provides a list of I/O-based accesses. Input or output data can be found in the
last argument.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

Additional PPIs Platform Initialization Specification, Vol. 1

168 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.IoRead8()

Summary
8-bit I/O read operations.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead8() function returns an 8-bit value from the I/O space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 169

EFI_PEI_CPU_IO_PPI.IoRead16()

Summary
16-bit I/O read operations.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead16() function returns a 16-bit value from the I/O space.

Additional PPIs Platform Initialization Specification, Vol. 1

170 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.IoRead32()

Summary
32-bit I/O read operations.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead32() function returns a 32-bit value from the I/O space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 171

EFI_PEI_CPU_IO_PPI.IoRead64()

Summary
64-bit I/O read operations.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST_EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead64() function returns a 64-bit value from the I/O space.

Additional PPIs Platform Initialization Specification, Vol. 1

172 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.IoWrite8()

Summary
8-bit I/O write operations.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST_EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT8 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite8() function writes an 8-bit value to the I/O space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 173

EFI_PEI_CPU_IO_PPI.IoWrite16()

Summary
16-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT16 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite16() function writes a 16-bit value to the I/O space.

Additional PPIs Platform Initialization Specification, Vol. 1

174 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.IoWrite32()

Summary
32-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT32 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite32() function writes a 32-bit value to the I/O space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 175

EFI_PEI_CPU_IO_PPI.IoWrite64()

Summary
64-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT64 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite64() function writes a 64-bit value to the I/O space.

Additional PPIs Platform Initialization Specification, Vol. 1

176 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.MemRead8()

Summary
8-bit memory read operations.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead8() function returns an 8-bit value from the memory space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 177

EFI_PEI_CPU_IO_PPI.MemRead16()

Summary
16-bit memory read operations.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead16() function returns a 16-bit value from the memory space.

Additional PPIs Platform Initialization Specification, Vol. 1

178 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.MemRead32()

Summary
32-bit memory read operations.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead32() function returns a 32-bit value from the memory space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 179

EFI_PEI_CPU_IO_PPI.MemRead64()

Summary
64-bit memory read operations.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead64() function returns a 64-bit value from the memory space.

Additional PPIs Platform Initialization Specification, Vol. 1

180 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.MemWrite8()

Summary
8-bit memory write operations.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT8 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite8() function writes an 8-bit value to the memory space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 181

EFI_PEI_CPU_IO_PPI.MemWrite16()

Summary
16-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT16 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite16() function writes a 16-bit value to the memory space.

Additional PPIs Platform Initialization Specification, Vol. 1

182 May 2017 Version 1.6

EFI_PEI_CPU_IO_PPI.MemWrite32()

Summary
32-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT32 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite32() function writes a 32-bit value to the memory space.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 183

EFI_PEI_CPU_IO_PPI.MemWrite64()

Summary
64-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT64 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite64() function writes a 64-bit value to the memory space.

//
// Vector Handoff Info Attributes
//
#define EFI_VECTOR_HANDOFF_DO_NOT_HOOK 0x00000000
#define EFI_VECTOR_HANDOFF_HOOK_BEFORE 0x00000001
#define EFI_VECTOR_HANDOFF_HOOK_AFTER 0x00000002
#define EFI_VECTOR_HANDOFF_LAST_ENTRY 0x80000000

8.3.8 EFI Pei Capsule PPI

Additional PPIs Platform Initialization Specification, Vol. 1

184 May 2017 Version 1.6

EFI_PEI_CAPSULE_PPI (Optional)

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts handling of UEFI
Capsule processing.

GUID
#define EFI_PEI_CAPSULE_PPI_GUID \
{0x3acf33ee, 0xd892, 0x40f4, \
 {0xa2, 0xfc, 0x38, 0x54, 0xd2, 0xe1, 0x32, 0x3d } }

PPI Interface Structure
typedef
struct _EFI_PEI_CAPSULE_PPI {
 EFI_PEI_CAPSULE_COALESCE Coalesce;
 EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE CheckCapsuleUpdate;
 EFI_PEI_CAPSULE_CREATE_STATE CreateState;
} EFI_PEI_CAPSULE_PPI;

Parameters
Coalesce

Upon determining that there is a capsule to operate on, this service will use a series of
EFI_CAPSULE_BLOCK_DESCRIPTOR entries to determine the current location of
the various capsule fragments and coalesce them into a contiguous region of system
memory.

CheckCapsuleUpdate

Determine if a capsule needs to be processed. The means by which the presence of a
capsule is determined is platform specific. For example, an implementation could be
driven by the presence of a Capsule EFI Variable containing a list of
EFI_CAPSULE_BLOCK_DESCRIPTOR entries. If present, return EFI_SUCCESS,
otherwise return EFI_NOT_FOUND.

CreateState

 The Capsule PPI service that gets called after memory is available. The capsule
coalesce function, which must be called first, returns a base address and size. Once the
memory init PEIM has discovered memory, it should call this function and pass in the
base address and size returned by the Coalesce() function. Then this function can
create a capsule HOB and return.

Description
This PPI provides several services in PEI to work with the underlying capsule capabilities of the
platform. These services include the ability for PEI to coalesce a capsule from a scattered set of
memory locations into a contiguous space in memory, detect if a capsule is present for

processing, and once memory is available, create a HOB for the capsule.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 185

EFI_PEI_CAPSULE_PPI.Coalesce

Summary
Coalesce the capsule

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CAPSULE_COALESCE)(
 IN EFI_PEI_SERVICES **PeiServices,
 IN OUT VOID **MemoryBase,
 IN OUT UINTN *MemSize
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

MemoryBase

Pointer to the base of a block of memory into which the buffers will be coalesced. On
output, this variable will hold the base address of a coalesced capsule.

MemorySize

Pointer to local data for the interface.

Description
Upon determining that there is a capsule to operate on, this service will use a series of
EFI_CAPSULE_BLOCK_DESCRIPTOR entries to determine the current location of the various
capsule fragments and coalesce them into a contiguous region of system memory.

 Status Codes Returned

EFI_SUCCESS There was no capsule, or the capsule was processed
successfully.

EFI_NOT_FOUND If: boot mode could not be determined, or the boot mode is not
flash-update, or the capsule descriptors were not found.

EFI_BUFFER_TOO_SMALL The capsule could not be coalesced in the provided memory
region.

Additional PPIs Platform Initialization Specification, Vol. 1

186 May 2017 Version 1.6

EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CheckCapsuleUpdat
e()

Summary
Check the Capsule Update.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CAPSULE_CHECK_CAPSULE_UPDATE)(
 IN EFI_PEI_SERVICES **PeiServices
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

Description
Determine if a capsule needs to be processed. The means by which the presence of a capsule is
determined is platform specific. For example, an implementation could be driven by the presence of
a Capsule EFI Variable containing a list of EFI_CAPSULE_BLOCK_DESCRIPTOR entries. If
present, return EFI_SUCCESS, otherwise return EFI_NOT_FOUND.

 Status Codes Returned

EFI_SUCCESS If a capsule is available.

EFI_NOT_FOUND No capsule detected.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 187

EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CapsuleCreateState(
)

Summary
Create the Capsule state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CAPSULE_CREATE_STATE)(
 IN EFI_PEI_SERVICES **PeiServices,
 IN VOID *CapsuleBase,
 IN UINTN CapsuleSize
);

Parameters
PeiServices

Pointer to the PEI Services Table.

CapsuleBase

Address returned by the capsule coalesce function.

CapsuleSize

Value returned by the capsule coalesce function.

Description
The Capsule PPI service that gets called after memory is available. The capsule coalesce function,
which must be called first, returns a base address and size. Once the memory init PEIM has
discovered memory, it should call this function and pass in the base address and size returned by the
Coalesce() function. Then this function can create a capsule HOB and return.

Status Codes Returned

EFI_VOLUME_CORRUPTED CapsuleBase does not appear to point to a coalesced

capsule.

EFI_SUCCESS Capsule HOB was created successfully.

8.3.9 EFI MP Services PPI

Additional PPIs Platform Initialization Specification, Vol. 1

188 May 2017 Version 1.6

EFI_MP_SERVICES_PPI (Optional)

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts handling
multiprocessor support.

GUID
#define EFI_MP_SERVICES_PPI_GUID \
{0xee16160a, 0xe8be, 0x47a6,\
 {0x82, 0xa, 0xc6, 0x90, 0xd, 0xb0, 0x25, 0xa } }

PPI Interface Structure
typedef
struct _EFI_MP_SERVICES_PPI {
 PEI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS
GetNumberOfProcessors;
 PEI_MP_SERVICES_GET_PROCESSOR_INFO
GetProcessorInfo;
 PEI_MP_SERVICES_STARTUP_ALL_APS
StartupAllAPs;
 PEI_MP_SERVICES_STARTUP_THIS_AP
StartupThisAP;
 PEI_MP_SERVICES_SWITCH_BSP
SwitchBSP;
 PEI_MP_SERVICES_ENABLEDISABLEAP
EnableDisableAP;
 PEI_MP_SERVICES_WHOAMI
WhoAmI;
} EFI_MP_SERVICES_PPI;

Parameters
GetNumberOfProcessors

Discover the number of CPU’s

GetProcessorInfo

Ascertain information on the CPU’s.

StartupAllAPs

 Startup all of the application processors.

StartupThisAP

 Startup the specific application processor.

SwitchBSP

Swtich the boot strap processor.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 189

WhoAmI

Identify the currently executing processor.

Description
When installed, the MP Services Ppi produces a collection of services that are needed for MP
management.

Before the PI event END_OF_PEI is signaled, the module that produces this protocol is required to
place all APs into an idle state whenever the APs are disabled or the APs are not executing code as
requested through the StartupAllAPs() or StartupThisAP() services. The idle state of an
AP before the PI event END_OF_PEI is signaled is implementation dependent.

After the PI event END_OF_PEI is signaled, all the APs must be placed in the OS compatible CPU
state as defined by the UEFI Specification. Implementations of this Ppi may use the PI event
END_OF_PEI to force APs into the OS compatible state as defined by the UEFI Specification.

The support for SwitchBSP() and EnableDisableAP() may no longer be supported after the
PEI event END_OF_PEI is signaled.

Additional PPIs Platform Initialization Specification, Vol. 1

190 May 2017 Version 1.6

 EFI_MP_SERVICES_PPI.GetNumberOfProcessors()

Summary
Get the number of CPU’s

Prototype
typedef
EFI_STATUS
(EFIAPI PEI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS)(
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MP_SERVICES_PPI *This,
 OUT UINTN *NumberOfProcessors,
 OUT UINTN *NumberOfEnabledProcessors
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to this instance of the PPI.

NumberOfProcessors

Pointer to the total number of logical processors in the system, including the BSP and
disabled APs.

NumberOfEnabledProcessors

Number of processors in the system that are enabled.

Description
This service retrieves the number of logical processor in the platform and the number of those
logical processors that are enabled on this boot. This service may only be called from the BSP.

This function is used to retrieve the following information:

 - The number of logical processors that are present in the system.

 - The number of enabled logical processors in the system at the instant this call is made.

 Because MP Service Ppi provides services to enable and disable processors dynamically, the
number of enabled logical processors may vary during the course of a boot session.

If this service is called from an AP, then EFI_DEVICE_ERROR is returned.

If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors is returned in
NumberOfProcessors, the number of currently enabled processor is returned in
NumberOfEnabledProcessors, and EFI_SUCCESS is returned.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 191

 Status Codes Returned

EFI_SUCCESS The number of logical processors and enabled logical
processors was retrieved.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_INVALID_PARAMETER NumberOfProcessors is NULL.

EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.

Additional PPIs Platform Initialization Specification, Vol. 1

192 May 2017 Version 1.6

EFI_MP_SERVICES_PPI.GetProcessorInfo()

Summary
Get information on a specific CPU.

Prototype
typedef
EFI_STATUS
(EFIAPI PEI_MP_SERVICES_GET_PROCESSOR_INFO)(
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MP_SERVICES_PPI *This,
 IN UINTN ProcessorNumber,
 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

A pointer to the EFI_MP_SERVICES_PPI instance.

ProcessorNumber

The handle number of the processor.

ProcessorInfoBuffer

A pointer to the buffer where the processor information is stored.

Description
Gets detailed MP-related information on the requested processor at the instant this call is made. This
service may only be called from the BSP.

This service retrieves detailed MP-related information about any processor on the platform. Note the
following:

• The processor information may change during the course of a boot session.

• The information presented here is entirely MP related.

 Information regarding the number of caches and their sizes, frequency of operation, slot numbers is
all considered platform-related information and is not provided by this service.

 Status Codes Returned

EFI_SUCCESS Processor information was returned.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist in the platform.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 193

EFI_MP_SERVICES_PPI.StartupAllAPs ()

Summary
Activate all of the application proessors.

Prototype
typedef
EFI_STATUS
 (EFIAPI *PEI_MP_SERVICES_STARTUP_ALL_APS)(
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MP_SERVICES_PPI *This,
 IN EFI_AP_PROCEDURE Procedure,
 IN BOOLEAN SingleThread,
 IN UINTN TimeoutInMicroSeconds,
 IN VOID *ProcedureArgument OPTIONAL
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

A pointer to the EFI_MP_SERVICES_PPI instance.

Procedure

A pointer to the function to be run on enabled APs of the system. See type
EFI_AP_PROCEDURE.

SingleThread

If TRUE, then all the enabled APs execute the function specified by Procedure one
by one, in ascending order of processor handle number. If FALSE, then all the enabled
APs execute the function specified by Procedure simultaneously.

TimeoutInMicroseconds

Indicates the time limit in microseconds for APs to return from Procedure, for
blocking mode only. Zero means infinity. If the timeout expires before all APs return
from Procedure, then Procedure on the failed APs is terminated. All enabled
APs are available for next function assigned by
EFI_MP_SERVICES_PPI.StartupAllAPs()or
EFI_MP_SERVICES_PPI.StartupThisAP().

If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

ProcedureArgument

The parameter passed into Procedure for all APs.

Additional PPIs Platform Initialization Specification, Vol. 1

194 May 2017 Version 1.6

Description
This service executes a caller provided function on all enabled APs. APs can run either
simultaneously or one at a time in sequence. This service supports both blocking requests only. This
service may only be called from the BSP.

This function is used to dispatch all the enabled APs to the function specified by Procedure. If
any enabled AP is busy, then EFI_NOT_READY is returned immediately and Procedure is not
started on any AP.

If SingleThread is TRUE, all the enabled APs execute the function specified by Procedure
one by one, in ascending order of processor handle number. Otherwise, all the enabled APs execute
the function specified by Procedure simultaneously.

If the timeout specified by TimeoutInMicroseconds expires before all APs return from
Procedure, then Procedure on the failed APs is terminated. All enabled APs are always
available for further calls to EFI_MP_SERVICES_PPI.StartupAllAPs() and
EFI_MP_SERVICES_PPI.StartupThisAP(). If FailedCpuList is not NULL, its
content points to the list of processor handle numbers in which Procedure was terminated.

Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PPI.StartupAllAPs()
to make sure that the nature of the code that is executed on the BSP and the dispatched APs is
well controlled. The MP Services Ppi does not guarantee that the Procedure function is MP-
safe. Hence, the tasks that can be run in parallel are limited to certain independent tasks and well-
controlled exclusive code. PEI services and Ppis may not be called by APs unless otherwise
specified.

 In blocking execution mode, BSP waits until all APs finish or TimeoutInMicroSeconds
expires.

 Status Codes Returned

EFI_SUCCESS In blocking mode, all APs have finished before the timeout
expired.

EFI_DEVICE_ERROR Caller processor is AP.

EFI_NOT_STARTED No enabled APs exist in the system.

EFI_NOT_READY Any enabled APs are busy.

EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs
have finished.

EFI_INVALID_PARAMETER Procedure is NULL

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 195

EFI_MP_SERVICES_PPI.StartupThisAP ()

Summary
Activate a specific application processor

Prototype
typedef
EFI_STATUS
(EFIAPI *PEI_MP_SERVICES_STARTUP_THIS_AP)(
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MP_SERVICES_PPI *This,
 IN EFI_AP_PROCEDURE Procedure,
 IN UINTN ProcessorNumber,
 IN UINTN TimeoutInMicroseconds,
 IN VOID *ProcedureArgument OPTIONAL
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

A pointer to the EFI_MP_SERVICES_PPI instance.

Procedure

A pointer to the function to be run on enabled APs of the system. See type
EFI_AP_PROCEDURE.

ProcessorNumber

The handle number of the AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PPI.GetNumberOfProcessors().

TimeoutInMicrosecsond

Indicates the time limit in microseconds for APs to return from Procedure, for
blocking mode only. Zero means infinity. If the timeout expires before all APs return
from Procedure, then Procedure on the failed APs is terminated. All enabled
APs are available for next function assigned by
EFI_MP_SERVICES_PPI.StartupAllAPs() or
EFI_MP_SERVICES_PPI.StartupThisAP().

 If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

ProcedureArgument

The parameter passed into Procedure for all APs.

Additional PPIs Platform Initialization Specification, Vol. 1

196 May 2017 Version 1.6

Description
This service lets the caller get one enabled AP to execute a caller-provided function. The caller can
request the BSP to wait for the completion of the AP. This service may only be called from the BSP.

This function is used to dispatch one enabled AP to the function specified by Procedure passing
in the argument specified by ProcedureArgument.

The execution is in blocking mode. The BSP waits until the AP finishes or
TimeoutInMicroSecondss expires.

 If the timeout specified by TimeoutInMicroseconds expires before the AP returns from
Procedure, then execution of Procedure by the AP is terminated. The AP is available for
subsequent calls to EFI_MP_SERVICES_PPI.StartupAllAPs() and
EFI_MP_SERVICES_PPI.StartupThisAP().

 Status Codes Returned

EFI_SUCCESS In blocking mode, specified AP finished before the timeout
expires.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP
has finished.

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a

disabled AP.

EFI_INVALID_PARAMETER Procedure is NULL

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 197

EFI_MP_SERVICES_PPI.SwitchBSP ()

Summary
Switch the boot strap processor

Prototype
typedef
(EFIAPI *PEI_MP_SERVICES_SWITCH_BSP)(
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MP_SERVICES_PPI *This,
 IN UINTN ProcessorNumber,
 IN BOOLEAN EnableOldBSP
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

A pointer to the EFI_MP_SERVICES_PPI instance.

 ProcessorNumber

The handle number of AP that is to become the new BSP. The range is from 0 to the
total number of logical processors minus 1. The total number of logical processors
can be retrieved by EFI_MP_SERVICES_PPI.GetNumberOfProcessors().

EnableOldBSP

If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be
disabled.

Description
This service switches the requested AP to be the BSP from that point onward.

This service changes the BSP for all purposes.This call can only be performed by the current BSP.

 This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for all purposes. The new BSP can take over the execution of the old BSP and continue
seamlessly from where the old one left off.

If the BSP cannot be switched prior to the return from this service, then EFI_UNSUPPORTED must
be returned.

Additional PPIs Platform Initialization Specification, Vol. 1

198 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS BSP successfully switched.

EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service
returning.

EFI_UNSUPPORTED Switching the BSP is not supported.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a

disabled AP.

EFI_NOT_READY The specified AP is busy.

Summary
Switch the boot strap processor

Prototype
typedef
 (EFIAPI *PEI_MP_SERVICES_ENABLEDISABLEAP)(
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MP_SERVICES_PPI *This,
 IN UINTN ProcessorNumber,
 IN BOOLEAN EnableAP,
 IN UINT32 *HealthFlag OPTIONAL
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

A pointer to the EFI_MP_SERVICES_PPI instance.

ProcessorNumber

The handle number of AP that is to become the new BSP. The range is from 0 to the
total number of logical processors minus 1. The total number of logical processors
can be retrieved by EFI_MP_SERVICES_PPI.GetNumberOfProcessors().

EnableAP

Specifies the new state for the processor for enabled, FALSE for disabled.

HealthFlag

If not NULL, a pointer to a value that specifies the new health status of the AP. This
flag corresponds to StatusFlag defined in
EFI_MP_SERVICES_PPI.GetProcessorInfo(). Only the

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 199

PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored. If it is
NULL, this parameter is ignored.

Description
This service lets the caller enable or disable an AP from this point onward.

This service may only be called from the BSP.

This service allows the caller enable or disable an AP from this point onward. The caller can
optionally specify the health status of the AP by Health. If an AP is being disabled, then the state of
the disabled AP is implementation dependent. If an AP is enabled, then the implementation must
guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that
is compatible with an MP operating system.

 If the enable or disable AP operation cannot be completed prior to the return from this service, then
EFI_UNSUPPORTED must be returned.

Status Codes Returned

EFI_SUCCESS The specified AP was enabled or disabled successfully.

EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this
service returning.

EFI_UNSUPPORTED Enabling or disabling an AP is not supported.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_NOT_FOUND Processor with the handle specified by

ProcessorNumber does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.

Additional PPIs Platform Initialization Specification, Vol. 1

200 May 2017 Version 1.6

EFI_MP_SERVICES_PPI.WhoAmI ()

Summary
Identify the currently executing processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *PEI_MP_SERVICES_WHOAMI)(
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MP_SERVICES_PPI *This,
 OUT UINTN *ProcessorNumber
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

A pointer to the EFI_MP_SERVICES_PPI instance.

ProcessorNumber

The handle number of AP that is to become the new BSP. The range is from 0 to the
total number of logical processors minus 1. The total number of logical processors
can be retrieved by EFI_MP_SERVICES_PPI.GetNumberOfProcessors().

Description
This services returns the handle number for the calling processor. This service may be called from
the BSP and APs.

This service returns the processor handle number for the calling processor.

The returned value is in the range from 0 to the total number of logical processors minus 1. The total
number of logical processors can be retrieved with
EFI_MP_SERVICES_PPI.GetNumberOfProcessors(). This service may be called from
the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER is
returned. Otherwise, the current processors handle number is returned in ProcessorNumber, and
EFI_SUCCESS is returned.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 201

Status Codes Returned

EFI_SUCCESS The current processor handle number was returned in

ProcessorNumber.

EFI_INVALID_PARAMETER ProcessorNumber is NULL.

8.4 Graphics PEIM Interfaces
There is one PEI to PEI Interfaces (PPI) that is required to provide graphics

functionality in the PEI phase.

The PeiGraphicsPpi is the PPI produced by the Graphics PEI Module and provides

interfaces to the platform code to complete the basic initialization of the graphics

subsystem to enable console output.

8.4.1 Pei Graphics PPI
The PeiGraphicsPpi is the main interface exposed by the Graphics PEIM to be used by the
other firmware modules.

The following sections cover the individual APIs in detail.

GUID
#define EFI_PEI_GRAPHICS_PPI_GUID \
{ 0x6ecd1463, 0x4a4a, 0x461b,
 {0xaf, 0x5f, 0x5a, 0x33, 0xe3, 0xb2, 0x16, 0x2b }};

Prototype
struct _EFI_PEI_GRAPHICS_PPI {
 EFI_PEI_GRAPHICS_INIT GraphicsPpiInit;
 EFI_PEI_GRAPHICS_GET_MODE GraphicsPpiGetMode;
} EFI_PEI_GRAPHICS_PPI;

Additional PPIs Platform Initialization Specification, Vol. 1

202 May 2017 Version 1.6

GraphicsPpiInit

Description
The GraphicsPpiInit initializes the graphics subsystem in phases.

Calling Condition
There are certain conditions to be met before the GraphicsPpiInit can be called; Memory has
been initialized.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GRAPHICS_INIT) (
 IN VOID *GraphicsPolicyPtr;
);

Parameters
GraphicsPolicyPtr

GraphicsPolicyPtr points to a configuration data block of policy settings
required by Graphics PEIM.

Return

EFI_SUCCESS The invocation was successful.

EFI_INVALID_PARAMETER

EFI_NOT_ABORTED

EFI_NOT_FOUND

EFI_DEVICE_ERROR

EFI_NOT_READY

The phase parameter is not valid.

The stages were not called in the proper order.

The PeiGraphicsPlatformPolicyPpi is not
located.

The initialization failed due to device error.

The previous init stage is still in progress and not ready
for the current initialization phase yet. The platform
code should call this again sometime later..

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 203

GraphicsPpiGetMode

Description
The GraphicsPpiGetMode returns the mode information supported by the Graphics PEI
Module.

The frame buffer abstracts the video display as an array of pixels. Each pixels location on the video
display is defined by its X and Y coordinates. The X coordinate represents a scan line. A scan line is
a horizontal line of pixels on the display. The Y coordinate represents a vertical line on the display.
The upper left hand corner of the video display is defined as (0, 0) where the notation (X, Y)
represents the X and Y coordinate of the pixel. The lower right corner of the video display is
represented by (Width –1, Height -1).

A pixel is comprised of a 32-bit quantity. The first three bytes for each pixel represents the intensity
for Red, Blue and Green colors. The fourth byte is reserved and must be zero. The byte values for the
red, green, and blue components represent the color intensity. This color intensity value range from a
minimum intensity of 0 to maximum intensity of 255.

The mode information returned by this PPI is similar to the GOP’s
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE structure.

Additional PPIs Platform Initialization Specification, Vol. 1

204 May 2017 Version 1.6

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GRAPHICS_GET_MODE) (
IN OUT EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE *Mode
);

Parameters
Mode

Pointer to EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE data. Type
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE is defined in the UEFI Specification
and in “Related Definitions” below.

Return

EFI_SUCCESS Valid mode information was returned.

EFI_INVALID_PARAMETER The Mode parameter is not valid.

EFI_NOT_FOUND The PeiGraphicsPlatformPolicyPpi is not

located.

EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.

EFI_NOT_READY The Graphics Initialization is not compete, and Mode

information is not yet available.The platform code should call
this again after the Graphics initialization is done.

typedef struct {
 UINT32 MaxMode;
 UINT32 Mode;
 EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *Info;
 UINTN SizeOfInfo;
 EFI_PHYSICAL_ADDRESS FrameBufferBase;
 UINTN FrameBufferSize;
} EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE;

Related Definition – EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE
MaxMode

The number of modes that is supported by this module.

Mode

Current mode of the graphics device. If the MaxMode is 1, then this field will be 0.

Info

Pointer to EFI_GRAPHICS_OUTPUT_MODE_INFORMATION data. See Related
Definition below.

SizeOfInfo

Size of the Info structure in bytes.

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 205

FrameBufferBase

Base address of graphics linear frame buffer. Info contains information required to

allow software to draw directly to the frame buffer.

FrameBufferSize

Size of the frame buffer represented by FrameBufferBase in bytes.

Related Definition – EFI_GRAPHICS_OUTPUT_MODE_INFORMATION
typedef struct {
 UINT32 Version;
 UINT32 HorizontalResolution;
 UINT32 VerticalResolution;
 EFI_GRAPHICS_PIXEL_FORMAT PixelFormat;
 EFI_PIXEL_BITMASK PixelInformation;
 UINT32 PixelsPerScanLine;
} EFI_GRAPHICS_OUTPUT_MODE_INFORMATION;

Version

The version of this data structure. A value of zero represents the structure as defined in
this specification. Future version of this specification may extend this data structure

in a backwards compatible way and increase the value of Version.

HorizontalResolution

The size of video screen in pixels in the X dimension.

VerticalResolution

The size of video screen in pixels in the Y dimension.

PixelFormat

Enumeration that defines the physical format of the pixel. A value of
PixelBltOnly

implies that a linear frame buffer is not available for this mode.

PixelInformation

This bit-mask is only valid if PixelFormat is set to PixelPixelBitMask. A
bit being set

defines what bits are used for what purpose such as Red, Green, Blue, or Reserved.

PixelsPerScanLine

Defines the number of pixel elements per video memory line. For performance
reasons, or due to hardware restrictions, scan lines may be padded to an amount of
memory alignment. These padding pixel elements are outside the area covered by
HorizontalResolution and are not visible. For direct frame buffer access, this
number is used as a span between starts of pixel lines in video memory. Based on the
size of an individual pixel element and PixelsPerScanline, the offset in video
memory from pixel element (x, y) to pixel element (x, y+1) has to be calculated as
"sizeof(PixelElement) * PixelsPerScanLine", not "sizeof(PixelElement) *

Additional PPIs Platform Initialization Specification, Vol. 1

206 May 2017 Version 1.6

HorizontalResolution", though in many cases those values can coincide. This
value can depend on video hardware and mode resolution.

Related Definition – EFI_GRAPHICS_OUTPUT_MODE_INFORMATION
typedef enum {
 PixelRedGreenBlueReserved8BitPerColor,
 PixelBlueGreenRedReserved8BitPerColor,
 PixelBitMask,
 PixelBltOnly,
 PixelFormatMax
} EFI_GRAPHICS_PIXEL_FORMAT;

PixelRedGreenBlueReserved8BitPerColor

A pixel is 32-bits and byte zero represents red, byte one represents green, byte two

represents blue, and byte three is reserved. This is the definition for the physical

frame buffer. The byte values for the red, green, and blue components represent the

color intensity. This color intensity value range from a minimum intensity of 0 to

maximum intensity of 255.

PixelBlueGreenRedReserved8BitPerColor

A pixel is 32-bits and byte zero represents blue, byte one represents green, byte two

represents red, and byte three is reserved. This is the definition for the physical frame

buffer. The byte values for the red, green, and blue components represent the color

intensity. This color intensity value range from a minimum intensity of 0 to maximum

intensity of 255.

PixelBitMask

The pixel definition of the physical frame buffer is defined by
EFI_PIXEL_BITMASK

PixelBltOnly

This mode does not support a physical frame buffer.

Related Definition – EFI_PIXEL_BITMASK
typedef struct {
 UINT32 RedMask;
 UINT32 GreenMask;
 UINT32 BlueMask;
 UINT32 ReservedMask;
} EFI_PIXEL_BITMASK;

If a bit is set in RedMask, GreenMask, or BlueMask then those bits of the pixel represent the
corresponding color. Bits in RedMask, GreenMask, BlueMask, and

ReserveredMask must not overlap bit positions. The values for the red, green, and blue
components in the bit mask represent the color intensity. The color intensities must increase as the

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 207

color values for each color mask increase with a minimum intensity of all bits in a color mask clear
to a maximum intensity of all bits in a color mask set.

8.4.2 EFI PEI Graphics INFO HOB

Additional PPIs Platform Initialization Specification, Vol. 1

208 May 2017 Version 1.6

EFI_PEI_GRAPHICS_INFO_HOB

#define EFI_PEI_GRAPHICS_INFO_HOB_GUID \
{ 0x39f62cce, 0x6825, 0x4669,\
 { 0xbb, 0x56, 0x54, 0x1a, 0xba, 0x75, 0x3a, 0x07 }}

typedef struct {
 EFI_PHYSICAL_ADDRESS FrameBufferBase;
 UINT32 FrameBufferSize;
 EFI_GRAPHICS_OUTPUT_MODE_INFORMATION GraphicsMode;
} EFI_PEI_GRAPHICS_INFO_HOB;

EFI_PEI_GRAPHICS_DEVICE_INFO_HOB
#define EFI_PEI_GRAPHICS_DEVICE_INFO_HOB_GUID \
{ 0xe5cb2ac9, 0xd35d, 0x4430,\
 { 0x93, 0x6e, 0x1d, 0xe3, 0x32, 0x47, 0x8d, 0xe7 }}

typedef struct {
 UINT16 VendorId
 UINT16 DeviceId
 UINT16 SubsystemVendorId
 UINT16 SubsystemId;
 UINT8 RevisionId;
 UINT8 BarIndex;
} EFI_PEI_GRAPHICS_DEVICE_INFO_HOB;

When graphics capability is included in PEI, it may optionally provide a splash screen capability as
well.

When graphics capability is included in PEI, it produces a EFI_PEI_GRAPHICS_INFO_HOB
which provides information about the graphics mode and the framebuffer, and may optionally
produce a EFI_PEI_GRAPHICS_DEVICE_INFO_HOB which provides information about the
graphics device characteristics. The EFI_GRAPHICS_OUTPUT_MODE_INFORMATION structure
is defined in the UEFI specification. This information can be used by the HOB-consumer phase,
such as DXE, to provide display support of its own, or elide the need to do graphics initialization
again in the UEFI GOP driver, for example.

It is to be noted that the PEI phase may program a temporary framebuffer address to complete its
initialization and the framebuffer address at the time of building the
EFI_PEI_GRAPHICS_INFO_HOB will reflect the current assignment. The post-PEI phase
consuming this HOB should be aware that a generic PCI enumeration logic could reprogram the
temporary resources assigned by the PEI phase and it is the responsibility of the post-PEI phase to

Platform Initialization Specification, Vol. 1 Additional PPIs

Version 1.6 May 2017 209

update its internal data structures with the new framebuffer address after the enumeration is
complete.

The EFI_PEI_GRAPHICS_DEVICE_INFO_HOB is optional. When it exists, the DXE module
which provides display support uses the VendorId, DeviceId, RevisionId, SubsystemVendorId,
and SubsystemDeviceId in the HOB to match the graphics device. It’s useful when system has
multiple graphics devices and the DXE module cannot know which one to manage without the
information provided by this HOB. If VendorId, DeviceId, SubsystemVendorId or
SubsystemDeviceId is set to MAX_UINT16, or RevisionId is set to MAX_UINT8, that field will
be ignored. The ID values that are assigned to other values will be used to identify the graphics
device. The BarIndex tells DXE module which PCI MMIO BAR is used to hold the frame buffer.
BAR 0 is used if the BarIndex is set to MAX_UINT8 or the HOB doesn’t exist.

Additional PPIs Platform Initialization Specification, Vol. 1

210 May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 211

9 PEI to DXE Handoff

9.1 Introduction
The PEI phase of the system firmware boot process performs rudimentary initialization of the
system to meet specific minimum system state requirements of the DXE Foundation. The PEI
Foundation must have a mechanism of locating and passing off control of the system to the DXE
Foundation. PEI must also provide a mechanism for components of DXE and the DXE Foundation
to discover the state of the system when the DXE Foundation is invoked. Certain aspects of the
system state at handoff are architectural, while other system state information may vary and hence
must be described to DXE components.

9.2 Discovery and Dispatch of the DXE Foundation
The PEI Foundation uses a special PPI named the DXE Initial Program Load (IPL) PPI to discover
and dispatch the DXE Foundation and components that are needed to run the DXE Foundation

The final action of the PEI Foundation is to locate and pass control to the DXE IPL PPI. To
accomplish this, the PEI Foundation scans all PPIs by GUID for the GUID matching the DXE IPL
PPI. The GUID for this PPI is defined in EFI_DXE_IPL_PPI.

9.3 Passing the Hand-Off Block (HOB) List
The DXE IPL PPI passes the Hand-Off Block (HOB) list from PEI to the DXE Foundation when it
invokes the DXE Foundation. The handoff state is described in the form of HOBs in the HOB list.
The HOB list must contain at least the HOBs listed in Table 18.

Table 18. Required HOB Types in the HOB List

Required HOB Type Usage

Phase Handoff Information Table (PHIT) HOB This HOB is required.

One or more Resource Descriptor HOB(s)
describing physical system memory

The DXE Foundation will use this physical system
memory for DXE.

Boot-strap processor (BSP) Stack HOB The DXE Foundation needs to know the current stack
location so that it can move it if necessary, based upon
its desired memory address map. This HOB will be of
type EfiConventionalMemory

BSP BSPStore (“Backing Store Pointer Store”)
HOB
Note: Itanium processor family only

The DXE Foundation needs to know the current store
location so that it can move it if necessary, based upon
its desired memory address map.

One or more Resource Descriptor HOB(s)
describing firmware devices

The DXE Foundation will place this into the GCD.

One or more Firmware Volume HOB(s) The DXE Foundation needs this information to begin
loading other drivers in the platform.

PEI to DXE Handoff Platform Initialization Specification, Vol. 1

212 May 2017 Version 1.6

The above HOB types are defined in volume 3 of this specification.

9.4 Handoff Processor State to the DXE IPL PPI
Table 19 defines the state that processors must be in at handoff to the DXE IPL PPI, for the
following processors:

• IA-32 processors

• Itanium processor family

• Intel® processors using Intel® XScale™ technology

Table 19. Handoff Processor State to the DXE IPL PPI

Processor State at Handoff

IA-32 In 32-bit flat mode

Itanium In Itanium processor family physical mode

Intel XScale In SuperVisor Mode with a one-to-one virtual-to-physical mapping if
there is a memory management unit (MMU) in the system

A Memory Allocation Module HOB This HOB tells the DXE Foundation where it is when
allocating memory into the initial system address map.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 213

10 Boot Paths

10.1 Introduction
The PEI Foundation is unaware of the boot path required by the system. It relies on the PEIMs to
determine the boot mode (e.g. R0, R1, S3, etc.) and take appropriate action depending on the mode.

To implement this, each PEIM has the ability to manipulate the boot mode using the PEI Service
SetBootMode() described in Services - PEI.

The PEIM does not change the order in which PEIMs are dispatched depending on the boot mode.

10.2 Code Flow
The normal code flow in PI firmware passes through a succession of phases, in the following order:

1. SEC

2. PEI

3. DXE

4. BDS

5. Runtime

6. Afterlife

This section describes alternatives to this ordering.

10.2.1 Reset Boot Paths
The following sections describe the boot paths that are followed when a system encounters several
different types of reset.

10.2.1.1 Intel Itanium Processor Reset
Itanium architecture contains enough hooks to authenticate PAL-A and PAL-B code that is
distributed by the processor vendor. The internal microcode on the processor silicon, which starts up
on a PowerGood reset, finds the first layer of processor abstraction code (called PAL-A) that is
located in the boot firmware volume (BFV), or the volume that has SEC and the PEI core, using
architecturally defined pointers in the BFV. It is the responsibility of this microcode to authenticate
that the PAL-A code layer from the processor vendor has not been tampered. If the authentication of
the PAL-A layer passes, control then passes to the PAL-A layer, which then authenticates the next
layer of processor abstraction code (called PAL-B) before passing control to it. In addition to this
microarchitecture-specific authentication, the SEC phase of UEFI is still responsible for locating the
PEI Foundation and verifying its authenticity.

In an Itanium-based system, it is also imperative that the firmware modules in the BFV be organized
such that at least the PAL-A is contained in the fault-tolerant regions. This processor-specific PAL-
A authenticates the PAL-B code, which usually is contained in the non-fault-tolerant regions of the
firmware system. The PAL A and PAL B binary components are always visible to all the processors
in a node at the time of power-on; the system fabric should not need to be initialized.

Boot Paths Platform Initialization Specification, Vol. 1

214 May 2017 Version 1.6

10.2.1.2 Non-Power-on Resets
Non-power-on resets can occur for many reasons. There are PEI and DXE system services that reset
and reboot the entire platform, including all processors and devices. It is important to have a
standard variant of this boot path for cases such as the following:

• Resetting the processor to change frequency settings

• Restarting hardware to complete chipset initialization

• Responding to an exception from a catastrophic error

This reset is also used for Configuration Values Driven through Reset (CVDR) configuration.

10.3 Normal Boot Paths
A traditional BIOS executes POST from a cold boot (G3 to S0 state), on resumes, or in special cases
like INIT. UEFI covers all those cases but provides a richer and more standardized operating
environment

The basic code flow of the system needs to be changeable due to different circumstances. The boot
path variable satisfies this need. The initial value of the boot mode is defined by some early PEIMs,
but it can be altered by other, later PEIM(s). All systems must support a basic S0 boot path.
Typically a system has a more rich set of boot paths, including S0 variations, S-state boot paths, and
one or more special boot paths.

The architecture for multiple boot paths presented here has several benefits, as follows:

• The PEI Foundation is not required to be aware of system-specific requirements such as MP and
various power states. This lack of awareness allows for scalability and headroom for future
expansion.

• Supporting the various paths only minimally impacts the size of the PEI Foundation.

• The PEIMs that are required to support the paths scale with the complexity of the system.

Note that the Boot Mode Register becomes a variable upon transition to the DXE phase. The DXE
phase can have additional modifiers that affect the boot path more than the PEI phase.

These additional modifiers can indicate if the system is in manufacturing mode, chassis intrusion, or
AC power loss or if silent boot is enabled.

10.3.1 Basic G0-to-S0 and S0 Variation Boot Paths
The basic S0 boot path is "boot with full configuration." This path setting informs all PEIMs to do a
full configuration. The basic S0 boot path must be supported.

The Framework architecture also defines several optional variations to the basic S0 boot path. The
variations that are supported depend on the following:

• Richness of supported features

• If the platform is open or closed

• Platform hardware

For example, a closed system or one that has detected a chassis intrusion could support a boot path
that assumes no configuration changes from last boot option, thus allowing a very rapid boot time.

Platform Initialization Specification, Vol. 1 Boot Paths

Version 1.6 May 2017 215

Unsupported variations default to basic S0 operation. The following are the defined variations to the
basic boot path:

• Boot with minimal configuration:

This path is for configuring the minimal amount of hardware to boot the system.

• Boot assuming no configuration changes:

This path uses the last configuration data.

• Boot with full configuration plus diagnostics:

This path also causes any diagnostics to be executed.

• Boot with default settings: This path uses a known set of safe values for programming hardware.

10.3.2 S-State Boot Paths
The following optional boot paths allow for different operation for a resume from S3, S4, and S5:

• S3 (Save to RAM Resume): Platforms that support S3 resume must take special care to
preserve/restore memory and critical hardware.

• S4 (Save to Disk): Some platforms may want to perform an abbreviated PEI and DXE phase on
a S4 resume.

• S5 (Soft Off): Some platforms may want an S5 system state boot to be differentiated from a
normal boot-for example, if buttons other than the power button can wake the system.

An S3 resume needs to be explained in more detail because it requires cooperation between a G0-to-
S0 boot path and an S3 resume boot path. The G0-to-S0 boot path needs to save hardware
programming information that the S3 resume path needs to retrieve.

This information is saved in the Hardware Save Table using predefined data structures to perform I/
O or memory writes. The data is stored in an UEFI equivalent of the INT15 E820 type 4 (firmware
reserved memory) area or a firmware device area that is reserved for use by UEFI. The S3 resume
boot path code can access this region after memory has been restored.

10.4 Recovery Paths
All of the above boot paths can be modified or aborted if the system detects that recovery is needed.
Recovery is the process of reconstituting a system's firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes on
nonvolatile storage devices (flash, disk) are managed as blocks. If the system loses power while a
block, or semantically bound blocks, are being updated, the storage might become invalid. On the
other hand, the device might become corrupted by an errant program or by errant hardware. The
system designers must determine the level of support for recovery based on their perceptions of the
probabilities of these events occurring and their consequences.

The following are some reasons why system designers may choose to not support recovery:

• A system's firmware volume storage media might not support modification after being
manufactured. It might be the functional equivalent of a ROM.

• Most mechanisms of implementing recovery require additional firmware volume space, which
might be too expensive for a particular application.

Boot Paths Platform Initialization Specification, Vol. 1

216 May 2017 Version 1.6

• A system may have enough firmware volume space and hardware features that the firmware
volume can be made sufficiently fault tolerant to make recovery unnecessary.

10.4.1 Discovery
Discovering that recovery is done using a PEIM (for example, by checking a "force recovery"
jumper).

10.4.2 General Recovery Architecture
The concept behind recovery is to preserve enough of the system firmware so that the system can
boot to a point where it can do the following:

• Read a copy of the data that was lost from chosen peripherals.

• Reprogram the firmware volume with that data.

Preserving the recovery firmware is a function of the way the firmware volume store is managed,
which is generally beyond the scope of this document.

The PI recovery architecture allows for one or many PEIMs to be built to handle the portion of the
recovery that would initialize the recovery peripherals (and the buses they reside on) and then to read
the new images from the peripherals and update the firmware volumes.

It is considered far more likely that the PEI will transition to DXE because DXE is designed to
handle access to peripherals. This transition has the additional benefit that, if DXE then discovers
that a device has become corrupted, it may institute recovery without transferring control back to the
PEI.

10.5 Defined Boot Modes
The list of possible boot modes is described in the GetBootMode() function description. PI
architecture specifically does not define an upgrade path if new boot modes are defined. This is
necessary as the nature of those additional boot modes may work in conjunction with or may conflict
with the previously defined boot modes.

10.6 Priority of Boot Paths
Within a given PEIM, the priority ordering of the sources of boot mode should be as follows (from
highest priority to lowest):

1. BOOT_IN_RECOVERY_MODE

2. BOOT_ON_FLASH_UPDATE

3. BOOT_ON_S3_RESUME

4. BOOT_WITH_MINIMAL_CONFIGURATION

5. BOOT_WITH_FULL_CONFIGURATION

6. BOOT_ASSUMING_NO_CONFIGURATION_CHANGES

7. BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS

8. BOOT_WITH_DEFAULT_SETTINGS

Platform Initialization Specification, Vol. 1 Boot Paths

Version 1.6 May 2017 217

9. BOOT_ON_S4_RESUME

10. BOOT_ON_S5_RESUME

11. BOOT_ON_S2_RESUME

The boot modes listed above are defined in the PEI Service SetBootMode().

10.7 Assumptions
Table 20 lists the assumptions that can be made about the system for each sleep state.

Table 20. Boot Path Assumptions

System State Description Assumptions

R0 Cold Boot Cannot assume that the previously stored configuration data
is valid.

R1 Warm Boot May assume that the previously stored configuration data is
valid.

S3 ACPI Save to RAM
Resume

The previously stored configuration data is valid and RAM is
valid. RAM configuration must be restored from nonvolatile
storage (NVS) before RAM may be used. The firmware may
only modify previously reserved RAM. There are two types
of reserved memory. One is the equivalent of the BIOS
INT15h, E820 type-4 memory and indicates that the RAM is
reserved for use by the firmware. The suggestion is to add
another type of memory that allows the OS to corrupt the
memory during runtime but that may be overwritten during
resume.

S4,
S5

Save to Disk Resume,
“Soft Off”

S4 and S5 are identical from a PEIM's point of view. The two
are distinguished to support follow-on phases. The entire
system must be reinitialized but the PEIMs may assume that
the previous configuration is still valid.

Boot on Flash
Update

This boot mode can be either an INIT, S3, or other means by
which to restart the machine. If it is an S3, for example, the
flash update cause will supersede the S3 restart. It is
incumbent upon platform code, such as the Memory
Initialization PEIM, to determine the exact cause and perform
correct behavior (i.e., S3 state restoration versus INIT
behavior).

Boot with
Manufacturing
Mode settings

PEIM's and/or DXE drivers may parameterize based upon
actions that should only occur in the factory or a
manufacturer approved setting.

10.8 Architectural Boot Mode PPIs
There is a possible hierarchy of boot mode PPIs that abstracts the various producers of this variable.
It is a hierarchy in that there should be an order of precedence in which each mode can be set. The
PPIs and their respective GUIDs are described in “Required Architectural PPIs” on page 81 and
“Optional Architectural PPIs” on page 86. The hierarchy includes the master PPI, which publishes a

Boot Paths Platform Initialization Specification, Vol. 1

218 May 2017 Version 1.6

PPI that will be depended upon by the appropriate PEIMs, and some subsidiary PPI. For PEIMs that
require that the boot mode is finally known, the Master Boot Mode PPI can be used as a dependency.

Table 21 lists the architectural boot mode PPIs.

Table 21. Architectural Boot Mode PPIs

PPI Name Required or Optional? PPI Definition in Section...

Master Boot Mode PPI Required Architectural PPIs: Required Architectural
PPIs

Boot in Recovery Mode PPI Optional Architectural PPIs: Optional Architectural
PPIs

10.9 Recovery

10.9.1 Scope
Recovery is the process of reconstituting a system’s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes (FVs) in
nonvolatile storage (NVS) devices (flash or disk, for example) are managed as blocks. If the system
loses power while a block, or semantically bound blocks, are being updated, the storage might
become invalid. On the other hand, an errant program or hardware could corrupt the device. The
system designers must determine the level of support for recovery based on their perceptions of the
probabilities of these events occurring and the consequences.

The designers of a system may choose not to support recovery for the following reasons:

• A system’s FV storage media might not support modification after being manufactured. It might
be the functional equivalent of a ROM.

• Most mechanisms of implementing recovery require additional FV space that might be too
expensive for a particular application.

• A system may have enough FV space and hardware features that the FV can be made
sufficiently fault tolerant to make recovery unnecessary.

10.9.2 Discovery
Discovering that recovery is required may be done using a PEIM (for example, by checking a “force
recovery” jumper) or the PEI Foundation itself. The PEI Foundation might discover that a particular
PEIM has not validated correctly or that an entire firmware has become corrupted.

10.9.3 General Recovery Architecture
The concept behind recovery is to preserve enough of the system firmware so that the system can
boot to a point where it can do the following:

• Read a copy of the data that was lost from chosen peripherals.

• Reprogram the firmware volume (FV) with that data.

Platform Initialization Specification, Vol. 1 Boot Paths

Version 1.6 May 2017 219

Preserving the recovery firmware is a function of the way the FV store is managed, which is
generally beyond the scope of this document.

If the PEI Dispatcher encounters PEIMs that have been corrupted (for example, by receiving an
incorrect hash value), it must change the boot mode to “recovery.” Once set to recovery, other
PEIMs must not change it to one of the other states.

A PEIM can also detect a catastrophic condition or a forced-recovery event and alert the PEI 10.6.4
Finding and Loading the Recovery DXE Image.

10.9.4 Finding and Loading the Recovery DXE Image

10.9.4.1 Finding the Recovery DXE Image: Overview
The PEI Dispatcher specifically invokes the DXE Initial Program Load (IPL) PEIM, regardless of
normal or recovery mode. The DXE IPL PEIM detects that a recovery is in process and invokes a
recovery-specific PPI, the Recovery Module PPI. The Recovery Module PPI,
EFI_PEI_RECOVERY_MODULE_PPI, does the following:

• Loads a binary capsule that includes a recovery DXE image into memory

• Updates the Hand-Off Block (HOB) table with the DXE firmware volume

• Installs or Reinstalls instance of the Firmware Volume Info PPI
(EFI_PEI_FIRMWARE_VOLUME_INFO_PPI) for the DXE firmware volume

See Section 8.6.3 for the PPIs that are needed to load the DXE image.

Note: The Recovery Module PPI is device and content neutral. The DXE IPL PEIM uses the Recovery
Module PPI to load a DXE image and invokes the DXE image normally. The DXE IPL PEIM does
not know or care about the capsule's internal structure or from which device the capsule was
loaded.

The internals of the recovery PEIM normally fall within four phases:

• Searching the supported devices for recovery capsules

• Deciding which capsule to load

• Loading the capsule into memory

• Loading the resulting DXE firmware volume

The Recovery Module PPI encompasses the first three phases and the DXE IPL PEIM encompasses
the last phase. See the next topic, Recovery Sequence: Detailed Steps, for the details of these four
phases.

10.9.4.2 Recovery Sequence
The normal, non-recovery sequence is that after completion of the PEI phase, the PEI Dispatcher
specifically invokes the DXE Initial Program Load (IPL) PEIM. The recovery sequence is identical
to the non-recovery sequence in that the PEI Dispatcher also specifically invokes the DXE IPL
PEIM. After invoking the DXE IPL PEIM, the recovery sequence is as follows:

1. The DXE IPL PEIM detects that a recovery is in process, searches for the Recovery Module PPI,
and invokes the recovery function
EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule().

Boot Paths Platform Initialization Specification, Vol. 1

220 May 2017 Version 1.6

2. EFI_PEI_RECOVERY_MODULE_PPI searches for one or more instances of the Device
Recovery Module PPI, EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. For each instance
found, the
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetNumberRecoveryCapsules()
function is invoked to determine the following:

• The number of recovery DXE capsules detected by the specified device

• The maximum buffer size required to load a capsule

3. EFI_PEI_RECOVERY_MODULE_PPI then decides the following:

• The device search order, if more than one Device Recovery Module PPI was discovered

• The individual search order, if the device reported more than one recovery DXE capsule was
found generating a search order list

4. EFI_PEI_RECOVERY_MODULE_PPI invokes the device recovery function
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() to load a
capsule that includes a recovery DXE image into memory. The capsule that is returned from the
device recovery module is a capsule that contains the recovery DXE image.

5. The EFI_PEI_RECOVERY_MODULE_PPI security does the following:

• Verifies the capsule

• Generates a data Hand-Off Block (HOB) entry for a security failure

• Tries the next entry in the search order list

6. Once a valid capsule has been loaded, EFI_PEI_RECOVERY_MODULE_PPI does the
following:

• Decomposes the capsule and updates the HOB table with the recovery DXE firmware
volume information. The path parameters are assumed to be redundant for recovery. The
Setup parameters are either redundant or fixed.

• Invalidates all HOB entries for updateable firmware volume entries.

The DXE capsule that is loaded by the Device Recovery Module PPI makes no assumptions about
contents or format other than assuming that the recovery DXE image is somewhere in the returned
capsule.

The following subsections describe the different recovery PPIs.

10.9.4.3 Recovery PPIs: Recovery Module PPI
The Recovery Module PPI, EFI_PEI_RECOVERY_MODULE_PPI, invokes the Device Recovery
Module PPI EFI_PEI_DEVICE_RECOVERY_MODULE_PPI to do the following:

• Determine the number of DXE recovery capsules found by each device

• Determine capsule information

• Load a specific DXE recovery capsule from the indicated device

• Determine the device load order

The capsule is security verified and decomposed and the HOB table is updated with the DXE
recovery firmware volume.

There are two general categories of recovery PPIs:

• Device recovery PPI

Platform Initialization Specification, Vol. 1 Boot Paths

Version 1.6 May 2017 221

• Device recovery block I/O PPI

The Device Recovery Module PPI is device neutral. The Device Recovery Block I/O PPI is device
specific and used to access the physical media. The following subsections describe the PPI
associated with each category. See Code Definitions for the definitions of these PPIs.

10.9.4.3.1 Device Recovery Module PPI

The table below lists the device recovery functions in the Device Recovery Module PPI,
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.

Table 22.

Function Description

GetNumberRecoveryCapsules() Scans the devices that are supported by the PPI for DXE recovery
capsules and reports the number found. The internal ordering should
reflect the priority in the load order, with the highest priority capsule
number set to one and the lowest priority number set to N.

GetRecoveryCapsuleInfo() Provides the size of the indicated capsule and a CapsuleType

Globally Unique Identifier (GUID). The recovery module uses this
information to allow an alternate priority scheme based on the

CapsuleType information.

LoadRecoveryCapsule() Loads the indicated DXE recovery capsule instance and returns a
capsule with the actual number of bytes loaded.

Device Recovery Module Functions

10.9.4.3.2 Device Recovery Block I/O PPI

The Device Recovery Block I/O PPI, EFI_PEI_RECOVERY_BLOCK_IO_PPI, differs from the
Device Recovery Module PPI in that the Device Recovery Block I/O PPI is used for physical media
access. The Device Recovery Module PPI uses this PPI to search for capsules. This PPI is included
with the recovery PEIMs because a block I/O is the most common recovery media.

The table below lists the functions in the Device Recovery Block I/O PPI.

Table 23. Device Recovery Block I/O Functions

Function Description

GetNumberOfBlockDevices() Returns the number of block I/O devices supported. There is no ordering
priority.

GetBlockDeviceMediaInfo() Indicates the type of block I/O device found, such as a legacy floppy or CD-
ROM. The block size and last block number are also returned.

ReadBlocks() Reads the indicated block I/O device starting at the given logical block
address (LBA) and for buffer size/block size.

Boot Paths Platform Initialization Specification, Vol. 1

222 May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 223

11 PEI Physical Memory Usage

11.1 Introduction
This section describes how physical system memory is used during PEI. The rules for using
physical system memory are different before and after permanent memory registration within the
PEI execution.

11.2 Before Permanent Memory Is Installed

11.2.1 Discovering Physical Memory
Before permanent memory is installed, the minimum exit condition for the PEI phase is that it has
enough physical system memory to run PEIMs and the DXE IPL PPI that require permanent
memory. These memory-aware PEIMs may discover and initialize additional system memory, but
in doing so they must not cause loss of data in the physical system memory initialized during the
earlier phase. The required amount of memory initialized and tested by PEIMs in these two phases
is platform dependent.

Before permanent memory is installed, a PEIM may not assume any area of physical memory is
present and initialized. During this early phase, a PEIM—usually one specific to the chipset
memory controller—will initialize and test physical memory. When this PEIM has initialized and
tested the physical memory, it will register the memory using the PEI Memory Service
InstallPeiMemory(), which in turn will cause the PEI Foundation to create an initial Hand-
Off Block (HOB) list and describe the memory. The memory that is present, initialized, and tested
will reside in resource descriptor HOBs in the initial HOB list (see Volume 3 for more information).
This memory allocation PEIM may also choose to allocate some of this physical memory by doing
the following:

• Creating memory allocation HOBs, as described in “Allocating Memory Using GUID Extension
HOBs” on page 224.

• Using the memory allocation services AllocatePages() and AllocatePool()

Once permanent memory has been installed, the resources described in the HOB list are considered
permanent system memory.

11.2.2 Using Physical Memory
A PEIM that requires permanent, fixed memory allocation must schedule itself to run after
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI is installed. To schedule itself, the PEIM
can do one of the following:

• Put this PPI's GUID into the depex of the PEIM.

• Register for a notification.

The PEIM can then allocate Hand-Off Blocks (HOBs) and other memory using the same
mechanisms described in “Allocating Physical Memory” on page 224.

PEI Physical Memory Usage Platform Initialization Specification, Vol. 1

224 May 2017 Version 1.6

The AllocatePool() service can be invoked at any time during the boot phase to discover
temporary memory that will have its location translated, even before permanent memory is installed.

11.3 After Permanent Memory Is Installed

11.3.1 Allocating Physical Memory
After permanent memory is installed, PEIMs may allocate memory in four ways:

• Using a GUID Extension HOB

• Within the PEI free memory space

11.3.2 Allocating Memory Using GUID Extension HOBs
A PEIM may allocate memory for its private use by constructing a GUID Extension HOB and using
the private data area defined by the GUIDed name of the HOB for private data storage.

See Volume 3 for HOB construction rules.

11.3.3 Allocating Memory Using PEI Service
A PEIM may allocate memory using the PEI Service AllocatePages(). Use the
EFI_MEMORY_TYPE values to specify the type of memory to allocate; type EFI_MEMORY_TYPE
is defined is defined in AllocatePages() in the UEFI 2.0 specification.

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 225

12 Special Paths Unique to the

Itanium®
 Processor Family

12.1 Introduction
The Itanium processor family supports the full complement of boot modes listed in the PEI CIS. In
addition, however, Itanium® architecture requires an augmented flow. This flow includes a
“recovery check call” in which all processors execute the PEI Foundation when an Itanium platform
restarts. Each processor has its own version of temporary memory such that there are as many
concurrent instances of PEI execution as there are Itanium processors.

There is a point in the multiprocessor flow, however, when all processors have to call back into the
Processor Abstraction Layer A (PAL-A) component to assess whether the processor revisions and
PAL-B binaries are compatible. This callback into the PAL-A does not preserve the state of the
temporary memory, however. When the PAL-A returns control back to the various processors, the
PEI Foundation and its associated data structures have to be reinstantiated.

At this point, however, the flow of the PEI phase is the same as for IA-32 Intel architecture in that all
processors make forward progress up through invoking the DXE IPL PPI.

12.2 Unique Boot Paths for Itanium Architecture

Intel® Itanium processors possess two unique boot paths that also invoke the dispatcher located at
the System Abstraction Layer entry point (SALE_ENTRY):

• Processor INIT

• Machine Check (MCHK)

INIT and MCHK are two asynchronous events that start up the Security (SEC) code/dispatcher in an
Itanium®-based system. The PI Architecture security module is transparent during all the code paths
except for the recovery check call that happens during a cold boot. The PEIMs that handle these
events are architecture aware and do not return control to the PEI Dispatcher. They call their
respective architectural handlers in the operating system.

Figure 3 shows the boot path for INIT and MCHK events.

INIT Event MCHK Event

All Processors Run PAL-A

PAL Handoff State (Regs + Min)

Dispatcher invokes PEI
INIT or MCHK Code

INIT Code MCHK CodeOS_Int OS_MCA

Special Paths Unique to the Itanium® Processor Family Platform Initialization Specification, Vol. 1

226 May 2017 Version 1.6

Figure 3. Itanium Processor Boot Path (INIT and MCHK)

12.3 Min-State Save Area
When the Processor Abstraction Layer (PAL) hands control to the dispatcher, it will supply the
following:

• Unique handoff state in the registers

• A pointer, called the min-state pointer, to the minimum-state saved buffer area

This buffer is a unique per-processor save area that is registered to each processor during the normal
OS boot path. The PI Architecture defines a unique, PI Architecture-specific data pointer,
EFI_PEI_MIN_STATE_DATA, that is attached to this min-state pointer. This data structure is
defined in the next topic.

Figure 4 shows a typical organization of a min-state buffer. The PEI Data Pointer references
EFI_PEI_MIN_STATE_DATA.

P E I D a ta P o in te r

M in S ta te A re a 2 K iB

P ro c e s s o r’s M in S ta te B u ffe r

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

Version 1.6 May 2017 227

Figure 4. Min-State Buffer Organization

Special Paths Unique to the Itanium® Processor Family Platform Initialization Specification, Vol. 1

228 May 2017 Version 1.6

EFI_PEI_MIN_STATE_DATA

Note: This data structure is for the Itanium® processor family only.

Summary
A structure that encapsulates the Processor Abstraction Layer (PAL) min-state data structure for
purposes of firmware state storage and reference.

Prototype
typedef struct {
 UINT64 OsInitHandlerPointer;
 UINT64 OsInitHandlerGP;
 UINT64 OsInitHandlerChecksum;
 UINT64 OSMchkHandlerPointer;
 UINT64 OSMchkHandlerGP;
 UINT64 OSMchkHandlerChecksum;
 UINT64 PeimInitHandlerPointer;
 UINT64 PeimInitHandlerGP;
 UINT64 PeimInitHandlerChecksum;
 UINT64 PeimMchkHandlerPointer;
 UINT64 PeimMchkHandlerGP;
 UINT64 PeimMckhHandlerChecksum;
 UINT64 TypeOfOSBooted;
 UINT8 MinStateReserved[0x400];
 UINT8 OEMReserved[0x400];
} EFI_PEI_MIN_STATE_DATA;

Parameters
OsInitHandlerPointer

The address of the operating system's INIT handler. The INIT is a restart type for the
Itanium processor family.

OsInitHandlerGP

The value of the operating system's INIT handler's General Purpose (GP) register. Per
the calling conventions for the Itanium processor family, the GP must be set before
invoking the function.

OsInitHandlerChecksum

A 64-bit checksum across the contents of the operating system's INIT handler. This
can be used by the PEI firmware to corroborate the integrity of the INIT handler prior
to invocation.

OSMchkHandlerPointer

The address of the operating system's Machine Check (MCHK) handler. MCHK is a
restart type for the Itanium processor family.

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

Version 1.6 May 2017 229

OSMchkHandlerGP

The value of the operating system's MCHK handler's GP register. Per the calling
conventions for the Itanium processor family, the GP must be set before invoking the
function.

OSMchkHandlerChecksum

A 64-bit checksum across the contents of the operating system's MCHK handler. This
can be used by the PEI firmware to corroborate the integrity of the MCHK handler
prior to invocation.

PeimInitHandlerPointer

The address of the PEIM's INIT handler.

PeimInitHandlerGP

The value of the PEIM's INIT handler's GP register. Per the calling conventions for
the Itanium processor family, the GP must be set before invoking the function.

PeimInitHandlerChecksum

A 64-bit checksum across the contents of the PEIM's INIT handler. This can be used
by the PEI firmware to corroborate the integrity of the INIT handler prior to
invocation.

PeimMchkHandlerPointer

The address of the PEIM's MCHK handler.

PeimMchkHandlerGP

The value of the PEIM's MCHK handler's GP register. Per the calling conventions for
the Itanium processor family, the GP must be set before invoking the function.

PeimMckhHandlerChecksum

A 64-bit checksum across the contents of the PEIM's MCHK handler. This can be
used by the PEI firmware to corroborate the integrity of the MCHK handler prior to
invocation.

TypeOfOSBooted

Details the type of operating system that was originally booted. This allows for
different preliminary processing in firmware based upon the target OS.

MinStateReserved

Reserved bytes that must not be interpreted by OEM firmware. Future versions of PEI
may choose to expand in this range.

OEMReserved

Reserved bytes for the OEM. PEI core components should not attempt to interpret the
contents of this region.

Description
A 64-bit PEI data pointer is defined at the beginning of the Itanium processor family min-state data
structure. This data pointer references an EFI_PEI_MIN_STATE_DATA structure that is defined
above. This latter structure contains the entry points of INIT and MCHK code blocks. The pointers

Special Paths Unique to the Itanium® Processor Family Platform Initialization Specification, Vol. 1

230 May 2017 Version 1.6

are defined such that the INIT and MCHK code can be either written as ROM-based PEIMs or as
DXE drivers. The distinction between PEIM and DXE driver are at the OEM's discretion.

In Itanium® architecture, the PEI firmware must register a min-state with the PAL. This min-state is
memory when the PAL code can deposit processor-specific information upon various restart events
(INIT, RESET, Machine Check). Upon receipt of INIT or MCHK, the PEI firmware shall first
invoke the PEIM INIT or MCHK handlers, respectively, and then the OS INIT or MCHK handler.
The min-state data structure is a natural location from which to reference the PEI data structure that
contains these latter entry points.

12.4 Dispatching Itanium Processor Family PEIMs
The Itanium processor family dispatcher starts dispatching all the PEIMs as it resolves the
dependency grammar contained within their headers. Because all Itanium processors enter into
SALE_ENTRY for a recovery check, some of the PEIMs will contain multiprocessor (MP) code and
will work on all processors. The behavior of a particular PEIM that is dispatched depends on the
following:

• Handoff state given by the Processor Abstraction Layer (PAL)

• The boot mode flag

Once the processor runs some code and one of the recovery check PEIM determines that the
firmware needs to be recovered, it flips the boot flag to recovery and invokes the dispatcher again in
recovery mode.

If it is a nonrecovery situation (normal boot), then the recovery check PEIM wakes up all the
processors and returns them to PAL-A for further initialization. Note that when control for a normal
boot returns back to the PAL to run PAL-B code, all of the register contents are lost. When control
returns to the dispatcher, the PEIMs gain control in the dispatched order and can determine the
memory topology (if needed in a platform implementation) by reading the memory controller
registers of the chipset. The PEIMs can then build Hand-Off Blocks (HOBs).

When the first phase is done, there will be coherent memory on the system that all the node
processors can see. The system then begins to execute the dispatcher in a second phase, during
which it builds HOBs. On a multinode system with many processors, the configuration of memory
may take several steps and therefore quite a bit of code.

When the second phase is done, the last PEIM will build DXE as described in “PEI to DXE
Handoff” on page 211 and hand control to the PI Architecture DXE phase for further initialization of
the platform.

Figure 5 depicts the initial flow between PAL-A , PAL-B, and the PEI Foundation located at
SALE_ENTRY point.

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

Version 1.6 May 2017 231

Figure 5. Boot Path in Itanium Processors

Special Paths Unique to the Itanium® Processor Family Platform Initialization Specification, Vol. 1

232 May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 233

13 Security (SEC) Phase Information

13.1 Introduction
The Security (SEC) phase is the first phase in the PI Architecture architecture and is responsible for
the following:

• Handling all platform restart events

• Creating a temporary memory store

• Serving as the root of trust in the system

• Passing handoff information to the PEI Foundation

In addition to the minimum architecturally required handoff information, the SEC phase can pass
optional information to the PEI Foundation, such as the SEC Platform Information PPI or
information about the health of the processor.

The tasks listed above are common to all processor microarchitectures. However, there are some
additions or differences between IA-32 and Itanium processors, which are discussed in “Processor-
Specific Details” on page 237.

13.2 Responsibilities

13.2.1 Handling All Platform Restart Events
The Security (SEC) phase is the unit of processing that handles all platform restart events, including
the following:

• Applying power to the system from an unpowered state

• Restarting the system from an active state

• Receiving various exception conditions

The SEC phase is responsible for aggregating any state information so that some PEIM can deduce
the health of the processor upon the respective restart.

13.2.2 Creating a Temporary Memory Store
The Security (SEC) phase is also responsible for creating some temporary memory store. This
temporary memory store can include but is not limited to programming the processor cache to
behave as a linear store of memory. This cache behavior is referred to as “no evictions mode” in that
access to the cache should always represent a hit and not engender an eviction to the main memory
backing store; this “no eviction” is important in that during this early phase of platform evolution,
the main memory has not been configured and such as eviction could engender a platform failure.

Security (SEC) Phase Information Platform Initialization Specification, Vol. 1

234 May 2017 Version 1.6

13.2.3 Serving As the Root of Trust in the System
Finally, the Security (SEC) phase represents the root of trust in the system. Any inductive security
design in which the integrity of the subsequent module to gain control is corroborated by the caller
must have a root, or “first,” component. For any PI Architecture deployment, the SEC phase
represents the initial code that takes control of the system. As such, a platform or technology
deployment may choose to authenticate the PEI Foundation from the SEC phase before invoking the
PEI Foundation.

13.2.4 Passing Handoff Information to the PEI Foundation
Regardless of the other responsibilities listed in this section, the Security (SEC) phase's final
responsibility is to convey the following handoff information to the PEI:

• State of the platform

• Location and size of the Boot Firmware Volume (BFV)

• Location and size of the temporary RAM

• Location and size of the stack

• Optionally, one or more HOBs via the EFI_SEC_HOB_DATA_PPI.

This handoff information listed above is passed to the PEI as arguments to the PEI Foundation entry
point described in section 5.2.

13.3 SEC Platform Information PPI
Handoff information is passed from the Security (SEC) phase to the PEI Foundation using the
EFI_SEC_PEI_HAND_OFF structure and the list of PPI descriptors passed to the PEI entry point.
One of these PPIs, EFI_SEC_PLATFORM_INFORMATION_PPI, can be used to pass handoff
information from SEC to the PEI Foundation. This PPI abstracts platform-specific information that
the PEI Foundation needs to discover where to begin dispatching PEIMs.

13.4 SEC HOB Data PPI
HOB data can be passed forward from the SEC phase to PEI or DXE consumers using HOBs. If the
EFI_SEC_HOB_DATA_PPI is in the list of PPIs passed to the PEI entry point, the PEI Foundation
will call the GetHobs() member function and installed all HOBs returned into the HOB list. It
does this after installing all PPIs passed from SEC into the PPI database and before dispatching any
PEIMs.

13.5 Health Flag Bit Format
The Health flag contains information that is generated by microcode, hardware, and/or the Itanium
processor Processor Abstraction Layer (PAL) code about the state of the processor upon reset. Type
EFI_HEALTH_FLAGS is defined in
SEC_PLATFORM_INFORMATION_PPI.PlatformInformation().

Platform Initialization Specification, Vol. 1 Security (SEC) Phase Information

Version 1.6 May 2017 235

In an Itanium®-based system, the Health flag is passed from PAL-A after restarting. It is the means
by which the PAL conveys the state of the processor to the firmware, such as PI. The handoff state
is separated between the PAL and PI because the code is provided by different vendors; Intel
provides the PAL and various OEMs design the PI firmware.

The Health flag is used by both IA-32 and Itanium architectures, but Tested (Te) is the only
common bit. IA-32 has the built-in self-test (BIST), but none of the other capabilities.

Figure 6 depicts the bit format in the Health flag.

Figure 6. Health Flag Bit Format

Table 24 explains the bit fields in the Health flag. IA-32 ignores all bits except Tested (Te).

Table 24. Health Flag Bit Field Description

Field Parameter Name in

EFI_HEALTH_FLAGS
Bit # Description

State Status 0:1 A 2-bit field indicating self-test state after
reset. For more information, see “Self-
Test State Parameter” on page 236.

Te Tested 2 A 1-bit field indicating whether testing has
occurred. If this field is zero, the processor
has not been tested, and no further fields
in the self-test State parameter are valid.

Vm VirtualMemoryUnavailable 16 A 1-bit field. If set to 1, indicates that
virtual memory features are not available.

Ia Ia32ExecutionUnavailable 17 A 1-bit field. If set to 1, indicates that IA-32
execution is not available.

Fp FloatingPointUnavailable 18 A 1-bit field. If set to 1, indicates that the
floating point unit is not available.

Security (SEC) Phase Information Platform Initialization Specification, Vol. 1

236 May 2017 Version 1.6

13.5.1 Self-Test State Parameter
Self-test state parameters are defined in the same format for IA-32 Intel® processors and the Intel®
Itanium® processor family. Some of the test status bits may not be relevant to IA-32 processors. In
that case, these bits will read NULL on IA-32 processors.

Table 25 indicates the meanings for various values of the self-test State parameter (bits 0:1) of the
Health flag.

Table 25. Self-Test State Bit Values

State Value Description

Catastrophic Failure N/A Processor is not executing.

Healthy 00 No failure in functionality or performance.

Performance Restricted 01 No failure in functionality but performance is restricted.

Functionally Restricted 10 Some code may run but functionality is restricted and
performance may also be affected.

If the state field indicates that the processor is functionally restricted, then the vm, ia, and fp fields in
the Health flag specify additional information about the functional failure. See Table 24 for a
description of these fields.

To further qualify “Functionally Restricted,” the following requirements will be met:

• The processor or PAL (for the Itanium processor family) has detected and isolated the failing
component so that it will not be used.

• The processor must have at least one functioning memory unit, arithmetic logic unit (ALU),
shifter, and branch unit.

• The floating-point unit may be disabled.

• For the Itanium processor family, the Register Stack Engine (RSE) is not required to work, but
register renaming logic must work properly.

• The paths between the processor-controlled caches and the register files must work during the
tests.

• Loads from the firmware address space must work correctly.

Mf MiscFeaturesUnavailable 19 A 1-bit field. If set to 1, indicates
miscellaneous functional failure other than
vm, ia, or fp. The test status field provides
additional information on test failures
when the State field returns a value of
performance restricted or functionally
restricted. The value returned is
implementation dependent.

Platform Initialization Specification, Vol. 1 Security (SEC) Phase Information

Version 1.6 May 2017 237

13.6 Processor-Specific Details

13.6.1 SEC Phase in IA-32 Intel Architecture
In 32-bit Intel® architecture (IA-32), the Security (SEC) phase of the PI Architecture is responsible
for several activities:

• Locating the PEI Foundation

• Passing control directly to PEI using an architecturally defined handoff state

• Initializing processor-controlled memory resources, such as the processor data cache, that can be
used as a linear extent of memory for a call stack (if supported)

Figure 7 below shows the steps completed during PEI initialization for IA-32.

Figure 7. PEI Initialization Steps in IA-32

13.6.2 SEC Phase in the Itanium Processor Family
Itanium architecture contains enough hooks to authenticate the PAL-A and PAL-B code distributed
by the processor vendor.

The internal microcode on the processor silicon that starts up on a power-good reset finds the first
layer of processor abstraction code (called PAL-A) located in the Boot Firmware Volume (BFV)
using architecturally defined pointers in the BFV. It is the responsibility of this microcode to
authenticate that the PAL-A code layer from the processor vendor has not been tampered.

If the authentication of the PAL-A layer passes, then control passes on to the PAL-A layer. The
PAL-A layer then authenticates the next layer of processor abstraction code (called PAL-B) before
passing control to it.

In addition, the SEC phase of the PI Architecture is also responsible for locating the PEI Foundation
and verifying its authenticity.

Figure 8 summarizes the SEC phase in the Itanium® processor family.

Security (SEC) Phase Information Platform Initialization Specification, Vol. 1

238 May 2017 Version 1.6

Figure 8. Security (SEC) Phase in the Itanium Processor Family

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 239

14 Dependency Expression Grammar

14.1 Dependency Expression Grammar
This topic contains an example BNF grammar for a PEIM dependency expression compiler that
converts a dependency expression source file into a dependency section of a PEIM stored in a
firmware volume.

14.1.1 Example Dependency Expression BNF Grammar
 <depex> ::= <bool>
 <bool> ::= <bool> AND <term>
 | <bool> OR <term>
 | <term>
 <term> ::= NOT <factor>
 | <factor>
 <factor> ::= <bool>
 | TRUE
 | FALSE
 | GUID
 | END
 <guid> ::= ‘{‘ <hex32> ‘,’ <hex16> ‘,’ <hex16> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ’}’
 <hex32> ::= <hexprefix> <hexvalue>
 <hex16> ::= <hexprefix> <hexvalue>
 <hex8> ::= <hexprefix> <hexvalue>
 <hexprefix>::= ‘0’ ‘x’
 | ‘0’ ‘X’
 <hexvalue> ::= <hexdigit> <hexvalue>
 | <hexdigit>
 <hexdigit> ::= [0-9]
 | [a-f]
 | [A-F]

Dependency Expression Grammar Platform Initialization Specification, Vol. 1

240 May 2017 Version 1.6

14.1.2 Sample Dependency Expressions
The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

//
// Source
//
EFI_PEI_CPU_IO_PPI_GUID AND EFI_PEI_READ_ONLY_VARIABLE_ACCESS_PPI_GUID
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== ======================= =======================
0x00 : 02 PUSH
0x01 : 26 25 73 b0 c8 38 40 4b EFI_PEI_CPU_IO_PPI_GUID
 88 77 61 c7 b0 6a ac 45
0x11 : 02 PUSH
0x12 : b1 cc ba 26 42 6f d4 11
EFI_PEI_READ_ONLY_VARIABLE_ACCESS_PPI_GUID
 bc e7 00 80 c7 3c 88 81
0x22 : 03 AND
0x23 : 08 END

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 241

15 TE Image

15.1 Introduction
The Terse Executable (TE) image format was created as a mechanism to reduce the overhead of the
PE/COFF headers in PE32/PE32+ images, resulting in a corresponding reduction of image sizes for
executables running in the PI Architecture environment. Reducing image size provides an
opportunity for use of a smaller system flash part.

TE images, both drivers and applications, are created as PE32 (or PE32+) executables. PE32 is a
generic executable image format that is intended to support multiple target systems, processors, and
operating systems. As a result, the headers in the image contain information that is not necessarily
applicable to all target systems. In an effort to reduce image size, a new executable image header
(TE) was created that includes only those fields from the PE/COFF headers required for execution
under the PI Architecture. Since this header contains the information required for execution of the
image, it can replace the PE/COFF headers from the original image. This specification defines the
TE header, the fields in the header, and how they are used in the PI Architecture’s execution
environment.

15.2 PE32 Headers
A PE file header, as described in the Microsoft Portable Executable and Common Object File
Format Specification, contains an MS-DOS* stub, a PE signature, a COFF header, an optional
header, and section headers. For successful execution, PEIMs in the PI Architecture require very
little of the data from these headers, and in fact the MS-DOS stub and PE signature are not required
at all.

See Table 26 and Table 27 for the necessary fields and their descriptions.

Table 26. COFF Header Fields Required for TE Images

COFF Header Description

Machine Target machine identifier. 2 bytes in both COFF header and TE header

NumberOfSections Number of sections/section headers. 2 bytes in COFF header, 1 byte in TE
header

Table 27. Optional Header Fields Required for TE Images

OPTIONAL Header Description

AddressOfEntryPoint Address of entry point relative to image base. 4 bytes in both optional header
and TE header

BaseOfCode Offset from image base to the start of the code section. 4 bytes in both
optional header and TE header

ImageBase Image’s linked address. 4 bytes in OptionalHeader32, 8 bytes in
OptionalHeader64, and 8 bytes in TE header

TE Image Platform Initialization Specification, Vol. 1

242 May 2017 Version 1.6

Subsystem Subsystem required to run the image. 2 bytes in optional header, 1 byte in TE
header

Platform Initialization Specification, Vol. 1 TE Image

Version 1.6 May 2017 243

TE Header

Summary
To reduce the overhead of PE/COFF headers in the PI Architecture's environment, a minimal (TE)
header can be defined that includes only those fields required for execution in the PI Architecture.
This header can then be used to replace the original headers at the start of the original image.

Prototype
typedef struct {
 UINT16 Signature;
 UINT16 Machine;
 UINT8 NumberOfSections;
 UINT8 Subsystem;
 UINT16 StrippedSize;
 UINT32 AddressOfEntryPoint;
 UINT32 BaseOfCode;
 UINT64 ImageBase;
 EFI_IMAGE_DATA_DIRECTORY DataDirectory[2];
} EFI_TE_IMAGE_HEADER;

Parameters
Signature

TE image signature

Machine

Target machine, as specified in the original image’s file header

NumberOfSections

Number of sections, as specified in the original image’s file header

Subsystem

Target subsystem, as specified in the original optional header

StrippedSize

Number of bytes removed from the base of the original image

AddressOfEntryPoint

Address of the entry point to the driver, as specified in the original image’s optional
header

BaseOfCode

Base of the code, as specified in the original image’s optional header

ImageBase

Image base, as specified in the original image’s optional header (0-extended to 64-bits
for PE32 images)

TE Image Platform Initialization Specification, Vol. 1

244 May 2017 Version 1.6

DataDirectory

Directory entries for base relocations and the debug directory from the original
image’s corresponding directory entries. See “Related Definitions” below.

Field Descriptions
In the EFI_TE_IMAGE HEADER, the Machine, NumberOfSections, Subsystem,
AddressOfEntryPoint, BaseOfCode, and ImageBase all come directly from the original
PE headers to enable partial reconstitution of the original headers if necessary.

The 2-byte Signature should be set to EFI_TE_IMAGE_HEADER_SIGNATURE to designate
the image as TE, as opposed to the “MZ” signature at the start of standard PE/COFF images.

The StrippedSize should be set to the number of bytes removed from the start of the original
image, which will typically include the MS-DOS, COFF, and optional headers, as well as the section
headers. This size can be used by image loaders and tools to make appropriate adjustments to the
other fields in the TE image header. Note that StrippedSize does not take into account the size
of the TE image header that will be added to the image. That is to say, the delta in the total image
size when converted to TE is StrippedSize – sizeof (EFI_TE_IMAGE_HEADER). This will
typically need to be taken into account by tools using the fields in the TE header.

The DataDirectory array contents are copied directly from the base relocations and debug
directory entries in the original optional header data directories. This image format also assumes that
file alignment is equal to section alignment.

Related Definitions
//***
//EFI_IMAGE_DATA_DIRECTORY
//***
typedef struct {
 UINT32 VirtualAddress;
 UINT32 Size;
} EFI_IMAGE_DATA_DIRECTORY;
#define EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC 0
#define EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG 1

#define EFI_TE_IMAGE_HEADER_SIGNATURE 0x5A56 // “VZ”

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 245

16 TE Image Creation

16.1 Introduction
This section describes the tool requirements to create a TE image.

16.2 TE Image Utility Requirements
A utility that creates TE images from standard PE/COFF images must be able to do the following:

• Create an EFI_TE_IMAGE_HEADER in memory

• Parse the PE/COFF headers in an existing image and extract the necessary fields to fill in the
EFI_TE_IMAGE_HEADER

• Fill in the signature and stripped size fields in the EFI_TE_IMAGE_HEADER

• Write out the EFI_TE_IMAGE_HEADER to a new binary file

• Write out the contents of the original image, less the stripped headers, to the output file

Since some fields from the PE/COFF headers have a smaller corresponding field in the TE image
header, the utility must be able to recognize if the original value from the PE/COFF header does not
fit in the TE header. In this case, the original image is not a candidate for conversion to TE image
format.

16.3 TE Image Relocations
Relocation fix ups in TE images are not modified by the TE image creation process. Therefore, if a
TE image is to be relocated, the loader/relocator must take into consideration the stripped size and
size of a TE image header when applying fix ups.

TE Image Creation Platform Initialization Specification, Vol. 1

246 May 2017 Version 1.6

Platform Initialization Specification, Vol. 1

Version 1.6 May 2017 247

17 TE Image Loading

17.1 Introduction
This section describes the use of the TE image and how embedded, execute-in-place environments
can invoke these images.

17.2 XIP Images
For execute-in-place (XIP) images that do not require relocations, loading a TE image simply
requires that the loader adjust the image’s entry point from the value specified in the
EFI_TE_IMAGE_HEADER. For example, if the image (and thus the TE header) resides at memory
location LoadedImageAddress, then the actual entry for the driver is computed as follows:

EntryPoint = LoadedImageAddress + sizeof (EFI_TE_IMAGE_HEADER)
+

 ((EFI_TE_IMAGE_HEADER *)LoadedImageAddress)–>

 AddressOfEntryPoint – ((EFI_TE_IMAGE_HEADER *)

 LoadedImageAddress)–>StrippedSize;

17.3 Relocated Images
To successfully load and relocate a TE image requires the same operations as required for XIP code.
However, for images that can be relocated, the image loader must make adjustments for all the
relocation fix ups performed. Details on this operation are beyond the scope of this document, but
suffice it to say that the adjustments will be computed in a manner similar to the EntryPoint
adjustment made in XIP Images.

17.4 PIC Images
A TE Image is Position Independent Code (PIC) if it can be executed in flash and shadowed to
memory without any fix ups. In this case, the TE Image Relocation Data Directory Entry Virtual
Address is non-zero, but the Relocation Data Directory Size is zero.

TE Image Loading Platform Initialization Specification, Vol. 1

248 May 2017 Version 1.6

Platform Initialization (PI) Specification

Volume 2:
Driver Execution Environment Core Interface

Version 1.6

May 2017

Platform Initialization Specification, Vol. 2

ii May 2017 Version 1.6

The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or to any
contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the
maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties
and conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and
of lack of negligence, all with regard to this material and any contribution thereto. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION
OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY
CONTRIBUTION THERETO.
IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY
CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS
OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING
IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright 2017 Unified EFI, Inc. All Rights Reserved.

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 iii

Revision History

Revision Mantis ID / Description Date

1.6 • 1567 Layered SPI bus

• 1648 PI Binding for RISC-V

• 1746 Add an FV Extended Header entry that contains the used size of the
FV

• 1763 MM Handler state notification protocol

• 1764 Add additional alignment

• 1768 Update the PI Spec to 1.6

• 1777 Update Revision History

• 1778 Update front matter

April 2017

1.5 Errata A • 1587 pre permanent memory page allocation

• 1665 Incorrect status code for an AP calling
EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

• 1734 Outdated EFI spec reference in Save State Write

• 1735 Several copy & paste errors in Save State Write

• 1747 Clarify that MM_ACCESS_PROTOCOL should cover all MMRAM
region used by the platform

April 2017

1.5 • 1315 SMM Environment to Support Newer Architecture/Platform Designs

• 1317 additional I2C PPI's (vol5)

• 1321 ARM Extensions to Volume 4

• 1330 Add PPI to allow SEC pass HOBs into PEI

• 1336 Provide For Pre-DXE Initialization Of The SM Foundation

• 1369 Handling PEI PPI descriptor notifications from SEC

• 1387 Variable services errors not consistent

• 1390 SM stand-alone infrastructure

• 1396 Update SEC HOB Capabilities of 1330 with additional guidance

• 1413 Communicate protocol enhancements

• 1506 New MP protocol

• 1513 Need a way to propagate PEI-phase FV verification status to DXE

• 1563 Update MM PPIs to match existing implementations

• 1566 PI.next - update the specification revisions

• 1568 Add SD/MMC GUID to DiskInfo protocol

• 1592 Add EFI_FV_FILETYPE_SMM_CORE_STANDALONE file type

• 1593 coalesce language enhancements

• 1594 Pei GetVaiable M1387 issue

• 1595 M1568 Disk Info issue

• 1596 M1489 GCD issue

• 1603 Minor erratas in Vol4 PI 1.5 draft related to ECR 0001506

• 1607 Update MM guid def'n to match edkII impl

• 1626 Add new Status Code for BDS Attempting UEFI BootOrder entries

• 1628 Minor feedback for PI 1.5 Vol 4 SMM Draft

• 1666 Graphics Device Info Hob

4/26/16

Platform Initialization Specification, Vol. 2

iv May 2017 Version 1.6

1.4 Errata A • 1574 Fix artificial limitation in the PCD.SetSku support

• 1565 Update status code to include AArch64 exception error codes

• 1564 SMM Software Dispatch Protocol Errata

• 1562 Errata to remove statement from DXE vol about PEI dispatch
behavior

• 1561 Errata to provide Equivalent of DXE-CIS Mantis 247 for the PEI-CIS

• 1532 Allow S3 Resume without having installed permanent memory (via
InstallPeiMemory)

• 1530 errata on dxe report status code

• 1529 address space granularity errata

• 1525 PEI Services Table Retrieval for AArch64

• 1515 EFI_PEIM_NOTIFY_ENTRY_POINT return values are undefined

• 1497 Fixing language in SMMStartupThisAP

• 1489 GCD Conflict errata

• 1485 Minor Errata in SMM Vo2 description of SMMStartupThisAP

• 1397 PEI 1.4 specification revision errata

• 1394 Errata to Relax requirements on CPU rendez in SEC

• 1351 EndOfDxe and SmmReadyToLock

• 1322 Minor Updates to handle Asynchronous CPU Entry Into SMM

3/15/16

1.4 • 1210 Adding persistence attribute to GCD

• 1235 PI.Next Feature - no execute support

• 1236 PI.Next feature - Graphics PPI

• 1237 PI.Next feature - add reset2 PPI

• 1239 PI.Next feature - Disk Info Guid UFS

• 1240 PI.Next feature - Recovery Block IO PPI - UFS

• 1259 PI.Next feature - MP PPI

• 1273 PI.Next feature - capsule PPI

• 1274 Recovery Block I/O PPI Update

• 1275 GetMemoryMap Update

• 1277 PI1.next feature - multiple CPU health info

• 1278 PI1.next - Memory relative reliability definition

• 1305 PI1.next - specification number encoding

• 1331 Remove left-over Boot Firmware Volume references in the SEC
Platform Information PPI

• 1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record needs to be
indexed / CPU.

2/20/15

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 v

1.3 Errata A • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

2/19/15

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958

• 969Vol 1 errata: TE Header parameters

10/26/12

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

vi May 2017 Version 1.6

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP) clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM Migration is not
required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 vii

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState() return code

• 737 Remove SMM Communication ACPI Table definition .

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• 753 SIO PEI and UEFI-Driver Model Architecture

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT,
Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

viii May 2017 Version 1.6

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl has
EFI_STATUS w/o return code & errror on stage 3 recovery description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 ix

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

x May 2017 Version 1.6

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489 (from
USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

1.1 Errata • 247 Clarification regarding use of dependency expression section types
with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 xi

1.1 Errata • 204 Stack HOB update 1.1errata

• 225 Correct references from EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 - return error
language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

•

01/13/09

1.1 Errata Revises typographical errors and minor omissions--see Errata for details 04/25/08

1.1 correction Restore (missing) MP protocol 03/12/08

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter 12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

xii May 2017 Version 1.6

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to th:e
original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in the
Metronome

• M178 Remove references to tail in file header and made file checksum for
the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and update
all FV

10/29/07

1.0 Initial public release. 8/21/06

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 xiii

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth,
and printing convenience. The Platform Initialization Specification consists of the following volumes:

Volume 1: Pre-EFI Initialization Core Interface

Volume 2: Driver Execution Environment Core Interface

Volume 3: Shared Architectural Elements

Volume 4: System Management Mode

Volume 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult
the entire specification when researching areas of interest. Additionally, a single-file version of the Platform
Initialization Specification is available to aid search functions through the entire specification.

Platform Initialization Specification, Vol. 2

xiv May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 xv

Table of Contents

Revision History.. iii
Table of Contents... xv
List of Figures ... xxi
List of Tables... xxiii

1 Introduction.. 1
1.1 Overview ... 1
1.2 Organization of the DXE CIS .. 1
1.3 Target Audience.. 2
1.4 Conventions Used in this Document... 2

1.4.1 Data Structure Descriptions .. 3
1.4.2 Protocol Descriptions .. 3
1.4.3 Procedure Descriptions... 4
1.4.4 Instruction Descriptions... 4
1.4.5 Pseudo-Code Conventions ... 4
1.4.6 Typographic Conventions ... 5

1.5 Requirements.. 5
1.6 Conventions used in this document .. 7

1.6.1 Number formats .. 7
1.6.2 Binary prefixes .. 7

2 Overview... 9
2.1 Driver Execution Environment (DXE) Phase .. 9
2.2 UEFI System Table... 10

2.2.1 Overview ... 10
2.2.2 UEFI Boot Services Table... 11
2.2.3 UEFI Runtime Services Table... 11
2.2.4 DXE Services Table .. 12

2.3 DXE Foundation.. 12
2.4 DXE Dispatcher .. 13
2.5 DXE Drivers .. 13
2.6 DXE Architectural Protocols.. 13
2.7 Runtime Protocol .. 14

3 Boot Manager... 15
3.1 Boot Manager ... 15

4 UEFI System Table .. 17
4.1 DXE Services Table.. 17

DXE_SERVICES... 17
4.2 UEFI Image Entry Point Examples .. 20

4.2.1 UEFI Application Example .. 20
4.2.2 Non-UEFI Driver Model Example (Resident in Memory) 22
4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory) 23

Platform Initialization Specification, Vol. 2

xvi May 2017 Version 1.6

4.2.4 UEFI Driver Model Example.. 24
4.2.5 UEFI Driver Model Example (Unloadable) .. 25
4.2.6 UEFI Driver Model Example (Multiple Instances) ... 26

5 Services - Boot Services... 29
5.1 Extensions to UEFI Boot Service Event Usage .. 29

5.1.1 CreateEvent .. 29
5.1.2 Pre-Defined Event Groups .. 29
5.1.3 Additions to LoadImage() .. 30

6 Runtime Capabilities ... 35
6.1 Additional Runtime Protocol.. 35

6.1.1 Status Code Services.. 35

7 Services - DXE Services ... 37
7.1 Introduction ... 37
7.2 Global Coherency Domain Services ... 37

7.2.1 Global Coherency Domain (GCD) Services Overview.. 37
7.2.2 GCD Memory Resources .. 37
7.2.3 GCD I/O Resources .. 39
7.2.4 Global Coherency Domain Services ... 40

AddMemorySpace() .. 42
AllocateMemorySpace() .. 45
FreeMemorySpace() ... 48
RemoveMemorySpace() ... 50
GetMemorySpaceDescriptor()... 52
SetMemorySpaceAttributes() .. 54
SetMemorySpaceCapabilities()... 56
GetMemorySpaceMap() .. 58
AddIoSpace() .. 60
AllocateIoSpace() .. 62
FreeIoSpace() ... 65
RemoveIoSpace() ... 67
GetIoSpaceDescriptor()... 69
GetIoSpaceMap() .. 71

7.3 Dispatcher Services .. 73
Dispatch() .. 74
Schedule() ... 75
Trust().. 76
ProcessFirmwareVolume().. 77

8 Protocols - Device Path Protocol... 79
8.1 Introduction ... 79
8.2 Firmware Volume Media Device Path... 79
8.3 Firmware File Media Device Path ... 80

9 DXE Foundation... 81
9.1 Introduction ... 81
9.2 Hand-Off Block (HOB) List .. 81

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 xvii

9.3 DXE Foundation Data Structures.. 83
9.4 Required DXE Foundation Components... 84
9.5 Handing Control to DXE Dispatcher ... 86
9.6 DXE Foundation Entry Point ... 87

9.6.1 DXE_ENTRY_POINT.. 87
DXE_ENTRY_POINT.. 87

9.7 Dependencies ... 88
9.7.1 UEFI Boot Services Dependencies... 88
9.7.2 UEFI Runtime Services Dependencies... 91
9.7.3 DXE Services Dependencies .. 93

9.8 HOB Translations.. 94
9.8.1 HOB Translations Overview.. 94
9.8.2 PHIT HOB ... 94
9.8.3 CPU HOB.. 95
9.8.4 Resource Descriptor HOBs... 95
9.8.5 Firmware Volume HOBs ... 96
9.8.6 Memory Allocation HOBs .. 96
9.8.7 GUID Extension HOBs.. 97

10 DXE Dispatcher.. 99
10.1 Introduction ... 99
10.2 Requirements.. 99
10.3 The A Priori File .. 100

EFI_APRIORI_GUID... 101
10.4 Firmware Volume Image Files .. 101
10.5 Dependency Expressions ... 102
10.6 Dependency Expressions Overview ... 102
10.7 Dependency Expression Instruction Set ... 102

BEFORE.. 104
AFTER... 105
PUSH .. 106
AND... 107
OR... 108
NOT... 109
TRUE... 110
FALSE... 111
END... 112
SOR... 113

10.8 Dependency Expression with No Dependencies .. 114
10.9 Empty Dependency Expressions .. 114
10.10 Dependency Expression Reverse Polish Notation (RPN) .. 116
10.11 DXE Dispatcher State Machine .. 116
10.12 Example Orderings ... 118
10.13 Security Considerations .. 121

11 DXE Drivers.. 123
11.1 Introduction ... 123
11.2 Classes of DXE Drivers .. 123

Platform Initialization Specification, Vol. 2

xviii May 2017 Version 1.6

11.2.1 Early DXE Drivers ... 123
11.2.2 DXE Drivers that Follow the UEFI Driver Model ... 124
11.2.3 Additional Classifications .. 124

12 DXE Architectural Protocols .. 125
12.1 Introduction ... 125
12.2 Boot Device Selection (BDS) Architectural Protocol ... 127

EFI_BDS_ARCH_PROTOCOL... 127
EFI_BDS_ARCH_PROTOCOL.Entry() ... 128

12.3 CPU Architectural Protocol ... 129
EFI_CPU_ARCH_PROTOCOL... 129
EFI_CPU_ARCH_PROTOCOL.FlushDataCache()... 132
EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()... 134
EFI_CPU_ARCH_PROTOCOL.DisableInterrupt() .. 135
EFI_CPU_ARCH_PROTOCOL.GetInterruptState().. 136
EFI_CPU_ARCH_PROTOCOL.Init()... 137
EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler() 138
EFI_CPU_ARCH_PROTOCOL.GetTimerValue() ... 140
EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes().................................... 142

12.4 Metronome Architectural Protocol... 144
EFI_METRONOME_ARCH_PROTOCOL... 144
EFI_METRONOME_ARCH_PROTOCOL.WaitForTick() 145

12.5 Monotonic Counter Architectural Protocol .. 146
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL 146

12.6 Real Time Clock Architectural Protocol .. 147
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL.. 147

12.7 Reset Architectural Protocol ... 148
EFI_RESET_ARCH_PROTOCOL .. 148

12.8 Runtime Architectural Protocol ... 149
EFI_RUNTIME_ARCH_PROTOCOL.. 149

12.9 Security Architectural Protocols .. 154
12.9.1 Security Architectural Protocol .. 154

EFI_SECURITY_ARCH_PROTOCOL .. 154
EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()...................... 156

12.9.2 Security2 Architectural Protocol ... 157
EFI_SECURITY2_ARCH_PROTOCOL.FileAuthentication() 159

12.10 Timer Architectural Protocol.. 160
EFI_TIMER_ARCH_PROTOCOL ... 160
EFI_TIMER_ARCH_PROTOCOL.RegisterHandler().. 162
EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()... 164
EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod() .. 165
EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt() 166

12.11 Variable Architectural Protocol.. 167
EFI_VARIABLE_ARCH_PROTOCOL... 167

12.12 Variable Write Architectural Protocol ... 168
EFI_VARIABLE_WRITE_ARCH_PROTOCOL ... 168

12.13 EFI Capsule Architectural Protocol ... 168

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 xix

EFI_CAPSULE_ARCH_PROTOCOL.. 168
12.14 Watchdog Timer Architectural Protocol ... 169

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.. 169
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler() 171
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod() 173
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod() 174

13 DXE Boot Services Protocol... 175
13.1 Overview ... 175
13.2 Conventions and Abbreviations .. 175
13.3 MP Services Protocol Overview.. 175
13.4 MP Services Protocol.. 176

EFI_MP_SERVICES_PROTOCOL .. 176
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors() 178
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo().................................... 180
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() ... 183
EFI_MP_SERVICES_PROTOCOL.StartupThisAP() .. 187
EFI_MP_SERVICES_PROTOCOL.SwitchBSP().. 190
EFI_MP_SERVICES_PROTOCOL.EnableDisableAP().................................... 192
EFI_MP_SERVICES_PROTOCOL.WhoAmI().. 194

14 DXE Runtime Protocols .. 197
14.1 Introduction ... 197
14.2 Status Code Runtime Protocol.. 197

EFI_STATUS_CODE_ PROTOCOL... 197
EFI_STATUS_CODE_PROTOCOL.ReportStatusCode() 198

15 Dependency Expression Grammar.. 203
15.1 Dependency Expression Grammar... 203
15.2 Example Dependency Expression BNF Grammar.. 203
15.3 Sample Dependency Expressions .. 204

 Appendix AError Codes... 207
 Appendix BGUID Definitions .. 209

Platform Initialization Specification, Vol. 2

xx May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 xxi

List of Figures

Figure 1. PI Architecture Firmware Phases .. 10
Figure 2. GCD Memory State Transitions... 39
Figure 3. GCD I/O State Transitions ... 40
Figure 4. HOB List .. 82
Figure 5. UEFI System Table and Related Components.. 83
Figure 6. DXE Foundation Components ... 84
Figure 7. DXE Driver States.. 117
Figure 8. Sample Firmware Volume ... 119
Figure 9. DXE Architectural Protocols .. 126

Platform Initialization Specification, Vol. 2

xxii May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 xxiii

List of Tables

Table 1. Organization of the DXE CIS .. 2
Table 2. SI prefixes ... 7
Table 3. Binary prefixes ... 8
Table 4. UEFI Boot Services... 11
Table 5. UEFI Runtime Services... 12
Table 6. DXE Services.. 12
Table 7. DXE Architectural Protocols.. 14
Table 8. Status Codes Runtime Protocol .. 14
Table 9. Supported Subsystem Values... 32
Table 10. Status Code Runtime Protocol.. 35
Table 11. Global Coherency Domain Boot Type Services.. 41
Table 12. Dispatcher Boot Type Services... 73
Table 13. Firmware Volume Media Device Path... 79
Table 14. Firmware Volume Device Node Text Representation... 79
Table 15. Firmware File Media Device Path ... 80
Table 16. Firmware Volume File Device Node Text Representation 80
Table 17. Boot Service Dependencies.. 88
Table 18. Runtime Service Dependencies.. 91
Table 19. DXE Service Dependencies.. 93
Table 20. Resource Descriptor HOB to GCD Type Mapping.. 96
Table 21. Dependency Expression Opcode Summary ... 103
Table 22. BEFORE Instruction Encoding.. 104
Table 23. AFTER Instruction Encoding... 105
Table 24. PUSH Instruction Encoding .. 106
Table 25. AND Instruction Encoding... 107
Table 26. OR Instruction Encoding ... 108
Table 27. NOT Instruction Encoding... 109
Table 28. TRUE Instruction Encoding... 110
Table 29. FALSE Instruction Encoding ... 111
Table 30. END Instruction Encoding... 112
Table 31. SOR Instruction Encoding... 113
Table 32. DXE Dispatcher Orderings.. 120
Table 33. StatusFlag bits ... 181

Platform Initialization Specification, Vol. 2

xxiv May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 1

1 Introduction

1.1 Overview
This specification defines the core code and services that are required for an implementation of the
driver execution environment (DXE) phase of the Unified Extensible Firmware Interface (UEFI)
Foundation. This DXE core interface specification (CIS) does the following:

• Describes the basic components of the DXE phase.

• Provides code definitions for services and functions that are architecturally required by the
Unified Extensible Firmware Interface Specification (UEFI 2.0 specification).

• Presents a set of backward-compatible extensions to the UEFI 2.0 specification.

• Describes the machine preparation that is required for subsequent phases of firmware execution.

See “Organization of the DXE CIS” for more information.

1.2 Organization of the DXE CIS
This DXE core interface specification (CIS) is organized as shown in Table 1. Because the DXE
Foundation is just one component of a PI Architecture-based firmware solution, there are a number
of additional specifications that are referred to throughout this document.

Introduction Platform Initialization Specification, Vol. 2

2 May 2017 Version 1.6

Table 1. Organization of the DXE CIS

Book Description

“Overview” on page 9 Describes the major components of DXE, including the boot
manager, firmware core, protocols, and requirements.

“Boot Manager” on page 15 Describes the boot manager, which is used to load UEFI drivers,
UEFI applications, and UEFI OS loaders.

“UEFI System Table” on page 17 Describes the DXE Service table.

“Services - Boot Services” on
page 29

Describes specific event types for DXE Foundation.

“Runtime Capabilities” on page 35 Contains definitions of a runtime protocol for status code support.

“Services - DXE Services” on
page 37

Contains definitions for the fundamental services that are present in
a DXE-compliant system before an OS is booted.

“Protocols - Device Path Protocol” on
page 79

Defines the device path extensions required by the DXE Foundation.

“DXE Foundation” on page 81 Describes the DXE Foundation that consumes HOBs, Firmware
Volumes, and DXE Architectural Protocols to produce an UEFI
System Table, UEFI Boot Services, UEFI Runtime Services, and the
DXE Services.

“DXE Dispatcher” on page 99 Describes the DXE Dispatcher that is responsible for loading and
executing DXE drivers from Firmware Volumes.

“DXE Drivers” on page 123 Describes the different classes of DXE drivers that may be stored in
Firmware Volumes.

“DXE Architectural Protocols” on
page 125

Describes the Architectural Protocols that are produced by DXE
drivers. They are also consumed by the DXE Foundation to produce
the UEFI Boot Services, UEFI Runtime Services, and DXE Services.

“DXE Runtime Protocols” on
page 197

Lists success, error, and warning codes returned by DXE and UEFI
interfaces.

“Dependency Expression Grammar”
on page 203

Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
DXE driver stored in a Firmware Volume.

1.3 Target Audience
This document is intended for the following readers:

• IHVs and OEMs who will be implementing DXE drivers that are stored in firmware volumes.

• BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in various vendor architecture–based products.

1.4 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

Platform Initialization Specification, Vol. 2 Introduction

Version 1.6 May 2017 3

1.4.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.4.2 Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Introduction Platform Initialization Specification, Vol. 2

4 May 2017 Version 1.6

1.4.3 Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.4.4 Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by a table that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.4.5 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Platform Initialization Specification, Vol. 2 Introduction

Version 1.6 May 2017 5

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.4.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.5 Requirements
This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this

Introduction Platform Initialization Specification, Vol. 2

6 May 2017 Version 1.6

specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

Platform Initialization Specification, Vol. 2 Introduction

Version 1.6 May 2017 7

1.6 Conventions used in this document

1.6.1 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).
Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by 0x preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between characters in
hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xB
FD8C FA23 or 0xB_FD8C_FA23).

 A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

• the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.

1.6.2 Binary prefixes
This standard uses the prefixes defined in the International System of Units (SI) (see http://
www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

Table 2. SI prefixes

Factor Factor Name Symbol

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Introduction Platform Initialization Specification, Vol. 2

8 May 2017 Version 1.6

Table 3. Binary prefixes

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 9

2 Overview

2.1 Driver Execution Environment (DXE) Phase
The Driver Execution Environment (DXE) phase is where most of the system initialization is
performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is responsible for initializing
permanent memory in the platform so that the DXE phase can be loaded and executed. The state of
the system at the end of the PEI phase is passed to the DXE phase through a list of position-
independent data structures called Hand-Off Blocks (HOBs). HOBs are described in detail in
Volume 3.

There are several components in the DXE phase:

• “DXE Foundation”

• “DXE Dispatcher”

• A set of “DXE Drivers”

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE Services. The
DXE Dispatcher is responsible for discovering and executing DXE drivers in the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as well
as providing software abstractions for system services, console devices, and boot devices. These
components work together to initialize the platform and provide the services required to boot an
operating system. The DXE phase and Boot Device Selection (BDS) phases work together to
establish consoles and attempt the booting of operating systems. The DXE phase is terminated when
an operating system is successfully booted. The DXE Foundation is composed of boot services code,
so no code from the DXE Foundation itself is allowed to persist into the OS runtime environment.
Only the runtime data structures allocated by the DXE Foundation and services and data structured
produced by runtime DXE drivers are allowed to persist into the OS runtime environment.

Figure 1 shows the phases that a platform with PI Architecture firmware will execute.

Overview Platform Initialization Specification, Vol. 2

10 May 2017 Version 1.6

Figure 1. PI Architecture Firmware Phases

In a PI Architecture firmware implementation, the phase executed prior to DXE is PEI. This
specification covers the transition from the PEI to the DXE phase, the DXE phase, and the DXE
phase’s interaction with the BDS phase. The DXE phase does not require a PEI phase to be
executed. The only requirement for the DXE phase to execute is the presence of a valid HOB list.
There are many different implementations that can produce a valid HOB list for the DXE phase to
execute. The PEI phase in a PI Architecture firmware implementation is just one of many possible
implementations.

2.2 UEFI System Table

2.2.1 Overview
The UEFI System Table is passed to every executable component in the DXE phase. The UEFI
System Table contains a pointer to the following:

• “UEFI Boot Services Table”

• “UEFI Runtime Services Table”

It also contains pointers to the console devices and their associated I/O protocols. In addition, the
UEFI System Table contains a pointer to the UEFI Configuration Table, and this table contains a list
of GUID/pointer pairs. The UEFI Configuration Table may include tables such as the “DXE
Services Dependencies” on page 93, HOB list, ACPI table, SMBIOS table, and SAL System table.

Platform Initialization Specification, Vol. 2 Overview

Version 1.6 May 2017 11

The UEFI Boot Services Table contains services to access the contents of the handle database. The
handle database is where protocol interfaces produced by drivers are registered. Other drivers can
use the UEFI Boot Services to look up these services produced by other drivers.

All of the services available in the DXE phase may be accessed through a pointer to the UEFI
System Table.

2.2.2 UEFI Boot Services Table
Table 4 provides a summary of the services that are available through the UEFI Boot Services Table.
These services are described in detail in the UEFI 2.0 specification. This DXE CIS makes a few
minor, backward-compatible extensions to these services.

Table 4. UEFI Boot Services

UEFI Boot Services Description

Task Priority Provides services to increase or decrease the current task priority level. This
can be used to implement simple locks and to disable the timer interrupt for
short periods of time. These services depend on the “CPU Architectural
Protocol” on page 129.

Memory Provides services to allocate and free pages in 4 KiB increments and allocate
and free pool on byte boundaries. It also provides a service to retrieve a map
of all the current physical memory usage in the platform.

Event and Timer Provides services to create events, signal events, check the status of events,
wait for events, and close events. One class of events is timer events, and
that class supports periodic timers with variable frequencies and one-shot
timers with variable durations. These services depend on the “CPU
Architectural Protocol” on page 129, the “Timer Architectural Protocol” on
page 160, the “Metronome Architectural Protocol” on page 144, and the
“Watchdog Timer Architectural Protocol” on page 169.

Protocol Handler Provides services to add and remove handles from the handle database. It
also provides services to add and remove protocols from the handles in the
handle database. Additional services are available that allow any component
to lookup handles in the handle database, and open and close protocols in the
handle database.

Image Provides services to load, start, exit, and unload images using the PE/COFF
image format. These services use the services of the “Security Architectural
Protocols” on page 154 if it is present.

Driver Support Provides services to connect and disconnect drivers to devices in the platform.
These services are used by the BDS phase to either connect all drivers to all
devices, or to connect only the minimum number of drivers to devices required
to establish the consoles and boot an operating system. The minimal connect
strategy is one possible mechanism to reduce boot time.

2.2.3 UEFI Runtime Services Table
Table 5 provides a summary of the services that are available through the UEFI Runtime Services
Table. These services are described in detail in the UEFI 2.0 specification. One additional runtime
service, Status Code Services, is described in this specification.

Overview Platform Initialization Specification, Vol. 2

12 May 2017 Version 1.6

Table 5. UEFI Runtime Services

UEFI Runtime Services Description

Variable Provides services to look up, add, and remove environment variables from
nonvolatile storage. These services depend on the Variable Architectural
Protocol and the Variable Write Architectural Protocol.

Real Time Clock Provides services to get and set the current time and date. It also provides
services to get and set the time and date of an optional wake-up timer.
These services depend on the Real Time Clock Architectural Protocol.

Reset Provides services to shut down or reset the platform. These services
depend on the Reset Architectural Protocol.

Virtual Memory Provides services that allow the runtime DXE components to be converted
from a physical memory map to a virtual memory map. These services can
only be called once in physical mode. Once the physical to virtual
conversion has been performed, these services cannot be called again.
These services depend on the Runtime Architectural Protocol.

2.2.4 DXE Services Table
Table 6 provides a summary of the services that are available through the DXE Services Table.
These are new services that are available in boot service time and are required only by the DXE
Foundation and DXE drivers.

Table 6. DXE Services

DXE Services Description

Global Coherency
Domain

Provides services to manage I/O resources, memory-mapped I/O resources,
and system memory resources in the platform. These services are used to
dynamically add and remove these resources from the processor’s global
coherency domain.

Dispatcher Provides services to manage DXE drivers that are being dispatched by the
DXE Dispatcher.

2.3 DXE Foundation
The DXE Foundation is a boot service image that is responsible for producing the following:

• UEFI Boot Services

• UEFI Runtime Services

• DXE Services

The DXE Foundation consumes a HOB list and the services of the DXE Architectural Protocols to
produce the full complement of UEFI Boot Services, UEFI Runtime Services, and DXE Services.
The HOB list is described in detail in the Volume 3.

The DXE Foundation is an implementation of UEFI. The DXE Foundation defined in this
specification is backward compatible with the UEFI 2.0 specification. As a result, both the DXE
Foundation and DXE drivers share many of the attributes of UEFI images. Because this
specification makes extensions to the standard UEFI interfaces, DXE images will not be functional

Platform Initialization Specification, Vol. 2 Overview

Version 1.6 May 2017 13

on UEFI systems that are not compliant with this DXE CIS. However, UEFI images must be
functional on all UEFI-compliant systems including those that are compliant with the DXE CIS.

2.4 DXE Dispatcher
The DXE Dispatcher is one component of the DXE Foundation. This component is required to
discover DXE drivers stored in firmware volumes and execute them in the proper order. The proper
order is determine by a combination of an a priori file that is optionally stored in the firmware
volume and the dependency expressions that are part of the DXE drivers. The dependency
expression tells the DXE Dispatcher the set of services that a particular DXE driver requires to be
present for the DXE driver to execute. The DXE Dispatcher does not allow a DXE driver to execute
until all of the DXE driver’s dependencies have been satisfied. After all of the DXE drivers have
been loaded and executed by the DXE Dispatcher, control is handed to the BDS Architectural
Protocol that is responsible for implementing a boot policy that is compliant with the UEFI Boot
Manager described in the UEFI 2.0 specification.

2.5 DXE Drivers
The DXE drivers are required to initialize the processor, chipset, and platform. They are also
required to produce the DXE Architectural Protocols and any additional protocol services required
to produce I/O abstractions for consoles and boot devices.

2.6 DXE Architectural Protocols
Table 7 provides a summary of the DXE Architectural Protocols. The DXE Foundation is abstracted
from the platform through the DXE Architectural Protocols. The DXE Architectural Protocols
manifest the platform-specific components of the DXE Foundation. DXE drivers that are loaded
and executed by the DXE Dispatcher component of the DXE Foundation must produce these
protocols.

Overview Platform Initialization Specification, Vol. 2

14 May 2017 Version 1.6

Table 7. DXE Architectural Protocols

DXE Architectural Protocols Description

Security Architectural Allows the DXE Foundation to authenticate files stored in firmware
volumes before they are used.

CPU Architectural Provides services to manage caches, manage interrupts, retrieve the
processor’s frequency, and query any processor-based timers.

Metronome Architectural Provides the services required to perform very short calibrated stalls.

Timer Architectural Provides the services required to install and enable the heartbeat timer
interrupt required by the timer services in the DXE Foundation.

BDS Architectural Provides an entry point that the DXE Foundation calls once after all of
the DXE drivers have been dispatched from all of the firmware
volumes. This entry point is the transition from the DXE phase to the
Boot Device Selection (BDS) phase, and it is responsible for
establishing consoles and enabling the boot devices required to boot
an OS.

Watchdog Timer Architectural Provides the services required to enable and disable a watchdog timer
in the platform.

Runtime Architectural Provides the services required to convert all runtime services and
runtime drivers from physical mappings to virtual mappings.

Variable Architectural Provides the services to retrieve environment variables and set volatile
environment variables.

Variable Write Architectural
Protocol

Provides the services to set nonvolatile environment variables.

Monotonic Counter Architectural Provides the services required by the DXE Foundation to manage a 64-
bit monotonic counter.

Reset Architectural Provides the services required to reset or shutdown the platform.

Real Time Clock Architectural Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

Capsule Architectural Protocol Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

2.7 Runtime Protocol
Table 8 provides a summary of the runtime protocol for status codes.

Table 8. Status Codes Runtime Protocol

Status Code Runtime
Protocol:

Provides the services to send status codes from the DXE Foundation or DXE
drivers to a log or device.

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 15

3 Boot Manager

3.1 Boot Manager
The Boot Manager in DXE executes after all the DXE drivers whose dependencies have been
satisfied have been dispatched by the DXE Dispatcher. At that time, control is handed to the Boot
Device Selection (BDS) phase of execution. The BDS phase is responsible for implementing the
platform boot policy. System firmware that is compliant with this specification must implement the
boot policy specified in the Boot Manager chapter of the UEFI 2.0 specification. This boot policy
provides flexibility that allows system vendors to customize the user experience during this phase of
execution.

The Boot Manager must also support booting from a short-form device path that starts with the first
node being a firmware volume device path. The boot manager must use the GUID in the firmware
volume device node to match it to a firmware volume in the system. The GUID in the firmware
volume device path is compared with the firmware volume name GUID. If a match is made, then the
firmware volume device path can be appended to the device path of the matching firmware volume
and normal boot behavior can then be used.

The BDS phase is implemented as part of the BDS Architectural Protocol. The DXE Foundation
will hand control to the BDS Architectural Protocol after all of the DXE drivers whose dependencies
have been satisfied have been loaded and executed by the DXE Dispatcher. The BDS phase is
responsible for the following:

• Initializing console devices

• Loading device drivers

• Attempting to load and execute boot selections

If the BDS phase cannot make forward progress, it will reinvoke the DXE Dispatcher to see if the
dependencies of any additional DXE drivers have been satisfied since the last time the DXE
Dispatcher was invoked.

Boot Manager Platform Initialization Specification, Vol. 2

16 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 17

4 UEFI System Table

4.1 DXE Services Table

DXE_SERVICES

Summary
Contains a table header and pointers to all of the DXE-specific services.

Related Definitions
#define DXE_SERVICES_SIGNATURE 0x565245535f455844
#define DXE_SPECIFICATION_MAJOR_REVISION 1
#define DXE_SPECIFICATION_MINOR_REVISION 60
#define DXE_SERVICES_REVISION
((DXE_SPECIFICATION_MAJOR_REVISION<<16) |
(DXE_SPECIFICATION_MINOR_REVISION)

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Global Coherency Domain Services
 //
 EFI_ADD_MEMORY_SPACE AddMemorySpace;
 EFI_ALLOCATE_MEMORY_SPACE AllocateMemorySpace;
 EFI_FREE_MEMORY_SPACE FreeMemorySpace;
 EFI_REMOVE_MEMORY_SPACE RemoveMemorySpace;
 EFI_GET_MEMORY_SPACE_DESCRIPTOR GetMemorySpaceDescriptor;
 EFI_SET_MEMORY_SPACE_ATTRIBUTES SetMemorySpaceAttributes;
 EFI_GET_MEMORY_SPACE_MAP GetMemorySpaceMap;
 EFI_ADD_IO_SPACE AddIoSpace;
 EFI_ALLOCATE_IO_SPACE AllocateIoSpace;
 EFI_FREE_IO_SPACE FreeIoSpace;
 EFI_REMOVE_IO_SPACE RemoveIoSpace;
 EFI_GET_IO_SPACE_DESCRIPTOR GetIoSpaceDescriptor;
 EFI_GET_IO_SPACE_MAP GetIoSpaceMap;

 //
 // Dispatcher Services
 //
 EFI_DISPATCH Dispatch;
 EFI_SCHEDULE Schedule;
 EFI_TRUST Trust;

UEFI System Table Platform Initialization Specification, Vol. 2

18 May 2017 Version 1.6

 //
 // Service to process a single firmware volume found in
 // a capsule
 //
 EFI_PROCESS_FIRMWARE_VOLUME ProcessFirmwareVolume;
 //
 // Extensions to Global Coherency Domain Services
 //
 EFI_SET_MEMORY_SPACE_CAPABILITIES SetMemorySpaceCapabilities;
} DXE_SERVICES;

Parameters
Hdr

The table header for the DXE Services Table. This header contains the
DXE_SERVICES_SIGNATURE and DXE_SERVICES_REVISION values along
with the size of the DXE_SERVICES_TABLE structure and a 32-bit CRC to verify
that the contents of the DXE Services Table are valid.

AddMemorySpace

Adds reserved memory, system memory, or memory-mapped I/O resources to the
global coherency domain of the processor. See the AddMemorySpace() function
description in this document.

AllocateMemorySpace

Allocates nonexistent memory, reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the processor. See the
AllocateMemorySpace() function description in this document.

FreeMemorySpace

Frees nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor. See the
FreeMemorySpace() function description in this document.

RemoveMemorySpace

Removes reserved memory, system memory, or memory-mapped I/O resources from
the global coherency domain of the processor. See the RemoveMemorySpace()
function description in this document.

GetMemorySpaceDescriptor

Retrieves the descriptor for a memory region containing a specified address. See the
GetMemorySpaceDescriptor() function description in this document.

SetMemorySpaceAttributes

Modifies the attributes for a memory region in the global coherency domain of the
processor. See the SetMemorySpaceAttributes() function description in this
document.

Platform Initialization Specification, Vol. 2 UEFI System Table

Version 1.6 May 2017 19

GetMemorySpaceMap

Returns a map of the memory resources in the global coherency domain of the
processor. See the GetMemorySpaceMap() function description in this document.

AddIoSpace

Adds reserved I/O or I/O resources to the global coherency domain of the processor.
See the AddIoSpace() function description in this document.

AllocateIoSpace

Allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor. See the AllocateIoSpace() function description in
this document.

FreeIoSpace

Frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor. See the FreeIoSpace() function description in this
document.

RemoveIoSpace

Removes reserved I/O or I/O resources from the global coherency domain of the
processor. See the RemoveIoSpace() function description in this document.

GetIoSpaceDescriptor

Retrieves the descriptor for an I/O region containing a specified address. See the
GetIoSpaceDescriptor() function description in this document.

GetIoSpaceMap

Returns a map of the I/O resources in the global coherency domain of the processor.
See the GetIoSpaceMap() function description in this document.

Dispatch

Loads and executed DXE drivers from firmware volumes. See the Dispatch()
function description in this document.

Schedule

Clears the Schedule on Request (SOR) flag for a component that is stored in a
firmware volume. See the Schedule() function description in this document.

Trust

Promotes a file stored in a firmware volume from the untrusted to the trusted state.
See the Trust() function description in this document.

ProcessFirmwareVolume

Creates a firmware volume handle for a firmware volume that is present in system
memory. See the ProcessFirmwareVolume() function description in this
document.

SetMemorySpaceCapabilities

Modifies the capabilities for a memory region in the global coherency domain of the
processor. See the SetMemorySpaceCapabilities()function description in
this document.

UEFI System Table Platform Initialization Specification, Vol. 2

20 May 2017 Version 1.6

Description
The UEFI DXE Services Table contains a table header and pointers to all of the DXE-specific
services. Except for the table header, all elements in the DXE Services Tables are prototypes of
function pointers to functions as defined in “Services - DXE Services” on page 37.

4.2 UEFI Image Entry Point Examples

4.2.1 UEFI Application Example
The following example shows the UEFI image entry point for an UEFI application. This application
makes use of the UEFI System Table, UEFI Boot Services Table, UEFI Runtime Services Table,
and DXE Services Table.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiApplicationEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 UINTN Index;
 BOOLEAN Result;
 EFI_STATUS Status;
 EFI_TIME *Time;
 UINTN NumberOfDescriptors;
 EFI_GCD_MEMORY_SPACE_DESCRIPTOR MemorySpaceDescriptor;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 gDS = NULL;
 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
 Result = EfiCompareGuid (
 &gEfiDxeServicesTableGuid,
 &(gST->ConfigurationTable[Index].VendorGuid)
);
 if (Result) {
 gDS = gST->ConfigurationTable[Index].VendorTable;
 }
 }
 if (gDS == NULL) {
 return EFI_NOT_FOUND;

Platform Initialization Specification, Vol. 2 UEFI System Table

Version 1.6 May 2017 21

 }

 //
 // Use UEFI System Table to print “Hello World” to the active console
 // output device.
 //
 Status = gST->ConOut->OutputString (gST->ConOut, L”Hello World\n\r”);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use UEFI Boot Services Table to allocate a buffer to store the
 // current time and date.
 //
 Status = gBS->AllocatePool (
 EfiBootServicesData,
 sizeof (EFI_TIME),
 (VOID **)&Time
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use the UEFI Runtime Services Table to get the current
 // time and date.
 //
 Status = gRT->GetTime (&Time, NULL)
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use UEFI Boot Services to free the buffer that was used to store
 // the current time and date.
 //
 Status = gBS->FreePool (Time);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Use the DXE Services Table to get the current GCD Memory Space Map
 //
 Status = gDS->GetMemorySpaceMap (
 &NumberOfDescriptors,
 &MemorySpaceMap
);
 if (EFI_ERROR (Status)) {
 return Status;

UEFI System Table Platform Initialization Specification, Vol. 2

22 May 2017 Version 1.6

 }

 //
 // Use UEFI Boot Services to free the buffer that was used to store
 // the GCD Memory Space Map.
 //
 Status = gBS->FreePool (MemorySpaceMap);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 return Status;
}

4.2.2 Non-UEFI Driver Model Example (Resident in Memory)
The following example shows the UEFI image entry point for an UEFI driver that does not follow
the UEFI Driver Model. Because this driver returns EFI_SUCCESS, it will stay resident in
memory after it exits.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 UINTN Index;
 BOOLEAN Result;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 gDS = NULL;
 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
 Result = EfiCompareGuid (
 &gEfiDxeServicesTableGuid,
 &(gST->ConfigurationTable[Index].VendorGuid)
);
 if (Result) {
 gDS = gST->ConfigurationTable[Index].VendorTable;
 }

Platform Initialization Specification, Vol. 2 UEFI System Table

Version 1.6 May 2017 23

 }
 if (gDS == NULL) {
 return EFI_REQUEST_UNLOAD_IMAGE;
 }

 //
 // Implement driver initialization here.
 //

 return EFI_SUCCESS;
}

4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)
The following example shows the UEFI image entry point for an UEFI driver that also does not
follow the UEFI Driver Model. Because this driver returns the error code
EFI_REQUEST_UNLOAD_IMAGE, it will not stay resident in memory after it exits.

EFI_GUID gEfiDxeServicesTableGuid = DXE_SERVICES_TABLE_GUID;

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;
DXE_SERVICES *gDS;

EfiDriverEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 UINTN Index;
 BOOLEAN Result;

 gST = SystemTable;
 gBS = gST->BootServices;
 gRT = gST->RuntimeServices;

 gDS = NULL;
 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
 Result = EfiCompareGuid (
 &gEfiDxeServicesTableGuid,
 &(gST->ConfigurationTable[Index].VendorGuid)
);
 if (Result) {
 gDS = gST->ConfigurationTable[Index].VendorTable;
 }
 }
 if (gDS == NULL) {
 return EFI_REQUEST_UNLOAD_IMAGE;

UEFI System Table Platform Initialization Specification, Vol. 2

24 May 2017 Version 1.6

 }

 //
 // Implement driver initialization here.
 //

 return EFI_REQUEST_UNLOAD_IMAGE;
}

4.2.4 UEFI Driver Model Example
The following is an UEFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFI_DRIVER_BINDING_PROTOCOL is
defined in Chapter 9 of the UEFI 2.0 specification. The function prototypes for the
AbcSupported(), AbcStart(), and AbcStop() functions are defined in Section 9.1 of the
UEFI 2.0 specification. This function saves the driver's image handle and a pointer to the UEFI
Boot Services Table in global variables, so that the other functions in the same driver can have
access to these values. It then creates an instance of the EFI_DRIVER_BINDING_PROTOCOL
and installs it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 0x10,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;

Platform Initialization Specification, Vol. 2 UEFI System Table

Version 1.6 May 2017 25

}

4.2.5 UEFI Driver Model Example (Unloadable)
The following is the same UEFI Driver Model example as in the UEFI Driver Model Example,
except that it also includes the code required to allow the driver to be unloaded through the boot
service Unload(). Any protocols installed or memory allocated in AbcEntryPoint() must be
uninstalled or freed in the AbcUnload(). The AbcUnload() function first checks to see how
many controllers this driver is currently managing. If the number of controllers is greater than zero,
then this driver cannot be unloaded at this time, so an error is returned.

extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;
static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {
 AbcSupported,
 AbcStart,
 AbcStop,
 1,
 NULL,
 NULL
};

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
);

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;
 EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

 gBS = SystemTable->BootServices;

 Status = gBS->OpenProtocol (
 ImageHandle,
 &gEfiLoadedImageProtocolGuid,
 &LoadedImage,
 ImageHandle,
 NULL,
 EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

UEFI System Table Platform Initialization Specification, Vol. 2

26 May 2017 Version 1.6

 LoadedImage->Unload = AbcUnload;

 mAbcDriverBinding->ImageHandle = ImageHandle;
 mAbcDriverBinding->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBinding->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);

 return Status;
}

EFI_STATUS
AbcUnload (
 IN EFI_HANDLE ImageHandle
)

{
 EFI_STATUS Status;
 UINTN Count;

 Status = LibGetManagedControllerHandles (ImageHandle, &Count, NULL);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 if (Count > 0) {
 return EFI_ACCESS_DENIED;
 }

 Status = gBS->UninstallMultipleProtocolInterfaces (
 ImageHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
 NULL
);
 return Status;
}

4.2.6 UEFI Driver Model Example (Multiple Instances)
The following is the same as the first UEFI Driver Model example, except that it produces three
EFI_DRIVER_BINDING_PROTOCOL instances. The first one is installed onto the driver’s image
handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

Platform Initialization Specification, Vol. 2 UEFI System Table

Version 1.6 May 2017 27

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
 AbcSupportedA,
 AbcStartA,
 AbcStopA,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
 AbcSupportedB,
 AbcStartB,
 AbcStopB,
 1,
 NULL,
 NULL
};

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {
 AbcSupportedC,
 AbcStartC,
 AbcStopC,
 1,
 NULL,
 NULL
};

AbcEntryPoint(
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)

{
 EFI_STATUS Status;

 gBS = SystemTable->BootServices;

 //
 // Install mAbcDriverBindingA onto ImageHandle
 //
 mAbcDriverBindingA->ImageHandle = ImageHandle;
 mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingA->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
 NULL
);

UEFI System Table Platform Initialization Specification, Vol. 2

28 May 2017 Version 1.6

 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingB onto a newly created handle
 //
 mAbcDriverBindingB->ImageHandle = ImageHandle;
 mAbcDriverBindingB->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingB->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
 NULL
);
 if (EFI_ERROR (Status)) {
 return Status;
 }

 //
 // Install mAbcDriverBindingC onto a newly created handle
 //
 mAbcDriverBindingC->ImageHandle = ImageHandle;
 mAbcDriverBindingC->DriverBindingHandle = NULL;

 Status = gBS->InstallMultipleProtocolInterfaces(
 &mAbcDriverBindingC->DriverBindingHandle,
 &gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
 NULL
);

 return Status;
}

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 29

5 Services - Boot Services

5.1 Extensions to UEFI Boot Service Event Usage

5.1.1 CreateEvent
 CreateEventEx() in UEFI 2.0 allows for registration of events named by GUID’s. The DXE
foundation defines the following:

 #define EFI_EVENT_LEGACY_BOOT_GUID
 {0x2a571201, 0x4966, 0x47f6, 0x8b, 0x86, 0xf3, 0x1e,
 0x41, 0xf3, 0x2f, 0x10}

This event is to be used with CreateEventEx() in order to be notified when the UEFI boot
manager is about to boot a legacy boot option. Notification of events of this type is sent just before
Int19h is invoked.

5.1.2 Pre-Defined Event Groups
This section describes the pre-defined event groups used by this specification.

EFI_EVENT_GROUP_DXE_DISPATCH_GUID

This event group is notified by the system when the DXE dispatcher finished one round of driver
dispatch. This allows the SMM dispatcher get chance to dispatch SMM driver which will depend on
UEFI protocols.

Related Definitions
#define EFI_EVENT_GROUP_DXE_DISPATCH_GUID \
 { 0x7081e22f, 0xcac6, 0x4053, { 0x94, 0x68, 0x67, 0x57, \
 0x82, 0xcf, 0x88, 0xe5 } \ }

5.1.2.1 End of DXE Event
Prior to invoking any UEFI drivers, or applications that are not from the platform manufacturer, or
connecting consoles, the platform should signals the event EFI_END_OF_DXE_EVENT_GUID
End of DXE Event and immediately after that the platform installs DXE SMM Ready to Lock
Protocol (defined in volume 4)..

#define EFI_END_OF_DXE_EVENT_GROUP_GUID \
 { 0x2ce967a, 0xdd7e, 0x4ffc, { 0x9e, 0xe7, 0x81, 0xc, \
 0xf0, 0x47, 0x8, 0x80 } }

From SEC through the signaling of this event, all of the components should be under the authority of
the platform manufacturer and not have to worry about interaction or corruption by 3rd party
extensible modules such as UEFI drivers and UEFI applications.

Platform may choose to lock certain resources or disable certain interfaces prior to executing third
party extensible modules. Transition from the environment where all of the components are under
the authority of the platform manufacturer to the environment where third party modules are
executed is a two-step process:

Services - Boot Services Platform Initialization Specification, Vol. 2

30 May 2017 Version 1.6

1. End of DXE Event is signaled. This event presents the last opportunity to use resources or
interfaces that are going to be locked or disabled in anticipation of the invocation of 3rd party
extensible modules.

2. DXE SMM Ready to Lock Protocol is installed. PI modules that need to lock or protect their
resources in anticipation of the invocation of 3rd party extensible modules should register for
notification on installation of this protocol and effect the appropriate protections in their
notification handlers

5.1.3 Additions to LoadImage()

Summary
Loads an UEFI image into memory. This function has been extended from the LoadImage()
Boot Service defined in the UEFI 2.0 specification. The DXE foundation extends this to support an
additional image type, allowing UEFI images to be loaded from files stored in firmware volumes. It
also validates the image using the services of the Security Architectural Protocol.

Prototype
EFI_STATUS
LoadImage (
 IN BOOLEAN BootPolicy,
 IN EFI_HANDLE ParentImageHandle,
 IN EFI_DEVICE_PATH *FilePath,
 IN VOID *SourceBuffer OPTIONAL ,
 IN UINTN SourceSize,
 OUT EFI_HANDLE *ImageHandle
);

Parameters
BootPolicy

If TRUE, indicates that the request originates from the boot manager, and that the boot
manager is attempting to load FilePath as a boot selection. Ignored if
SourceBuffer is not NULL.

ParentImageHandle

The caller’s image handle. Type EFI_HANDLE is defined in the
InstallProtocolInterface() function description in the UEFI 2.0
specification. This field is used to initialize the ParentHandle field of the
LOADED_IMAGE protocol for the image that is being loaded.

FilePath

The specific file path from which the image is loaded. Type EFI_DEVICE_PATH is
defined in the LocateDevicePath() function description in the UEFI 2.0
specification.

SourceBuffer

If not NULL, a pointer to the memory location containing a copy of the image to be
loaded.

Platform Initialization Specification, Vol. 2 Services - Boot Services

Version 1.6 May 2017 31

SourceSize

The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL.

ImageHandle

Pointer to the returned image handle that is created when the image is successfully
loaded. Type EFI_HANDLE is defined in the InstallProtocolInterface()
function description in the UEFI 2.0 specification.

Description
The LoadImage() function loads an UEFI image into memory and returns a handle to the image.
The supported subsystem values in the PE image header are listed in "Related Definitions" below.
The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a memory-
to-memory load in which SourceBuffer points to the image to be loaded and SourceSize
indicates the image’s size in bytes. FilePath specifies where the image specified by
SourceBuffer and SourceSize was loaded. In this case, the caller has copied the image into
SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the
EFI_FIRMWARE_VOLUME2_PROTOCOL, followed by the
SIMPLE_FILE_SYSTEM_PROTOCOL and then the LOAD_FILE_PROTOCOL to access the file
referred to by FilePath. In this case, the BootPolicy flag is passed to the
LOAD_FILE.LoadFile() function and is used to load the default image responsible for booting
when the FilePath only indicates the device. For more information see the discussion of the
Load File Protocol in Chapter 11 of the UEFI 2.0 specification.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

The image is also validated using the FileAuthenticationState() service of the Security
Architectural Protocol (SAP). If the SAP returns the status EFI_SUCCESS, then the load operation
is completed normally. If the SAP returns the status EFI_SECURITY_VIOLATION, then the load
operation is completed normally, and the EFI_SECURITY_VIOLATION status is returned. In this
case, the caller is not allowed to start the image until some platform specific policy is executed to
protect the system while executing untrusted code. If the SAP returns the status
EFI_ACCESS_DENIED, then the image should never be trusted. In this case, the image is
unloaded from memory, and EFI_ACCESS_DENIED is returned.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the LOADED_IMAGE_PROTOCOL. The caller may fill in the image’s “load options”
data, or add additional protocol support to the handle before passing control to the newly loaded
image by calling StartImage(). Also, once the image is loaded, the caller either starts it by
calling StartImage() or unloads it by calling UnloadImage().

Related Definitions
//**
// Supported subsystem values
//**

#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10

Services - Boot Services Platform Initialization Specification, Vol. 2

32 May 2017 Version 1.6

#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12
#define EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER 13

Table 9 describes the fields in the above definition.

Table 9. Supported Subsystem Values

Supported Subsystem Values Description

EFI_IMAGE_SUBSYSTEM_EFI_
APPLICATION

The image is loaded into memory of type EfiLoaderCode, and

the memory is freed when the application exits.

EFI_IMAGE_SUBSYSTEM_EFI_
BOOT_SERVICE_DRIVER

The image is loaded into memory of type

EfiBootServicesCode. If the image exits with an error

code, then the memory for the image is free. If the image exits with

EFI_SUCCESS, then the memory for the image is not freed.

EFI_IMAGE_SUBSYSTEM_EFI_
RUNTIME_DRIVER

The image is loaded into memory of type

EfiRuntimeServicesCode. If the image exits with an error

code, then the memory for the image is free. If the image exits with

EFI_SUCCESS, then the memory for the image is not freed.

Images of this type are automatically converted from physical
addresses to virtual address when the Runtime Service

SetVirtualAddressMap() is called.

EFI_IMAGE_SUBSYSTEM_SAL_
RUNTIME_DRIVER

The image is loaded into memory of type

EfiRuntimeServicesCode. If the image exits with an error

code, then the memory for the image is free. If the image exits with

EFI_SUCCESS, then the memory for the image is not freed.

Images of this type are not converted from physical to virtual
addresses when the Runtime Service

SetVirtualAddressMap() is called.

Platform Initialization Specification, Vol. 2 Services - Boot Services

Version 1.6 May 2017 33

 Status Codes Returned

EFI_SUCCESS The image was loaded into memory.

EFI_SECURITY_VIOLATION The image was loaded into memory, but the current security policy
dictates that the image should not be executed at this time.

EFI_ACCESS_DENIED The image was not loaded into memory because the current security
policy dictates that the image should never be executed.

EFI_NOT_FOUND The FilePath was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

Services - Boot Services Platform Initialization Specification, Vol. 2

34 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 35

6 Runtime Capabilities

6.1 Additional Runtime Protocol

6.1.1 Status Code Services
Table 10 lists the runtime protocol that are used to report status codes. This protocol provides a
runtime protocol that can be bound by other runtime drivers for reporting status information.

Table 10. Status Code Runtime Protocol

Name Type Description

ReportStatusCode Runtime Reports status codes at boot services time and runtime.

Runtime Capabilities Platform Initialization Specification, Vol. 2

36 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 37

7 Services - DXE Services

7.1 Introduction
This chapter describes the services in the DXE Services Table. These services include the
following:

• Global Coherency Domain (GCD) Services

• Dispatcher Services

The GCD Services are used to manage the system memory, memory-mapped I/O, and I/O resources
present in a platform. The Dispatcher Services are used to invoke the DXE Dispatcher and modify
the state of a DXE driver that is being tracked by the DXE Dispatcher.

7.2 Global Coherency Domain Services

7.2.1 Global Coherency Domain (GCD) Services Overview
The Global Coherency Domain (GCD) Services are used to manage the memory and I/O resources
visible to the boot processor. These resources are managed in two different maps:

• GCD memory space map

• GCD I/O space map

If memory or I/O resources are added, removed, allocated, or freed, then the GCD memory space
map and GCD I/O space map are updated. GCD Services are also provided to retrieve the contents
of these two resource maps.

The GCD Services can be broken up into two groups. The first manages the memory resources
visible to the boot processor, and the second manages the I/O resources visible to the boot processor.
Not all processor types support I/O resources, so the management of I/O resources may not be
required. However, since system memory resources and memory-mapped I/O resources are required
to execute the DXE environment, the management of memory resources is always required.

7.2.2 GCD Memory Resources
The Global Coherency Domain (GCD) Services used to manage memory resources include the
following:

• AddMemorySpace()

• AllocateMemorySpace()

• FreeMemorySpace()

• RemoveMemorySpace()

• SetMemorySpaceAttributes()

• SetMemorySpaceCapabilities()

The GCD Services used to retrieve the GCD memory space map include the following:

Services - DXE Services Platform Initialization Specification, Vol. 2

38 May 2017 Version 1.6

• GetMemorySpaceDescriptor()

• GetMemorySpaceMap()

The GCD memory space map is initialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access
memory resources. This information is used to initialize the state of the GCD memory space map.
Any memory regions outside this initial region are not available to any of the GCD Services that are
used to manage memory resources. The GCD memory space map is designed to describe the
memory address space with as many as 64 address lines. Each region in the GCD memory space
map can begin and end on a byte boundary. There are additional HOB types that describe the
location of system memory, the location memory mapped I/O, the location of firmware devices, the
location of firmware volumes, the location of reserved regions, and the location of system memory
regions that were allocated prior to the execution of the DXE Foundation. The DXE Foundation
must parse the contents of the HOB list to guarantee that memory regions reserved prior to the
execution of the DXE Foundation are honored. As a result, the GCD memory space map must
reflect the memory regions described in the HOB list. The GCD memory space map provides the
DXE Foundation with the information required to initialize the memory services such as
AllocatePages(), FreePages(), AllocatePool(), FreePool(), and
GetMemoryMap(). See the UEFI 2.0 specification for definitions of these services.

A memory region described by the GCD memory space map can be in one of several different states:

• Nonexistent memory

• System memory

• Memory-mapped I/O

• Reserved memory

These memory regions can be allocated and freed by DXE drivers executing in the DXE
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a memory
region. Figure 2 shows the possible state transitions for each byte of memory in the GCD memory
space map. The transitions are labeled with the GCD Service that can move the byte from one state
to another. The GCD services are required to merge similar memory regions that are adjacent to
each other into a single memory descriptor, which reduces the number of entries in the GCD
memory space map.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 39

Figure 2. GCD Memory State Transitions

7.2.3 GCD I/O Resources
The Global Coherency Domain (GCD) Services used to manage I/O resources include the following:

• AddIoSpace()

• AllocateIoSpace()

• FreeIoSpace()

• RemoveIoSpace()

The GCD Services used to retrieve the GCD I/O space map include the following:

• GetIoSpaceDescriptor()

• GetIoSpaceMap()

The GCD I/O space map is initialized from the HOB list that is passed to the entry point of the DXE
Foundation. One HOB type describes the number of address lines that are used to access I/O
resources. This information is used to initialize the state of the GCD I/O space map. Any I/O
regions outside this initial region are not available to any of the GCD Services that are used to
manage I/O resources. The GCD I/O space map is designed to describe the I/O address space with
as many as 64 address lines. Each region in the GCD I/O space map can being and end on a byte
boundary.

An I/O region described by the GCD I/O space map can be in several different states. These include
nonexistent I/O, I/O, and reserved I/O. These I/O regions can be allocated and freed by DXE drivers

Services - DXE Services Platform Initialization Specification, Vol. 2

40 May 2017 Version 1.6

executing in the DXE environment. Figure 3 shows the possible state transitions for each byte of I/O
in the GCD I/O space map. The transitions are labeled with the GCD Service that can move the byte
from one state to another. The GCD Services are required to merge similar I/O regions that are
adjacent to each other into a single I/O descriptor, which reduces the number of entries in the GCD
I/O space map.

Figure 3. GCD I/O State Transitions

7.2.4 Global Coherency Domain Services
The functions that make up Global Coherency Domain (GCD) Services are used during preboot to
add, remove, allocate, free, and provide maps of the system memory, memory-mapped I/O, and I/O
resources in a platform. These services, used in conjunction with the Memory Allocation Services,
provide the ability to manage all the memory and I/O resources in a platform. Table 11 lists the
Global Coherency Domain Services.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 41

Table 11. Global Coherency Domain Boot Type Services

Name Description

AddMemorySpace This service adds reserved memory, system memory, or memory-
mapped I/O resources to the global coherency domain of the
processor.

AllocateMemorySpace This service allocates nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global coherency
domain of the processor.

FreeMemorySpace This service frees nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global coherency
domain of the processor.

RemoveMemorySpace This service removes reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the
processor.

GetMemorySpaceDescriptor This service retrieves the descriptor for a memory region containing a
specified address.

SetMemorySpaceAttributes This service modifies the attributes for a memory region in the global
coherency domain of the processor.

SetMemorySpaceCapabilities This service modifies the capabilities for a memory region in the global
coherency domain of the processor.

GetMemorySpaceMap Returns a map of the memory resources in the global coherency
domain of the processor.

AddIoSpace This service adds reserved I/O, or I/O resources to the global
coherency domain of the processor.

AllocateIoSpace This service allocates nonexistent I/O, reserved I/O, or I/O resources
from the global coherency domain of the processor.

FreeIoSpace This service frees nonexistent I/O, reserved I/O, or I/O resources from
the global coherency domain of the processor.

RemoveIoSpace This service removes reserved I/O, or I/O resources from the global
coherency domain of the processor.

GetIoSpaceDescriptor This service retrieves the descriptor for an I/O region containing a
specified address.

GetIoSpaceMap Returns a map of the I/O resources in the global coherency domain of
the processor.

Services - DXE Services Platform Initialization Specification, Vol. 2

42 May 2017 Version 1.6

AddMemorySpace()

Summary
This service adds reserved memory, system memory, or memory-mapped I/O resources to the global
coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ADD_MEMORY_SPACE) (
 IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Capabilities
);

Parameters
GcdMemoryType

The type of memory resource being added. Type EFI_GCD_MEMORY_TYPE is
defined in “Related Definitions” below. The only types allowed are
EfiGcdMemoryTypeReserved, EfiGcdMemoryTypeSystemMemory,
EfiGcdMemoryTypePersistent, EfiGcdMemoryTypeMoreReliable,
and EfiGcdMemoryTypeMemoryMappedIo.

BaseAddress

The physical address that is the start address of the memory resource being added.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size, in bytes, of the memory resource that is being added.

Capabilities

The bit mask of attributes that the memory resource region supports. The bit mask of
available attributes is defined in the GetMemoryMap() function description in the
UEFI 2.0 specification.

Description
The AddMemorySpace() function converts unallocated non-existent memory ranges to a range
of reserved memory, a range of system memory, or a range of memory mapped I/O.
BaseAddress and Length specify the memory range, and GcdMemoryType specifies the
memory type. The bit mask of all supported attributes for the memory range being added is
specified by Capabilities. If the memory range is successfully added, then EFI_SUCCESS is
returned.

If the memory range specified by BaseAddress and Length is of type
EfiGcdMemoryTypeSystemMemory or EfiGcdMemoryTypeMoreReliable, then the

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 43

memory range may be automatically allocated for use by the UEFI memory services. If the addition
of the memory range specified by BaseAddress and Length results in a GCD memory space
map containing one or more 4 KiB regions of unallocated EfiGcdMemoryTypeSystemMemory
or EfiGcdMemoryTypeMoreReliable aligned on 4 KiB boundaries, then those regions will
always be converted to ranges of allocated EfiGcdMemoryTypeSystemMemory or
EfiGcdMemoryTypeMoreReliable respectively. This extra conversion will never be
performed for fragments of memory that do not meet the above criteria.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If GcdMemoryType is not EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, EfiGcdMemoryTypeMemoryMappedIo,
EfiGcdMemoryPersistent or EfiGcdMemoryTypeMoreReliable then
EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If any portion of the memory range specified by BaseAddress and Length is not of type
EfiGcdMemoryTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the memory range specified by BaseAddress and Length was allocated in a
prior call to AllocateMemorySpace(), then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to add the memory resource to the global
coherency domain of the processor, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_MEMORY_TYPE
//***
typedef enum {
 EfiGcdMemoryTypeNonExistent,
 EfiGcdMemoryTypeReserved,
 EfiGcdMemoryTypeSystemMemory,
 EfiGcdMemoryTypeMemoryMappedIo,
 EfiGcdMemoryTypePersistent,
 EfiGcdMemoryTypeMoreReliable,
 EfiGcdMemoryTypeMaximum
} EFI_GCD_MEMORY_TYPE;

EfiGcdMemoryTypeNonExistent

A memory region that is visible to the boot processor. However, there are no system
components that are currently decoding this memory region.

EfiGcdMemoryTypeReserved

Services - DXE Services Platform Initialization Specification, Vol. 2

44 May 2017 Version 1.6

A memory region that is visible to the boot processor. This memory region is being
decoded by a system component, but the memory region is not considered to be either
system memory or memory-mapped I/O.

EfiGcdMemoryTypeSystemMemory

A memory region that is visible to the boot processor. A memory controller is
currently decoding this memory region and the memory controller is producing a
tested system memory region that is available to the memory services.

EfiGcdMemoryTypeMemoryMappedIo

A memory region that is visible to the boot processor. This memory region is
currently being decoded by a component as memory-mapped I/O that can be used to
access I/O devices in the platform.

EfiGcdMemoryTypePersistent

 A memory region that is visible to the boot processor. This memory supports byte-
addressable non-volatility.

EfiGcdMemoryTypeMoreReliable

 A memory region that provides higher reliability relative to other memory in the
system. If all memory has the same reliability, then this bit is not used.

Status Codes Returned

EFI_SUCCESS The memory resource was added to the global coherency domain
of the processor.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the memory
resource to the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by

BaseAddress and Length conflicts with a memory

resource range that was previously added to the global coherency
domain of the processor.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by

BaseAddress and Length was allocated in a prior call to

AllocateMemorySpace().

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 45

AllocateMemorySpace()

Summary
This service allocates nonexistent memory, reserved memory, system memory, or memory-mapped
I/O resources from the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_MEMORY_SPACE) (
 IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType,
 IN EFI_GCD_MEMORY_TYPE GcdMemoryType,
 IN UINTN Alignment,
 IN UINT64 Length,
 IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
 IN EFI_HANDLE ImageHandle,
 IN EFI_HANDLE DeviceHandle OPTIONAL
);

Parameters
GcdAllocateType

The type of allocation to perform. Type EFI_GCD_ALLOCATE_TYPE is defined in
“Related Definitions” below.

GcdMemoryType

The type of memory resource being allocated. Type EFI_GCD_MEMORY_TYPE is
defined in AddMemorySpace(). The only types allowed are
EfiGcdMemoryTypeNonExistent, EfiGcdMemoryTypeReserved,
EfiGcdMemoryTypeSystemMemory, EfiGcdMemoryTypePersistent,
EfiGcdMemoryTypeMoreReliable and
EfiGcdMemoryTypeMemoryMappedIo.

Alignment

The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KiB
boundary.

Length

The size in bytes of the memory resource range that is being allocated.

BaseAddress

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See “Description” below for more information. On
output the address is set to the base of the memory resource range that was allocated.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Services - DXE Services Platform Initialization Specification, Vol. 2

46 May 2017 Version 1.6

ImageHandle

The image handle of the agent that is allocating the memory resource. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

DeviceHandle

The device handle for which the memory resource is being allocated. If the memory
resource is not being allocated for a device that has an associated device handle, then
this parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The AllocateMemorySpace() function searches for a memory range of type
GcdMemoryType and converts the discovered memory range from the unallocated state to the
allocated state. The parameters GcdAllocateType, Alignment, Length, and
BaseAddress specify the manner in which the GCD memory space map is searched. If a memory
range is found that meets the search criteria, then the base address of the memory range is returned in
BaseAddress, and EFI_SUCCESS is returned. ImageHandle and DeviceHandle are used
to convert the memory range from the unallocated state to the allocated state. ImageHandle
identifies the image that is calling AllocateMemorySpace(), and DeviceHandle identifies
the device that ImageHandle is managing that requires the memory range. DeviceHandle is
optional, because the device that ImageHandle is managing might not have an associated device
handle. If a memory range meeting the search criteria cannot be found, then EFI_NOT_FOUND is
returned.

If GcdAllocateType is EfiGcdAllocateAnySearchBottomUp, then the GCD memory
space map is searched from the lowest address up to the highest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateAnySearchTopDown, then the GCD memory
space map is searched from the highest address down to the lowest address looking for unallocated
memory ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchBottomUp, then the GCD
memory space map is searched from the lowest address up to BaseAddress looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by Alignment
that matches GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchTopDown, then the GCD
memory space map is searched from BaseAddress down to the lowest address looking for
unallocated memory ranges of Length bytes beginning on a boundary specified by Alignment
that matches GcdMemoryType.

If GcdAllocateType is EfiGcdAllocateAddress, then the GCD memory space map is
checked to see if the memory range starting at BaseAddress for Length bytes is of type
GcdMemoryType, unallocated, and begins on a the boundary specified by Alignment.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 47

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If BaseAddress is NULL, then EFI_INVALID_PARAMETER is returned.

If ImageHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If GcdMemoryType is not EfiGcdMemoryTypeNonExistent,
EfiGcdMemoryTypeReserved, EfiGcdMemoryTypeSystem Memory,
EfiGcdMemoryTypePersistent, EfiGcdMemoryTypeMemoryMappedIo,
EfiGcdMemoryTypeMoreReliable, then EFI_INVALID_PARAMETER is returned.

If GcdAlocateType is less than zero, or GcdAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID_PARAMETER is returned.

If there are not enough system resources available to allocate the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_ALLOCATE_TYPE
//***
typedef enum {
 EfiGcdAllocateAnySearchBottomUp,
 EfiGcdAllocateMaxAddressSearchBottomUp,
 EfiGcdAllocateAddress,
 EfiGcdAllocateAnySearchTopDown,
 EfiGcdAllocateMaxAddressSearchTopDown,
 EfiGcdMaxAllocateType
} EFI_GCD_ALLOCATE_TYPE;

Status Codes Returned

EFI_SUCCESS The memory resource was allocated from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER GcdAllocateType is invalid.

EFI_INVALID_PARAMETER GcdMemoryType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER BaseAddress is NULL.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the memory
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The memory resource request could not be satisfied.

Services - DXE Services Platform Initialization Specification, Vol. 2

48 May 2017 Version 1.6

FreeMemorySpace()

Summary
This service frees nonexistent memory, reserved memory, system memory, or memory-mapped I/O
resources from the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FREE_MEMORY_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the memory resource being freed.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory resource range that is being freed.

Description
The FreeMemorySpace() function converts the memory range specified by BaseAddress
and Length from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
allocated on previous calls to AllocateMemorySpace(), then EFI_NOT_FOUND is returned.

If there are not enough system resources available to free the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The memory resource was freed from the global coherency domain of
the processor.

EFI_INVALID_PARAMETER Length is zero.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 49

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_NOT_FOUND The memory resource range specified by BaseAddress and

Length was not allocated with previous calls to

AllocateMemorySpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the memory resource
from the global coherency domain of the processor.

Services - DXE Services Platform Initialization Specification, Vol. 2

50 May 2017 Version 1.6

RemoveMemorySpace()

Summary
This service removes reserved memory, system memory, or memory-mapped I/O resources from the
global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REMOVE_MEMORY_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the memory resource being removed.
Type EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory resource that is being removed.

Description
The RemoveMemorySpace() function converts the memory range specified by BaseAddress
and Length to the memory type EfiGcdMemoryTypeNonExistent. If this conversion is
successful, then EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were not
added to the GCD memory space map with previous calls to AddMemorySpace(), then
EFI_NOT_FOUND is returned.

If one or more bytes of the memory range specified by BaseAddress and Length were allocated
from the GCD memory space map with previous calls to AllocateMemorySpace(), then
EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 51

Status Codes Returned

EFI_SUCCESS The memory resource was removed from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_NOT_FOUND One or more bytes of the memory resource range specified by

BaseAddress and Length was not added with previous calls to

AddMemorySpace().

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by

BaseAddress and Length has been allocated with

AllocateMemorySpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to remove the memory
resource from the global coherency domain of the processor.

Services - DXE Services Platform Initialization Specification, Vol. 2

52 May 2017 Version 1.6

GetMemorySpaceDescriptor()

Summary
This service retrieves the descriptor for a memory region containing a specified address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MEMORY_SPACE_DESCRIPTOR) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor
);

Parameters
BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the
memory region containing BaseAddress. Type
EFI_GCD_MEMORY_SPACE_DESCRIPTOR is defined in "Related Definitions"
below.

Description
The GetMemorySpaceDescriptor() function retrieves the descriptor for the memory region
that contains the address specified by BaseAddress. If a memory region containing
BaseAddress is found, then the descriptor for that memory region is returned in the caller
allocated structure Descriptor, and EFI_SUCCESS is returned.

If Descriptor is NULL, then EFI_INVALID_PARAMETER is returned.

If a memory region containing BaseAddress is not present in the GCD memory space map, then
EFI_NOT_FOUND is returned.

Related Definitions
//***
// EFI_GCD_MEMORY_SPACE_DESCRIPTOR
//***
typedef struct {
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
 UINT64 Capabilities;
 UINT64 Attributes;
 EFI_GCD_MEMORY_TYPE GcdMemoryType;
 EFI_HANDLE ImageHandle;

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 53

 EFI_HANDLE DeviceHandle;
} EFI_GCD_MEMORY_SPACE_DESCRIPTOR;

Parameters
BaseAddress

The physical address of the first byte in the memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The number of bytes in the memory region.

Capabilities

The bit mask of attributes that the memory region is capable of supporting. The bit
mask of available attributes is defined in the GetMemoryMap() function description
in the UEFI 2.0 specification.

Attributes

The bit mask of attributes that the memory region is currently using. The bit mask of
available attributes is defined in GetMemoryMap().

GcdMemoryType

Type of the memory region. Type EFI_GCD_MEMORY_TYPE is defined in the
AddMemorySpace() function description.

ImageHandle

The image handle of the agent that allocated the memory resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the memory
resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

DeviceHandle

The device handle for which the memory resource has been allocated. If
ImageHandle is NULL, then the memory resource is not currently allocated. If this
field is NULL, then the memory resource is not associated with a device that is
described by a device handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The descriptor for the memory resource region containing

BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER Descriptor is NULL.

EFI_NOT_FOUND A memory resource range containing BaseAddress was not

found.

EFI_NOT_AVAILABLE_YET The attributes cannot be set because CPU architectural protocol is not
available yet.

Services - DXE Services Platform Initialization Specification, Vol. 2

54 May 2017 Version 1.6

SetMemorySpaceAttributes()

Summary
This service modifies the attributes for a memory region in the global coherency domain of the
processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SET_MEMORY_SPACE_ATTRIBUTES) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Attributes
);

Parameters
BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory region.

Attributes

The bit mask of attributes to set for the memory region. The bit mask of available
attributes is defined in the GetMemoryMap()function description in the UEFI 2.0
specification.

Description
The SetMemorySpaceAttributes() function modifies the attributes for the memory region
specified by BaseAddress and Length from their current attributes to the attributes specified by
Attributes. If this modification of attributes succeeds, then EFI_SUCCESS is returned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by Attributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned. The Attributes bit mask
must be a proper subset of the capabilities bit mask for the specified memory region. The
capabilities bit mask is specified when a memory region is added with AddMemorySpace() and
can be retrieved with GetMemorySpaceDescriptor() or GetMemorySpaceMap().

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 55

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the attributes of the memory range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource

range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by

BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

Services - DXE Services Platform Initialization Specification, Vol. 2

56 May 2017 Version 1.6

SetMemorySpaceCapabilities()

 Summary
This service modifies the capabilities for a memory region in the global coherency domain of the
processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SET_MEMORY_SPACE_CAPABILITIES) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Capabilities
);

Parameters
 BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI Specification.

Length

The size in bytes of the memory region.

Capabilities

The bit mask of capabilities that the memory region supports. The bit mask of available
attributes is defined in the GetMemoryMap()function description in the UEFI
specification.

Description
The SetMemorySpaceCapabilities() function modifies the capabilities for the memory
region specified by BaseAddress and Length from their current capabilities to the capabilities
specified by Capabilities. If this modification of capabilities succeeds, then EFI_SUCCESS is
returned.

If the value for Capabilities does not include the current operating memory region attributes
(having previously been set by calling SetMemorySpaceAttributes) then
EFI_UNSUPPORTED is returned.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the capabilities for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the capabilities of the memory range,
then EFI_OUT_OF_RESOURCES is returned.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 57

Status Codes Returned

EFI_SUCCESS The capabilities were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The capabilities specified by Capabilities do not include the

memory region attributes currently in use.

EFI_ACCESS_DENIED The capabilities for the memory resource range specified by

BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the capabilities
of the memory resource range.

Services - DXE Services Platform Initialization Specification, Vol. 2

58 May 2017 Version 1.6

GetMemorySpaceMap()

Summary
Returns a map of the memory resources in the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_MEMORY_SPACE_MAP) (
 OUT UINTN *NumberOfDescriptors,
 OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR **MemorySpaceMap
);

Parameters
NumberOfDescriptors

A pointer to number of descriptors returned in the MemorySpaceMap buffer. This
parameter is ignored on input, and is set to the number of descriptors in the
MemorySpaceMap buffer on output.

MemorySpaceMap

A pointer to the array of EFI_GCD_MEMORY_SPACE_DESCRIPTORs. Type
EFI_GCD_MEMORY_SPACE_DESCRIPTOR is defined in
GetMemorySpaceDescriptor(). This buffer is allocated with
AllocatePool(), so it is the caller’s responsibility to free this buffer with a call to
FreePool(). The number of descriptors in MemorySpaceMap is returned in
NumberOfDescriptors. See the UEFI 2.0 specification for definitions of
AllocatePool() and FreePool().

Description
The GetMemorySpaceMap() function retrieves the entire GCD memory space map. If there are
no errors retrieving the GCD memory space map, then the number of descriptors in the GCD
memory space map is returned in NumberOfDescriptors, the array of descriptors from the
GCD memory space map is allocated with AllocatePool(), the descriptors are transferred into
MemorySpaceMap, and EFI_SUCCESS is returned.

If NumberOfDescriptors is NULL, then EFI_INVALID_PARAMETER is returned.

If MemorySpaceMap is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources to allocate MemorySpaceMap, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The memory space map was returned in the MemorySpaceMap

buffer, and the number of descriptors in MemorySpaceMap was

returned in NumberOfDescriptors.

EFI_INVALID_PARAMETER NumberOfDescriptors is NULL.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 59

EFI_INVALID_PARAMETER MemorySpaceMap is NULL.

EFI_OUT_OF_RESOURCES There are not enough resources to allocate MemorySpaceMap.

Services - DXE Services Platform Initialization Specification, Vol. 2

60 May 2017 Version 1.6

AddIoSpace()

Summary
This service adds reserved I/O, or I/O resources to the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ADD_IO_SPACE) (
 IN EFI_GCD_IO_TYPE GcdIoType,
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
GcdIoType

The type of I/O resource being added. Type EFI_GCD_IO_TYPE is defined in
“Related Definitions” below. The only types allowed are
EfiGcdIoTypeReserved and EfiGcdIoTypeIo.

BaseAddress

The physical address that is the start address of the I/O resource being added. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the I/O resource that is being added.

Description
The AddIoSpace() function converts unallocated non-existent I/O ranges to a range of reserved
I/O, or a range of I/O. BaseAddress and Length specify the I/O range, and GcdIoType
specifies the I/O type. If the I/O range is successfully added, then EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If GcdIoType is not EfiGcdIoTypeReserved or EfiGcdIoTypeIo, then
EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If any portion of the I/O range specified by BaseAddress and Length is not of type
EfiGcdIoTypeNonExistent, then EFI_ACCESS_DENIED is returned.

If any portion of the I/O range specified by BaseAddress and Length was allocated in a prior
call to AllocateIoSpace(), then EFI_ACCESS_DENIED is returned.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 61

If there are not enough system resources available to add the I/O resource to the global coherency
domain of the processor, then EFI_OUT_OF_RESOURCES is returned.

Related Definitions
//***
// EFI_GCD_IO_TYPE
//***
typedef enum {
 EfiGcdIoTypeNonExistent,
 EfiGcdIoTypeReserved,
 EfiGcdIoTypeIo,
 EfiGcdIoTypeMaximum
} EFI_GCD_IO_TYPE;

EfiGcdIoTypeNonExistent

An I/O region that is visible to the boot processor. However, there are no system
components that are currently decoding this I/O region.

EfiGcdIoTypeReserved

An I/O region that is visible to the boot processor. This I/O region is currently being
decoded by a system component, but the I/O region cannot be used to access I/O
devices.

EfiGcdIoTypeIo

An I/O region that is visible to the boot processor. This I/O region is currently being
decoded by a system component that is producing I/O ports that can be used to access
I/O devices.

Status Codes Returned

EFI_SUCCESS The I/O resource was added to the global coherency domain of
the processor.

EFI_INVALID_PARAMETER GcdIoType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the I/O resource to
the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O

resource range specified by BaseAddress and Length.

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by

BaseAddress and Length conflicts with an I/O resource

range that was previously added to the global coherency domain
of the processor.

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by

BaseAddress and Length was allocated in a prior call to

AllocateIoSpace().

Services - DXE Services Platform Initialization Specification, Vol. 2

62 May 2017 Version 1.6

AllocateIoSpace()

Summary
This service allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency
domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_IO_SPACE) (
 IN EFI_GCD_ALLOCATE_TYPE AllocateType,
 IN EFI_GCD_IO_TYPE GcdIoType,
 IN UINTN Alignment,
 IN UINT64 Length,
 IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress,
 IN EFI_HANDLE ImageHandle,
 IN EFI_HANDLE DeviceHandle OPTIONAL
);

Parameters
GcdAllocateType

The type of allocation to perform. Type EFI_GCD_ALLOCATE_TYPE is defined in
AllocateMemorySpace().

GcdIoType

The type of I/O resource being allocated. Type EFI_GCD_IO_TYPE is defined in
AddIoSpace(). The only types allowed are EfiGcdIoTypeNonExistent,
EfiGcdIoTypeReserved, and EfiGcdIoTypeIo.

Alignment

The log base 2 of the boundary that BaseAddress must be aligned on output. For
example, a value of 0 means that BaseAddress can be aligned on any byte
boundary, and a value of 12 means that BaseAddress must be aligned on a 4 KiB
boundary.

Length

The size in bytes of the I/O resource range that is being allocated.

BaseAddress

A pointer to a physical address. On input, the way in which the address is used
depends on the value of Type. See "Description" below for more information. On
output the address is set to the base of the I/O resource range that was allocated. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

ImageHandle

The image handle of the agent that is allocating the I/O resource. Type EFI_HANDLE
is defined in InstallProtocolInterface() in the v.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 63

DeviceHandle

The device handle for which the I/O resource is being allocated. If the I/O resource is
not being allocated for a device that has an associated device handle, then this
parameter is optional and may be NULL. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The AllocateIoSpace() function searches for an I/O range of type GcdIoType and converts
the discovered I/O range from the unallocated state to the allocated state. The parameters
GcdAllocateType, Alignment, Length, and BaseAddress specify the manner in which
the GCD I/O space map is searched. If an I/O range is found that meets the search criteria, then the
base address of the I/O range is returned in BaseAddress, and EFI_SUCCESS is returned.
ImageHandle and DeviceHandle are used to convert the I/O range from the unallocated state
to the allocated state. ImageHandle identifies the image that is calling AllocateIoSpace(),
and DeviceHandle identifies the device that ImageHandle is managing that requires the I/O
range. DeviceHandle is optional, because the device that ImageHandle is managing might
not have an associated device handle. If an I/O range meeting the search criteria cannot be found,
then EFI_NOT_FOUND is returned.

If GcdAllocateType is EfiGcdAllocateAnySearchBottomUp, then the GCD I/O space
map is searched from the lowest address up to the highest address looking for unallocated I/O ranges
of Length bytes beginning on a boundary specified by Alignment that matches GcdIoType.

If GcdAllocateType is EfiGcdAllocateAnySearchTopDown, then the GCD I/O space
map is searched from the highest address down to the lowest address looking for unallocated I/O
ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchBottomUp, then the GCD
I/O space map is searched from the lowest address up to BaseAddress looking for unallocated
I/O ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateMaxAddressSearchTopDown, then the GCD
I/O space map is searched from BaseAddress down to the lowest address looking for unallocated
I/O ranges of Length bytes beginning on a boundary specified by Alignment that matches
GcdIoType.

If GcdAllocateType is EfiGcdAllocateAddress, then the GCD I/O space map is checked
to see if the I/O range starting at BaseAddress for Length bytes is of type GcdIoType,
unallocated, and begins on a the boundary specified by Alignment.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If BaseAddress is NULL, then EFI_INVALID_PARAMETER is returned.

If ImageHandle is NULL, then EFI_INVALID_PARAMETER is returned.

If GcdIoType is not EfiGcdIoTypeNonExistent, EfiGcdIoTypeReserved, or
EfiGcdIoTypeIo, then EFI_INVALID_PARAMETER is returned.

Services - DXE Services Platform Initialization Specification, Vol. 2

64 May 2017 Version 1.6

If GcdAlocateType is less than zero, or GcdAllocateType is greater than or equal to
EfiGcdMaxAllocateType then EFI_INVALID_PARAMETER is returned.

If there are not enough system resources available to allocate the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The I/O resource was allocated from the global coherency domain
of the processor.

EFI_INVALID_PARAMETER GcdAllocateType is invalid.

EFI_INVALID_PARAMETER GcdIoType is invalid.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER BaseAddress is NULL.

EFI_INVALID_PARAMETER ImageHandle is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the I/O
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The I/O resource request could not be satisfied.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 65

FreeIoSpace()

Summary
This service frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency domain
of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FREE_IO_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

The physical address that is the start address of the I/O resource being freed. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the I/O resource range that is being freed.

Description
The FreeIoSpace() function converts the I/O range specified by BaseAddress and Length
from the allocated state to the unallocated state. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were not allocated
on previous calls to AllocateIoSpace(), then EFI_NOT_FOUND is returned.

If there are not enough system resources available to free the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned

EFI_SUCCESS The I/O resource was freed from the global coherency domain of the
processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O resource

range specified by BaseAddress and Length.

Services - DXE Services Platform Initialization Specification, Vol. 2

66 May 2017 Version 1.6

EFI_NOT_FOUND The I/O resource range specified by BaseAddress and Length

was not allocated with previous calls to AllocateIoSpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the I/O resource from
the global coherency domain of the processor.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 67

RemoveIoSpace()

Summary
This service removes reserved I/O, or I/O resources from the global coherency domain of the
processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_REMOVE_IO_SPACE) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length
);

Parameters
BaseAddress

A pointer to a physical address that is the start address of the I/O resource being
removed. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the UEFI 2.0 specification.

Length

The size in bytes of the I/O resource that is being removed.

Description
The RemoveIoSpace() function converts the I/O range specified by BaseAddress and
Length to the I/O type EfiGcdIoTypeNonExistent. If this conversion is successful, then
EFI_SUCCESS is returned.

If the GCD I/O space map contains adjacent I/O regions that only differ in their base address and
length fields, then those adjacent I/O regions must be merged into a single I/O descriptor.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the I/O range specified by BaseAddress
and Length, then EFI_UNSUPPORTED is returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were not added to
the GCD I/O space map with previous calls to AddIoSpace(), then EFI_NOT_FOUND is
returned.

If one or more bytes of the I/O range specified by BaseAddress and Length were allocated from
the GCD I/O space map with previous calls to AllocateIoSpace(), then
EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to remove the I/O range, then
EFI_OUT_OF_RESOURCES is returned.

Services - DXE Services Platform Initialization Specification, Vol. 2

68 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The I/O resource was removed from the global coherency domain
of the processor.

EFI_INVALID_PARAMETER Length is zero.

EFI_UNSUPPORTED The processor does not support one or more bytes of the I/O

resource range specified by BaseAddress and Length.

EFI_NOT_FOUND One or more bytes of the I/O resource range specified by

BaseAddress and Length was not added with previous

calls to AddIoSpace().

EFI_ACCESS_DENIED One or more bytes of the I/O resource range specified by

BaseAddress and Length has been allocated with

AllocateIoSpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to remove the I/O
resource from the global coherency domain of the processor.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 69

GetIoSpaceDescriptor()

Summary
This service retrieves the descriptor for an I/O region containing a specified address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_IO_SPACE_DESCRIPTOR) (
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 OUT EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor
);

Parameters
BaseAddress

The physical address that is the start address of an I/O region. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

Descriptor

A pointer to a caller allocated descriptor. On return, the descriptor describes the I/O
region containing BaseAddress. Type EFI_GCD_IO_SPACE_DESCRIPTOR is
defined in “Related Definitions” below.

Description
The GetIoSpaceDescriptor() function retrieves the descriptor for the I/O region that
contains the address specified by BaseAddress. If an I/O region containing BaseAddress is
found, then the descriptor for that I/O region is returned in the caller allocated structure
Descriptor, and EFI_SUCCESS is returned.

If Descriptor is NULL, then EFI_INVALID_PARAMETER is returned.

If an I/O region containing BaseAddress is not present in the GCD I/O space map, then
EFI_NOT_FOUND is returned.

Related Definitions
//***
// EFI_GCD_IO_SPACE_DESCRIPTOR
//***
typedef struct {
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
 EFI_GCD_IO_TYPE GcdIoType;
 EFI_HANDLE ImageHandle;
 EFI_HANDLE DeviceHandle;
} EFI_GCD_IO_SPACE_DESCRIPTOR;

Services - DXE Services Platform Initialization Specification, Vol. 2

70 May 2017 Version 1.6

Parameters
BaseAddress

Physical address of the first byte in the I/O region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

Number of bytes in the I/O region.

GcdIoType

Type of the I/O region. Type EFI_GCD_IO_TYPE is defined in the
AddIoSpace() function description.

ImageHandle

The image handle of the agent that allocated the I/O resource described by
PhysicalStart and NumberOfBytes. If this field is NULL, then the I/O
resource is not currently allocated. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

DeviceHandle

The device handle for which the I/O resource has been allocated. If ImageHandle
is NULL, then the I/O resource is not currently allocated. If this field is NULL, then
the I/O resource is not associated with a device that is described by a device handle.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
2.0 specification.

Status Codes Returned

EFI_SUCCESS The descriptor for the I/O resource region containing

BaseAddress was returned in Descriptor.

EFI_INVALID_PARAMETER Descriptor is NULL.

EFI_NOT_FOUND An I/O resource range containing BaseAddress was not found.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 71

GetIoSpaceMap()

Summary
Returns a map of the I/O resources in the global coherency domain of the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_IO_SPACE_MAP) (
 OUT UINTN *NumberOfDescriptors,
 OUT EFI_GCD_IO_SPACE_DESCRIPTOR **IoSpaceMap
);

Parameters
NumberOfDescriptors

A pointer to number of descriptors returned in the IoSpaceMap buffer. This
parameter is ignored on input, and is set to the number of descriptors in the
IoSpaceMap buffer on output.

IoSpaceMap

A pointer to the array of EFI_GCD_IO_SPACE_DESCRIPTORs. Type
EFI_GCD_IO_SPACE_DESCRIPTOR is defined in
GetIoSpaceDescriptor(). This buffer is allocated with AllocatePool(),
so it is the caller’s responsibility to free this buffer with a call to FreePool(). The
number of descriptors in IoSpaceMap is returned in NumberOfDescriptors.

Description
The GetIoSpaceMap() function retrieves the entire GCD I/O space map. If there are no errors
retrieving the GCD I/O space map, then the number of descriptors in the GCD I/O space map is
returned in NumberOfDescriptors, the array of descriptors from the GCD I/O space map is
allocated with AllocatePool(), the descriptors are transferred into IoSpaceMap, and
EFI_SUCCESS is returned.

If NumberOfDescriptors is NULL, then EFI_INVALID_PARAMETER is returned.

If IoSpaceMap is NULL, then EFI_INVALID_PARAMETER is returned.

If there are not enough resources to allocate IoSpaceMap, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_SUCCESS The I/O space map was returned in the IoSpaceMap buffer, and

the number of descriptors in IoSpaceMap was returned in

NumberOfDescriptors.

EFI_INVALID_PARAMETER NumberOfDescriptors is NULL.

EFI_INVALID_PARAMETER IoSpaceMap is NULL.

Services - DXE Services Platform Initialization Specification, Vol. 2

72 May 2017 Version 1.6

EFI_OUT_OF_RESOURCES There are not enough resources to allocate IoSpaceMap.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 73

7.3 Dispatcher Services
The functions that make up the Dispatcher Services are used during preboot to schedule drivers for
execution. A driver may optionally have the Schedule On Request (SOR) flag set in the driver’s
dependency expression. Drivers with this bit set will not be loaded and invoked until they are
explicitly requested to do so. Files loaded from firmware volumes may be placed in the untrusted
state by the Security Architectural Protocol. The services in this section provide this ability to clear
the SOR flag in a DXE driver’s dependency expression and the ability to promote a file from a
firmware volume from the untrusted to the trusted state. Table 12 lists the Dispatcher Services.

Table 12. Dispatcher Boot Type Services

Name Description

Dispatch Loads and executed DXE drivers from firmware volumes.

Schedule Clears the Schedule on Request (SOR) flag for a component that is
stored in a firmware volume.

Trust Changes the state of a file stored in a firmware volume from the
untrusted state to the trusted state.

ProcessFirmwareVolume Creates a firmware volume handle for a firmware volume that is
present in system memory.

Services - DXE Services Platform Initialization Specification, Vol. 2

74 May 2017 Version 1.6

Dispatch()

Summary
Loads and executes DXE drivers from firmware volumes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISPATCH) (
 VOID
);

Description
The Dispatch() function searches for DXE drivers in firmware volumes that have been installed
since the last time the Dispatch() service was called. It then evaluates the dependency
expressions of all the DXE drivers and loads and executes those DXE drivers whose dependency
expression evaluate to TRUE. This service must interact with the Security Architectural Protocol to
authenticate DXE drivers before they are executed. This process is continued until no more DXE
drivers can be executed. If one or more DXE drivers are executed, then EFI_SUCCESS is returned.
If no DXE drivers are executed, EFI_NOT_FOUND is returned.

If an attempt is made to invoke the DXE Dispatcher recursively, then no action is performed by the
Dispatch() service, and EFI_ALREADY_STARTED is returned. In this case, because the DXE
Dispatcher is already running, it is not necessary to invoke it again. All the DXE drivers that can be
dispatched will be dispatched.

Status Codes Returned

EFI_SUCCESS One or more DXE driver were dispatched.

EFI_NOT_FOUND No DXE drivers were dispatched.

EFI_ALREADY_STARTED An attempt is being made to start the DXE Dispatcher recursively.
Thus no action was taken.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 75

Schedule()

Summary
Clears the Schedule on Request (SOR) flag for a component that is stored in a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SCHEDULE) (
 IN EFI_HANDLE FirmwareVolumeHandle,
 IN CONST EFI_GUID *FileName
);

Parameters
FirmwareVolumeHandle

The handle of the firmware volume that contains the file specified by FileName.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
2.0 specification.

FileName

A pointer to the name of the file in a firmware volume. This is the file that should
have its SOR bit cleared. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The Schedule() function searches the dispatcher queues for the driver specified by
FirmwareVolumeHandle and FileName. If this driver cannot be found, then
EFI_NOT_FOUND is returned. If the driver is found, and its Schedule On Request (SOR) flag is not
set in its dependency expression, then EFI_NOT_FOUND is returned. If the driver is found, and its
SOR bit is set in its dependency expression, then the SOR flag is cleared, and EFI_SUCCESS is
returned. After the SOR flag is cleared, the driver will be dispatched if the remaining portions of its
dependency expression are satisfied. This service does not automatically invoke the DXE
Dispatcher. Instead, the Dispatch() service must be used to invoke the DXE Dispatcher.

Status Codes Returned

EFI_SUCCESS The DXE driver was found and its SOR bit was cleared.

EFI_NOT_FOUND The DXE driver does not exist, or the DXE driver exists and its SOR
bit is not set.

Services - DXE Services Platform Initialization Specification, Vol. 2

76 May 2017 Version 1.6

Trust()

Summary
Promotes a file stored in a firmware volume from the untrusted to the trusted state. Only the
Security Architectural Protocol can place a file in the untrusted state. A platform specific
component may choose to use this service to promote a previously untrusted file to the trusted state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TRUST) (
 IN EFI_HANDLE FirmwareVolumeHandle,
 IN CONST EFI_GUID *FileName
);

Parameters
FirmwareVolumeHandle

The handle of the firmware volume that contains the file specified by FileName.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
2.0 specification.

FileName

A pointer to the name of the file in a firmware volume. This is the file that should be
promoted from the untrusted state to the trusted state. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The Trust() function promotes the file specified by FirmwareVolumeHandle and
FileName from the untrusted state to the trusted state. If this file is not found in the queue of
untrusted files, then EFI_NOT_FOUND is returned. If the driver is found, and its state is changed to
trusted and EFI_SUCCESS is returned. This service does not automatically invoke the DXE
Dispatcher. Instead, the Dispatch() service must be used to invoke the DXE Dispatcher.

Status Codes Returned

EFI_SUCCESS The file was found in the untrusted state, and it was promoted to the
trusted state.

EFI_NOT_FOUND The file was not found in the untrusted state.

Platform Initialization Specification, Vol. 2 Services - DXE Services

Version 1.6 May 2017 77

ProcessFirmwareVolume()

Summary
Creates a firmware volume handle for a firmware volume that is present in system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PROCESS_FIRMWARE_VOLUME) (
 IN CONST VOID *FirmwareVolumeHeader,
 IN UINTN Size,
 OUT EFI_HANDLE *FirmwareVolumeHandle
);

Parameters
FirmwareVolumeHeader

A pointer to the header of the firmware volume.

Size

The size, in bytes, of the firmware volume.

FirmwareVolumeHandle

On output, a pointer to the created handle. This service will install the
EFI_FIRMWARE_VOLUME2_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
for the of the firmware volume that is described by FirmwareVolumeHeader and
Size. Type EFI_HANDLE is defined in InstallProtocolInterface() in
the UEFI 2.0 specification.

Description
The ProcessFirmwareVolume() function examines the contents of the buffer specified by
FirmwareVolumeHeader and Size. If the buffer contains a valid firmware volume, then a
new handle is created, and the EFI_FIRMWARE_VOLUME2_PROTOCOL and a memory-mapped
EFI_DEVICE_PATH_PROTOCOL are installed onto the new handle. The new handle is returned
in FirmwareVolumeHandle.

Status Codes Returned

EFI_SUCCESS The EFI_FIRMWARE_VOLUME2_PROTOCOL and

EFI_DEVICE_PATH_PROTOCOL were installed onto

FirmwareVolumeHandle for the firmware volume described

by FirmwareVolumeHeader and Size.

EFI_VOLUME_CORRUPTED The firmware volume described by FirmwareVolumeHeader

and Size is corrupted.

Services - DXE Services Platform Initialization Specification, Vol. 2

78 May 2017 Version 1.6

EFI_OUT_OF_RESOURCES There are not enough system resources available to produce the

EFI_FIRMWARE_VOLUME2_PROTOCOL and

EFI_DEVICE_PATH_PROTOCOL for the firmware volume

described by FirmwareVolumeHeader and Size.

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 79

8 Protocols - Device Path Protocol

8.1 Introduction
This section adds two device path node types that describe files stored in firmware volumes:

• Firmware File Media Device Path

• Firmware Volume Media Device Path

These device path nodes are used by a DXE-aware updated UEFI Boot Service LoadImage() to
load UEFI images from firmware volumes. This new capability is used by the DXE Dispatcher to
load DXE drivers from firmware volumes.

8.2 Firmware Volume Media Device Path
This type is used by systems implementing the PI architecture specifications to describe a firmware
volume.

Table 13. Firmware Volume Media Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub Type 7 – Firmware Volume Media
Device Path

Length 2 2 Length of this structure in bytes. Length is
20 bytes.

Firmware Volume
Name

4 16 Firmware volume name. Type EFI_GUID.

Table 14. Firmware Volume Device Node Text Representation

Device Node Type/Subtype/Other Description

Type: 4 (Media Device Path)
Sub-Type: 7 (Firmware Volume)

Fv(fv-guid)

The fv-guid is a GUID.

Protocols - Device Path Protocol Platform Initialization Specification, Vol. 2

80 May 2017 Version 1.6

8.3 Firmware File Media Device Path
This type is used by systems implementing the PI architecture specifications to describe a firmware
file in a firmware volume.

Table 15. Firmware File Media Device Path

Mnemonic Byte Offset Byte Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub Type 6 – Firmware File Media Device Path

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Firmware File Name 4 16 Firmware file name. Type EFI_GUID.

Table 16. Firmware Volume File Device Node Text Representation

Device Node Type/Subtype/Other Description

Type: 4 (Media Device Path)
Sub-Type: 6 (Firmware File)

FvFile(fvfile-guid)

The fvfile-guid is a GUID.

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 81

9 DXE Foundation

9.1 Introduction
The DXE Foundation is designed to be completely portable with no processor, chipset, or platform
dependencies. This lack of dependencies is accomplished by designing in several features:

• The DXE Foundation depends only upon a HOB list for its initial state.
This means that the DXE Foundation does not depend on any services from a previous phase, so
all the prior phases can be unloaded once the HOB list is passed to the DXE Foundation.

• The DXE Foundation does not contain any hard-coded addresses.
This means that the DXE Foundation can be loaded anywhere in physical memory, and it can
function correctly no matter where physical memory or where Firmware Volumes (FVs) are
located in the processor’s physical address space.

• The DXE Foundation does not contain any processor-specific, chipset-specific, or platform-
specific information.
Instead, the DXE Foundation is abstracted from the system hardware through a set of DXE
Architectural Protocol interfaces. These architectural protocol interfaces are produced by a set
of DXE drivers that are invoked by the DXE Dispatcher.

The DXE Foundation must produce the UEFI System Table and its associated set of UEFI Boot
Services and UEFI Runtime Services. The DXE Foundation also contains the DXE Dispatcher
whose main purpose is to discover and execute DXE drivers stored in FVs. The execution order of
DXE drivers is determined by a combination of the optional a priori file and the set of dependency
expressions that are associated with the DXE drivers. The FV file format allows dependency
expressions to be packaged with the executable DXE driver image. DXE drivers utilize a PE/COFF
image format, so the DXE Dispatcher must also contain a PE/COFF loader to load and execute DXE
drivers.

The GetMemoryMap() implementation must include all GCD map entries of types
EfiGcdMemoryTypeReserved and EfiGcdMemoryTypeMemoryMappedIo into the UEFI memory
map.

9.2 Hand-Off Block (HOB) List
The Hand-Off Block (HOB) list contains all the information that the DXE Foundation requires to
produce its memory-based services. The HOB list contains the following:

• Information on the boot mode and the memory that was allocated in the previous phase.

• A description of the system memory that was initialized by the previous phase along with
information about the firmware devices that were discovered in the previous phase.

The firmware device information includes the system memory locations of the firmware devices and
system memory locations of the firmware volumes that are contained within those firmware devices.
The firmware volumes may contain DXE drivers, and the DXE Dispatcher is responsible for loading
and executing the DXE drivers that are discovered in those firmware volumes.

DXE Foundation Platform Initialization Specification, Vol. 2

82 May 2017 Version 1.6

The I/O resources and memory-mapped I/O resources that were discovered in the previous phase.

The HOB list must be treated as a read-only data structure. It conveys the state of the system at the
time the DXE Foundation is started. The DXE Foundation and DXE drivers should never modify
the contents of the HOB list.

Figure 4 shows an example HOB list. The first HOB list entry is always the Phase Handoff
Information Table (PHIT) HOB that contains the boot mode and a description of the memory
regions used by the previous phase. The rest of the HOB list entries can appear in any order. This
example shows the various HOB types that are supported. The most important ones to the DXE
Foundation are the HOBs that describe system memory and the firmware volumes. A HOB list is
terminated by an end of list HOB. There is one additional HOB type that is not shown. This is a
GUIDed HOB that allows a module from the previous phase to pass private data to a DXE driver.
Only the DXE driver that recognizes the GUID value in the GUIDed HOB will be able to understand
the data in the GUIDed HOB. The DXE Foundation does not consume any GUIDed HOBs. The
HOB entries are all designed to be position independent. This allows the DXE Foundation to
relocate the HOB list to a different location if the DXE Foundation does not like where the previous
phase placed the HOB list in memory.

See “HOB Translations” on page 94 for more information on HOB types.

Figure 4. HOB List

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 83

9.3 DXE Foundation Data Structures
The DXE Foundation produces the UEFI System Table, and the UEFI System Table is consumed by
every DXE driver and executable image invoked by the DXE Dispatcher and BDS. It contains all
the information required for these components to utilize the services provided by the DXE
Foundation and the services provided by any previously loaded DXE driver. Figure 5 shows the
various components that are available through the UEFI System Table.

System Configuration Table

ACPI Table

UEFI
System
Table

UEFI Boot Services Table

UEFI Runtime Services Table

Variable Services

Real Time Clock Services

Reset Services

Status Code Services

Virtual Memory Services

Task Priority Level Services

Memory Services

Event and Timer Services

Protocol Handler Services

Image Services

Driver Support Services

Global Coherency Domain Services

SMBIOS Table

…

SAL System Table

Input Console

Active Consoles

Output Console

Standard Error Console

Version Information

UEFI Specification Version

Firmware Vendor

Firmware Revision

Handle Database Protocol InterfaceProtocol InterfaceProtocol InterfaceProtocol InterfaceProtocol InterfaceProtocol Interface

Boot Services and Structures

Only available prior to OS runtime

Runtime Services and Structures

Available before and during OS runtime

DXE Services Table

Dispatcher Services

DXE Services Table

HOB List

Figure 5. UEFI System Table and Related Components

The DXE Foundation produces the UEFI Boot Services, UEFI Runtime Services, and DXE Services
with the aide of the DXE Architectural Protocols. The UEFI System Table also provides access to
all the active console devices in the platform and the set of UEFI Configuration Tables. The UEFI
Configuration Tables are an extensible list of tables that describe the configuration of the platform.
Today, this includes pointers to tables such as DXE Services, the HOB list, ACPI table, SMBIOS
table, and the SAL System Table. This list may be expanded in the future as new table types are
defined. Also, through the use of the Protocol Handle Services in the UEFI Boot Services Table,
any executable image can access the handle database and any of the protocol interfaces that have
been registered by DXE drivers.

When the transition to the OS runtime is performed, the handle database, active consoles, UEFI Boot
Services, DXE Services, and services provided by boot service DXE drivers are terminated. This
frees up memory for use by the OS. This only leaves the UEFI System Table, UEFI Runtime

DXE Foundation Platform Initialization Specification, Vol. 2

84 May 2017 Version 1.6

Services Table, and the UEFI Configuration Tables available in the OS runtime environment. There
is also the option of converting all of the UEFI Runtime Services from a physical address space to an
OS-specific virtual address space. This address space conversion may be performed only once.

9.4 Required DXE Foundation Components
Figure 6 shows the components that a DXE Foundation must contain. A detailed description of
these component follows.

DXE Foundation

Protocol Handler
Services

Memory
Services

Event and Timer
Services

Image
Services

UEFI Boot Services DXE Services

Global Conherency
Domain Services

Dispatcher Services

PE/COFF
Loader

HOB
Parser

DXE Dispatcher

Dependency
Expression
Evaluator

Flush Instruction
Cache

Switch
Stacks

SetJump
LongJump

Firmware
Volume
Block
Driver

(Read Only)
(Memory
Mapped)

Section
Extraction
Protocol

Driver

Firmware Volume
Driver

Decompress
Driver

Task Priority
Services

Driver Support
Services

Figure 6. DXE Foundation Components

A DXE Foundation must have the following components:

• An implementation of the UEFI Boot Services. UEFI Boot Services Dependencies describes
which services can be made available based on the HOB list alone and which services depend on
the presence of architectural protocols.

• An implementation of the DXE Services. DXE Services Dependencies describes which services
can be made available based on the HOB list alone and which services depend on the presence
of architectural protocols.

• A HOB Parser that consumes the HOB list specified by HobStart and initializes the UEFI
memory map, GCD memory space map, and GCD I/O space map. See section if for details on
the translation from HOBs to the maps maintained by the DXE Foundation

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 85

• An implementation if a DXE Dispatcher that includes a dependency expression evaluator. See
“DXE Dispatcher” on page 99 for a detailed description of this component.

• A Firmware Volume driver that produces the EFI_FIRMWARE_VOLUME2_PROTOCOL for
every firmware volume described in the HOB list. This component is used by the DXE
Dispatcher to search for a priori files and DXE drivers in firmware volumes. See the Platform
Initialization Specification, Volume 3, for the definition of the Firmware Volume Protocol.

• An instance of the EFI_DECOMPRESS_PROTOCOL. See the UEFI 2.0 specification for the
detailed requirements for this component. This component is required by the DXE Dispatcher to
read compressed sections from DXE drivers stored in firmware volumes. It is expected that
most DXE drivers will utilize compressed sections to reduce the size of firmware volumes.

• The DXE Dispatcher uses the Boot Service StartImage() to invoke a DXE driver. The
Boot Services StartImage() and Exit() work together to hand control to a DXE driver
and return control to the DXE Foundation. Since the Boot Service Exit() can be called for
anywhere inside a DXE driver, the Boot Service Exit() is required to rebalance the stack, so it
is in the same state it was in when the Boot Service Start() was called. This is typically
implemented using the processor-specific functions called SetJump() and LongJump().
Since the DXE Foundation must use the Boot Services StartImage() and Exit() to
invoke DXE drivers, the routines SetJump() and LongJump() are required by the DXE
Foundation.

• A PE/COFF loader that supports PE32+ image types. This PE/COFF loader is used to
implement the UEFI Boot Service LoadImage(). The DXE Dispatcher uses the Boot Service
LoadImage() to load DXE drivers into system memory. If the processor that the DXE
Foundation is compiled for requires an instruction cache when an image is loaded into system
memory, then an instruction cache flush routine is also required in the DXE Foundation.

• The phase that executed prior to DXE will initialize a stack for the DXE Foundation to use. This
stack is described in the HOB list. If the size of this stack does not meet the DXE Foundation’s
minimum stack size requirement or the stack is not located in memory region that is suitable to
the DXE Foundation, then the DXE Foundation will have to allocate a new stack that does meet
the minimum size and location requirements. As a result, the DXE Foundation must contain a
stack switching routine for the processor type that the DXE Foundation is compiled.

DXE Foundation Platform Initialization Specification, Vol. 2

86 May 2017 Version 1.6

9.5 Handing Control to DXE Dispatcher
The DXE Foundation must complete the following tasks before handing control to the DXE
Dispatcher. The order that these tasks are performed is implementation dependent.

• Use the HOB list to initialize the GCD memory space map, the GCD I/O space map, and UEFI
memory map.

• Allocate the UEFI Boot Services Table from EFI_BOOT_SERVICES_MEMORY and initialize
the services that only require system memory to function correctly. The remaining UEFI Boot
Services must be filled in with a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the DXE Services Table from EFI_BOOT_SERVICES_MEMORY and initialize the
services that only require system memory to function correctly. The remaining DXE Services
must be filled in with a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the UEFI Runtime Services Table from EFI_RUNTIME_SERVICES_MEMORY and
initialize all the services to a service that returns EFI_NOT_AVAILABLE_YET.

• Allocate the UEFI System Table from EFI_RUNTIME_SERVICES_MEMORY and initialize all
the fields.

• Build an image handle and EFI_LOADED_IMAGE_PROTOCOL instance for the DXE
Foundation itself and add it to the handle database.

• If the HOB list is not in a suitable location in memory, then relocate the HOB list to a more
suitable location.

• Add the DXE Services Table to the UEFI Configuration Table.

• Add the HOB list to the UEFI Configuration Table.

• Create a notification event for each of the DXE Architectural Protocols. These events will be
signaled when a DXE driver installs a DXE Architectural Protocol in the handle database. The
DXE Foundation must have a notification function associated with each of these events, so the
full complement of UEFI Boot Services, UEFI Runtime Services, and DXE Services can be
produced. Each of the notification functions should compute the 32-bit CRC of the UEFI Boot
Services Table, UEFI Runtime Services Table, and the DXE Services Table if the
CalculateCrc32() Boot Services is available.

• Initialize the Decompress Protocol driver that must be available before the DXE Dispatcher can
process compressed sections.

• Produce firmware volume handles for the one or more firmware volumes that are described in
the HOB list.

Once these tasks have been completed, the DXE Foundation is ready to load and execute DXE
drivers stored in firmware volumes. This execution is done by handing control to the DXE
Dispatcher. Once the DXE Dispatcher has finished dispatching all the DXE drivers that it can,
control is then passed to the BDS Architectural Protocol. If for some reason, any of the DXE
Architectural Protocols have not been produced by the DXE drivers, then the system is in an
unusable state and the DXE Foundation must halt. Otherwise, control is handed to the BDS
Architectural Protocol. The BDS Architectural Protocol is responsible for transferring control to an
operating system or system utility.

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 87

9.6 DXE Foundation Entry Point

9.6.1 DXE_ENTRY_POINT
The only parameter passed to the DXE Foundation is a pointer to the HOB list. The DXE
Foundation and all the DXE drivers must treat the HOB list as read-only data.

The function DXE_ENTRY_POINT is the main entry point to the DXE Foundation.

DXE_ENTRY_POINT

Summary
This function is the main entry point to the DXE Foundation.

Prototype
typedef
VOID
(EFIAPI *DXE_ENTRY_POINT) (
 IN CONST VOID *HobStart
);

Parameters
HobStart

A pointer to the HOB list.

Description
This function is the entry point to the DXE Foundation. The PEI phase, which executes just before
DXE, is responsible for loading and invoking the DXE Foundation in system memory. The only
parameter that is passed to the DXE Foundation is HobStart. This parameter is a pointer to the
HOB list that describes the system state at the hand-off to the DXE Foundation. At a minimum, this
system state must include the following:

• PHIT HOB

• CPU HOB

• Description of system memory

• Description of one or more firmware volumes

The DXE Foundation is also guaranteed that only one processor is running and that the processor is
running with interrupts disabled. The implementation of the DXE Foundation must not make any
assumptions about where the DXE Foundation will be loaded or where the stack is located. In
general, the DXE Foundation should make as few assumptions about the state of the system as
possible. This lack of assumptions will allow the DXE Foundation to be portable to the widest
variety of system architectures.

DXE Foundation Platform Initialization Specification, Vol. 2

88 May 2017 Version 1.6

9.7 Dependencies

9.7.1 UEFI Boot Services Dependencies
Table 17 lists all the UEFI Boot Services and the components upon which each of these services
depend. The topics that follow describe what responsibilities the DXE Foundation has in producing
the services that depend on the presence of DXE Architectural Protocols.

Table 17. Boot Service Dependencies

Name Dependency

CreateEvent HOB list

CloseEvent HOB list

SignalEvent HOB list

WaitForEvent HOB list

CheckEvent HOB list

SetTimer Timer Architectural Protocol

RaiseTPL CPU Architectural Protocol

RestoreTPL CPU Architectural Protocol

AllocatePages HOB list

FreePages HOB list

GetMemoryMap HOB list and GetMemorySpaceMap

AllocatePool HOB list

FreePool HOB list

InstallProtocolInterface HOB list

UninstallProtocolInterface HOB list

ReinstallProtocolInterface HOB list

RegisterProtocolNotify HOB list

LocateHandle HOB list

HandleProtocol HOB list

LocateDevicePath HOB list

OpenProtocol HOB list

CloseProtocol HOB list

OpenProtocolInformation HOB list

ConnectController HOB list

DisconnectController HOB list

ProtocolsPerHandle HOB list

LocateHandleBuffer HOB list

LocateProtocol HOB list

InstallMultipleProtocolInterfaces HOB list

UninstallMultipleProtocolInterfaces HOB list

LoadImage HOB list

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 89

9.7.1.1 SetTimer()
When the DXE Foundation is notified that the EFI_TIMER_ARCH_PROTOCOL has been installed,
then the Boot Service SetTimer() can be made available. The DXE Foundation can use the
services of the EFI_TIMER_ARCH_PROTOCOL to initialize and hook a heartbeat timer interrupt
for the DXE Foundation. The DXE Foundation can use this heartbeat timer interrupt to determine
when to signal on-shot and periodic timer events. This service may be called before the
EFI_TIMER_ARCH_PROTOCOL is installed. However, since a heartbeat timer is not running yet,
time is essentially frozen at zero. This means that no periodic or one-shot timer events will fire until
the EFI_TIMER_ARCH_PROTOCOL is installed.

9.7.1.2 RaiseTPL()
The DXE Foundation must produce the Boot Service RaiseTPL() when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full
version of the Boot Service RaiseTPL() can be made available. When an attempt is made to raise
the TPL level to EFI_TPL_HIGH_LEVEL or higher, then the DXE Foundation should use the
services of the EFI_CPU_ARCH_PROTOCOL to disable interrupts.

9.7.1.3 RestoreTPL()
The DXE Foundation must produce the Boot Service RestoreTPL() when the memory-based
services are initialized. The DXE Foundation is guaranteed to be handed control of the platform
with interrupts disabled. Until the DXE Foundation installs a heartbeat timer interrupt and turns on
interrupts, this Boot Service can be a very simple function that always succeeds. When the DXE
Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed, then the full

StartImage HOB list

UnloadImage HOB list

EFI_IMAGE_ENTRY_POINT HOB list

Exit HOB list

ExitBootServices HOB list

SetWatchDogTimer Watchdog Architectural Protocol

Stall Metronome Architectural Protocol
Timer Architectural Protocol

CopyMem HOB list

SetMem HOB list

GetMemory Map HOB list

GetMemorySpaceMap GCD Service

GetNextMonotonicCount Monotonic Counter Architectural Protocol

InstallConfigurationTable HOB list

CalculateCrc32 Runtime Architectural Protocol

Name Dependency

DXE Foundation Platform Initialization Specification, Vol. 2

90 May 2017 Version 1.6

version of the Boot Service RestoreTPL() can be made available. When an attempt is made to
restore the TPL level to level below EFI_TPL_HIGH_LEVEL, then the DXE Foundation should
use the services of the EFI_CPU_ARCH_PROTOCOL to enable interrupts.

9.7.1.4 SetWatchdogTimer()
When the DXE Foundation is notified that the EFI_WATCHDOG_ARCH_PROTOCOL has been
installed, then the Boot Service SetWatchdogTimer() can be made available. The DXE
Foundation can use the services of the EFI_WATCHDOG_TIMER_ARCH_PROTOCOL to set the
amount of time before the system’s watchdog timer will expire.

9.7.1.5 Stall()
When the DXE Foundation is notified that the EFI_METRONOME_ARCH_PROTOCOL has been
installed, the DXE Foundation can produce a very simple version of the Boot Service Stall().
The granularity of the Boot Service Stall() will be based on the period of the
EFI_METRONOME_ARCH_PROTOCOL.

When the DXE Foundation is notified that the EFI_TIMER_ARCH_PROTOCOL has been installed,
the DXE Foundation can possibly produce a more accurate version of the Boot Service Stall().
This all depends on the periods of the EFI_METRONOME_ARCH_PROTOCOL and the period of the
EFI_TIMER_ARCH_PROTOCOL. The DXE Foundation should produce the Boot Service
Stall() using the most accurate time base available.

9.7.1.6 GetNextMonotonicCount()
When the DXE Foundation is notified that the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL
has been installed, then the Boot Service GetNextMonotonicCount() is available. The DXE
driver that produces the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL is responsible for
directly updating the GetNextMonotonicCount field of the UEFI Boot Services Table. The
DXE Foundation is only responsible for updating the 32-bit CRC of the UEFI Boot Services Table.

9.7.1.7 CalculateCrc32()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Boot Service CalculateCrc32() is available. The DXE driver that produces
the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
CalculateCrc32 field of the UEFI Boot Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Boot Services Table.

9.7.1.8 GetMemoryMap()
The GetMemoryMap() implementation must include into the UEFI memory map all GCD map
entries of types EfiGcdMemoryTypeReserved and EfiPersistentMemory, and all GCD
map entries of type EfiGcdMemoryTypeMemoryMappedIo that have
EFI_MEMORY_RUNTIME attribute set.

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 91

9.7.2 UEFI Runtime Services Dependencies
Table 18 lists all the UEFI Runtime Services and the components upon which each of these services
depend. The topics that follow describe what responsibilities the DXE Foundation has in producing
the services that depend on the presence of DXE Architectural Protocols.

Table 18. Runtime Service Dependencies

Name Dependency

GetVariable Variable Architectural Protocol

GetNextVariableName Variable Architectural Protocol

SetVariable Variable Architectural Protocol / Variable Write Architectural Protocol

GetTime Real Time Clock Architectural Protocol

SetTime Real Time Clock Architectural Protocol

GetWakeupTime Real Time Clock Architectural Protocol

SetWakeupTime Real Time Clock Architectural Protocol

SetVirtualAddressMap Runtime Architectural Protocol

ConvertPointer Runtime Architectural Protocol

ResetSystem Reset Architectural Protocol

GetNextHighMonotonicCount Monotonic Counter Architectural Protocol

UpdateCapsule Capsule Header Protocol

QueryCapsuleCapabilities Capsule Header Protocol

9.7.2.1 GetVariable()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service GetVariable() is available. The DXE driver that produces
the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the GetVariable
field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for updating
the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.2 GetNextVariableName()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service GetNextVariableName() is available. The DXE driver
that produces the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the
GetNextVariableName field of the UEFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.3 SetVariable()
When the DXE Foundation is notified that the EFI_VARIABLE_ARCH_PROTOCOL has been
installed, then the Runtime Service SetVariable() is available. The DXE driver that produces
the EFI_VARIABLE_ARCH_PROTOCOL is responsible for directly updating the SetVariable
field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for updating
the 32-bit CRC of the UEFI Runtime Services Table. The EFI_VARIABLE_ARCH_PROTOCOL is

DXE Foundation Platform Initialization Specification, Vol. 2

92 May 2017 Version 1.6

required to provide read-only access to all environment variables and write access to volatile
environment variables.

When the DXE Foundation is notified that the EFI_VARIABLE_WRITE_ARCH_PROTOCOL has
been installed, then write access to nonvolatile environment variables will also be available. If an
attempt is made to call this function for a nonvolatile environment variable prior to the installation of
EFI_VARIABLE_WRITE_ARCH_PROTOCOL, then EFI_NOT_AVAILABLE_YET must be
returned. This allows for flexibility in the design and implementation of the variables services in a
platform such that read access to environment variables can be provided very early in the DXE phase
and write access to nonvolatile environment variables can be provided later in the DXE phase.

9.7.2.4 GetTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service GetTime() is available. The DXE driver that produces
the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating the
GetTime field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for
updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.5 SetTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service SetTime() is available. The DXE driver that produces
the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating the
SetTime field of the UEFI Runtime Services Table. The DXE Foundation is only responsible for
updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.6 GetWakeupTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service GetWakeupTime() is available. The DXE driver that
produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating
the GetWakeupTime field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.7 SetWakeupTime()
When the DXE Foundation is notified that the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL has
been installed, then the Runtime Service SetWakeupTime() is available. The DXE driver that
produces the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL is responsible for directly updating
the SetWakeupTime field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.8 SetVirtualAddressMap()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Runtime Service SetVirtualAddressMap() is available. The DXE driver
that produces the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
SetVirtualAddressMap field of the UEFI Runtime Services Table. The DXE Foundation is
only responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 93

9.7.2.9 ConvertPointer()
When the DXE Foundation is notified that the EFI_RUNTIME_ARCH_PROTOCOL has been
installed, then the Runtime Service ConvertPointer() is available. The DXE driver that
produces the EFI_RUNTIME_ARCH_PROTOCOL is responsible for directly updating the
ConvertPointer field of the UEFI Runtime Services Table. The DXE Foundation is only
responsible for updating the 32-bit CRC of the UEFI Runtime Services Table.

9.7.2.10 ResetSystem()
When the DXE Foundation is notified that the EFI_RESET_ARCH_PROTOCOL has been
installed, then the Runtime Service ResetSystem() is available. The DXE driver that produces
the EFI_RESET_ARCH_PROTOCOL is responsible for directly updating the Reset field of the
UEFI Runtime Services Table. The DXE Foundation is only responsible for updating the 32-bit
CRC of the UEFI Runtime Services Table.

9.7.2.11 GetNextHighMonotonicCount()
When the DXE Foundation is notified that the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL
has been installed, then the Runtime Service GetNextHighMonotonicCount() is available.
The DXE driver that produces the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL is
responsible for directly updating the GetNextHighMonotonicCount field of the UEFI
Runtime Services Table. The DXE Foundation is only responsible for updating the 32-bit CRC of
the UEFI Runtime Services Table.

9.7.3 DXE Services Dependencies
Table 19 lists all the DXE Services and the components upon which each of these services depend.
The topics that follow describe what responsibilities the DXE Foundation has in producing the
services that depend on the presence of DXE Architectural Protocols.

Table 19. DXE Service Dependencies

Name Dependency

AddMemorySpace HOB list

AllocateMemorySpace HOB list

FreeMemorySpace HOB list

RemoveMemorySpace HOB list

GetMemorySpaceDescriptor CPU Architectural Protocol

SetMemorySpaceAttributes CPU Architectural Protocol

GetMemorySpaceMap CPU Architectural Protocol

AddIoSpace HOB list

AllocateIoSpace HOB list

FreeIoSpace HOB list

RemoveIoSpace HOB list

GetIoSpaceDescriptor HOB list

GetIoSpaceMap HOB list

DXE Foundation Platform Initialization Specification, Vol. 2

94 May 2017 Version 1.6

9.7.3.1 GetMemorySpaceDescriptor()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service GetMemorySpaceDescriptor() is fully functional. This function is
made available when the memory-based services are initialized. However, the Attributes field
of the EFI_GCD_MEMORY_SPACE_DESCRIPTOR is not valid until the
EFI_CPU_ARCH_PROTOCOL is installed.

9.7.3.2 SetMemorySpaceAttributes()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service SetMemorySpaceAttributes() can be made available. The DXE
Foundation can then use the SetMemoryAttributes() service of the
EFI_CPU_ARCH_PROTOCOL to implement the DXE Service
SetMemorySpaceAttributes().

9.7.3.3 GetMemorySpaceMap()
When the DXE Foundation is notified that the EFI_CPU_ARCH_PROTOCOL has been installed,
then the DXE Service GetMemorySpaceMap() is fully functional. This function is made
available when the memory-based services are initialized. However, the Attributes field of the
array of EFI_GCD_MEMORY_SPACE_DESCRIPTORs is not valid until the
EFI_CPU_ARCH_PROTOCOL is installed.

9.8 HOB Translations

9.8.1 HOB Translations Overview
The following topics describe how the DXE Foundation should interpret the contents of the HOB list
to initialize the GCD memory space map, GCD I/O space map, and UEFI memory map. After all of
the HOBs have been parsed, the Boot Service GetMemoryMap() and the DXE Services
GetMemorySpaceMap() and GetIoSpaceMap() should reflect the memory resources, I/O
resources, and logical memory allocations described in the HOB list.

SeeVolume 3 for detailed information on HOBs.

9.8.2 PHIT HOB
The Phase Handoff Information Table (PHIT) HOB describes a region of tested system memory.
This region of memory contains the following:

• HOB list

• Some amount of free memory

• Potentially some logical memory allocations

The PHIT HOB is used by the DXE Foundation to determine the size of the HOB list so that the
DXE Foundation can relocate the HOB list to a new location in system memory. The base address

Schedule HOB list

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 95

of the HOB list is passed to the DXE Foundation in the parameter HobStart, and the PHIT HOB
field EfiFreeMemoryBottom specifies the end of the HOB list.

Since the PHIT HOB may contain some of amount of free memory, the DXE Foundation may use
this free memory region in its early initialization phase until the full complement of UEFI memory
services are available.

See Volume 3 for the definition of this HOB type.

9.8.3 CPU HOB
The CPU HOB contains the field SizeOfMemorySpaceMap . This field is used to initialize the
GCD memory space map. The SizeOfMemorySpaceMap field defines the number of address
bits that the processor can use to address memory resources. The DXE Foundation must create the
primordial GCD memory space map entry of type EfiGcdMemoryTypeNonExistent for the
region from 0 to (1 << SizeOfMemorySpaceMap). All future GCD memory space operations
must be performed within this memory region.

The CPU HOB also contains the field SizeOfIoSpaceMap . This field is used to initialize the
GCD I/O space map. The SizeOfIoSpaceMap field defines the number of address bits that the
processor can use to address I/O resources. The DXE Foundation must create the primordial GCD
I/O space map entry of type EfiGcdIoTypeNonExistent for the region from 0 to (1 <<
SizeOfIoSpaceMap). All future GCD I/O space operations must be performed within this I/O
region.

See Volume 3 for the definition of this HOB type.

9.8.4 Resource Descriptor HOBs
The DXE Foundation must traverse the HOB list looking for Resource Descriptor HOBs. These
HOBs describe memory and I/O resources that are visible to the processor. All of the resource
ranges described in these HOBs must fall in the memory and I/O ranges initialized in the GCD maps
based on the contents of the CPU HOB. The DXE Foundation will use the DXE Services
AddMemorySpace() and AddIoSpace() to register these memory and I/O resources in the
GCD maps.

The Owner field of the Resource Descriptor HOB is ignored by the DXE Foundation. The
ResourceType field and ResourceAttribute fields are used to determine the GCD memory
type or GCD I/O type of the resource. The table below shows this mapping. The resource range is
specified by the PhysicalStart and ResourceLength fields of the Resource Descriptor
HOB.

The ResourceAttribute field also contains the caching capabilities of memory regions. If a
memory region is being added to the GCD memory space map, then the ResourceAttribute
field will be used to initialize the supported caching capabilities. The ResourceAttribute
field is also be used to further qualify memory regions. For example, a system memory region
cannot be added to the UEFI memory map if it is read protected. However, it is legal to add a
firmware device memory region that is write-protected if the firmware device is a ROM.

See Volume 3 for the definition of this HOB type.

DXE Foundation Platform Initialization Specification, Vol. 2

96 May 2017 Version 1.6

Table 20. Resource Descriptor HOB to GCD Type Mapping

Resource Descriptor HOB GCD Map

Resource Type Attributes Memory Type I/O Type

System Memory Present Reserved

System Memory Present AND Initialized Reserved

System Memory Present AND Initialized AND Tested System Memory

Memory-Mapped I/O Memory Mapped I/O

Firmware Device Memory Mapped I/O

Memory-Mapped I/O
Port

Reserved

Memory Reserved Reserved

I/O I/O

I/O Reserved Reserved

9.8.5 Firmware Volume HOBs
The DXE Foundation must traverse the HOB list for Firmware Volume HOBs. There are two types
of firmware volume HOBs:

• EFI_HOB_FIRMWARE_VOLUME, which describes PI Firmware Volumes.

• EFI_HOB_FIRMWARE_VOLUME2 which describes PI Firmware Volumes which came from a
firmware file within a firmware volume.

When the DXE Foundation discovers a Firmware Volume HOB, the DXE Dispatcher verifies that
the firmware volume has not been previously processed. Then a new handle must be created in the
handle database, and the EFI_FIRMWARE_VOLUME2_PROTOCOL must be installed on that
handle. The BaseAddress and Length fields of the Firmware Volume HOB specific the
memory range that the firmware volume consumes. The DXE Service
AllocateMemorySpace() is used to allocate the memory regions described in the Firmware
Volume HOBs to the DXE Foundation. The UEFI Boot Service
InstallProtocolInterface() is used to create new handles and install protocol interfaces.

See the Platform Initialization Specification, Volume 3, for code definitions concerning Hand-Off
Blocks, the Firmware Volume Block Protocol and the Firmware Volume Protocol.

9.8.6 Memory Allocation HOBs
Memory Allocation HOBs describe logical memory allocations that occurred prior to the DXE
phase. The DXE Foundation must parse the HOB list for this HOB type. When a HOB of this type
is discovered, the GCD memory space map must be updated with a call to the DXE Service
AllocateMemorySpace(). In addition, the UEFI memory map must be updated with logical
allocation described by the MemoryType, MemoryBaseAddress, and MemoryLength fields
of the Memory Allocation HOB.

Once the DXE Foundation has parsed all of the Memory Allocation HOBs, all of the unallocated
system memory regions in the GCD memory space map must be allocated to the DXE Foundation
with the DXE Service AllocateMemorySpace(). In addition, those same memory regions

Platform Initialization Specification, Vol. 2 DXE Foundation

Version 1.6 May 2017 97

must be added to the UEFI memory map so those memory regions can be allocated and freed using
the Boot Services AllocatePages(), AllocatePool(), FreePages(), and
FreePool().

See Volume 3 for the definition of this HOB type.

9.8.7 GUID Extension HOBs
The DXE Foundation does not require any GUID Extension HOBs. Implementations of the DXE
Foundation may use GUID Extension HOBs but shall not require them in order to function correctly.
GUID Extension HOBs contain private or implementation-specific data that is being passed from the
previous execution phase to a specific DXE driver. DXE drivers may choose to parse the HOB list
for GUID Extension HOBs.

See Volume 3 for the definition of this HOB type.

DXE Foundation Platform Initialization Specification, Vol. 2

98 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 99

10 DXE Dispatcher

10.1 Introduction
After the DXE Foundation is initialized, control is handed to the DXE Dispatcher. The DXE
Dispatcher examines every firmware volume that is present in the system. Firmware volumes are
either declared by HOBs, or they are declared by DXE drivers. For the DXE Dispatcher to run, at
least one firmware volume must be declared by a HOB.

The DXE Dispatcher is responsible for loading and invoking DXE drivers found in firmware
volumes. Some DXE drivers may depend on the services produced by other DXE drivers, so the
DXE Dispatcher is also required to execute the DXE drivers in the correct order. The DXE drivers
may also be produced by a variety of different vendors, so the DXE drivers must describe the
services they depend upon. The DXE dispatcher must evaluate these dependencies to determine a
valid order to execute the DXE drivers. Some vendors may wish to specify a fixed execution order
for some or all of the DXE drivers in a firmware volume, so the DXE dispatcher must support this
requirement.

The DXE Dispatcher will ignore file types that it does not recognize.

In addition, the DXE Dispatcher must support the ability to load “emergency patch” drivers. These
drivers would be added to the firmware volume to address an issue that was not know at the time the
original firmware was built. These DXE drivers would be loaded just before or just after an existing
DXE driver.

Finally, the DXE Dispatcher must be flexible enough to support a variety of platform specific
security policies for loading and executing DXE drivers from firmware volumes. Some platforms
may choose to run DXE drivers with no security checks, and others may choose to check the validity
of a firmware volume before it is used, and other may choose to check the validity of every DXE
driver in a firmware volume before it is executed.

10.2 Requirements
The DXE Dispatcher must meet the following requirement:

• Support fixed execution order of DXE drivers. This fixed execution order is specified in an
a priori file in the firmware volume.

• Determine DXE driver execution order based on each driver’s dependencies. A DXE
driver that is stored in a firmware volume may optionally contain a dependency expression
section. This section specifies the protocols that the DXE driver requires to execute.

• Support “emergency patch” DXE drivers. The dependency expressions are flexible enough
to describe the protocols that a DXE drivers may require. In addition, the dependency
expression can declare that the DXE driver is to be loaded and executed immediately before or
immediately after a different DXE driver.

• Support platform specific security policies for DXE driver execution. The DXE Dispatcher
is required to use the services of the Security Architecture Protocol every time a firmware
volume is discovered and every time a DXE driver is loaded.

DXE Dispatcher Platform Initialization Specification, Vol. 2

100 May 2017 Version 1.6

When a new firmware volume is discovered, it is first authenticated with the Security Architectural
Protocol. The Security Architectural Protocol provides the platform-specific policy for validating
all firmware volumes. Then, a search is made for the a priori file. The a priori file has a fixed file
name, and it contains the list of DXE drivers that should be loaded and executed first. There can be
at most one a priori file per firmware volume, and it is legal to have zero a priori files in a firmware
volume. Once the DXE drivers from the a priori file have been loaded and executed, the
dependency expressions of the remaining DXE drivers in the firmware volumes are evaluated to
determine the order that they will be loaded and executed. The a priori file provides a strongly
ordered list of DXE drivers that are not required to use dependency expressions. The dependency
expressions provide a weakly ordered execution of the remaining DXE drivers.

The DXE Dispatcher loads the image using LoadImage() with the FilePath parameter
pointing ot the firmware volume from which the image is located.

Before each DXE driver is executed, it must be authenticated through the Security Architectural
Protocol. The Security Architectural Protocol provides the platform-specific policy for validating
all DXE drivers.

Control is transferred from the DXE Dispatcher to the BDS Architectural Protocol after the DXE
drivers in the a priori file and all the DXE drivers whose dependency expressions evaluate to TRUE
have been loaded and executed. The BDS Architectural Protocol is responsible for establishing the
console devices and attempting the boot of operating systems. As the console devices are
established and access to boot devices is established, additional firmware volumes may be
discovered. If the BDS Architectural Protocol is unable to start a console device or gain access to a
boot device, it will reinvoke the DXE Dispatcher. This will allow the DXE Dispatcher to load and
execute DXE drivers from firmware volumes that have been discovered since the last time the DXE
Dispatcher was invoked. Once the DXE Dispatcher has loaded and executed all the DXE drivers it
can, control is once again returned to the BDS Architectural Protocol to continue the OS boot
process.

10.3 The A Priori File
The a priori file is a special file that may be present in a firmware volume. The a priori file format

described herein must be supported if the DXE Foundation implementation also supports 3rd party
firmware volumes. The rule is that there may be at most one a priori file per firmware volume
present in a platform. The a priori file has a known GUID file name, so the DXE Dispatcher can
always find the a priori file if it is present. Every time the DXE Dispatcher discovers a firmware
volume, it first looks for the a priori file. The a priori file contains the list of DXE drivers from that
firmware volume that should be loaded and executed before any other DXE drivers are discovered.
The DXE drivers listed in the a priori file are executed in the order that they appear. If any of those
DXE drivers have an associated dependency expression, then those dependency expressions are
ignored. The a priori file provides a deterministic execution order of DXE drivers. DXE drivers
that are executed solely based on their dependency expression are weakly ordered. This means that
the execution order is not completely deterministic between boots or between platforms. There are
cases where a deterministic execution order is required. One example would be to list the DXE
drivers required to debug the rest of the DXE phase in the a priori file. These DXE drivers that
provide debug services may have been loaded much later if only their dependency expressions were
considered. By loading them earlier, more of the DXE Foundation and DXE drivers can be

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 101

debugged. Another example is to use the a priori file to eliminate the need for dependency
expressions. Some embedded platforms may only require a few DXE drivers with a highly
deterministic execution order. The a priori file can provide this ordering, and none of the DXE
drivers would require dependency expressions. The dependency expressions do have some amount
of size overhead, so this method may reduce the size of firmware images. The main purpose of the
a priori file is to provide a greater degree of flexibility in the firmware design of a platform.

See the next topic for the GUID definition of the a priori file, which is the file name that is stored in
a firmware volume.

The a priori file contains the file names of DXE drivers that are stored in the same firmware volume
as the a priori file. File names in firmware volumes are GUIDs, so the a priori file is simply a list of
byte-packed values of type EFI_GUID. Type EFI_GUID is defined in the UEFI 2.0 specification.
The DXE Dispatcher reads the list of EFI_GUIDs from the a priori file. Each EFI_GUID is used
to load and execute the DXE driver with that GUID file name. If the DXE driver specified by the
GUID file name is not found in the firmware volume, then the file is skipped. If the a priori file is
not en even multiple of EFI_GUIDs in length, then the DXE driver specified by the last EFI_GUID
in the a priori file is skipped.

After all of the DXE drivers listed in the a priori file have been loaded and executed, the DXE
Dispatcher searches the firmware volume for any additional DXE drivers and executed them
according to their dependency expressions.

EFI_APRIORI_GUID

The following GUID definition is the file name of the a priori file that is stored in a firmware
volume. This file must be of type EFI_FV_FILETYPE_FREEFORM and must contain a single
section of type EFI_SECTION_RAW. For details on firmware volumes, firmware file types, and
firmware file section types, see the Platform Initialization Specification, Volume 3 .

GUID
#define EFI_APRIORI_GUID \
 {0xfc510ee7,0xffdc,0x11d4,0xbd,0x41,0x0,0x80,
 0xc7,0x3c,0x88,0x81}

10.4 Firmware Volume Image Files
For DXE, while processing a firmware volume, if a file of type
EFI_FV_FIRMWARE_VOLUME_IMAGE is found, the DXE Dispatcher will check whether
information about this firmware volume image file was already described in an
EFI_FIRMWARE_VOLUME_HOB2. If it was, then the file is ignored.

Otherwise, the DXE Dispatcher will search the file for a section with the type
EFI_SECTION_DXE_DEPEX, and if found, evaluate the expression against the presently installed
entries in the protocol database.

If the file has both a dependency expression that evaluates to TRUE (or no dependency expression
section) and the file is not already described by an EFI_FIRMWARE_VOLUME_HOB2, then the
DXE Dispatcher will search the file for a section with the type
EFI_SECTION_FIRMWARE_VOLUME_IMAGE, copy its contents into memory, create a handle

DXE Dispatcher Platform Initialization Specification, Vol. 2

102 May 2017 Version 1.6

and install the EFI_FIRMWMARE_VOLUME2_PROTOCOL and
EFI_DEVICE_PATH_PROTOCOL on the handle.

10.5 Dependency Expressions

10.6 Dependency Expressions Overview
A DXE driver is stored in a firmware volume as a file with one or more sections. One of the sections
must be a PE32+ image. If a DXE driver has a dependency expression, then it is stored in a
dependency section. A DXE driver may contain additional sections for compression and security
wrappers. The DXE Dispatcher can identify the DXE drivers by their file type. In addition, the
DXE Dispatcher can look up the dependency expression for a DXE driver by looking for a
dependency section in a DXE driver file. The dependency section contains a section header
followed by the actual dependency expression that is composed of a packed byte stream of opcodes
and operands.

Dependency expressions stored in dependency sections are designed to be small to conserve space.
In addition, they are designed to be simple and quick to evaluate to reduce execution overhead.
These two goals are met by designing a small, stack based, instruction set to encode the dependency
expressions. The DXE Dispatcher must implement an interpreter for this instruction set in order to
evaluate dependency expressions. The instruction set is defined in the following topics.

See “Dependency Expression Grammar” on page 203 for an example BNF grammar for a
dependency expression compiler. There are many possible methods of specifying the dependency
expression for a DXE driver. Dependency Expression Grammar demonstrates one possible design
for a tool that can be used to help build DXE driver images.

10.7 Dependency Expression Instruction Set
The following topics describe each of the dependency expression opcodes in detail. Information
includes a description of the instruction functionality, binary encoding, and any limitations or unique
behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that matches
the type EFI_GUID that is described in the UEFI 2.0 specification. These GUIDs represent
protocols that are produced by DXE drivers and the file names of DXE drivers stored in firmware
volumes. A dependency expression is a packed byte stream of opcodes and operands. As a result,
some of the GUID operands will not be aligned on natural boundaries. Care must be taken on
processor architectures that do allow unaligned accesses.

The dependency expression is stored in a packed byte stream using postfix notation. As a
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped off
the stack to perform an operation. After the last operation is performed, the value on the top of the
stack represents the evaluation of the entire dependency expression. If a push operation causes a
stack overflow, then the entire dependency expression evaluates to FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluates to FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions about
the maximum stack size it will support. Instead, it should be designed to grow the dependency

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 103

expression stack as required. In addition, DXE drivers that contain dependency expressions should
make an effort to keep their dependency expressions as small as possible to help reduce the size of
the DXE driver.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

If an instruction encoding extends beyond the end of the dependency section, then the entire
dependency expression evaluates to FALSE.

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

Table 21 is a summary of the opcodes that are used to build dependency expressions. The following
topics describe each of these instructions in detail.

Table 21. Dependency Expression Opcode Summary

Opcode Description

0x00 BEFORE <File Name GUID>

0x01 AFTER <File Name GUID>

0x02 PUSH <Protocol GUID>

0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

0x09 SOR

DXE Dispatcher Platform Initialization Specification, Vol. 2

104 May 2017 Version 1.6

BEFORE

Syntax
BEFORE <File Name GUID>

Description
This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just before the DXE driver with the file name specified by GUID.
This means that as soon as the dependency expression for the DXE driver specified by GUID
evaluates to TRUE, then this DXE driver must be placed in the dispatch queue just before the DXE
driver with the file name specified by GUID.

Operation
None.

Table 22 defines the BEFORE instruction encoding.

Table 22. BEFORE Instruction Encoding

Byte Description

0 0x00

1..16 A 16-byte GUID that represents the file name of a different DXE driver. The format is the same

as type EFI_GUID.

Behaviors and Restrictions
If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 105

AFTER

Syntax
AFTER <File Name GUID>

Description
This opcode tells the DXE Dispatcher that the DXE driver that is associated with this dependency
expression must be dispatched just after the DXE driver with the file name specified by GUID. This
means that as soon as the dependency expression for the DXE driver specified by GUID evaluates to
TRUE, then this DXE driver must be placed in the dispatch queue just after the DXE Driver with the
file name specified by GUID.

Operation
None.

Table 23 defines the AFTER instruction encoding.

Table 23. AFTER Instruction Encoding

Byte Description

0 0x01

1..16 A 16-byte GUID that represents the file name of a different DXE driver. The format is the

same as type EFI_GUID.

Behaviors and Restrictions
If this opcode is present in a dependency expression, it must be the first and only opcode in the
expression. If is appears in any other location in the dependency expression, then the dependency
expression is evaluated to FALSE.

DXE Dispatcher Platform Initialization Specification, Vol. 2

106 May 2017 Version 1.6

PUSH

Syntax
PUSH <Protocol GUID>

Description
Pushes a Boolean value onto the stack. If the GUID is present in the handle database, then a TRUE is
pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service LocateProtocol().

Operation
Status = gBS->LocateProtocol (GUID, NULL, &Interface);
if (EFI_ERROR (Status)) {
 PUSH FALSE;
} Else {
 PUSH TRUE;
}

Table 24 defines the PUSH instruction encoding.

Table 24. PUSH Instruction Encoding

Byte Description

0 0x02

1..16 A 16-byte GUID that represents a protocol that is produced by a different DXE driver. The

format is the same at type EFI_GUID.

Behaviors and Restrictions
None.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 107

AND

Syntax
AND

Description
Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 AND Operand2
PUSH Result

Table 25 defines the AND instruction encoding.

Table 25. AND Instruction Encoding

Byte Description

0 0x03.

Behaviors and Restrictions
None.

DXE Dispatcher Platform Initialization Specification, Vol. 2

108 May 2017 Version 1.6

OR

Syntax
OR

Description
Pops two Boolean operands off the stack, performs a Boolean OR operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 OR Operand2
PUSH Result

Table 26 defines the OR instruction encoding.

Table 26. OR Instruction Encoding

Byte Description

0 0x04.

Behaviors and Restrictions
None.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 109

NOT

Syntax
NOT

Description
Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

Operation
Operand <= POP Boolean stack element
Result <= NOT Operand1
PUSH Result

Table 27 defines the NOT instruction encoding.

Table 27. NOT Instruction Encoding

Byte Description

0 0x05.

Behaviors and Restrictions
None.

DXE Dispatcher Platform Initialization Specification, Vol. 2

110 May 2017 Version 1.6

TRUE

Syntax
TRUE

Description
Pushes a Boolean TRUE onto the stack.

Operation
PUSH TRUE

Table 28 defines the TRUE instruction encoding.

Table 28. TRUE Instruction Encoding

Byte Description

0 0x06.

Behaviors and Restrictions
None.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 111

FALSE

Syntax
FALSE

Description
Pushes a Boolean FALSE onto the stack.

Operation
PUSH FALSE

Table 29 defines the FALSE instruction encoding.

Table 29. FALSE Instruction Encoding

Byte Description

0 0x07.

Behaviors and Restrictions
None.

DXE Dispatcher Platform Initialization Specification, Vol. 2

112 May 2017 Version 1.6

END

Syntax
END

Description
Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

Operation
POP Result
RETURN Result

Table 30 defines the END instruction encoding.

Table 30. END Instruction Encoding

Byte Description

0 0x08.

Behaviors and Restrictions
This opcode must be the last one in a dependency expression.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 113

SOR

Syntax
SOR

Description
Indicates that the DXE driver is to remain on the Schedule on Request (SOR) queue until the DXE
Service Schedule() is called for this DXE. The dependency expression evaluator treats this
operation like a No Operation (NOP).

Operation
None.

Table 31 defines the SOR instruction encoding.

Table 31. SOR Instruction Encoding

Byte Description

0 0x09.

Behaviors and Restrictions
• If this instruction is present in a dependency expression, it must be the first instruction in the

expression. If it appears in any other location in the dependency expression, then the
dependency expression is evaluated to FALSE.

• This instruction must be followed by a valid dependency expression. If this instruction is the
last instruction or it is followed immediately by an END instruction, then the dependency
expression is evaluated to FALSE.

DXE Dispatcher Platform Initialization Specification, Vol. 2

114 May 2017 Version 1.6

10.8 Dependency Expression with No Dependencies
A DXE driver that does not have any dependencies must have a dependency expression that
evaluates to TRUE with no dependencies on any protocol GUIDs or file name GUIDs. The DXE
Dispatcher will queue all the DXE drivers of this type immediately after the a priori file has been
processed.

The following code example shows the dependency expression for a DXE driver that does not have
any dependencies using the BNF grammar listed in Dependency Expression Grammar. This is
followed by the 2-byte dependency expression that is encoded using the instruction set described in
“Dependency Expression Instruction Set” on page 102.
//
// Source
//
TRUE
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 06 TRUE
0x01 : 08 END

10.9 Empty Dependency Expressions
If a DXE driver file does not contain a dependency section, then the DXE driver has an empty
dependency expression. The DXE Foundation must support DXE driver and UEFI drivers that
conform to the UEFI 2.0 specification. These UEFI drivers assume that all the UEFI Boot Services
and UEFI Runtime Services are available. If an UEFI driver is added to a firmware volume, then the
UEFI driver will have an empty dependency expression, and it should not be loaded and executed by
the DXE Dispatcher until all the UEFI Boot Services and UEFI Runtime Services are available. The
DXE Foundation cannot guarantee that this condition is true until all of the DXE Architectural
Protocols have been installed.

From the DXE Dispatcher’s perspective, DXE drivers without dependency expressions cannot be
loaded until all of the DXE Architectural Protocols have been installed. This is equivalent to an
implied dependency expression of all the GUIDs of the architectural protocols ANDed together.
This implied dependency expression is shown below. The use of empty dependency expressions
may also save space, because DXE drivers that require all the UEFI Boot Services and UEFI
Runtime Services to be present can simply remove the dependency section from the DXE driver file.

The code example below shows the dependency expression that is implied by an empty dependency
expression using the BNF grammar listed in “Dependency Expression Grammar” on page 203. It
also shows the dependency expression after it has been encoded using the instruction set described in
“Dependency Expression Instruction Set” on page 102. This fairly complex dependency expression
is encoded into a dependency expression that is 216 bytes long. Typical dependency expressions
will contain 2 or 3 terms, so those dependency expressions will typically be less than 60 bytes long.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 115

//
// Source
//
EFI_BDS_ARCH_PROTOCOL_GUID AND
EFI_CPU_ARCH_PROTOCOL_GUID AND
EFI_METRONOME_ARCH_PROTOCOL_GUID AND
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID AND
EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID AND
EFI_RESET_ARCH_PROTOCOL_GUID AND
EFI_RUNTIME_ARCH_PROTOCOL_GUID AND
EFI_SECURITY_ARCH_PROTOCOL_GUID AND
EFI_TIMER_ARCH_PROTOCOL_GUID AND
EFI_VARIABLE_ARCH_PROTOCOL_GUID AND
EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID AND
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 02 PUSH
0x01 : F6 3F 5E 66 CC 46 d4 11 EFI_BDS_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D
0x11 : 02 PUSH
0x12 : B1 CC BA 26 42 6F D4 11 EFI_CPU_ARCH_PROTOCOL_GUID
 BC E7 00 80 C7 3C 88 81
0x22 : 03 AND
0x23 : 02 PUSH
0x24 : B2 CC BA 26 42 6F d4 11 EFI_METRONOME_ARCH_PROTOCOL_GUID
 BC E7 00 80 C7 3C 88 81
0x34 : 02 PUSH
0x35 : 72 70 A9 1D DC BD 30 4B
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID
 99 F1 72 A0 B5 6F FF 2A
0x45 : 03 AND
0x46 : 03 AND
0x47 : 02 PUSH
0x48 : 87 AC CF 27 CC 46 d4 11 EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D

0x58 : 02 PUSH
0x59 : 88 AC CF 27 CC 46 d4 11 EFI_RESET_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D
0x69 : 03 AND
0x6A : 02 PUSH
0x6B : 53 82 d0 96 83 84 d4 11 EFI_RUNTIME_ARCH_PROTOCOL_GUID
 BC F1 00 80 C7 3C 88 81

DXE Dispatcher Platform Initialization Specification, Vol. 2

116 May 2017 Version 1.6

0x7B : 02 PUSH
0x7C : E3 23 64 A4 17 46 f1 49 EFI_SECURITY_ARCH_PROTOCOL_GUID
 B9 FF D1 BF A9 11 58 39
 82 CE 5A 89 0C CB 2C 95
0xA0 : 02 PUSH
0xA1 : B3 CC BA 26 42 6F D4 11 EFI_TIMER_ARCH_PROTOCOL_GUID
 BC E7 00 80 C7 3C 88 81
0xB1 : 03 AND
0xB2 : 02 PUSH
0xB3 : E2 68 56 1E 81 84 D4 11 EFI_VARIABLE_ARCH_PROTOCOL_GUID
 BC F1 00 80 C7 3C 88 81
0xC3 : 02 PUSH
0xC4 : 18 F8 41 64 62 63 44 4E EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID
 B5 70 7D BA 31 DD 24 53
0xD4 : 03 AND
0xD5 : 03 AND
0xD6 : 03 AND
0xD7 : 02 PUSH
0xD8 : F5 3F 5E 66 CC 46 d4 11 EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID
 9A 38 00 90 27 3F C1 4D
0xE8 : 03 AND
0xE9 : 08 END

10.10 Dependency Expression Reverse Polish Notation (RPN)
The actual equations will be presented by the DXE driver in a simple-to-evaluate form, namely
postfix.

The following is a BNF encoding of this grammar. See “Dependency Expression Instruction Set” on
page 102 for definitions of the dependency expressions.
<statement> ::= SOR <expression> END |
 BEFORE <guid> END |
 AFTER <guid> END |
 <expression> END

<expression> ::= PUSH <guid> |
 TRUE |
 FALSE |
 <expression> NOT |
 <expression> <expression> OR |
 <expression> <expression> AND

10.11 DXE Dispatcher State Machine
The DXE Dispatcher is responsible for tracking the state of a DXE driver from the time that the
DXE driver is discovered in a firmware volume until the DXE Foundation is terminated with a call
to ExitBootServices(). During this time, each DXE driver may be in one of several different
states. The state machine that the DXE Dispatcher must use to track a DXE driver is shown in
Figure 7.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 117

Figure 7. DXE Driver States

A DXE driver starts in the “Undiscovered” state, which means that the DXE driver is in a firmware
volume that the DXE Dispatcher does not know about yet. When the DXE Dispatcher discovers a
new firmware volume, any DXE drivers from that firmware volume listed in the a priori file are
immediately loaded and executed. DXE drivers listed in the a priori file are immediately promoted
to the “Scheduled” state. The firmware volume is then searched for DXE drivers that are not listed
in the a priori file. Any DXE drivers found are promoted from the “Undiscovered” to the
“Discovered” state. The dependency expression for each DXE driver is evaluated. If the SOR
opcode is present in a DXE driver’s dependency expression, then the DXE driver is placed in the
“Unrequested” state. If the SOR opcode is not present in the DXE driver’s dependency expression,
then the DXE driver is placed in the “Dependent” state. Once a DXE driver is in the "Unrequested”
state, it may only be promoted to the “Dependent” state with a call to the DXE Service
Schedule().

Once a DXE Driver is in the “Dependent” state, the DXE Dispatcher will evaluate the DXE driver’s
dependency expression. If the DXE driver does not have a dependency expression, then a
dependency expression of all the architectural protocols ANDed together is assumed for that DXE
driver. If the dependency expression evaluates to FALSE, then the DXE driver stays in the

DXE Dispatcher Platform Initialization Specification, Vol. 2

118 May 2017 Version 1.6

“Dependent” state. If the dependency expression never evaluates to TRUE, then it will never leave
the “Dependent” state. If the dependency expression evaluates to TRUE, then the DXE driver will
be promoted to the “Scheduled” state.

A DXE driver that is prompted to the “Scheduled” state is added to the end of the queue of other
DXE drivers that have been promoted to the “Scheduled” state. When the DXE driver has reached
the head of the queue, the DXE Dispatcher must use the services of the Security Authentication
Protocol (SAP) to check the authentication status of the DXE Driver. If the Security Authentication
Protocol deems that the DXE Driver violates the security policy of the platform, then the DXE
Driver is placed in the “Untrusted” state. The Security Authentication Protocol can also tell the
DXE Dispatcher that the DXE driver should never be executed and be placed in the “Never Trusted”
state. If a DXE driver is placed in the “Untrusted” state, it can only be promoted back to the
“Scheduled” state with a call to the DXE Service Trust().

Once a DXE driver has reached the head of the scheduled queue, and the DXE driver has passed the
authentication checks of the Security Authentication Protocol, the DXE driver is loaded into
memory with the Boot Service LoadImage(). Control is then passed from the DXE Dispatcher to
the DXE driver with the Boot Service StartImage(). When StartImage() is called for a
DXE driver, that DXE driver is promoted to the “Initializing” state. The DXE driver returns control
to the DXE Dispatcher through the Boot Service Exit(). When a DXE driver has returned control
to the DXE Dispatcher, the DXE driver is in the terminal state called “Initialized.”

The DXE Dispatcher is responsible for draining the queue of DXE drivers in the “Scheduled” state
until the queue is empty. Once the queue is empty, then DXE Dispatcher must evaluate all the DXE
drivers in the "Dependent” state to see if any of them need to be promoted to the “Scheduled” state.
These evaluations need to be performed every time one or more DXE drivers have been promoted to
the “Initialized” state, because those DXE drivers may have produced protocol interfaces for which
the DXE drivers in the "Dependent” state are waiting.

10.12 Example Orderings
The order that DXE drivers are loaded and executed by the DXE Dispatcher is a mix of strong and
weak orderings. The strong orderings are specified through a priori files, and the weak orderings
are specified by dependency expressions in DXE drivers. Figure 8 shows the contents of a sample
firmware volume that contains the following:

• DXE Foundation image

• DXE driver images

• An a priori file

The order that these images appear in the firmware volume is arbitrary. The DXE Foundation and
the DXE Dispatcher must not make any assumptions about the locations of files in firmware
volumes. The a priori file contains the GUID file names of the DXE drivers that are to be loaded
and executed first. The dependency expressions and the protocols that each DXE driver produces is
shown next to each DXE driver image in the firmware volume.

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 119

Figure 8. Sample Firmware Volume

Based on the contents of the firmware volume in the figure above, the Security Driver, Runtime
Driver, and Variable Driver will always be executed first. This is an example of a strongly ordered
dispatch due to the a priori file. The DXE Dispatcher will then evaluate the dependency expressions
of the remaining DXE drivers to determine the order that they will be executed. Based on the
dependency expressions and the protocols that each DXE driver produces, there are 30 valid
orderings from which the DXE Dispatcher may choose. The BDS Driver and CPU Driver tie for the
next drivers to be scheduled, because their dependency expressions are simply TRUE. A
dependency expression of TRUE means that the DXE driver does not require any other protocol
interfaces to be executed. The DXE Dispatcher may choose either one of these drivers to be
scheduled first. The Timer Driver, Metronome Driver, and Reset Driver all depend on the protocols
produced by the CPU Driver. Once the CPU Driver has been loaded and executed, the Timer
Driver, Metronome Driver, and Reset Driver may be scheduled in any order. The table below shows
all 30 possible orderings from the sample firmware volume in the figure above. Each ordering is
listed from left to right across the table. A reasonable implementation of a DXE Dispatcher would
consistently produce the same ordering for a given system configuration. If the configuration of the
system is changed in any way (including a order of files stored in a firmware volume), then a

DXE Dispatcher Platform Initialization Specification, Vol. 2

120 May 2017 Version 1.6

different dispatch ordering may be generated, but this new ordering should be consistent until the
next system configuration change.

Table 32. DXE Dispatcher Orderings

Dispatch Order

1 2 3 4 5 6 7 8

1 Security Runtime Variable BDS CPU Timer Metronome Reset

2 Security Runtime Variable BDS CPU Timer Reset Metronome

3 Security Runtime Variable BDS CPU Metronome Timer Reset

4 Security Runtime Variable BDS CPU Metronome Reset Timer

5 Security Runtime Variable BDS CPU Reset Timer Metronome

6 Security Runtime Variable BDS CPU Reset Metronome Timer

7 Security Runtime Variable CPU BDS Timer Metronome Reset

8 Security Runtime Variable CPU BDS Timer Reset Metronome

9 Security Runtime Variable CPU BDS Metronome Timer Reset

10 Security Runtime Variable CPU BDS Metronome Reset Timer

11 Security Runtime Variable CPU BDS Reset Timer Metronome

12 Security Runtime Variable CPU BDS Reset Metronome Timer

13 Security Runtime Variable CPU Timer BDS Metronome Reset

14 Security Runtime Variable CPU Timer BDS Reset Metronome

15 Security Runtime Variable CPU Timer Metronome BDS Reset

16 Security Runtime Variable CPU Timer Metronome Reset BDS

17 Security Runtime Variable CPU Timer Reset BDS Metronome

18 Security Runtime Variable CPU Timer Reset Metronome BDS

19 Security Runtime Variable CPU Metronome Timer BDS Reset

20 Security Runtime Variable CPU Metronome Timer Reset BDS

21 Security Runtime Variable CPU Metronome BDS Timer Reset

22 Security Runtime Variable CPU Metronome BDS Reset Timer

23 Security Runtime Variable CPU Metronome Reset Timer BDS

24 Security Runtime Variable CPU Metronome Reset BDS Timer

25 Security Runtime Variable CPU Reset Timer Metronome BDS

26 Security Runtime Variable CPU Reset Timer BDS Metronome

27 Security Runtime Variable CPU Reset Metronome Timer BDS

28 Security Runtime Variable CPU Reset Metronome BDS Timer

29 Security Runtime Variable CPU Reset BDS Timer Metronome

30 Security Runtime Variable CPU Reset BDS Metronome Timer

Platform Initialization Specification, Vol. 2 DXE Dispatcher

Version 1.6 May 2017 121

10.13 Security Considerations
The DXE Dispatcher is required to use the services of the Security Architectural Protocol every time
a firmware volume is discovered and before each DXE driver is executed. Because the Security
Architectural Protocol is produced by a DXE driver, there will be at least one firmware volume
discovered, and one or more DXE drivers loaded and executed before the Security Architectural
Protocol is installed. The DXE Dispatcher should not attempt to use the services of the Security
Architectural Protocol until the Security Architectural Protocol is installed. If a platform requires
the Security Architectural Protocol to be present very early in the DXE phase, then the a priori file
may be used to specify the name of the DXE driver that produces the Security Architectural
Protocol.

The Security Architectural Protocol provides a service to evaluate the authentication status of a file.
This service can also be used to evaluate the authenticate status of a firmware volume. If the
authentication status is good, then no action is taken. If there is a problem with the firmware
volume’s authentication status, then the Security Architectural Protocol may perform a platform
specific action. One option is to force the DXE Dispatcher to ignore the firmware volume so no
DXE drivers will be loaded and executed from it. Another is to log the fact that the DXE Dispatcher
is going to start dispatching DXE driver from a firmware volume with a questionable authentication
status.

The Security Architectural Protocol can also be used to evaluate the authentication status of each
DXE driver discovered in a firmware volume. If the authentication status is good, then no action is
taken. If there is a problem with the DXE driver’s authentication status, then the Security
Architectural Protocol may take a platform-specific action. One possibility is to force the DXE
driver into the “Untrusted” state, so it will not be considered for dispatch until the Boot Service
Trust() is called for that DXE driver. Another possibility is to have the DXE Dispatcher place
the DXE driver in the “Never Trusted” state, so it will never be loaded or executed. Another option
is to log the fact that a DXE driver with a questionable authentication status is about to be loaded and
executed.

DXE Dispatcher Platform Initialization Specification, Vol. 2

122 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 123

11 DXE Drivers

11.1 Introduction
The DXE architecture provides a rich set of extensible services that provides for a wide variety of
different system firmware designs. The DXE Foundation provides the generic services required to
locate and execute DXE drivers. The DXE drivers are the components that actually initialize the
platform and provide the services required to boot an UEFI-compliant operating system or a set of
UEFI-compliant system utilities. There are many possible firmware implementations for any given
platform. Because the DXE Foundation has fixed functionality, all the added value and flexibility in
a firmware design is embodied in the implementation and organization of DXE drivers.

There are two basic classes of DXE drivers:

• Early DXE Drivers

• DXE Drivers that follow the UEFI Driver Model

Additional classifications of DXE drivers are also possible.

All DXE drivers may consume the UEFI Boot Services, UEFI Runtime Services, and DXE Services
to perform their functions. DXE drivers must use dependency expressions to guarantee that the
services and protocol interfaces they require are available before they are executed. See the
following topics for the DXE Architectural Protocols upon which the services depend:

• UEFI Boot Services Dependencies

• UEFI Runtime Services Dependencies

• DXE Services Dependencies

11.2 Classes of DXE Drivers

11.2.1 Early DXE Drivers
The first class of DXE drivers are those that execute very early in the DXE phase. The execution
order of these DXE drivers depends on the following:

• The presence and contents of an a priori file

• The evaluation of dependency expressions

These early DXE drivers will typically contain basic services, processor initialization code, chipset
initialization code, and platform initialization code. These early drivers will also typically produce
the DXE Architectural Protocols that are required for the DXE Foundation to produces its full
complement of UEFI Boot Services and UEFI Runtime Services. To support the fastest possible
boot time, as much initialization should be deferred to the DXE drivers that follow UEFI Driver
Model described in the UEFI 2.0 specification.

The early DXE drivers need to be aware that not all of the UEFI Boot Services, UEFI Runtime
Services, and DXE Services may be available when they execute because not all of the DXE
Architectural Protocols may be been registered yet.

DXE Drivers Platform Initialization Specification, Vol. 2

124 May 2017 Version 1.6

11.2.2 DXE Drivers that Follow the UEFI Driver Model
The second class of DXE drivers are those that follow the UEFI Driver Model in the UEFI 2.0
specification. These drivers do not touch any hardware resources when they initialize. Instead, they
register a Driver Binding Protocol interface in the handle database. The set of Driver Binding
Protocols are used by the Boot Device Selection (BDS) phase to connect the drivers to the devices
that are required to establish consoles and provide access to boot devices. The DXE drivers that
follow the UEFI Driver Model ultimately provide software abstractions for console devices and boot
devices, but only when they are explicitly asked to do so.

The DXE drivers that follow the UEFI Driver Model do not need to be concerned with dependency
expressions. These drivers simply register the Driver Binding Protocol in the handle database when
they are executed, and this operation can be performed without the use of any DXE Architectural
Protocols. DXE drivers with empty dependency expressions will not be dispatched by the DXE
Dispatcher until all of the DXE Architectural Protocols have been installed.

11.2.3 Additional Classifications
DXE drivers can also be classified as the following:

• Boot service drivers

• Runtime drivers

Boot service drivers provide services that are available until the ExitBootServices()
function is called. When ExitBootServices() is called, all the memory used by boot service
drivers is released for use by an operating system.

Runtime drivers provide services that are available before and after ExitBootServices() is
called, including the time that an operating system is running. All of the services in the UEFI
Runtime Services Table are produced by runtime drivers.

The DXE Foundation is considered a boot service component, so the DXE Foundation is also
released when ExitBootServices() is called. As a result, runtime drivers may not use any of
the UEFI Boot Services, DXE Services, or services produced by boot service drivers after
ExitBootServices() is called.

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 125

12 DXE Architectural Protocols

12.1 Introduction
The DXE Foundation is abstracted from the platform hardware through a set of architectural
protocols. These protocols function just like other protocols in every way. The only difference is
that these architectural protocols are the protocols that the DXE Foundation itself consumes to
produce the UEFI Boot Services, UEFI Runtime Services, and DXE Services. DXE drivers that are
loaded from firmware volumes produce the DXE Architectural Protocols. This means that the DXE
Foundation must have enough services to load and start DXE drivers before even a single DXE
driver is executed.

The DXE Foundation is passed a HOB list that must contain a description of some amount of system
memory and at least one firmware volume. The system memory descriptors in the HOB list are used
to initialize the UEFI services that require only memory to function correctly. The system is also
guaranteed to be running on only one processor in flat physical mode with interrupts disabled. The
firmware volume is passed to the DXE Dispatcher, and the DXE Dispatcher must contain a read-
only firmware file system driver to search for the a priori file and any DXE drivers in the firmware
volumes. When a driver is discovered that needs to be loaded and executed, the DXE Dispatcher will
use a PE/COFF loader to load and invoke the DXE driver. The early DXE drivers will produce the
DXE Architectural Protocols, so the DXE Foundation can produce the full complement of UEFI
Boot Services and UEFI Runtime Services.

Figure 9 shows the HOB list being passed to the DXE Foundation.

System
Memory

I/O
Resources

MMIO
Resources

Firmware
Devices

Firmware
Volumes DXE

Drivers

DXE
Drivers

PHIT
HOB

HOB HOB HOB HOB

UEFI Boot Services Table DXE Services UEFI System Table UEFI Runtime Services

DXE Foundation / DXE Dispatcher

Hardware

Security
Architectural

Protocol

Metronome
Architectural

Protocol

BDS
Architectural

Protocol

Monotonic
Counter

Architectural
Protocol

Runtime
Architectural

Protocol

Status
Code

Architectural
Protocol

Reset
Architectural

Protocol

Variable
Write

Architectural
Protocol

Variable
Architectural

Protocol

Watchdog
Timer

Architectural
Protocol

Timer
Architectural

Protocol

CPU
Architectural

Protocol

Real Time
Clock

Architectural
Protocol

HOB List

HOB. . .

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

126 May 2017 Version 1.6

Figure 9. DXE Architectural Protocols

The DXE Foundation consumes the services of the DXE Architectural Protocols and produces the
following:

• UEFI System Table

• UEFI Boot Services Table

• UEFI Runtime Services Table

• DXE Services Table

The UEFI Boot Services Table and DXE Services Table are allocated from UEFI boot services
memory, which means that the UEFI Boot Services Table and DXE Services Table are freed when
the OS runtime phase is entered. The UEFI System Table and UEFI Runtime Services Table are
allocated from UEFI runtime services memory, and they persist into the OS runtime phase.

When executing upon an UEFI-compliant system, UEFI drivers, applications, and UEFI-aware
operating systems can discern if the platform is built upon the Foundation by searching for the DXE
Services Table GUID in the UEFI System configuration table.

The DXE Architectural Protocols shown on the left of the figure are used to produce the UEFI Boot
Services and DXE Services. The DXE Foundation and these protocols will be freed when the
system transitions to the OS runtime phase. The DXE Architectural Protocols shown on the right are
used to produce the UEFI Runtime Services. These services will persist in the OS runtime phase.
The Runtime Architectural Protocol in the middle is unique. This protocol provides the services that

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 127

are required to transition the runtime services from physical mode to virtual mode under the
direction of an OS. Once this transition is complete, the services of the Runtime Architectural
Protocol can no longer be used. The following topics describe all of the DXE Architectural
Protocols in detail.

12.2 Boot Device Selection (BDS) Architectural Protocol

EFI_BDS_ARCH_PROTOCOL

Summary
Transfers control from the DXE phase to an operating system or system utility. This protocol must
be produced by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation.

GUID
#define EFI_BDS_ARCH_PROTOCOL_GUID \
 {0x665E3FF6,0x46CC,0x11d4,
 0x9A,0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Protocol Interface Structure
typedef struct {
 EFI_BDS_ENTRY Entry;
} EFI_BDS_ARCH_PROTOCOL;

Parameters
Entry

The entry point to BDS. See the Entry() function description. This call does not
take any parameters, and the return value can be ignored. If it returns, then the
dispatcher must be invoked again, if it never returns, then an operating system or a
system utility have been invoked.

Description
The EFI_BDS_ARCH_PROTOCOL transfers control from DXE to an operating system or a system
utility. If there are not enough drivers initialized when this protocol is used to access the required
boot device(s), then this protocol should add drivers to the dispatch queue and return control back to
the dispatcher. Once the required boot devices are available, then the boot device can be used to
load and invoke an OS or a system utility.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

128 May 2017 Version 1.6

EFI_BDS_ARCH_PROTOCOL.Entry()

Summary
Performs Boot Device Selection (BDS) and transfers control from the DXE Foundation to the
selected boot device. The implementation of the boot policy must follow the rules outlined in the
Boot Manager chapter of the UEFI 2.0 specification. This boot policy allows for flexibility, so the
platform vendor will typically customize the implementation of this service.

Prototype
typedef
VOID
(EFIAPI *EFI_BDS_ENTRY) (
 IN CONST EFI_BDS_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_BDS_ARCH_PROTOCOL instance.

Description
This function uses policy data from the platform to determine what operating system or system
utility should be loaded and invoked. This function call also optionally uses the user's input to
determine the operating system or system utility to be loaded and invoked. When the DXE
Foundation has dispatched all the drivers on the dispatch queue, this function is called. This
function will attempt to connect the boot devices required to load and invoke the selected operating
system or system utility. During this process, additional firmware volumes may be discovered that
may contain addition DXE drivers that can be dispatched by the DXE Foundation. If a boot device
cannot be fully connected, this function calls the DXE Service Dispatch() to allow the DXE
drivers from any newly discovered firmware volumes to be dispatched. Then the boot device
connection can be attempted again. If the same boot device connection operation fails twice in a
row, then that boot device has failed, and should be skipped. This function should never return.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 129

12.3 CPU Architectural Protocol

EFI_CPU_ARCH_PROTOCOL

Summary
Abstracts the processor services that are required to implement some of the DXE services. This
protocol must be produced by a boot service or runtime DXE driver and may only be consumed by
the DXE Foundation and DXE drivers that produce architectural protocols.

GUID
#define EFI_CPU_ARCH_PROTOCOL_GUID \
 {0x26baccb1,0x6f42,0x11d4,0xbc,\
 0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_CPU_ARCH_PROTOCOL {
 EFI_CPU_FLUSH_DATA_CACHE FlushDataCache;
 EFI_CPU_ENABLE_INTERRUPT EnableInterrupt;
 EFI_CPU_DISABLE_INTERRUPT DisableInterrupt;
 EFI_CPU_GET_INTERRUPT_STATE GetInterruptState;
 EFI_CPU_INIT Init;
 EFI_CPU_REGISTER_INTERRUPT_HANDLER RegisterInterruptHandler;
 EFI_CPU_GET_TIMER_VALUE GetTimerValue;
 EFI_CPU_SET_ATTRIBUTES SetMemoryAttributes;
 UINT32 NumberOfTimers;
 UINT32 DmaBufferAlignment;
} EFI_CPU_ARCH_PROTOCOL;

Parameters
FlushDataCache

Flushes a range of the processor’s data cache. See the FlushDataCache()
function description. If the processor does not contain a data cache, or the data cache
is fully coherent, then this function can just return EFI_SUCCESS. If the processor
does not support flushing a range of addresses from the data cache, then the entire data
cache must be flushed. This function is used by the root bridge I/O abstractions to
flush data caches for DMA operations.

EnableInterrupt

Enables interrupt processing by the processor. See the EnableInterrupt()
function description. This function is used by the Boot Service RaiseTPL() and
RestoreTPL().

DisableInterrupt

Disables interrupt processing by the processor. See the DisableInterrupt()
function description. This function is used by the Boot Service RaiseTPL() and
RestoreTPL().

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

130 May 2017 Version 1.6

GetInterruptState

Retrieves the processor’s current interrupt state. See the GetInterruptState()
function description.

Init

Generates an INIT on the processor. See the Init() function description. This
function may be used by the EFI_RESET Protocol depending upon a specified boot
path. If a processor cannot programmatically generate an INIT without help from
external hardware, then this function returns EFI_UNSUPPORTED.

RegisterInterruptHandler

Associates an interrupt service routine with one of the processor’s interrupt vectors.
See the RegisterInterruptHandler() function description. This function is
typically used by the EFI_TIMER_ARCH_PROTOCOL to hook the timer interrupt
in a system. It can also be used by the debugger to hook exception vectors.

GetTimerValue

Returns the value of one of the processor’s internal timers. See the
GetTimerValue() function description.

SetMemoryAttributes

Change a memory region to support specified memory attributes. See the
SetMemoryAttributes() function description.

NumberOfTimers

The number of timers that are available in a processor. The value in this field is a
constant that must not be modified after the CPU Architectural Protocol is installed.
All consumers must treat this as a read-only field.

DmaBufferAlignment

The size, in bytes, of the alignment required for DMA buffer allocations. This is
typically the size of the largest data cache line in the platform. This value can be
determined by looking at the data cache line sizes of all the caches present in the
platform, and returning the largest. This is used by the root bridge I/O abstraction
protocols to guarantee that no two DMA buffers ever share the same cache line. The
value in this field is a constant that must not be modified after the CPU Architectural
Protocol is installed. All consumers must treat this as a read-only field.

Description
The EFI_CPU_ARCH_PROTOCOL is used to abstract processor-specific functions from the DXE
Foundation. This includes flushing caches, enabling and disabling interrupts, hooking interrupt
vectors and exception vectors, reading internal processor timers, resetting the processor, and
determining the processor frequency.

The GCD memory space map is initialized by the DXE Foundation based on the contents of the
HOB list. The HOB list contains the capabilities of the different memory regions, but it does not
contain their current attributes. The DXE driver that produces the EFI_CPU_ARCH_PROTOCOL is
responsible for maintaining the current attributes of the memory regions visible to the processor.
This means that the DXE driver that produces the EFI_CPU_ARCH_PROTOCOL must seed the

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 131

GCD memory space map with the initial state of the attributes for all the memory regions visible to
the processor. The DXE Service SetMemorySpaceAttributes() allows the attributes of a
memory range to be modified. The SetMemorySpaceAttributes() DXE Service is
implemented using the SetMemoryAttributes() service of the
EFI_CPU_ARCH_PROTOCOL.

To initialize the state of the attributes in the GCD memory space map, the DXE driver that produces
the EFI_CPU_ARCH_PROTOCOL must call the DXE Service
SetMemorySpaceAttributes() for all the different memory regions visible to the processor
passing in the current attributes. If the CPU does not support certain memory region attributes in the
UEFI Specification, then these should always be reported as disabled or not present. If the CPU
supports additional memory region attributes, then the reported attributes should be those which
most closely match but not exceed those described in the specification. This, in turn, will call back to
the SetMemoryAttributes() service of the EFI_CPU_ARCH_PROTOCOL, and all of these
calls must return EFI_SUCCESS, since the DXE Foundation is only requesting that the attributes of
the memory region be set to their current settings. This will force the current attributes in the GCD
memory space map to be set to these current settings. After this initialization is complete, the next
call to the DXE Service GetMemorySpaceMap() will correctly show the current attributes of all
the memory regions. In addition, any future calls to the DXE Service
SetMemorySpaceAttributes() will in turn call the EFI_CPU_ARCH_PROTOCOL to see if
those attributes can be modified, and if they can, the GCD memory space map will be updated
accordingly.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

132 May 2017 Version 1.6

EFI_CPU_ARCH_PROTOCOL.FlushDataCache()

Summary
Flushes a range of the processor’s data cache. If the processor does not contain a data cache, or the
data cache is fully coherent, then this function can just return EFI_SUCCESS. If the processor does
not support flushing a range of addresses from the data cache, then the entire data cache must be
flushed. This function is used by the root bridge I/O abstractions to flush caches for DMA
operations.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_FLUSH_DATA_CACHE) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_PHYSICAL_ADDRESS Start,
 IN UINT64 Length,
 IN EFI_CPU_FLUSH_TYPE FlushType
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Start

The beginning physical address to flush from the processor’s data cache.

Length

The number of bytes to flush from the processor’s data cache. This function may
flush more bytes than Length specifies depending upon the granularity of the flush
operation that the processor supports.

FlushType

Specifies the type of flush operation to perform. Type EFI_CPU_FLUSH_TYPE is
defined in “Related Definitions” below.

Description
This function flushes the range of addresses from Start to Start+Length from the processor's
data cache. If Start is not aligned to a cache line boundary, then the bytes before Start to the
preceding cache line boundary are also flushed. If Start+Length is not aligned to a cache line
boundary, then the bytes past Start+Length to the end of the next cache line boundary are also
flushed. If the address range is flushed, then EFI_SUCCESS is returned. If the address range
cannot be flushed, then EFI_DEVICE_ERROR is returned. If the processor does not support the
flush type specified by FlushType, then EFI_UNSUPPORTED is returned. The FlushType of
EfiCpuFlushTypeWriteBackInvalidate must be supported. If the data cache is fully
coherent with all DMA operations, then this function can just return EFI_SUCCESS. If the
processor does not support flushing a range of the data cache, then the entire data cache can be
flushed.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 133

Related Definitions
typedef enum {
 EfiCpuFlushTypeWriteBackInvalidate,
 EfiCpuFlushTypeWriteBack,
 EfiCpuFlushTypeInvalidate,
 EfiCpuMaxFlushType
} EFI_CPU_FLUSH_TYPE;

Status Codes Returned

EFI_SUCCESS The address range from Start to Start+Length was

flushed from the processor’s data cache.

EFI_UNSUPPORTED The processor does not support the cache flush type specified by

FlushType.

EFI_DEVICE_ERROR The address range from Start to Start+Length could not

be flushed from the processor's data cache.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

134 May 2017 Version 1.6

EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()

Summary
Enables interrupt processing by the processor. This function is used to implement the Boot Services
RaiseTPL() and RestoreTPL().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_ENABLE_INTERRUPT) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Description
This function enables interrupt processing by the processor. If interrupts are enabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned

EFI_SUCCESS Interrupts are enabled on the processor.

EFI_DEVICE_ERROR Interrupts could not be enabled on the processor.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 135

EFI_CPU_ARCH_PROTOCOL.DisableInterrupt()

Summary
Disables interrupt processing by the processor. This function is used to implement the Boot Services
RaiseTPL() and RestoreTPL().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_DISABLE_INTERRUPT) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

Description
This function disables interrupt processing by the processor. If interrupts are disabled, then
EFI_SUCCESS is returned. Otherwise, EFI_DEVICE_ERROR is returned.

Status Codes Returned

EFI_SUCCESS Interrupts are disabled on the processor.

EFI_DEVICE_ERROR Interrupts could not be disabled on the processor.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

136 May 2017 Version 1.6

EFI_CPU_ARCH_PROTOCOL.GetInterruptState()

Summary
Retrieves the processor’s current interrupt state.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_GET_INTERRUPT_STATE) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 OUT BOOLEAN *State
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

State

A pointer to the processor’s current interrupt state. Set to TRUE if interrupts are
enabled and FALSE if interrupts are disabled.

Description
This function retrieves the processor’s current interrupt state a returns it in State. If interrupts are
currently enabled, then TRUE is returned. If interrupts are currently disabled, then FALSE is
returned. If State is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise,
EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The processor’s current interrupt state was returned in State.

EFI_INVALID_PARAMETER State is NULL.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 137

EFI_CPU_ARCH_PROTOCOL.Init()

Summary
Generates an INIT on the processor.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_INIT) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_CPU_INIT_TYPE InitType
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

InitType

The type of processor INIT to perform. Type EFI_CPU_INIT_TYPE is defined in
“Related Definitions” below.

Description
This function generates an INIT on the processor. If this function succeeds, then the processor will
be reset, and control will not be returned to the caller. If InitType is not supported by this
processor, or the processor cannot programmatically generate an INIT without help from external
hardware, then EFI_UNSUPPORTED is returned. If an error occurs attempting to generate an INIT,
then EFI_DEVICE_ERROR is returned.

Related Definitions
typedef enum {
 EfiCpuInit,
 EfiCpuMaxInitType
} EFI_CPU_INIT_TYPE;

Status Codes Returned

EFI_SUCCESS The processor INIT was performed. This return code should never be
seen.

EFI_UNSUPPORTED The processor INIT operation specified by InitType is not

supported by this processor.

EFI_DEVICE_ERROR The processor INIT failed.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

138 May 2017 Version 1.6

EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler()

Summary
Registers a function to be called from the processor interrupt handler.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_REGISTER_INTERRUPT_HANDLER) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_EXCEPTION_TYPE InterruptType,
 IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

InterruptType

Defines which interrupt or exception to hook. Type EFI_EXCEPTION_TYPE and
the valid values for this parameter are defined in
EFI_DEBUG_SUPPORT_PROTOCOL of the UEFI 2.0 specification.

InterruptHandler

A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler will be
uninstalled. Type EFI_CPU_INTERRUPT_HANDLER is defined in “Related
Definitions” below.

Description
The RegisterInterruptHandler() function registers and enables the handler specified by
InterruptHandler for a processor interrupt or exception type specified by
InterruptType. If InterruptHandler is NULL, then the handler for the processor interrupt
or exception type specified by InterruptType is uninstalled. The installed handler is called
once for each processor interrupt or exception.

If the interrupt handler is successfully installed or uninstalled, then EFI_SUCCESS is returned.

If InterruptHandler is not NULL, and a handler for InterruptType has already been
installed, then EFI_ALREADY_STARTED is returned.

If InterruptHandler is NULL, and a handler for InterruptType has not been installed,
then EFI_INVALID_PARAMETER is returned.

If InterruptType is not supported, then EFI_UNSUPPORTED is returned.

The EFI_CPU_ARCH_PROTOCOL implementation of this function must handle saving and
restoring system context to the system context record around calls to the interrupt handler. It must
also perform the necessary steps to return to the context that was interrupted by the interrupt. No
chaining of interrupt handlers is allowed.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 139

Related Definitions
typedef
VOID
(*EFI_CPU_INTERRUPT_HANDLER) (
 IN EFI_EXCEPTION_TYPE InterruptType,
 IN EFI_SYSTEM_CONTEXT SystemContext
);

InterruptType

Defines the type of interrupt or exception that occurred on the processor. This
parameter is processor architecture specific. The type EFI_EXCEPTION_TYPE
and the valid values for this parameter are defined in
EFI_DEBUG_SUPPORT_PROTOCOL of the UEFI 2.0 specification.

SystemContext

A pointer to the processor context when the interrupt occurred on the processor. Type
EFI_SYSTEM_CONTEXT is defined in the EFI_DEBUG_SUPPORT_PROTOCOL of
the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The handler for the processor interrupt was successfully installed or
uninstalled.

EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for

InterruptType was previously installed.

EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for

InterruptType was not previously installed.

EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

140 May 2017 Version 1.6

EFI_CPU_ARCH_PROTOCOL.GetTimerValue()

Summary
Returns a timer value from one of the processor's internal timers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_GET_TIMER_VALUE) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN UINT32 TimerIndex,
 OUT UINT64 *TimerValue,
 OUT UINT64 *TimerPeriod OPTIONAL
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

TimerIndex

Specifies which processor timer is to be returned in TimerValue. This parameter
must be between 0 and NumberOfTimers-1.

TimerValue

Pointer to the returned timer value.

TimerPeriod

A pointer to the amount of time that passes in femtoseconds (10-15) for each increment
of TimerValue. If TimerValue does not increment at a predictable rate, then 0 is
returned. The amount of time that has passed between two calls to
GetTimerValue() can be calculated with the formula (TimerValue2 –
TimerValue1) * TimerPeriod. This parameter is optional and may be NULL.

Description
This function reads the processor timer specified by TimerIndex and returns it in TimerValue.
If TimerValue is NULL, then EFI_INVALID_PARAMETER is returned. If TimerPeriod is

not NULL, then the amount of time that passes in femtoseconds (10-15) for each increment if
TimerValue is returned in TimerPeriod. If the timer does not run at a predictable rate, then a
TimerPeriod of 0 is returned. If TimerIndex does not specify a valid timer in this processor,
then EFI_INVALID_PARAMETER is returned. The valid range for TimerIndex is
0..NumberOfTimers-1. If the processor does not contain any readable timers, then this function
returns EFI_UNSUPPORTED. If an error occurs attempting to read one of the processor's timers,
then EFI_DEVICE_ERROR is returned.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 141

Status Codes Returned

EFI_SUCCESS The processor timer value specified by TimerIndex was returned

in TimerValue.

EFI_INVALID_PARAMETER TimerValue is NULL.

EFI_INVALID_PARAMETER TimerIndex is not valid.

EFI_UNSUPPORTED The processor does not have any readable timers.

EFI_DEVICE_ERROR An error occurred attempting to read one of the processor's timers.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

142 May 2017 Version 1.6

EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()

Summary
Change a memory region to support specified memory attributes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CPU_SET_MEMORY_ATTRIBUTES) (
 IN CONST EFI_CPU_ARCH_PROTOCOL *This,
 IN EFI_PHYSICAL_ADDRESS BaseAddress,
 IN UINT64 Length,
 IN UINT64 Attributes
);

Parameters
This

The EFI_CPU_ARCH_PROTOCOL instance.

BaseAddress

The physical address that is the start address of a memory region. Type
EFI_PHYSICAL_ADDRESS is defined in the AllocatePages() function
description in the UEFI 2.0 specification.

Length

The size in bytes of the memory region.

Attributes

A bit mask that specifies the memory region attributes. See the UEFI Boot Service
GetMemoryMap() for the set of legal attribute bits.

Description
This function changes the attributes for the memory region specified by BaseAddress and
Length to support those specified by Attributes. If the memory region attributes are
changed so that they do not conflict with those specified by Attributes, then
EFI_SUCCESS is returned.

This function modifies the attributes for the memory region specified by BaseAddress and
Length from their current attributes to the attributes specified by Attributes. If this
modification of attributes succeeds, then EFI_SUCCESS is returned.

If Length is zero, then EFI_INVALID_PARAMETER is returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

If the attributes specified by Attributes are not supported for the memory region specified by
BaseAddress and Length, then EFI_UNSUPPORTED is returned.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 143

If the attributes for one or more bytes of the memory range specified by BaseAddress and
Length cannot be modified because the current system policy does not allow them to be modified,
then EFI_ACCESS_DENIED is returned.

If there are not enough system resources available to modify the attributes of the memory range, then
EFI_OUT_OF_RESOURCES is returned.

If Attributes specifies a combination of memory attributes that cannot be set together,
then EFI_INVALID_PARAMETER is returned. For example, if both EFI_MEMORY_UC and
EFI_MEMORY_WT are set.

Status Codes Returned

EFI_SUCCESS The attributes were set for the memory region.

EFI_INVALID_PARAMETER Length is zero.

EFI_INVALID_PARAMETER Attributes specified an illegal combination of attributes that

cannot be set together.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory

resource range specified by BaseAddress and Length.

EFI_UNSUPPORTED The bit mask of attributes is not support for the memory resource

range specified by BaseAddress and Length.

EFI_ACCESS_DENIED The attributes for the memory resource range specified by

BaseAddress and Length cannot be modified.

EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

144 May 2017 Version 1.6

12.4 Metronome Architectural Protocol

EFI_METRONOME_ARCH_PROTOCOL

Summary
Used to wait for ticks from a known time source in a platform. This protocol may be used to
implement a simple version of the Stall() Boot Service. This protocol must be produced by a
boot service or runtime DXE driver and may only be consumed by the DXE Foundation and DXE
drivers that produce DXE Architectural Protocols.

GUID
#define EFI_METRONOME_ARCH_PROTOCOL_GUID \
 {0x26baccb2,0x6f42,0x11d4,0xbc,\
 0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Protocol Interface Structure
typedef struct _EFI_METRONOME_ARCH_PROTOCOL {
 EFI_METRONOME_WAIT_FOR_TICK WaitForTick;
 UINT32 TickPeriod;
} EFI_METRONOME_ARCH_PROTOCOL;

Parameters
WaitForTick

Waits for a specified number of ticks from a known time source in the platform. See
the WaitForTick() function description. The actual time passed between entry of
this function and the first tick is between 0 and TickPeriod 100 ns units. To
guarantee that at least TickPeriod time has elapsed, wait for two ticks.

TickPeriod

The period of platform's known time source in 100 ns units. This value on any
platform must not exceed 200 µs. The value in this field is a constant that must not be
modified after the Metronome architectural protocol is installed. All consumers must
treat this as a read-only field.

Description
This protocol provides access to a known time source in the platform to the DXE Foundation. The
DXE Foundation uses this known time source to produce DXE Foundation services that require
calibrated delays.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 145

EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()

Summary
Waits for a specified number of ticks from a known time source in a platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_METRONOME_WAIT_FOR_TICK) (
 IN CONST EFI_METRONOME_ARCH_PROTOCOL *This,
 IN UINT32 TickNumber
);

Parameters
This

The EFI_METRONOME_ARCH_PROTOCOL instance.

TickNumber

Number of ticks to wait.

Description
The WaitForTick() function waits for the number of ticks specified by TickNumber from a
known time source in the platform. If TickNumber of ticks are detected, then EFI_SUCCESS is
returned. The actual time passed between entry of this function and the first tick is between 0 and
TickPeriod 100 ns units. If you want to guarantee that at least TickPeriod time has elapsed,
wait for two ticks. This function waits for a hardware event to determine when a tick occurs. It is
possible for interrupt processing, or exception processing to interrupt the execution of the
WaitForTick() function. Depending on the hardware source for the ticks, it is possible for a tick
to be missed. This function cannot guarantee that ticks will not be missed. If a timeout occurs
waiting for the specified number of ticks, then EFI_TIMEOUT is returned.

Status Codes Returned

EFI_SUCCESS The wait for the number of ticks specified by TickNumber

succeeded.

EFI_TIMEOUT A timeout occurred waiting for the specified number of ticks.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

146 May 2017 Version 1.6

12.5 Monotonic Counter Architectural Protocol

EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL

Summary
Provides the services required to access the system’s monotonic counter. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation and DXE
drivers that produce DXE Architectural Protocols.

GUID
#define EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID \
 {0x1da97072,0xbddc,0x4b30,0x99,\
 0xf1,0x72,0xa0,0xb5,0x6f,0xff,0x2a}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetNextHighMonotonicCount() field of the UEFI Runtime Services Table
and the GetNextMonotonicCount() field of the UEFI Boot Services Table. See Services -
Runtime Services and Services - Boot Services for details on these services. After the field of the
UEFI Runtime Services Table and the field of the UEFI Boot Services Table have been initialized,
the driver must install the EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL_GUID on a new
handle with a NULL interface pointer. The installation of this protocol informs the DXE Foundation
that the monotonic counter services are now available and that the DXE Foundation must update the
32-bit CRC of the UEFI Runtime Services Table and the 32-bit CRC of the UEFI Boot Services
Table.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 147

12.6 Real Time Clock Architectural Protocol

EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL

Summary
Provides the services required to access a system’s real time clock hardware. This protocol must be
produced by a runtime DXE driver and may only be consumed by the DXE Foundation.

GUID
#define EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID \
 {0x27CFAC87,0x46CC,0x11d4,0x9A,\
 0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetTime(), SetTime(), GetWakeupTime(), and SetWakeupTime()
fields of the UEFI Runtime Services Table. See “Runtime Capabilities” on page 35 for details on
these services. After the four fields of the UEFI Runtime Services Table have been initialized, the
driver must install the EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL_GUID on a new handle
with a NULL interface pointer. The installation of this protocol informs the DXE Foundation that the
real time clock–related services are now available and that the DXE Foundation must update the
32-bit CRC of the UEFI Runtime Services Table.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

148 May 2017 Version 1.6

12.7 Reset Architectural Protocol

EFI_RESET_ARCH_PROTOCOL

Summary
Provides the service required to reset a platform. This protocol must be produced by a runtime DXE
driver and may only be consumed by the DXE Foundation.

GUID
#define EFI_RESET_ARCH_PROTOCOL_GUID \
 {0x27CFAC88,0x46CC,0x11d4,0x9A,\
 0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the ResetSystem() field of the UEFI Runtime Services Table. See “Runtime
Capabilities” on page 35 for details on this service. After this field of the UEFI Runtime Services
Table has been initialized, the driver must install the EFI_RESET_ARCH_PROTOCOL_GUID on a
new handle with a NULL interface pointer. The installation of this protocol informs the DXE
Foundation that the reset system service is now available and that the DXE Foundation must update
the 32-bit CRC of the UEFI Runtime Services Table.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 149

12.8 Runtime Architectural Protocol
The following topics provide a detailed description of the EFI_RUNTIME_ARCH_PROTOCOL.
The DXE Foundation contains no runtime code, so all runtime code is contained in DXE
Architectural Protocols. This is due to the fact that runtime code must be callable in physical or
virtual mode. The Runtime Architectural Protocol contains the UEFI runtime services that are
callable only in physical mode. The Runtime Architectural Protocol can be thought of as the runtime
portion of the DXE Foundation.

The Runtime Architectural Protocol contains support for transition of runtime drivers from physical
mode calling to virtual mode calling.

EFI_RUNTIME_ARCH_PROTOCOL

Summary
Allows the runtime functionality of the DXE Foundation to be contained in a separate driver. It also
provides hooks for the DXE Foundation to export information that is needed at runtime. As such,
this protocol allows services to the DXE Foundation to manage runtime drivers and events. This
protocol also implies that the runtime services required to transition to virtual mode,
SetVirtualAddressMap() and ConvertPointer(), have been registered into the UEFI
Runtime Table in the UEFI System Table. This protocol must be produced by a runtime DXE driver
and may only be consumed by the DXE Foundation.

GUID
#define EFI_RUNTIME_ARCH_PROTOCOL_GUID \
 {0xb7dfb4e1,0x52f,0x449f,0x87,\
 0xbe,0x98,0x18,0xfc,0x91,0xb7,0x33}

Protocol Interface Structure
typedef struct _EFI_RUNTIME_ARCH_PROTOCOL {
EFI_LIST_ENTRY ImageHead;
EFI_LIST_ENTRY EventHead;
UINTN MemoryDescriptorSize;
UINT32 MemoryDesciptorVersion;
UINTN MemoryMapSize;
EFI_MEMORY_DESCRIPTOR *MemoryMapPhysical;
EFI_MEMORY_DESCRIPTOR *MemoryMapVirtual;
BOOLEAN VirtualMode;
BOOLEAN AtRuntime;
} EFI_RUNTIME_ARCH_PROTOCOL;

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

150 May 2017 Version 1.6

Parameters
ImageHead

A list of type EFI_RUNTIME_IMAGE_ENTRY where the DXE Foundation inserts
items into the list and the Runtime AP consumes the data to implement the
SetVirtualAddressMap() call.

EventHead

A list of type EFI_RUNTIME_EVENT_ENTRY where the DXE Foundation inserts
items into the list and the Runtime AP consumes the data to implement the
SetVirtualAddressMap() call.

MemoryDescriptorSize

Size of a memory descriptor that is returned by GetMemoryMap(). This value is
updated by the DXE Foundation.

MemoryDescriptorVersion

Version of a memory descriptor that is return by GetMemoryMap(). This value is
updated by the DXE Foundation.

MemoryMapSize

Size of the memory map in bytes contained in MemoryMapPhysical and
MemoryMapVirtual. This value is updated by the DXE Foundation when memory
for MemoryMapPhysical gets allocated.

MemoryMapPhysical

Pointer to a runtime buffer that contains a copy of the memory map returned via
GetMemoryMap(). The memory must be allocated by the DXE Foundation so that
it is accounted for in the memory map.

MemoryMapVirtual

Pointer to MemoryMapPhysical that is updated to virtual mode after
SetVirtualAddressMap(). The DXE Foundation updates this value when it
updates MemoryMapPhysical with the same physical address. The Runtime AP is
responsible for converting MemoryMapVirtual to a virtual pointer.

VirtualMode

Boolean that is TRUE if SetVirtualAddressMap() has been called. This field is
set by the Runtime AP. When VirtualMode is TRUE MemoryMapVirtual
pointer contains the virtual address of the MemoryMapPhysical.

AtRuntime

Boolean that is TRUE if ExitBootServices() has been called. This field is set
by the Runtime AP.

Related Definitions
//***
// EFI_LIST_ENTRY
//***
struct _EFI_LIST_ENTRY {

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 151

 struct _EFI_LIST_ENTRY *ForwardLink;
 struct _EFI_LIST_ENTRY *BackLink;
} EFI_LIST_ENTRY;

ForwardLink

A pointer next node in the doubly linked list.

BackLink

A pointer previous node in the doubly linked list.

//***
// EFI_RUNTIME_IMAGE_ENTRY
//***
typedef struct {
 VOID *ImageBase;
 UINT64 ImageSize;
 VOID *RelocationData;
 EFI_HANDLE Handle;
 EFI_LIST_ENTRY Link;
} EFI_RUNTIME_IMAGE_ENTRY;

ImageBase

Start of image that has been loaded in memory. It is a pointer to either the DOS header
or PE header of the image. Type EFI_PHYSICAL_ADDRESS is defined in the
AllocatePages() UEFI 2.0 specification.

ImageSize

Size in bytes of the image represented by ImageBase.

RelocationData

Information about the fix-ups that were performed on ImageBase when it was
loaded into memory. This information is needed when the virtual mode fix-ups are
reapplied so that data that has been programmatically updated will not be fixed up. If
code updates a global variable the code is responsible for fixing up the variable for
virtual mode.

Handle

The ImageHandle passed into ImageBase when it was loaded. See
EFI_IMAGE_ENTRY_POINT for the definition of ImageHandle.

Link

Entry for this node in the
EFI_RUNTIME_ARCHITECTURE_PROTOCOL.ImageHead list.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

152 May 2017 Version 1.6

//***
// EFI_RUNTIME_EVENT_ENTRY
//***
typedef struct {
 UINT32 Type;
 EFI_TPL NotifyTpl;
 EFI_EVENT_NOTIFY NotifyFunction;
 VOID *NotifyContext;
 EFI_EVENT *Event;
 EFI_LIST_ENTRY Link;
} EFI_RUNTIME_EVENT_ENTRY;

Parameters
Type

The same as Type passed into CreateEvent().

NotifyTpl

The same as NotifyTpl passed into CreateEvent(). Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

NotifyFunction

The same as NotifyFunction passed into CreateEvent(). Type
EFI_EVENT_NOTIFY is defined in the CreateEvent() function description.

NotifyContext

The same as NotifyContext passed into CreateEvent().

Event

The EFI_EVENT returned by CreateEvent(). Event must be in runtime memory.
Type EFI_EVENT is defined in the CreateEvent() function description.

Link

Entry for this node in the
EFI_RUNTIME_ARCHITECTURE_PROTOCOL.EventHead list.

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the SetVirtualAddressMap() and ConvertPointer() fields of the UEFI
Runtime Services Table and the CalculateCrc32() field of the UEFI Boot Services Table. See
“Runtime Capabilities” on page 35 and “Services - Boot Services” on page 29 for details on these
services. After the two fields of the UEFI Runtime Services Table and the one field of the UEFI
Boot Services Table have been initialized, the driver must install the
EFI_RUNTIME_ARCH_PROTOCOL_GUID on a new handle with an
EFI_RUNTIME_ARCH_PROTOCOL interface pointer. The installation of this protocol informs the
DXE Foundation that the virtual memory services and the 32-bit CRC services are now available,
and the DXE Foundation must update the 32-bit CRC of the UEFI Runtime Services Table and the
32-bit CRC of the UEFI Boot Services Table.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 153

All runtime DXE Foundation services are provided by the EFI_RUNTIME_ARCH_PROTOCOL.
This includes the support for registering runtime images that must be fixed up again when a
transition is made from physical mode to virtual mode. This protocol also supports all events that are
defined to fire at runtime. This protocol also contains a CRC-32 function that will be used by the
DXE Foundation as a boot service. The EFI_RUNTIME_ARCH_PROTOCOL needs the CRC-32
function when a transition is made from physical mode to virtual mode and the UEFI System Table
and UEFI Runtime Table are fixed up with virtual pointers.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

154 May 2017 Version 1.6

12.9 Security Architectural Protocols
The EFI_SECURITY_ARCH_PROTOCOL and EFI_SECURITY2_ARCH_PROTOCOL abstract
policy actions on image invocation and other security controls from the DXE core to a security
driver.

12.9.1 Security Architectural Protocol

EFI_SECURITY_ARCH_PROTOCOL

Summary
Abstracts security-specific functions from the DXE Foundation for purposes of handling GUIDed
section encapsulations. This protocol must be produced by a boot service or runtime DXE driver
and may only be consumed by the DXE Foundation and any other DXE drivers that need to validate
the authentication of files.

See also Security2 Architectural Protocol section below.

GUID
#define EFI_SECURITY_ARCH_PROTOCOL_GUID \
 {0xA46423E3,0x4617,0x49f1,0xB9,\
 0xFF,0xD1,0xBF,0xA9,0x11,0x58,0x39}

Protocol Interface Structure
typedef struct _EFI_SECURITY_ARCH_PROTOCOL {
 EFI_SECURITY_FILE_AUTHENTICATION_STATE
 FileAuthenticationState;
} EFI_SECURITY_ARCH_PROTOCOL;

Parameters
FileAuthenticationState

This service is called upon fault with respect to the authentication of a section of a file.
See the FileAuthenticationState() function description.

Description
The EFI_SECURITY_ARCH_PROTOCOL is used to abstract platform-specific policy from the
DXE Foundation. This includes locking flash upon failure to authenticate, attestation logging, and
other exception operations.

The driver that produces the EFI_SECURITY_ARCH_PROTOCOL may also optionally install the
EFI_SECURITY_POLICY_PROTOCOL_GUID onto a new handle with a NULL interface. The
existence of this GUID in the protocol database means that the GUIDed Section Extraction Protocol
should authenticate the contents of an Authentication Section. The expectation is that the GUIDed
Section Extraction protocol will look for the existence of the
EFI_SECURITY_POLICY_PROTOCOL_GUID in the protocol database. If it exists, then the
publication thereof is taken as an injunction to attempt an authentication of any section wrapped in

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 155

an Authentication Section. See the Platform Initialization Specification, Volume 3, for details on
the GUIDed Section Extraction Protocol and Authentication Sections.

Additional GUID Definitions
#define EFI_SECURITY_POLICY_PROTOCOL_GUID \

{0x78E4D245,0xCD4D,0x4a05,0xA2,0xBA,0x47,0x43,0xE8,0x6C,0xFC,0xA
B}

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

156 May 2017 Version 1.6

EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()

Summary
The DXE Foundation uses this service to check the authentication status of a file. This allows the
system to execute a platform-specific policy in response the different authentication status values.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SECURITY_FILE_AUTHENTICATION_STATE) (
 IN CONST EFI_SECURITY_ARCH_PROTOCOL *This,
 IN UINT32 AuthenticationStatus,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *File
);

Parameters
This

The EFI_SECURITY_ARCH_PROTOCOL instance.

AuthenticationStatus

The authentication type returned from the Section Extraction Protocol. See the
Platform Initialization Specification, Volume 3, for details on this type.

File

A pointer to the device path of the file that is being dispatched. This will optionally be
used for logging. Type EFI_DEVICE_PATH_PROTOCOL is defined Chapter 8 of
the UEFI 2.0 specification.

Description
The EFI_SECURITY_ARCH_PROTOCOL (SAP) is used to abstract platform-specific policy from
the DXE Foundation response to an attempt to use a file that returns a given status for the
authentication check from the section extraction protocol.

The possible responses in a given SAP implementation may include locking flash upon failure to
authenticate, attestation logging for all signed drivers, and other exception operations. The File
parameter allows for possible logging within the SAP of the driver.

If File is NULL, then EFI_INVALID_PARAMETER is returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is safe for the DXE Foundation to use, then EFI_SUCCESS is
returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use under any circumstances,
then EFI_ACCESS_DENIED is returned.

If the file specified by File with an authentication status specified by
AuthenticationStatus is not safe for the DXE Foundation to use right now, but it might be
possible to use it at a future time, then EFI_SECURITY_VIOLATION is returned.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 157

Status Codes Returned

EFI_SUCCESS The file specified by File did authenticate, and the platform policy

dictates that the DXE Foundation may use File.

EFI_INVALID_PARAMETER File is NULL.

EFI_SECURITY_VIOLATION The file specified by File did not authenticate, and the platform

policy dictates that File should be placed in the untrusted state.

A file may be promoted from the untrusted to the trusted state at a

future time with a call to the Trust() DXE Service.

EFI_ACCESS_DENIED The file specified by File did not authenticate, and the platform

policy dictates that File should not be used for any purpose.

12.9.2 Security2 Architectural Protocol

Summary
Abstracts security-specific functions from the DXE Foundation of UEFI Image Verification,
Trusted Computing Group (TCG) measured boot, and User Identity policy for image loading and
consoles. This protocol must be produced by a boot service or runtime DXE driver.

This protocol is optional and must be published prior to the EFI_SECURITY_ARCH_PROTOCOL.

As a result, the same driver must publish both of these interfaces.

When both Security and Security2 Architectural Protocols are published, LoadImage must use
them in accordance with the following rules:

• The Security2 protocol must be used on every image being loaded.

• The Security protocol must be used after the Securiy2 protocol and only on images that have
been read using Firmware Volume protocol.

When only Security architectural protocol is published, LoadImage must use it on every image
being loaded.

GUID
#define EFI_SECURITY2_ARCH_PROTOCOL_GUID \
 {0x94ab2f58, 0x1438, 0x4ef1, 0x91, \
 0x52, 0x18, 0x94, 0x1a, 0x3a, 0xe, 0x68}

Protocol Interface Structure
typedef struct _EFI_SECURITY2_ARCH_PROTOCOL {
 EFI_SECURITY2_FILE_AUTHENTICATION FileAuthentication;
} EFI_SECURITY2_ARCH_PROTOCOL;

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

158 May 2017 Version 1.6

Parameters
FileAuthentication

This service is called by DXE Foundation from the LoadImage service to verify
and/or measure the image and from the ConnectController service to probe
whether a specific device path can be connected.

Description
The EFI_SECURITY2_ARCH_PROTOCOL is used to abstract platform-specific policy from the
DXE Foundation. This includes measuring the PE/COFF image prior to invoking, comparing the
image against a policy (whether a white-list/black-list of public image verification keys or registered
hashes).

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 159

EFI_SECURITY2_ARCH_PROTOCOL.FileAuthentication()

Summary
The DXE Foundation uses this service to measure and/or verify a UEFI image.

Prototype
typedef EFI_STATUS (EFIAPI
*EFI_SECURITY_FILE_AUTHENTICATION_STATE) (
 IN CONST EFI_SECURITY2_ARCH_PROTOCOL *This,
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN VOID *FileBuffer,
 IN UINTN FileSize,
 IN BOOLEAN BootPolicy
);

Parameters
This

The EFI_SECURITY2_ARCH_PROTOCOL instance.

DevicePath

A pointer to the device path of the file that is being dispatched or the location that is
being connected. This will optionally be used for logging. Type
EFI_DEVICE_PATH_PROTOCOL is defined Chapter 9 of the UEFI Specification.

 FileBuffer

A pointer to the buffer with the UEFI file image

 FileSize

The size of the file.

BootPolicy

A boot policy that was used to call LoadImage() UEFI service. If
FileAuthentication() is invoked not from the LoadImage(),
BootPolicy must be set to FALSE.

Description
 This service abstracts the invocation of Trusted Computing Group (TCG) measured boot, UEFI
Secure boot, and UEFI User Identity infrastructure. For the former two, the DXE Foundation
invokes the FileAuthentication() with a DevicePath and corresponding image in
FileBuffer memory. The TCG measurement code will record the FileBuffer contents into the
appropriate PCR. The image verification logic will confirm the integrity and provenance of the
image in FileBuffer of length FileSize . The origin of the image will be DevicePath in
these cases.

If DevicePath is NULL, the origin of the image is unknown. Implementation of this service must
apply to such image security policy that is applied to the image with the least trusted origin.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

160 May 2017 Version 1.6

If the FileBuffer is NULL, the interface will determine if the DevicePath can be connected
in order to support the User Identification policy.

Status Codes Returned

EFI_SUCCESS The file specified by DevicePath and non-NULL

FileBuffer did authenticate, and the platform policy dictates

that the DXE Foundation may use the file

EFI_SUCCESS The device path specified by NULL device path DevicePath

and non-NULL FileBuffer did authenticate, and the platform

policy dictates that the DXE Foundation may execute the image in

FileBuffer.

EFI_SUCCESS FileBuffer is NULL and current user has permission to start

UEFI device drivers on the device path specified by

DevicePath.

EFI_SECURITY_VIOLATION The file specified by DevicePath and FileBuffer did not

authenticate, and the platform policy dictates that the file should be
placed in the untrusted state. The image has been added tothe file
execution table.

EFI_ACCESS_DENIED The file specified by File and FileBuffer did not

authenticate, and the platform policy dictates that the DXE

Foundation many not use File.

EFI_SECURITY_VIOLATION FileBuffer FileBuffer is NULL and the user has no

permission to start UEFI device drivers on the device path specified

by DevicePath.

EFI_SECURITY_VIOLATION FileBuffer is not NULL and the user has no permission to load

drivers from the device path specified by DevicePath. The

image has been added into the list of the deferred images.

12.10 Timer Architectural Protocol

EFI_TIMER_ARCH_PROTOCOL

Summary
Used to set up a periodic timer interrupt using a platform specific timer, and a processor-specific
interrupt vector. This protocol enables the use of the SetTimer() Boot Service. This protocol
must be produce by a boot service or runtime DXE driver and may only be consumed by the DXE
Foundation or DXE drivers that produce other DXE Architectural Protocols.

GUID
#define EFI_TIMER_ARCH_PROTOCOL_GUID \
 {0x26baccb3,0x6f42,0x11d4,0xbc,\
 0xe7,0x0,0x80,0xc7,0x3c,0x88,0x81}

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 161

Protocol Interface Structure
typedef struct _EFI_TIMER_ARCH_PROTOCOL {
 EFI_TIMER_REGISTER_HANDLER RegisterHandler;
 EFI_TIMER_SET_TIMER_PERIOD SetTimerPeriod;
 EFI_TIMER_GET_TIMER_PERIOD GetTimerPeriod;
 EFI_TIMER_GENERATE_SOFT_INTERRUPT GenerateSoftInterrupt;
} EFI_TIMER_ARCH_PROTOCOL;

Parameters
RegisterHandler

Registers a handler that will be called each time the timer interrupt fires. See the
RegisterHandler() function description. TimerPeriod defines the
minimum time between timer interrupts, so TimerPeriod will also be the minimum
time between calls to the registered handler.

SetTimerPeriod

Sets the period of the timer interrupt in 100 ns units. See the SetTimerPeriod()
function description. This function is optional and may return EFI_UNSUPPORTED.
If this function is supported, then the timer period will be rounded up to the nearest
supported timer period.

GetTimerPeriod

Retrieves the period of the timer interrupt in 100 ns units. See the
GetTimerPeriod() function description.

GenerateSoftInterrupt

Generates a soft timer interrupt that simulates the firing of the timer interrupt. This
service can be used to invoke the registered handler if the timer interrupt has been
masked for a period of time. See the GenerateSoftInterrupt() function
description.

Description
This protocol provides the services to initialize a periodic timer interrupt and to register a handler
that is called each time the timer interrupt fires. It may also provide a service to adjust the rate of the
periodic timer interrupt. When a timer interrupt occurs, the handler is passed the amount of time that
has passed since the previous timer interrupt.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

162 May 2017 Version 1.6

EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()

Summary
Registers a handler that is called each timer the timer interrupt fires.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_REGISTER_HANDLER) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This,
 IN EFI_TIMER_NOTIFY NotifyFunction
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

NotifyFunction

The function to call when a timer interrupt fires. This function executes at
EFI_TPL_HIGH_LEVEL. The DXE Foundation will register a handler for the timer
interrupt, so it can know how much time has passed. This information is used to
signal timer based events. NULL will unregister the handler. Type
EFI_TIMER_NOTIFY is defined in "Related Definitions" below.

Description
This function registers the handler NotifyFunction so it is called every time the timer interrupt
fires. It also passes the amount of time since the last handler call to the NotifyFunction. If
NotifyFunction is NULL, then the handler is unregistered. If the handler is registered, then
EFI_SUCCESS is returned. If the processor does not support registering a timer interrupt handler,
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler when a handler is
already registered, then EFI_ALREADY_STARTED is returned. If an attempt is made to unregister
a handler when a handler is not registered, then EFI_INVALID_PARAMETER is returned. If an
error occurs attempting to register the NotifyFunction with the timer interrupt, then
EFI_DEVICE_ERROR is returned.

Related Definitions
typedef
VOID
(EFIAPI *EFI_TIMER_NOTIFY) (
 IN UINT64 Time
);

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 163

Paramters
Time

Time since the last timer interrupt in 100 ns units. This will typically be
TimerPeriod, but if a timer interrupt is missed, and the
EFI_TIMER_ARCH_PROTOCOL driver can detect missed interrupts, then Time will
contain the actual amount of time since the last interrupt.

Status Codes Returned

EFI_SUCCESS The timer handler was registered.

EFI_UNSUPPORTED The platform does not support timer interrupts.

EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already

registered.

EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not previously

registered.

EFI_DEVICE_ERROR The timer handler could not be registered.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

164 May 2017 Version 1.6

EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()

Summary
Sets the rate of the periodic timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_SET_TIMER_PERIOD) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This,
 IN UINT64 TimerPeriod
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

The rate to program the timer interrupt in 100 ns units. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If the timer is programmable,
then the timer period will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the timer interrupts will be
disabled.

Description
This function adjusts the period of timer interrupts to the value specified by TimerPeriod. If the
timer period is updated, then EFI_SUCCESS is returned. If the timer hardware is not
programmable, then EFI_UNSUPPORTED is returned. If an error occurs while attempting to update
the timer period, then the timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt is disabled.
This is not the same as disabling the processor's interrupts. Instead, it must either turn off the timer
hardware, or it must adjust the interrupt controller so that a processor interrupt is not generated when
the timer interrupt fires.

Status Codes Returned

EFI_SUCCESS The timer period was changed.

EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.

EFI_DEVICE_ERROR The timer period could not be changed due to a device error.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 165

EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

Summary
Retrieves the rate of the periodic timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_GET_TIMER_PERIOD) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This,
 OUT UINT64 *TimerPeriod
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

A pointer to the timer period to retrieve in 100 ns units. If 0 is returned, then the timer
is currently disabled.

Description
This function retrieves the period of timer interrupts in 100 ns units, returns that value in
TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod is NULL, then
EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is returned, then the timer is
currently disabled.

Status Codes Returned

EFI_SUCCESS The timer period was returned in TimerPeriod.

EFI_INVALID_PARAMETER TimerPeriod is NULL.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

166 May 2017 Version 1.6

EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt()

Summary
Generates a soft timer interrupt.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_TIMER_GENERATE_SOFT_INTERRUPT) (
 IN CONST EFI_TIMER_ARCH_PROTOCOL *This
);

Parameters
This

The EFI_TIMER_ARCH_PROTOCOL instance.

Description
This function generates a soft timer interrupt. If the platform does not support soft timer interrupts,
then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned. If a handler has
been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler() service,
then a soft timer interrupt will be generated. If the timer interrupt is enabled when this service is
called, then the registered handler will be invoked. The registered handler should not be able to
distinguish a hardware-generated timer interrupt from a software-generated timer interrupt.

Status Codes Returned

EFI_SUCCESS The soft timer interrupt was generated.

EFI_UNSUPPORTED The platform does not support the generation of soft timer
interrupts.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 167

12.11 Variable Architectural Protocol

EFI_VARIABLE_ARCH_PROTOCOL

Summary
Provides the services required to get and set environment variables. This protocol must be produced
by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_VARIABLE_ARCH_PROTOCOL_GUID \
 {0x1e5668e2,0x8481,0x11d4,0xbc,\
 0xf1,0x0,0x80,0xc7,0x3c,0x88,0x81}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
initializing the GetVariable(), GetNextVariableName(), SetVariable() and
QueryVariableInfo() fields of the UEFI Runtime Services Table. See “Runtime
Capabilities” on page 35 for details on these services. After the three fields of the UEFI Runtime
Services Table have been initialized, the driver must install the
EFI_VARIABLE_ARCH_PROTOCOL_GUID on a new handle with a NULL interface pointer. The
installation of this protocol informs the DXE Foundation that the read-only and the volatile
environment variable related services are now available and that the DXE Foundation must update
the 32-bit CRC of the UEFI Runtime Services Table. The full complement of environment variable
services are not available until both this protocol and
EFI_VARIABLE_WRITE_ARCH_PROTOCOL are installed. DXE drivers that require read-only
access or read/write access to volatile environment variables must have this architectural protocol in
their dependency expressions. DXE drivers that require write access to nonvolatile environment
variables must have the EFI_VARIABLE_WRITE_ARCH_PROTOCOL in their dependency
expressions.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

168 May 2017 Version 1.6

12.12 Variable Write Architectural Protocol

EFI_VARIABLE_WRITE_ARCH_PROTOCOL

Summary
Provides the services required to set nonvolatile environment variables. This protocol must be
produced by a runtime DXE driver and may be consumed only by the DXE Foundation.

GUID
#define EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID \
 {0x6441f818,0x6362,0x4e44,0xb5,\
 0x70,0x7d,0xba,0x31,0xdd,0x24,0x53}

Description
The DXE driver that produces this protocol must be a runtime driver. This driver may update the
SetVariable() field of the UEFI Runtime Services Table. See “Runtime Capabilities” on
page 35 for details on this service. After the UEFI Runtime Services Table has been initialized, the
driver must install the EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID on a new handle with
a NULL interface pointer. The installation of this protocol informs the DXE Foundation that the
write services for nonvolatile environment variables are now available and that the DXE Foundation
must update the 32-bit CRC of the UEFI Runtime Services Table. The full complement of
environment variable services are not available until both this protocol and
EFI_VARIABLE_ARCH_PROTOCOL are installed. DXE drivers that require read-only access or
read/write access to volatile environment variables must have the
EFI_VARIABLE_WRITE_ARCH_PROTOCOL in their dependency expressions. DXE drivers that
require write access to nonvolatile environment variables must have this architectural protocol in
their dependency expressions.

12.13 EFI Capsule Architectural Protocol

EFI_CAPSULE_ARCH_PROTOCOL

Summary
Provides the services for capsule update.

GUID
#define EFI_CAPSULE_ARCH_PROTOCOL_GUID \
 { 0x5053697e, 0x2cbc, 0x4819, 0x90, \
 0xd9, 0x5, 0x80, 0xde, 0xee, 0x57, 0x54 }

Description
The DXE Driver that produces this protocol must be a runtime driver. The driver is responsible for
initializing the CapsuleUpdate() and QueryCapsuleCapabilities() fields of the UEFI
Runtime Services Table. After the two fields of the UEFI Runtime Services Table have been

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 169

initialized, the driver must install the EFI_CAPSULE_ARCH_PROTOCOL_GUID on a new handle
with a NULL interface pointer. The installation of this protocol informs the DXE Foundation that
the Capsule related services are now available and that the DXE Foundation must update the 32-bit
CRC of the UEFI Runtime Services Table.

12.14 Watchdog Timer Architectural Protocol
The following topics provide a detailed description of the
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL. This protocol is used to implement the Boot
Service SetWatchdogTimer(). The watchdog timer may be implemented in software using
Boot Services, or it may be implemented with specialized hardware. The protocol provides a service
to register a handler when the watchdog timer fires and a service to set the amount of time to wait
before the watchdog timer is fired.

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL

Summary
Used to program the watchdog timer and optionally register a handler when the watchdog timer
fires. This protocol must be produced by a boot service or runtime DXE driver and may be
consumed only by the DXE Foundation or DXE drivers that produce other DXE Architectural
Protocols. If a platform wishes to perform a platform-specific action when the watchdog timer
expires, then the DXE driver that contains the implementation of the EFI_BDS_ARCH_PROTOCOL
should use this protocol's RegisterHandler() service.

GUID
#define EFI_WATCHDOG_TIMER_ARCH_PROTOCOL_GUID \
 {0x665E3FF5,0x46CC,0x11d4,0x9A,\
 0x38,0x00,0x90,0x27,0x3F,0xC1,0x4D}

Protocol Interface Structure
typedef struct _EFI_WATCHDOG_TIMER_ARCH_PROTOCOL {
 EFI_WATCHDOG_TIMER_REGISTER_HANDLER RegisterHandler;
 EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD SetTimerPeriod;
 EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD GetTimerPeriod;
} EFI_WATCHDOG_TIMER_ARCH_PROTOCOL;

Parameters
RegisterHandler

Registers a handler that is invoked when the watchdog timer fires. See the
RegisterHandler() function description.

SetTimerPeriod

Sets the amount of time in 100 ns units to wait before the watchdog timer is fired. See
the SetTimerPeriod() function description. If this function is supported, then
the watchdog timer period will be rounded up to the nearest supported watchdog timer
period.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

170 May 2017 Version 1.6

GetTimerPeriod

Retrieves the amount of time in 100 ns units that the system will wait before the
watchdog timer is fired. See the GetTimerPeriod() function description.

Description
This protocol provides the services required to implement the Boot Service
SetWatchdogTimer(). It provides a service to set the amount of time to wait before firing the
watchdog timer, and it also provides a service to register a handler that is invoked when the
watchdog timer fires. This protocol can implement the watchdog timer by using the event and timer
Boot Services, or it can make use of custom hardware. When the watchdog timer fires, control will
be passed to a handler if one has been registered. If no handler has been registered, or the registered
handler returns, then the system will be reset by calling the Runtime Service ResetSystem().

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 171

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler()

Summary
Registers a handler that is to be invoked when the watchdog timer fires.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_REGISTER_HANDLER) (
 IN CONST EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
 IN EFI_WATCHDOG_TIMER_NOTIFY NotifyFunction
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

NotifyFunction

The function to call when the watchdog timer fires. If this is NULL, then the handler
will be unregistered. Type EFI_WATCHDOG_TIMER_NOTIFY is defined in
"Related Definitions" below.

Description
This function registers a handler that is to be invoked when the watchdog timer fires. By default,
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL will call the Runtime Service ResetSystem()
when the watchdog timer fires. If a NotifyFunction is registered, then NotifyFunction
will be called before the Runtime Service ResetSystem() is called. If NotifyFunction is
NULL, then the watchdog handler is unregistered. If a watchdog handler is registered, then
EFI_SUCCESS is returned. If an attempt is made to register a handler when a handler is already
registered, then EFI_ALREADY_STARTED is returned. If an attempt is made to uninstall a handler
when a handler is not installed, then return EFI_INVALID_PARAMETER.

Related Definitions
typedef
VOID
(EFIAPI *EFI_WATCHDOG_TIMER_NOTIFY) (
 IN UINT64 Time
);

Time

The time in 100 ns units that has passed since the watchdog timer was armed. For the
notify function to be called, this must be greater than TimerPeriod.

Status Codes Returned

EFI_SUCCESS The watchdog timer handler was registered or unregistered.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

172 May 2017 Version 1.6

EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already

registered.

EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not previously

registered.

Platform Initialization Specification, Vol. 2 DXE Architectural Protocols

Version 1.6 May 2017 173

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod()

Summary
Sets the amount of time in the future to fire the watchdog timer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD) (
 IN CONST EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
 IN UINT64 TimerPeriod
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

The amount of time in 100 ns units to wait before the watchdog timer is fired. If
TimerPeriod is zero, then the watchdog timer is disabled.

Description
This function sets the amount of time to wait before firing the watchdog timer to TimerPeriod
100 ns units. If TimerPeriod is zero, then the watchdog timer is disabled.

Status Codes Returned

EFI_SUCCESS The watchdog timer has been programmed to fire in Time 100 ns

units.

EFI_DEVICE_ERROR A watchdog timer could not be programmed due to a device error.

DXE Architectural Protocols Platform Initialization Specification, Vol. 2

174 May 2017 Version 1.6

EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

Summary
Retrieves the amount of time in 100 ns units that the system will wait before firing the watchdog
timer.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD) (
 IN CONST EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
 OUT UINT64 *TimerPeriod
);

Parameters
This

The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.

TimerPeriod

A pointer to the amount of time in 100 ns units that the system will wait before the
watchdog timer is fired. If TimerPeriod of zero is returned, then the watchdog
timer is disabled.

Description
This function retrieves the amount of time the system will wait before firing the watchdog timer.
This period is returned in TimerPeriod, and EFI_SUCCESS is returned. If TimerPeriod is
NULL, then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS The amount of time that the system will wait before firing the watchdog

timer was returned in TimerPeriod.

EFI_INVALID_PARAMETER TimerPeriod is NULL.

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 175

13 DXE Boot Services Protocol

13.1 Overview
This chapter defines the services required for the Multiprocessor (MP) Services Protocol of Platform
Initialization Specification.

This specification does the following:

• Describes the basic components of the MP Services Protocol

• Provides code definitions for the MP Services Protocol and the MP-related type definitions.

13.2 Conventions and Abbreviations
The following terms are used throughout this specification.

AP

Application processor. All other processors in a computer system other than the boot-strap
processor are called application processors.

BSP

Boot-strap processor. A processor in an MP platform that is chosen to execute the modules
that are necessary for booting the system. It is not necessary that the same processor that was
selected earlier as a BSP shall remain a BSP throughout an entire boot session.

DXE

Driver Execute Environment. Environment to support running modular code in the form of
EFI drivers; common to all platforms; typically in C language.

EFI

Extensible Firmware Interface – the specification containing interface definitions for
firmware. This includes both interfaces used by the operating system for booting as well as
interfaces that are used for internal construction of firmware.

MP

Multiprocessor.

13.3 MP Services Protocol Overview
The MP Services Protocol provides a generalized way of performing following tasks:

• Retrieving information of multi-processor environment and MP-related status of specific
processors.

• Dispatching user-provided function to APs.

• Maintain MP-related processor status.

The MP Services Protocol must be produced on any system with more than one logical processor.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

176 May 2017 Version 1.6

The Protocol is available only during boot time.

MP Services Protocol is hardware-independent. Most of the logic of this protocol is architecturally
neutral. It abstracts the multi-processor environment and status of processors, and provides
interfaces to retrieve information, maintain, and dispatch.

MP Services Protocol may be consumed by ACPI module. The ACPI module may use this protocol
to retrieve data that are needed for an MP platform and report them to OS.

MP Services Protocol may also be used to program and configure processors, such as MTRR
synchronization for memory space attributes setting in DXE Services.

MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot by taking
advantage of the processing capabilities of the APs, for example, using APs to help test system
memory in parallel with other device initialization.

Diagnostics applications may also use this protocol for multi-processor.

13.4 MP Services Protocol
This section contains the basic definitions of the MP Services Protocol.

EFI_MP_SERVICES_PROTOCOL

Summary
When installed, the MP Services Protocol produces a collection of services that are needed for MP
management.

GUID
#define EFI_MP_SERVICES_PROTOCOL_GUID \
 {0x3fdda605,0xa76e,0x4f46,{0xad,0x29,0x12,0xf4,\
 0x53,0x1b,0x3d,0x08}}

Protocol Interface Structure
typedef struct _EFI_MP_SERVICES_PROTOCOL {
 EFI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS GetNumberOfProcessors;
 EFI_MP_SERVICES_GET_PROCESSOR_INFO GetProcessorInfo;
 EFI_MP_SERVICES_STARTUP_ALL_APS StartupAllAPs;
 EFI_MP_SERVICES_STARTUP_THIS_AP StartupThisAP;
 EFI_MP_SERVICES_SWITCH_BSP SwitchBSP;
 EFI_MP_SERVICES_ENABLEDISABLEAP EnableDisableAP;
 EFI_MP_SERVICES_WHOAMI WhoAmI;
} EFI_MP_SERVICES_PROTOCOL;

Parameters
GetNumberOfProcessors

Gets the number of logical processors and the number of enabled logical processors in
the system.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 177

GetProcessorInfo

Gets detailed information on the requested processor at the instant this call is made.

StartupAllAPs

Starts up all the enabled APs in the system to run the function provided by the caller.

StartupThisAP

Starts up the requested AP to run the function provided by the caller.

SwitchBSP

Switches the requested AP to be the BSP from that point onward. This service
changes the BSP for all purposes.

EnableDisableAP

Enables and disables the given AP from that point onward.

WhoAmI

Gets the handle number of the caller processor.

Description
The MP Services Protocol must be produced on any system with more than one logical processor.
Before the UEFI event EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is signaled, the module that produces this
protocol is required to place all APs into an idle state whenever the APs are disabled or the APs are
not executing code as requested through the StartupAllAPs() or StartupThisAP()
services. The idle state of an AP is implementation dependent before the UEFI event
EFI_EVENT_LEGACY_BOOT_GUID or EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is
signaled.

After the UEFI event EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is signaled, all the APs must be placed in the OS
compatible CPU state as defined by the UEFI Specification. Implementations of this protocol may
use the UEFI event EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES to force APs into the OS compatible state as
defined by the UEFI Specification. Modules that use this protocol must guarantee that all non-
blocking mode requests on all APs have been completed before the UEFI event
EFI_EVENT_LEGACY_BOOT_GUID or EFI_EVENT_GROUP_EXIT_BOOT_SERVICES is
signaled. Since the order that event notification functions in the same event group are executed is
not deterministic, an event of type EFI_EVENT_LEGACY_BOOT_GUID or
EFI_EVENT_GROUP_EXIT_BOOT_SERVICES can not be used to guarantee that APs have
completed their non-blocking mode requests.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

178 May 2017 Version 1.6

EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors()

Summary
This service retrieves the number of logical processor in the platform and the number of those
logical processors that are currently enabled. This service may only be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_GET_NUMBER_OF_PROCESSORS) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 OUT UINTN *NumberOfProcessors,
 OUT UINTN *NumberOfEnabledProcessors
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

NumberOfProcessors

Pointer to the total number of logical processors in the system, including the BSP and
all enabled and disabled APs.

NumberOfEnabledProcessors

Pointer to the number of logical processors in the platform including the BSP that are
currently enabled.

Description
This function is used to retrieve the following information:

• The number of logical processors that are present in the system

• The number of enabled logical processors in the system at the instant this call is made.

Since MP Service Protocol provides services to enable and disable processors dynamically, the
number of enabled logical processors may vary during the course of a boot session.

This service may only be called from the BSP.

If this service is called from an AP, then EFI_DEVICE_ERROR is returned. If
NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors is returned
in NumberOfProcessors, the number of currently enabled processor is returned in
NumberOfEnabledProcessors, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The number of logical processors and enabled logical
processors was retrieved.

EFI_DEVICE_ERROR The calling processor is an AP.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 179

EFI_INVALID_PARAMETER NumberOfProcessors is NULL

EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

180 May 2017 Version 1.6

EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo()

Summary
Gets detailed MP-related information on the requested processor at the instant this call is made. This
service may only be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_GET_PROCESSOR_INFO) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 IN UINTN ProcessorNumber,
 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

The handle number of processor. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

ProcessorInfoBuffer

A pointer to the buffer where information for the requested processor is deposited.
The buffer is allocated by the caller. Type EFI_PROCESSOR_INFORMATION is
defined in "Related Definitions" below.

Description
This service retrieves detailed MP-related information about any processor on the platform. Note the
following:

• The processor information may change during the course of a boot session.

• he data of information presented here is entirely MP related.

Information regarding the number of caches and their sizes, frequency of operation, slot numbers is
all considered platform-related information and is not provided by this service.

This service may only be called from the BSP.

Related Definitions
//***
// EFI_PROCESSOR_INFORMATION
//***
typedef struct {
 UINT64 ProcessorId;

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 181

 UINT32 StatusFlag;
 EFI_CPU_PHYSICAL_LOCATION Location;
} EFI_PROCESSOR_INFORMATION;

ProcessorId

The unique processor ID determined by system hardware.

For IPF, the lower 16 bits contains id/eid, and higher bits are reserved.

StatusFlag

Flags indicating if the processor is BSP or AP, if the processor is enabled or disabled,
and if the processor is healthy. The bit format is defined below.

Location

The physical location of the processor, including the physical package number that
identifies the cartridge, the physical core number within package, and logical thread
number within core. Type EFI_PHYSICAL_LOCATION is defined below.

//***
// StatusFlag Bits Definition
//***
#define PROCESSOR_AS_BSP_BIT 0x00000001
#define PROCESSOR_ENABLED_BIT 0x00000002
#define PROCESSOR_HEALTH_STATUS_BIT 0x00000004

PROCESSOR_AS_BSP_BIT

This bit indicates whether the processor is playing the role of BSP. If the bit is 1, then
the processor is BSP. Otherwise, it is AP.

PROCESSOR_ENABLED_BIT

This bit indicates whether the processor is enabled. If the bit is 1, then the processor is
enabled. Otherwise, it is disabled.

PROCESSOR_HEALTH_STATUS_BIT

This bit indicates whether the processor is healthy. If the bit is 1, then the processor is
healthy. Otherwise, some fault has been detected for the processor.

Bits 3..31 are reserved and must be 0. The following table shows all the possible combinations of
the StatusFlag bits:

Table 33. StatusFlag bits

BSP ENABLED HEALTH Description

0 0 0 Unhealthy Disabled AP.

0 0 1 Healthy Disabled AP.

0 1 0 Unhealthy Enabled AP.

0 1 1 Healthy Enabled AP.

1 0 0 Invalid. The BSP can never be in the disabled state.

1 0 1 Invalid. The BSP can never be in the disabled state.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

182 May 2017 Version 1.6

//***
// EFI_CPU_PHYSICAL_LOCATION
//***
typedef struct {
 UINT32 Package;
 UINT32 Core;
 UINT32 Thread;
} EFI_CPU_PHYSICAL_LOCATION;

Package

Zero-based physical package number that identifies the cartridge of the processor.

Core

Zero-based physical core number within package of the processor.

Thread

Zero-based logical thread number within core of the processor.

Status Codes Returned

EFI_SUCCESS Processor information was returned.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist in the platform.

1 1 0 Unhealthy Enabled BSP.

1 1 1 Healthy Enabled BSP.

BSP ENABLED HEALTH Description

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 183

EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()

Summary
This service executes a caller provided function on all enabled APs. APs can run either
simultaneously or one at a time in sequence. This service supports both blocking and non-blocking
requests. The non-blocking requests use EFI events so the BSP can detect when the APs have
finished. See "Non-blocking Execution Support" below for details. This service may only be called
from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_STARTUP_ALL_APS) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 IN EFI_AP_PROCEDURE Procedure,
 IN BOOLEAN SingleThread,
 IN EFI_EVENT WaitEvent OPTIONAL,
 IN UINTN TimeoutInMicroSeconds,
 IN VOID *ProcedureArgument OPTIONAL,
 OUT UINTN **FailedCpuList OPTIONAL
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

Procedure

A pointer to the function to be run on enabled APs of the system. Type
EFI_AP_PROCEDURE is defined in the “Related Definitions” of this function,
below.

SingleThread

If TRUE, then all the enabled APs execute the function specified by Procedure
one by one, in ascending order of processor handle number.

If FALSE, then all the enabled APs execute the function specified by Procedure
simultaneously.

WaitEvent

The event created by the caller with CreateEvent() service.

If it is NULL, then execute in blocking mode. BSP waits until all APs finish or
TimeoutInMicroSeconds expires.

If it’s not NULL, then execute in non-blocking mode. BSP requests the function
specified by Procedure to be started on all the enabled APs, and go on executing
immediately. If all return from Procedure or TimeoutInMicroSeconds
expires, this event is signaled. The BSP can use the CheckEvent() or
WaitForEvent() services to check the state of event.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

184 May 2017 Version 1.6

Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible
Firmware Interface Specification (Version 2.0).

TimeoutInMicroseconds

Indicates the time limit in microseconds for APs to return from Procedure, either
for blocking or non-blocking mode. Zero means infinity.

If the timeout expires before all APs return from Procedure, then Procedure
on the failed APs is terminated. All enabled APs are available for next function
assigned by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() or
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().

If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

If the timeout expires in non-blocking mode, WaitEvent is signaled with
SignalEvent().

ProcedureArgument

The parameter passed into Procedure for all APs.

FailedCpuList

If NULL, this parameter is ignored.

Otherwise, if all APs finish successfully, then its content is set to NULL. If not all APs
finish before timeout expires, then its content is set to address of the buffer holding
handle numbers of the failed APs. The buffer is allocated by MP Service Protocol, and
it’s the caller’s responsibility to free the buffer with FreePool() service.

In blocking mode, it is ready for consumption when the call returns. In non-blocking
mode, it is ready when WaitEvent is signaled.
The list of failed CPU is terminated by END_OF_CPU_LIST. It is defined in
“Related Definitions” below.

Description
This function is used to dispatch all the enabled APs to the function specified by Procedure.

If any enabled AP is busy, then EFI_NOT_READY is returned immediately and Procedure is
not started on any AP.

If SingleThread is TRUE, all the enabled APs execute the function specified by Procedure
one by one, in ascending order of processor handle number. Otherwise, all the enabled APs execute
the function specified by Procedure simultaneously.

If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all APs finish or
TimeoutInMicroSecs expires. Otherwise, execution is in non-blocking mode, and the BSP
returns from this service without waiting for APs. If a non-blocking mode is requested after the
UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED
must be returned.

If the timeout specified by TimeoutInMicroseconds expires before all APs return from
Procedure, then Procedure on the failed APs is terminated. All enabled APs are always
available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL,
its content points to the list of processor handle numbers in which Procedure was terminated.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 185

This service may only be called from the BSP.

Note: It is the responsibility of the consumer of the
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() to make sure that the nature of the
code that is executed on the BSP and the dispatched APs is well controlled. The MP Services
Protocol does not guarantee that the Procedure function is MP-safe. Hence, the tasks that can
be run in parallel are limited to certain independent tasks and well-controlled exclusive code. EFI
services and protocols may not be called by APs unless otherwise specified.

Related Definitions
#define END_OF_CPU_LIST 0xffffffff

typedef
VOID
(EFIAPI *EFI_AP_PROCEDURE) (
 IN VOID *ProcedureArgument
);

ProcedureArgument

Pointer to the procedure’s argument

Non-Blocking Execution Support
The following usage guidelines must be followed for non-blocking execution support.

In blocking execution mode, BSP waits until all APs finish or TimeoutInMicroSeconds
expires.

In non-blocking execution mode, BSP is freed to return to the caller and then proceed to the next
task without having to wait for APs. The following sequence needs to occur in a non-blocking
execution mode:

1. The caller that intends to use this MP Services Protocol in non-blocking mode creates
WaitEvent by calling the EFI CreateEvent() service.

The caller invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter
WaitEvent is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
the function specified by Procedure to be started on all the enabled APs, and releases the BSP to
continue with other tasks.

2. The caller can use the CheckEvent() and WaitForEvent() services to check the state of
the WaitEvent created in step 1.

3. When the APs complete their task or TimeoutInMicroSecondss expires, the MP Service
signals WaitEvent by calling the EFI SignalEvent() function. If FailedCpuList is
not NULL, its content is available when WaitEvent is signaled. If all APs returned from
Procedure prior to the timeout, then FailedCpuList is set to NULL. If not all APs return
from Procedure before the timeout, then FailedCpuList is filled in with the list of the
failed APs. The buffer is allocated by MP Service Protocol using AllocatePool(). It is the
caller’s responsibility to free the buffer with FreePool() service.

4. This invocation of SignalEvent() function informs the caller that invoked
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

186 May 2017 Version 1.6

the specified task or a timeout occurred. The contents of FailedCpuList can be examined to
determine which APs did not complete the specified task prior to the timeout.

Status Codes Returned

EFI_SUCCESS In blocking mode, all APs have finished before the timeout
expired.

EFI_SUCCESS In non-blocking mode, function has been dispatched to all
enabled APs.

EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event

EFI_EVENT_GROUP_READY_TO_BOOT was signaled.

EFI_DEVICE_ERROR Caller processor is AP.

EFI_NOT_STARTED No enabled APs exist in the system.

EFI_NOT_READY Any enabled APs are busy.

EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs
have finished.

EFI_INVALID_PARAMETER Procedure is NULL.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 187

EFI_MP_SERVICES_PROTOCOL.StartupThisAP()

Summary
This service lets the caller get one enabled AP to execute a caller-provided function. The caller can
request the BSP to either wait for the completion of the AP or just proceed with the next task by
using the EFI event mechanism. See the "Non-blocking Execution Support" section in
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details. This service may only
be called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_STARTUP_THIS_AP) (
 IN EFI_MP_SERVICES_PROTOCOL*This,
 IN EFI_AP_PROCEDURE Procedure,
 IN UINTN ProcessorNumber,
 IN EFI_EVENT WaitEvent OPTIONAL,
 IN UINTN TimeoutInMicroseconds,
 IN VOID *ProcedureArgument OPTIONAL,
 OUT BOOLEAN *Finished OPTIONAL
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

Procedure

A pointer to the function to be run on the designated AP. Type
EFI_AP_PROCEDURE is defined in
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs().

ProcessorNumber

The handle number of the AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

WaitEvent

The event created by the caller with CreateEvent() service.

If it is NULL, then execute in blocking mode. BSP waits until this AP finishes or
TimeoutInMicroSeconds expires.

If it’s not NULL, then execute in non-blocking mode. BSP requests the function
specified by Procedure to be started on the AP, and go on executing immediately.
If this AP finishes or TimeoutInMicroSeconds expires, this event is signaled.
BSP can use the CheckEvent() and WaitForEvent() services to check the
state of event.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

188 May 2017 Version 1.6

Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible
Firmware Interface Specification (Version 2.0)

TimeoutInMicrosecsond

Indicates the time limit in microseconds for this AP to finish the function, either for
blocking or non-blocking mode. Zero means infinity.

If the timeout expires before this AP returns from Procedure, then Procedure on the
AP is terminated. The AP is available for subsequent calls to
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().

If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT.

If the timeout expires in non-blocking mode, WaitEvent is signaled with
SignalEvent().

ProcedureArgument

The parameter passed into Procedure on the specified AP.

Finished

If NULL, this parameter is ignored.

In blocking mode, this parameter is ignored.

In non-blocking mode, if AP returns from Procedure before the timeout expires, its
content is set to TRUE. Otherwise, the value is set to FALSE. The caller can
determine if the AP returned from Procedure by evaluating this value.

Description
This function is used to dispatch one enabled AP to the function specified by Procedure passing
in the argument specified by ProcedureArgument.

If WaitEvent is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. BSP
proceeds to the next task without waiting for the AP. If a non-blocking mode is requested after the
UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED
must be returned.

If the timeout specified by TimeoutInMicroseconds expires before the AP returns from
Procedure, then execution of Procedure by the AP is terminated. The AP is available for
subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().

This service may only be called from the BSP.

Status Codes Returned

EFI_SUCCESS In blocking mode, specified AP finished before the timeout
expires.

EFI_SUCCESS In non-blocking mode, the function has been dispatched to
specified AP.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 189

EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event

EFI_EVENT_GROUP_READY_TO_BOOT was signaled.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP
has finished.

EFI_NOT_READY The specified AP is busy.

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.

EFI_INVALID_PARAMETER Procedure is NULL.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

190 May 2017 Version 1.6

EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

Summary
This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for all purposes. This service may only be called from the current BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_SWITCH_BSP) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 IN UINTN ProcessorNumber,
 IN BOOLEAN EnableOldBSP
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

The handle number of AP that is to become the new BSP. The range is from 0 to the
total number of logical processors minus 1. The total number of logical processors can
be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

EnableOldBSP

If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be
disabled.

Description
This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for all purposes. The new BSP can take over the execution of the old BSP and continue
seamlessly from where the old one left off. This service may not be supported after the UEFI Event
EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
If the BSP cannot be switched prior to the return from this service, then EFI_UNSUPPORTED must
be returned.

This call can only be performed by the current BSP.

Status Codes Returned

EFI_SUCCESS BSP successfully switched.

EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service
returning.

EFI_UNSUPPORTED Switching the BSP is not supported.

EFI_DEVICE_ERROR The calling processor is an AP.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 191

EFI_NOT_FOUND The processor with the handle specified by

ProcessorNumber does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a disabled

AP.

EFI_NOT_READY The specified AP is busy.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

192 May 2017 Version 1.6

EFI_MP_SERVICES_PROTOCOL.EnableDisableAP()

Summary
This service lets the caller enable or disable an AP from this point onward. This service may only be
called from the BSP.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_ENABLEDISABLEAP) (
 IN EFI_MP_SERVICES_PROTOCOL*This,
 IN UINTN ProcessorNumber,
 IN BOOLEAN EnableAP,
 IN UINT32 *HealthFlag OPTIONAL
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

The handle number of AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

EnableAP

Specifies the new state for the processor specified by ProcessorNumber. TRUE
for enabled, FALSE for disabled.

HealthFlag

If not NULL, a pointer to a value that specifies the new health status of the AP. This
flag corresponds to StatusFlag defined in
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only the
PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored.

If it is NULL, this parameter is ignored.

Description
This service allows the caller enable or disable an AP from this point onward. The caller can
optionally specify the health status of the AP by Health. If an AP is being disabled, then the state
of the disabled AP is implementation dependent. If an AP is enabled, then the implementation must
guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that
is compatible with an MP operating system. This service may not be supported after the UEFI
Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.

If the enable or disable AP operation cannot be completed prior to the return from this service, then
EFI_UNSUPPORTED must be returned.

This service may only be called from the BSP.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 193

Status Codes Returned

EFI_SUCCESS The specified AP successfully enabled or disabled.

EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this
service returning.

EFI_UNSUPPORTED Enabling or disabling an AP is not supported.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
does not exist.

EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

194 May 2017 Version 1.6

EFI_MP_SERVICES_PROTOCOL.WhoAmI()

Summary
This return the handle number for the calling processor. This service may be called from the BSP
and APs.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MP_SERVICES_WHOAMI) (
 IN EFI_MP_SERVICES_PROTOCOL *This,
 OUT UINTN *ProcessorNumber
);

Parameters
This

A pointer to the EFI_MP_SERVICES_PROTOCOL instance.

ProcessorNumber

Pointer to the handle number of AP. The range is from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().

Description
This service returns the processor handle number for the calling processor. The returned value is in
the range from 0 to the total number of logical processors minus 1. The total number of logical
processors can be retrieved with
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be called
from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER is
returned. Otherwise, the current processors handle number is returned in ProcessorNumber,
and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The current processor handle number was returned in

ProcessorNumber.

EFI_INVALID_PARAMETER ProcessorNumber is NULL.

Platform Initialization Specification, Vol. 2 DXE Boot Services Protocol

Version 1.6 May 2017 195

DXE Boot Services Protocol Platform Initialization Specification, Vol. 2

196 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 197

14 DXE Runtime Protocols

14.1 Introduction
In addition to the architectural protocols listed earlier, there is also a runtime protocol. Specifically,
the ability to report status codes is runtime-callable service that allows for emitting status and
progress information. It was formerly part of the 0.9 DXE-CIS runtime table, but in consideration of
UEFI 2.0 compatibility, this capability has become a separate runtime protocol.

14.2 Status Code Runtime Protocol

EFI_STATUS_CODE_ PROTOCOL

Summary
Provides the service required to report a status code to the platform firmware. This protocol must be
produced by a runtime DXE driver.

GUID
#define EFI_STATUS_CODE_RUNTIME_PROTOCOL_GUID \
 { 0xd2b2b828, 0x826, 0x48a7, 0xb3, 0xdf, 0x98, 0x3c, \
 0x0, 0x60, 0x24, 0xf0}

Protocol Interface Structure
typedef struct _EFI_STATUS_CODE_PROTOCOL {
 EFI_REPORT_STATUS_CODE ReportStatusCode;
} EFI_STATUS_CODE_PROTOCOL;

Parameters
ReportStatusCode

Emit a status code.

Description
The DXE driver that produces this protocol must be a runtime driver. This driver is responsible for
providing the ReportStatusCode() service with the EFI_STATUS_CODE_PROTOCOL.

DXE Runtime Protocols Platform Initialization Specification, Vol. 2

198 May 2017 Version 1.6

EFI_STATUS_CODE_PROTOCOL.ReportStatusCode()

Summary
Provides an interface that a software module can call to report a status code.

Prototype
EFI_STATUS
(EFIAPI *EFI_REPORT_STATUS_CODE) (
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId OPTIONAL,
 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
Type

Indicates the type of status code being reported. Type EFI_STATUS_CODE_TYPE
is defined in "Related Definitions” below.

Value

Describes the current status of a hardware or software entity. This included
information about the class and subclass that is used to classify the entity as well as an
operation. For progress codes, the operation is the current activity. For error codes, it
is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in “Related Definitions” below.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers. Type EFI_GUID is
defined in InstallProtocolInterface() in the UEFI 2.0 specification.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in volume 3 of this specification. The
contents of this data type may have additional GUID-specific data.

Description
Various software modules including drivers can call this function to report a status code. No
disposition of the status code is guaranteed. The ReportStatusCode() function may choose to
log the status code, but this action is not required.

Platform Initialization Specification, Vol. 2 DXE Runtime Protocols

Version 1.6 May 2017 199

It is possible that this function may get called at EFI_TPL_LEVEL_HIGH. Therefore, this
function cannot call any protocol interface functions or services (including memory allocation) that
are not guaranteed to work at EFI_TPL_LEVEL_HIGH. It should be noted that
SignalEvent() could be called by this function because it works at any TPL including
EFI_TPL_L

EVEL_HIGH. It is possible for an implementation to use events to log the status codes when the
TPL level is reduced.

ReportStatusCode() function can perform other implementation specific work, but that is not
specified in the architecture document.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform wide view and may not be able to accurately assess the impact of the error
condition. The DXE driver that produces the Status Code Protocol,
EFI_STATUS_CODE_PROTOCOL, is responsible for assessing the true severity level based on the
reported severity and other information. This DXE driver may perform platform specific actions
based on the type and severity of the status code being reported.

If Data is present, the Status Code Protocol driver treats it as read only data. The Status Code
Protocol driver must copy Data to a local buffer in an atomic operation before performing any
other actions. This is necessary to make this function re-entrant. The size of the local buffer may be
limited. As a result, some of the Data can be lost. The size of the local buffer should at least be 256
bytes in size. Larger buffers will reduce the probability of losing part of the Data. Note than
multiple status codes may be reported at elevated TPL levels before the TPL level is reduced.
Allocating multiple local buffers may reduce the probability losing status codes at elevated TPL
levels. If all of the local buffers are consumed, then this service may not be able to perform the
platform specific action required by the status code being reported. As a result, if all the local
buffers are consumed, the behavior of this service is undefined.

If the CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

Related Definitions
//
// Status Code Type Definition
//
typedef UINT32 EFI_STATUS_CODE_TYPE;

//
// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_CODE_RESERVED_MASK are
// reserved for use by this specification.
//
#define EFI_STATUS_CODE_TYPE_MASK 0x000000FF
#define EFI_STATUS_CODE_SEVERITY_MASK 0xFF000000
#define EFI_STATUS_CODE_RESERVED_MASK 0x00FFFF00

//
// Definition of code types, all other values masked by

DXE Runtime Protocols Platform Initialization Specification, Vol. 2

200 May 2017 Version 1.6

// EFI_STATUS_CODE_TYPE_MASK are reserved for use by
// this specification.
//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR_CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003

//
// Definitions of severities, all other values masked by
// EFI_STATUS_CODE_SEVERITY_MASK are reserved for use by
// this specification.
// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error
// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.
//
#define EFI_ERROR_MINOR 0x40000000
#define EFI_ERROR_MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR_UNCONTAINED 0xa0000000

//
// Status Code Value Definition
//
typedef UINT32 EFI_STATUS_CODE_VALUE;

//
// A Status Code Value is made up of the class, subclass, and
// an operation.
//
#define EFI_STATUS_CODE_CLASS_MASK 0xFF000000
#define EFI_STATUS_CODE_SUBCLASS_MASK 0x00FF0000
#define EFI_STATUS_CODE_OPERATION_MASK 0x0000FFFF

Parameters
HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data.

Platform Initialization Specification, Vol. 2 DXE Runtime Protocols

Version 1.6 May 2017 201

Status Codes Returned

EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR The function should not be completed due to a device error.

DXE Runtime Protocols Platform Initialization Specification, Vol. 2

202 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 203

15 Dependency Expression Grammar

15.1 Dependency Expression Grammar
This topic contains an example BNF grammar for a DXE driver dependency expression compiler
that converts a dependency expression source file into a dependency section of a DXE driver stored
in a firmware volume.

15.2 Example Dependency Expression BNF Grammar
 <depex> ::= BEFORE <guid>
 | AFTER <guid>
 | SOR <bool>
 | <bool>
 <bool> ::= <bool> AND <term>
 | <bool> OR <term>
 | <term>
 <term> ::= NOT <factor>
 | <factor>
 <factor> ::= <bool>
 | TRUE
 | FALSE
 | GUID
 | END
 <guid> ::= ‘{‘ <hex32> ‘,’ <hex16> ‘,’ <hex16> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ’}’
 <hex32> ::= <hexprefix> <hexvalue>
 <hex16> ::= <hexprefix> <hexvalue>
 <hex8> ::= <hexprefix> <hexvalue>
 <hexprefix>::= ‘0’ ‘x’
 | ‘0’ ‘X’
 <hexvalue> ::= <hexdigit> <hexvalue>
 | <hexdigit>
 <hexdigit> ::= [0-9]
 | [a-f]
 | [A-F]

Dependency Expression Grammar Platform Initialization Specification, Vol. 2

204 May 2017 Version 1.6

15.3 Sample Dependency Expressions
The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

Platform Initialization Specification, Vol. 2 Dependency Expression Grammar

Version 1.6 May 2017 205

//
// Source
//
EFI_CPU_IO_PROTOCOL_GUID AND EFI_CPU_ARCH_PROTOCOL_GUID END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 02 PUSH
0x01 : 26 25 73 b0 c8 38 40 4b EFI_CPU_IO_PROTOCOL_GUID
 88 77 61 c7 b0 6a ac 45
0x11 : 02 PUSH
0x12 : b1 cc ba 26 42 6f d4 11 EFI_CPU_ARCH_PROTOCOL_GUID
 bc e7 00 80 c7 3c 88 81
0x22 : 03 AND
0x23 : 08 END

//
// Source
//
AFTER (EFI_CPU_DRIVER_FILE_NAME_GUID) END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================
===
0x00 : 01 AFTER
0x01 : 93 e5 7b 98 43 16 0b 45 EFI_CPU_DRIVER_FILE_NAME_GUID
 be 4f 8f 07 66 6e 36 56
0x11 : 08 END

//
// Source
//
SOR EFI_CPU_IO_PROTOCOL_GUID END

//
// Opcodes, Operands and Binary Encoding
//
ADDR BINARY MNEMONIC
==== =======================

Dependency Expression Grammar Platform Initialization Specification, Vol. 2

206 May 2017 Version 1.6

===
0x00 : 09 SOR
0x01 : 02 PUSH
0x02 : b1 cc ba 26 42 6f d4 11 EFI_CPU_IO_PROTOCOL_GUID
 bc e7 00 80 c7 3c 88 81
0x12 : 03 END

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 207

Appendix A Error Codes

 #define DXE_ERROR(a) (MAX_BIT|MAX_BIT >> 2 | (a))

EFI_REQUEST_UNLOAD_IMAGE DXE_ERROR (1) If this value is returned by an EFI image, then
the image should be unloaded.

EFI_NOT_AVAILABLE_YET DXE_ERROR (2) If this value is returned by an API, it means the
capability is not yet installed/available/ready to
use.

Platform Initialization Specification, Vol. 2

208 May 2017 Version 1.6

Platform Initialization Specification, Vol. 2

Version 1.6 May 2017 209

Appendix B GUID Definitions

B.1 DXE Services Table GUID
#define DXE_SERVICES_TABLE_GUID \
 {0x5ad34ba,0x6f02,0x4214,0x95,0x2e,0x4d,0xa0,
 0x39,0x8e,0x2b,0xb9}

B.2 HOB List GUID
#define HOB_LIST_GUID \
 {0x7739f24c,0x93d7,0x11d4,0x9a,0x3a,0x0,0x90,\
 0x27,0x3f,0xc1,0x4d}

Platform Initialization (PI) Specification

Volume 3:
Shared Architectural Elements

Version 1.6

May 2017

Platform Initialization Specification, Vol. 3

ii May 2017 Version 1.6

The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or to any
contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the
maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties
and conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and
of lack of negligence, all with regard to this material and any contribution thereto. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION
OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY
CONTRIBUTION THERETO.
IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY
CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS
OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING
IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright 2017 Unified EFI, Inc. All Rights Reserved.

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 iii

Revision History

Revision Mantis ID / Description Date

1.6 • 1567 Layered SPI bus

• 1648 PI Binding for RISC-V

• 1746 Add a FV Extended Header entry the contains the used size of the
FV

• 1763 MM Handler state notification protocol

• 1764 Add additional alignment

• 1768 Update the PI Spec to 1.6

• 1777 Update Revision History for PI Spec 1.6

• 1778 Update front matter for PI spec

April 2017

1.5 Errata A • 1587 pre permanent memory page allocation

• 1665 Incorrect status code for an AP calling
EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

• 1734 outdated EFI spec reference

• 1735 fix copy & paste errors

• 1747 Clarify that MM_ACCESS_PROTOCOL should cover all MMRAM
region used by the platform

April 2017

1.5 • 1315 SMM Environment to Support Newer Architecture/Platform Designs

• 1317 additional I2C PPI's (vol5)

• 1321 ARM Extensions to Volume 4

• 1330 Add PPI to allow SEC pass HOBs into PEI

• 1336 Provide For Pre-DXE Initialization Of The SM Foundation

• 1369 Handling PEI PPI descriptor notifications from SEC

• 1387 Variable services errors not consistent

• 1390 SM stand-alone infrastructure

• 1396 Update SEC HOB Capabilities of 1330 with additional guidance

• 1413 Communicate protocol enhancements

• 1506 New MP protocol

• 1513 Need a way to propagate PEI-phase FV verification status to DXE

• 1563 Update MM PPIs to match existing implementations

• 1566 PI.next - update the specification revisions

• 1568 Add SD/MMC GUID to DiskInfo protocol

• 1592 Add EFI_FV_FILETYPE_SMM_CORE_STANDALONE file type

• 1593 coalesce language enhancements

• 1594 Pei GetVaiable M1387 issue

• 1595 M1568 Disk Info issue

• 1596 M1489 GCD issue

• 1603 Minor erratas in Vol4 PI 1.5 draft related to ECR 0001506

• 1607 Update MM guid def'n to match edkII impl

• 1626 Add new Status Code for BDS Attempting UEFI BootOrder entries

• 1628 Minor feedback for PI 1.5 Vol 4 SMM Draft

• 1666 Graphics Device Info Hob

4/26/16

Platform Initialization Specification, Vol. 3

iv May 2017 Version 1.6

1.4 Errata A • 1574 Fix artificial limitation in the PCD.SetSku support

• 1565 Update status code to include AArch64 exception error codes

• 1564 SMM Software Dispatch Protocol Errata

• 1562 Errata to remove statement from DXE vol about PEI dispatch
behavior

• 1561 Errata to provide Equivalent of DXE-CIS Mantis 247 for the PEI-CIS

• 1532 Allow S3 Resume without having installed permanent memory (via
InstallPeiMemory)

• 1530 errata on dxe report status code

• 1529 address space granularity errata

• 1525 PEI Services Table Retrieval for AArch64

• 1515 EFI_PEIM_NOTIFY_ENTRY_POINT return values are undefined

• 1497 Fixing language in SMMStartupThisAP

• 1489 GCD Conflict errata

• 1485 Minor Errata in SMM Vo2 description of SMMStartupThisAP

• 1397 PEI 1.4 specification revision errata

• 1394 Errata to Relax requirements on CPU rendez in SEC

• 1351 EndOfDxe and SmmReadyToLock

• 1322 Minor Updates to handle Asynchronous CPU Entry Into SMM

3/15/16

1.4 • 1210 Adding persistence attribute to GCD

• 1235 PI.Next Feature - no execute support

• 1236 PI.Next feature - Graphics PPI

• 1237 PI.Next feature - add reset2 PPI

• 1239 PI.Next feature - Disk Info Guid UFS

• 1240 PI.Next feature - Recovery Block IO PPI - UFS

• 1259 PI.Next feature - MP PPI

• 1273 PI.Next feature - capsule PPI

• 1274 Recovery Block I/O PPI Update

• 1275 GetMemoryMap Update

• 1277 PI1.next feature - multiple CPU health info

• 1278 PI1.next - Memory relative reliability definition

• 1305 PI1.next - specification number encoding

• 1331 Remove left-over Boot Firmware Volume references in the SEC
Platform Information PPI

• 1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record needs to be
indexed / CPU.

2/20/15

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 v

1.3 Errata A • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

2/19/15

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958

• 969Vol 1 errata: TE Header parameters

10/26/12

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

vi May 2017 Version 1.6

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP) clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM Migration is not
required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 vii

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState() return code

• 737 Remove SMM Communication ACPI Table definition .

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• 753 SIO PEI and UEFI-Driver Model Architecture

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT,
Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

viii May 2017 Version 1.6

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl has
EFI_STATUS w/o return code & errror on stage 3 recovery description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 ix

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

x May 2017 Version 1.6

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489 (from
USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

1.1 Errata • 247 Clarification regarding use of dependency expression section types
with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 xi

1.1 Errata • 204 Stack HOB update 1.1errata

• 225 Correct references from EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 - return error
language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

•

01/13/09

1.1 Errata Revises typographical errors and minor omissions--see Errata for details 04/25/08

1.1 correction Restore (missing) MP protocol 03/12/08

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter 12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

xii May 2017 Version 1.6

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth,
and printing convenience. The Platform Initialization Specification consists of the following volumes:

Volume 1: Pre-EFI Initialization Core Interface

Volume 2: Driver Execution Environment Core Interface

Volume 3: Shared Architectural Elements

Volume 4: System Management Mode

Volume 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult
the entire specification when researching areas of interest. Additionally, a single-file version of the Platform
Initialization Specification is available to aid search functions through the entire specification.

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to th:e
original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in the
Metronome

• M178 Remove references to tail in file header and made file checksum for
the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and update
all FV

10/29/07

1.0 Initial public release. 8/21/06

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 xiii

Table of Contents

Revision History.. iii
Table of Contents.. xiii
List of Tables... xix
List of Figures ... xxi

1 Shared Architectural Elements .. 1
1.1 Overview ... 1
1.2 Target Audience.. 1
1.3 Conventions Used in this Document... 1

1.3.1 Data Structure Descriptions .. 1
1.3.2 Pseudo-Code Conventions ... 2
1.3.3 Typographic Conventions ... 2

1.4 Conventions used in this document .. 4
1.4.1 Number formats .. 4
1.4.2 Binary prefixes .. 5

2 Firmware Storage Design Discussion ... 7
2.1 Firmware Storage Introduction.. 7

2.1.1 Firmware Devices ... 7
2.1.2 Firmware Volumes .. 7
2.1.3 Firmware File System ... 8
2.1.4 Firmware Files... 8
2.1.5 Firmware File Sections.. 15

2.2 PI Architecture Firmware File System Format .. 17
2.2.1 Firmware Volume Format.. 18
2.2.2 Firmware File System Format ... 18
2.2.3 Firmware File Format .. 19
2.2.4 Firmware File Section Format ... 21
2.2.5 File System Initialization.. 21
2.2.6 Traversal and Access to Files ... 25
2.2.7 File Integrity and State .. 26
2.2.8 File State Transitions .. 27

3 Firmware Storage Code Definitions... 31
3.1 Firmware Storage Code Definitions Introduction ... 31
3.2 Firmware Storage Formats ... 31

3.2.1 Firmware Volume .. 31
EFI_FIRMWARE_VOLUME_HEADER... 31

3.2.2 Firmware File System ... 38
EFI_FIRMWARE_FILE_SYSTEM2_GUID.. 38
EFI_FIRMWARE_FILE_SYSTEM3_GUID.. 38
EFI_FFS_VOLUME_TOP_FILE_GUID... 39

3.2.3 Firmware File .. 40
EFI_FFS_FILE_HEADER ... 40

Platform Initialization Specification, Vol. 3

xiv May 2017 Version 1.6

3.2.4 Firmware File Section ... 46
EFI_COMMON_SECTION_HEADER ... 46

3.2.5 Firmware File Section Types... 48
EFI_SECTION_COMPATIBILITY16 ... 48
EFI_SECTION_COMPRESSION.. 49
EFI_SECTION_DISPOSABLE.. 51
EFI_SECTION_DXE_DEPEX ... 52
EFI_SECTION_FIRMWARE_VOLUME_IMAGE .. 53
EFI_SECTION_FREEFORM_SUBTYPE_GUID... 54
EFI_SECTION_GUID_DEFINED.. 55
EFI Signed Sections.. 57
EFI_SECTION_PE32 .. 58
EFI_SECTION_PEI_DEPEX... 59
EFI_SECTION_PIC... 60
EFI_SECTION_RAW .. 61
EFI_SECTION_MM_DEPEX... 62
EFI_SECTION_TE .. 63
EFI_SECTION_USER_INTERFACE .. 64
EFI_SECTION_VERSION... 65

3.3 PEI .. 66
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI.. 66
EFI_PEI_FIRMWARE_VOLUME_INFO2_PPI.. 67

3.3.1 PEI Firmware Volume PPI .. 68
EFI_PEI_FIRMWARE_VOLUME_PPI .. 68
EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume().................................... 70
EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType() 71
EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName() 72
EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo() ... 73
EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo2() ... 74
EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo() 75
EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType().............................. 76
EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType2()............................ 77

3.3.2 PEI Load File PPI.. 78
EFI_PEI_LOAD_FILE_PPI.. 78
EFI_PEI_LOAD_FILE_PPI.LoadFile()... 79

3.3.3 PEI Guided Section Extraction PPI ... 80
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI .. 80
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() 82

3.3.4 PEI Decompress PPI .. 84
EFI_PEI_DECOMPRESS_PPI.. 84
EFI_PEI_DECOMPRESS_PPI.Decompress() .. 85

3.4 DXE... 86
3.4.1 Firmware Volume2 Protocol.. 86

EFI_FIRMWARE_VOLUME2_PROTOCOL.. 86
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes() 88
EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes().................... 91
EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile() 93

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 xv

EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()................................ 97
EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile() 99
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile() 102
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()....................................... 104
EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo() 106

3.4.2 Firmware Volume Block2 Protocol .. 107
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.. 107
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes() 109
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()................ 110
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress().... 111
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()............... 112
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()............................ 113
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()............................ 115
EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks() 117

3.4.3 Guided Section Extraction Protocol .. 118
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL 118
EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection() 119

3.5 SMM.. 120
3.5.1 SMM Firmware Volume Protocol ... 120

EFI_SMM_FIRMWARE_VOLUME_PROTOCOL ... 120
3.5.2 SMM Firmware Volume Block Protocol... 121

EFI_SMM_FIRMWARE_VOLUME_BLOCK_PROTOCOL 121

4 HOB Design Discussion .. 123
4.1 Explanation of HOB Terms ... 123
4.2 HOB Overview .. 123
4.3 Example HOB Producer Phase Memory Map and Usage .. 124
4.4 HOB List.. 124
4.5 Constructing the HOB List .. 125

4.5.1 Constructing the Initial HOB List ... 125
4.5.2 HOB Construction Rules ... 125
4.5.3 Adding to the HOB List.. 126

5 HOB Code Definitions ... 127
5.1 HOB Introduction .. 127
5.2 HOB Generic Header.. 128

EFI_HOB_GENERIC_HEADER.. 128
5.3 PHIT HOB ... 130

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB) ... 130
5.4 Memory Allocation HOB.. 132

5.4.1 Memory Allocation HOB.. 132
EFI_HOB_MEMORY_ALLOCATION.. 132

5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB............................ 135
EFI_HOB_MEMORY_ALLOCATION_STACK.. 135

5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB 137
EFI_HOB_MEMORY_ALLOCATION_BSP_STORE .. 137

5.4.4 Memory Allocation Module HOB ... 138
EFI_HOB_MEMORY_ALLOCATION_MODULE... 138

Platform Initialization Specification, Vol. 3

xvi May 2017 Version 1.6

5.5 Resource Descriptor HOB .. 139
EFI_HOB_RESOURCE_DESCRIPTOR... 139

5.6 GUID Extension HOB ... 146
EFI_HOB_GUID_TYPE... 146

5.7 Firmware Volume HOB ... 147
EFI_HOB_FIRMWARE_VOLUME .. 147
EFI_HOB_FIRMWARE_VOLUME2 .. 148
EFI_HOB_FIRMWARE_VOLUME3 .. 149

5.8 CPU HOB.. 151
EFI_HOB_CPU ... 151

5.9 Memory Pool HOB .. 152
EFI_HOB_MEMORY_POOL... 152

5.10 UEFI Capsule HOB... 152
EFI_HOB_UEFI_ CAPSULE... 152

5.11 Unused HOB... 154
EFI_HOB_TYPE_UNUSED .. 154

5.12 End of HOB List HOB ... 155
EFI_HOB_TYPE_END_OF_HOB_LIST.. 155

5.13 SMRAM Memory Hob ... 155
EFI_SMRAM_HOB_DESCRIPTOR_BLOCK.. 155

6 Status Codes.. 157
6.1 Status Codes Overview .. 157

6.1.1 Organization of the Status Codes Specification.. 157
6.2 Terms.. 157
6.3 Types of Status Codes.. 158

6.3.1 Status Code Classes... 160
6.3.2 Instance Number... 160

6.4 Hardware Classes... 161
6.4.1 Computing Unit Class ... 161
6.4.2 User-Accessible Peripheral Class... 170
6.4.3 Subclasses.. 171

6.5 Software Classes .. 189
6.5.1 Host Software Class.. 189
6.5.2 Instance Number... 189
6.5.3 Progress Code Operations.. 189
6.5.4 Error Code Operations .. 190
6.5.5 Subclasses.. 191
6.5.6 Runtime (RT) Subclass ... 200

6.6 Code Definitions.. 208
6.6.1 Data Structures ... 208
6.6.2 Extended Data Header.. 209

EFI_STATUS_CODE_DATA... 209
 EFI_STATUS_CODE_DATA_TYPE_STRING_GUID...................................... 210
EFI_STATUS_CODE_SPECIFIC_DATA_GUID ... 213

6.6.3 Enumeration Schemes.. 213
6.6.4 Common Extended Data Formats... 214

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 xvii

EFI_DEVICE_PATH_EXTENDED_DATA... 215
EFI_DEVICE_HANDLE_EXTENDED_DATA.. 216
EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA..................................... 217

6.7 Class Definitions ... 218
6.7.1 Computing Unit Class ... 219

EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA..................................... 225
EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA............... 227
EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA......................... 228
EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA 229
EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA..................................... 231
EFI_CACHE_INIT_DATA.. 232
EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA 233
EFI_MEMORY_EXTENDED_ERROR_DATA .. 234
EFI_STATUS_CODE_DIMM_NUMBER... 237
EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA 239
EFI_MEMORY_RANGE_EXTENDED_DATA... 240

6.7.2 User-Accessible Peripherals Class ... 240
6.7.3 I/O Bus Class .. 246
6.7.4 Software Classes .. 252

EFI_DEBUG_ASSERT_DATA.. 271
EFI_STATUS_CODE_EXCEP_EXTENDED_DATA... 272
EFI_STATUS_CODE_START_EXTENDED_DATA ... 274
EFI_LEGACY_OPROM_EXTENDED_DATA ... 275

7 Report Status Code Routers .. 277
7.1 Overview ... 277
7.2 Code Definitions... 277

7.2.1 Report Status Code Handler Protocol... 277
EFI_RSC_HANDLER_PROTOCOL.. 277
EFI_RSC_HANDLER_PROTOCOL.Register() ... 279
EFI_RSC_HANDLER_PROTOCOL.Unregister().. 280

7.2.2 Report Status Code Handler PPI .. 280
EFI_PEI_RSC_HANDLER_PPI .. 280
EFI_PEI_RSC_HANDLER_PPI.Register().. 282
EFI_PEI_RSC_HANDLER_PPI.Unregister() .. 283

7.2.3 SMM Report Status Code Handler Protocol ... 283
EFI_SMM_RSC_HANDLER_PROTOCOL ... 283
EFI_SMM_RSC_HANDLER_PROTOCOL.Register()....................................... 285
EFI_SMM_RSC_HANDLER_PROTOCOL.Unregister() 286

8 PCD... 287
8.1 PCD Protocol Definitions .. 287

8.1.1 PCD Protocol .. 287
EFI_PCD_PROTOCOL... 287
EFI_PCD_PROTOCOL.SetSku () ... 290
EFI_PCD_PROTOCOL.Get8 ()... 291
EFI_PCD_PROTOCOL.Get16 ()... 292
EFI_PCD_PROTOCOL.Get32 ()... 293

Platform Initialization Specification, Vol. 3

xviii May 2017 Version 1.6

EFI_PCD_PROTOCOL.Get64 ()... 294
EFI_PCD_PROTOCOL.GetPtr () .. 295
EFI_PCD_PROTOCOL.GetBool ().. 296
EFI_PCD_PROTOCOL.GetSize ().. 297
EFI_PCD_PROTOCOL.Set8 () ... 298
EFI_PCD_PROTOCOL.Set16 () ... 299
EFI_PCD_PROTOCOL.Set32 () ... 300
EFI_PCD_PROTOCOL.Set64 () ... 301
EFI_PCD_PROTOCOL.SetPtr ()... 302
EFI_PCD_PROTOCOL.SetBool () .. 303
EFI_PCD_PROTOCOL.CallbackOnSet ()... 304
EFI_PCD_PROTOCOL.CancelCallback ().. 305
EFI_PCD_PROTOCOL.GetNextToken () ... 306
EFI_PCD_PROTOCOL.GetNextTokenSpace () ... 307

8.1.2 Get PCD Information Protocol... 307
EFI_GET_PCD_INFO_PROTOCOL... 307
EFI_GET_PCD_INFO_PROTOCOL.GetInfo ()... 309
EFI_GET_PCD_INFO_PROTOCOL.GetSku ()... 311

8.2 PCD PPI Definitions.. 311
8.2.1 PCD PPI.. 311

EFI_PEI_PCD_PPI.. 311
EFI_PEI_PCD_PPI.SetSku ().. 314
EFI_PEI_PCD_PPI.Get8 () ... 315
EFI_PEI_PCD_PPI.Get16 () ... 316
EFI_PEI_PCD_PPI.Get32 () ... 317
EFI_PEI_PCD_PPI.Get64 () ... 318
EFI_PEI_PCD_PPI.GetPtr ()... 319
EFI_PEI_PCD_PPI.GetBool () .. 320
EFI_PEI_PCD_PPI.GetSize () .. 321
EFI_PEI_PCD_PPI.Set8 ().. 322
EFI_PEI_PCD_PPI.Set16 ().. 323
EFI_PEI_PCD_PPI.Set32 ().. 324
EFI_PEI_PCD_PPI.Set64 ().. 325
EFI_PEI_PCD_PPI.SetPtr () ... 326
EFI_PEI_PCD_PPI.SetBool().. 328
EFI_PEI_PCD_PPI.CallbackOnSet () ... 329
EFI_PEI_PCD_PPI.CancelCallback () .. 330
EFI_PEI_PCD_PPI.GetNextToken () .. 331
EFI_PEI_PCD_PPI.GetNextTokenSpace ().. 332

8.2.2 Get PCD Information PPI .. 332
EFI_GET_PCD_INFO_PPI ... 332
EFI_GET_PCD_INFO_PPI.GetInfo () ... 334
EFI_GET_PCD_INFO_PPI.GetSku () ... 335

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 xix

List of Tables

SI prefixes ... 5
 Binary prefixes ... 5
Defined File Types .. 9
Architectural Section Types .. 17
Descriptions of EFI_FVB_ATTRIBUTES_2 .. 34
Bit Allocation Definitions ... 44
Supported FFS Alignments... 45
Description of Fields for CompressionType .. 50
Descriptions of Fields for GuidedSectionHeader.Attributes 56
AuthenticationStatus Bit Definitions... 83
Descriptions of Fields for EFI_FV_ATTRIBUTES... 90
Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT .. 95
Description of fields for EFI_FV_WRITE_POLICY ... 100
Translation of HOB Specification Terminology ... 123
EFI_RESOURCE_ATTRIBUTE_TYPE fields .. 143
HOB Producer Phase Resource Types .. 145
Organization of This Specification .. 157
Class Definitions ... 160
Progress Code Operations: Computing Unit Class... 161
Error Code Operations: Computing Unit Class ... 161
Computing Unit Class: Subclasses... 162
Progress and Error Code Operations: Computing Unit Unspecified Subclass 163
Progress and Error Code Operations: Host Processor Subclass 163
Progress and Error Code Operations: Service Processor Subclass................................... 165
Progress and Error Code Operations: Cache Subclass ... 166
Progress and Error Code Operations: Memory Subclass... 167
Progress and Error Code Operations: Chipset Subclass.. 169
Progress Code Operations: User-Accessible Peripheral Class .. 170
Error Code Operations: User-Accessible Peripheral Class .. 170
Defined Subclasses: User-Accessible Peripheral Class... 171
Progress and Error Code Operations: Peripheral Unspecified Subclass............................ 172
Progress and Error Code Operations: Keyboard Subclass .. 173
Progress and Error Code Operations: Mouse Subclass ... 174
Progress and Error Code Operations: Local Console Subclass ... 175
Progress and Error Code Operations: Remote Console Subclass 175
Progress and Error Code Operations: Serial Port Subclass ... 176
Progress and Error Code Operations: Parallel Port Subclass .. 176
Progress and Error Code Operations: Fixed Media Subclass .. 177
Progress and Error Code Operations: Removable Media Subclass................................... 177
Progress and Error Code Operations: Audio Input Subclass.. 178
Progress and Error Code Operations: Audio Output Subclass... 178
Progress and Error Code Operations: LCD Device Subclass... 178
Progress and Error Code Operations: Network Device Subclass....................................... 179

Platform Initialization Specification, Vol. 3

xx May 2017 Version 1.6

Progress Code Operations: I/O Bus Class ... 179
Error Code Operations: I/O Bus Class.. 180
Defined Subclasses: I/O Bus Class .. 182
Progress and Error Code Operations: I/O Bus Unspecified Subclass 182
Progress and Error Code Operations: PCI Subclass.. 183
Progress and Error Code Operations: USB Subclass .. 184
Progress and Error Code Operations: IBA Subclass .. 184
Progress and Error Code Operations: AGP Subclass .. 185
Progress and Error Code Operations: PC Card Subclass .. 185
Progress and Error Code Operations: LPC Subclass... 186
Progress and Error Code Operations: SCSI Subclass ... 186
Progress and Error Code Operations: ATA/ATAPI/SATA Subclass 186
Progress and Error Code Operations: FC Subclass ... 187
Progress and Error Code Operations: IP Network Subclass .. 188
Progress and Error Code Operations: SMBus Subclass .. 188
Progress and Error Code Operations: I2C Subclass .. 188
Progress Code Operations: Host Software Class... 189
Error Code Operations: Host Software Class ... 190
Defined Subclasses: Host Software Class.. 192
Progress and Error Code Operations: Host Software Unspecified Subclass 193
Progress and Error Code Operations: SEC Subclass .. 193
Progress and Error Code Operations: PEI Foundation Subclass 194
Progress and Error Code Operations: PEI Module Subclass ... 195
Progress and Error Code Operations: DXE Foundation Subclass 196
Progress and Error Code Operations: DXE Boot Service Driver Subclass 197
Progress and Error Code Operations: DXE Runtime Service Driver Subclass 199
Progress and Error Code Operations: SMM Driver Subclass... 199
Progress and Error Code Operations: UEFI Application Subclass 200
Progress and Error Code Operations: OS Loader Subclass .. 200
Progress and Error Code Operations: Runtime Subclass .. 201
Progress and Error Code Operations: PEI Subclass .. 201
Progress and Error Code Operations: Boot Services Subclass.. 203
Progress and Error Code Operations: Runtime Services Subclass.................................... 206
Progress and Error Code Operations: DXE Services Subclass.. 207
Progress Code Enumeration Scheme .. 213
Debug Code Enumeration Scheme .. 214
Class Definitions ... 218
Defined Subclasses: Computing Unit Class ... 219
Decription of EFI_CPU_STATE_CHANGE_CAUSE fields... 234
Definitions to describe Group Operations ... 237
Defined Subclasses: User-Accessible Peripheral Class... 240
Defined Subclasses: I/O Bus Class .. 246
Defined Subclasses: Host Software Class.. 252

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 xxi

List of Figures

Figure 1. Example File Image (Graphical and Tree Representations).................................. 16
Figure 2. The Firmware Volume Format ... 18
Figure 3. Typical FFS File Layout ... 20
Figure 4. File Header 2 layout for files larger than 16Mb.. 20
Figure 5. Format of a section (below 16Mb) ... 21
Figure 6. Format of a section using the ExtendedLength field.. 21
Figure 7. Creating a File ... 28
Figure 8. Updating a File... 30
Figure 9. Bit Allocation of FFS Attributes.. 43
Figure 10. EFI_FV_FILE_ATTRIBUTES fields ... 95
Figure 11. Example HOB Producer Phase Memory Map and Usage................................ 124
Figure 12. Hierarchy of Status Code Operations .. 159
Figure 13. Status Code Services .. 277

Platform Initialization Specification, Vol. 3

xxii May 2017 Version 1.6

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 1

1 Shared Architectural Elements

1.1 Overview
This volume describes the basic concepts behind Platform Initialization (PI) firmware storage and
Hand-Off Blocks implementation.

The basic Platform Initialization (PI) firmware storage concepts include:

• Firmware Volumes

• Firmware File Systems

• Firmware Files

• Standard Binary Layout

• Pre-EFI Initialization (PEI) PEIM-to-PEIM Interfaces (PPIs)

• Driver Execution Environment (DXE) Protocols

The core code that is required for an implementation of Hand-Off Blocks (HOBs) in the Platform
Initialization (PI) Architecture specifications are also shown. A HOB is a binary data structure that
passes system state information from the HOB producer phase to the HOB consumer phase in the PI
Architecture. This HOB specification does the following:

• Describes the basic components of HOBs and the rules for constructing them

• Provides code definitions for the HOB data types and structures that are architecturally required
by the PI Architecture specifications

1.2 Target Audience
This document is intended for the following readers:

• Independent hardware vendors (IHVs) and original equipment manufacturers (OEMs) who will
be implementing firmware components that are stored in firmware volumes

• Firmware developers who create firmware products or those who modify these products for use
in platforms

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

Shared Architectural Elements Platform Initialization Specification, Vol. 3

2 May 2017 Version 1.6

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.3 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

Platform Initialization Specification, Vol. 3 Shared Architectural Elements

Version 1.6 May 2017 3

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
Requirements

This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

Shared Architectural Elements Platform Initialization Specification, Vol. 3

4 May 2017 Version 1.6

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

1.4 Conventions used in this document

1.4.1 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).
Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by 0x preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between characters in
hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xB
FD8C FA23 or 0xB_FD8C_FA23).

 A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

• the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.

Platform Initialization Specification, Vol. 3 Shared Architectural Elements

Version 1.6 May 2017 5

1.4.2 Binary prefixes
This standard uses the prefixes defined in the International System of Units (SI) (see
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

Table 1. SI prefixes

Factor Factor Name Symbol

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Table 2. Binary prefixes

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Shared Architectural Elements Platform Initialization Specification, Vol. 3

6 May 2017 Version 1.6

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 7

2 Firmware Storage Design Discussion

2.1 Firmware Storage Introduction
This specification describes how files should be stored and accessed within non-volatile storage.
Firmware implementations must support the standard PI Firmware Volume and Firmware File
System format (described below), but may support additional storage formats.

2.1.1 Firmware Devices
A firmware device is a persistent physical repository that contains firmware code and/or data. It is
typically a flash component but may be some other type of persistent storage. A single physical
firmware device may be divided into smaller pieces to form multiple logical firmware devices.
Similarly, multiple physical firmware devices may be aggregated into one larger logical firmware
device.

This section describes the characteristics of typical physical firmware devices.

2.1.1.1 Flash
Flash devices are the most common non-volatile repository for firmware volumes. Flash devices are
often divided into sectors (or blocks) of possibly differing sizes, each with different run-time
characteristics. Flash devices have several unique qualities that are reflected in the design of the
firmware file system:

• Flash devices can be erased on a sector-by-sector basis. After an erasure, all bits within a sector
return to their erase value, either all 0 or all 1.

• Flash devices can be written on a bit-by-bit basis if the change is from its erase value to the non-
erase value. For example, if the erase value is 1, then a bit with the value 1 can be changed to 0.

• Flash devices can only change from a non-erase value to an erase value by performing an erase
operation on an entire flash sector.

• Some flash devices can enable or disable reads and writes to the entire flash device or to
individual flash sectors.

• Some flash devices can lock the current enable or disable state of reads and writes until the next
reset.

• Flash writes and erases are often longer operations than reads.

• Flash devices often place restrictions on the operations that can be performed while a write or
erase is occurring.

2.1.2 Firmware Volumes
A Firmware Volume (FV) is a logical firmware device. In this specification, the basic storage
repository for data and/or code is the firmware volume. Each firmware volume is organized into a
file system. As such, the file is the base unit of storage for firmware.

Each firmware volume has the following attributes:

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

8 May 2017 Version 1.6

• Name. Each volume has a name consisting of an UEFI Globally Unique Identifier (GUID).

• Size. Each volume has a size, which describes the total size of all volume data, including any
header, files, and free space.

• Format. Each volume has a format, which describes the Firmware File System used in the body
of the volume.

• Memory Mapped? Some volumes may be memory-mapped, which indicates that the entire
contents of the volume appear at once in the memory address space of the processor.

• Sticky Write? Some volumes may require special erase cycles in order to change bits from a
non-erase value to an erase value.

• Erase Polarity. If a volume supports “Sticky Write,” then all bits within the volume will return
to this value (0 or 1) after an erase cycle.

• Alignment. The first byte of a volume is required to be aligned on some power-of-two
boundary. At a minimum, this must be greater than or equal to the highest file alignment value.
If EFI_FVB2_WEAK_ALIGNMENT is set in the volume header then the first byte of the volume
can be aligned on any power-of-two boundary. A weakly aligned volume can not be moved from
its initial linked location and maintain its alignment.

• Read Enable/Disable Capable/Status. Volumes may have the ability to change from readable
to hidden.

• Write Enable/Disable Capable/Status. Volumes may have the ability to change from writable
to write protected.

• Lock Capable/Status. Volumes may be able to have their capabilities locked.

• Read-Lock Capable/Status. Volumes may have the ability to lock their read status.

• Write-Lock Capable/Status. Volumes may have the ability to lock their write status.

Firmware volumes may also contain additional information describing the mapping between OEM
file types and a GUID.

2.1.3 Firmware File System
A firmware file system (FFS) describes the organization of files and (optionally) free space within
the firmware volume. Each firmware file system has a unique GUID, which is used by the firmware
to associate a driver with a newly exposed firmware volume.

The PI Firmware File System is described in “Firmware File System Format” on page 18.

2.1.4 Firmware Files
Firmware files are code and/or data stored in firmware volumes.

Each of the files has the following attributes:

• Name. Each file has a name consisting of an UEFI GUID. File names must be unique within a
firmware volume. Some file names have special significance.

• Type. Each file has a type. There are four ranges of file types: Normal (0x00-0xBF), OEM
(0xC0-0xDF), Debug (0xE0-0xEF) and Firmware Volume Specific (0xF0-0xFF). For more
information on types, see “Firmware File Types” on page 9.

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 9

• Alignment. Each file’s data can be aligned on some power-of-two boundary. The specific
boundaries that are supported depend on the alignment and format of the firmware volume. If
EFI_FVB2_WEAK_ALIGNMENT is set in the volume header then file alignment does not
depend on volume alignment.

• Size. Each file’s data is zero or more bytes.

Specific firmware volume formats may support additional attributes, such as integrity verification
and staged file creation. The file data of certain file types is sub-divided in a standardized fashion
into “Firmware File Sections” on page 15.

Non-standard file types are supported through the use of the OEM file types. See “Firmware File
Types” on page 9 for more information.

In the PEI phase, file-related services are provided through the PEI Services Table, using
FfsFindNextFile, FfsFindFileByName and FfsGetFileInfo. In the DXE phase, file-
related services are provided through the EFI_FIRMWARE_VOLUME2_PROTOCOL services
attached to a volume’s handle (ReadFile, ReadSection, WriteFile and GetNextFile).

2.1.4.1 Firmware File Types
Consider an application file named FOO.EXE. The format of the contents of FOO.EXE is implied
by the “.EXE” in the file name. Depending on the operating environment, this extension typically
indicates that the contents of FOO.EXE are a PE/COFF image and follow the PE/COFF image
format.

Similarly, the PI Firmware File System defines the contents of a file that is returned by the firmware
volume interface.

The PI Firmware File System defines an enumeration of file types. For example, the type
EFI_FV_FILETYPE_DRIVER indicates that the file is a DXE driver and is interesting to the DXE
Dispatcher. In the same way, files with the type EFI_FV_FILETYPE_PEIM are interesting to the
PEI Dispatcher.

Table 3. Defined File Types

Name Value Description

EFI_FV_FILETYPE_RAW 0x01 Binary data

EFI_FV_FILETYPE_FREEFORM 0x02 Sectioned data

EFI_FV_FILETYPE_SECURITY_CORE 0x03 Platform core code used during
the SEC phase

EFI_FV_FILETYPE_PEI_CORE 0x04 PEI Foundation

EFI_FV_FILETYPE_DXE_CORE 0x05 DXE Foundation

EFI_FV_FILETYPE_PEIM 0x06 PEI module (PEIM)

EFI_FV_FILETYPE_DRIVER 0x07 DXE driver

EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER 0x08 Combined PEIM/DXE driver

EFI_FV_FILETYPE_APPLICATION 0x09 Application

EFI_FV_FILETYPE_MM 0x0A Contains a PE32+ image that
will be loaded into MMRAM in
MM Traditional Mode.

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

10 May 2017 Version 1.6

2.1.4.1.1 EFI_FV_FILETYPE_APPLICATION

The file type EFI_FV_FILETYPE_APPLICATION denotes a file that contains a PE32 image that
can be loaded using the UEFI Boot Service LoadImage(). Files of type
EFI_FV_FILETYPE_APPLICATION are not dispatched by the DXE Dispatcher.

This file type is a sectioned file that must be constructed in accordance with the following rule:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

There are no restrictions on the encapsulation of the leaf section.

In the event that more than one EFI_SECTION_PE32 section is present in the file, the selection
algorithm for choosing which one represents the PE32 for the application in question is defined by
the LoadImage() boot service. See the Platform Initialization Driver Execution Environment
Core Interface Specification for details.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.2 EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER

The file type EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER denotes a file that contains code
suitable for dispatch by the PEI Dispatcher, as well as a PE32 image that can be dispatched by the
DXE Dispatcher. It has two uses:

EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE 0x0B Firmware volume image

EFI_FV_FILETYPE_COMBINED_MM_DXE 0x0C Contains PE32+ image that will
be dispatched by the DXE
Dispatcher and will also be
loaded into MMRAM in MM
Tradition Mode.

EFI_FV_FILETYPE_MM_CORE 0x0D MM Foundation that support
MM Traditional Mode.

EFI_FV_FILETYPE_MM_STANDALONE 0x0E Contains a PE32+ image that
will be loaded into MMRAM in
MM Standalone Mode.

EFI_FV_FILETYPE_MM_CORE_STANDALONE 0x0F MM Foundation that support
MM Tradition Mode and MM
Standalone Mode.

EFI_FV_FILETYPE_OEM_MIN…
EFI_FV_FILETYPE_OEM_MAX

0xC0-
0xDF

OEM File Types

EFI_FV_FILETYPE_DEBUG_MIN…
EFI_FV_FILETYPE_DEBUG_MAX

0xE0-
0xEF

Debug/Test File Types

EFI_FV_FILETYPE_FFS_MIN…
EFI_FV_FILETYPE_FFS_MAX

0xF0-
0xFF

Firmware File System Specific
File Types

EFI_FV_FILETYPE_FFS_PAD 0xF0 Pad File For FFS

Name Value Description

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 11

• Enables sharing code between PEI and DXE to reduce firmware storage requirements.

• Enables bundling coupled PEIM/driver pairs in the same file.

This file type is a sectioned file and must follow the intersection of all rules defined for both
EFI_FV_FILETYPE_PEIM and EFI_FV_FILETYPE_DRIVER files. This intersection is listed
below:

• The file must contain one and only one EFI_SECTION_PE32 section. There are no
restrictions on encapsulation of this section; however, care must be taken to ensure any execute-
in-place requirements are satisfied.

• The file must not contain more than one EFI_SECTION_DXE_DEPEX section.

• The file must not contain more than one EFI_SECTION_PEI_DEPEX section.

• The file must contain no more than one EFI_SECTION_VERSION section.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.3 EFI_FV_FILETYPE_COMBINED_SMM_DXE

The file type EFI_FV_FILETYPE_COMBINED_MM_DXE denotes a file that contains a PE32+
image that will be dispatched by the DXE Dispatcher and will also be loaded into MMRAM in MM
Traditional Mode.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section. This section is
ignored when the file is loaded into SMRAM.

• The file must contain no more than one EFI_SECTION_MM_DEPEX section. This section is
ignored when the file is dispatched by the DXE Dispatcher.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

2.1.4.1.4 EFI_FV_FILETYPE_DRIVER

The file type EFI_FV_FILETYPE_DRIVER denotes a file that contains a PE32 image that can be
dispatched by the DXE Dispatcher.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section.

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

12 May 2017 Version 1.6

There are no restrictions on the encapsulation of the leaf sections.

In the event that more than one EFI_SECTION_PE32 section is present in the file, the selection
algorithm for choosing which one represents the DXE driver that will be dispatched is defined by the
LoadImage() boot service, which is used by the DXE Dispatcher. See the Platform Initialization
Driver Execution Environment Core Interface Specification for details.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.5 EFI_FV_FILETYPE_DXE_CORE

The file type EFI_FV_FILETYPE_DXE_CORE denotes the DXE Foundation file. This image is
the one entered upon completion of the PEI phase of a UEFI boot cycle.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one and only one executable section, which must have a type of
EFI_SECTION_PE32.

• The file must contain no more than one EFI_SECTION_VERSION section.

The sections that are described in the rules above may be optionally encapsulated in compression
and/or additional GUIDed sections as required by the platform design.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design.

2.1.4.1.6 EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE

The file type EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE denotes a file that contains one
or more firmware volume images.

This file type is a sectioned file that must be constructed in accordance with the following rule:

• The file must contain at least one section of type
EFI_SECTION_FIRMWARE_VOLUME_IMAGE. There are no restrictions on encapsulation of
this section.

The file may contain other leaf and encapsulation sections as required or enabled by the platform
design.

2.1.4.1.7 EFI_FV_FILETYPE_FREEFORM

The file type EFI_FV_FILETYPE_FREEFORM denotes a sectioned file that may contain any
combination of encapsulation and leaf sections. While the section layout can be parsed, the
consumer of this type of file must have a priori knowledge of how it is to be used.

Standard firmware file system services will not return the handle of any pad files, nor will they
permit explicit creation of such files. The Name field of the EFI_FFS_FILE_HEADER and
EFI_FFS_FILE_HEADER2 structures is considered invalid for pad files and will not be used in
any operation that requires name comparisons.

A single EFI_SECTION_FREEFORM_SUBTYPE_GUID section may be included in a file of type
EFI_FV_FILETYPE_FREEFORM to provide additional file type differentiation. While it is
permissible to omit the EFI_SECTION_FREEFORM_SUBTYPE_GUID section entirely, there
must never be more than one instance of it.

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 13

2.1.4.1.8 EFI_FV_FILETYPE_FFS_PAD

A pad file is an FFS-defined file type that is used to pad the location of the file that follows it in the
storage file. The normal state of any valid (not deleted or invalidated) file is that both its header and
data are valid. This status is indicated using the State bits with State = 00000111b. Pad files
differ from all other types of files in that any pad file in this state must not have any data written into
the data space. It is essentially a file filled with free space.

Standard firmware file system services will not return the handle of any pad files, nor will they
permit explicit creation of such files. The Name field of the EFI_FFS_FILE_HEADER structure is
considered invalid for pad files and will not be used in any operation that requires name
comparisons.

2.1.4.1.9 EFI_FV_FILETYPE_PEIM

The file type EFI_FV_FILETYPE_PEIM denotes a file that is a PEI module (PEIM). A PEI
module is dispatched by the PEI Foundation based on its dependencies during execution of the PEI
phase. See the Platform Initialization Pre-EFI Initialization Core Interface Specification for details
on PEI operation.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain one and only one executable section. This section must have one of the
following types:
—EFI_SECTION_PE32
—EFI_SECTION_PIC
—EFI_SECTION_TE

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_PEI_DEPEX section.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design. Care must be taken to ensure that additional
encapsulations do not render the file inaccessible due to execute-in-place requirements.

2.1.4.1.10 EFI_FV_FILETYPE_PEI_CORE

The file type EFI_FV_FILETYPE_PEI_CORE denotes the PEI Foundation file. This image is
entered upon completion of the SEC phase of a PI Architecture-compliant boot cycle.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain one and only one executable section. This section must have one of the
following types:
—EFI_SECTION_PE32
—EFI_SECTION_PIC
—EFI_SECTION_TE

• The file must contain no more than one EFI_SECTION_VERSION section.

As long as the above rules are followed, the file may contain other leaf and encapsulations as
required/enabled by the platform design.

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

14 May 2017 Version 1.6

2.1.4.1.11 EFI_FV_FILETYPE_RAW

The file type EFI_FV_FILETYPE_RAW denotes a file that does not contain sections and is treated
as a raw data file. The consumer of this type of file must have a priori knowledge of its format and
content. Because there are no sections, there are no construction rules.

2.1.4.1.12 EFI_FV_FILETYPE_SECURITY_CODE

The file type EFI_FV_FILETYPE_SECURITY_CORE denotes code and data that comprise the
first part of PI Architecture firmware to execute. Its format is undefined with respect to the PI
Architecture, as differing platform architectures may have varied requirements.

2.1.4.1.13 EFI_FV_FILETYPE_MM

The file type EFI_FV_FILETYPE_MM denotes a file that contains a PE32+ image that will be
loaded into MMRAM in MM Tradition Mode.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_MM_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

2.1.4.1.14 EFI_FV_FILETYPE_MM_CORE

The file type EFI_FV_FILETYPE_MM_CORE denotes the MM Foundation file that only supports
MM Traditional Mode. This image will be loaded by MM IPL into MMRAM.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one and only one executable section, which must have a type of
EFI_SECTION_PE32.

• The file must contain no more than one EFI_SECTION_VERSION section.

The sections that are described in the rules above may be optionally encapsulated in compression
and/or additional GUIDed sections as required by the platform design.

As long as the above rules are followed, the file may contain other leaf and encapsulation sections as
required or enabled by the platform design.

2.1.4.1.15 EFI_FV_FILETYPE_MM_STANDALONE

The file type EFI_FV_FILETYPE_MM_STANDALONE denotes a file that contains a PE32+ image
that will be loaded into SMRAM in SMM Standalone Mode.

This file type is a sectioned file that must be constructed in accordance with the following rules:

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 15

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_MM_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the MM driver that will be dispatched is defined by MM Foundation Dispatcher. See the
Platform Initialization Specification, Volume 4 for details. The file may contain other leaf and
encapsulation sections as required or enabled by the platform design.

2.1.4.1.16 EFI_FV_FILETYPE_MM_CORE_STANDALONE

The file type EFI_FV_FILETYPE_SMM_CORE_STANDALONE denotes the MM Foundation file
that support MM Traditional Mode and MM Standalone Mode. This image will be loaded by
standalone MM IPL into MMRAM.

2.1.5 Firmware File Sections
Firmware file sections are separate discrete “parts” within certain file types. Each section has the
following attributes:

• Type. Each section has a type. For more information on section types, see “Firmware File
Section Types” on page 16.

• Size. Each section has a size.

While there are many types of sections, they fall into the following two broad categories:

• Encapsulation sections

• Leaf sections

Encapsulation sections are essentially containers that hold other sections. The sections contained
within an encapsulation section are known as child sections, and the encapsulation section is known
as the parent section. Encapsulation sections may have many children. An encapsulation section’s
children may be leaves and/or more encapsulation sections and are called peers relative to each
other. An encapsulation section does not contain data directly; instead it is just a vessel that
ultimately terminates in leaf sections.

Files that are built with sections can be thought of as a tree, with encapsulation sections as nodes and
leaf sections as the leaves. The file image itself can be thought of as the root and may contain an
arbitrary number of sections. Sections that exist in the root have no parent section but are still
considered peers.

Unlike encapsulation sections, leaf sections directly contain data and do not contain other sections.
The format of the data contained within a leaf section is defined by the type of the section.

Root

E0 L3 E1

L0 L1 L2 E2 L6

L4 L5

Tree Representation

L4

L5

E2

L6

E1

L3

L2

L1

L0

E0

Graphical Representation

Complete file image

Encapsulation section (En)

Leaf section (Ln)

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

16 May 2017 Version 1.6

Figure 1. Example File Image (Graphical and Tree Representations)

In the example shown in Figure 1, the file image root contains two encapsulation sections (E0 and
E1) and one leaf section (L3). The first encapsulation section (E0) contains children, all of which are
leaves (L0, L1, and L2). The second encapsulation section (E1) contains two children, one that is an
encapsulation (E2) and the other that is a leaf (L6). The last encapsulation section (E2) has two
children that are both leaves (L4 and L5)

In the PEI phase, section-related services are provided through the PEI Service Table, using
FfsFindSectionData. In the DXE phase, section-related services are provided through the
EFI_FIRMWARE_VOLUME2_PROTOCOL services attached to a volume’s handle
(ReadSection).

2.1.5.1 Firmware File Section Types
Table 4 lists the defined architectural section types.

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 17

Table 4. Architectural Section Types

Name Value Description

EFI_SECTION_COMPRESSION 0x01 Encapsulation section where other
sections are compressed.

EFI_SECTION_GUID_DEFINED 0x02 Encapsulation section where other
sections have format defined by a GUID.

EFI_SECTION_DISPOSABLE 0x03 Encapsulation section used during the
build process but not required for
execution.

EFI_SECTION_PE32 0x10 PE32+ Executable image.

EFI_SECTION_PIC 0x11 Position-Independent Code.

EFI_SECTION_TE 0x12 Terse Executable image.

EFI_SECTION_DXE_DEPEX 0x13 DXE Dependency Expression.

EFI_SECTION_VERSION 0x14 Version, Text and Numeric.

EFI_SECTION_USER_INTERFACE 0x15 User-Friendly name of the driver.

EFI_SECTION_COMPATIBILITY16 0x16 DOS-style 16-bit EXE.

EFI_SECTION_FIRMWARE_VOLUME_IMAGE 0x17 PI Firmware Volume image.

EFI_SECTION_FREEFORM_SUBTYPE_GUID 0x18 Raw data with GUID in header to define
format.

EFI_SECTION_RAW 0x19 Raw data.

EFI_SECTION_PEI_DEPEX 0x1b PEI Dependency Expression.

EFI_SECTION_MM_DEPEX 0x1c Leaf section type for determining the
dispatch order for an MM Traditional
driver in MM Traditional Mode or MM
Standaline driver in MM Standalone
Mode.

2.2 PI Architecture Firmware File System Format
This section describes the standard binary encoding for PI Firmware Files, PI Firmware Volumes,
and the PI Firmware File System. Implementations that allow the non-vendor firmware files or
firmware volumes to be introduced into the system must support the standard formats. This section
also describes how features of the standard format map into the standard PEI and DXE interfaces.

The standard firmware file and volume format also introduces additional attributes and capabilities
that are used to guarantee the integrity of the firmware volume.

The standard format is broken into three levels: the firmware volume format, the firmware file
system format, and the firmware file format.

The standard firmware volume format (Figure 2) consists of two parts: the firmware volume header
and the firmware volume data. The firmware volume header describes all of the attributes specified
in “Firmware Volumes” on page 7. The header also contains a GUID which describes the format of
the firmware file system used to organize the firmware volume data. The firmware volume header
can support other firmware file systems other than the PI Firmware File System.

FIRMWARE VOLUME
HEADER

FIRMWARE FILE SYSTEM

FIRMWARE FILE #1

FIRMWARE FILE #2

FIRMWARE FILE HEADER

FIRMWARE FILE DATA

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION

FIRMWARE FILE
SECTION HEADER

FIRMWARE FILE
SECTION DATA

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

18 May 2017 Version 1.6

Figure 2. The Firmware Volume Format

The PI Firmware File System format describes how firmware files and free space are organized
within the firmware volume.

The PI Firmware File format describes how files are organized. The firmware file format consists of
two parts: the firmware file header and the firmware file data.

2.2.1 Firmware Volume Format
The PI Architecture Firmware Volume format describes the binary layout of a firmware volume.
The firmware volume format consists of a header followed by the firmware volume data. The
firmware volume header is described by EFI_FIRMWARE_VOLUME_HEADER.

The format of the firmware volume data is described by a GUID. Valid files system GUID values
are EFI_FIRMWARE_FILE_SYSTEM2_GUID and EFI_FIRMWARE_FILE_SYSTEM3_GUID.

2.2.2 Firmware File System Format
The PI Architecture Firmware File System is a binary layout of file storage within firmware
volumes. It is a flat file system in that there is no provision for any directory hierarchy; all files
reside in the root directly. Files are stored end to end without any directory entry to describe which
files are present. Parsing the contents of a firmware volume to obtain a listing of files present
requires walking the firmware volume from beginning to end.

All files stored with the FFS must follow the “PI Architecture Firmware File System Format” on
page 17. The standard file header provides for several levels of integrity checking to help detect file
corruption, should it occur for some reason.

This section describes:

• PI Architecture’s Firmware File System GUID (s)

• Volume Top File (VTF)

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 19

2.2.2.1 Firmware File System GUID
The PI Architecture firmware volume header contains a data field for the file system GUID. See
EFI_FIRMWARE_VOLUME_HEADER on page 31 for more information on the firmware volume
header. There are two valid FFS file system, the GUID is defined as
EFI_FIRMWARE_FILE_SYSTEM2_GUID on page 38 and
EFI_FIRMWARE_FILE_SYSTEM3_GUID.

If the FFS file system is backward compatible with EFI_FIRMWARE_FILE_SYSTEM2_GUID
and supports files larger than 16 MB then EFI_FIRMWARE_FILE_SYSTEM3_GUID is used.

2.2.2.2 Volume Top File
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID on page 39.

Firmware file system driver code must be aware of this GUID and insert a pad file as necessary to
guarantee the VTF is located correctly at the top of the firmware volume on write and update
operations. File length and alignment requirements must be consistent with the top of volume.
Otherwise, a write error occurs and the firmware volume is not modified.

2.2.3 Firmware File Format
All FFS files begin with a header that is aligned on an 8-byteboundry with respect to the beginning
of the firmware volume. FFS files can contain the following parts:

• Header

• Data

It is possible to create a file that has only a header and no data, which consumes 24 bytes of space.
This type of file is known as a zero-length file.

If the file contains data, the data immediately follows the header. The format of the data within a file
is defined by the Type field in the header, either EFI_FFS_FILE_HEADER or
EFI_FFS_FILE_HEADER2 in section 3.2.3.

Figure 3 illustrates the layout of a (typical) PI Architecture Firmware File smaller than 16 Mb:

File data

Size
IntegrityCheck

Name

TypeAttributes
State

FG100003

File Data
EFI_FFS_FILE_HEADER

31 16 15 0

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

20 May 2017 Version 1.6

Figure 3. Typical FFS File Layout

Figure 4 illustrates the layout of a PI Architecture Firmware File larger than 16 Mb:

 31 16 15 0

File Data

ExtendedSize

State

Attributes

Size

Type IntegrityCheck

ExtendedSize

Name

Name

Figure 4. File Header 2 layout for files larger than 16Mb

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 21

2.2.4 Firmware File Section Format
This section describes the standard firmware file section layout.

Each section begins with a section header, followed by data defined by the section type.

The section headers aligned on 4 byte boundaries relative to the start of the file's image. If padding is
required between the end of one section and the beginning of the next to achieve the 4-byte
alignment requirement, all padding bytes must be initialized to zero.

Many section types are variable in length and are more accurately described as data streams rather
than data structures.

Regardless of section type, all section headers begin with a 24-bit integer indicating the section size,
followed by an 8-bit section type. The format of the remainder of the section header and the section
data is defined by the section type. If the section size is 0xFFFFFF then the size is defined by a 32-
bit integer that follows the 32-bit section header. Figures 5 and 6 shows the general format of a
section.

Section Data: Format defined by section type

LengthType

Remainder of section Header: Format defined by section type
(not all sections will have this portion)

FG100005

31 0

Figure 5. Format of a section (below 16Mb)

Section Data: Format defined by section type

ExtendedLength field

LengthType

Remainder of section Header: Format defined by section type
(not all sections will have this portion)

FG100006

31 0

Figure 6. Format of a section using the ExtendedLength field

2.2.5 File System Initialization
The algorithm below describes a method of FFS initialization that ensures FFS file corruption can be
detected regardless of the cause.

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

22 May 2017 Version 1.6

The State byte of each file must be correctly managed to ensure the integrity of the file system is
not compromised in the event of a power failure during any FFS operation. It is expected that an FFS
driver will produce an instance of the Firmware Volume Protocol and that all normal file operations
will take place in that context. All file operations must follow all the creation, update, and deletion
rules described in this specification to avoid file system corruption.

The following FvCheck() pseudo code must be executed during FFS initialization to avoid file
system corruption. If at any point a failure condition is reached, then the firmware volume is
corrupted and a crisis recovery is initiated.All FFS files, including files of type
EFI_FV_FILETYPE_FFS_PAD must be evaluated during file system initialization. It is legal for
multiple pad files with this file type to have the same Name field in the file header. No checks for
duplicate files should be performed on pad files.

// Firmware volume initialization entry point – returns TRUE
// if FFS driver can use this firmware volume.
BOOLEAN FvCheck(Fv)
{
 // first check out firmware volume header
 if (FvHeaderCheck(Fv) == FALSE) {
 FAILURE();// corrupted firmware volume header
 }
 if (!((Fv->FvFileSystemId == EFI_FIRMWARE_FILE_SYSTEM2_GUID) || \
 (Fv->FvFileSystemId == EFI_FIRMWARE_FILE_SYSTEM3_GUID))){
 return (FALSE); // This firmware volume is not
 // formatted with FFS
 }
 // next walk files and verify the FFS is in good shape
 for (FilePtr = FirstFile; Exists(Fv, FilePtr);
 FilePtr = NextFile(Fv, FilePtr)) {
 if (FileCheck (Fv, FilePtr) != 0) {
 FAILURE(); // inconsistent file system
 }
 }
 if (CheckFreeSpace (Fv, FilePtr) != 0) {
 FAILURE();
 }
 return (TRUE); // this firmware volume can be used by the FFS
 // driver and the file system is OK
}
// FvHeaderCheck – returns TRUE if FvHeader checksum is OK.
BOOLEAN FvHeaderCheck (Fv)
{
 return (Checksum (Fv.FvHeader) == 0);
}
// Exists – returns TRUE if any bits are set in the file header
BOOLEAN Exists(Fv, FilePtr)
{
 return (BufferErased (Fv.ErasePolarity,
 FilePtr, sizeof (EFI_FIRMWARE_VOLUME_HEADER) == FALSE);
}

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 23

// BufferErased – returns TRUE if no bits are set in buffer
BOOLEAN BufferErased (ErasePolarity, BufferPtr, BufferSize)
{
 UINTN Count;
 if (Fv.ErasePolarity == 1) {
 ErasedByte = 0xff;
 } else {
 ErasedByte = 0;
 }
 for (Count = 0; Count < BufferSize; Count++) {
 if (BufferPtr[Count] != ErasedByte) {
 return FALSE;
 }
 }
 return TRUE;
}
// GetFileState – returns high bit set of state field.
 UINT8 GetFileState (Fv, FilePtr) {
 UINT8 FileState;
 UINT8 HighBit;
 FileState = FilePtr->State;
 if (Fv.ErasePolarity != 0) {
 FileState = ~FileState;
 }
 HighBit = 0x80;
 while (HighBit != 0 && (HighBit & FileState) == 0) {
 HighBit = HighBit >> 1;
 }
 return HighBit;
}
// FileCheck – returns TRUE if the file is OK
BOOLEAN FileCheck (Fv, FilePtr) {
 switch (GetFileState (Fv, FilePtr)) {
 case EFI_FILE_HEADER_CONSTRUCTION:
 SetHeaderBit (Fv, FilePtr, EFI_FILE_HEADER_INVALID);
 break;
 case EFI_FILE_HEADER_VALID:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 Break;
 case EFI_FILE_DATA_VALID:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (DuplicateFileExists (Fv, FilePtr,
 EFI_FILE_DATA_VALID) != NULL) {

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

24 May 2017 Version 1.6

 return (FALSE);
 }
 break;
 case EFI_FILE_MARKED_FOR_UPDATE:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (FilePtr->State & EFI_FILE_DATA_VALID) == 0) {
 return (FALSE);
 }
 if (FilePtr->Type == EFI_FV_FILETYPE_FFS_PAD) {
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 if (DuplicateFileExists (Fv, FilePtr, EFI_FILE_DATA_VALID)) {
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 if (Fv->Attributes & EFI_FVB_STICKY_WRITE) {
 CopyFile (Fv, FilePtr);
 SetHeaderBit (Fv, FilePtr, EFI_FILE_DELETED);
 }
 else {
 ClearHeaderBit (Fv, FilePtr, EFI_FILE_MARKED_FOR_UPDATE);
 }
 }
 }
 break;
 case EFI_FILE_DELETED:
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 break;
 case EFI_FILE_HEADER_INVALID:
 break;
 }
 return (TRUE);
}
// FFS_FILE_PTR * DuplicateFileExists (Fv, FilePtr, StateBit)
// This function searches the firmware volume for another occurrence
// of the file described by FilePtr, in which the duplicate files
// high state bit that is set is defined by the parameter StateBit.
// It returns a pointer to a duplicate file if it exists and NULL
// if it does not. If the file type is EFI_FV_FILETYPE_FFS_PAD
// then NULL must be returned.

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 25

// CopyFile (Fv, FilePtr)
// The purpose of this function is to clear the
// EFI_FILE_MARKED_FOR_UPDATE bit from FilePtr->State
// in firmware volumes that have EFI_FVB_STICKY_WRITE == TRUE.
// The file is copied exactly header and all, except that the
// EFI_FILE_MARKED_FOR_UPDATE bit in the file header of the
// new file is clear.
// VerifyHeaderChecksum (FilePtr)
// The purpose of this function is to verify the file header
// sums to zero. See IntegrityCheck.Checksum.Header definition
// for details.
// VerifyFileChecksum (FilePtr)
// The purpose of this function is to verify the file integrity
// check. See IntegrityCheck.Checksum.File definition for details.

2.2.6 Traversal and Access to Files
The Security (SEC), PEI, and early DXE code must be able to traverse the FFS and read and execute
files before a write-enabled DXE FFS driver is initialized. Because the FFS may have
inconsistencies due to a previous power failure or other system failure, it is necessary to follow a set
of rules to verify the validity of files prior to using them. It is not incumbent on SEC, PEI, or the
early read-only DXE FFS services to make any attempt to recover or modify the file system. If any
situation exists where execution cannot continue due to file system inconsistencies, a recovery boot
is initiated.

There is one inconsistency that the SEC, PEI, and early DXE code can deal with without initiating a
recovery boot. This condition is created by a power failure or other system failure that occurs during
a file update on a previous boot. Such a failure will cause two files with the same file name GUID to
exist within the firmware volume. One of them will have the EFI_FILE_MARKED_FOR_UPDATE
bit set in its State field but will be otherwise a completely valid file. The other one may be in any
state of construction up to and including EFI_FILE_DATA_VALID. All files used prior to the
initialization of the write-enabled DXE FFS driver must be screened with this test prior to their use.
If this condition is discovered, it is permissible to initiate a recovery boot and allow the recovery
DXE to complete the update.

The following pseudo code describes the method for determining which of these two files to use.
The inconsistency is corrected during the write-enabled initialization of the DXE FFS driver.
// Screen files to ensure we get the right one in case
// of an inconsistency.
FFS_FILE_PTR EarlyFfsUpdateCheck(FFS_FILE_PTR * FilePtr) {
 FFS_FILE_PTR * FilePtr2;
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 switch (GetFileState (Fv, FilePtr)) {
 case EFI_FILE_DATA_VALID:
 return (FilePtr);

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

26 May 2017 Version 1.6

 break;
 case EFI_FILE_MARKED_FOR_UPDATE:
 FilePtr2 = DuplicateFileExists (Fv, FilePtr,
 EFI_FILE_DATA_VALID);
 if (FilePtr2 != NULL) {
 if (VerifyHeaderChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 if (VerifyFileChecksum (FilePtr) != TRUE) {
 return (FALSE);
 }
 return (FilePtr2);
 } else {
 return (FilePtr);
 }
 break;
 }
}

Note: There is no check for duplicate files once a file in the EFI_FILE_DATA_VALID state is located.
The condition where two files in a single firmware volume have the same file name GUID and are
both in the EFI_FILE_DATA_VALID state cannot occur if the creation and update rules that are
defined in this specification are followed.

2.2.7 File Integrity and State
File corruption, regardless of the cause, must be detectable so that appropriate file system repair
steps may be taken. File corruption can come from several sources but generally falls into three
categories:

• General failure

• Erase failure

• Write failure

A general failure is defined to be apparently random corruption of the storage media. This
corruption can be caused by storage media design problems or storage media degradation, for
example. This type of failure can be as subtle as changing a single bit within the contents of a file.
With good system design and reliable storage media, general failures should not happen. Even so,
the FFS enables detection of this type of failure.

An erase failure occurs when a block erase of firmware volume media is not completed due to a
power failure or other system failure. While the erase operation is not defined, it is expected that
most implementations of FFS that allow file write and delete operations will also implement a
mechanism to reclaim deleted files and coalesce free space. If this operation is not completed
correctly, the file system can be left in an inconsistent state.

Similarly, a write failure occurs when a file system write is in progress and is not completed due to a
power failure or other system failure. This type of failure can leave the file system in an inconsistent
state.

All of these failures are detectable during FFS initialization, and, depending on the nature of the
failure, many recovery strategies are possible. Careful sequencing of the State bits during normal

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 27

file transitions is sufficient to enable subsequent detection of write failures. However, the State
bits alone are not sufficient to detect all occurrences of general and/or erase failures. These types of
failures require additional support, which is enabled with the file header IntegrityCheck field.

For sample code that provides a method of FFS initialization that can detect FFS file corruption,
regardless of the cause, see “File System Initialization” on page 21.

2.2.8 File State Transitions

2.2.8.1 Overview
There are three basic operations that may be done with the FFS:

• Creating a file

• Deleting a file

• Updating a file

All state transitions must be done carefully at all times to ensure that a power failure never results in
a corrupted firmware volume. This transition is managed using the State field in the file header.

For the purposes of the examples below, positive decode logic is assumed
(EFI_FVB_ERASE_POLARITY = 0). In actual use, the EFI_FVB_ERASE_POLARITY in the
firmware volume header is referenced to determine the truth value of all FFS State bits. All
State bit transitions must be atomic operations. Further, except when specifically noted, only the
most significant State bit that is TRUE has meaning. Lower-order State bits are superseded by
higher-order State bits.

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on
page 31.

2.2.8.2 Initial State
The initial condition is that of “free space.” All free space in a firmware volume must be initialized
such that all bits in the free space contain the value of EFI_FVB_ERASE_POLARITY. As such, if
the free space is interpreted as an FFS file header, all State bits are FALSE.

Type EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on
page 31

2.2.8.3 Creating a File
A new file is created by allocating space from the firmware volume immediately beyond the end of
the preceding file (or the firmware volume header if the file is the first one in the firmware volume).
Figure 7 illustrates the steps to create a new file, which are detailed below the figure.

Change the
EFI_FILE_HEADER_

CONSTRUCTION
bit to TRUE

Change the
EFI_FILE_HEADER_

VALID bit to TRUE

Change the
EFI_FILE_DATA_
VALID bit to TRUE

Complete all fields in
the header

Write the file data

File is
“free

space”

File is
created

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

28 May 2017 Version 1.6

Figure 7. Creating a File

As shown in Figure 7, the following steps are required to create a new file:

1. Allocate space in the firmware volume for a new file header, either EFI_FFS_FILE_HEADER,
or EFI_FFS_FILE_HEADER2 if the file is 16MB or more in size, and complete all fields of
the header (except for the State field, which is updated independently from the rest of the
header). This allocation is done by interpreting the free space as a file header and changing the
EFI_FILE_HEADER_CONSTRUCTION bit to TRUE. The transition of this bit to the TRUE
state must be atomic and fully complete before any additional writes to the firmware volume are
made. This transition yields State = 00000001b, which indicates the header construction
has begun but has not yet been completed. This value has the effect of “claiming” the FFS
header space from the firmware volume free space.

While in this state, the following fields of the FFS header are initialized and written to the
firmware volume:

• Name

• IntegrityCheck.Header

Platform Initialization Specification, Vol. 3 Firmware Storage Design Discussion

Version 1.6 May 2017 29

• Type

• Attributes

• Size

If FFS_ATTRIB_LARGE_FILE is set in Attributes the Size field of the FFS header
must be zero and ExtendedSize must contian the size of the FFS file.The value of
IntegrityCheck.Header is calculated as described in EFI_FFS_FILE_HEADER.

2. Mark the new header as complete and write the file data. To mark the header as complete, the
EFI_FILE_HEADER_VALID bit is changed to TRUE. The transition of this bit to the TRUE
state must be atomic and fully complete before any additional writes to the firmware volume are
made. This transition yields State = 00000011b, which indicates the header construction is
complete, but the file data has not yet been written. This value has the effect of “claiming” the
full length of the file from the firmware volume free space. Once the
EFI_FILE_HEADER_VALID bit is set, no further changes to the following fields may be
made:

• Name

• IntegrityCheck.Header

• Type

• Attributes

• Size

While in this state, the file data and IntegrityCheck.File are written to the firmware
volume. The order in which these are written does not matter. The calculation of the value for
IntegrityCheck.File is described in EFI_FFS_FILE_HEADER on page 40.

3. Mark the data as valid. To mark the data as valid, the EFI_FILE_DATA_VALID bit is changed
to TRUE. The transition of this bit to the TRUE state must be atomic and fully complete before
any additional writes to the firmware volume are made. This transition yields State =
00000111b, which indicates the file data is fully written and is valid.

2.2.8.4 Deleting a File
Any file with EFI_FILE_HEADER_VALID set to TRUE and EFI_FILE_HEADER_INVALID
and EFI_FILE_DELETED set to FALSE is a candidate for deletion.

To delete a file, the EFI_FILE_DELETED bit is set to the TRUE state. The transition of this bit to
the TRUE state must be atomic and fully complete before any additional writes to the firmware
volume are made. This transition yields State = 0001xx11b, which indicates the file is marked
deleted. Its header is still valid, however, in as much as its length field is used in locating the next
file in the firmware volume.

Note: The EFI_FILE_HEADER_INVALID bit must be left in the FALSE state.

2.2.8.5 Updating a File
A file update is a special case of file creation where the file being added already exists in the
firmware volume. At all times during a file update, only one of the files, either the new one or the old
one, is valid at any given time. This validation is possible by using the
EFI_FILE_MARKED_FOR_UPDATE bit in the old file.

Figure 8 illustrates the steps to update a file, which are detailed below the figure.

File is

created

In the old file, change the
EFI_FILE_MARKED_

FOR_UPDATE bit to TRUE

Create the new file

Delete the old file

Writing the
EFI_FILE_DATA_VALID
bit to TRUE in the new file
invalidates the old file New

file is
created

Old file
is

deleted

See Deleting a File.

See Creating a File.

Firmware Storage Design Discussion Platform Initialization Specification, Vol. 3

30 May 2017 Version 1.6

Figure 8. Updating a File

As shown in Figure 8, the following steps are required to update a file:

1. Set the EFI_FILE_MARKED_FOR_UPDATE bit to TRUE in the old file. The transition of this
bit to the TRUE state must be atomic and fully complete before any additional writes to the
firmware volume are made. This transition yields State = 00001111b, which indicates the
file is marked for update. A file in this state remains valid as long as no other file in the firmware
volume has the same name and a State of 000001xxb.

2. Create the new file following the steps described in “Creating a File” on page 27. When the new
file becomes valid, the old file that was marked for update becomes invalid. That is to say, a file
marked for update is valid only as long as there is no file with the same name in the firmware
volume that has a State of 000001xxb. In this way, only one of the files, either the new or
the old, is valid at any given time. The act of writing the EFI_FILE_DATA_VALID bit in the
new file’s State field has the additional effect of invalidating the old file.

3. Delete the old file following the steps described in “Deleting a File” on page 29.

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 31

3 Firmware Storage Code Definitions

3.1 Firmware Storage Code Definitions Introduction
This section provides the code definitions for:

• The PI Architecture Firmware Storage binary formats for volumes, file system, files, and file
sections.

• The PEI interfaces that support firmware volumes, firmware file systems, firmware files, and
firmware file sections.

• The DXE protocols that support firmware volumes, firmware file systems, firmware files, and
firmware file sections.

3.2 Firmware Storage Formats

3.2.1 Firmware Volume

EFI_FIRMWARE_VOLUME_HEADER

Summary
Describes the features and layout of the firmware volume.

Prototype
typedef struct {
 UINT8 ZeroVector[16];
 EFI_GUID FileSystemGuid;
 UINT64 FvLength;
 UINT32 Signature;
 EFI_FVB_ATTRIBUTES_2 Attributes;
 UINT16 HeaderLength;
 UINT16 Checksum;
 UINT16 ExtHeaderOffset;
 UINT8 Reserved[1];
 UINT8 Revision;
 EFI_FV_BLOCK_MAP BlockMap[];
} EFI_FIRMWARE_VOLUME_HEADER;

Parameters
ZeroVector

The first 16 bytes are reserved to allow for the reset vector of processors whose reset
vector is at address 0.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

32 May 2017 Version 1.6

FileSystemGuid

Declares the file system with which the firmware volume is formatted. Type
EFI_GUID is defined in InstallProtocolInterface() in the Unified
Extensible Firmware Interface Specification, version 2.0 (UEFI 2.0 specification).

FvLength

Length in bytes of the complete firmware volume, including the header.

Signature

Set to {'_','F','V','H'}.

Attributes

Declares capabilities and power-on defaults for the firmware volume. Current state is
determined using the GetAttributes() function and is not maintained in the
Attributes field of the firmware volume header. Type
EFI_FVB_ATTRIBUTES_2 is defined in “Related Definitions” below.

HeaderLength

Length in bytes of the complete firmware volume header.

Checksum

A 16-bit checksum of the firmware volume header. A valid header sums to zero.

ExtHeaderOffset

Offset, relative to the start of the header, of the extended header
(EFI_FIRMWARE_VOLUME_EXT_HEADER) or zero if there is no extended header.
The extended header is followed by zero or more variable length extension entries.
Each extension entry is prefixed with the EFI_FIRMWARE_VOLUME_EXT_ENTRY
structure (see “Related Definitions” below), which defines the type and size of the
extension entry. The extended header is always 32-bit aligned relative to the start of
the FIRMWARE VOLUME.

If there is an instance of the EFI_FIRMWARE_VOLUME_EXT_HEADER, then the
firmware shall build an instance of the Firmware Volume Media Device Path (ref
Vol2, Section 8.2).

Reserved

In this version of the specification, this field must always be set to zero.

Revision

Set to 2. Future versions of this specification may define new header fields and will
increment the Revision field accordingly.

FvBlockMap[]

An array of run-length encoded FvBlockMapEntry structures. The array is
terminated with an entry of {0,0}.

FvBlockMapEntry.NumBlocks

The number of blocks in the run.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 33

FvBlockMapEntry.BlockLength

The length of each block in the run.

Description
A firmware volume based on a block device begins with a header that describes the features and
layout of the firmware volume. This header includes a description of the capabilities, state, and
block map of the device.

The block map is a run-length-encoded array of logical block definitions. This design allows a
reasonable mechanism of describing the block layout of typical firmware devices. Each block can be
referenced by its logical block address (LBA). The LBA is a zero-based enumeration of all of the
blocks—i.e., LBA 0 is the first block, LBA 1 is the second block, and LBA n is the (n-1) device.

The header is always located at the beginning of LBA 0.

Related Definitions
//***
// EFI_FVB_ATTRIBUTES_2
//***
typedef UINT32 EFI_FVB_ATTRIBUTES_2

// Attributes bit definitions
#define EFI_FVB2_READ_DISABLED_CAP 0x00000001
#define EFI_FVB2_READ_ENABLED_CAP 0x00000002
#define EFI_FVB2_READ_STATUS 0x00000004

#define EFI_FVB2_WRITE_DISABLED_CAP 0x00000008
#define EFI_FVB2_WRITE_ENABLED_CAP 0x00000010
#define EFI_FVB2_WRITE_STATUS 0x00000020

#define EFI_FVB2_LOCK_CAP 0x00000040
#define EFI_FVB2_LOCK_STATUS 0x00000080

#define EFI_FVB2_STICKY_WRITE 0x00000200
#define EFI_FVB2_MEMORY_MAPPED 0x00000400
#define EFI_FVB2_ERASE_POLARITY 0x00000800

#define EFI_FVB2_READ_LOCK_CAP 0x00001000
#define EFI_FVB2_READ_LOCK_STATUS 0x00002000

#define EFI_FVB2_WRITE_LOCK_CAP 0x00004000
#define EFI_FVB2_WRITE_LOCK_STATUS 0x00008000

#define EFI_FVB2_ALIGNMENT 0x001F0000
#define EFI_FVB2_WEAK_ALIGNMENT 0x80000000

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

34 May 2017 Version 1.6

#define EFI_FVB2_ALIGNMENT_1 0x00000000
#define EFI_FVB2_ALIGNMENT_2 0x00010000
#define EFI_FVB2_ALIGNMENT_4 0x00020000
#define EFI_FVB2_ALIGNMENT_8 0x00030000
#define EFI_FVB2_ALIGNMENT_16 0x00040000
#define EFI_FVB2_ALIGNMENT_32 0x00050000
#define EFI_FVB2_ALIGNMENT_64 0x00060000
#define EFI_FVB2_ALIGNMENT_128 0x00070000
#define EFI_FVB2_ALIGNMENT_256 0x00080000
#define EFI_FVB2_ALIGNMENT_512 0x00090000
#define EFI_FVB2_ALIGNMENT_1K 0x000A0000
#define EFI_FVB2_ALIGNMENT_2K 0x000B0000
#define EFI_FVB2_ALIGNMENT_4K 0x000C0000
#define EFI_FVB2_ALIGNMENT_8K 0x000D0000
#define EFI_FVB2_ALIGNMENT_16K 0x000E0000
#define EFI_FVB2_ALIGNMENT_32K 0x000F0000
#define EFI_FVB2_ALIGNMENT_64K 0x00100000
#define EFI_FVB2_ALIGNMENT_128K 0x00110000
#define EFI_FVB2_ALIGNMENT_256K 0x00120000
#define EFI_FVB2_ALIGNMENT_512K 0x00130000
#define EFI_FVB2_ALIGNMENT_1M 0x00140000
#define EFI_FVB2_ALIGNMENT_2M 0x00150000
#define EFI_FVB2_ALIGNMENT_4M 0x00160000
#define EFI_FVB2_ALIGNMENT_8M 0x00170000
#define EFI_FVB2_ALIGNMENT_16M 0x00180000
#define EFI_FVB2_ALIGNMENT_32M 0x00190000
#define EFI_FVB2_ALIGNMENT_64M 0x001A0000
#define EFI_FVB2_ALIGNMENT_128M 0x001B0000
#define EFI_FVB2_ALIGNMENT_256M 0x001C0000
#define EFI_FVB2_ALIGNMENT_512M 0x001D0000
#define EFI_FVB2_ALIGNMENT_1G 0x001E0000
#define EFI_FVB2_ALIGNMENT_2G 0x001F0000

Table 5 describes the fields in the above definition:

Table 5. Descriptions of EFI_FVB_ATTRIBUTES_2

Attribute Description

EFI_FVB2_READ_DISABLED_CAP TRUE if reads from the firmware volume may be disabled.

EFI_FVB2_READ_ENABLED_CAP TRUE if reads from the firmware volume may be enabled.

EFI_FVB2_READ_STATUS TRUE if reads from the firmware volume are currently enabled.

EFI_FVB2_WRITE_DISABLED_CAP TRUE if writes to the firmware volume may be disabled.

EFI_FVB2_WRITE_ENABLED_CAP TRUE if writes to the firmware volume may be enabled.

EFI_FVB2_WRITE_STATUS TRUE if writes to the firmware volume are currently enabled.

EFI_FVB2_LOCK_CAP TRUE if firmware volume attributes may be locked down.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 35

All other EFI_FVB_ATTRIBUTES_2 bits are reserved and must be zero.
typedef struct {
 UINT32 NumBlocks;
 UINT32 Length;
} EFI_FV_BLOCK_MAP;

NumBlocks

The number of sequential blocks which are of the same size.

Length

The size of the blocks.

typedef struct {
 EFI_GUID FvName;
 UINT32 ExtHeaderSize;
} EFI_FIRMWARE_VOLUME_EXT_HEADER;

EFI_FVB2_LOCK_STATUS TRUE if firmware volume attributes are currently locked down.

EFI_FVB2_STICKY_WRITE TRUE if a block erase is required to transition bits from

(NOT)EFI_FVB2_ERASE_POLARITY to

EFI_FVB2_ERASE_POLARITY. That is, after erasure, a write

may negate a bit in the EFI_FVB2_ERASE_POLARITY state,

but a write cannot flip it back again. A block erase cycle is required
to transition bits from the

(NOT)EFI_FVB2_ERASE_POLARITY state back to the

EFI_FVB2_ERASE_POLARITY state. See the

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL on

page 107.

EFI_FVB2_MEMORY_MAPPED TRUE if firmware volume is memory mapped.

EFI_FVB2_ERASE_POLARITY Value of all bits after erasure. See the

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL on

page 107.

EFI_FVB2_READ_LOCK_CAP TRUE if the firmware volume's read-status can be locked.

EFI_FVB2_READ_LOCK_STATUS TRUE If the firmware volume's read-status is locked.

EFI_FVB2_WRITE_LOCK_CAP TRUE if the firmware volume’s write status can be locked.

EFI_FVB2_WRITE_LOCK_STATUS TRUE if the firmware volume’s write-status is locked.

EFI_FVB2_ALIGNMENT The first byte of the firmware volume must be placed at an address
which is an even multiple of 2^(this field). For example, a value of 5
in this field would mean a required alignment of 32 bytes.

EFI_FVB2_WEAK_ALIGNMENT TRUE if the firmware volume can be less than the the highest file
alignment value.

Attribute Description

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

36 May 2017 Version 1.6

FvName

Firmware volume name.

ExtHeaderSize

Size of the rest of the extension header, including this structure.

After the extension header, there is an array of variable-length extension header entries, each
prefixed with the EFI_FIRMWARE_VOLUME_EXT_ENTRY structure.

typedef struct {
 UINT16 ExtEntrySize;
 UINT16 ExtEntryType;
} EFI_FIRMWARE_VOLUME_EXT_ENTRY;

ExtEntrySize

Size of this header extension.

ExtEntryType

Type of the header. See EFI_FV_EXT_TYPE_x.

#define EFI_FV_EXT_TYPE_OEM_TYPE 0x01
typedef struct {
 EFI_FIRMWARE_VOLUME_EXT_ENTRY Hdr;
 UINT32 TypeMask;
 //EFI_GUID Types[];
} EFI_FIRMWARE_VOLUME_EXT_ENTRY_OEM_TYPE;

Hdr

Standard extension entry, with the type EFI_FV_EXT_TYPE_OEM_TYPE.

TypeMask

A bit mask, one bit for each file type between 0xC0 (bit 0) and 0xDF (bit 31). If a bit
is ‘1’, then the GUID entry exists in Types. If a bit is ‘0’ then no GUID entry exists
in Types. For example, the value 0x01010301 would indicate that there would be
five total entries in Types for file types 0xC0 (bit 0), 0xC8 (bit 4), 0xC9 (bit 5), 0xD0
(bit 16), and 0xD8 (bit 24).

Types

An array of GUIDs, each GUID representing an OEM file type.

This extension header provides a mapping between a GUID and an OEM file type.
#define EFI_FV_EXT_TYPE_GUID_TYPE 0x0002
typedef struct {
 EFI_FIRMWARE_VOLUME_EXT_ENTRY Hdr;
 EFI_GUID FormatType;
 //UINT8 Data[];

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 37

} EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE;

Hdr

Standard extension entry, with the type EFI_FV_EXT_TYPE_OEM_TYPE.

FormatType

Vendor-specific GUID

Length

Length of the data following this field

Data

An arry of bytes of length Length.

This extension header EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE provides a vendor-
specific GUID FormatType type which includes a length and a successive series of data bytes.
Values 0x00, 0x03..0xffff are reserved by the specification.

#define EFI_FV_EXT_TYPE_USED_SIZE_TYPE 0x03
 typedef struct {
 EFI_FIRMWARE_VOLUME_EXT_ENTRY Hdr;
 UINT32 UsedSize;
 } EFI_FIRMWARE_VOLUME_EXT_ENTRY_USED_SIZE_TYPE;

 Hdr

Standard extension entry, with the type EFI_FV_EXT_TYPE_USED_SIZE_TYPE.

 UsedSize

The number of bytes of the FV that are in uses. The remaining
EFI_FIRMWARE_VOLUME_HEADER FvLength minus UsedSize bytes in the FV
must contain the value implied by EFI_FVB2_ERASE_POLARITY.

The EFI_FIRMWARE_VOLUME_EXT_ENTRY_USED_SIZE_TYPE can be used to find out how
many EFI_FVB2_ERASE_POLARITY bytes are at the end of the FV.

3.2.1.1 EFI Signed Firmware Volumes
There may be one or more headers with a FormatType of value
EFI_FIRMWARE_CONTENTS_SIGNED_GUID.

A signed firmware volume is a cryptographic signature across the entire volume. To process the
contents and verify the integrity of the volume, the
EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE Data[]shall contain an instance of
WIN_CERTIFICATE_UEFI_GUID where the CertType =
EFI_CERT_TYPE_PKCS7_GUIDor EFI_CERT_TYPE_RSA2048_SHA256_GUID.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

38 May 2017 Version 1.6

3.2.2 Firmware File System

EFI_FIRMWARE_FILE_SYSTEM2_GUID

Summary
The firmware volume header contains a data field for the file system GUID. See the
EFI_FIRMWARE_VOLUME_HEADER on page 31 for more information on the firmware volume
header.

GUID
// {8C8CE578-8A3D-4f1c-9935-896185C32DD3}
#define EFI_FIRMWARE_FILE_SYSTEM2_GUID \
 { 0x8c8ce578, 0x8a3d, 0x4f1c, \
 0x99, 0x35, 0x89, 0x61, 0x85, 0xc3, 0x2d, 0xd3 }

EFI_FIRMWARE_FILE_SYSTEM3_GUID

Summary
The firmware volume header contains a data field for the file system GUID. See the
EFI_FIRMWARE_VOLUME_HEADER on page 31 for more information on the firmware volume
header.

EFI_FIRMWARE_FILE_SYSTEM3_GUID indicates support for FFS_ATTRIB_LARGE_SIZE
and thus support for files 16MB or larger. EFI_FIRMWARE_FILE_SYSTEM2_GUID volume does
not contain large files. Files 16 MB or larger use a EFI_FFS_FILE_HEADER2 and smaller files
use EFI_FFS_FILE_HEADER. EFI_FIRMWARE_FILE_SYSTEM2_GUID allows backward
compatibility with previous versions of this specification

GUID
// {5473C07A-3DCB-4dca-BD6F-1E9689E7349A}
#define EFI_FIRMWARE_FILE_SYSTEM3_GUID \
 { 0x5473c07a, 0x3dcb, 0x4dca, \
 { 0xbd, 0x6f, 0x1e, 0x96, 0x89, 0xe7, 0x34, 0x9a } }

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 39

EFI_FFS_VOLUME_TOP_FILE_GUID

Summary
A Volume Top File (VTF) is a file that must be located such that the last byte of the file is also the
last byte of the firmware volume. Regardless of the file type, a VTF must have the file name GUID
of EFI_FFS_VOLUME_TOP_FILE_GUID as defined below.

GUID
// {1BA0062E-C779-4582-8566-336AE8F78F09}

#define EFI_FFS_VOLUME_TOP_FILE_GUID \
 { 0x1BA0062E, 0xC779, 0x4582, 0x85, 0x66, 0x33, 0x6A, \
 0xE8, 0xF7, 0x8F, 0x9 }

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

40 May 2017 Version 1.6

3.2.3 Firmware File

EFI_FFS_FILE_HEADER

Summary
Each file begins with a header that describes the state and contents of the file. The header is 8-byte
aligned with respect to the beginning of the firmware volume.

Prototype
typedef struct {
 EFI_GUID Name;
 EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
 EFI_FV_FILETYPE Type;
 EFI_FFS_FILE_ATTRIBUTES Attributes;
 UINT8 Size[3];
 EFI_FFS_FILE_STATE State;
} EFI_FFS_FILE_HEADER;

typedef struct {
 EFI_GUID Name;
 EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
 EFI_FV_FILETYPE Type;
 EFI_FFS_FILE_ATTRIBUTES Attributes;
 UINT8 Size[3];
 EFI_FFS_FILE_STATE State;
 UINT64 ExtendedSize;
} EFI_FFS_FILE_HEADER2;

Parameters
Name

This GUID is the file name. It is used to uniquely identify the file. There may be only
one instance of a file with the file name GUID of Name in any given firmware
volume, except if the file type is EFI_FV_FILETYPE_FFS_PAD.

IntegrityCheck

Used to verify the integrity of the file. Type EFI_FFS_INTEGRITY_CHECK is
defined in “Related Definitions” below.

Type

Identifies the type of file. Type EFI_FV_FILETYPE is defined in “Related
Definitions,” below. FFS-specific file types are defined in
EFI_FV_FILETYPE_FFS_PAD.

Attributes

Declares various file attribute bits. Type EFI_FFS_FILE_ATTRIBUTES is defined
in “Related Definitions” below.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 41

Size

The length of the file in bytes, including the FFS header. The length of the file data is
either (Size – sizeof(EFI_FFS_FILE_HEADER)). This calculation means a
zero-length file has a Size of 24 bytes, which is
sizeof(EFI_FFS_FILE_HEADER).

Size is not required to be a multiple of 8 bytes. Given a file F, the next file header is
located at the next 8-byte aligned firmware volume offset following the last byte of
the file F.

State

Used to track the state of the file throughout the life of the file from creation to
deletion. Type EFI_FFS_FILE_STATE is defined in “Related Definitions” below.
See “File Integrity and State” on page 26 for an explanation of how these bits are
used.

ExtendedSize

If FFS_ATTRIB_LARGE_FILE is set in Attributes then ExtendedSize
exists and Size must be set to zero.

If FFS_ATTRIB_LARGE_FILE is not set then EFI_FFS_FILE_HEADER is used.

Description
The file header may use one of two structures to define the file. If the size of the file is larger than
0xFFFFFF the EFI_FFS_FILE_HEADER2 structure must be used, otherwise the
EFI_FFS_FILE_HEADER structure must be used. The structure used is determined by the
FFS_ATTRIB_LARGE_FILE attribute in the Attributes member. Note that all of the structure
elements other than ExtendedSize are the same in the two structures. The ExtendedSize
member is used instead of the Size member when the EFI_FFS_FILE_HEADER2 structure is used
(FFS_ATTRIB_LARGE_FILE is set).

Related Definitions
//**
// EFI_FFS_INTEGRITY_CHECK
//**
typedef union {
 struct {
 UINT8 Header;
 UINT8 File;
 } Checksum;
 UINT16 Checksum16;
} EFI_FFS_INTEGRITY_CHECK;

Header

The IntegrityCheck.Checksum.Header field is an 8-bit checksum of the file
header. The State and IntegrityCheck.Checksum.File fields are assumed
to be zero and the checksum is calculated such that the entire header sums to zero. The

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

42 May 2017 Version 1.6

IntegrityCheck.Checksum.Header field is valid anytime the
EFI_FILE_HEADER_VALID bit is set in the State field. See “File Integrity and
State” on page 26 for more details.

If the FFS_ATTRIB_LARGE_FILE bit of the Attributes field is set the header
size is sizeof (EFI_FFS_FILE_HEADER2), if it is clear the header size is sizeof
(EFI_FFS_FILE_HEADER).

File

If the FFS_ATTRIB_CHECKSUM (see definition below) bit of the Attributes
field is set to one, the IntegrityCheck.Checksum.File field is an 8-bit
checksum of the file data. If the FFS_ATTRIB_CHECKSUM bit of the Attributes
field is cleared to zero, the IntegrityCheck.Checksum.File field must be
initialized with a value of 0xAA. The IntegrityCheck.Checksum.File field
is valid any time the EFI_FILE_DATA_VALID bit is set in the State field. See
“File Integrity and State” on page 26 for more details.

Checksum

IntegrityCheck. Checksum16 is the full 16 bits of the IntegrityCheck
field.

//**
// EFI_FV_FILETYPE
//**
typedef UINT8 EFI_FV_FILETYPE;

//**
// EFI_FFS_FILE_ATTRIBUTES
//**
typedef UINT8 EFI_FFS_FILE_ATTRIBUTES;

// FFS File Attributes
#define FFS_ATTRIB_LARGE_FILE 0x01
#define FFS_ATTRIB_FIXED 0x04
#define FFS_ATTRIB_DATA_ALIGNMENT 0x38
#define FFS_ATTRIB_CHECKSUM 0x40

Figure 9 depicts the bit allocation of the Attributes field in an FFS file’s header.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 43

Figure 9. Bit Allocation of FFS Attributes

Table 6 provides descriptions of the fields in the above definition.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

44 May 2017 Version 1.6

Table 6. Bit Allocation Definitions

Value Definition

FFS_ATTRIB_FIXED Indicates that the file may not be moved from its present location.

FFS_ATTRIB_LARGE_FILE Indicates that large files are supported and the

EFI_FFS_FILE_HEADER2 is in use.

FFS_ATTRIB_DATA_ALIGNMENT
and
FFS_ATTRIB_DATA_ALIGNMENT
2

Indicates that the beginning of the file data (not the file header) must
be aligned on a particular boundary relative to the firmware volume
base. The three bits in this field are an enumeration of alignment
possibilities. The firmware volume interface allows alignments based
on powers of two from byte alignment to 16MiB alignment. FFS does
not support this full range. The table below maps all FFS supported

alignments to FFS_ATTRIB_DATA_ALIGNMENT and

FFS_ATTRIB_DATA_ALIGNMENT2 values and firmware

volume interface alignment values. No other alignments are supported
by FFS. When a file with an alignment requirement is created, a pad
file may need to be created before it to ensure proper data alignment.
See “EFI_FV_FILETYPE_FFS_PAD” on page 13 for more information
regarding pad files.

FFS_ATTRIB_CHECKSUM Determines the interpretation of

IntegrityCheck.Checksum.File. See the

IntegrityCheck definition above for specific usage.

Table 7 maps all FFS-supported alignments to FFS_ATTRIB_DATA_ALIGNMENT and

FFS_ATTRIB_DATA_ALIGNMENT2 values and firmware volume interface alignment values.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 45

Table 7. Supported FFS Alignments

Required
Alignment
(bytes)

Alignment Value in FFS

Attributes Field

FFS_ATTRIB_DATA_
ALIGNMENT2 in FFS

Attributes Field

Alignment Value in
Firmware Volume
Interfaces

1 0 0 0

16 1 0 4

128 2 0 7

512 3 0 9

1KiB 4 0 10

4KiB 5 0 12

32KiB 6 0 15

64KiB 7 0 16

128KiB 0 1 17

256KiB 1 1 18

512KiB 2 1 19

1MiB 3 1 20

2MiB 4 1 21

4MiB 5 1 22

8MiB 6 1 23

16MiB 7 1 24

//**
// EFI_FFS_FILE_STATE
//**
typedef UINT8 EFI_FFS_FILE_STATE;

// FFS File State Bits
#define EFI_FILE_HEADER_CONSTRUCTION 0x01
#define EFI_FILE_HEADER_VALID 0x02
#define EFI_FILE_DATA_VALID 0x04
#define EFI_FILE_MARKED_FOR_UPDATE 0x08
#define EFI_FILE_DELETED 0x10
#define EFI_FILE_HEADER_INVALID 0x20

All other State bits are reserved and must be set to EFI_FVB_ERASE_POLARITY. See “File
Integrity and State” on page 26 for an explanation of how these bits are used. Type
EFI_FVB_ERASE_POLARITY is defined in EFI_FIRMWARE_VOLUME_HEADER on page 31.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

46 May 2017 Version 1.6

3.2.4 Firmware File Section

EFI_COMMON_SECTION_HEADER

Summary
Defines the common header for all the section types.

Prototype
typedef struct {
 UINT8 Size[3];
 EFI_SECTION_TYPE Type;
} EFI_COMMON_SECTION_HEADER;

typedef struct {
 UINT8 Size[3];
 EFI_SECTION_TYPE Type;
 UINT32 ExtendedSize;
} EFI_COMMON_SECTION_HEADER2;

Parameters
Size

A 24-bit unsigned integer that contains the total size of the section in bytes, including
the EFI_COMMON_SECTION_HEADER. For example, a zero-length section has a
Size of 4 bytes.

Type

Declares the section type. Type EFI_SECTION_TYPE is defined in “Related
Definitions” below.

ExtendedSize

If Size is 0xFFFFFF then ExtendedSize contains the size of the section. If
Size is not equal to 0xFFFFFF then this field does not exist.

Description
The type EFI_COMMON_SECTION_HEADER defines the common header for all the section types.

If Size is 0xFFFFFF the size of the section header is sizeof
(EFI_COMMON_SECTION_HEADER2). If Size is not equal to 0xFFFFFF then the size of the
section header is sizeof (EFI_COMMON_SECTION_HEADER).

The EFI_COMMON_SECTION_HEADER2 structure is only used if the section is too large to
be described using EFI_COMMON_SECTION_HEADER. Large sections using
EFI_COMMON_SECTION_HEADER2 can only exist in a file using
EFI_FFS_FILE_HEADER2, the FFS_ATTRIB_LARGE_FILE attribute in the file header is
set.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 47

Related Definitions
//**
// EFI_SECTION_TYPE
//**
typedef UINT8 EFI_SECTION_TYPE;

//**
// The section type EFI_SECTION_ALL is a pseudo type. It is
// used as a wild card when retrieving sections. The section
// type EFI_SECTION_ALL matches all section types.
//**
#define EFI_SECTION_ALL 0x00

//**
// Encapsulation section Type values
//**
#define EFI_SECTION_COMPRESSION 0x01
#define EFI_SECTION_GUID_DEFINED 0x02
#define EFI_SECTION_DISPOSABLE 0x03

//**
// Leaf section Type values
//**
#define EFI_SECTION_PE32 0x10
#define EFI_SECTION_PIC 0x11
#define EFI_SECTION_TE 0x12
#define EFI_SECTION_DXE_DEPEX 0x13
#define EFI_SECTION_VERSION 0x14
#define EFI_SECTION_USER_INTERFACE 0x15
#define EFI_SECTION_COMPATIBILITY16 0x16
#define EFI_SECTION_FIRMWARE_VOLUME_IMAGE 0x17
#define EFI_SECTION_FREEFORM_SUBTYPE_GUID 0x18
#define EFI_SECTION_RAW 0x19
#define EFI_SECTION_PEI_DEPEX 0x1B
#define EFI_SECTION_MM_DEPEX 0x1C

All other values are reserved for future use.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

48 May 2017 Version 1.6

3.2.5 Firmware File Section Types

EFI_SECTION_COMPATIBILITY16

Summary
A leaf section type that contains an IA-32 16-bit executable image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_COMPATIBILITY16_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_COMPATIBILITY16_SECTION2;

Description
A Compatibility16 image section is a leaf section that contains an IA-32 16-bit executable image.
IA-32 16-bit legacy code that may be included in PI Architecture firmware is stored in a 16-bit
executable image. EFI_COMPATIBILITY16_SECTION2 is used if the section is 16MB or
larger.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 49

EFI_SECTION_COMPRESSION

Summary
An encapsulation section type in which the section data is compressed.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 UINT32 UncompressedLength;
 UINT8 CompressionType;
} EFI_COMPRESSION_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 UINT32 UncompressedLength;
 UINT8 CompressionType;
} EFI_COMPRESSION_SECTION2;

Parameters
CommonHeader

Usual common section header. CommonHeader.Type =
EFI_SECTION_COMPRESSION.

UncompressedLength

UINT32 that indicates the size of the section data after decompression.

CompressionType

Indicates which compression algorithm is used.

Description
A compression section is an encapsulation section in which the section data is compressed. To
process the contents and extract the enclosed section stream, the section data must be decompressed
using the decompressor indicated by the CompressionType parameter. The decompressed
image is then interpreted as a section stream. EFI_COMPRESSION_SECTION2 is used if the
section is 16MB or larger.

Related Definitions
//**
// CompressionType values
//**
#define EFI_NOT_COMPRESSED 0x00
#define EFI_STANDARD_COMPRESSION 0x01

Table 8 describes the fields in the above definition.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

50 May 2017 Version 1.6

Table 8. Description of Fields for CompressionType

Field Description

EFI_NOT_COMPRESSED Indicates that the encapsulated section stream is not
compressed. This type is useful to grouping sections together
without requiring a decompressor.

EFI_STANDARD_COMPRESSION Indicates that the encapsulated section stream is compressed
using the compression standard defined by the UEFI 2.0
specification.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 51

EFI_SECTION_DISPOSABLE

Summary
An encapsulation section type in which the section data is disposable.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_DISPOSABLE_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_DISPOSABLE_SECTION2;

Parameters
None

Description
A disposable section is an encapsulation section in which the section data may be disposed of during
the process of creating or updating a firmware image without significant impact on the usefulness of
the file. The Type field in the section header is set to EFI_SECTION_DISPOSABLE. This
allows optional or descriptive data to be included with the firmware file which can be removed in
order to conserve space. The contents of this section are implementation specific, but might contain
debug data or detailed integration instructions. EFI_DISPOSABLE_SECTION2 is used if the
section is 16MB or larger.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

52 May 2017 Version 1.6

EFI_SECTION_DXE_DEPEX

Summary
A leaf section type that is used to determine the dispatch order for a DXE driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_DXE_DEPEX_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_DXE_DEPEX_SECTION2;

Description
The DXE dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for a DXE driver. See the Platform Initialization Driver
Execution Environment Core Interface Specification for details regarding the format of the
dependency expression. EFI_DXE_DEPEX_SECTION2 must be used if the section is 16MB or
larger.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 53

EFI_SECTION_FIRMWARE_VOLUME_IMAGE

Summary
A leaf section type that contains a PI Firmware Volume.

Prototype
typedef EFI_COMMON_SECTION_HEADER
EFI_FIRMWARE_VOLUME_IMAGE_SECTION;

typedef EFI_COMMON_SECTION_HEADER2
EFI_FIRMWARE_VOLUME_IMAGE_SECTION2;

Description
A firmware volume image section is a leaf section that contains a PI Firmware Volume Image.
EFI_FIRMWARE_VOLUME_IMAGE_SECTION2 must be used if the section is 16MB or larger.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

54 May 2017 Version 1.6

EFI_SECTION_FREEFORM_SUBTYPE_GUID

Summary
A leaf section type that contains a single EFI_GUID in the header to describe the raw data.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 EFI_GUID SubTypeGuid;
} EFI_FREEFORM_SUBTYPE_GUID_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 EFI_GUID SubTypeGuid;
} EFI_FREEFORM_SUBTYPE_GUID_SECTION2;

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_FREEFORM_SUBTYPE_GUID.

SubtypeGuid

This GUID is defined by the creator of the file. It is a vendor-defined file type. Type
EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

Description
A free-form subtype GUID section is a leaf section that contains a single EFI_GUIDin the header to
describe the raw data. It is typically used in files of type EFI_FV_FILETYPE_FREEFORM to
provide an extensibility mechanism for file types. See “EFI_FV_FILETYPE_FREEFORM” on
page 12 for more details about EFI_FV_FILETYPE_FREEFORM files.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 55

EFI_SECTION_GUID_DEFINED

Summary
An encapsulation section type in which the method of encapsulation is defined by an identifying
GUID.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 EFI_GUID SectionDefinitionGuid;
 UINT16 DataOffset;
 UINT16 Attributes;
 // GuidSpecificHeaderFields;
} EFI_GUID_DEFINED_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 EFI_GUID SectionDefinitionGuid;
 UINT16 DataOffset;
 UINT16 Attributes;
 // GuidSpecificHeaderFields;
} EFI_GUID_DEFINED_SECTION2;

Parameters
CommonHeader

Common section header. CommonHeader.Type =
EFI_SECTION_GUID_DEFINED.

SectionDefinitionGuid

GUID that defines the format of the data that follows. It is a vendor-defined section
type. Type EFI_GUID is defined in InstallProtocolInterface() in the
UEFI 2.0 specification.

DataOffset

Contains the offset in bytes from the beginning of the common header to the first byte
of the data.

Attributes

Bit field that declares some specific characteristics of the section contents. The bits are
defined in “Related Definitions” below.

GuidSpecificHeaderFields

Zero or more bytes of data that are defined by the section’s GUID. An example of this
data would be a digital signature and manifest.

Data

Zero or more bytes of arbitrary data. The format of the data is defined by
SectionDefinitionGuid.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

56 May 2017 Version 1.6

Description
A GUID-defined section contains a section-type-specific header that contains an identifying GUID,
followed by an arbitrary amount of data. It is an encapsulation section in which the method of
encapsulation is defined by the GUID. A matching instance of
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL (DXE) or
EFI_GUIDED_SECTION_EXTRACTION_PPI (PEI) is required to extract the contents of this
encapsulation section.

The GUID-defined section enables custom encapsulation section types for any purpose. One
commonly expected use is creating an encapsulation section to enable a cryptographic authentication
of the section contents. EFI_GUID_DEFINED_SECTION2 must be used if the section is 16MB or
larger.

Related Definitions
//***
// Bit values for GuidedSectionHeader.Attributes
//***
#define EFI_GUIDED_SECTION_PROCESSING_REQUIRED 0x01
#define EFI_GUIDED_SECTION_AUTH_STATUS_VALID 0x02

Table 9 describes the fields in the above definition.

Table 9. Descriptions of Fields for GuidedSectionHeader.Attributes

Field Description

EFI_GUIDED_SECTION_
PROCESSING_REQUIRED

Set to 1 if the section requires processing to obtain meaningful
data from the section contents. Processing would be required, for
example, if the section contents were encrypted or compressed.
If the

EFI_GUIDED_SECTION_PROCESSING_REQUIRED

bit is cleared to zero, it is possible to retrieve the section’s
contents without processing in the absence of an associated
instance of the

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

(DXE) or

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI

(PEI).. In this case, the beginning of the encapsulated section

stream is indicated by the value of DataOffset.

EFI_GUIDED_SECTION_AUTH_
STATUS_VALID

Set to 1 if the section contains authentication data that is reported

through the AuthenticationStatus parameter returned

from the GUIDed Section Extraction
Protocol. If the

EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit is

clear, the AuthenticationStatus parameter is not

used.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 57

All other bits are reserved and must be set to zero. Together, the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED and
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bits provide the necessary data to set the
proper bits of the AuthenticationStatus output parameter in the event that no
EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL is available and the data is still returned.

EFI Signed Sections

For EFI_GUID_DEFINED_SECTION and EFI_GUID_DEFINED_SECTION2 there is a
SectionDefinitionGuid of type EFI_FIRMWARE_CONTENTS_SIGNED_GUID.

The GuidSpecificHeaderFields shall include an entry SignatureInfo of type
WIN_CERTIFICATE_UEFI_GUID.

#define EFI_FIRMWARE_CONTENTS_SIGNED_GUID \
{ 0xf9d89e8, 0x9259, 0x4f76, \
{ 0xa5, 0xaf, 0xc, 0x89, 0xe3, 0x40, 0x23, 0xdf } }

The signed section is an encapsulation section in which the section data is cryptographically signed.
To process the contents and extract the enclosed section stream, the section data integrity must be
accessed by evaluating the enclosed data via the cryptographic information in the
SignatureInfo. The CertType = EFI_CERT_TYPE_PKCS7_GUID or
EFI_CERT_TYPE_RSA2048_SHA256_GUID.

The signed image is then interpreted as a section stream. EFI_GUID_DEFINED_SECTION2 is
used if the section is 16MB or larger.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

58 May 2017 Version 1.6

EFI_SECTION_PE32

Summary
A leaf section type that contains a complete PE32+ image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PE32_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_PE32_SECTION2;

Description
The PE32+ image section is a leaf section that contains a complete PE32+ image. Normal UEFI
executables are stored within PE32+ images. EFI_PE32_SECTION2 must be used if the section is
16MB or larger.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 59

EFI_SECTION_PEI_DEPEX

Summary
A leaf section type that is used to determine dispatch order for a PEIM.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PEI_DEPEX_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_PEI_DEPEX_SECTION2;

Description
The PEI dependency expression section is a leaf section that contains a dependency expression that
is used to determine dispatch order for a PEIM. See the Platform Initialization Pre-EFI Initialization
Core Interface Specification for details regarding the format of the dependency expression.
EFI_PEI_DEPEX_SECTION2 must be used if the section is 16MB or larger.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

60 May 2017 Version 1.6

EFI_SECTION_PIC

Summary
A leaf section type that contains a position-independent-code (PIC) image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_PIC_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_PIC_SECTION2;

Description
A PIC image section is a leaf section that contains a position-independent-code (PIC) image.

In addition to normal PE32+ images that contain relocation information, PEIM executables may be
PIC and are referred to as PIC images. A PIC image is the same as a PE32+ image except that all
relocation information has been stripped from the image and the image can be moved and will
execute correctly without performing any relocation or other fix-ups. EFI_PIC_SECTION2 must
be used if the section is 16MB or larger.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 61

EFI_SECTION_RAW

Summary
A leaf section type that contains an array of zero or more bytes.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_RAW_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_RAW_SECTION2;

Description
A raw section is a leaf section that contains an array of zero or more bytes. No particular formatting
of these bytes is implied by this section type. EFI_RAW_SECTION2 must be used if the section is
16MB or larger.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

62 May 2017 Version 1.6

EFI_SECTION_MM_DEPEX

Summary

A leaf section type that is used to determine the dispatch order for an MM driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_MM_DEPEX_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_MM_DEPEX_SECTION2;

Description

The MM dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for MM drivers. Before the MMRAM invocation of the MM
driver’s entry point, this dependency expression must evaluate to TRUE. See the Platform
Initialization Specification, Volume 2 for details regarding the format of the dependency expression.

The dependency expression may refer to protocols installed in either the UEFI or the MM protocol
database. EFI_MM_DEPEX_SECTION2 must be used if the section is 16MB or larger.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 63

EFI_SECTION_TE

Summary
A leaf section that contains a Terse Executable (TE) image.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_TE_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_TE_SECTION2;

Description
The terse executable section is a leaf section that contains a Terse Executable (TE) image. A TE
image is an executable image format specific to the PI Architecture that is used for storing
executable images in a smaller amount of space than would be required by a full PE32+ image. Only
PEI Foundation and PEIM files may contain a TE section. EFI_TE_SECTION2 must be used if the
section is 16MB or larger.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

64 May 2017 Version 1.6

EFI_SECTION_USER_INTERFACE

Summary
A leaf section type that contains a Unicode string that contains a human-readable file name.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 CHAR16 FileNameString[];
} EFI_USER_INTERFACE_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 CHAR16 FileNameString[];
} EFI_USER_INTERFACE_SECTION2;

Description
The user interface file name section is a leaf section that contains a Unicode string that contains a
human-readable file name.

This section is optional and is not required for any file types. There must never be more than one
user interface file name section contained within a file. EFI_USER_INTERFACE_SECTION2
must be used if the section is 16MB or larger.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 65

EFI_SECTION_VERSION

Summary
A leaf section type that contains a numeric build number and an optional Unicode string that
represents the file revision.

Prototype
typedef struct {
 EFI_COMMON_SECTION_HEADER CommonHeader;
 UINT16 BuildNumber;
 CHAR16 VersionString[];
} EFI_VERSION_SECTION;

typedef struct {
 EFI_COMMON_SECTION_HEADER2 CommonHeader;
 UINT16 BuildNumber;
 CHAR16 VersionString[];
} EFI_VERSION_SECTION2;

Parameters
CommonHeader

Common section header. CommonHeader.Type = EFI_SECTION_VERSION.

BuildNumber

A UINT16 that represents a particular build. Subsequent builds have monotonically
increasing build numbers relative to earlier builds.

VersionString

A null-terminated Unicode string that contains a text representation of the version. If
there is no text representation of the version, then an empty string must be provided.

Description
A version section is a leaf section that contains a numeric build number and an optional Unicode
string that represents the file revision.

To facilitate versioning of PEIMs, DXE drivers, and other files, a version section may be included in
a file. There must never be more than one version section contained within a file.
EFI_VERSION_SECTION2 must be used if the section is 16MB or larger.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

66 May 2017 Version 1.6

3.3 PEI

EFI_PEI_FIRMWARE_VOLUME_INFO_PPI

Summary
Provides location and format of a firmware volume.

GUID
#define EFI_PEI_FIRMWARE_VOLUME_INFO_PPI_GUID \
 { 0x49edb1c1, 0xbf21, 0x4761, \
 0xbb, 0x12, 0xeb, 0x0, 0x31, 0xaa, 0xbb, 0x39 }

Prototype
typedef struct _EFI_PEI_FIRMWARE_VOLUME_INFO_PPI {
 EFI_GUID FvFormat;
 VOID *FvInfo;
 UINT32 FvInfoSize;
 EFI_GUID *ParentFvName;
 EFI_GUID *ParentFileName;
} EFI_PEI_FIRMWARE_VOLUME_INFO_PPI ;

Parameters
FvFormat

Unique identifier of the format of the memory-mapped firmware volume.

FvInfo

Points to a buffer which allows the EFI_PEI_FIRMWARE_VOLUME_PPI to
process the volume. The format of this buffer is specific to the FvFormat. For
memory-mapped firmware volumes, this typically points to the first byte of the
firmware volume.

FvInfoSize

Size of the data provided by FvInfo. For memory-mapped firmware volumes, this is
typically the size of the firmware volume.

ParentFvName, ParentFileName

If the firmware volume originally came from a firmware file, then these point to the
parent firmware volume name and firmware volume file. If it did not originally come
from a firmware file, these should be NULL.

Description
This PPI describes the location and format of a firmware volume. The FvFormat can be
EFI_FIRMWARE_FILE_SYSTEM2_GUID or the GUID for a user-defined format. The
EFI_FIRMWARE_FILE_SYSTEM2_GUID is the PI Firmware Volume format.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 67

EFI_PEI_FIRMWARE_VOLUME_INFO2_PPI

Summary
Provides location and format of a firmware volume.

GUID
#define EFI_PEI_FIRMWARE_VOLUME_INFO_PPI2_GUID \
{ 0xea7ca24b, 0xded5, 0x4dad, \
0xa3, 0x89, 0xbf, 0x82, 0x7e, 0x8f, 0x9b, 0x38 }

Prototype
typedef struct _EFI_PEI_FIRMWARE_VOLUME_INFO2_PPI {
 EFI_GUID FvFormat;
 VOID *FvInfo;
 UINT32 FvInfoSize;
 EFI_GUID *ParentFvName;
 EFI_GUID *ParentFileName;
 UINT32 AuthenticationStatus;
} EFI_PEI_FIRMWARE_VOLUME_INFO2_PPI ;

Parameters
FvFormat

Unique identifier of the format of the memory-mapped firmware volume.

FvInfo

Points to a buffer which allows the EFI_PEI_FIRMWARE_VOLUME_PPI to
process the volume. The format of this buffer is specific to the FvFormat. For
memory-mapped firmware volumes, this typically points to the first byte of the
firmware volume.

FvInfoSize

Size of the data provided by FvInfo. For memory-mapped firmware volumes, this is
typically the size of the firmware volume.

ParentFvName, ParentFileName

If the firmware volume originally came from a firmware file, then these point to the
parent firmware volume name and firmware volume file. If it did not originally come
from a firmware file, these should be NULL.

AuthenticationStatus

Authentication status.

Description
This PPI describes the location, format and authentication status of a firmware volume. The
FvFormat can be EFI_FIRMWARE_FILE_SYSTEM2_GUID or the GUID for a user-defined
format. The EFI_FIRMWARE_FILE_SYSTEM2_GUID is the PI Firmware Volume format.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

68 May 2017 Version 1.6

3.3.1 PEI Firmware Volume PPI

EFI_PEI_FIRMWARE_VOLUME_PPI

Summary
Provides functions for accessing a memory-mapped firmware volume of a specific format.

GUID
The GUID for this PPI is the same as the firmware volume format GUID.

Prototype
typedef struct _EFI_PEI_FIRMWARE_VOLUME_PPI {
 EFI_PEI_FV_PROCESS_FV ProcessVolume;
 EFI_PEI_FV_FIND_FILE_TYPE FindFileByType;
 EFI_PEI_FV_FIND_FILE_NAME FindFileByName;
 EFI_PEI_FV_GET_FILE_INFO GetFileInfo;
 EFI_PEI_FV_GET_INFO GetVolumeInfo;
 EFI_PEI_FV_FIND_SECTION FindSectionByType;
 EFI_PEI_FV_GET_FILE_INFO2 GetFileInfo2;
 EFI_PEI_FV_FIND_SECTION2 FindSectionByType2;
 UINT32 Signature;
 UINT32 Revision;
} EFI_PEI_FIRMWARE_VOLUME_PPI;

Parameters
ProcessVolume

Process a firmware volume and create a volume handle.

FindFileByType

Find all files of a specific type.

FindFileByName

Find the file with a specific name.

GetFileInfo

Return the information about a specific file

GetVolumeInfo

Return the firmware volume attributes.

FindSectionByType

Find the first section of a specific type.

GetFileInfo2

Return the information with authentication status about a specific file.

FindSectionByType2

Find the section with authentication status of a specific type.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 69

Signature

Signature is used to keep backward-compatibility, set to {'P','F','V','P'}.

Revision

Revision for further extension.

define EFI_PEI_FIRMWARE_VOLUME_PPI_REVISION 0x00010030

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

70 May 2017 Version 1.6

EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume()

Summary
Process a firmware volume and create a volume handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_PROCESS_FV) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN VOID *Buffer,
 IN UINTN BufferSize,
 OUT EFI_PEI_FV_HANDLE *FvHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

Buffer

Points to the start of the buffer.

BufferSize

Size of the buffer.

FvHandle

Points to the returned firmware volume handle. The firmware volume handle must be
unique within the system. The type EFI_PEI_FV_HANDLE is defined in the PEI
Services FfsFindNextVolume().

Description
Create a volume handle from the information in the buffer. For memory-mapped firmware volumes,
Buffer and BufferSize refer to the start of the firmware volume and the firmware volume size.
For non memory-mapped firmware volumes, this points to a buffer which contains the necessary
information for creating the firmware volume handle. Normally, these values are derived from the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI.

Status Codes Returned

EFI_SUCCESS Firmware volume handle created.

EFI_VOLUME_CORRUPTED Volume was corrupt.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 71

EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType()

Summary
Finds the next file of the specified type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_FILE_TYPE) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_FV_FILETYPE SearchType,
 IN EFI_PEI_FV_HANDLE FvHandle,
 IN OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

SearchType

A filter to find only files of this type. Type EFI_FV_FILETYPE_ALL causes no
filtering to be done.

FvHandle

Handle of firmware volume in which to search.

FileHandle

Points to the current handle from which to begin searching or NULL to start at the
beginning of the firmware volume. Updated upon return to reflect the file found.

Description
This service enables PEI modules to discover additional firmware files. The FileHandle must be
unique within the system.

Status Codes Returned

EFI_SUCCESS The file was found.

EFI_NOT_FOUND The file was not found. FileHandle contains NULL.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

72 May 2017 Version 1.6

EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName()

Summary
Find a file within a volume by its name.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_FILE_NAME) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN CONST EFI_GUID *FileName,
 IN EFI_PEI_FV_HANDLE *FvHandle,
 OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FileName

A pointer to the name of the file to find within the firmware volume.

FvHandle

Upon entry, the pointer to the firmware volume to search or NULL if all firmware
volumes should be searched. Upon exit, the actual firmware volume in which the file
was found.

FileHandle

Upon exit, points to the found file’s handle or NULL if it could not be found.

Description
This service searches for files with a specific name, within either the specified firmware volume or
all firmware volumes. The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS File was found.

EFI_NOT_FOUND File was not found.

EFI_INVALID_PARAMETER FileHandle or FileName was NULL.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 73

EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_GET_FILE_INFO) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_FV_FILE_INFO *FileInfo
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FileHandle

Handle of the file.

FileInfo

Upon exit, points to the file’s information.

Description
This function returns information about a specific file, including its file name, type, attributes,
starting address and size.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo is NULL

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

74 May 2017 Version 1.6

EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo2()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_GET_FILE_INFO2) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_FV_FILE_INFO2 *FileInfo
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FileHandle

Handle of the file.

FileInfo

Upon exit, points to the file’s information.

Description
This function returns information about a specific file, including its file name, type, attributes,
starting address and size.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo is NULL

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 75

EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo()

Summary
Return information about the firmware volume.

Prototypes
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_GET_INFO)(
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_PEI_FV_HANDLE FvHandle,
 OUT EFI_FV_INFO *VolumeInfo
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

FvHandle

Handle to the firmware handle.

VolumeInfo

Points to the returned firmware volume information.

Description
This function returns information about the firmware volume.

Status Codes Returned

EFI_SUCCESS Information returned successfully.

EFI_INVALID_PARAMETER FvHandle does not indicate a valid firmware volume or

VolumeInfo is NULL

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

76 May 2017 Version 1.6

EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType()

Summary
Find the next matching section in the firmware file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_SECTION) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_SECTION_TYPE SearchType,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT VOID **SectionData
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

SearchType

A filter to find only sections of this type.

FileHandle

Handle of firmware file in which to search.

SectionData

Updated upon return to point to the section found.

Description
This service enables PEI modules to discover sections of a given type within a valid file.

Status Codes Returns

EFI_SUCCESS Section was found.

EFI_NOT_FOUND Section of the specified type was not found. SectionData contains

NULL.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 77

EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType2()

Summary
Find the next matching section in the firmware file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FV_FIND_SECTION2) (
 IN CONST EFI_PEI_FIRMWARE_VOLUME_PPI *This,
 IN EFI_SECTION_TYPE SearchType,
 IN UINTN SearchInstance,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT VOID **SectionData
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Points to this instance of the EFI_PEI_FIRMWARE_VOLUME_PPI.

SearchType

A filter to find only sections of this type.

SearchInstance

A filter to find the specific instance of sections.

FileHandle

Handle of firmware file in which to search.

SectionData

Updated upon return to point to the section found.

AuthenticationStatus

Updated upon return to point to the authentication status for this section.

Description
This service enables PEI modules to discover sections of a given instance and type within a valid
file.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

78 May 2017 Version 1.6

Status Codes Returns

EFI_SUCCESS Section was found.

EFI_NOT_FOUND Section of the specified type was not found. SectionData contains

NULL.

3.3.2 PEI Load File PPI

EFI_PEI_LOAD_FILE_PPI

Summary
Installed by a PEIM that supports the Load File PPI.

GUID
#define EFI_PEI_LOAD_FILE_PPI_GUID \
 { 0xb9e0abfe, 0x5979, 0x4914, \
 0x97, 0x7f, 0x6d, 0xee, 0x78, 0xc2, 0x78, 0xa6 }

Prototype
typedef struct _EFI_PEI_LOAD_FILE_PPI {

EFI_PEI_LOAD_FILE LoadFile;
} EFI_PEI_LOAD_FILE_PPI;

Parameters
LoadFile

Loads a PEIM into memory for subsequent execution. See the LoadFile() function
description.

Description
This PPI is a pointer to the Load File service. This service will be published by a PEIM. The PEI
Foundation will use this service to launch the known PEI module images.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 79

EFI_PEI_LOAD_FILE_PPI.LoadFile()

Summary
Loads a PEIM into memory for subsequent execution.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOAD_FILE) (
 IN CONST EFI_PEI_LOAD_FILE_PPI *This,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
 OUT UINT64 *ImageSize,
 OUT EFI_PHYSICAL_ADDRESS *EntryPoint,
 OUT UINT32 *AuthenticationState
);

Parameters
This

Interface pointer that implements the Load File PPI instance.

FileHandle

File handle of the file to load. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile().

ImageAddress

Pointer to the address of the loaded image.

ImageSize

Pointer to the size of the loaded image.

EntryPoint

Pointer to the entry point of the image.

AuthenticationState

On exit, points to the attestation authentication state of the image or 0 if no attestation
was performed. The format of AuthenticationState is defined in
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() on
page 82

Description
This service is the single member function of EFI_LOAD_FILE_PPI. This service separates
image loading and relocating from the PEI Foundation. For example, if there are compressed images
or images that need to be relocated into memory for performance reasons, this service performs that
transformation. This service is very similar to the EFI_LOAD_FILE_PROTOCOL in the UEFI 2.0
specification. The abstraction allows for an implementation of the LoadFile() service to support
different image types in the future. There may be more than one instance of this PPI in the system.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

80 May 2017 Version 1.6

For example, the PEI Foundation might support only XIP images natively, but another PEIM might
contain support for relocatable images. There must be an LoadFile() instance that at least
supports the PE/COFF and Terse Executable (TE) image format.

For sectioned files, this function should use FfsFindSectionData in order to find the
executable image section.

This service must support loading of XIP images with or without copying them to a permanent
memory. If the image within the specified file cannot be loaded because it must be copied into
memory (either because the FV is not memory mapped or because the image contains relocations),
and the permanent memory is not available, the function will return EFI_NOT_SUPPORTED. If
permanent memory is available, then the PEIM should be loaded into permanent memory unless the
image is not relocatable. If the image cannot be loaded into permanent memory due to insufficient
amount of the available permanent memory, the function will return
EFI_WARN_BUFFER_TOO_SMALL in case of XIP image, and EFI_OUT_OF_RESOURCES in
case of non-XIP image. When EFI_WARN_BUFFER_TOO_SMALL is returned, all the output
parameters are valid and the image can be invoked.

Any behavior PEIM which requires to be executed from code permanent memory should include
wait for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI and
EFI_PEI_LOAD_FILE_PPI to be installed.

Status Codes Returned

EFI_SUCCESS The image was loaded successfully.

EFI_OUT_OF_RESOURCES There was not enough memory.

EFI_LOAD_ERROR There was no supported image in the file

EFI_INVALID_PARAMETER FileHandle was not a valid firmware file handle.

EFI_INVALID_PARAMETER EntryPoint was NULL.

EFI_UNSUPPORTED An image requires relocations or is not memory mapped.

EFI_WARN_BUFFER_TOO_SMALL There is not enough heap to allocate the requested size.
This will not prevent the XIP image from being invoked.

3.3.3 PEI Guided Section Extraction PPI

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI

Summary
If a GUID-defined section is encountered when doing section extraction, the PEI Foundation or the
EFI_PEI_FILE_LOADER_PPI instance calls the appropriate instance of the GUIDed Section
Extraction PPI to extract the section stream contained therein.

GUID
Typically, protocol interface structures are identified by associating them with a GUID. Each
instance of a protocol with a given GUID must have the same interface structure. While all instances
of the GUIDed Section Extraction PPI must have the same interface structure, they do not all have

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 81

the same GUID. The GUID that is associated with an instance of the GUIDed Section Extraction
Protocol is used to correlate it with the GUIDed section type that it is intended to process.

PPI Structure
typedef struct _EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI {
 EFI_PEI_EXTRACT_GUIDED_SECTION ExtractSection;
} EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI;

Parameters
ExtractSection

Takes the GUIDed section as input and produces the section stream data. See the
ExtractSection() function description.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

82 May 2017 Version 1.6

EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection()

Summary
Processes the input section and returns the data contained therein along with the authentication
status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_EXTRACT_GUIDED_SECTION)(
 IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
 IN CONST VOID *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI instance.

InputSection

Buffer containing the input GUIDed section to be processed.

OutputBuffer

*OutputBuffer is allocated from PEI permanent memory and contains the new
section stream.

OutputSize

A pointer to a caller-allocated UINTN in which the size of *OutputBuffer
allocation is stored. If the function returns anything other than EFI_SUCCESS, the
value of *OutputSize is undefined.

AuthenticationStatus

A pointer to a caller-allocated UINT32 that indicates the authentication status of the
output buffer. If the input section’s GuidedSectionHeader.Attributes field
has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear,
*AuthenticationStatus must return zero. These bits reflect the status of the
extraction operation. If the function returns anything other than EFI_SUCCESS, the
value of *AuthenticationStatus is undefined.

Description
The ExtractSection() function processes the input section and returns a pointer to the section
contents. If the section being extracted does not require processing (if the section’s
GuidedSectionHeader.Attributes has the
EFI_GUIDED_SECTION_PROCESSING_REQUIRED field cleared), then OutputBuffer is

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 83

just updated to point to the start of the section’s contents. Otherwise, *Buffer must be allocated
from PEI permanent memory.

If the section being extracted contains authentication information (the section’s
GuidedSectionHeader.Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set), the values returned in
AuthenticationStatus must reflect the results of the authentication operation.

If the section contains other encapsulation sections, their contents do not need to be extracted or
decompressed.

Related Definitions
//**
// Bit values for AuthenticationStatus
//**
#define EFI_AUTH_STATUS_PLATFORM_OVERRIDE 0x01
#define EFI_AUTH_STATUS_IMAGE_SIGNED 0x02
#define EFI_AUTH_STATUS_NOT_TESTED 0x04
#define EFI_AUTH_STATUS_TEST_FAILED 0x08

// all other bits are reserved and must be 0

The bit definitions above lead to the evaluations of AuthenticationStatus: in Table 10.

Table 10. AuthenticationStatus Bit Definitions

Bit Definition

xx00 Image was not signed.

xxx1 Platform security policy override. Assumes same meaning as 0010 (the image was signed, the
signature was tested, and the signature passed authentication test).

0010 Image was signed, the signature was tested, and the signature passed authentication test.

0110 Image was signed and the signature was not tested. This can occur if there is no GUIDed Section
Extraction Protocol available to process a GUID-defined section, but it was still possible to retrieve
the data from the GUID-defined section directly.

1010 Image was signed, the signature was tested, and the signature failed the authentication test.

1110 To generate this code, there must be at least two layers of GUIDed encapsulations. In one layer, the

AuthenticationStatus was returned as 0110; in another layer, it was returned as 1010.

When these two results are OR-ed together, the aggregate result is 1110.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

84 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The InputSection was successfully processed and the section

contents were returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the

GUIDed Section Extraction PPI.

3.3.4 PEI Decompress PPI

EFI_PEI_DECOMPRESS_PPI

Summary
Provides decompression services to the PEI Foundatoin.

GUID
#define EFI_PEI_DECOMPRESS_PPI_GUID \
 { 0x1a36e4e7, 0xfab6, 0x476a, \
 { 0x8e, 0x75, 0x69, 0x5a, 0x5, 0x76, 0xfd, 0xd7 } }

PPI Structure
typedef struct _EFI_PEI_DECOMPRESS_PPI {
 EFI_PEI_DECOMPRESS_DECOMPRESS Decompress;
} EFI_PEI_DECOMPRESS_PPI;

Members
Decompress

Decompress a single compression section in a firmware file. See Decompress()
for more information.

Description
This PPI’s single member function decompresses a compression encapsulated section. It is used by
the PEI Foundation to process sectioned files. Prior to the installation of this PPI, compression
sections will be ignored.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 85

EFI_PEI_DECOMPRESS_PPI.Decompress()

Summary
Decompress a single section.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DECOMPRESS_DECOMPRESS)(
 IN CONST EFI_PEI_DECOMPRESS_PPI *This,
 IN CONST EFI_COMPRESSION_SECTION *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize
);

Parameters
This

Points to this instance of the EFI_PEI_DECOMPRESS_PEI PPI.

InputSection

Points to the compressed section.

OutputBuffer

Holds the returned pointer to the decompressed sections.

OutputSize

Holds the returned size of the decompress section streams.

Description
Decompresses the data in a compressed section and returns it as a series of standard PI Firmware
File Sections. The required memory is allocated from permanent memory.

Status Codes Returned

EFI_SUCCESS The section was decompressed successfully.

OutputBuffer contains the resulting data and

OutputSize contains the resulting size.

EFI_OUT_OF_RESOURCES Unable to allocate sufficient memory to hold the decompressed
data.

EFI_UNSUPPORTED The compression type specified in the compression header is
unsupported.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

86 May 2017 Version 1.6

3.4 DXE

3.4.1 Firmware Volume2 Protocol

EFI_FIRMWARE_VOLUME2_PROTOCOL

Summary
The Firmware Volume Protocol provides file-level access to the firmware volume. Each firmware
volume driver must produce an instance of the Firmware Volume Protocol if the firmware volume is
to be visible to the system during the DXE phase. The Firmware Volume Protocol also provides
mechanisms for determining and modifying some attributes of the firmware volume.

GUID
#define EFI_FIRMWARE_VOLUME2_PROTOCOL_GUID \
 { 0x220e73b6, 0x6bdb, 0x4413, 0x84, 0x5, 0xb9, 0x74, \
 0xb1, 0x8, 0x61, 0x9a }

Protocol Interface Structure
typedef struct_EFI_FIRMWARE_VOLUME_PROTOCOL {
 EFI_FV_GET_ATTRIBUTES GetVolumeAttributes;
 EFI_FV_SET_ATTRIBUTES SetVolumeAttributes;
 EFI_FV_READ_FILE ReadFile;
 EFI_FV_READ_SECTION ReadSection;
 EFI_FV_WRITE_FILE WriteFile;
 EFI_FV_GET_NEXT_FILE GetNextFile;
 UINT32 KeySize;
 EFI_HANDLE ParentHandle;
 EFI_FV_GET_INFO GetInfo;
 EFI_FV_SET_INFO SetInfo;
} EFI_FIRMWARE_VOLUME2_PROTOCOL;

Parameters
GetVolumeAttributes

Retrieves volume capabilities and current settings. See the
GetVolumeAttributes() function description.

SetVolumeAttributes

Modifies the current settings of the firmware volume. See the
SetVolumeAttributes() function description.

ReadFile

Reads an entire file from the firmware volume. See the ReadFile() function
description.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 87

ReadSection

Reads a single section from a file into a buffer. See the ReadSection() function
description.

WriteFile

Writes an entire file into the firmware volume. See the WriteFile() function
description.

GetNextFile

Provides service to allow searching the firmware volume. See the GetNextFile()
function description.

KeySize

Data field that indicates the size in bytes of the Key input buffer for the
GetNextFile() API.

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

GetInfo

Gets the requested file or volume information. See the GetInfo() function
description.

SetInfo

Sets the requested file information. See the SetInfo() function description.

Description
The Firmware Volume Protocol contains the file-level abstraction to the firmware volume as well as
some firmware volume attribute reporting and configuration services. The Firmware Volume
Protocol is the interface used by all parts of DXE that are not directly involved with managing the
firmware volume itself. This abstraction allows many varied types of firmware volume
implementations. A firmware volume may be a flash device or it may be a file in the UEFI system
partition, for example. This level of firmware volume implementation detail is not visible to the
consumers of the Firmware Volume Protocol.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

88 May 2017 Version 1.6

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes()

Summary
Returns the attributes and current settings of the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_GET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

FvAttributes

Pointer to an EFI_FV_ATTRIBUTES in which the attributes and current settings are
returned. Type EFI_FV_ATTRIBUTES is defined in “Related Definitions” below.

Description
Because of constraints imposed by the underlying firmware storage, an instance of the Firmware
Volume Protocol may not be to able to support all possible variations of this architecture. These
constraints and the current state of the firmware volume are exposed to the caller using the
GetVolumeAttributes() function.

GetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the UEFI 2.0 specification.

Related Definitions
//**
// EFI_FV_ATTRIBUTES
//**
typedef UINT64 EFI_FV_ATTRIBUTES;

//**
// EFI_FV_ATTRIBUTES bit definitions
//**

// EFI_FV_ATTRIBUTES bit semantics
#define EFI_FV2_READ_DISABLE_CAP 0x0000000000000001
#define EFI_FV2_READ_ENABLE_CAP 0x0000000000000002
#define EFI_FV2_READ_STATUS 0x0000000000000004

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 89

#define EFI_FV2_WRITE_DISABLE_CAP 0x0000000000000008
#define EFI_FV2_WRITE_ENABLE_CAP 0x0000000000000010
#define EFI_FV2_WRITE_STATUS 0x0000000000000020

#define EFI_FV2_LOCK_CAP 0x0000000000000040
#define EFI_FV2_LOCK_STATUS 0x0000000000000080
#define EFI_FV2_WRITE_POLICY_RELIABLE 0x0000000000000100

#define EFI_FV2_READ_LOCK_CAP 0x0000000000001000
#define EFI_FV2_READ_LOCK_STATUS 0x0000000000002000
#define EFI_FV2_WRITE_LOCK_CAP 0x0000000000004000
#define EFI_FV2_WRITE_LOCK_STATUS 0x0000000000008000
#define EFI_FV2_ALIGNMENT 0x00000000001F0000

#define EFI_FV2_ALIGNMENT_1 0x0000000000000000
#define EFI_FV2_ALIGNMENT_2 0x0000000000010000
#define EFI_FV2_ALIGNMENT_4 0x0000000000020000
#define EFI_FV2_ALIGNMENT_8 0x0000000000030000
#define EFI_FV2_ALIGNMENT_16 0x0000000000040000
#define EFI_FV2_ALIGNMENT_32 0x0000000000050000
#define EFI_FV2_ALIGNMENT_64 0x0000000000060000
#define EFI_FV2_ALIGNMENT_128 0x0000000000070000
#define EFI_FV2_ALIGNMENT_256 0x0000000000080000
#define EFI_FV2_ALIGNMENT_512 0x0000000000090000
#define EFI_FV2_ALIGNMENT_1K 0x00000000000A0000
#define EFI_FV2_ALIGNMENT_2K 0x00000000000B0000
#define EFI_FV2_ALIGNMENT_4K 0x00000000000C0000
#define EFI_FV2_ALIGNMENT_8K 0x00000000000D0000
#define EFI_FV2_ALIGNMENT_16K 0x00000000000E0000
#define EFI_FV2_ALIGNMENT_32K 0x00000000000F0000
#define EFI_FV2_ALIGNMENT_64K 0x0000000000100000
#define EFI_FV2_ALIGNMENT_128K 0x0000000000110000
#define EFI_FV2_ALIGNMENT_256K 0x0000000000120000
#define EFI_FV2_ALIGNMENT_512K 0x0000000000130000
#define EFI_FV2_ALIGNMENT_1M 0x0000000000140000
#define EFI_FV2_ALIGNMENT_2M 0x0000000000150000
#define EFI_FV2_ALIGNMENT_4M 0x0000000000160000
#define EFI_FV2_ALIGNMENT_8M 0x0000000000170000
#define EFI_FV2_ALIGNMENT_16M 0x0000000000180000
#define EFI_FV2_ALIGNMENT_32M 0x0000000000190000
#define EFI_FV2_ALIGNMENT_64M 0x00000000001A0000
#define EFI_FV2_ALIGNMENT_128M 0x00000000001B0000
#define EFI_FV2_ALIGNMENT_256M 0x00000000001C0000
#define EFI_FV2_ALIGNMENT_512M 0x00000000001D0000
#define EFI_FV2_ALIGNMENT_1G 0x00000000001E0000

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

90 May 2017 Version 1.6

#define EFI_FV2_ALIGNMENT_2G 0x00000000001F0000

Table 11 describes the fields in the above definition.

Table 11. Descriptions of Fields for EFI_FV_ATTRIBUTES

Field Description

EFI_FV_READ_DISABLED_CAP Set to 1 if it is possible to disable reads from the firmware volume.

EFI_FV_READ_ENABLED_CAP Set to 1 if it is possible to enable reads from the firmware volume.

EFI_FV_READ_STATUS Indicates the current read state of the firmware volume. Set to 1 if
reads from the firmware volume are enabled.

EFI_FV_WRITE_DISABLED_CAP Set to 1 if it is possible to disable writes to the firmware volume.

EFI_FV_WRITE_ENABLED_CAP Set to 1 if it is possible to enable writes to the firmware volume.

EFI_FV_WRITE_STATUS Indicates the current state of the firmware volume. Set to 1 if writes
to the firmware volume are enabled.

EFI_FV_LOCK_CAP Set to 1 if it is possible to lock firmware volume read/write attributes.

EFI_FV_LOCK_STATUS Set to 1 if firmware volume attributes are locked down.

EFI_FV_WRITE_POLICY_RELIABLE Set to 1 if the firmware volume supports “reliable” writes..

EFI_FV_READ_LOCK_CAP Set to 1 if it is possible to lock the read status for the firmware
volume.

EFI_FV_READ_LOCK_STATUS Indicates the current read lock state of the firmware volume. Set to
1 if the read lock is currently enabled.

EFI_FV_WRITE_LOCK_CAP Set to 1 if it is possible to lock the write status for the firmware
volume.

EFI_FV_WRITE_LOCK_STATUS Indicates the current write lock state of the firmware volume. Set to
1 if the write lock is currently enabled.

EFI_FV_ALIGNMENT The first byte of the firmware volume must be at an address which is
an even multiple of the alignment specified.

All other bits are reserved and are cleared to zero.

Status Codes Returned

EFI_SUCCESS The firmware volume attributes were returned.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 91

EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes()

Summary
Modifies the current settings of the firmware volume according to the input parameter.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_SET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN OUT EFI_FV_ATTRIBUTES *FvAttributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

FvAttributes

On input, FvAttributes is a pointer to an EFI_FV_ATTRIBUTES containing
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. On unsuccessful return, FvAttributes is not
modified and the firmware volume settings are not changed. Type
EFI_FV_ATTRIBUTES is defined in GetVolumeAttributes().

Description
The SetVolumeAttributes() function is used to set configurable firmware volume attributes.
Only EFI_FV_READ_STATUS, EFI_FV_WRITE_STATUS, and EFI_FV_LOCK_STATUS may
be modified, and then only in accordance with the declared capabilities. All other bits of
*FvAttributes are ignored on input. On successful return, all bits of *FvAttributes are
valid and it contains the completed EFI_FV_ATTRIBUTES for the volume.

To modify an attribute, the corresponding status bit in the EFI_FV_ATTRIBUTES is set to the
desired value on input. The EFI_FV_LOCK_STATUS bit does not affect the ability to read or write
the firmware volume. Rather, once the EFI_FV_LOCK_STATUS bit is set, it prevents further
modification to all the attribute bits.

SetVolumeAttributes() is callable only from EFI_TPL_NOTIFY and below. Behavior of
SetVolumeAttributes() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type
EFI_TPL is defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The requested firmware volume attributes were set and the resulting

EFI_FV_ATTRIBUTES is returned in FvAttributes.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

92 May 2017 Version 1.6

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is set to 1 on input, but

the device does not support enabling reads

(FvAttributes:EFI_FV_READ_ENABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_READ_STATUS is cleared to 0 on

input, but the device does not support disabling reads

(FvAttributes:EFI_FV_READ_DISABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is set to 1 on input,

but the device does not support enabling writes

(FvAttributes:EFI_FV_WRITE_ENABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_WRITE_STATUS is cleared to 0 on

input, but the device does not support disabling writes

(FvAttributes:EFI_FV_WRITE_DISABLE_CAP is clear on

return from GetVolumeAttributes()). Actual volume attributes

are unchanged.

EFI_INVALID_PARAMETER FvAttributes:EFI_FV_LOCK_STATUS is set on input, but the

device does not support locking

(FvAttributes:EFI_FV_LOCK_CAP is clear on return from

GetVolumeAttributes()). Actual volume attributes are

unchanged.

EFI_ACCESS_DENIED Device is locked and does not allow attribute modification

(FvAttributes:EFI_FV_LOCK_STATUS is set on return from

GetVolumeAttributes()). Actual volume attributes are

unchanged.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 93

EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile()

Summary
Retrieves a file and/or file information from the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_READ_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *NameGuid,
 IN OUT VOID **Buffer,
 IN OUT UINTN *BufferSize,
 OUT EFI_FV_FILETYPE *FoundType,
 OUT EFI_FV_FILE_ATTRIBUTES *FileAttributes,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which is the file name. All firmware file names are
EFI_GUIDs. A single firmware volume must not have two valid files with the same
file name EFI_GUID. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Buffer

Pointer to a pointer to a buffer in which the file contents are returned, not including
the file header. See “Description” below for more details on the use of the Buffer
parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented by
*Buffer. See “Description” below for more details on the use of the BufferSize
parameter.

FoundType

Pointer to a caller-allocated EFI_FV_FILETYPE. See “Firmware File Types” on
page 9 for EFI_FV_FILETYPE related definitions.

FileAttributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. Type
EFI_FV_FILE_ATTRIBUTES is defined in “Related Definitions” below.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

94 May 2017 Version 1.6

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See “Related Definitions” in
EFI_SECTION_EXTRACTION_PROCOCOL.ExtractSection() for more
information.

Description
ReadFile() is used to retrieve any file from a firmware volume during the DXE phase. The
actual binary encoding of the file in the firmware volume media may be in any arbitrary format as
long as it does the following:

• It is accessed using the Firmware Volume Protocol.

• The image that is returned follows the image format defined in Code Definitions: PI Firmware
File Format.

If the input value of Buffer==NULL, it indicates the caller is requesting only that the type,
attributes, and size of the file be returned and that there is no output buffer. In this case, the
following occurs:

• *BufferSize is returned with the size that is required to successfully complete the read.

• The output parameters *FoundType and *FileAttributes are returned with valid values.

• The returned value of *AuthenticationStatus is undefined.

If the input value of Buffer!=NULL, the output buffer is specified by a double indirection of the
Buffer parameter. The input value of *Buffer is used to determine if the output buffer is caller
allocated or is dynamically allocated by ReadFile().

If the input value of *Buffer!=NULL, it indicates the output buffer is caller allocated. In this case,
the input value of *BufferSize indicates the size of the caller-allocated output buffer. If the
output buffer is not large enough to contain the entire requested output, it is filled up to the point that
the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and then
*BufferSize is returned with the size required to successfully complete the read. All other output
parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadFile(). In this case, ReadFile() will allocate an appropriately sized buffer from boot
services pool memory, which will be returned in *Buffer. The size of the new buffer is returned in
*BufferSize and all other output parameters are returned with valid values.

ReadFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of ReadFile() at
any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL() in the UEFI 2.0 specification.

 The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Related Definitions
//**
// EFI_FV_FILE_ATTRIBUTES

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 95

//**
typedef UINT32 EFI_FV_FILE_ATTRIBUTES;

#define EFI_FV_FILE_ATTRIB_ALIGNMENT 0x0000001F
#define EFI_FV_FILE_ATTRIB_FIXED 0x00000100
#define EFI_FV_FILE_ATTRIB_MEMORY_MAPPED 0x00000200

R ESERVED ALIGN MENT

FIX
E

D

M
E

M
 M

AP
P

E
D

R ESER VED

31 10 89 5 0

Figure 10. EFI_FV_FILE_ATTRIBUTES fields

This value is returned by EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile() and the PEI
Service FfsGetFileInfo(). It is not the same as EFI_FFS_FILE_ATTRIBUTES.

The Reserved field must be set to zero.

The EFI_FV_FILE_ATTRIB_ALIGNMENT field indicates that the beginning of the file data (not
the file header) must be aligned on a particular boundary relative to the beginning of the firmware
volume. This alignment only makes sense for block-oriented firmware volumes. This field is an
enumeration of alignment possibilities. The allowable alignments are powers of two from byte
alignment to 2GB alignment. The supported alignments are described in Table 12. All other values
are reserved.

Table 12. Supported Alignments for EFI_FV_FILE_ATTRIB_ALIGNMENT

Required Alignment (bytes) Alignment Value in Attributes Field

1 0

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512 9

1KiB 10

2KiB 11

4KiB 12

8KiB 13

16KiB 14

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

96 May 2017 Version 1.6

The EFI_FV_FILE_ATTRIB_FIXED attribute indicates that the file has a fixed location and
should not be moved (1) or may be moved to any address consistent with the alignment specified in
EFI_FV_FILE_ATTRIB_ALIGNMENT.

The EFI_FV_FILE_ATTRIB_MEMORY_MAPPED attribute indicates that the file is memory
mapped in the firmware volume and thus its contents may be accessed directly. If this is clear, then
Buffer is invalid. This value can be derived from the EFI_FV_ATTRIBUTES value returned by
EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes() or the PEI Service
FfsGetVolumeInfo().

Status Codes Returned

EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_TOO_SMALL The buffer is too small to contain the requested output. The buffer is
filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND Name was not found in the firmware volume.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware
volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

32KiB 15

64KiB 16

128 KiB 17

256 KiB 18

512 KiB 19

1 MiB 20

2 MiB 21

4 MiB 22

8 MiB 23

16 MiB 24

32 MiB 25

64 MiB 26

128 MiB 27

256 MiB 28

512 MiB 29

1 GiB 30

2 GiB 31

Required Alignment (bytes) Alignment Value in Attributes Field

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 97

EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()

Summary
Locates the requested section within a file and returns it in a buffer.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_READ_SECTION) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *NameGuid,
 IN EFI_SECTION_TYPE SectionType,
 IN UINTN SectionInstance,
 IN OUT VOID **Buffer,
 IN OUT UINTN *BufferSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NameGuid

Pointer to an EFI_GUID, which indicates the file name from which the requested
section will be read. Type EFI_GUID is defined in
InstallProtocolInterface() in the Related Definitions for section 3.2.4.

SectionType

Indicates the section type to return. SectionType in conjunction with
SectionInstance indicates which section to return. Type
EFI_SECTION_TYPE is defined in EFI_COMMON_SECTION_HEADER.

SectionInstance

Indicates which instance of sections with a type of SectionType to return.
SectionType in conjunction with SectionInstance indicates which section to
return. SectionInstance is zero based.

Buffer

Pointer to a pointer to a buffer in which the section contents are returned, not
including the section header. See “Description” below for more details on the usage of
the Buffer parameter.

BufferSize

Pointer to a caller-allocated UINTN. It indicates the size of the memory represented by
*Buffer. See “Description” below for more details on the usage of the
BufferSize parameter.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

98 May 2017 Version 1.6

AuthenticationStatus

Pointer to a caller-allocated UINT32 in which the authentication status is returned.
See EFI_SECTION_EXTRACTION_PROCOCOL.GetSection() for more
information.

Description
ReadSection() is used to retrieve a specific section from a file within a firmware volume. The
section returned is determined using a depth-first, left-to-right search algorithm through all sections
found in the specified file. See “Firmware File Sections” on page 15 for more details about sections.

The output buffer is specified by a double indirection of the Buffer parameter. The input value of
*Buffer is used to determine if the output buffer is caller allocated or is dynamically allocated by
ReadSection().

If the input value of *Buffer!=NULL, it indicates that the output buffer is caller allocated. In this
case, the input value of *BufferSize indicates the size of the caller-allocated output buffer. If the
output buffer is not large enough to contain the entire requested output, it is filled up to the point that
the output buffer is exhausted and EFI_WARN_BUFFER_TOO_SMALL is returned, and then
*BufferSize is returned with the size that is required to successfully complete the read. All other
output parameters are returned with valid values.

If the input value of *Buffer==NULL, it indicates the output buffer is to be allocated by
ReadSection(). In this case, ReadSection() will allocate an appropriately sized buffer from
boot services pool memory, which will be returned in *Buffer. The size of the new buffer is
returned in *BufferSize and all other output parameters are returned with valid values.

ReadSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ReadSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The call completed successfully.

EFI_WARN_BUFFER_
TOO_SMALL

The caller-allocated buffer is too small to contain the requested output. The
buffer is filled and the output is truncated.

EFI_OUT_OF_RESOURCES An allocation failure occurred.

EFI_NOT_FOUND The requested file was not found in the firmware volume.

EFI_NOT_FOUND The requested section was not found in the specified file.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

EFI_PROTOCOL_ERROR The requested section was not found, but the file could not be fully parsed
because a required

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL was not

found. It is possible the requested section exists within the file and could be
successfully extracted once the required

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL is

published.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 99

EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile()

Summary
Writes one or more files to the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_WRITE_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN UINT32 NumberOfFiles,
 IN EFI_FV_WRITE_POLICY WritePolicy,
 IN EFI_FV_WRITE_FILE_DATA *FileData
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

NumberOfFiles

Indicates the number of elements in the array pointed to by FileData.

WritePolicy

Indicates the level of reliability for the write in the event of a power failure or other
system failure during the write operation. Type EFI_FV_WRITE_POLICY is
defined in “Related Definitions” below.

FileData

Pointer to an array of EFI_FV_WRITE_FILE_DATA. Each element of
FileData[] represents a file to be written. Type EFI_FV_WRITE_FILE_DATA
is defined in “Related Definitions” below.

Description
WriteFile() is used to write one or more files to a firmware volume. Each file to be written is
described by an EFI_FV_WRITE_FILE_DATA structure.

The caller must ensure that any required alignment for all files listed in the FileData array is
compatible with the firmware volume. Firmware volume capabilities can be determined using the
GetVolumeAttributes() call.

Similarly, if the WritePolicy is set to EFI_FV_RELIABLE_WRITE, the caller must check the
firmware volume capabilities to ensure EFI_FV_RELIABLE_WRITE is supported by the firmware
volume. EFI_FV_UNRELIABLE_WRITE must always be supported.

Writing a file with a size of zero (FileData[n].BufferSize == 0) deletes the file from the
firmware volume if it exists. Deleting a file must be done one at a time. Deleting a file as part of a
multiple file write is not allowed.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

100 May 2017 Version 1.6

WriteFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of WriteFile()
at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is defined in
RaiseTPL() in the UEFI 2.0 specification.

Related Definitions
//**
// EFI_FV_WRITE_POLICY
//**
typedef UINT32 EFI_FV_WRITE_POLICY

#define EFI_FV_UNRELIABLE_WRITE 0x00000000
#define EFI_FV_RELIABLE_WRITE 0x00000001

All other values of EFI_FV_WRITE_POLICY are reserved. Table 13 describes the fields in the
above definition.

Table 13. Description of fields for EFI_FV_WRITE_POLICY

Field Description

EFI_FV_UNRELIABLE_WRITE This value in the WritePolicy parameter indicates that there is no

required reliability if a power failure or other system failure occurs during a
write operation. Updates may leave a combination of old and new files.
Data loss, including complete loss of all files involved, is also permissible.
In essence, no guarantees are made regarding what files will be present

following a system failure during a write with a WritePolicy of

EFI_FV_UNRELIABLE_WRITE. The advantage of this mode is that

it can be implemented to use much less space in the storage media.
Space-constrained firmware volumes may be able to support writes where
it would be otherwise impossible.

EFI_FV_RELIABLE_WRITE This value in the WritePolicy parameter indicates that, on the next

initialization of the firmware volume following a power failure or other

system failure during a write, all files listed in the FileData array are

completely written and are valid, or none is written and the state of the
firmware volume is the same as it was before the write operation was
attempted.

//**
// EFI_FV_WRITE_FILE_DATA
//**

typedef struct {
 EFI_GUID *NameGuid,
 EFI_FV_FILETYPE Type,
 EFI_FV_FILE_ATTRIBUTES FileAttributes
 VOID *Buffer,
 UINT32 BufferSize
} EFI_FV_WRITE_FILE_DATA;

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 101

NameGuid

Pointer to a GUID, which is the file name to be written. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Type

Indicates the type of file to be written. Type EFI_FV_FILETYPE is defined in
“Related Definitions” of EFI_FFS_FILE_HEADER on page 40.

FileAttributes

Indicates the attributes for the file to be written. Type
EFI_FV_FILE_ATTRIBUTES is defined in ReadFile().

Buffer

Pointer to a buffer containing the file to be written.

BufferSize

Indicates the size of the file image contained in Buffer.

Status Codes Returned

EFI_SUCCESS The write completed successfully.

EFI_OUT_OF_RESOURCES The firmware volume does not have enough free space to storefile(s).

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_WRITE_PROTECTED The firmware volume is configured to disallow writes.

EFI_NOT_FOUND A delete was requested, but the requested file was not found in the firmware
volume.

EFI_INVALID_PARAMETER A delete was requested with a multiple file write.

EFI_INVALID_PARAMETER An unsupported WritePolicy was requested.

EFI_INVALID_PARAMETER An unknown file type was specifiedspecified or the specified file type is not
supported by the firmware file system.

EFI_INVALID_PARAMETER A file system specific error has occurred.

Other than EFI_DEVICE_ERROR, all error codes imply the firmware volume has not been
modified. In the case of EFI_DEVICE_ERROR, the firmware volume may have been corrupted and
appropriate repair steps must be taken.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

102 May 2017 Version 1.6

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile()

Summary
Retrieves information about the next file in the firmware volume store that matches the search
criteria.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FV_GET_NEXT_FILE) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN OUT VOID *Key,
 IN OUT EFI_FV_FILETYPE *FileType,
 OUT EFI_GUID *NameGuid,
 OUT EFI_FV_FILE_ATTRIBUTES *Attributes,
 OUT UINTN *Size
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME2_PROTOCOL instance.

Key

Pointer to a caller-allocated buffer that contains implementation-specific data that is
used to track where to begin the search for the next file. The size of the buffer must be
at least This->KeySize bytes long. To re-initialize the search and begin from the
beginning of the firmware volume, the entire buffer must be cleared to zero. Other
than clearing the buffer to initiate a new search, the caller must not modify the data in
the buffer between calls to GetNextFile().

FileType

Pointer to a caller-allocated EFI_FV_FILETYPE. The GetNextFile() API can
filter its search for files based on the value of the *FileType input. A *FileType
input of EFI_FV_FILETYPE_ALL causes GetNextFile() to search for files of
all types. If a file is found, the file’s type is returned in *FileType. *FileType is
not modified if no file is found. See“Related Definitions” of
EFI_FFS_FILE_HEADER on page 40.

NameGuid

Pointer to a caller-allocated EFI_GUID. If a matching file is found, the file’s name is
returned in *NameGuid. If no matching file is found, *NameGuid is not modified.
Type EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

Attributes

Pointer to a caller-allocated EFI_FV_FILE_ATTRIBUTES. If a matching file is
found, the file’s attributes are returned in *Attributes. If no matching file is

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 103

found, *Attributes is not modified. Type EFI_FV_FILE_ATTRIBUTES is
defined in ReadFile().

Size

Pointer to a caller-allocated UINTN. If a matching file is found, the file’s size is
returned in *Size. If no matching file is found, *Size is not modified.

Description
GetNextFile() is the interface that is used to search a firmware volume for a particular file. It is
called successively until the desired file is located or the function returns EFI_NOT_FOUND.

To filter uninteresting files from the output, the type of file to search for may be specified in
*FileType. For example, if *FileType is EFI_FV_FILETYPE_DRIVER, only files of this
type will be returned in the output. If *FileType is EFI_FV_FILETYPE_ALL, no filtering of
file types is done.The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

The Key parameter is used to indicate a starting point of the search. If the buffer *Key is completely
initialized to zero, the search re-initialized and starts at the beginning. Subsequent calls to
GetNextFile() must maintain the value of *Key returned by the immediately previous call. The
actual contents of *Key are implementation specific and no semantic content is implied.

GetNextFile() is callable only from EFI_TPL_NOTIFY and below. Behavior of
GetNextFile() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL is
defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The output parameters are filled with data obtained from the first matching
file that was found.

EFI_NOT_FOUND No files of type FileType were found.

EFI_DEVICE_ERROR A hardware error occurred when attempting to access the firmware volume.

EFI_ACCESS_DENIED The firmware volume is configured to disallow reads.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

104 May 2017 Version 1.6

EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()

Summary
Return information about a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FV_GET_INFO) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *InformationType,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_FIRMWARE_VOLUME2_PROTOCOL instance that is the file
handle the requested information is for.

InformationType

The type identifier for the information being requested. Type EFI_GUID is defined in
the UEFI 2.0 specification.

BufferSize

On input, the size of Buffer. On output, the amount of data returned in Buffer. In
both cases, the size is measured in bytes.

Buffer

A pointer to the data buffer to return. The buffer’s type is indicated by
InformationType.

Description
The GetInfo() function returns information of type InformationType for the requested
firmware volume. If the volume does not support the requested information type, then
EFI_UNSUPPORTED is returned. If the buffer is not large enough to hold the requested structure,
EFI_BUFFER_TOO_SMALL is returned and the BufferSize is set to the size of buffer that is
required to make the request. The information types defined by this specification are required
information types that all file systems must support.

Status Codes Returned

EFI_SUCCESS The information was retrieved.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 105

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.

BufferSize has been updated with the size needed to complete the

request.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

106 May 2017 Version 1.6

EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo()

Summary
Sets information about a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FV_SET_INFO) (
 IN CONST EFI_FIRMWARE_VOLUME2_PROTOCOL *This,
 IN CONST EFI_GUID *InformationType,
 IN UINTN BufferSize,
 IN CONST VOID *Buffer
);

Parameters
This

A pointer to the EFI_FIRMWARE_VOLUME2_PROTOCOL instance that is the file
handle the information is for.

InformationType

The type identifier for the information being set. Type EFI_GUID is defined in the
UEFI 2.0 specification.

BufferSize

The size, in bytes, of Buffer.

Buffer

A pointer to the data buffer to write. The buffer’s type is indicated by
InformationType.

Description
The SetInfo() function sets information of type InformationType on the requested
firmware volume.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 107

Status Codes Returned

EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The media is read only.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type

indicated by InformationType.

3.4.2 Firmware Volume Block2 Protocol

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL

Summary
This optional protocol provides control over block-oriented firmware devices.

GUID
//{8F644FA9-E850-4db1-9CE2-0B44698E8DA4}
#define EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL_GUID \
 {0x8f644fa9, 0xe850, 0x4db1, 0x9c, 0xe2, 0xb, 0x44, \
 0x69, 0x8e, 0x8d, 0xa4}

Protocol Interface Structure
typedef struct _EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL {
 EFI_FVB_GET_ATTRIBUTES GetAttributes;
 EFI_FVB_SET_ATTRIBUTES SetAttributes;
 EFI_FVB_GET_PHYSICAL_ADDRESS GetPhysicalAddress;
 EFI_FVB_GET_BLOCK_SIZE GetBlockSize;
 EFI_FVB_READ Read;
 EFI_FVB_WRITE Write;
 EFI_FVB_ERASE_BLOCKS EraseBlocks;
 EFI_HANDLE ParentHandle;
} EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL;

Parameters
GetAttributes

Retrieves the current volume attributes. See the GetAttributes() function
description.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

108 May 2017 Version 1.6

SetAttributes

Sets the current volume attributes. See the SetAttributes() function
description.

GetPhysicalAddress

Retrieves the memory-mapped address of the firmware volume. See the
GetPhysicalAddress() function description.

GetBlockSize

Retrieves the size for a specific block. Also returns the number of consecutive
similarly sized blocks. See the GetBlockSize() function description.

Read

Reads n bytes into a buffer from the firmware volume hardware. See the Read()
function description.

Write

Writes n bytes from a buffer into the firmware volume hardware. See the Write()
function description.

EraseBlocks

Erases specified block(s) and sets all values as indicated by the
EFI_FVB_ERASE_POLARITY bit. See the EraseBlocks() function description.
Type EFI_FVB_ERASE_POLARITY is defined in
EFI_FIRMWARE_VOLUME_HEADER.

ParentHandle

Handle of the parent firmware volume. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The Firmware Volume Block Protocol is the low-level interface to a firmware volume. File-level
access to a firmware volume should not be done using the Firmware Volume Block Protocol.
Normal access to a firmware volume must use the Firmware Volume Protocol. Typically, only the
file system driver that produces the Firmware Volume Protocol will bind to the Firmware Volume
Block Protocol.

The Firmware Volume Block Protocol provides the following:

• Byte-level read/write functionality.

• Block-level erase functionality.

• It further exposes device-hardening features, such as may be required to protect the firmware
from unwanted overwriting and/or erasure.

• It is useful to layer a file system driver on top of the Firmware Volume Block Protocol. This file
system driver produces the Firmware Volume Protocol, which provides file-level access to a
firmware volume. The Firmware Volume Protocol abstracts the file system that is used to format
the firmware volume and the hardware device-hardening features that may be present.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 109

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes()

Summary
Returns the attributes and current settings of the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Attributes

Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and current settings
are returned. Type EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.

Description
The GetAttributes() function retrieves the attributes and current settings of the block.

Status Codes Returned

EFI_SUCCESS The firmware volume attributes were returned.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

110 May 2017 Version 1.6

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()

Summary
Modifies the current settings of the firmware volume according to the input parameter.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_SET_ATTRIBUTES) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Attributes

On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2 that contains
the desired firmware volume settings. On successful return, it contains the new
settings of the firmware volume. Type EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.

Description
The SetAttributes() function sets configurable firmware volume attributes and returns the
new settings of the firmware volume.

Status Codes Returned

EFI_SUCCESS The firmware volume attributes were returned.

EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities as
declared in the firmware volume header.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 111

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress
()

Summary
Retrieves the physical address of a memory-mapped firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_PHYSICAL_ADDRESS) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 OUT EFI_PHYSICAL_ADDRESS *Address
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Address

Pointer to a caller-allocated EFI_PHYSICAL_ADDRESS that, on successful return
from GetPhysicalAddress(), contains the base address of the firmware
volume. Type EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in
the UEFI 2.0 specification.

Description
The GetPhysicalAddress() function retrieves the base address of a memory-mapped
firmware volume. This function should be called only for memory-mapped firmware volumes.

Status Codes Returned

EFI_SUCCESS The firmware volume base address is returned.

EFI_UNSUPPORTED The firmware volume is not memory mapped.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

112 May 2017 Version 1.6

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()

Summary
Retrieves the size in bytes of a specific block within a firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_BLOCK_SIZE) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 OUT UINTN *BlockSize,
 OUT UINTN *NumberOfBlocks
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

Indicates the block for which to return the size. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

BlockSize

Pointer to a caller-allocated UINTN in which the size of the block is returned.

NumberOfBlocks

Pointer to a caller-allocated UINTN in which the number of consecutive blocks,
starting with Lba, is returned. All blocks in this range have a size of BlockSize.

Description
The GetBlockSize() function retrieves the size of the requested block. It also returns the
number of additional blocks with the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).

Status Codes Returned

EFI_SUCCESS The firmware volume base address is returned.

EFI_INVALID_PARAMETER The requested LBA is out of range.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 113

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()

Summary
Reads the specified number of bytes into a buffer from the specified block.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_READ) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 OUT UINT8 *Buffer,
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

The starting logical block index from which to read. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

Offset

Offset into the block at which to begin reading.

NumBytes

Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At
exit, *NumBytes contains the total number of bytes read.

Buffer

Pointer to a caller-allocated buffer that will be used to hold the data that is read.

Description
The Read() function reads the requested number of bytes from the requested block and stores them
in the provided buffer.

Implementations should be mindful that the firmware volume might be in the ReadDisabled
state. If it is in this state, the Read() function must return the status code EFI_ACCESS_DENIED
without modifying the contents of the buffer.

The Read() function must also prevent spanning block boundaries. If a read is requested that
would span a block boundary, the read must read up to the boundary but not beyond. The output
parameter NumBytes must be set to correctly indicate the number of bytes actually read. The caller
must be aware that a read may be partially completed.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

114 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The firmware volume was read successfully and contents are in Buffer.

EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary. On output, NumBytes

contains the total number of bytes returned in Buffer.

EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 115

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()

Summary
Writes the specified number of bytes from the input buffer to the block.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_WRITE) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 IN UINT8 *Buffer
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

Lba

The starting logical block index to write to. Type EFI_LBA is defined in the
BLOCK_IO Protocol (section 11.6) in the UEFI 2.0 specification.

Offset

Offset into the block at which to begin writing.

NumBytes

Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At
exit, *NumBytes contains the total number of bytes actually written.

Buffer

Pointer to a caller-allocated buffer that contains the source for the write.

Description
The Write() function writes the specified number of bytes from the provided buffer to the
specified block and offset.

If the firmware volume is sticky write, the caller must ensure that all the bits of the specified range to
write are in the EFI_FVB_ERASE_POLARITY state before calling the Write() function, or else
the result will be unpredictable. This unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY state but it cannot flip it
back again. In general, before calling the Write() function, the caller should call the
EraseBlocks() function first to erase the specified block to write. A block erase cycle will
transition bits from the (NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

116 May 2017 Version 1.6

Implementations should be mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the firmware volume.

The Write() function must also prevent spanning block boundaries. If a write is requested that
spans a block boundary, the write must store up to the boundary but not beyond. The output
parameter NumBytes must be set to correctly indicate the number of bytes actually written. The
caller must be aware that a write may be partially completed.

All writes, partial or otherwise, must be fully flushed to the hardware before the Write() service
returns.

Status Codes Returned

EFI_SUCCESS The firmware volume was written successfully.

EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary. On output, NumBytes

contains the total number of bytes actually written.

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.

EFI_DEVICE_ERROR The block device is malfunctioning and could not be written.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 117

EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks()

Summary
Erases and initializes a firmware volume block.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_ERASE_BLOCKS) (
 IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
 …
);

Parameters
This

Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.

…

The variable argument list is a list of tuples. Each tuple describes a range of LBAs to
erase and consists of the following:

• An EFI_LBA that indicates the starting LBA

• A UINTN that indicates the number of blocks to erase

The list is terminated with an EFI_LBA_LIST_TERMINATOR. Type
EFI_LBA_LIST_TERMINATOR is defined in “Related Definitions” below.

For example, the following indicates that two ranges of blocks (5–7 and 10–11) are to
be erased:

EraseBlocks (This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);

Description
The EraseBlocks() function erases one or more blocks as denoted by the variable argument list.
The entire parameter list of blocks must be verified before erasing any blocks. If a block is requested
that does not exist within the associated firmware volume (it has a larger index than the last block of
the firmware volume), the EraseBlocks() function must return the status code
EFI_INVALID_PARAMETER without modifying the contents of the firmware volume.

Implementations should be mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the EraseBlocks() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the firmware volume.

All calls to EraseBlocks() must be fully flushed to the hardware before the EraseBlocks()
service returns.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

118 May 2017 Version 1.6

Related Definitions
//***
// EFI_LBA_LIST_TERMINATOR
//***
#define EFI_LBA_LIST_TERMINATOR 0xFFFFFFFFFFFFFFFF

Status Codes Returned

EFI_SUCCESS The erase request was successfully completed.

EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written.
The firmware device may have been partially erased.

EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do not exist
in the firmware volume.

3.4.3 Guided Section Extraction Protocol

EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL

Summary
If a GUID-defined section is encountered when doing section extraction, the section extraction
driver calls the appropriate instance of the GUIDed Section Extraction Protocol to extract the section
stream contained therein.

GUID
Typically, protocol interface structures are identified by associating them with a GUID. Each
instance of a protocol with a given GUID must have the same interface structure. While all instances
of the GUIDed Section Extraction Protocol must have the same interface structure, they do not all
have the same GUID. The GUID that is associated with an instance of the GUIDed Section
Extraction Protocol is used to correlate it with the GUIDed section type that it is intended to process.

Protocol Interface Structure
typedef struct _EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL {
 EFI_EXTRACT_GUIDED_SECTION ExtractSection;
} EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL;

Parameters
ExtractSection

Takes the GUIDed section as input and produces the section stream data. See the
ExtractSection() function description.

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 119

EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

Summary
Processes the input section and returns the data contained therein along with the authentication
status.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_EXTRACT_GUIDED_SECTION)(
 IN CONST EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL *This,
 IN CONST VOID *InputSection,
 OUT VOID **OutputBuffer,
 OUT UINTN *OutputSize,
 OUT UINT32 *AuthenticationStatus
);

Parameters
This

Indicates the EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL instance.

InputSection

Buffer containing the input GUIDed section to be processed.

OutputBuffer

*OutputBuffer is allocated from boot services pool memory and contains the new
section stream. The caller is responsible for freeing this buffer.

OutputSize

A pointer to a caller-allocated UINTN in which the size of *OutputBuffer
allocation is stored. If the function returns anything other than EFI_SUCCESS, the
value of *OutputSize is undefined.

AuthenticationStatus

A pointer to a caller-allocated UINT32 that indicates the authentication status of the
output buffer. If the input section’s GuidedSectionHeader.Attributes field
has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear,
*AuthenticationStatus must return zero. Both local bits (19:16) and
aggregate bits (3:0) in AuthenticationStatus are returned by
ExtractSection(). These bits reflect the status of the extraction operation. The
bit pattern in both regions must be the same, as the local and aggregate authentication
statuses have equivalent meaning at this level. If the function returns anything other
than EFI_SUCCESS, the value of *AuthenticationStatus is undefined.

Description
The ExtractSection() function processes the input section and allocates a buffer from the
pool in which it returns the section contents.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

120 May 2017 Version 1.6

If the section being extracted contains authentication information (the section’s
GuidedSectionHeader.Attributes field has the
EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit set), the values returned in
AuthenticationStatus must reflect the results of the authentication operation.

Depending on the algorithm and size of the encapsulated data, the time that is required to do a full
authentication may be prohibitively long for some classes of systems. To indicate this, use
EFI_SECURITY_POLICY_PROTOCOL_GUID, which may be published by the security policy
driver (see the Platform Initialization Driver Execution Environment Core Interface Specification
for more details and the GUID definition). If the EFI_SECURITY_POLICY_PROTOCOL_GUID
exists in the handle database, then, if possible, full authentication should be skipped and the section
contents simply returned in the OutputBuffer. In this case, the
EFI_AUTH_STATUS_PLATFORM_OVERRIDE bit AuthenticationStatus must be set on
return. See “Related Definitions” in
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() on page 82 for the
definition of type EFI_AUTH_STATUS_PLATFORM_OVERRIDE.

ExtractSection() is callable only from EFI_TPL_NOTIFY and below. Behavior of
ExtractSection() at any EFI_TPL above EFI_TPL_NOTIFY is undefined. Type EFI_TPL
is defined in RaiseTPL() in the UEFI 2.0 specification.

Status Codes Returned

EFI_SUCCESS The InputSection was successfully processed and the section

contents were returned.

EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request.

EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the GUIDed

Section Extraction Protocol.

3.5 SMM

3.5.1 SMM Firmware Volume Protocol

EFI_SMM_FIRMWARE_VOLUME_PROTOCOL

Summary
The Firmware Volume Protocol provides file-level access to the firmware volume in SMM.

GUID
#define EFI_SMM_FIRMWARE_VOLUME_PROTOCOL_GUID { \
 0x19e9da84, 0x72b, 0x4274, 0xb3, 0x2e, 0xc, 0x8, 0x2, 0xe7,
0x17, 0xa5 \
}

Prototype
Same as EFI_FIRMWARE_VOLUME2_PROTOCOL;

Platform Initialization Specification, Vol. 3 Firmware Storage Code Definitions

Version 1.6 May 2017 121

Description
The Firmware Volume Protocol provides file-level access to the firmware volume in SMM.

The function API is same as DXE version EFI_FIRMWARE_VOLUME2_PROTOCOL.

3.5.2 SMM Firmware Volume Block Protocol

EFI_SMM_FIRMWARE_VOLUME_BLOCK_PROTOCOL

Summary
This optional protocol provides control over block-oriented firmware devices in SMM.

GUID
#define EFI_SMM_FIRMWARE_VOLUME_BLOCK_PROTOCOL_GUID { \
 0xd326d041, 0xbd31, 0x4c01, 0xb5, 0xa8, 0x62, 0x8b, 0xe8, 0x7f,
0x06, 0x53 \
}

Prototype
Same as EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL;

Description
This optional protocol provides control over block-oriented firmware devices in SMM.

The function API is same as DXE version EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.

Firmware Storage Code Definitions Platform Initialization Specification, Vol. 3

122 May 2017 Version 1.6

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 123

4 HOB Design Discussion

4.1 Explanation of HOB Terms
Because HOBs are the key architectural mechanism that is used to hand off system information in
the early preboot stages and because not all implementations of the PI Architecture will use the Pre-
EFI Initialization (PEI) and Driver Execution Environment (DXE) phases, this specification refrains
from using the PEI and DXE nomenclature used in other PI specifications.

Instead, this specification uses the following terms to refer to the phases that deal with HOBs:

• HOB producer phase

• HOB consumer phase

The HOB producer phase is the preboot phase in which HOBs and the HOB list are created. The
HOB consumer phase is the preboot phase to which the HOB list is passed and then consumed.

If the PI Architecture implementation incorporates the PEI and DXE, the HOB producer phase is the
PEI phase and the HOB consumer phase is the DXE phase. The producer and consumer can change,
however, depending on the implementation.

The following table translates the terminology used in this specification with that used in other PI
specifications.

Table 14. Translation of HOB Specification Terminology

Term Used in the HOB Specification Term Used in Other PI Specifications

HOB producer phase PEI phase

HOB consumer phase DXE phase

executable content in the HOB producer
phase

Pre-EFI Initialization Module (PEIM)

hand-off into the HOB consumer phase DXE Initial Program Load (IPL) PEIM or
DXE IPL PEIM-to-PEIM Interface (PPI)

platform boot-policy phase Boot Device Selection (BDS) phase

4.2 HOB Overview
The HOB producer phase provides a simple mechanism to allocate memory for data storage during
the phase’s execution. The data store is architecturally defined and described by HOBs. This data
store is also passed to the HOB producer phase when it is invoked from the HOB producer phase.

The basic container of data storage is named a Hand-Off Block, or HOB. HOBs are allocated
sequentially in memory that is available to executable content in the HOB producer phase. There are
a series of services that facilitate HOB manipulation. The sequential list of HOBs in memory will be
referred to as the HOB list.

For definitions of the various HOB types, see section 5 below. The construction semantics are
described in section 4.5 below.

HOB Design Discussion Platform Initialization Specification, Vol. 3

124 May 2017 Version 1.6

4.3 Example HOB Producer Phase Memory Map and Usage
Figure 11 shows an example of the HOB producer phase memory map and its usage. This map is a
possible means by which to subdivide the region.

Figure 11. Example HOB Producer Phase Memory Map and Usage

4.4 HOB List
The first HOB in the HOB list must be the Phase Handoff Information Table (PHIT) HOB. The last
HOB in the HOB list must be the End of HOB List HOB.

Only HOB producer phase components are allowed to make additions or changes to HOBs. Once the
HOB list is passed into the HOB consumer phase, it is effectively read only. The ramification of a
read-only HOB list is that handoff information, such as boot mode, must be handled in a
distinguished fashion. For example, if the HOB consumer phase were to engender a recovery
condition, it would not update the boot mode but instead would implement the action using a special
type of reset call. The HOB list contains system state data at the time of HOB producer–to–HOB
producer handoff and does not represent the current system state during the HOB consumer phase.

Platform Initialization Specification, Vol. 3 HOB Design Discussion

Version 1.6 May 2017 125

4.5 Constructing the HOB List

4.5.1 Constructing the Initial HOB List
The HOB list is initially built by the HOB producer phase. The HOB list is created in memory that is
present, initialized, and tested. Once the initial HOB list has been created, the physical memory
cannot be remapped, interleaved, or otherwise moved by a subsequent software agent.

The HOB producer phase must build the following three HOBs in the initial HOB list before
exposing the list to other modules:

• The PHIT HOB

• A memory allocation HOB describing where the boot-strap processor (BSP) stack for permanent
memory is located

or

A memory allocation HOB describing where the BSP store for permanent memory is located
(Itanium® processor family only)

• A resource descriptor HOB that describes a physical memory range encompassing the HOB
producer phase memory range with its attributes set as present, initialized, and tested

The HOB list creator may build more HOBs into the initial HOB list, such as additional HOBs to
describe other physical memory ranges. There can also be additional modules, which might include
a HOB producer phase–specific HOB to record memory errors discovered during initialization.

When the HOB producer phase completes its list creation, it exposes a pointer to the PHIT HOB to
other modules.

4.5.2 HOB Construction Rules
HOB construction must obey the following rules:

1. All HOBs must start with a HOB generic header. This requirement allows users to locate the
HOBs in which they are interested while skipping the rest. See the
EFI_HOB_GENERIC_HEADER definition.

2. HOBs may contain boot services data that is available during the HOB producer and consumer
phases only until the HOB consumer phase is terminated.

3. HOBs may be relocated in system memory by the HOB consumer phase. HOBs must not
contain pointers to other data in the HOB list, including that in other HOBs. The table must be
able to be copied without requiring internal pointer adjustment.

4. All HOBs must be multiples of 8 bytes in length. This requirement meets the alignment
restrictions of the Itanium® processor family.

5. The PHIT HOB must always begin on an 8-byte boundary. Due to this requirement and
requirement #4 in this list, all HOBs will begin on an 8-byte boundary.

6. HOBs are added to the end of the HOB list. HOBs can only be added to the HOB list during the
HOB producer phase, not the HOB consumer phase.

7. HOBs cannot be deleted. The generic HOB header of each HOB must describe the length of the
HOB so that the next HOB can be found. A private GUIDed HOB may provide a mechanism to

HOB Design Discussion Platform Initialization Specification, Vol. 3

126 May 2017 Version 1.6

mark some or its entire contents invalid; however, this mechanism is beyond the scope of this
document.

Note: The HOB list must be valid (i.e., no HOBs “under construction”) when any HOB producer phase
service is invoked. Another HOB producer phase component’s function might walk the HOB list,
and if a HOB header contains invalid data, it might cause unreliable operation.

4.5.3 Adding to the HOB List
To add a HOB to the HOB list, HOB consumer phase software must obtain a pointer to the
PHIT HOB (start of the HOB list) and follow these steps:

1. Determine NewHobSize, where NewHobSize is the size in bytes of the HOB to be created.

2. Check free memory to ensure that there is enough free memory to allocate the new HOB. This
test is performed by checking that NewHobSize <= PHIT->EfiFreeMemoryTop -
PHIT->EfiFreeMemoryBottom).

3. Construct the HOB at PHIT->EfiFreeMemoryBottom.

4. Set PHIT->EfiFreeMemoryBottom = PHIT->EfiFreeMemoryBottom +
NewHobSize.

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 127

5 HOB Code Definitions

5.1 HOB Introduction
This section contains the basic definitions of various HOBs. All HOBs consist of a generic header,
EFI_HOB_GENERIC_HEADER, that specifies the type and length of the HOB. Each HOB has
additional data beyond the generic header, according to the HOB type. The following data types and
structures are defined in this section:

• EFI_HOB_GENERIC_HEADER

• EFI_HOB_HANDOFF_INFO_TABLE

• EFI_HOB_MEMORY_ALLOCATION

• EFI_HOB_MEMORY_ALLOCATION_STACK

• EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

• EFI_HOB_MEMORY_ALLOCATION_MODULE

• EFI_HOB_RESOURCE_DESCRIPTOR

• EFI_HOB_GUID_TYPE

• EFI_HOB_FIRMWARE_VOLUME

• EFI_HOB_FIRMWARE_VOLUME2

• EFI_HOB_FIRMWARE_VOLUME3

• EFI_HOB_CPU

• EFI_HOB_MEMORY_POOL

• EFI_HOB_UEFI_CAPSULE

• EFI_HOB_TYPE_UNUSED

• EFI_HOB_TYPE_END_OF_HOB_LIST

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in “Related
Definitions” of the parent data structure definition:

• EFI_HOB_MEMORY_ALLOCATION_HEADER

• EFI_RESOURCE_TYPE

• EFI_RESOURCE_ATTRIBUTE_TYPE

HOB Code Definitions Platform Initialization Specification, Vol. 3

128 May 2017 Version 1.6

5.2 HOB Generic Header

EFI_HOB_GENERIC_HEADER

Summary
Describes the format and size of the data inside the HOB. All HOBs must contain this generic HOB
header.

Prototype
typedef struct _EFI_HOB_GENERIC_HEADER{
 UINT16 HobType;
 UINT16 HobLength;
 UINT32 Reserved;
} EFI_HOB_GENERIC_HEADER;

Parameters
HobType

Identifies the HOB data structure type. See “Related Definitions” below for the HOB
types that are defined in this specification.

HobLength

The length in bytes of the HOB.

Reserved

For this version of the specification, this field must always be set to zero.

Description
All HOBs have a common header that is used for the following:

• Traversing to the next HOB

• Describing the format and size of the data inside the HOB

Related Definitions
The following values for HobType are defined by this specification.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 129

//**
// HobType values
//**

#define EFI_HOB_TYPE_HANDOFF 0x0001
#define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002
#define EFI_HOB_TYPE_RESOURCE_DESCRIPTOR 0x0003
#define EFI_HOB_TYPE_GUID_EXTENSION 0x0004
#define EFI_HOB_TYPE_FV 0x0005
#define EFI_HOB_TYPE_CPU 0x0006
#define EFI_HOB_TYPE_MEMORY_POOL 0x0007
#define EFI_HOB_TYPE_FV2 0x0009
#define EFI_HOB_TYPE_LOAD_PEIM_UNUSED 0x000A
#define EFI_HOB_TYPE_UEFI_CAPSULE 0x000B
#define EFI_HOB_TYPE_FV3 0x000C
#define EFI_HOB_TYPE_UNUSED 0xFFFE
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Other values for HobType are reserved for future use by this specification.

HOB Code Definitions Platform Initialization Specification, Vol. 3

130 May 2017 Version 1.6

5.3 PHIT HOB

EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

Summary
Contains general state information used by the HOB producer phase. This HOB must be the first
one in the HOB list.

Prototype
typedef struct _EFI_HOB_HANDOFF_INFO_TABLE {
 EFI_HOB_GENERIC_HEADER Header;
 UINT32 Version;
 EFI_BOOT_MODE BootMode;
 EFI_PHYSICAL_ADDRESS EfiMemoryTop;
 EFI_PHYSICAL_ADDRESS EfiMemoryBottom;
 EFI_PHYSICAL_ADDRESS EfiFreeMemoryTop;
 EFI_PHYSICAL_ADDRESS EfiFreeMemoryBottom;
 EFI_PHYSICAL_ADDRESS EfiEndOfHobList;
} EFI_HOB_HANDOFF_INFO_TABLE;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_HANDOFF.

Version

The version number pertaining to the PHIT HOB definition. See “Related
Definitions” below for the version numbers defined by this specification. This value is
4 bytes in length to provide an 8-byte aligned entry when it is combined with the
4-byte BootMode.

BootMode

The system boot mode as determined during the HOB producer phase. Type
EFI_BOOT_MODE is a UINT32; if the PI Architecture-compliant implementation
incorporates the PEI phase, the possible bit values are defined in the Platform
Initialization Pre-EFI Initialization Core Interface Specification (PEI CIS).

EfiMemoryTop

The highest address location of memory that is allocated for use by the HOB producer
phase. This address must be 4-KiB aligned to meet page restrictions of UEFI. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

EfiMemoryBottom

The lowest address location of memory that is allocated for use by the HOB producer
phase.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 131

EfiFreeMemoryTop

The highest address location of free memory that is currently available for use by the
HOB producer phase. This address must be 4-KiB aligned to meet page restrictions of
UEFI.

EfiFreeMemoryBottom

The lowest address location of free memory that is available for use by the HOB
producer phase.

EfiEndOfHobList

The end of the HOB list.

Description
The Phase Handoff Information Table (PHIT) HOB must be the first one in the HOB list. A pointer
to this HOB is available to a HOB producer phase component through some service. This
specification commonly refers to this HOB as the PHIT HOB, or sometimes the handoff HOB.

The HOB consumer phase reads the PHIT HOB during its initialization.

Related Definitions
//***
// Version values
//***

#define EFI_HOB_HANDOFF_TABLE_VERSION 0x0009

HOB Code Definitions Platform Initialization Specification, Vol. 3

132 May 2017 Version 1.6

5.4 Memory Allocation HOB

5.4.1 Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION

Summary
Describes all memory ranges used during the HOB producer phase that exist outside the HOB list.
This HOB type describes how memory is used, not the physical attributes of memory.

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
 //
 // Additional data pertaining to the “Name” Guid memory
 // may go here.
 //
} EFI_HOB_MEMORY_ALLOCATION;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in “Related Definitions”
below.

Description
The memory allocation HOB is used to describe memory usage outside the HOB list. The HOB
consumer phase does not make assumptions about the contents of the memory that is allocated by
the memory allocation HOB, and it will not move the data unless it has explicit knowledge of the
memory allocation HOB’s Name (EFI_GUID). Memory may be allocated in either the HOB
producer phase memory area or other areas of present and initialized system memory.

The HOB consumer phase reads all memory allocation HOBs and allocates memory into the system
memory map based on the following fields of EFI_HOB_MEMORY_ALLOCATION_HEADER of
each memory allocation HOB:

• MemoryBaseAddress

• MemoryLength

• MemoryType

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 133

The HOB consumer phase does not parse the GUID-specific data identified by the Name field of
each memory allocation HOB, except for a specific set of memory allocation HOBs that defined by
this specification. A HOB consumer phase driver that corresponds to the specific Name GUIDed
memory allocation HOB can parse the HOB list to find the specifically named memory allocation
HOB and then manipulate the memory space as defined by the usage model for that GUID.

Note: Special design care should be taken to ensure that two HOB consumer phase components do not
modify memory space that is described by a memory allocation HOB, because unpredictable
behavior might result.

This specification defines a set of memory allocation HOBs that are architecturally used to allocate
memory used by the HOB producer and consumer phases. Additionally, the following memory
allocation HOBs are defined specifically for use by the final stage of the HOB producer phase to
describe the processor state prior to handoff into the HOB consumer phase:

• BSP stack memory allocation HOB

• BSP store memory allocation HOB

• Memory allocation module HOB

Related Definitions
//**
// EFI_HOB_MEMORY_ALLOCATION_HEADER
//**

typedef struct _EFI_HOB_MEMORY_ALLOCATION_HEADER {
 EFI_GUID Name;
 EFI_PHYSICAL_ADDRESS MemoryBaseAddress;
 UINT64 MemoryLength;
 EFI_MEMORY_TYPE MemoryType; // UINT32
 UINT8 Reserved[4]; // Padding for Itanium®
 // processor family
} EFI_HOB_MEMORY_ALLOCATION_HEADER;

Name

A GUID that defines the memory allocation region’s type and purpose, as well as
other fields within the memory allocation HOB. This GUID is used to define the
additional data within the HOB that may be present for the memory allocation HOB.
Type EFI_GUID is defined in InstallProtocolInterface() in the UEFI 2.0
specification.

MemoryBaseAddress

The base address of memory allocated by this HOB. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

MemoryLength

The length in bytes of memory allocated by this HOB.

HOB Code Definitions Platform Initialization Specification, Vol. 3

134 May 2017 Version 1.6

MemoryType

Defines the type of memory allocated by this HOB. The memory type definition
follows the EFI_MEMORY_TYPE definition. Type EFI_MEMORY_TYPE is defined
in AllocatePages() in the UEFI 2.0 specification.

Reserved

For this version of the specification, this field will always be set to zero.

Note: MemoryBaseAddress and MemoryLength must each have 4-KiB granularity to meet the
page size requirements of UEFI.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 135

5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_STACK

Summary
Describes the memory stack that is produced by the HOB producer phase and upon which all post-
memory-installed executable content in the HOB producer phase is executing.

GUID
#define EFI_HOB_MEMORY_ALLOC_STACK_GUID \
 {0x4ed4bf27, 0x4092, 0x42e9, 0x80, 0x7d, 0x52, 0x7b, \
 0x1d, 0x0, 0xc9, 0xbd}

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_STACK {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
} EFI_HOB_MEMORY_ALLOCATION_STACK;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in
EFI_HOB_MEMORY_ALLOCATION.

Description
This HOB describes the memory stack that is produced by the HOB producer phase and upon which
all post-memory-installed executable content in the HOB producer phase is executing. It is
necessary for the hand-off into the HOB consumer phase to know this information so that it can
appropriately map this stack into its own execution environment and describe it in any subsequent
memory maps.

The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s stack to meet size and location requirements that are defined by
the HOB consumer phase’s implementation. Therefore, other HOB consumer phase components
cannot rely on the BSP stack memory allocation HOB to describe where the BSP stack is located
during execution of the HOB consumer phase.

HOB Code Definitions Platform Initialization Specification, Vol. 3

136 May 2017 Version 1.6

Note: BSP stack memory allocation HOB must be valid at the time of hand off to the HOB consumer
phase. If BSP stack is reallocated during HOB producer phase, the component that reallocates the
stack must also update BSP stack memory allocation HOB.

The BSP stack memory allocation HOB without any additional qualification describes either of the
following:

• The stack that is currently consumed by the BSP.

• The processor that is currently executing the HOB producer phase and its executable content.

• The model for the PI architecture and the HOB producer phase is that of a single-threaded
execution environment, so it is this single, distinguished thread of control whose environment is

described by this HOB. The Itanium® processor family has the additional requirement of having
to describe the value of the BSPSTORE (AR18) (“Backing Store Pointer Store”) register,
which holds the successive location in memory where the Itanium processor family Register
Stack Engine (RSE) will spill its values.

• In addition, Itanium®-based systems feature a system architecture where all processors come out
of reset and execute the reset path concurrently. As such, the stack resources that are consumed
by these alternate agents need to be described even though they are not responsible for executing
the main thread of control through the HOB producer and consumer phases.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 137

5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB

EFI_HOB_MEMORY_ALLOCATION_BSP_STORE

Note: This HOB is valid for the Itanium® processor family only.

Summary
Defines the location of the boot-strap processor (BSP) BSPStore (“Backing Store Pointer Store”)
register overflow store.

GUID
#define EFI_HOB_MEMORY_ALLOC_BSP_STORE_GUID \
 {0x564b33cd, 0xc92a, 0x4593, 0x90, 0xbf, 0x24, 0x73, \
 0xe4, 0x3c, 0x63, 0x22}

Prototype
typedef struct _EFI_HOB_MEMORY_ALLOCATION_BSP_STORE {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
} EFI_HOB_MEMORY_ALLOCATION_BSP_STORE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

AllocDescriptor

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

Description
The HOB consumer phase reads this HOB during its initialization. The HOB consumer phase may
elect to move or relocate the BSP’s register store to meet size and location requirements that are
defined by the HOB consumer phase’s implementation. Therefore, other HOB consumer phase
components cannot rely on the BSP store memory allocation HOB to describe where the BSP store
is located during execution of the HOB consumer phase.

Note: BSP BSPSTORE memory allocation HOB must be valid at the time of hand off to the HOB
consumer phase. If BSP BSPSTORE is reallocated during HOB producer phase, the component
that reallocates the stack must also update BSP BSPSTORE memory allocation HOB.

This HOB is valid for the Itanium processor family only.

HOB Code Definitions Platform Initialization Specification, Vol. 3

138 May 2017 Version 1.6

5.4.4 Memory Allocation Module HOB

EFI_HOB_MEMORY_ALLOCATION_MODULE

Summary
Defines the location and entry point of the HOB consumer phase.

GUID
#define EFI_HOB_MEMORY_ALLOC_MODULE_GUID \
 {0xf8e21975, 0x899, 0x4f58, 0xa4, 0xbe, 0x55, 0x25, \
 0xa9, 0xc6, 0xd7, 0x7a}

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_HOB_MEMORY_ALLOCATION_HEADER MemoryAllocationHeader;
 EFI_GUID ModuleName;
 EFI_PHYSICAL_ADDRESS EntryPoint;
} EFI_HOB_MEMORY_ALLOCATION_MODULE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_ALLOCATION.

MemoryAllocationHeader

An instance of the EFI_HOB_MEMORY_ALLOCATION_HEADER that describes the
various attributes of the logical memory allocation. The type field will be used for
subsequent inclusion in the UEFI memory map. Type
EFI_HOB_MEMORY_ALLOCATION_HEADER is defined in the HOB type
EFI_HOB_MEMORY_ALLOCATION.

ModuleName

The GUID specifying the values of the firmware file system name that contains the
HOB consumer phase component. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

EntryPoint

The address of the memory-mapped firmware volume that contains the HOB
consumer phase firmware file. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI 2.0 specification.

Description
The HOB consumer phase reads the memory allocation module HOB during its initialization. This
HOB describes the memory location of the HOB consumer phase. The HOB consumer phase should
use the information to create the image handle for the HOB consumer phase.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 139

5.5 Resource Descriptor HOB

EFI_HOB_RESOURCE_DESCRIPTOR

Summary
Describes the resource properties of all fixed, nonrelocatable resource ranges found on the processor
host bus during the HOB producer phase.

Prototype
typedef struct _EFI_HOB_RESOURCE_DESCRIPTOR {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_GUID Owner;
 EFI_RESOURCE_TYPE ResourceType;
 EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 UINT64 ResourceLength;
} EFI_HOB_RESOURCE_DESCRIPTOR;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_RESOURCE_DESCRIPTOR.

Owner

A GUID representing the owner of the resource. This GUID is used by HOB
consumer phase components to correlate device ownership of a resource.

ResourceType

Resource type enumeration as defined by EFI_RESOURCE_TYPE. Type
EFI_RESOURCE_TYPE is defined in “Related Definitions” below.

ResourceAttribute

Resource attributes as defined by EFI_RESOURCE_ATTRIBUTE_TYPE. Type
EFI_RESOURCE_ATTRIBUTE_TYPE is defined in “Related Definitions” below.

PhysicalStart

Physical start address of the resource region. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI 2.0 specification.

ResourceLength

Number of bytes of the resource region.

Description
The resource descriptor HOB describes the resource properties of all fixed, nonrelocatable resource
ranges found on the processor host bus during the HOB producer phase. This HOB type does not
describe how memory is used but instead describes the attributes of the physical memory present.

HOB Code Definitions Platform Initialization Specification, Vol. 3

140 May 2017 Version 1.6

The HOB consumer phase reads all resource descriptor HOBs when it established the initial Global
Coherency Domain (GCD) map. The minimum requirement for the HOB producer phase is that
executable content in the HOB producer phase report one of the following:

• The resources that are necessary to start the HOB consumer phase

• The fixed resources that are not captured by HOB consumer phase driver components that were
started prior to the dynamic system configuration performed by the platform boot-policy phase

For example, executable content in the HOB producer phase should report any physical memory
found during the HOB producer phase. Another example is reporting the Boot Firmware Volume
(BFV) that contains firmware volume(s). Executable content in the HOB producer phase does not
need to report fixed system resources such as I/O port 70h/71h (real-time clock) because these fixed
resources can be allocated from the GCD by a platform-specific chipset driver loading in the HOB
consumer phase prior to the platform boot-policy phase, for example.

Current thinking is that the GCD does not track the HOB’s Owner GUID, so a HOB consumer
phase component that assumes ownership of a device’s resource must deallocate the resource
initialized by the HOB producer phase from the GCD before attempting to assign the devices
resource to itself in the HOB consumer phase.

Related Definitions
There can only be a single ResourceType field, characterized as follows.

//***
// EFI_RESOURCE_TYPE
//***

typedef UINT32 EFI_RESOURCE_TYPE;

#define EFI_RESOURCE_SYSTEM_MEMORY 0x00000000
#define EFI_RESOURCE_MEMORY_MAPPED_IO 0x00000001
#define EFI_RESOURCE_IO 0x00000002
#define EFI_RESOURCE_FIRMWARE_DEVICE 0x00000003
#define EFI_RESOURCE_MEMORY_MAPPED_IO_PORT 0x00000004
#define EFI_RESOURCE_MEMORY_RESERVED 0x00000005
#define EFI_RESOURCE_IO_RESERVED 0x00000006
#define EFI_RESOURCE_MAX_MEMORY_TYPE 0x00000007

The following table describes the fields listed in the above definition.

EFI_RESOURCE_SYSTEM_MEMORY Memory that persists out of the HOB producer
phase.

EFI_RESOURCE_MEMORY_MAPPED_IO Memory-mapped I/O that is programmed in the
HOB producer phase.

EFI_RESOURCE_IO Processor I/O space.

EFI_RESOURCE_FIRMWARE_DEVICE Memory-mapped firmware devices.

EFI_RESOURCE_MEMORY_MAPPED_IO_PORT Memory that is decoded to produce I/O cycles.

EFI_RESOURCE_MEMORY_RESERVED Reserved memory address space.

EFI_RESOURCE_IO_RESERVED Reserved I/O address space.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 141

EFI_RESOURCE_MAX_MEMORY_TYPE Any reported HOB value of this type or greater
should be deemed illegal. This value could
increase with successive revisions of this
specification, so the “illegality” will also be based
upon the revision field of the PHIT HOB.

HOB Code Definitions Platform Initialization Specification, Vol. 3

142 May 2017 Version 1.6

The ResourceAttribute field is characterized as follows:
//***
// EFI_RESOURCE_ATTRIBUTE_TYPE
//***

typedef UINT32 EFI_RESOURCE_ATTRIBUTE_TYPE;

// These types can be ORed together as needed.
//
// The following attributes are used to describe settings
//
#define EFI_RESOURCE_ATTRIBUTE_PRESENT 0x00000001
#define EFI_RESOURCE_ATTRIBUTE_INITIALIZED 0x00000002
#define EFI_RESOURCE_ATTRIBUTE_TESTED 0x00000004

#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED 0x00000080
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED 0x00000100
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED
 0x00000200
#define EFI_RESOURCE_ATTRIBUTE_PERSISTENT 0x00800000
#define EFI_RESOURCE_ATTRIBUTE_MORE_RELIABLE 0x02000000

// The rest of the attributes are used to describe capabilities
//
#define EFI_RESOURCE_ATTRIBUTE_SINGLE_BIT_ECC 0x00000008
#define EFI_RESOURCE_ATTRIBUTE_MULTIPLE_BIT_ECC 0x00000010
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_1 0x00000020
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_2 0x00000040
#define EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE 0x00000400
#define EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE 0x00000800
#define EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE
 0x00001000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
 0x00002000
#define EFI_RESOURCE_ATTRIBUTE_16_BIT_IO 0x00004000
#define EFI_RESOURCE_ATTRIBUTE_32_BIT_IO 0x00008000
#define EFI_RESOURCE_ATTRIBUTE_64_BIT_IO 0x00010000
#define EFI_RESOURCE_ATTRIBUTE_UNCACHED_EXPORTED 0x00020000
#define EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PROTECTED
 0x00040000

#define EFI_RESOURCE_ATTRIBUTE_READ_PROTECTABLE
 0x00100000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTABLE
 0x00200000
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTABLE

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 143

 0x00400000
#define EFI_RESOURCE_ATTRIBUTE_PERSISTABLE 0x01000000
#define EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PROTECTABLE
 0x00080000

Table 15. EFI_RESOURCE_ATTRIBUTE_TYPE fields

EFI_RESOURCE_ATTRIBUTE_
PRESENT

Physical memory attribute: The memory region
exists.

EFI_RESOURCE_ATTRIBUTE_
INITIALIZED

Physical memory attribute: The memory region
has been initialized.

EFI_RESOURCE_ATTRIBUTE_
TESTED

Physical memory attribute: The memory region
has been tested.

EFI_RESOURCE_ATTRIBUTE_SINGLE_
BIT_ECC

Physical memory attribute: The memory region
supports single-bit ECC.

EFI_RESOURCE_ATTRIBUTE_
MULTIPLE_BIT_ECC

Physical memory attribute: The memory region
supports multibit ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_1

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_ECC_
RESERVED_2

Physical memory attribute: The memory region
supports reserved ECC.

EFI_RESOURCE_ATTRIBUTE_READ_
PROTECTED

Physical memory protection attribute: The memory
region is read protected.

EFI_RESOURCE_ATTRIBUTE_WRITE_
PROTECTED

Physical memory protection attribute: The memory
region is write protected.This is typically used as
memory cacheability attribute today. NOTE: Since
PI spec 1.4, please use
EFI_RESOURCE_ATTRIBUTE_READ_ONLY_P
ROTECTED as Physical write protected attribute,
and
EFI_RESOURCE_ATTRIBUTE_WRITE_PROTEC
TED means Memory cacheability attribute: The
memory supports being programmed with a write-
protected cacheable attribute.

EFI_RESOURCE_ATTRIBUTE_
EXECUTION_PROTECTED

Physical memory protection attribute: The memory
region is execution protected.

EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PR
OTECTED

Physical memory protection attribute: The memory
region is write protected.

EFI_RESOURCE_ATTRIBUTE_PERSISTENT Physical memory persistence attribute. This
memory is configured for byte-addressable non-
volatility.

EFI_RESOURCE_ATTRIBUTE_MORE_RELIABLE Physical memory relative reliability attribute. This
memory provides higher reliability relative to other
memory in the system. If all memory has the same
reliability, then this bit is not used.

HOB Code Definitions Platform Initialization Specification, Vol. 3

144 May 2017 Version 1.6

EFI_RESOURCE_ATTRIBUTE_
UNCACHEABLE

Memory cacheability attribute: The memory does
not support caching.

EFI_RESOURCE_ATTRIBUTE_READ_PROTECT
ABLE

Memory capability attribute: The memory supports
being protected from processor reads.

EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECT
ABLE

Memory capability attribute: The memory supports
being protected from processor writes.. This is
typically used as memory cacheability attribute
today. NOTE: Since PI spec 1.4, please use
EFI_RESOURCE_ATTRIBUTE_READ_ONLY_P
ROTECTABLE as Memory capability attribute: The
memory supports being protected from processor
writes, and
EFI_RESOURCE_ATTRIBUTE_WRITE_PROTEC
TABLE means Memory cacheability attribute: The
memory supports being programmed with a write-
protected cacheable attribute.

EFI_RESOURCE_ATTRIBUTE_EXECUTION_PRO
TECTABLE

Memory capability attribute: The memory supports
being protected from processor execution.

EFI_RESOURCE_ATTRIBUTE_READ_ONLY_PR
OTECTABLE

Memory capability attribute: The memory supports
being protected from processor writes.

EFI_RESOURCE_ATTRIBUTE_PERSISTABLE Memory capability attribute. This memory supports
byte-addressable non-volatility.

EFI_RESOURCE_ATTRIBUTE_WRITE_
THROUGH_CACHEABLE

Memory cacheability attribute: The memory
supports being programmed with a write-through
cacheable attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
COMBINEABLE

Memory cacheability attribute: The memory
supports a write-combining attribute.

EFI_RESOURCE_ATTRIBUTE_WRITE_
BACK_CACHEABLE

Memory cacheability attribute: The memory region
supports being configured as cacheable with a
write-back policy. Reads and writes that hit in the
cache do not propagate to main memory. Dirty
data is written back to main memory when a new
cache line is allocated.

EFI_RESOURCE_ATTRIBUTE_16_
BIT_IO

Memory physical attribute: The memory supports
16-bit I/O.

EFI_RESOURCE_ATTRIBUTE_32_
BIT_IO

Memory physical attribute: The memory supports
32-bit I/O.

EFI_RESOURCE_ATTRIBUTE_64_
BIT_IO

Memory physical attribute: The memory supports
64-bit I/O.

EFI_RESOURCE_ATTRIBUTE_
UNCACHED_EXPORTED

Memory cacheability attribute: The memory region
is uncacheable and exported and supports the
fetch and add semaphore mechanism.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 145

 Table 16 specifies the resource attributes applicable to each resource type.

Table 16. HOB Producer Phase Resource Types

EFI_RESOURCE_ATTRIBUTE_TYPE HOB Producer
Phase System
Memory

HOB Producer
Phase Memory-
Mapped I/O

HOB Producer
Phase I/O

Present X

Initialized X

Tested X

SingleBitEcc X

MultipleBitEcc X

EccReserved1 X

EccReserved2 X

ReadProtected X X

WriteProtected X X

ExecutionProtected X

ReadOnlyProtected X X

Uncacheable X X

ReadProtectable X X

WriteProtectable X X

ExecutionProtectable X

ReadOnlyProtectable X X

WriteThroughCacheable X X

WriteCombineable X X

WriteBackCacheable X X

16bitIO X

32bitIO X

64bitIO X

UncachedExported X X

HOB Code Definitions Platform Initialization Specification, Vol. 3

146 May 2017 Version 1.6

5.6 GUID Extension HOB

EFI_HOB_GUID_TYPE

Summary
Allows writers of executable content in the HOB producer phase to maintain and manage HOBs
whose types are not included in this specification. Specifically, writers of executable content in the
HOB producer phase can generate a GUID and name their own HOB entries using this module-
specific value.

Prototype
typedef struct _EFI_HOB_GUID_TYPE {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_GUID Name;

 //
 // Guid specific data goes here
 //
} EFI_HOB_GUID_TYPE;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_GUID_EXTENSION.

Name

A GUID that defines the contents of this HOB. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI 2.0 specification.

Description
The GUID extension HOB allows writers of executable content in the HOB producer phase to create
their own HOB definitions using a GUID. This HOB type should be used by all executable content
in the HOB producer phase to define implementation-specific data areas that are not architectural.
This HOB type may also pass implementation-specific data from executable content in the HOB
producer phase to drivers in the HOB consumer phase.

A HOB consumer phase component such as a HOB consumer phase driver will read the GUID
extension HOB during the HOB consumer phase. The HOB consumer phase component must
inherently know the GUID for the GUID extension HOB for which it is scanning the HOB list. This
knowledge establishes a contract on the HOB’s definition and usage between the executable content
in the HOB producer phase and the HOB consumer phase driver.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 147

5.7 Firmware Volume HOB

EFI_HOB_FIRMWARE_VOLUME

Summary
Details the location of firmware volumes that contain firmware files.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
} EFI_HOB_FIRMWARE_VOLUME;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

Length

The length in bytes of the firmware volume.

Description
The firmware volume HOB details the location of firmware volumes that contain firmware files. It
includes a base address and length. In particular, the HOB consumer phase will use these HOBs to
discover drivers to execute and the hand-off into the HOB consumer phase will use this HOB to
discover the location of the HOB consumer phase firmware file.

The firmware volume HOB is produced in the following ways:

• By the executable content in the HOB producer phase in the Boot Firmware Volume (BFV) that
understands the size and layout of the firmware volume(s) that are present in the platform.

• By a module that has loaded a firmware volume from some media into memory. The firmware
volume HOB details this memory location.

Firmware volumes described by the firmware volume HOB must have a firmware volume header as
described in this specification.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the PI Firmware Image Format. The HOB
producer phase is required to describe any firmware volumes that may contain the HOB consumer
phase or platform drivers that are required to discover other firmware volumes.

HOB Code Definitions Platform Initialization Specification, Vol. 3

148 May 2017 Version 1.6

EFI_HOB_FIRMWARE_VOLUME2

Summary
Details the location of a firmware volume which was extracted from a file within another firmware
volume.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
 EFI_GUID FvName;
 EFI_GUID FileName;
} EFI_HOB_FIRMWARE_VOLUME2;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV2.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the Unified
Extensible Firmware Interface Specification, version 2.0.

Length

The length in bytes of the firmware volume.

FvName

The name of the firmware volume.

FileName

The name of the firmware file which contained this firmware volume.

Description
The firmware volume HOB details the location of a firmware volume that was extracted prior to the
HOB consumer phase from a file within a firmware volume. By recording the volume and file name,
the HOB consumer phase can avoid processing the same file again.

This HOB is created by a module that has loaded a firmware volume from another file into memory.
This HOB details the base address, the length, the file name and volume name.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the PI Firmware Image format.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 149

EFI_HOB_FIRMWARE_VOLUME3

Summary
Details the location of a firmware volume including authentication information, for both standalone
and extracted firmware volumes.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
 UINT32 AuthenticationStatus;
 BOOLEAN ExtractedFv;
 EFI_GUID FvName;
 EFI_GUID FileName;
} EFI_HOB_FIRMWARE_VOLUME3;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_FV3.

BaseAddress

The physical memory-mapped base address of the firmware volume. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the Unified
Extensible Firmware Interface Specification.

Length

The length in bytes of the firmware volume.

AuthenticationStatus

The authentication status. See Related Definitions of
EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection() for
more information.

ExtractedFv

TRUE if the FV was extracted as a file within another firmware volume. FALSE
otherwise.

FvName

The name GUID of the firmware volume. Valid only if IsExtractedFv is TRUE.

FileName

The name GUID of the firmware file which contained this firmware volume. Valid
only if IsExtractedFv is TRUE.

Description
The firmware volume HOB details the location of firmware volumes that contain firmware files. It
includes a base address and length. In particular, the HOB consumer phase will use these HOBs to

HOB Code Definitions Platform Initialization Specification, Vol. 3

150 May 2017 Version 1.6

discover drivers to execute and the hand-off into the HOB consumer phase will use this HOB to
discover the location of the HOB consumer phase firmware file.

The firmware volume HOB is produced in the following ways:

• By the executable content in the HOB producer phase in the Boot Firmware Volume (BFV) that
understands the size and layout of the firmware volume(s) that are present in the platform.

• By a module that has loaded a firmware volume from some media into memory. The firmware
volume HOB details this memory location.

• By a module that has extracted the firmware volume from a file within a firmware file system.
By recording the volume and file name, the HOB consumer phase can avoid processing the same
file again.

Firmware volumes described by the firmware volume HOB must have a firmware volume header as
described in this specification.

The HOB consumer phase consumes all firmware volume HOBs that are presented by the HOB
producer phase for use by its read-only support for the PI Firmware Image Format. The HOB
consumer phase must provide appropriate authentication data reflecting
AuthenticationStatus for clients accessing the corresponding firmware volumes. The HOB
producer phase is required to describe any firmware volumes that may contain the HOB consumer
phase or platform drivers that are required to discover other firmware volumes.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 151

5.8 CPU HOB

EFI_HOB_CPU

Summary
Describes processor information, such as address space and I/O space capabilities.

Prototype
typedef struct _EFI_HOB_CPU {
 EFI_HOB_GENERIC_HEADER Header;
 UINT8 SizeOfMemorySpace;
 UINT8 SizeOfIoSpace;
 UINT8 Reserved[6];
} EFI_HOB_CPU;

Parameters
Header

The HOB generic header. Header.HobType = EFI_HOB_TYPE_CPU.

SizeOfMemorySpace

Identifies the maximum physical memory addressability of the processor.

SizeOfIoSpace

Identifies the maximum physical I/O addressability of the processor.

Reserved

For this version of the specification, this field will always be set to zero.

Description
The CPU HOB is produced by the processor executable content in the HOB producer phase. It
describes processor information, such as address space and I/O space capabilities. The HOB
consumer phase consumes this information to describe the extent of the GCD capabilities.

HOB Code Definitions Platform Initialization Specification, Vol. 3

152 May 2017 Version 1.6

5.9 Memory Pool HOB

EFI_HOB_MEMORY_POOL

Summary
Describes pool memory allocations.

Prototype
typedef struct _EFI_HOB_MEMORY_POOL {
 EFI_HOB_GENERIC_HEADER Header;
} EFI_HOB_MEMORY_POOL;

Parameters
Header

The HOB generic header. Header.HobType =
EFI_HOB_TYPE_MEMORY_POOL.

Description
The memory pool HOB is produced by the HOB producer phase and describes pool memory
allocations. The HOB consumer phase should be able to ignore these HOBs. The purpose of this
HOB is to allow for the HOB producer phase to have a simple memory allocation mechanism within
the HOB list. The size of the memory allocation is stipulated by the HobLength field in
EFI_HOB_GENERIC_HEADER.

5.10 UEFI Capsule HOB

EFI_HOB_UEFI_ CAPSULE

Summary
Details the location of coalesced each UEFI capsule memory pages.

Prototype
typedef struct {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_PHYSICAL_ADDRESS BaseAddress;
 UINT64 Length;
} EFI_HOB_UEFI_CAPSULE;

Parameters
Header

The HOB generic header where Header.HobType =
EFI_HOB_TYPE_UEFI_CAPSULE.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 153

BaseAddress

The physical memory-mapped base address of an UEFI capsule. This value is set to
point to the base of the contiguous memory of the UEFI capsule.

The length of the contiguous memory in bytes

Description
Each UEFI capsule HOB details the location of a UEFI capsule. It includes a base address and length
which is based upon memory blocks with a EFI_CAPSULE_HEADER and the associated
CapsuleImageSize-based payloads. These HOB’s shall be created by the PEI PI firmware
sometime after the UEFI UpdateCapsule service invocation with the
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag set in the EFI_CAPSULE_HEADER.

HOB Code Definitions Platform Initialization Specification, Vol. 3

154 May 2017 Version 1.6

5.11 Unused HOB

EFI_HOB_TYPE_UNUSED

Summary
Indicates that the contents of the HOB can be ignored.

Prototype
#define EFI_HOB_TYPE_UNUSED 0xFFFE

Description
This HOB type means that the contents of the HOB can be ignored. This type is necessary to
support the simple, allocate-only architecture of HOBs that have no delete service. The consumer of
the HOB list should ignore HOB entries with this type field.

An agent that wishes to make a HOB entry ignorable should set its type to the prototype defined
above.

Platform Initialization Specification, Vol. 3 HOB Code Definitions

Version 1.6 May 2017 155

5.12 End of HOB List HOB

EFI_HOB_TYPE_END_OF_HOB_LIST

Summary
Indicates the end of the HOB list. This HOB must be the last one in the HOB list.

Prototype
#define EFI_HOB_TYPE_END_OF_HOB_LIST 0xffff

Description
This HOB type indicates the end of the HOB list. This HOB type must be the last HOB type in the
HOB list and terminates the HOB list. A HOB list should be considered ill formed if it does not have
a final HOB of type EFI_HOB_TYPE_END_OF_HOB_LIST.

5.13 SMRAM Memory Hob

EFI_SMRAM_HOB_DESCRIPTOR_BLOCK

Summary
This is a special GUID extension Hob to describe SMRAM memory regions.

GUID
#define EFI_SMM_SMRAM_MEMORY_GUID { \
 0x6dadf1d1, 0xd4cc, 0x4910, 0xbb, 0x6e, 0x82, 0xb1, 0xfd, 0x80,
0xff, 0x3d \
}

Prototype
typedef struct {
 UINT32 NumberOfSmmReservedRegions;
 EFI_SMRAM_DESCRIPTOR Descriptor[1];
} EFI_SMRAM_HOB_DESCRIPTOR_BLOCK;

Parameters
NumberOfSmmReservedRegions

Designates the number of possible regions in the system that can be usable for
SMRAM.

Descriptor

Used to describe the candidate regions for SMRAM that are supported by this
platform.

HOB Code Definitions Platform Initialization Specification, Vol. 3

156 May 2017 Version 1.6

Description
The GUID extension hob is to describe SMRAM memory regions supported by the platform.

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 157

6 Status Codes

6.1 Status Codes Overview
This specification defines the status code architecture that is required for an implementation of the
Platform Initialization (PI) specifications (hereafter referred to as the “PI Architecture”). Status
codes enable system components to report information about their current state. This specification
does the following:

• Describes the basic components of status codes

• Defines the status code classes; their subclasses; and the progress, error, and debug code
operations for each

• Provides code definitions for the data structures that are common to all status codes

• Provides code definitions for the status code classes; subclasses; progress, error, and debug code
enumerations; and extended error data that are architecturally required by the PI Architecture.

The basic definition of a status code is contained in the ReportStatusCode() definition in
volume 2 of this specification.

6.1.1 Organization of the Status Codes Specification
This specification is organized as listed below. Because status codes are just one component of a PI
Architecture-based firmware solution, there are a number of references to the PI Specifications
throughout this document.

Table 17. Organization of This Specification

Book Description

Status Codes Overview Provides a high-level explanation of status codes and the status
code classes and subclasses that are defined in this specification.

Status Code Classes Provides detailed explanations of the defined status code classes.

Code Definitions Provides the code definitions for all status code classes;
subclasses; extended error data structures; and progress, error,
and debug code enumerations that are included in this specification.

6.2 Terms
The following terms are used throughout this document:

debug code

Data produced by various software entities that contains information specifically intended to
assist in debugging. The format of the debug code data is governed by this specification.

error code

Data produced by various software entities that indicates an abnormal condition. The format of
the error code data is governed by this specification.

Status Codes Platform Initialization Specification, Vol. 3

158 May 2017 Version 1.6

progress code

Data produced by various software entities that indicates forward progress. The format of the
progress code data is governed by this specification.

status code

One of the three types of codes: progress code, error code, or debug code.

status code driver

The driver that produces the Status Code Runtime Protocol
(EFI_STATUS_CODE_PROTOCOL). The status code driver receives status codes and
notifies registered listeners upon receipt. Status codes handled by this driver are different from
the EFI_STATUS returned by various functions. The term EFI_STATUS is defined in the
UEFI Specification.

6.3 Types of Status Codes
For each entity classification (class/subclass pair) there are three sets of operations:

• Progress codes

• Error codes

• Debug codes

For progress codes, operations correspond to activities related to the component classification. For
error codes, operations correspond to exception conditions (errors). For debug codes, operations
correspond to the basic nature of the debug information.

The values 0x00–0x0FFF are common operations that are shared by all subclasses in a class. There
are also subclass-specific operations/error codes. Out of the subclass-specific operations, the values
0x1000–0x7FFF are reserved by this specification. The remaining values (0x8000–0xFFFF) are not
defined by this specification and OEMs can assign meaning to values in this range. The combination
of class and subclass operations provides the complete set of operations that may be reported by an
entity. The figure below demonstrates the hierarchy of class and subclass and progress, error, and
debug operations.

Status Code:
Progress, Error, Debug

Class:
Computing Unit

Class:
User-Accessible

Peripheral

Class:
I/O Bus

Class:
Host Software

Status Code Classes:
Class # 0x0-0x7f controlled
by this specification

Software Subclasses:

Subclass 0x0-0x7f controlled
by this specification

Computing Unit Subclasses:

Subclass 0x0-0x7f controlled
by this specificationI/O Processor

Subclass

Cache
Subclass

Memory
Subclass

Computing Unit:
Class Progress Codes

Computing Unit:
Class Error Codes

Computing Unit:
Memory Subclass
Progress Codes

Computing Unit:
Memory Subclass

Error Codes

Computing Unit:
Class Debug Codes

Computing Unit:
Memory Subclass

Debug Codes

Operations: 0x0-0x7fff controlled by this specification

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 159

Figure 12. Hierarchy of Status Code Operations

The organization of status codes, progress versus error, class, subclass, and operation facilitate a
flexible reporting of status codes. In the simplest case, reporting the status code might only convey
that an event occurred. In a slightly more complex system, it might be possible to report the class
and if it is a progress, error, or debug Code. In such a case, it is at least possible to understand that
the system is executing a software activity or that an error occurred with a computing unit. If more
reporting capability is present, the error could be isolated to include the subclass—for example, an
error occurred related to memory, or the system is currently executing the PEI Foundation software.
If yet more capability is present, information about the type of error or activity is available—for

Status Codes Platform Initialization Specification, Vol. 3

160 May 2017 Version 1.6

example, single-bit ECC error or PEIM dispatch in progress. If the reporting capability is complete,
it can provide the detailed error information about the single-bit ECC error, including the location
and a string describing the failure. A large spectrum of consumer capability can be supported with a
single interface for the producers of progress and error information.

6.3.1 Status Code Classes
The PI architecture defines four classes of status codes—three classes for hardware and one class for
software. These classes are listed in the table below and described in detail in the rest of this section.
Each class is made up of several subclasses, which are also defined later in this section.

See Code Definitions for all the definitions of all data types and enumerations listed in this section.

Table 18. Class Definitions

Type of Class Class Name Data Type Name

Hardware Computing Unit EFI_COMPUTING_UNIT

User-Accessible Peripheral EFI_PERIPHERAL

I/O Bus EFI_IO_BUS

Software Host Software EFI_SOFTWARE

Class/subclass pairing should be able to classify any system entity, whether software or hardware.
For example, the boot-strap processor (BSP) in a system would be a member of the computing unit
class and host processor subclass, while a graphics processor would also be a member of the
computing unit class, but a member of the I/O processor subclass.

6.3.2 Instance Number
Because a system may contain multiple entities matching a class/subclass pairing, there is an
instance number. Instance numbers have different meanings for different classes. However, an
instance number of 0xFFFFFFFF always indicates that instance information is unavailable, not
applicable, or not provided.

Valid instance numbers start from 0. So a 4-processor server would logically have four instances of
the class/subclass pairing, computing unit/host processor, instance numbers 0 to 3.

Due to the complexity of system design, it is outside of the scope of this specification how to pair
instance numbers with the actual component—for instance, determining which processor is
number 3. However, this specification mandates that the numbering be consistent with the other
agents in the system. For example, the processor numbering scheme that is followed by status codes
must be consistent with the one followed by the ACPI tables.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 161

6.4 Hardware Classes

6.4.1 Computing Unit Class
The Computing Unit class covers components directly related to system computational capabilities.
Subclasses correspond to types of computational devices and resources. See the following for the
computing unit class:

• Instance Number

• Progress Code Operations

• Error Code Operations

• Defined Subclasses

6.4.1.1 Instance Number
The instance number refers to the computing unit's geographic location in some manner. An
instance number of 0xFFFFFFFF means that the instance number information is not available or the
provider of the information is not interested in providing the instance number.

6.4.1.2 Progress Code Operations
All computing unit subclasses share the operation codes listed in the table below. See Progress Code
Definitions in Code Definitions: Computing Unit Class for the definitions of these progress codes.

Table 19. Progress Code Operations: Computing Unit Class

Operation Description Extended Data

EFI_CU_PC_INIT_BEGIN General computing unit initialization begins. No details
regarding operation are made available.

See subclass.

EFI_CU_PC_INIT_END General computing unit initialization ends. No details
regarding operation are made available.

See subclass.

0x0002–0x0FFF Reserved for future use by this specification for
Computing Class progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the subclass definitions
within this specification for value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

6.4.1.3 Error Code Operations
All computing unit subclasses share the error codes listed in the table below. See Error Code
Definitions in section 6.7.1 for the definitions of these error codes.

Table 20. Error Code Operations: Computing Unit Class

Operation Description Extended Data

EFI_CU_EC_NON_SPECIFIC No error details available. See subclass.

EFI_CU_EC_DISABLED Instance is disabled. See subclass.

EFI_CU_EC_NOT_SUPPORTED Instance is not supported. See subclass.

Status Codes Platform Initialization Specification, Vol. 3

162 May 2017 Version 1.6

6.4.1.4 Subclasses

6.4.1.4.1 Defined Subclasses

The table below lists the subclasses in the Computing Unit class. The following topics describe each
subclass in more detail.

See Subclass Definitions in Code Definitions: Computing Unit Class for the definitions of these
subclasses.

Table 21. Computing Unit Class: Subclasses

Subclass Code Name Description

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED The computing unit type is unknown,
undefined, or unspecified.

Host processor EFI_COMPUTING_UNIT_HOST_
PROCESSOR

The computing unit is a full-service
central processing unit.

Firmware
processor

EFI_COMPUTING_UNIT_FIRMWARE_
PROCESSOR

The computing unit is a limited service
processor, typically designed to handle
tasks of limited scope.

I/O processor EFI_COMPUTING_UNIT_IO_PROCESSO
R

The computing unit is a processor
designed specifically to handle I/O
transactions.

Cache EFI_COMPUTING_UNIT_CACHE The computing unit is a cache. All types
of cache qualify.

Memory EFI_COMPUTING_UNIT_MEMORY The computing unit is memory. Many
types of memory qualify.

Chipset EFI_COMPUTING_UNIT_CHIPSET The computing unit is a chipset
component.

0x07–0x7F Reserved for future use by this
specification.

0x80–0xFF Reserved for OEM use.

6.4.1.4.2 Unspecified Subclass

This subclass can be used for any computing unit type of component that does not belong in one of
the other subclasses.

EFI_CU_EC_NOT_DETECTED Instance not detected when it was expected to
be present.

See subclass.

EFI_CU_EC_NOT_CONFIGURED Instance could not be properly or completely
initialized or configured.

See subclass.

0x0005–0x0FFF Reserved for future use by this specification for
Computing Class error codes.

NA

0x1000–0x7FFF Subclass defined: See the subclass definitions
within this specification.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 163

See section 6.7.1.1for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

Table 22. Progress and Error Code Operations: Computing Unit Unspecified Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.1.4.3 Host Processor Subclass

This subclass is used for computing units that provide the system’s main processing power and their
associated hardware. These are general-purpose processors capable of a wide range of
functionality. The instance number matches the processor handle number that is assigned to the
processor by the Multiprocessor (MP) Services Protocol. They often contain multiple levels of
embedded cache.

See Subclass Definitions in section 6.7.1.1for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 23. Progress and Error Code Operations: Host Processor Subclass

Type of
Code

Operation Description Extended Data

Progress EFI_CU_HP_PC_POWER_ON_INIT Power-on
initialization

None

EFI_CU_HP_PC_CACHE_INIT Embedded cache
initialization
including cache
controller hardware
and cache memory.

EFI_CACHE_INIT_DATA

Progress
(cont.)

EFI_CU_HP_PC_RAM_INIT Embedded RAM
initialization

None

EFI_CU_HP_PC_MEMORY_
CONTROLLER_INIT

Embedded memory
controller
initialization

None

Status Codes Platform Initialization Specification, Vol. 3

164 May 2017 Version 1.6

EFI_CU_HP_PC_IO_INIT Embedded I/O
complex
initialization

None

EFI_CU_HP_PC_BSP_SELECT BSP selection None

EFI_CU_HP_PC_BSP_RESELECT BSP reselection None

EFI_CU_HP_PC_AP_INIT AP initialization (this
operation is
performed by the
current BSP)

None

EFI_CU_HP_PC_SMM_INIT SMM initialization None

0x000B–0x7FFF Reserved for future
use by this
specification

NA

Error EFI_CU_EC_DISABLED Instance is
disabled. This is a
standard error code
for this class.

EFI_COMPUTING_UNIT_
CPU_DISABLED_ERROR_
DATA

EFI_CU_HP_EC_INVALID_TYPE Instance is not a
valid type.

None

EFI_CU_HP_EC_INVALID_SPEED Instance is not a
valid speed.

None

EFI_CU_HP_EC_MISMATCH Mismatch detected
between two
instances.

EFI_HOST_PROCESSOR_
MISMATCH_ERROR_DATA

EFI_CU_HP_EC_TIMER_EXPIRED A watchdog timer
expired.

None

EFI_CU_HP_EC_SELF_TEST Instance detected
an error during BIST

None

EFI_CU_HP_EC_INTERNAL Instance detected
an IERR.

None

EFI_CU_HP_EC_THERMAL An over
temperature
condition was
detected with this
instance.

EFI_COMPUTING_UNIT_
THERMAL_ERROR_DATA

Error
(cont.)

EFI_CU_HP_EC_LOW_VOLTAGE Voltage for this
instance dropped
below the low
voltage threshold.

EFI_COMPUTING_UNIT_
VOLTAGE_ERROR_DATA

EFI_CU_HP_EC_HIGH_VOLTAGE Voltage for this
instance surpassed
the high voltage
threshold

EFI_COMPUTING_UNIT_
VOLTAGE_ERROR_DATA

EFI_CU_HP_EC_CACHE The instance
suffered a cache
failure.

None

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 165

Related Definitions
See the following topics in section 6.7.1.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.1 for definitions of the extended error data listed above.

6.4.1.4.4 Firmware Processor Subclass

This subclass applies to processors other than the Host Processors that provides services to the
system.

See section 6.7.1.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 24. Progress and Error Code Operations: Service Processor Subclass

EFI_CU_HP_EC_MICROCODE_
UPDATE

Instance microcode
update failed

EFI_COMPUTING_UNIT_
MICROCODE_
UPDATE_ERROR_DATA

EFI_CU_HP_EC_CORRECTABLE Correctable error
detected

None

EFI_CU_HP_EC_UNCORRECTABLE Uncorrectable ECC
error detected

None

EFI_CU_HP_EC_NO_MICROCODE_UPD
ATE

No matching
microcode update is
found

None

0x100D–0x7FFF Reserved for future
use by this
specification

NA

Type of
Code

Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_FP_EC_HARD_FAIL Firmware processor detected a
hardware error during initialization.

None

EFI_CU_FP_EC_SOFT_FAIL Firmware processor detected an error
during initialization. E.g. Firmware
processor NVRAM contents are invalid.

None

Status Codes Platform Initialization Specification, Vol. 3

166 May 2017 Version 1.6

Related Definitions
See the following topics in section 6.7.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.4.1.4.5 I/O Processor Subclass

This subclass applies to system I/O processors and their associated hardware. These processors are
typically designed to offload I/O tasks from the central processors in the system. Examples would
include graphics or I20 processors. The subclass is identical to the host processor subclass. See
Host Processor Subclass for more information.

See section 6.7.1.1 for the definition of this subclass.

6.4.1.4.6 Cache Subclass

The cache subclass applies to any external/system level caches. Any cache embedded in a
computing unit would not be counted in this subclass, but would be considered a member of that
computing unit subclass.

See Subclass Definitions in section 6.7.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 25. Progress and Error Code Operations: Cache Subclass

EFI_CU_FP_EC_COMM_ERROR The host processor encountered an error
while communicating with the firmware
processor.

None

0x1004–0x7FFF Reserved for future use by this
specification.

NA

Type of
Code

Operation Description Extended
Data

Progress EFI_CU_CACHE_PC_PRESENCE_DETE
CT

Detecting cache presence. None

EFI_CU_CACHE_PC_CONFIGURATION Configuring cache. None

0x1002–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_CACHE_EC_INVALID_TYPE Instance is not a valid type. None

EFI_CU_CACHE_EC_INVALID_SPEED Instance is not a valid speed. None

EFI_CU_CACHE_EC_INVALID_SIZE Instance size is invalid. None

EFI_CU_CACHE_EC_MISMATCH Instance does not match other
caches.

None

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 167

Related Definitions
See the following topics in section 6.7.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.4.1.4.7 Memory Subclass

The memory subclass applies to any external/system level memory and associated hardware. Any
memory embedded in a computing unit would not be counted in this subclass, but would be
considered a member of that computing unit subclass.

See Subclass Definitions in section 6.7.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

For all operations and errors, the instance number specifies the DIMM number unless stated
otherwise. Some of the operations may affect multiple memory devices and multiple memory
controllers. The specification provides mechanisms
(EFI_MULTIPLE_MEMORY_DEVICE_OPERATION and others) to describe such group
operations. See EFI_STATUS_CODE_DIMM_NUMBER in section 6.7.1 for details.

Table 26. Progress and Error Code Operations: Memory Subclass

0x1004–0x7FFF Reserved for future use by this
specification.

NA

Type of
Code

Operation Description Extended Data

Progress EFI_CU_MEMORY_PC_SPD_READ Reading configuration data (e.g.
SPD) from memory devices.

None

EFI_CU_MEMORY_PC_PRESENCE_DE
TECT

Detecting presence of memory
devices (e.g. DIMMs).

None

EFI_CU_MEMORY_PC_TIMING Determining optimum
configuration e.g. timing for
memory devices.

None

EFI_CU_MEMORY_PC_CONFIGURING Initial configuration of memory
device and memory controllers.

None

EFI_CU_MEMORY_PC_OPTIMIZING Programming the memory
controller and memory devices
with optimized settings.

None

Progress
(cont.)

EFI_CU_MEMORY_PC_INIT Memory initialization such as
ECC initialization.

EFI_MEMORY_
RANGE_
EXTENDED_DA
TA

Status Codes Platform Initialization Specification, Vol. 3

168 May 2017 Version 1.6

Related Definitions
See the following topics in section 6.7.1 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See section 6.7.1.4 for definitions of the extended error data listed above.

6.4.1.4.8 Chipset Subclass

This subclass can be used for any chipset components and their related hardware.

EFI_CU_MEMORY_PC_TEST Performing memory test. EFI_MEMORY_
RANGE_
EXTENDED_DA
TA

0x1007–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CU_MEMORY_EC_INVALID_TYPE Instance is not a valid type. None

EFI_CU_MEMORY_EC_INVALID_SPEE
D

Instance is not a valid speed. None

EFI_CU_MEMORY_EC_CORRECTABLE Correctable error detected. EFI_MEMORY_
EXTENDED_
ERROR_DATA

EFI_CU_MEMORY_EC_UNCORRECTA
BLE

Uncorrectable error detected.
This included memory
miscomparisions during the
memory test.

EFI_MEMORY_
EXTENDED_
ERROR_DATA

EFI_CU_MEMORY_EC_SPD_FAIL Instance SPD failure detected. None

EFI_CU_MEMORY_EC_INVALID_SIZE Instance size is invalid. None

EFI_CU_MEMORY_EC_MISMATCH Mismatch detected between two
instances.

EFI_MEMORY_
MODULE_
MISMATCH_ER
ROR_DATA

EFI_CU_MEMORY_EC_S3_RESUME_F
AIL

Resume from S3 failed. None

EFI_CU_MEMORY_EC_UPDATE_FAIL Flash Memory Update failed. None

EFI_CU_MEMORY_EC_NONE_DETECT
ED

Memory was not detected in the
system. Instance field is ignored.

None

Error
(cont.)

EFI_CU_MEMORY_EC_NONE_USEFUL No useful memory was detected
in the system. E.g., Memory was
detected, but cannot be used due
to errors. Instance field is
ignored.

None

0x1009–0x7FFF Reserved for future use by this
specification.

NA

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 169

See Subclass Definitions in section 6.7.1 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Computing Unit class,
the table below lists the additional codes for this subclass.

Table 27. Progress and Error Code Operations: Chipset Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_CHIPSET_PC_PEI_CAR_SB_INIT South Bridge initialization prior to
memory detection

None

EFI_CHIPSET_PC_PEI_CAR_NB_INIT North Bridge initialization prior to
memory detection

None

EFI_CHIPSET_PC_PEI_MEM_SB_INIT South Bridge initialization after
memory detection

None

EFI_CHIPSET_PC_PEI_MEM_NB_INIT North Bridge initialization after
memory detection

None

EFI_CHIPSET_PC_DXE_HB_INIT PCI Host Bridge DXE initialization None

EFI_CHIPSET_PC_DXE_NB_INIT North Bridge DXE initialization None

EFI_CHIPSET_PC_DXE_NB_SMM_INIT North Bridge specific SMM
initialization in DXE

None

EFI_CHIPSET_PC_DXE_SB_RT_INIT Initialization of the South Bridge
specific UEFI Runtime Services

None

EFI_CHIPSET_PC_DXE_SB_INIT South Bridge DXE initialization None

EFI_CHIPSET_PC_DXE_SB_SMM_INIT South Bridge specific SMM
initialization in DXE

None

EFI_CHIPSET_PC_DXE_SB_DEVICES_I
NIT

Initialization of the South Bridge
devices

None

Progress 0x100B–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_CHIPSET_EC_BAD_BATTERY Bad battery status has been
detected

None

EFI_CHIPSET_EC_DXE_NB_ERROR North Bridge initialization error in
DXE

None

EFI_CHIPSET_EC_DXE_NB_ERROR South Bridge initialization error in
DXE

None

Error 0x1003–0x7FFF Reserved for future use by this
specification.

Related Definitions
None.

Status Codes Platform Initialization Specification, Vol. 3

170 May 2017 Version 1.6

6.4.2 User-Accessible Peripheral Class
The User-Accessible Peripheral class refers to any peripheral with which the user interacts.
Subclass elements correspond to general classes of peripherals. See the following for the User-
Accessible Peripheral class:

• Instance Number

• Progress Code Operations

• rror Code Operations

• Defined Subclasses

6.4.2.1 Instance Number
The instance number refers to the peripheral’s geographic location in some manner. Instance
number of 0 means that instance number information is not available or the provider of the
information is not interested in providing the instance number.

6.4.2.2 Progress Code Operations
All peripheral subclasses share the operation codes listed in the table below. See Progress Code
Definitions for the definitions of these progress codes.

Table 28. Progress Code Operations: User-Accessible Peripheral Class

Operation Description Extended Data

EFI_P_PC_INIT General Initialization. No details regarding operation
are made available.

See subclass.

EFI_P_PC_RESET Resetting the peripheral. See subclass.

EFI_P_PC_DISABLE Disabling the peripheral. See subclass.

EFI_P_PC_PRESENCE_DETECT Detecting the presence. See subclass.

EFI_P_PC_ENABLE Enabling the peripheral. See subclass.

EFI_P_PC_RECONFIG Reconfiguration. See subclass.

EFI_P_PC_DETECTED Peripheral was detected. See subclass.

0x0006–0x0FFF Reserved for future use by this specification for
Peripheral Class progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the subclass
definitions within this specification for value
definitions.

See subclass.

0x8000–0xFFFF Reserved for OEM use. NA

6.4.2.3 Error Code Operations
All peripheral subclasses share the error codes listed in the table below. See section 6.7.2 for the
definitions of these error codes.

Table 29. Error Code Operations: User-Accessible Peripheral Class

Operation Description Extended Data

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 171

6.4.3 Subclasses

6.4.3.1 Defined Subclasses
The table below lists the subclasses in the User-Accessible Peripheral class. The following topics
describe each subclass in more detail.

See Subclass Definitions in section 6.7.2 for the definitions of these subclasses.

Table 30. Defined Subclasses: User-Accessible Peripheral Class

EFI_P_EC_NON_SPECIFIC No error details available. See subclass

EFI_P_EC_DISABLED Instance is disabled. See subclass

EFI_P_EC_NOT_SUPPORTED Instance is not supported. See subclass

EFI_P_EC_NOT_DETECTED Instance not detected when it was expected
to be present.

See subclass

EFI_P_EC_NOT_CONFIGURED Instance could not be properly or completely
initialized or configured.

See subclass

EFI_P_EC_INTERFACE_ERROR An error occurred with the peripheral
interface.

See subclass

EFI_P_EC_CONTROLLER_ERROR An error occurred with the peripheral
controller.

See subclass

EFI_P_EC_INPUT_ERROR An error occurred getting input from the
peripheral.

See subclass.

EFI_P_EC_OUTPUT_ERROR An error occurred putting output to the
peripheral.

See subclass.

EFI_P_EC_RESOURCE_CONFLIC
T

A resource conflict exists with this
instance’s resource requirements.

See
EFI_RESOURCE_ALLOC_
FAILURE_ERROR_DATA
for all subclasses.

0x0006–0x0FFF Reserved for future use by this specification
for User-Accessible Peripheral class error
codes.

NA

0x1000–0x7FFF See the subclass definitions within this
specification.

See subclass

0x8000–0xFFFF Reserved for OEM use. NA

Subclass Code Name Description

Unspecified EFI_PERIPHERAL_UNSPECIFIED The peripheral type is unknown, undefined, or
unspecified.

Keyboard EFI_PERIPHERAL_KEYBOARD The peripheral referred to is a keyboard.

Mouse EFI_PERIPHERAL_MOUSE The peripheral referred to is a mouse.

Status Codes Platform Initialization Specification, Vol. 3

172 May 2017 Version 1.6

6.4.3.1.1 Unspecified Subclass

This subclass applies to any user-accessible peripheral not belonging to any of the other subclasses.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 31. Progress and Error Code Operations: Peripheral Unspecified Subclass

Type of
Code

Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Local console EFI_PERIPHERAL_LOCAL_CONSOLE The peripheral referred to is a console directly
attached to the system.

Remote console EFI_PERIPHERAL_REMOTE_CONSOLE The peripheral referred to is a console that can
be remotely accessed.

Serial port EFI_PERIPHERAL_SERIAL_PORT The peripheral referred to is a serial port.

Parallel port EFI_PERIPHERAL_PARALLEL_PORT The peripheral referred to is a parallel port.

Fixed media EFI_PERIPHERAL_FIXED_MEDIA The peripheral referred to is a fixed media
device—e.g., an IDE hard disk drive.

Removable media EFI_PERIPHERAL_REMOVABLE_MEDIA The peripheral referred to is a removable
media device—e.g., a DVD-ROM drive.

Audio input EFI_PERIPHERAL_AUDIO_INPUT The peripheral referred to is an audio input
device—e.g., a microphone.

Audio output EFI_PERIPHERAL_AUDIO_OUTPUT The peripheral referred to is an audio output
device—e.g., speakers or headphones.

LCD device EFI_PERIPHERAL_LCD_DEVICE The peripheral referred to is an LCD device.

Network device EFI_PERIPHERAL_NETWORK The peripheral referred to is a network
device—e.g., a network card.

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 173

6.4.3.1.2 Keyboard Subclass

This subclass applies to any keyboard style interfaces. ExtendedData contains the device path to
the keyboard device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is
ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 32. Progress and Error Code Operations: Keyboard Subclass

Type of
Code

Operation Description Extended Data

Progress EFI_P_KEYBOARD_PC_CLEAR_BUFF
ER

Clearing the
input keys from
keyboard.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

EFI_P_KEYBOARD_PC_SELF_TEST Keyboard self-
test.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1002–0x7FFF Reserved for
future use by this
specification.

NA

Error EFI_P_KEYBOARD_EC_LOCKED The keyboard
input is locked.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

EFI_P_KEYBOARD_EC_STUCK_KEY A stuck key was
detected.

The device path to the keyboard
device. See
EFI_DEVICE_PATH_
EXTENDED_DATA

0x1002–0x7FFF Reserved for
future use by this
specification.

NA

Related Definitions
See the following topics in section 6.7.2s for definitions of the subclass-specific operations listed
above:

Progress Code Definitions

Error Code Definitions

See Extended Error Data in section 6.7.2 for definitions of the extended error data listed above.

Status Codes Platform Initialization Specification, Vol. 3

174 May 2017 Version 1.6

6.4.3.1.3 Mouse Subclass

This subclass applies to any mouse or pointer peripherals. ExtendedData contains the device
path to the mouse device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance
is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 33. Progress and Error Code Operations: Mouse Subclass

Type of
Code

Operation Description Extended Data

Progress EFI_P_MOUSE_PC_SELF_TES
T

Mouse self-test. The device path to the mouse device.
See EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1001–0x7FFF Reserved for future
use by this
specification.

NA

Error EFI_P_MOUSE_EC_LOCKED The mouse input is
locked.

The device path to the mouse device.
See EFI_DEVICE_PATH_
EXTENDED_DATA

0x1001–0x7FFF Reserved for future
use by this
specification.

NA

Related Definitions
See the following topics in section 6.7.2 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.2 for definitions of the extended error data listed above.

6.4.3.1.4 Local Console Subclass

This subclass applies to all console devices directly connected to the system. This would include
VGA/UGA devices. ExtendedData contains the device path to the console device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored. LCD devices have their
own subclass.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 175

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 34. Progress and Error Code Operations: Local Console Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.1.5 Remote Console Subclass

This subclass applies to any console not directly connected to the system. This would include
consoles displayed via serial or LAN connections. ExtendedData contains the device path to the
console device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 35. Progress and Error Code Operations: Remote Console Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–
0x7FFF

Reserved for future use by this specification. NA

Error 0x1000–
0x7FFF

Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.1.6 Serial Port Subclass

This subclass applies to devices attached to a system serial port, such as a modem.
ExtendedData contains the device path to the device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Status Codes Platform Initialization Specification, Vol. 3

176 May 2017 Version 1.6

Table 36. Progress and Error Code Operations: Serial Port Subclass

Type of
Code

Operation Description Extended Data

Progress EFI_P_SERIAL_PORT_PC_CLEAR_BUFF
ER

Clearing the
serial port input
buffer.

The device handle. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1001–0x7FFF Reserved for
future use by
this
specification.

NA

Error 0x1000–0x7FFF Reserved for
future use by
this
specification.

NA

Related Definitions
See the following topics in section 6.7.2 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.2 for definitions of the extended error data listed above.

6.4.3.1.7 Parallel Port Subclass

This subclass applies to devices attached to a system parallel port, such as a printer.
ExtendedData contains the device path to the device as defined in
EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 37. Progress and Error Code Operations: Parallel Port Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 177

6.4.3.1.8 Fixed Media Subclass

This subclass applies to fixed media peripherals such as hard drives. These peripherals are capable
of producing the EFI_BLOCK_IO Protocol. ExtendedData contains the device path to the
device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 38. Progress and Error Code Operations: Fixed Media Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.1.9 Removable Media Subclass

This subclass applies to removable media peripherals such as floppy disk drives or LS-120 drives.
These peripherals are capable of producing the EFI_BLOCK_IO Protocol. ExtendedData
contains the device path to the device as defined in EFI_DEVICE_PATH_EXTENDED_DATA and
the instance is ignored.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 39. Progress and Error Code Operations: Removable Media Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.1.10 Audio Input Subclass

This subclass applies to audio input devices such as microphones.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Status Codes Platform Initialization Specification, Vol. 3

178 May 2017 Version 1.6

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 40. Progress and Error Code Operations: Audio Input Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.1.11 Audio Output Subclass

This subclass applies to audio output devices like speakers or headphones.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 41. Progress and Error Code Operations: Audio Output Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.1.12 LCD Device Subclass

This subclass applies to LCD display devices attached to the system.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 42. Progress and Error Code Operations: LCD Device Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 179

Related Definitions
None.

6.4.3.1.13 Network Device Subclass

This subclass applies to network adapters attached to the system. These devices are capable of
producing standard UEFI networking protocols such as the EFI_SIMPLE_NETWORK Protocol.

See Subclass Definitions in section 6.7.2 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the User-Accessible
Peripheral class, the table below lists the additional codes for this subclass.

Table 43. Progress and Error Code Operations: Network Device Subclass

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.1.14 I/O Bus Class

The I/O bus class covers hardware buses irrespective of any software protocols that are used. At a
broad level, everything that connects the computing unit to the user peripheral can be covered by this
class. Subclass elements correspond to industry-standard hardware buses. See the following for the
I/O Bus class:

• Instance Number

• Progress Code Operations

• Error Code Operations

• Defined Subclasses

6.4.3.1.15 Instance Number

The instance number is ignored and the ExtendedData describes the device path to the controller
or the device as defined in EFI_DEVICE_PATH_EXTENDED_DATA.

6.4.3.2 Progress Code Operations
All I/O bus subclasses share the operation codes listed in the table below. See Progress Code
Definitions in section 6.7.3 for the definitions of these progress codes.

Table 44. Progress Code Operations: I/O Bus Class

Operation Description Extended Data

Status Codes Platform Initialization Specification, Vol. 3

180 May 2017 Version 1.6

6.4.3.3 Error Code Operations
All I/O bus subclasses share the error codes listed in the table below. See Error Code Definitions in
section 6.7.3 for the definitions of these error codes.

Table 45. Error Code Operations: I/O Bus Class

EFI_IOB_PC_INIT General initialization. No details
regarding operation are made
available.

The device path corresponding to the host bus
controller (the controller that produces this
bus). For the PCI bus, it is the PCI root bridge.
The format of the device path extended data is
defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_RESET Resetting the bus. Generally,
this operation resets all the
devices on the bus as well.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_DISABLE Disabling all the devices on the
bus prior to enumeration.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_DETECT Detecting devices on the bus. The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_ENABLE Configuring the bus and
enabling device on the bus.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_RECONFIG Bus reconfiguration including
resource re-enumeration.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

EFI_IOB_PC_HOTPLUG A hot-plug event was detected
on the bus and the hot-plugged
device was initialized.

The device path corresponding to the host
controller (the controller that produces this
bus). The format is defined in
EFI_DEVICE_PATH_EXTENDED_DATA.

0x0007–0x0FFF Reserved for future use by this
specification for I/O Bus class
progress codes.

NA

0x1000–0x7FFF Reserved for subclass use.
See the subclass definitions
within this specification for
value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. OEM defined.

Operation Description Extended Data

EFI_IOB_EC_NON_SPECIFIC No error details available None.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 181

EFI_IOB_EC_DISABLED A device is disabled due to
bus-level errors.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_SUPPORTED A device is not supported on
this bus.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_DETECTED Instance not detected when it
was expected to be present.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_NOT_CONFIGURED Instance could not be properly
or completely
initialized/configured.

The device path corresponding
to the device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_INTERFACE_ERROR An error occurred with the bus
interface.

The device path corresponding
to the failing device. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_CONTROLLER_ERROR An error occurred with the host
bus controller (the controller
that produces this bus).

The device path corresponding
to the bus controller. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_READ_ERROR A bus specific error occurred
getting input from a device on
the bus.

The device path corresponding
to the failing device or the
closest device path. See
EFI_DEVICE_PATH_

EFI_IOB_EC_WRITE_ERROR An error occurred putting
output to the bus.

The device path corresponding
to the failing device or the
closest device path. See
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_EC_RESOURCE_CONFLICT A resource conflict exists with
this instance’s resource
requirements.

See
EFI_RESOURCE_ALLOC_
FAILURE ERROR_DATA.

0x000A–0x0FFF Reserved for future use by this
specification for I/O Bus class
error codes.

NA

0x1000–0x7FFF See the subclass definitions
within this specification.

NA

0x8000–0xFFFF Reserved for OEM use. NA

Status Codes Platform Initialization Specification, Vol. 3

182 May 2017 Version 1.6

6.4.3.4 Subclasses

6.4.3.4.1 Defined Subclasses

The table below lists the subclasses in the . The following topics describe each subclass in more
detail.

See Subclass Definitions in section 6.7.3 for the definitions of these subclasses.

Table 46. Defined Subclasses: I/O Bus Class

Subclass Code Name Description

Unspecified EFI_IO_BUS_UNSPECIFIED The bus type is unknown,
undefined, or unspecified.

PCI EFI_IO_BUS_PCI The bus is a PCI bus.

USB EFI_IO_BUS_USB The bus is a USB bus.

InfiniBand* architecture EFI_IO_BUS_IBA The bus is an IBA bus.

AGP EFI_IO_BUS_AGP The bus is an AGP bus.

PC card EFI_IO_BUS_PC_CARD The bus is a PC Card bus.

Low pin count (LPC) EFI_IO_BUS_LPC The bus is a LPC bus.

SCSI EFI_IO_BUS_SCSI The bus is a SCSI bus.

ATA/ATAPI/SATA EFI_IO_BUS_ATA_ATAPI The bus is a ATA/ATAPI bus.

Fibre Channel EFI_IO_BUS_FC The bus is an EC bus.

IP network EFI_IO_BUS_IP_NETWORK The bus is an IP network bus.

SMBus EFI_IO_BUS_SMBUS The bus is a SMBUS bus.

I2C EFI_IO_BUS_I2C The bus is an I2C bus.

0x0D–0x7F Reserved for future use by this
specification.

0x80–0xFF Reserved for OEM use.

6.4.3.4.2 Unspecified Subclass

This subclass applies to any I/O bus not belonging to any of the other I/O bus subclasses.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 47. Progress and Error Code Operations: I/O Bus Unspecified Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 183

Related Definitions
None.

6.4.3.4.3 PCI Subclass

This subclass applies to PCI buses and devices. It also includes different variations of PCI bus
including PCI-X and PCI Express.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 48. Progress and Error Code Operations: PCI Subclass

Type of
Code

Operation Description Extended Data

Progress EFI_IOB_PCI_BUS_ENUM Enumerating buses
under a root bridge.

The device path corresponding to the PCI root
bridge. See EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_PCI_RES_ALLO
C

Allocating
resources to
devices under a
host bridge.

The host bridge handle as defined in
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_IOB_PCI_HPC_INIT Initializing a PCI
hot-plug controller.

The device path to the controller as defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1003–0x7FFF Reserved for future
use by this
specification.

NA

Error EFI_IOB_PCI_EC_PERR Parity error; see
PCI Specification.

The device path to the controller that generated
the PERR. The data format is defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

EFI_IOB_PCI_EC_SERR System error; see
PCI Specification.

The device path to the controller that generated
the SERR. The data format is defined in
EFI_DEVICE_PATH_
EXTENDED_DATA.

0x1002–0x7FFF Reserved for future
use by this
specification.

NA

Status Codes Platform Initialization Specification, Vol. 3

184 May 2017 Version 1.6

Related Definitions
See the following topics in section 6.7.2 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.3 for definitions of the extended error data listed above.

6.4.3.5 USB Subclass
This subclass applies to USB buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 49. Progress and Error Code Operations: USB Subclass

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.1 InfiniBand* Architecture Subclass

This subclass applies to InfiniBand* (IBA) buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 50. Progress and Error Code Operations: IBA Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 185

6.4.3.5.2 AGP Subclass

This subclass applies to AGP buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 51. Progress and Error Code Operations: AGP Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.3 PC Card Subclass

This subclass applies to PC Card buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 52. Progress and Error Code Operations: PC Card Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.4 LPC Subclass

This subclass applies to LPC buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Status Codes Platform Initialization Specification, Vol. 3

186 May 2017 Version 1.6

Table 53. Progress and Error Code Operations: LPC Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.5 SCSI Subclass

This subclass applies to SCSI buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 54. Progress and Error Code Operations: SCSI Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.6 ATA/ATAPI/SATA Subclass

This subclass applies to ATA and ATAPI buses and devices. It also includes Serial ATA (SATA)
buses.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 55. Progress and Error Code Operations: ATA/ATAPI/SATA Subclass

Type of
code

Operation Description Extend
ed data

Progress EFI_IOB_ATA_BUS_SMART_ENABLE SMART is enabled on the
storage device

NA

EFI_IOB_ATA_BUS_SMART_DISABLE SMART is disabled on the
storage device

NA

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 187

Related Definitions
None.

6.4.3.5.7 Fibre Channel (FC) Subclass

This subclass applies to Fibre Channel buses and devices.

See Subclass Definitions in section 6.7.3for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 56. Progress and Error Code Operations: FC Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.8 IP Network Subclass

This subclass applies to IP network buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

EFI_IOB_ATA_BUS_SMART_OVERTHRESHOLD SMART records are over
threshold on the storage
device

NA

EFI_IOB_ATA_BUS_SMART_UNDERTHRESHOLD SMART records are under
threshold on the storage
device

NA

0x1004–0x7FFF Reserved for future use by
this specification.

NA

Error EFI_IOB_ATA_BUS_SMART_NOTSUPPORTED SMART is not supported on
the storage device

NA

EFI_IOB_ATA_BUS_SMART_DISABLED SMART is disabled on the
storage device

NA

0x1002–0x7FFF Reserved for future use by
this specification.

NA

Type of
code

Operation Description Extend
ed data

Status Codes Platform Initialization Specification, Vol. 3

188 May 2017 Version 1.6

Table 57. Progress and Error Code Operations: IP Network Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.9 3SMBus Subclass

This subclass applies to SMBus buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 58. Progress and Error Code Operations: SMBus Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.4.3.5.10 I2C Subclass

This subclass applies to I2C buses and devices.

See Subclass Definitions in section 6.7.3 for the definition of this subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the I/O Bus class, the
table below lists the additional codes for this subclass.

Table 59. Progress and Error Code Operations: I2C Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 189

6.5 Software Classes

6.5.1 Host Software Class
The Host Software class covers any software-generated codes. Subclass elements correspond to
common software types in a PI Architecture system. See the following for the Host Software class:

• Instance Number

• Progress Code Operations

• rror Code Operations

• Defined Subclasses

6.5.2 Instance Number
The instance number is not used for software subclasses unless otherwise stated.

6.5.3 Progress Code Operations
All host software subclasses share the operation codes listed in the table below. See Progress Code
Definitions in section 6.7.4 for the definitions of these progress codes.

Table 60. Progress Code Operations: Host Software Class

Operation Description Extended Data

EFI_SW_PC_INIT General initialization. No details
regarding operation are made
available.

None.

EFI_SW_PC_LOAD Loading a software module in the
preboot phase by using LoadImage()
or an equivalent PEI service. May
include a PEIM, DXE drivers, UEFI
application, etc.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_INIT_BEGIN Initializing software module by using
StartImage() or an equivalent PEI
service.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_INIT_END Software module returned control
back after initialization.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_
EXTENDED_DATA.

EFI_SW_PC_
AUTHENTICATE_BEGIN

Performing authentication
(passwords, biometrics, etc.).

None.

Status Codes Platform Initialization Specification, Vol. 3

190 May 2017 Version 1.6

6.5.4 Error Code Operations
All host software subclasses share the error codes listed in the table below. See Error Code
Definitions in section 6.7.4 for the definitions of these progress codes.

Table 61. Error Code Operations: Host Software Class

EFI_SW_PC_
AUTHENTICATE_END

Authentication completed. None.

EFI_SW_PC_INPUT_WAIT Waiting for user input. None.

EFI_SW_PC_USER_SETU
P

Executing user setup. None.

0x0008–0x0FFF Reserved for future use by this
specification for Host Software class
progress codes.

NA

0x1000–0x7FFF Reserved for subclass use. See the
subclass definitions within this
specification for value definitions.

NA

0x8000–0xFFFF Reserved for OEM use. NA

Operation Description Extended Data

EFI_SW_EC_NON_SPECIFIC No error details are available. None

EFI_SW_EC_LOAD_ERROR The software module load failed. Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_EXTENDED
_
DATA.

EFI_SW_EC_INVALID_
PARAMETER

An invalid parameter was passed
to the instance.

None.

EFI_SW_EC_UNSUPPORTED An unsupported operation was
requested.

None.

EFI_SW_EC_INVALID_BUFF
ER

The instance encountered an
invalid buffer (too large, small, or
nonexistent).

None.

EFI_SW_EC_OUT_OF_
RESOURCES

Insufficient resources exist. None.

EFI_SW_EC_ABORTED The instance was aborted. None.

EFI_SW_EC_ILLEGAL_
SOFTWARE_STATE

The instance detected an illegal
software state.

 See EFI_DEBUG_ ASSERT_DATA

EFI_SW_EC_ILLEGAL_
HARDWARE_STATE

The instance detected an illegal
hardware state.

None.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 191

6.5.5 Subclasses

6.5.5.1 Defined Subclasses
The table below lists the subclasses in the Host Software class. The following topics describe each
subclass in more detail.

See Subclass Definitions in section 6.7.4 for the definitions of these subclasses.

EFI_SW_EC_START_ERROR The software module returned an
error when started via StartImage()
or equivalent.

Handle identifying the module. There
will be an instance of
EFI_LOADED_IMAGE_PROTOCOL
on this handle. See
EFI_DEVICE_HANDLE_EXTENDED
_
DATA.

EFI_SW_EC_BAD_DATE_TIM
E

The system date/time is invalid None.

EFI_SW_EC_CFG_INVALID Invalid configuration settings were
detected.

None.

EFI_SW_EC_CFG_CLR_
REQUEST

User requested that configuration
defaults be loaded (via a physical
jumper, for example).

None.

EFI_SW_EC_CFG_DEFAULT Configuration defaults were
loaded.

None.

EFI_SW_EC_PWD_INVALID Invalid password settings were
detected.

None.

EFI_SW_EC_PWD_CLR_
REQUEST

User requested that the passwords
be cleared (via a physical jumper,
for example).

None.

EFI_SW_EC_PWD_CLEARED Passwords were cleared. None.

EFI_SW_EC_EVENT_LOG_
FULL

System event log is full. None.

0x0012–0x00FF Reserved for future use by this
specification for Host Software
class error codes.

None.

0x0100–0x01FF Unexpected EBC exceptions. See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0200–0x02FF Unexpected IA-32 processor
exceptions.

See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0300–0x03FF Unexpected Itanium® processor
family exceptions.

See EFI_STATUS_CODE_EXCEP_
EXTENDED_DATA.

0x0400–0x7FFF See the subclass definitions within
this specification.

0x8000–0xFFFF Reserved for OEM use.

Operation Description Extended Data

Status Codes Platform Initialization Specification, Vol. 3

192 May 2017 Version 1.6

Table 62. Defined Subclasses: Host Software Class

Subclass Code Name Description

Unspecified EFI_SOFTWARE_UNSPECIFIED The software type is unknown, undefined,
or unspecified.

Security (SEC) EFI_SOFTWARE_SEC The software is a part of the SEC phase.

PEI Foundation EFI_SOFTWARE_PEI_CORE The software is the PEI Foundation
module.

PEI module EFI_SOFTWARE_PEI_MODULE The software is a PEIM.

DXE Foundation EFI_SOFTWARE_DXE_CORE The software is the DXE Foundation
module.

DXE Boot
Service driver

EFI_SOFTWARE_DXE_BS_DRIVER The software is a DXE Boot Service driver.
Boot service drivers are not available once
ExitBootServices() is called.

DXE Runtime
Service driver

EFI_SOFTWARE_DXE_RT_DRIVER The software is a DXE Runtime Service
driver. These drivers execute during
runtime phase.

SMM driver EFI_SOFTWARE_SMM_DRIVER The software is a SMM driver.

EFI application EFI_SOFTWARE_EFI_APPLICATION The software is a UEFI application.

OS loader EFI_SOFTWARE_EFI_OS_LOADER The software is an OS loader.

Runtime (RT) EFI_SOFTWARE_EFI_RT The software is a part of the RT phase.

EBC exception EFI_SOFTWARE_EBC_EXCEPTION The status code is directly related to an
EBC exception.

IA-32 exception EFI_SOFTWARE_IA32_EXCEPTION The status code is directly related to an IA-
32 exception.

Itanium®
processor family
exception

EFI_SOFTWARE_IPF_EXCEPTION The status code is directly related to an
Itanium processor family exception.

x64 software
exception

EFI_SOFTWARE_X64_EXCEPTION The status code is directly related to anx64
exception.

ARM software
exception

EFI_SOFTWARE_ARM_EXCEPTION The status code is directly related to an
ARM exception whilst executing in
AArch32 state

ARM AArch64
exception

EFI_SOFTWARE_AARCH64_EXCEPTION The status code is directly related to an
ARM exception whilst executing in
AArch64 state.

RISC-V software
exception

EFI_SOFTWARE_RISCV_EXCEPTION The status code is directly related to RISC-
V exception.

PEI Services EFI_SOFTWARE_PEI_SERVICE The status code is directly related to a PEI
Services function.

EFI Boot
Services

EFI_SOFTWARE_EFI_BOOT_SERVICE The status code is directly related to a
UEFI Boot Services function.

EFI Runtime
Services

EFI_SOFTWARE_EFI_RUNTIME_SERVIC
E

The status code is directly related to a
UEFI Runtime Services function.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 193

6.5.5.2 Unspecified Subclass
This subclass applies to any software entity not belonging to any of the other software subclasses. It
may also be used if the caller is unable to determine the exact subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 63. Progress and Error Code Operations: Host Software Unspecified Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.5.5.3 SEC Subclass
This subclass applies to the Security (SEC) phase in software.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. In most platforms, status code services may
be unavailable during the SEC phase.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 64. Progress and Error Code Operations: SEC Subclass

Type of
Code

Operation Description Extended Data

Progress EFI_SW_SEC_PC_ENTRY_POINT Entry point of the phase. None

EFI_SW_SEC_PC_HANDOFF_TO_NEXT Handing off to the next phase None

0x1002–0x7FFF Reserved for future use by
this specification.

Reserved for future
use by this
specification.

Error 0x1000–0x7FFF Reserved for future use by
this specification.

NA

DXE Services EFI_SOFTWARE_EFI_DXE_SERVICE The status code is directly related to a
DXE Services function.

0x13–0x7F Reserved for future use by this specification. NA

0x80–0xFF Reserved for OEM use. NA

Status Codes Platform Initialization Specification, Vol. 3

194 May 2017 Version 1.6

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

6.5.5.4 PEI Foundation Subclass
This subclass applies to the PEI Foundation. The PEI Foundation is responsible for starting and
ending the PEI phase as well as dispatching Pre-EFI Initialization Modules (PEIMs).

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 65. Progress and Error Code Operations: PEI Foundation Subclass

Type of
Code

Operation Description Extended
Data

Progres
s

EFI_SW_PEI_CORE_PC_ENTRY_POINT Entry point of the phase. None

EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT Handing off to the next phase
(DXE).

None

EFI_SW_PEI_CORE_PC_RETURN_TO_LAST Returning to the last phase. None

0x1003–0x7FFF Reserved for future use by this
specification.

NA

Error EFI_SW_PEI_CORE_EC_DXE_CORRUPT Unable to hand off to DXE
because the DXE Foundation
could not be found.

None

EFI_SW_PEI_CORE_EC_DXEIPL_NOT_FOUND DXE IPL PPI could not be
found.

None

EFI_SW_PEI_CORE_EC_MEMORY_NOT_INSTA
LLED

PEIM dispatching is over and
InstallPeiMemory() PEI
Service has not been called

None

0x1003–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.5.5.5 PEI Module Subclass
This subclass applies to Pre-EFI Initialization Modules (PEIMs).

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 195

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 66. Progress and Error Code Operations: PEI Module Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_PEI_PC_RECOVERY_BEGIN Crisis recovery has been
initiated.

NULL

EFI_SW_PEI_PC_CAPSULE_LOAD Found a recovery capsule.
About to load the recovery
capsule.

NULL

EFI_SW_PEI_PC_CAPSULE_START Loaded the recovery
capsule. About to hand off
control to the capsule.

NULL

EFI_SW_PEI_PC_RECOVERY_USER Recovery was forced by
the user via a jumper, for
example. Reported by the
PEIM that detects the
jumpers and updates the
boot mode.

NULL

EFI_SW_PEI_PC_RECOVERY_AUTO Recovery was forced by
the software based on
some policy. Reported by
the PEIM that updates the
boot mode to force
recovery.

NULL

EFI_SW_PEI_PC_S3_BOOT_SCRIPT S3 boot script execution NULL

EFI_SW_PEI_PC_OS_WAKE Calling OS S3 wake up
vector

NULL

0x1007–0x7FFF Reserved for future use by
this specification.

NULL

Error EFI_SW_PEI_EC_NO_RECOVERY_CAPSULE Unable to continue with
the crisis recovery
because no recovery
capsule was found.

NULL

EFI_SW_PEI_EC_INVALID_CAPSULE_DESCRIPT
OR

An invalid or corrupt
capsule descriptor was
detected.

NULL

EFI_SW_PEI_EC_S3_RESUME_PPI_NOT_FOUND S3 Resume PPI is not
found

NULL

EFI_SW_PEI_EC_S3_BOOT_SCRIPT_ERROR Error during boot script
execution

NULL

Status Codes Platform Initialization Specification, Vol. 3

196 May 2017 Version 1.6

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

6.5.5.6 DXE Foundation Subclass
This subclass applies to DXE Foundation software. The DXE Foundation is responsible for
providing core services, dispatching DXE drivers, and calling the Boot Device Selection (BDS)
phase.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 67. Progress and Error Code Operations: DXE Foundation Subclass

EFI_SW_PEI_EC_S3_OS_WAKE_ERROR Error related to the OS
wake up vector (no valid
vector found or vector
returned control back to
the firmware)

NULL

EFI_SW_PEI_EC_S3_RESUME_FAILED Unspecified S3 resume
failure

NULL

EFI_SW_PEI_EC_RECOVERY_PPI_NOT_FOUND Recovery failed because
Recovery Module PPI is
not found

NULL

EFI_SW_PEI_EC_RECOVERY_FAILED Unspecified Recovery
failure

NULL

0x1008–0x7FFF Reserved for future use by
this specification.

Type of
Code

Operation Description Extended Data

Progress EFI_SW_DXE_CORE_PC_ENTRY_POINT Entry point of the
phase.

None

EFI_SW_DXE_CORE_PC_HANDOFF
_TO_NEXT

Handing off to the next
phase (Runtime).

None

EFI_SW_DXE_CORE_PC_RETURN_
TO_LAST

Returning to the last
phase.

None

Type of
Code

Operation Description Extended
Data

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 197

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

See Extended Error Data in section 6.7.4 for definitions of the extended error data listed above.

6.5.5.7 DXE Boot Service Driver Subclass
This subclass applies to DXE boot service drivers. If a driver provides both boot services and
runtime services, it is considered a runtime service driver.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 68. Progress and Error Code Operations: DXE Boot Service Driver Subclass

EFI_SW_DXE_CORE_PC_START_DRIVER Calling the Start()
function of the
EFI_DRIVER_BINDIN
G Protocol.

See
EFI_STATUS_
CODE_START_
EXTENDED_DATA

EFI_SW_DXE_CORE_PC_ARCH_READY All architectural
protocols are available

None

0x1005–0x7FFF Reserved for future use
by this specification.

NA

Error EFI_SW_DXE_CORE_EC_NO_ARCH Driver dispatching is
over and some of the
architectural protocols
are not available

None

0x1001–0x7FFF Reserved for future use
by this specification.

NA

Type of
Code

Operation Description Extended Data

Progress EFI_SW_DXE_BS_PC_LEGACY_
OPROM_INIT

Initializing a legacy Option
ROM (OpROM).

See
EFI_LEGACY_OPR
OM_
EXTENDED_DATA
.

EFI_SW_DXE_BS_PC_READY_TO_
BOOT_EVENT

The
EFI_EVENT_GROUP_READ
Y_TO_BOOT event was
signaled. See the UEFI

Specification.

None

Status Codes Platform Initialization Specification, Vol. 3

198 May 2017 Version 1.6

EFI_SW_DXE_BS_PC_LEGACY_
BOOT_EVENT

The event with GUID
EFI_EVENT_LEGACY_BOO
T_GUID was signaled. See
the DXE CIS.

None

EFI_SW_DXE_BS_PC_EXIT_BOOT_
SERVICES_EVENT

The
EVT_SIGNAL_EXIT_BOOT_
SERVICES event was
signaled. See the UEFI
Specification.

None

EFI_SW_DXE_BS_PC_VIRTUAL_
ADDRESS_CHANGE_EVENT

The
EVT_SIGNAL_VIRTUAL_AD
DRESS_CHANGE event
was signaled. See the UEFI
Specification.

None

0x1000–0x7FFF Reserved for future use by
this specification.

NA

Error EFI_SW_DXE_BS_EC_LEGACY_
OPROM_NO_SPACE

Not enough memory
available to shadow a legacy
option ROM.

See
EFI_LEGACY_OPR
OM_
EXTENDED_DATA
. RomImageBase
corresponds to the
ROM image in the
regular memory as
opposed to shadow
RAM.

EFI_SW_DXE_BS_EC_INVALID_PASS
WORD

Invalid password has been
provided

None

EFI_SW_DXE_BS_EC_BOOT_OPTIO
N_LOAD_ERROR

Error during boot option
loading (LoadImage returned
error)

EFI_SW_DXE_BS_EC_BOOT_OPTIO
N_FAILED

Error during boot option
launch (StartImage returned
error)

EFI_SW_DXE_BS_EC_INVALID_IDE_
PASSWORD

Invalid hard driver password
has been provided

None

Progress EFI_SW_DXE_BS_PC_ATTEMPT_BO

OT_ORDER_EVENT

Attempting boot from

options defined in the

BootOrder list

None

0x1005–0x7FFF Reserved for future use by
this specification.

NA

Type of
Code

Operation Description Extended Data

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 199

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

• Error Code Definitions

See Extended Error Data in section 6.7.4 for definitions of the extended error data listed above.

6.5.5.8 DXE Runtime Service Driver Subclass
This subclass applies to DXE runtime service drivers.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 69. Progress and Error Code Operations: DXE Runtime Service Driver Subclass

Type of
Code

Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.5.5.9 SMM Driver Subclass
This subclass applies to SMM code.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 70. Progress and Error Code Operations: SMM Driver Subclass

Type of Code Operation Description Extended Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.5.5.10 EFI Application Subclass
This subclass applies to UEFI applications.

Status Codes Platform Initialization Specification, Vol. 3

200 May 2017 Version 1.6

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 71. Progress and Error Code Operations: UEFI Application Subclass

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.5.5.11 OS Loader Subclass
This subclass applies to any OS loader application. Although OS loaders are UEFI applications, they
are very special cases and merit a separate subclass.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

Table 72. Progress and Error Code Operations: OS Loader Subclass

Type of Code Operation Description Extended
Data

Progress 0x1000–0x7FFF Reserved for future use by this specification. NA

Error 0x1000–0x7FFF Reserved for future use by this specification. NA

Related Definitions
None.

6.5.6 Runtime (RT) Subclass
This subclass applies to runtime software. Runtime software is made up of the UEFI-aware
operating system and the non-UEFI software running under the operating system environment.
Other firmware components, such as SAL code or ASL code, are also executing during this phase
but cannot call a UEFI runtime service. Hence no codes are reserved for them.

Progress and Error Code Operations
• In addition to the standard progress and error codes that are defined for the Host Software class,

the table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 201

Table 73. Progress and Error Code Operations: Runtime Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_RT_PC_ENTRY_POINT Entry point of the phase. None

EFI_SW_RT_PC_RETURN_TO_LAST Returning to the last phase. None

EFI_SW_RT_PC_HANDOFF_TO_NEXT

0x1003–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

6.5.6.1 PEI Services Subclass
This subclass applies to any PEI Service present in the PEI Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the code
that provides the specified boot service and not by the module that invokes the given boot service.

Many of the descriptions below refer to the Platform Initialization Pre-EFI Initialization Core
Interface Specification, or PEI CIS. Also, see "Related Definitions" below for links to the definitions
of code listed in this table.

Table 74. Progress and Error Code Operations: PEI Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_PS_PC_INSTALL_PPI Install a PPI. See the PEI CIS. None.

EFI_SW_PS_PC_REINSTALL_PPI Reinstall a PPI. See the PEI
CIS.

None.

EFI_SW_PS_PC_LOCATE_PPI Locate an existing PPI. See the
PEI CIS.

None.

EFI_SW_PS_PC_NOTIFY_PPI Install a notification callback.
See the PEI CIS.

None.

EFI_SW_PS_PC_GET_BOOT_MODE Get the current boot mode. See
the PEI CIS.

None.

EFI_SW_PS_PC_SET_BOOT_MODE Set the current boot mode. See
the PEI CIS.

None.

EFI_SW_PS_PC_GET_HOB_LIST Get the HOB list. See the PEI
CIS.

None.

Status Codes Platform Initialization Specification, Vol. 3

202 May 2017 Version 1.6

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

EFI_SW_PS_PC_CREATE_HOB Create a HOB. See the PEI CIS. None.

Progress
(cont.)

EFI_SW_PS_PC_FFS_FIND_
NEXT_VOLUME

Find the next FFS formatted
firmware volume. See the PEI
CIS.

None.

EFI_SW_PS_PC_FFS_FIND_NEXT_
FILE

Find the next FFS file. See the
PEI CIS.

None

EFI_SW_PS_PC_FFS_FIND_
SECTION_DATA

Find a section in an FFS file.
See the PEI CIS.

None.

EFI_SW_PS_PC_INSTALL_PEI_ MEMORY Install the PEI memory. See the
PEI CIS.

None.

EFI_SW_PS_PC_ALLOCATE_PAGES Allocate pages from the memory
heap. See the PEI CIS.

None.

EFI_SW_PS_PC_ALLOCATE_POOL Allocate from the memory heap.
See the PEI CIS.

None.

EFI_SW_PS_PC_COPY_MEM Copy memory. See the PEI CIS. None

EFI_SW_PS_PC_SET_MEM Set a memory range to a specific
value. See the PEI CIS.

None.

EFI_SW_PS_PC_RESET_SYSTEM System reset. See the PEI CIS. None

EFI_SW_PS_PC_FFS_FIND_FILE_BY_NAME Find a file in a firmware volume
by name. See the PEI CIS.

None

EFI_SW_PS_PC_FFS_GET_FILE_INFO Get information about a file in a
firmware volume. See the PEI
CIS.

None

EFI_SW_PS_PC_FFS_GET_VOLUME_INFO Get information about a firmware

volume. See the PEI CIS.
None

EFI_SW_PS_PC_FFS_REGISTER_FOR_SHA
DOW

Register a module to be
shadowed after permanent
memory is discovered. See the
PEI CIS.

None

0x1017-0x7fff Reserved for future use by this
specification.

NA

Error EFI_SW_PS_EC_RESET_NOT_AVAILABLE ResetSystem() PEI Service is
failed because Reset PPI is not
available

None

EFI_SW_PS_EC_MEMORY_INSTALLED_TW
ICE

InstallPeiMemory() PEI Service
is called more than once

None

0x1002–0x7FFF Reserved for future use by this
specification.

NA

Type of
Code

Operation Description Extended
Data

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 203

• Progress Code Definitions

6.5.6.2 Boot Services Subclass
This subclass applies to any boot service present in the UEFI Boot Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. These progress codes are reported by the code
that provides the specified boot service and not by the module that invokes the given boot service.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 75. Progress and Error Code Operations: Boot Services Subclass

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_BS_PC_RAISE_TPL Raise the task priority level service;
see UEFI Specification. This code
is an invalid operation because the
status code driver uses this boot
service. The status code driver
cannot report its own status codes.

None.

EFI_SW_BS_PC_RESTORE_TPL Restore the task priority level
service; see UEFI Specification.
This code is an invalid operation
because the status code driver
uses this boot service. The status
code driver cannot report its own
status codes.

None.

EFI_SW_BS_PC_ALLOCATE_PAGE Allocate page service; see UEFI
Specification.

None.

EFI_SW_BS_PC_FREE_PAGES Free page service; see UEFI
Specification.

None.

EFI_SW_BS_PC_GET_MEMORY_MAP Get memory map service; see UEFI
Specification.

None.

EFI_SW_BS_PC_ALLOCATE_POOL Allocate pool service; see UEFI
Specification.

None.

EFI_SW_BS_PC_FREE_POOL Free pool service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CREATE_EVENT CreateEvent service; see UEFI
Specification.

None.

EFI_SW_BS_PC_SET_TIMER Set timer service; see UEFI
Specification.

None.

EFI_SW_BS_PC_WAIT_FOR_EVENT Wait for event service; see UEFI
Specification.

None.

Status Codes Platform Initialization Specification, Vol. 3

204 May 2017 Version 1.6

Progress
(cont.)

EFI_SW_BS_PC_SIGNAL_EVENT Signal event service; see UEFI
Specification. This code is an
invalid operation because the
status code driver uses this boot
service. The status code driver
cannot report its own status codes.

None.

EFI_SW_BS_PC_CLOSE_EVENT Close event service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CHECK_EVENT Check event service; see UEFI
Specification.

None.

EFI_SW_BS_PC_INSTALL_
PROTOCOL_INTERFACE

Install protocol interface service;
see UEFI Specification.

None.

EFI_SW_BS_PC_REINSTALL_
PROTOCOL_INTERFACE

Reinstall protocol interface service;
see UEFI Specification.

None.

EFI_SW_BS_PC_UNINSTALL_
PROTOCOL_INTERFACE

Uninstall protocol interface service;
see UEFI Specification.

None.

EFI_SW_BS_PC_HANDLE_
PROTOCOL

Handle protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_PC_HANDLE_
PROTOCOL

PC handle protocol service; see
UEFI Specification.

None.

EFI_SW_BS_PC_REGISTER_
PROTOCOL_ NOTIFY

Register protocol notify service; see
UEFI Specification.

None.

EFI_SW_BS_PC_LOCATE_HANDLE Locate handle service; see UEFI
Specification.

None.

EFI_SW_BS_PC_INSTALL_
CONFIGURATION_TABLE

Install configuration table service;
see UEFI Specification.

None.

EFI_SW_BS_PC_LOAD_IMAGE Load image service; see UEFI
Specification.

None.

EFI_SW_BS_PC_START_IMAGE Start image service; see UEFI
Specification.

None.

EFI_SW_BS_PC_EXIT Exit service; see UEFI
Specification.

None.

EFI_SW_BS_PC_UNLOAD_IMAGE Unload image service; see UEFI
Specification.

None.

EFI_SW_BS_PC_EXIT_BOOT_
SERVICES

Exit boot services service; see
UEFI Specification.

None.

EFI_SW_BS_PC_GET_NEXT_
MONOTONIC_COUNT

Get next monotonic count service;
see UEFI Specification.

None.

EFI_SW_BS_PC_STALL Stall service; see UEFI
Specification.

None.

EFI_SW_BS_PC_SET_WATCHDOG_
TIMER

Set watchdog timer service; see
UEFI Specification.

None.

Type of
Code

Operation Description Extended
Data

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 205

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

EFI_SW_BS_PC_CONNECT_
CONTROLLER

Connect controller service; see
UEFI Specification.

None.

Progress
(cont.)

EFI_SW_BS_PC_DISCONNECT_
CONTROLLER

Disconnect controller service; see
UEFI Specification.

None.

EFI_SW_BS_PC_OPEN_PROTOCOL Open protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CLOSE_PROTOCOL Close protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_OPEN_PROTOCOL_
INFORMATION

Open protocol Information service;
see UEFI Specification.

None.

EFI_SW_BS_PC_PROTOCOLS_PER_
HANDLE

Protocols per handle service; see
UEFI Specification.

None.

EFI_SW_BS_PC_LOCATE_HANDLE_
BUFFER

Locate handle buffer service; see
UEFI Specification.

None.

EFI_SW_BS_PC_LOCATE_PROTOCOL Locate protocol service; see UEFI
Specification.

None.

EFI_SW_BS_PC_INSTALL_MULTIPLE_
PROTOCOL_INTERFACES

Install multiple protocol interfaces
service; see UEFI Specification.

None.

EFI_SW_BS_PC_UNINSTALL_
MULTIPLE_PROTOCOL_INTERFACES

Uninstall multiple protocol
interfaces service; see UEFI
Specification.

None.

EFI_SW_BS_PC_CALCULATE_
CRC_32

Calculate CRC32 service; see UEFI
Specification.

None.

EFI_SW_BS_PC_COPY_MEM Copy memory; see UEFI
Specification.

None.

EFI_SW_BS_PC_SET_MEM Set memory to a specific value; see
UEFI Specification.

None.

EFI_SW_BS_PC_CREATE_EVENT_EX Create an event and, optionally,
associate it with an event group.
See the UEFI Specification.

None.

0x102b-0x7fff Reserved for future use by this
specification.

NA.

Error 0x1000 – 0x7FFF Reserved for future use by this
specification.

NA.

Type of
Code

Operation Description Extended
Data

Status Codes Platform Initialization Specification, Vol. 3

206 May 2017 Version 1.6

6.5.6.3 Runtime Services Subclass
This subclass applies to any runtime service present in the UEFI Runtime Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass. For obvious reasons, the runtime service
ReportStatusCode() cannot report status codes related to the progress of the
ReportStatusCode() function.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 76. Progress and Error Code Operations: Runtime Services Subclass

Type of
Code

Operation Description Extende
d Data

Progress EFI_SW_RS_PC_GET_TIME Get time service; see UEFI
Specification.

None.

EFI_SW_RS_PC_SET_TIME Set time service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_WAKEUP_TIME Get wakeup time service; see UEFI
Specification.

None

EFI_SW_RS_PC_SET_WAKEUP_TIME Set wakeup time service; see UEFI
Specification.

None

EFI_SW_RS_PC_SET_VIRTUAL_
ADDRESS_MAP

Set virtual address map service; see
UEFI Specification.

None

EFI_SW_RS_PC_CONVERT_POINTER Convert pointer service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_ VARIABLE Get variable service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_NEXT_
VARIABLE_NAME

Get next variable name service; see
UEFI Specification.

None

EFI_SW_RS_PC_SET_VARIABLE Set variable service; see UEFI
Specification.

None

EFI_SW_RS_PC_GET_NEXT_HIGH_
MONOTONIC_COUNT

Get next high monotonic count service;
see UEFI Specification.

None

EFI_SW_RS_PC_RESET_SYSTEM Reset system service; see UEFI
Specification.

None

EFI_SW_RS_PC_UPDATE_CAPSULE Update a capsule. See the UEFI
Specification.

None

EFI_SW_RS_PC_QUERY_CAPSULE_C
APABILITIES

Query firmware support for capsulate
capabilities. See the UEFI specification.

None

EFI_SW_RS_PC_QUERY_VARIABLE_I
NFO

Query firmware support for EFI
variables. See the UEFI specification.

None

0x100E Reserved for future use by this
specification.

NA

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 207

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

• Progress Code Definitions

6.5.6.4 DXE Services Subclass
This subclass applies to any DXE Service that present in the UEFI DXE Services Table.

Progress and Error Code Operations
In addition to the standard progress and error codes that are defined for the Host Software class, the
table below lists the additional codes for this subclass.

See "Related Definitions" below for links to the definitions of code listed in this table.

Table 77. Progress and Error Code Operations: DXE Services Subclass

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Type of
Code

Operation Description Extended
Data

Progress EFI_SW_DS_PC_ADD_
MEMORY_SPACE

Add memory to GCD. See DXE
CIS.

None

EFI_SW_DS_PC_ALLOCATE_MEMORY_
SPACE

Allocate memory from GCD. See
DXE CIS.

None

EFI_SW_DS_PC_FREE_MEMORY_SPACE Free memory from GCD. See
DXE CIS.

None

EFI_SW_DS_PC_REMOVE_MEMORY_
SPACE

Remove memory from GCD. See
DXE CIS.

None

EFI_SW_DS_PC_GET_MEMORY_SPACE_
DESCRIPTOR

Get memory descriptor from GCD.
See DXE CIS.

None

EFI_SW_DS_PC_SET_MEMORY_SPACE_
ATTRIBUTES

Set attributes of memory in GCD.
See DXE CIS.

None

EFI_SW_DS_PC_GET_MEMORY_SPACE_
MAP

Get map of memory space from
GCD. See DXE CIS.

None

EFI_SW_DS_PC_ADD_IO_SPACE Add I/O to GCD. See DXE CIS. None

EFI_SW_DS_PC_ALLOCATE_IO_SPACE Allocate I/O from GCD. See DXE
CIS.

None

EFI_SW_DS_PC_FREE_IO_SPACE Free I/O from GCD. See DXE CIS. None

EFI_SW_DS_PC_REMOVE_IO_SPACE Remove I/O space from GCD.
See DXE CIS.

None

EFI_SW_DS_PC_GET_IO_SPACE_
DESCRIPTOR

Get I/O space descriptor from
GCD. See DXE CIS.

None

EFI_SW_DS_PC_GET_IO_SPACE_MAP Get map of I/O space from the
GCD. See DXE CIS.

None

Status Codes Platform Initialization Specification, Vol. 3

208 May 2017 Version 1.6

Related Definitions
See the following topic in section 6.7.4 for definitions of the subclass-specific operations listed
above:

Progress Code Definitions

6.6 Code Definitions
This section provides the code definitions for the following data types and structures for status
codes:

• Data structures and types that are common to all status codes

• Progress, error, and debug codes that are common to all classes

• Class definitions

• Subclass definitions for each status code class

• Extended error data

This section defines the data structures that are common to all status codes. For class- and subclass-
specific information, see section 6.7.

6.6.1 Data Structures
See the ReportStatusCode() declaration in Volume 2 of this specification for definitions and
details on the following basic data structures:

• EFI_STATUS_CODE_TYPE and defined severities

• EFI_PROGRESS_CODE

• EFI_ERROR_CODE

• EFI_DEBUG_CODE

• EFI_STATUS_CODE_VALUE

EFI_SW_DS_PC_DISPATCH Dispatch DXE drivers from a
firmware volume. See DXE CIS.

None

EFI_SW_DS_PC_SCHEDULE Clear the schedule on request flag
for a driver. See DXE CIS.

None

EFI_SW_DS_PC_TRUST Promote a file to trusted state.
See DXE CIS.

None

EFI_SW_DS_PC_PROCESS_FIRMWARE_
VOLUME

Dispatch all drivers in a firmware
volume. See DXE CIS.

None

0x1011–0x7FFF Reserved for future use by this
specification.

NA

Error 0x1000–0x7FFF Reserved for future use by this
specification.

NA

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 209

6.6.2 Extended Data Header

EFI_STATUS_CODE_DATA

Summary
The definition of the status code extended data header. The data will follow HeaderSize bytes
from the beginning of the structure and is Size bytes long.

Related Definitions
typedef struct {
 UINT16 HeaderSize;
 UINT16 Size;
 EFI_GUID Type;
} EFI_STATUS_CODE_DATA;

Parameters
HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data. The standard GUIDs and their associated
data structures are defined in this specification.

Description
The status code information may be accompanied by optional extended data. The extended data
begins with a header. The header contains a Type field that represents the format of the extended
data following the header. This specification defines two GUIDs and their meaning. If these GUIDs
are used, the extended data contents must follow this specification. Extended data formats that are
not compliant with this specification are permitted, but they must use different GUIDs. The format
of the extended data header is defined in Platform Initialization DXE CIS, but it is duplicated here
for convenience.

Status Codes Platform Initialization Specification, Vol. 3

210 May 2017 Version 1.6

 EFI_STATUS_CODE_DATA_TYPE_STRING_GUID

Summary
Defines a string type of extended data.

GUID
 #define EFI_STATUS_CODE_DATA_TYPE_STRING_GUID \
 { 0x92D11080, 0x496F, 0x4D95, 0xBE, 0x7E, 0x03, 0x74, \
 0x88, 0x38, 0x2B, 0x0A }

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STRING_TYPE StringType;
 EFI_STATUS_CODE_STRING String;
} EFI_STATUS_CODE_STRING_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_STRING_DATA) – HeaderSize, and
DataHeader.Type should be
EFI_STATUS_CODE_DATA_TYPE_STRING_GUID.

StringType

Specifies the format of the data in String. Type EFI_STRING_TYPE is defined in
"Related Definitions" below.

String

A pointer to the extended data. The data follows the format specified by
StringType. Type EFI_STRING_TYPE is defined in "Related Definitions"
below.

Description
This data type defines a string type of extended data. A string can accompany any status code. The
string can provide additional information about the status code. The string can be ASCII, Unicode,
or a Human Interface Infrastructure (HII) token/GUID pair.

Related Definitions
//**
// EFI_STRING_TYPE
//**

typedef enum {
 EfiStringAscii,

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 211

 EfiStringUnicode,
 EfiStringToken
} EFI_STRING_TYPE;

EfiStringAscii

A NULL-terminated ASCII string.

EfiStringUnicode

A double NULL-terminated Unicode string.

EfiStringToken

An EFI_STATUS_CODE_STRING_TOKEN representing the string. The actual
string can be obtained by querying the HII database.

//**
// EFI_STATUS_CODE_STRING_TOKEN
//**

//
// HII string token
//
typedef struct {
 EFI_HII_HANDLE Handle;
 EFI_STRING_ID Token;
} EFI_STATUS_CODE_STRING_TOKEN;

Handle

The HII package list which contains the string. Handle is a dynamic value that may
not be the same for different boots. Type EFI_HII_HANDLE is defined in
EFI_HII_DATABASE_PROTOCOL.NewPackageList() in the UEFI
Specification.

Token

When combined with Handle, the string token can be used to retrieve the string.
Type EFI_STRING_ID is defined in EFI_IFR_OP_HEADER in the UEFI
Specification.

//**
// EFI_STATUS_CODE_STRING
//**

//
// String structure
//
typedef union {
 CHAR8 *Ascii;

Status Codes Platform Initialization Specification, Vol. 3

212 May 2017 Version 1.6

 CHAR16 *Unicode;
 EFI_STATUS_CODE_STRING_TOKEN Hii;
} EFI_STATUS_CODE_STRING;

Ascii

ASCII formatted string.

Unicode

Unicode formatted string.

Hii

HII handle/token pair. Type EFI_STATUS_CODE_STRING_TOKEN is defined
above.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 213

EFI_STATUS_CODE_SPECIFIC_DATA_GUID

Summary
Indicates that the format of the accompanying data depends upon the status code value but follows
this specification.

GUID
#define EFI_STATUS_CODE_SPECIFIC_DATA_GUID \
 {0x335984bd,0xe805,0x409a,0xb8,0xf8,0xd2,0x7e, \
 0xce,0x5f,0xf7,0xa6}

Description
This GUID indicates that the format of the accompanying data depends upon the status code value
but follows this specification. This specification defines the format of the extended data for several
status code values. For example, EFI_DEBUG_ASSERT_DATA defines the extended error data for
the error code EFI_SW_EC_ILLEGAL_SOFTWARE_STATE. The agent reporting this error
condition can use this GUID if the extended data follows the format defined in
EFI_DEBUG_ASSERT_DATA.

If the consumer of the status code detects this GUID, it must look up the status code value to
correctly interpret the contents of the extended data.

This specification declares certain ranges of status code values as OEM specific. Because this
specification does not define the meaning of status codes in these ranges, the extended data for these
cannot use this GUID. The OEM defining the meaning of the status codes is responsible for defining
the GUID that is to be used for associated extended data.

6.6.3 Enumeration Schemes

6.6.3.1 Operation Code Enumeration Scheme

Summary
All operation codes (regardless of class and subclass) use the progress code partitioning scheme
listed in the table below.

Table 78. Progress Code Enumeration Scheme

Operation Description

0x0000–0x0FFF These operation codes are common to all the subclasses in a given class.
These values are used to represent operations that are common to all
subclasses in a given class. For example, all the I/O buses in the I/O Bus
subclasses share an operation code that represents the reset operation, which
is a common operation for most buses. It is possible that certain operation
codes in this range will not be applicable to certain subclasses. It is also
possible that the format of the extended data will vary from one subclass to
another. If the subclass does not define the format of the extended data,
extended data is not required.
These codes are reserved by this specification.

Status Codes Platform Initialization Specification, Vol. 3

214 May 2017 Version 1.6

Prototype
//
// General partitioning scheme for Progress and Error Codes
// 0x0000-0x0FFF - Shared by all subclasses in a given class
// 0x1000-0x7FFF - Subclass Specific
// 0x8000-0xFFFF - OEM specific
//
#define EFI_SUBCLASS_SPECIFIC 0x1000
#define EFI_OEM_SPECIFIC 0x8000

6.6.3.2 Debug Code Enumeration Scheme

Summary
All classes share these debug operation codes. It is not currently expected that operation codes have
a lot of meaning for debug information. Only one debug code is currently defined by this
specification and it is shared by all classes and subclasses.

Table 79. Debug Code Enumeration Scheme

Debug Code Description

0x0000–0x7FFF Reserved for future use by this specification.

0x8000–0xFFFF Reserved for OEM use.

Prototype
//
// Debug Code definitions for all classes and subclass
// Only one debug code is defined at this point and should
// be used for anything that gets sent to debug stream.
//
#define EFI_DC_UNSPECIFIED 0x0

6.6.4 Common Extended Data Formats
This section specifies formats for the extended data included in a variety of status codes.

0x1000–0x7FFF These operation codes are specific to the subclass and represent operations
that are specific to the subclass. These codes are reserved by this
specification.

0x8000–0xFFFF Reserved for OEM use.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 215

EFI_DEVICE_PATH_EXTENDED_DATA

Summary
Extended data about the device path, which is used for many errors and progress codes to point to
the device.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 // EFI_DEVICE_PATH_PROTOCOL DevicePath;
} EFI_DEVICE_PATH_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA). DataHeader.Size should be the size
of variable-length DevicePath, and DataHeader.Size is zero for a virtual
device that does not have a device path. DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

DevicePath

The device path to the controller or the hardware device. Note that this parameter is a
variable-length device path structure and not a pointer to such a structure. This
structure is populated only if it is a physical device. For virtual devices, the Size
field in DataHeader is set to zero and this field is not populated.

Description
The device path is used to point to the physical device in case there is more than one device
belonging to the same subclass. For example, the system may contain two USB keyboards and one
PS/2* keyboard. The driver that parses the status code can use the device path extended data to
differentiate between the three. The index field is not useful in this case because there is no standard
numbering convention. Device paths are preferred over using device handles because device handles
for a given device can change from one boot to another and do not mean anything beyond Boot
Services time. In certain cases, the bus driver may not create a device handle for a given device if it
detects a critical error. In these cases, the device path extended data can be used to refer to the
device, but there may not be any device handles with an instance of
EFI_DEVICE_PATH_PROTOCOL that matches DevicePath. The variable device path structure
is included in this structure to make it self sufficient.

Status Codes Platform Initialization Specification, Vol. 3

216 May 2017 Version 1.6

EFI_DEVICE_HANDLE_EXTENDED_DATA

Summary
Extended data about the device handle, which is used for many errors and progress codes to point to
the device.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE Handle;
} EFI_DEVICE_HANDLE_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_DEVICE_HANDLE_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Handle

The device handle.

Description
The handle of the device with which the progress or error code is associated. The handle is
guaranteed to be accurate only at the time the status code is reported. Handles are dynamic entities
between boots, so handles cannot be considered to be valid if the system has reset subsequent to the
status code being reported. Handles may be used to determine a wide variety of useful information
about the source of the status code.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 217

EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

Summary
This structure defines extended data describing a PCI resource allocation error.

Prototype

Note: The following structure contains variable-length fields and cannot be defined as a C-style
structure.

typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Bar;
 UINT16 DevicePathSize;
 UINT16 ReqResSize;
 UINT16 AllocResSize;
 // EFI_DEVICE_PATH_PROTOCOL DevicePath;
 // UINT8 ReqRes[…];
 // UINT8 AllocRes[…];

} EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be sizeof
(EFI_STATUS_CODE_DATA), DataHeader.Size should be
(DevicePathSize + DevicePathSize + DevicePathSize +
sizeof(UINT32) + 3 * sizeof (UINT16)), and DataHeader.Type
should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Bar

The PCI BAR. Applicable only for PCI devices. Ignored for all other devices.

DevicePathSize

DevicePathSize should be zero if it is a virtual device that is not associated with
a device path. Otherwise, this parameter is the length of the variable-length
DevicePath.

ReqResSize

Represents the size the ReqRes parameter. ReqResSize should be zero if the
requested resources are not provided as a part of extended data.

AllocResSize

Represents the size the AllocRes parameter. AllocResSize should be zero if the
allocated resources are not provided as a part of extended data.

Status Codes Platform Initialization Specification, Vol. 3

218 May 2017 Version 1.6

DevicePath

The device path to the controller or the hardware device that did not get the requested
resources. Note that this parameter is the variable-length device path structure and not
a pointer to this structure.

ReqRes

The requested resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

AllocRes

The allocated resources in the format of an ACPI 2.0 resource descriptor. This
parameter is not a pointer; it is the complete resource descriptor.

Description
This extended data conveys details for a PCI resource allocation failure error. See the PCI
specification and the ACPI specification for details on PCI resource allocations and the format for
resource descriptors. This error does not detail why the resource allocation failed. It may be due to a
bad resource request or a lack of available resources to satisfy a valid request. The variable device
path structure and the resource structures are included in this structure to make it self sufficient.

6.7 Class Definitions

Summary
Classes correspond to broad types of system pieces. These types are chosen to provide a reasonable
initial classification of the system entity whose status is represented. There are three classes of
hardware and one class for software. These classes are listed in the table below. Each class is made
up of several subclasses. See section 6.3for descriptions of each of these classes.

Table 80. Class Definitions

Type of Class Class Name Data Type Name

Hardware Computing Unit EFI_COMPUTING_UNIT

User-Accessible Peripherals EFI_PERIPHERAL

I/O Bus EFI_IO_BUS

Software Host Software EFI_SOFTWARE

Prototype
//
// Class definitions
// Values of 4-127 are reserved for future use by this
// specification.
// Values in the range 127-255 are reserved for OEM use.
//
#define EFI_COMPUTING_UNIT 0x00000000
#define EFI_PERIPHERAL 0x01000000

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 219

#define EFI_IO_BUS 0x02000000
#define EFI_SOFTWARE 0x03000000

6.7.1 Computing Unit Class
The table below lists the subclasses defined in the Computing Unit class. See the following section
for their code definitions.

Table 81. Defined Subclasses: Computing Unit Class

Subclass Code Name

Unspecified EFI_COMPUTING_UNIT_UNSPECIFIED

Host processor EFI_COMPUTING_UNIT_HOST_PROCESSOR

Firmware processor EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR

Service processor EFI_COMPUTING_UNIT_SERVICE_PROCESSOR

I/O processor EFI_COMPUTING_UNIT_IO_PROCESSOR

Cache EFI_COMPUTING_UNIT_CACHE

Memory EFI_COMPUTING_UNIT_MEMORY

Chipset EFI_COMPUTING_UNIT_CHIPSET

6.7.1.1 Subclass Definitions

Summary
Definitions for the Computing Unit subclasses. See Subclasses in section 6.7.1 for descriptions of
these subclasses.

Prototype
//
// Computing Unit Subclass definitions.
// Values of 8-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_COMPUTING_UNIT_UNSPECIFIED \
 (EFI_COMPUTING_UNIT | 0x00000000)
#define EFI_COMPUTING_UNIT_HOST_PROCESSOR \
 (EFI_COMPUTING_UNIT | 0x00010000)
#define EFI_COMPUTING_UNIT_FIRMWARE_PROCESSOR \
 (EFI_COMPUTING_UNIT | 0x00020000)
#define EFI_COMPUTING_UNIT_IO_PROCESSOR \
 (EFI_COMPUTING_UNIT | 0x00030000)
#define EFI_COMPUTING_UNIT_CACHE \
 (EFI_COMPUTING_UNIT | 0x00040000)
#define EFI_COMPUTING_UNIT_MEMORY \
 (EFI_COMPUTING_UNIT | 0x00050000)

Status Codes Platform Initialization Specification, Vol. 3

220 May 2017 Version 1.6

#define EFI_COMPUTING_UNIT_CHIPSET \
 (EFI_COMPUTING_UNIT | 0x00060000)

6.7.1.2 Progress Code Definitions

Summary
Progress code definitions for the Computing Unit class and all subclasses. See Progress Code
Operations in section 6.7.1 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• Host processor

• Cache

• Memory

Prototype
//
// Computing Unit Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_CU_PC_INIT_BEGIN 0x00000000
#define EFI_CU_PC_INIT_END 0x00000001

//
// Computing Unit Unspecified Subclass Progress Code
// definitions.
//

//
// Computing Unit Host Processor Subclass Progress Code
// definitions.
//
#define EFI_CU_HP_PC_POWER_ON_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_HP_PC_CACHE_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_HP_PC_RAM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_HP_PC_MEMORY_CONTROLLER_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_HP_PC_IO_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_HP_PC_BSP_SELECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 221

#define EFI_CU_HP_PC_BSP_RESELECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_HP_PC_AP_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_HP_PC_SMM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)

//
// Computing Unit Firmware Processor Subclass Progress Code
// definitions.
//

//
// Computing Unit IO Processor Subclass Progress Code
// definitions.
//

//
// Computing Unit Cache Subclass Progress Code definitions.
//
#define EFI_CU_CACHE_PC_PRESENCE_DETECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_CACHE_PC_CONFIGURATION \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Computing Unit Memory Subclass Progress Code definitions.
//
#define EFI_CU_MEMORY_PC_SPD_READ \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_MEMORY_PC_PRESENCE_DETECT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_MEMORY_PC_TIMING \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_MEMORY_PC_CONFIGURING \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_MEMORY_PC_OPTIMIZING \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_MEMORY_PC_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_MEMORY_PC_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)

Status Codes Platform Initialization Specification, Vol. 3

222 May 2017 Version 1.6

//
// Computing Unit Chipset Subclass Progress Code definitions.
//
#define EFI_CHIPSET_PC_PEI_CAR_SB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CHIPSET_PC_PEI_CAR_NB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CHIPSET_PC_PEI_MEM_SB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CHIPSET_PC_PEI_MEM_NB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CHIPSET_PC_DXE_HB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CHIPSET_PC_DXE_NB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CHIPSET_PC_DXE_NB_SMM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CHIPSET_PC_DXE_SB_RT_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CHIPSET_PC_DXE_SB_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CHIPSET_PC_DXE_SB_SMM_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CHIPSET_PC_DXE_SB_DEVICES_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)

6.7.1.3 Error Code Definitions

Summary
Error code definitions for the Computing Unit class and all subclasses. See Error Code Operations in
section 6.7.1 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• Host processor

• Firmware processor

• Cache

• Memory

Prototype
//
// Computing Unit Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_CU_EC_NON_SPECIFIC 0x00000000

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 223

#define EFI_CU_EC_DISABLED 0x00000001
#define EFI_CU_EC_NOT_SUPPORTED 0x00000002
#define EFI_CU_EC_NOT_DETECTED 0x00000003
#define EFI_CU_EC_NOT_CONFIGURED 0x00000004

//
// Computing Unit Unspecified Subclass Error Code definitions.
//

//
// Computing Unit Host Processor Subclass Error Code
definitions.
//
#define EFI_CU_HP_EC_INVALID_TYPE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_HP_EC_INVALID_SPEED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_HP_EC_MISMATCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_HP_EC_TIMER_EXPIRED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_HP_EC_SELF_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_HP_EC_INTERNAL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_HP_EC_THERMAL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_HP_EC_LOW_VOLTAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_HP_EC_HIGH_VOLTAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CU_HP_EC_CACHE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CU_HP_EC_MICROCODE_UPDATE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_CU_HP_EC_CORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_CU_HP_EC_UNCORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_CU_HP_EC_NO_MICROCODE_UPDATE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)

//
// Computing Unit Firmware Processor Subclass Error Code
// definitions.

Status Codes Platform Initialization Specification, Vol. 3

224 May 2017 Version 1.6

//
#define EFI_CU_FP_EC_HARD_FAIL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_FP_EC_SOFT_FAIL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_FP_EC_COMM_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Computing Unit IO Processor Subclass Error Code definitions.
//

//
// Computing Unit Cache Subclass Error Code definitions.
//
#define EFI_CU_CACHE_EC_INVALID_TYPE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_CACHE_EC_INVALID_SPEED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_CACHE_EC_INVALID_SIZE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_CACHE_EC_MISMATCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)

//
// Computing Unit Memory Subclass Error Code definitions.
//
#define EFI_CU_MEMORY_EC_INVALID_TYPE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CU_MEMORY_EC_INVALID_SPEED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CU_MEMORY_EC_CORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_CU_MEMORY_EC_UNCORRECTABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_CU_MEMORY_EC_SPD_FAIL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_CU_MEMORY_EC_INVALID_SIZE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_CU_MEMORY_EC_MISMATCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_CU_MEMORY_EC_S3_RESUME_FAIL\
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_CU_MEMORY_EC_UPDATE_FAIL \

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 225

 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_CU_MEMORY_EC_NONE_DETECTED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_CU_MEMORY_EC_NONE_USEFUL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)

//
// Computing Unit Chipset Subclass Error Code definitions.
//
#define EFI_CHIPSET_EC_BAD_BATTERY \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_CHIPSET_EC_DXE_NB_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_CHIPSET_EC_DXE_SB_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

6.7.1.4 Extended Data Formats

6.7.1.4.1 Host Processor Subclass

EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA

Summary
This structure provides details about the computing unit voltage error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA Voltage;
 EFI_EXP_BASE10_DATA Threshold;
} EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Voltage

The voltage value at the time of the error.

Threshold

The voltage threshold.

Status Codes Platform Initialization Specification, Vol. 3

226 May 2017 Version 1.6

Description
This structure provides the voltage at the time of error. It also provides the threshold value indicating
the minimum or maximum voltage that is considered an error. If the voltage is less than the
threshold, the error indicates that the voltage fell below the minimum acceptable value. If the voltage
is greater than the threshold, the error indicates that the voltage rose above the maximum acceptable
value.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 227

EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA

Summary
This structure provides details about the microcode update error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Version;
} EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Version

The version of the microcode update from the header.

Status Codes Platform Initialization Specification, Vol. 3

228 May 2017 Version 1.6

EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA

Summary
This structure provides details about the computing unit timer expiration error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA TimerLimit;
} EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

TimerLimit

The number of seconds that the computing unit timer was configured to expire.

Description
The timer limit provides the timeout value of the timer prior to expiration.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 229

EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA

Summary
This structure defines extended data for processor mismatch errors.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Instance;
 UINT16 Attributes;
} EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_ HOST_PROCESSOR_MISMATCH_ERROR_DATA) -
HeaderSize , and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Instance

The unit number of the computing unit that does not match.

Attributes

The attributes describing the failure. See “Related Definitions” below for the type
declarations.

Description
This provides information to indicate which processors mismatch, and how they mismatch. The
status code contains the instance number of the processor that is in error. This structure's Instance
indicates the second processor that does not match. This differentiation allows the consumer to
determine which two processors do not match. The Attributes indicate what mismatch is being
reported. Because Attributes is a bit field, more than one mismatch can be reported with one
error code.

Related Definitions
//***
// EFI_COMPUTING_UNIT_MISMATCH_ATTRIBUTES
//***
//
// All other attributes are reserved for future use and
// must be initialized to 0.
//
#define EFI_COMPUTING_UNIT_MISMATCH_SPEED 0x0001
#define EFI_COMPUTING_UNIT_MISMATCH_FSB_SPEED 0x0002
#define EFI_COMPUTING_UNIT_MISMATCH_FAMILY 0x0004

Status Codes Platform Initialization Specification, Vol. 3

230 May 2017 Version 1.6

#define EFI_COMPUTING_UNIT_MISMATCH_MODEL 0x0008
#define EFI_COMPUTING_UNIT_MISMATCH_STEPPING 0x0010
#define EFI_COMPUTING_UNIT_MISMATCH_CACHE_SIZE 0x0020
#define EFI_COMPUTING_UNIT_MISMATCH_OEM1 0x1000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM2 0x2000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM3 0x4000
#define EFI_COMPUTING_UNIT_MISMATCH_OEM4 0x8000

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 231

EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA

Summary
This structure provides details about the computing unit thermal failure.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_EXP_BASE10_DATA Temperature;
 EFI_EXP_BASE10_DATA Threshold;
} EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA) -
HeaderSize , and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Temperature

The thermal value at the time of the error.

Threshold

The thermal threshold.

Description
This structure provides the temperature at the time of error. It also provides the threshold value
indicating the minimum temperature that is considered an error.

Status Codes Platform Initialization Specification, Vol. 3

232 May 2017 Version 1.6

EFI_CACHE_INIT_DATA

Summary
This structure provides cache initialization data.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Level;
 EFI_INIT_CACHE_TYPE Type;
} EFI_CACHE_INIT_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_CACHE_INIT_DATA) - HeaderSize , and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Level

The cache level. Starts with 1 for level 1 cache.

Type

The type of cache. Type EFI_INIT_CACHE_TYPE is defined in "Related
Definitions" below.

Description
This structure contains the cache level and type information.

Related Definitions
//***
// EFI_INIT_CACHE_TYPE
//***

// Valid cache types

typedef enum {
 EfiInitCacheDataOnly,
 EfiInitCacheInstrOnly,
 EfiInitCacheBoth,
 EfiInitCacheUnspecified
} EFI_INIT_CACHE_TYPE;

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 233

EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA

Summary
This structure provides information about the disabled computing unit.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 Cause;
 BOOLEAN SoftwareDisabled;
} EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Cause

The reason for disabling the processor. See "Related Definitions" below for defined
values.

SoftwareDisabled

TRUE if the processor is disabled via software means such as not listing it in the ACPI
tables. Such a processor will respond to Interprocessor Interrupts (IPIs). FALSE if the
processor is hardware disabled, which means it is invisible to software and will not
respond to IPIs.

Description
This structure provides details as to why and how the computing unit was disabled. The causes
should cover the typical reasons a processor would be disabled. How the processor was disabled is
important because there are distinct differences between hardware and software disabling.

Related Definitions
//**
// EFI_CPU_STATE_CHANGE_CAUSE
//**
typedef UINT32 EFI_CPU_STATE_CHANGE_CAUSE;

//
// The reason a processor was disabled
//
#define EFI_CPU_CAUSE_INTERNAL_ERROR 0x0001
#define EFI_CPU_CAUSE_THERMAL_ERROR 0x0002

Status Codes Platform Initialization Specification, Vol. 3

234 May 2017 Version 1.6

#define EFI_CPU_CAUSE_SELFTEST_FAILURE 0x0004
#define EFI_CPU_CAUSE_PREBOOT_TIMEOUT 0x0008
#define EFI_CPU_CAUSE_FAILED_TO_START 0x0010
#define EFI_CPU_CAUSE_CONFIG_ERROR 0x0020
#define EFI_CPU_CAUSE_USER_SELECTION 0x0080
#define EFI_CPU_CAUSE_BY_ASSOCIATION 0x0100
#define EFI_CPU_CAUSE_UNSPECIFIED 0x8000

Table 82. Decription of EFI_CPU_STATE_CHANGE_CAUSE fields

EFI_CPU_CAUSE_INTERNAL_ERROR The processor was disabled because it signaled an internal
error (IERR).

EFI_CPU_CAUSE_THERMAL_ERROR The processor was disabled because of a thermal error.

EFI_CPU_CAUSE_SELFTEST_FAILURE The processor was disabled because it failed BIST.

EFI_CPU_CAUSE_PREBOOT_TIMEOUT The processor started execution, but it timed out during a
particular task and was therefore disabled.

EFI_CPU_CAUSE_FAILED_TO_START The processor was disabled because it failed to start
execution (FRB-3 timeout).

EFI_CPU_CAUSE_CONFIG_ERROR The processor was disabled due to a configuration error.

EFI_CPU_CAUSE_USER_SELECTION The processor state was changed due to user selection.
Applicable to enabling and disabling of processors.

EFI_CPU_CAUSE_BY_ASSOCIATION The processor state was changed due because it shared the
state with another processor and the state of the other
processor was changed.

EFI_CPU_CAUSE_UNSPECIFIED The CPU state was changed due to unspecified reason.
Applicable to enabling and disabling of processors.

Memory Subclass

EFI_MEMORY_EXTENDED_ERROR_DATA

Summary
This structure defines extended data describing a memory error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_MEMORY_ERROR_GRANULARITY Granularity;
 EFI_MEMORY_ERROR_OPERATION Operation;
 UINT32 Syndrome;
 EFI_PHYSICAL_ADDRESS Address;
 UINTN Resolution;
} EFI_MEMORY_EXTENDED_ERROR_DATA;

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 235

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_EXTENDED_ERROR_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Granularity

The error granularity type. Type EFI_MEMORY_ERROR_GRANULARITY is defined
in "Related Definitions" below.

Operation

The operation that resulted in the error being detected. Type
EFI_MEMORY_ERROR_OPERATION is defined in "Related Definitions" below.

Syndrome

The error syndrome, vendor-specific ECC syndrome, or CRC data associated with the
error. If unknown, should be initialized to 0.

Address

The physical address of the error. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI Specification.

Resolution

The range, in bytes, within which the error address can be determined.

Description
This structure provides specific details about the memory error that was detected. It provides enough
information so that consumers can identify the exact failure and provides enough information to
enable corrective action if necessary.

Related Definitions
//***
// EFI_MEMORY_ERROR_GRANULARITY
//***
typedef UINT8 EFI_MEMORY_ERROR_GRANULARITY;

//
// Memory Error Granularities
//
#define EFI_MEMORY_ERROR_OTHER 0x01
#define EFI_MEMORY_ERROR_UNKNOWN 0x02
#define EFI_MEMORY_ERROR_DEVICE 0x03
#define EFI_MEMORY_ERROR_PARTITION 0x04

//***
// EFI_MEMORY_ERROR_OPERATION

Status Codes Platform Initialization Specification, Vol. 3

236 May 2017 Version 1.6

//***
typedef UINT8 EFI_MEMORY_ERROR_OPERATION;

//
// Memory Error Operations
//
#define EFI_MEMORY_OPERATION_OTHER 0x01
#define EFI_MEMORY_OPERATION_UNKNOWN 0x02
#define EFI_MEMORY_OPERATION_READ 0x03
#define EFI_MEMORY_OPERATION_WRITE 0x04
#define EFI_MEMORY_OPERATION_PARTIAL_WRITE 0x05

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 237

EFI_STATUS_CODE_DIMM_NUMBER

Summary
This structure defines extended data describing a DIMM.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT16 Array;
 UINT16 Device;
} EFI_STATUS_CODE_DIMM_NUMBER;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_DIMM_NUMBER) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Array

The memory array number.

Device

The device number within that Array.

Description
This extended data provides some context that consumers can use to locate a DIMM within the
overall memory scheme. The Array and Device numbers may indicate a specific DIMM, or they
may be populated with the group definitions in "Related Definitions" below.

Related Definitions
//
// Definitions to describe Group Operations
// Many memory init operations are essentially group
// operations.
//
#define EFI_MULTIPLE_MEMORY_DEVICE_OPERATION 0xfffe
#define EFI_ALL_MEMORY_DEVICE_OPERATION 0xffff
#define EFI_MULTIPLE_MEMORY_ARRAY_OPERATION 0xfffe
#define EFI_ALL_MEMORY_ARRAY_OPERATION 0xffff

Table 83. Definitions to describe Group Operations

EFI_MULTIPLE_MEMORY_DEVICE_OPERATION A definition to describe that the operation is performed
on multiple devices within the array.

Status Codes Platform Initialization Specification, Vol. 3

238 May 2017 Version 1.6

EFI_ALL_MEMORY_DEVICE_OPERATION A definition to describe that the operation is performed
on all devices within the array.

EFI_MULTIPLE_MEMORY_ARRAY_OPERATION A definition to describe that the operation is performed
on multiple arrays.

EFI_ALL_MEMORY_ARRAY_OPERATION A definition to describe that the operation is performed
on all the arrays

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 239

EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA

Summary
This structure defines extended data describing memory modules that do not match.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STATUS_CODE_DIMM_NUMBER Instance;
} EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA) -
HeaderSize, and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Instance

The instance number of the memory module that does not match. See the definition
for type EFI_STATUS_CODE_DIMM_NUMBER.

Description
This extended data may be used to convey the specifics of memory modules that do not match.

Status Codes Platform Initialization Specification, Vol. 3

240 May 2017 Version 1.6

EFI_MEMORY_RANGE_EXTENDED_DATA

Summary
This structure defines extended data describing a memory range.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_PHYSICAL_ADDRESS Start;
 EFI_PHYSICAL_ADDRESS Length;
} EFI_MEMORY_RANGE_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_MEMORY_RANGE_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Start

The starting address of the memory range. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI Specification.

Length

The length in bytes of the memory range.

Description
This extended data may be used to convey the specifics of a memory range. Ranges are specified
with a start address and a length.

6.7.2 User-Accessible Peripherals Class
The table below lists the subclasses defined in the User-Accessible Peripheral class. See the
following subsection for their code definitions.

Table 84. Defined Subclasses: User-Accessible Peripheral Class

Subclass Code Name

Unspecified EFI_PERIPHERAL_UNSPECIFIED

Keyboard EFI_PERIPHERAL_KEYBOARD

Mouse EFI_PERIPHERAL_MOUSE

Local console EFI_PERIPHERAL_LOCAL_CONSOLE

Remote console EFI_PERIPHERAL_REMOTE_CONSOLE

Serial port EFI_PERIPHERAL_SERIAL_PORT

Parallel port EFI_PERIPHERAL_PARALLEL_PORT

Fixed media EFI_PERIPHERAL_FIXED_MEDIA

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 241

6.7.2.1 Subclass Definitions

Summary
Definitions for the User-Accessible Peripheral subclasses. See Subclasses in section 6.7.2 for
descriptions of these subclasses.

Prototype
//
// Peripheral Subclass definitions.
// Values of 12-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_PERIPHERAL_UNSPECIFIED \
 (EFI_PERIPHERAL | 0x00000000)
#define EFI_PERIPHERAL_KEYBOARD \
 (EFI_PERIPHERAL | 0x00010000)
#define EFI_PERIPHERAL_MOUSE \
 (EFI_PERIPHERAL | 0x00020000)
#define EFI_PERIPHERAL_LOCAL_CONSOLE \
 (EFI_PERIPHERAL | 0x00030000)
#define EFI_PERIPHERAL_REMOTE_CONSOLE \
 (EFI_PERIPHERAL | 0x00040000)
#define EFI_PERIPHERAL_SERIAL_PORT \
 (EFI_PERIPHERAL | 0x00050000)
#define EFI_PERIPHERAL_PARALLEL_PORT \
 (EFI_PERIPHERAL | 0x00060000)
#define EFI_PERIPHERAL_FIXED_MEDIA \
 (EFI_PERIPHERAL | 0x00070000)
#define EFI_PERIPHERAL_REMOVABLE_MEDIA \
 (EFI_PERIPHERAL | 0x00080000)
#define EFI_PERIPHERAL_AUDIO_INPUT \
 (EFI_PERIPHERAL | 0x00090000)
#define EFI_PERIPHERAL_AUDIO_OUTPUT \
 (EFI_PERIPHERAL | 0x000A0000)
#define EFI_PERIPHERAL_LCD_DEVICE \
 (EFI_PERIPHERAL | 0x000B0000)

Removable media EFI_PERIPHERAL_REMOVABLE_MEDIA

Audio input EFI_PERIPHERAL_AUDIO_INPUT

Audio output EFI_PERIPHERAL_AUDIO_OUTPUT

LCD device EFI_PERIPHERAL_LCD_DEVICE

Network device EFI_PERIPHERAL_NETWORK

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Status Codes Platform Initialization Specification, Vol. 3

242 May 2017 Version 1.6

#define EFI_PERIPHERAL_NETWORK \
 (EFI_PERIPHERAL | 0x000C0000)

6.7.2.2 Progress Code Definitions

Summary
Progress code definitions for the User-Accessible Peripheral class and all subclasses. See Progress
Code Operations in section 6.7.2 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• Keyboard

• Mouse

• Serial port

Prototype
//
// Peripheral Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_P_PC_INIT 0x00000000
#define EFI_P_PC_RESET 0x00000001
#define EFI_P_PC_DISABLE 0x00000002
#define EFI_P_PC_PRESENCE_DETECT 0x00000003
#define EFI_P_PC_ENABLE 0x00000004
#define EFI_P_PC_RECONFIG 0x00000005
#define EFI_P_PC_DETECTED 0x00000006

//
// Peripheral Class Unspecified Subclass Progress Code
// definitions.
//

//
// Peripheral Class Keyboard Subclass Progress Code definitions.
//
#define EFI_P_KEYBOARD_PC_CLEAR_BUFFER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD_PC_SELF_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Peripheral Class Mouse Subclass Progress Code definitions.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 243

//
#define EFI_P_MOUSE_PC_SELF_TEST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Local Console Subclass Progress Code
// definitions.
//

//
// Peripheral Class Remote Console Subclass Progress Code
// definitions.
//

//
// Peripheral Class Serial Port Subclass Progress Code
// definitions.
//
#define EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Parallel Port Subclass Progress Code
// definitions.
//

//
// Peripheral Class Fixed Media Subclass Progress Code
// definitions.
//

//
// Peripheral Class Removable Media Subclass Progress Code
// definitions.
//

//
// Peripheral Class Audio Input Subclass Progress Code
// definitions.
//

Status Codes Platform Initialization Specification, Vol. 3

244 May 2017 Version 1.6

//
// Peripheral Class Audio Output Subclass Progress Code
// definitions.
//

//
// Peripheral Class LCD Device Subclass Progress Code
// definitions.
//

//
// Peripheral Class Network Subclass Progress Code definitions.
//

6.7.2.3 Error Code Definitions

Summary
Error code definitions for the User-Accessible Peripheral class and all subclasses. See Error Code
Operations in section 6.7.2 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• Keyboard

• Mouse

Prototype
//
// Peripheral Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_P_EC_NON_SPECIFIC 0x00000000
#define EFI_P_EC_DISABLED 0x00000001
#define EFI_P_EC_NOT_SUPPORTED 0x00000002
#define EFI_P_EC_NOT_DETECTED 0x00000003
#define EFI_P_EC_NOT_CONFIGURED 0x00000004
#define EFI_P_EC_INTERFACE_ERROR 0x00000005
#define EFI_P_EC_CONTROLLER_ERROR 0x00000006
#define EFI_P_EC_INPUT_ERROR 0x00000007
#define EFI_P_EC_OUTPUT_ERROR 0x00000008
#define EFI_P_EC_RESOURCE_CONFLICT \
 0x00000009

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 245

//
// Peripheral Class Unspecified Subclass Error Code definitions.
//

//
// Peripheral Class Keyboard Subclass Error Code definitions.
//
#define EFI_P_KEYBOARD_EC_LOCKED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_P_KEYBOARD_EC_STUCK_KEY \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Peripheral Class Mouse Subclass Error Code definitions.
//
#define EFI_P_MOUSE_EC_LOCKED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Peripheral Class Local Console Subclass Error Code
// definitions.
//

//
// Peripheral Class Remote Console Subclass Error Code
// definitions.
//

//
// Peripheral Class Serial Port Subclass Error Code definitions.
//

//
// Peripheral Class Parallel Port Subclass Error Code
// definitions.
//

//
// Peripheral Class Fixed Media Subclass Error Code definitions.

Status Codes Platform Initialization Specification, Vol. 3

246 May 2017 Version 1.6

//

//
// Peripheral Class Removable Media Subclass Error Code
// definitions.
//

//
// Peripheral Class Audio Input Subclass Error Code definitions.
//

//
// Peripheral Class Audio Output Subclass Error Code
// definitions.
//

//
// Peripheral Class LCD Device Subclass Error Code definitions.
//

//
// Peripheral Class Network Subclass Error Code definitions.
//

6.7.2.4 Extended Data Formats
The User-Accessible Peripheral class uses the following extended error data definitions:

• EFI_DEVICE_PATH_EXTENDED_DATA

• EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

See section 6.6.4 for definitions.

6.7.3 I/O Bus Class
The table below lists the subclasses defined in the I/O Bus class. See Subclass Definitions for their
code definitions.

Table 85. Defined Subclasses: I/O Bus Class

Subclass Code Name

Unspecified EFI_IO_BUS_UNSPECIFIED

PCI EFI_IO_BUS_PCI

USB EFI_IO_BUS_USB

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 247

6.7.3.1 Subclass Definitions

Summary
Definitions for the I/O Bus subclasses. See Subclasses in section 6.7.3 for descriptions of these
subclasses.

Prototype
//
// IO Bus Subclass definitions.
// Values of 14-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_IO_BUS_UNSPECIFIED \
 (EFI_IO_BUS | 0x00000000)
#define EFI_IO_BUS_PCI \
 (EFI_IO_BUS | 0x00010000)
#define EFI_IO_BUS_USB \
 (EFI_IO_BUS | 0x00020000)
#define EFI_IO_BUS_IBA \
 (EFI_IO_BUS | 0x00030000)
#define EFI_IO_BUS_AGP \
 (EFI_IO_BUS | 0x00040000)
#define EFI_IO_BUS_PC_CARD \
 (EFI_IO_BUS | 0x00050000)
#define EFI_IO_BUS_LPC \
 (EFI_IO_BUS | 0x00060000)
#define EFI_IO_BUS_SCSI \
 (EFI_IO_BUS | 0x00070000)
#define EFI_IO_BUS_ATA_ATAPI \
 (EFI_IO_BUS | 0x00080000)

InfiniBand* architecture EFI_IO_BUS_IBA

AGP EFI_IO_BUS_AGP

PC card EFI_IO_BUS_PC_CARD

Low pin count (LPC) EFI_IO_BUS_LPC

SCSI EFI_IO_BUS_SCSI

ATA/ATAPI/SATA EFI_IO_BUS_ATA_ATAPI

Fibre Channel EFI_IO_BUS_FC

IP network EFI_IO_BUS_IP_NETWORK

SMBus EFI_IO_BUS_SMBUS

I2C EFI_IO_BUS_I2C

0x0D–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

Status Codes Platform Initialization Specification, Vol. 3

248 May 2017 Version 1.6

#define EFI_IO_BUS_FC \
 (EFI_IO_BUS | 0x00090000)
#define EFI_IO_BUS_IP_NETWORK \
 (EFI_IO_BUS | 0x000A0000)
#define EFI_IO_BUS_SMBUS \
 (EFI_IO_BUS | 0x000B0000)
#define EFI_IO_BUS_I2C \
 (EFI_IO_BUS | 0x000C0000)

6.7.3.2 Progress Code Definitions

Summary
Progress code definitions for the I/O Bus class and all subclasses. See Progress Code Operations in
section 6.7.2 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• PCI

Prototype
//
// IO Bus Class Progress Code definitions.
// These are shared by all subclasses.
//
typedef struct _EFI_SIO_PROTOCOL EFI_SIO_PROTOCOL;

#define EFI_IOB_PC_INIT 0x00000000
#define EFI_IOB_PC_RESET 0x00000001
#define EFI_IOB_PC_DISABLE 0x00000002
#define EFI_IOB_PC_DETECT 0x00000003
#define EFI_IOB_PC_ENABLE 0x00000004
#define EFI_IOB_PC_RECONFIG 0x00000005
#define EFI_IOB_PC_HOTPLUG 0x00000006

//
// IO Bus Class Unspecified Subclass Progress Code definitions.
//

//
// IO Bus Class PCI Subclass Progress Code definitions.
//
#define EFI_IOB_PCI_BUS_ENUM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_PCI_RES_ALLOC \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 249

#defineEFI_IOB_PCI_HPC_INIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// IO Bus Class USB Subclass Progress Code definitions.
//

//
// IO Bus Class IBA Subclass Progress Code definitions.
//

//
// IO Bus Class AGP Subclass Progress Code definitions.
//

//
// IO Bus Class PC Card Subclass Progress Code definitions.
//

//
// IO Bus Class LPC Subclass Progress Code definitions.
//

//
// IO Bus Class SCSI Subclass Progress Code definitions.
//

//
// IO Bus Class ATA/ATAPI Subclass Progress Code definitions.
//
#define EFI_IOB_ATA_BUS_SMART_ENABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_ATA_BUS_SMART_DISABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_IOB_ATA_BUS_SMART_OVERTHRESHOLD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_IOB_ATA_BUS_SMART_UNDERTHRESHOLD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
//
// IO Bus Class FC Subclass Progress Code definitions.

Status Codes Platform Initialization Specification, Vol. 3

250 May 2017 Version 1.6

//

//
// IO Bus Class IP Network Subclass Progress Code definitions.
//

//
// IO Bus Class SMBUS Subclass Progress Code definitions.
//

//
// IO Bus Class I2C Subclass Progress Code definitions.
//

6.7.3.3 Error Code Definitions

Summary
Error code definitions for the I/O Bus class and all subclasses. See Error Code Operations in
section 6.7.2 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• PCI

Prototype
// IO Bus Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_IOB_EC_NON_SPECIFIC 0x00000000
#define EFI_IOB_EC_DISABLED 0x00000001
#define EFI_IOB_EC_NOT_SUPPORTED 0x00000002
#define EFI_IOB_EC_NOT_DETECTED 0x00000003
#define EFI_IOB_EC_NOT_CONFIGURED 0x00000004
#define EFI_IOB_EC_INTERFACE_ERROR 0x00000005
#define EFI_IOB_EC_CONTROLLER_ERROR 0x00000006
#define EFI_IOB_EC_READ_ERROR 0x00000007
#define EFI_IOB_EC_WRITE_ERROR 0x00000008
#define EFI_IOB_EC_RESOURCE_CONFLICT 0x00000009

//
// IO Bus Class Unspecified Subclass Error Code definitions.
//

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 251

//
// IO Bus Class PCI Subclass Error Code definitions.
//
#define EFI_IOB_PCI_EC_PERR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_PCI_EC_SERR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// IO Bus Class USB Subclass Error Code definitions.
//

//
// IO Bus Class IBA Subclass Error Code definitions.
//

//
// IO Bus Class AGP Subclass Error Code definitions.
//

//
// IO Bus Class PC Card Subclass Error Code definitions.
//

//
// IO Bus Class LPC Subclass Error Code definitions.
//

//
// IO Bus Class SCSI Subclass Error Code definitions.
//

//
// IO Bus Class ATA/ATAPI Subclass Error Code definitions.
//
#define EFI_IOB_ATA_BUS_SMART_NOTSUPPORTED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_IOB_ATA_BUS_SMART_DISABLED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

Status Codes Platform Initialization Specification, Vol. 3

252 May 2017 Version 1.6

//
// IO Bus Class FC Subclass Error Code definitions.
//

//
// IO Bus Class IP Network Subclass Error Code definitions.
//

//
// IO Bus Class SMBUS Subclass Error Code definitions.
//

//
// IO Bus Class I2C Subclass Error Code definitions.
//

6.7.3.4 Extended Data Formats
The I/O Bus class uses the following extended data definitions:

• EFI_DEVICE_PATH_EXTENDED_DATA

• EFI_DEVICE_HANDLE_EXTENDED_DATA

• EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

See section 6.6.4 for definitions.

6.7.4 Software Classes
The table below lists the subclasses defined in the Host Software class. See Subclass Definitions for
their code definitions.

Table 86. Defined Subclasses: Host Software Class

Subclass Code Name

Unspecified EFI_SOFTWARE_UNSPECIFIED

Security (SEC) EFI_SOFTWARE_SEC

PEI Foundation EFI_SOFTWARE_PEI_CORE

PEI module EFI_SOFTWARE_PEI_MODULE

DXE Foundation EFI_SOFTWARE_DXE_CORE

DXE Boot Service driver EFI_SOFTWARE_DXE_BS_DRIVER

DXE Runtime Service driver EFI_SOFTWARE_DXE_RT_DRIVER

SMM driver EFI_SOFTWARE_SMM_DRIVER

EFI application EFI_SOFTWARE_EFI_APPLICATION

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 253

6.7.4.1 Subclass Definitions

Summary
Definitions for the Host Software subclasses. See Subclasses in section 6.5.1 for descriptions of
these subclasses.

Prototype
//
// Software Subclass definitions.
// Values of 14-127 are reserved for future use by this
// specification.
// Values of 128-255 are reserved for OEM use.
//
#define EFI_SOFTWARE_UNSPECIFIED \
 (EFI_SOFTWARE | 0x00000000)
#define EFI_SOFTWARE_SEC \
 (EFI_SOFTWARE | 0x00010000)
#define EFI_SOFTWARE_PEI_CORE \
 (EFI_SOFTWARE | 0x00020000)
#define EFI_SOFTWARE_PEI_MODULE \
 (EFI_SOFTWARE | 0x00030000)
#define EFI_SOFTWARE_DXE_CORE \
 (EFI_SOFTWARE | 0x00040000)
#define EFI_SOFTWARE_DXE_BS_DRIVER \
 (EFI_SOFTWARE | 0x00050000)
#define EFI_SOFTWARE_DXE_RT_DRIVER \
 (EFI_SOFTWARE | 0x00060000)

OS loader EFI_SOFTWARE_EFI_OS_LOADER

Runtime (RT) EFI_SOFTWARE_EFI_RT

EBC exception EFI_SOFTWARE_EBC_EXCEPTION

IA-32 exception EFI_SOFTWARE_IA32_EXCEPTION

Itanium® processor family exception EFI_SOFTWARE_IPF_EXCEPTION

PEI Services EFI_SOFTWARE_PEI_SERVICE

EFI Boot Service EFI_SOFTWARE_EFI_BOOT_SERVICE

EFI Runtime Service EFI_SOFTWARE_EFI_RUNTIME_SERVICE

DXE Service EFI_SOFTWARE_EFI_DXE_SERVICE

0x13–0x7F Reserved for future use by this specification.

0x80–0xFF Reserved for OEM use.

x64 software exception EFI_SOFTWARE_X64_EXCEPTION

ARM AArch32 software exception EFI_SOFTWARE_ARM_EXCEPTION

ARM AArch64 software exception EFI_SOFTWARE_AARCH64_EXCEPTION

RISC-V software exception EFI_SOFTWARE_RISCV_EXCEPTION

Status Codes Platform Initialization Specification, Vol. 3

254 May 2017 Version 1.6

#define EFI_SOFTWARE_SMM_DRIVER \
 (EFI_SOFTWARE | 0x00070000)
#define EFI_SOFTWARE_EFI_APPLICATION \
 (EFI_SOFTWARE | 0x00080000)
#define EFI_SOFTWARE_EFI_OS_LOADER\
 (EFI_SOFTWARE | 0x00090000)
#define EFI_SOFTWARE_RT \
 (EFI_SOFTWARE | 0x000A0000)
#define EFI_SOFTWARE_AL \
 (EFI_SOFTWARE | 0x000B0000)
#define EFI_SOFTWARE_EBC_EXCEPTION \
 (EFI_SOFTWARE | 0x000C0000)
#define EFI_SOFTWARE_IA32_EXCEPTION \
 (EFI_SOFTWARE | 0x000D0000)
#define EFI_SOFTWARE_IPF_EXCEPTION \
 (EFI_SOFTWARE | 0x000E0000)
#define EFI_SOFTWARE_PEI_SERVICE \
 (EFI_SOFTWARE | 0x000F0000
#define EFI_SOFTWARE_EFI_BOOT_SERVICE \
 (EFI_SOFTWARE | 0x00100000)
#define EFI_SOFTWARE_EFI_RUNTIME_SERVICE \
 (EFI_SOFTWARE | 0x00110000)
#define EFI_SOFTWARE_EFI_DXE_SERVICE \
 (EFI_SOFTWARE | 0x00120000)
#define EFI_SOFTWARE_X64_EXCEPTION \
 (EFI_SOFTWARE | 0x00130000)
#define EFI_SOFTWARE_ARM_EXCEPTION \
 (EFI_SOFTWARE | 0x00140000)
#define EFI_SOFTWARE_AARCH64_EXCEPTION \
 (EFI_SOFTWARE | 0x00150000)

6.7.4.2 Progress Code Definitions

Summary
Progress code definitions for the Host Software class and all subclasses. See Progress Code
Operations in section 6.5.1 for descriptions of these progress codes.

The following subclasses define additional subclass-specific progress code operations, which are
included below:

• SEC

• PEI Foundation

• PEI Module

• DXE Foundation

• DXE Boot Service Driver

• Runtime (RT)

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 255

• PEI Services

• Boot Services

• Runtime Services

• DXE Services

Prototype
//
// Software Class Progress Code definitions.
// These are shared by all subclasses.
//
#define EFI_SW_PC_INIT \
 0x00000000
#define EFI_SW_PC_LOAD \
 0x00000001
#define EFI_SW_PC_INIT_BEGIN \
 0x00000002
#define EFI_SW_PC_INIT_END \
 0x00000003
#define EFI_SW_PC_AUTHENTICATE_BEGIN \
 0x00000004
#define EFI_SW_PC_AUTHENTICATE_END \
 0x00000005
#define EFI_SW_PC_INPUT_WAIT \
 0x00000006
#define EFI_SW_PC_USER_SETUP \
 0x00000007

//
// Software Class Unspecified Subclass Progress Code
// definitions.
//

//
// Software Class SEC Subclass Progress Code definitions.
//
#define EFI_SW_SEC_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_SEC_PC_HANDOFF_TO_NEXT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class PEI Foundation Subclass Progress Code
// definitions.

Status Codes Platform Initialization Specification, Vol. 3

256 May 2017 Version 1.6

//
#define EFI_SW_PEI_CORE_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_CORE_PC_RETURN_TO_LAST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Software Class PEI Module Subclass Progress Code definitions.
//
#define EFI_SW_PEI_PC_RECOVERY_BEGIN\
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_PC_CAPSULE_LOAD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_PC_CAPSULE_START \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_PC_RECOVERY_USER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PEI_PC_RECOVERY_AUTO \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_PEI_PC_S3_BOOT_SCRIPT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_PEI_PC_OS_WAKE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)

//
// Software Class DXE Foundation Subclass Progress Code
// definitions.
//
#define EFI_SW_DXE_CORE_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_CORE_PC_HANDOFF_TO_NEXT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_CORE_PC_RETURN_TO_LAST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_CORE_PC_START_DRIVER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_CORE_PC_ARCH_READY \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE BS Driver Subclass Progress Code
// definitions.
//
#define EFI_SW_DXE_BS_PC_LEGACY_OPROM_INIT\

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 257

 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_BS_PC_READY_TO_BOOT_EVENT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_BS_PC_LEGACY_BOOT_EVENT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_BS_PC_EXIT_BOOT_SERVICES_EVENT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_BS_PC_VIRTUAL_ADDRESS_CHANGE_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)

 #define EFI_SW_DXE_BS_PC_ATTEMPT_BOOT_ORDER_EVENT \
(EFI_SUBCLASS_SPECIFIC | 0x00000007)

//
// Software Class DXE RT Driver Subclass Progress Code
// definitions.
//

//
// Software Class SMM Driver Subclass Progress Code definitions.
//

//
// Software Class EFI Application Subclass Progress Code
// definitions.
//

//
// Software Class EFI OS Loader Subclass Progress Code
// definitions.
//

//
// Software Class EFI RT Subclass Progress Code definitions.
//
#define EFI_SW_RT_PC_ENTRY_POINT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RT_PC_HANDOFF_TO_NEXT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RT_PC_RETURN_TO_LAST \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

Status Codes Platform Initialization Specification, Vol. 3

258 May 2017 Version 1.6

//
// Software Class X64 Exception Subclass Progress Code
// definitions.
//

//
// Software Class ARM Exception Subclass Progress Code
// definitions.

//
// Software Class EBC Exception Subclass Progress Code
// definitions.
//

//
// Software Class IA32 Exception Subclass Progress Code
// definitions.
//

//
// Software Class IPF Exception Subclass Progress Code
// definitions.
//

//
// Software Class PEI Services Subclass Progress Code
definitions.
//

#define EFI_SW_PS_PC_INSTALL_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PS_PC_REINSTALL_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PS_PC_LOCATE_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_PS_PC_NOTIFY_PPI \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PS_PC_GET_BOOT_MODE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_PS_PC_SET_BOOT_MODE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_PS_PC_GET_HOB_LIST \

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 259

 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_PS_PC_CREATE_HOB \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_PS_PC_FFS_FIND_NEXT_VOLUME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_PS_PC_FFS_FIND_NEXT_FILE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_PS_PC_FFS_FIND_SECTION_DATA\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_PS_PC_INSTALL_PEI_MEMORY \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_PS_PC_ALLOCATE_PAGES \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_PS_PC_ALLOCATE_POOL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_PS_PC_COPY_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_PS_PC_SET_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_PS_PC_RESET_SYSTEM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000010)
#define EFI_SW_PS_PC_FFS_FIND_FILE_BY_NAME \
 (EFI_SUBCLASS_SPECIFIC|0x00000013)
#define EFI_SW_PS_PC_FFS_GET_FILE_INFO \
 (EFI_SUBCLASS_SPECIFIC|0x00000014)
#define EFI_SW_PS_PC_FFS_GET_VOLUME_INFO \
 (EFI_SUBCLASS_SPECIFIC|0x00000015)
#define EFI_SW_PS_PC_FFS_REGISTER_FOR_SHADOW \
 (EFI_SUBCLASS_SPECIFIC|0x00000016)
//
// Software Class EFI Boot Services Subclass Progress Code
// definitions.
//
#define EFI_SW_BS_PC_RAISE_TPL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_BS_PC_RESTORE_TPL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_BS_PC_ALLOCATE_PAGES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_BS_PC_FREE_PAGES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_BS_PC_GET_MEMORY_MAP \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_BS_PC_ALLOCATE_POOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_BS_PC_FREE_POOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)

Status Codes Platform Initialization Specification, Vol. 3

260 May 2017 Version 1.6

#define EFI_SW_BS_PC_CREATE_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_BS_PC_SET_TIMER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_BS_PC_WAIT_FOR_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_BS_PC_SIGNAL_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_BS_PC_CLOSE_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_BS_PC_CHECK_EVENT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_BS_PC_INSTALL_PROTOCOL_INTERFACE\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_BS_PC_REINSTALL_PROTOCOL_INTERFACE\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_BS_PC_UNINSTALL_PROTOCOL_INTERFACE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_BS_PC_HANDLE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000010)
#define EFI_SW_BS_PC_PC_HANDLE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000011)
#define EFI_SW_BS_PC_REGISTER_PROTOCOL_NOTIFY\
 (EFI_SUBCLASS_SPECIFIC | 0x00000012)
#define EFI_SW_BS_PC_LOCATE_HANDLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000013)
#define EFI_SW_BS_PC_INSTALL_CONFIGURATION_TABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000014)
#define EFI_SW_BS_PC_LOAD_IMAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000015)
#define EFI_SW_BS_PC_START_IMAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000016)
#define EFI_SW_BS_PC_EXIT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000017)
#define EFI_SW_BS_PC_UNLOAD_IMAGE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000018)
#define EFI_SW_BS_PC_EXIT_BOOT_SERVICES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000019)
#define EFI_SW_BS_PC_GET_NEXT_MONOTONIC_COUNT \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001A)
#define EFI_SW_BS_PC_STALL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001B)
#define EFI_SW_BS_PC_SET_WATCHDOG_TIMER \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001C)
#define EFI_SW_BS_PC_CONNECT_CONTROLLER \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001D)
#define EFI_SW_BS_PC_DISCONNECT_CONTROLLER\

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 261

 (EFI_SUBCLASS_SPECIFIC | 0x0000001E)
#define EFI_SW_BS_PC_OPEN_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x0000001F)
#define EFI_SW_BS_PC_CLOSE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000020)
#define EFI_SW_BS_PC_OPEN_PROTOCOL_INFORMATION\
 (EFI_SUBCLASS_SPECIFIC | 0x00000021)
#define EFI_SW_BS_PC_PROTOCOLS_PER_HANDLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000022)
#define EFI_SW_BS_PC_LOCATE_HANDLE_BUFFER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000023)
#define EFI_SW_BS_PC_LOCATE_PROTOCOL \
 (EFI_SUBCLASS_SPECIFIC | 0x00000024)
#define EFI_SW_BS_PC_INSTALL_MULTIPLE_INTERFACES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000025)
#define EFI_SW_BS_PC_UNINSTALL_MULTIPLE_INTERFACES \
 (EFI_SUBCLASS_SPECIFIC | 0x00000026)
#define EFI_SW_BS_PC_CALCULATE_CRC_32 \
 (EFI_SUBCLASS_SPECIFIC | 0x00000027)
#define EFI_SW_BS_PC_COPY_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000028)
#define EFI_SW_BS_PC_SET_MEM \
 (EFI_SUBCLASS_SPECIFIC | 0x00000029)
#define EFI_SW_BS_PC_CREATE_EVENT_EX \
 (EFI_SUBCLASS_SPECIFIC|0x0000002a)

//
// Software Class EFI Runtime Services Subclass Progress Code
// definitions.
//
#define EFI_SW_RS_PC_GET_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_RS_PC_SET_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_RS_PC_GET_WAKEUP_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_RS_PC_SET_WAKEUP_TIME \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_RS_PC_SET_VIRTUAL_ADDRESS_MAP\
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_RS_PC_CONVERT_POINTER \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_RS_PC_GET_VARIABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_RS_PC_GET_NEXT_VARIABLE_NAME\
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)

Status Codes Platform Initialization Specification, Vol. 3

262 May 2017 Version 1.6

#define EFI_SW_RS_PC_SET_VARIABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_RS_PC_GET_NEXT_HIGH_MONOTONIC_COUNT\
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_RS_PC_RESET_SYSTEM \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_RS_PC_UPDATE_CAPSULE \
 (EFI_SUBCLASS_SPECIFIC| 0x0000000B)
#define EFI_SW_RS_PC_QUERY_CAPSULE_CAPABILITIES \
 (EFI_SUBCLASS_SPECIFIC| 0x0000000C)
#define EFI_SW_RS_PC_QUERY_VARIABLE_INFO \
 (EFI_SUBCLASS_SPECIFIC| 0x0000000D)

//
// Software Class EFI DXE Services Subclass Progress Code
// definitions
//
#define EFI_SW_DS_PC_ADD_MEMORY_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DS_PC_ALLOCATE_MEMORY_SPACE\
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DS_PC_FREE_MEMORY_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DS_PC_REMOVE_MEMORY_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DS_PC_GET_MEMORY_SPACE_DESCRIPTOR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_DS_PC_SET_MEMORY_SPACE_ATTRIBUTES\
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_DS_PC_GET_MEMORY_SPACE_MAP \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_DS_PC_ADD_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000007)
#define EFI_SW_DS_PC_ALLOCATE_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000008)
#define EFI_SW_DS_PC_FREE_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000009)
#define EFI_SW_DS_PC_REMOVE_IO_SPACE \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000A)
#define EFI_SW_DS_PC_GET_IO_SPACE_DESCRIPTOR \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000B)
#define EFI_SW_DS_PC_GET_IO_SPACE_MAP \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000C)
#define EFI_SW_DS_PC_DISPATCH\
 (EFI_SUBCLASS_SPECIFIC | 0x0000000D)
#define EFI_SW_DS_PC_SCHEDULE \

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 263

 (EFI_SUBCLASS_SPECIFIC | 0x0000000E)
#define EFI_SW_DS_PC_TRUST \
 (EFI_SUBCLASS_SPECIFIC | 0x0000000F)
#define EFI_SW_DS_PC_PROCESS_FIRMWARE_VOLUME\
 (EFI_SUBCLASS_SPECIFIC | 0x00000010)

6.7.4.3 Error Code Definitions

Summary
Error code definitions for the Host Software class and all subclasses. See Error Code Operations in
section 6.5.1 for descriptions of these error codes.

The following subclasses define additional subclass-specific error code operations, which are
included below:

• PEI Foundation

• PEIM

• DxeBootServiceDriver

• EFI Byte Code (EBC) exception

• IA-32 exception

• Itanium® processor family exception

• ARM AArch32 and AArch64 exceptions

Prototype
//
// Software Class Error Code definitions.
// These are shared by all subclasses.
//
#define EFI_SW_EC_NON_SPECIFIC 0x00000000
#define EFI_SW_EC_LOAD_ERROR 0x00000001
#define EFI_SW_EC_INVALID_PARAMETER 0x00000002
#define EFI_SW_EC_UNSUPPORTED 0x00000003
#define EFI_SW_EC_INVALID_BUFFER 0x00000004
#define EFI_SW_EC_OUT_OF_RESOURCES 0x00000005
#define EFI_SW_EC_ABORTED 0x00000006
#define EFI_SW_EC_ILLEGAL_SOFTWARE_STATE 0x00000007
#define EFI_SW_EC_ILLEGAL_HARDWARE_STATE 0x00000008
#define EFI_SW_EC_START_ERROR 0x00000009
#define EFI_SW_EC_BAD_DATE_TIME 0x0000000A
#define EFI_SW_EC_CFG_INVALID 0x0000000B
#define EFI_SW_EC_CFG_CLR_REQUEST 0x0000000C
#define EFI_SW_EC_CFG_DEFAULT 0x0000000D
#define EFI_SW_EC_PWD_INVALID 0x0000000E
#define EFI_SW_EC_PWD_CLR_REQUEST 0x0000000F
#define EFI_SW_EC_PWD_CLEARED 0x00000010
#define EFI_SW_EC_EVENT_LOG_FULL 0x00000011

Status Codes Platform Initialization Specification, Vol. 3

264 May 2017 Version 1.6

//
// Software Class Unspecified Subclass Error Code definitions.
//

//
// Software Class SEC Subclass Error Code definitions.
//

//
// Software Class PEI Foundation Subclass Error Code
// definitions.
//
#define EFI_SW_PEI_CORE_EC_DXE_CORRUPT \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_CORE_EC_DXEIPL_NOT_FOUND \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_CORE_EC_MEMORY_NOT_INSTALLED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)

//
// Software Class PEI Module Subclass Error Code definitions.
//
#define EFI_SW_PEI_EC_NO_RECOVERY_CAPSULE\
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PEI_EC_INVALID_CAPSULE_DESCRIPTOR\
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_PEI_EC_S3_RESUME_PPI_NOT_FOUND \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_PEI_EC_S3_BOOT_SCRIPT_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_PEI_EC_S3_OS_WAKE_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_PEI_EC_S3_RESUME_FAILED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_PEI_EC_RECOVERY_PPI_NOT_FOUND \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)
#define EFI_SW_PEI_EC_RECOVERY_FAILED (\
 EFI_SUBCLASS_SPECIFIC | 0x00000007)

//
// Software Class DXE Foundation Subclass Error Code
// definitions.
//

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 265

#define EFI_SW_DXE_CORE_EC_NO_ARCH \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)

//
// Software Class DXE Boot Service Driver Subclass Error Code
// definitions.
//
#define EFI_SW_DXE_BS_EC_LEGACY_OPROM_NO_SPACE\
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_BS_EC_INVALID_PASSWORD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_BS_EC_BOOT_OPTION_LOAD_ERROR \
 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_BS_EC_BOOT_OPTION_FAILED \
 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_BS_EC_INVALID_IDE_PASSWORD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000004)

//
// Software Class DXE Runtime Service Driver Subclass Error Code
// definitions.
//

//
// Software Class SMM Driver Subclass Error Code definitions.
//

//
// Software Class EFI Application Subclass Error Code
// definitions.
//

//
// Software Class EFI OS Loader Subclass Error Code definitions.
//

//
// Software Class EFI RT Subclass Error Code definitions.
//

//
// Software Class EBC Exception Subclass Error Code definitions.

Status Codes Platform Initialization Specification, Vol. 3

266 May 2017 Version 1.6

// These exceptions are derived from the debug protocol
// definitions in the EFI specification.
//
#define EFI_SW_EC_EBC_UNDEFINED \
 0x00000000
#define EFI_SW_EC_EBC_DIVIDE_ERROR \
 EXCEPT_EBC_DIVIDE_ERROR
#define EFI_SW_EC_EBC_DEBUG \
 EXCEPT_EBC_DEBUG
#define EFI_SW_EC_EBC_DEBUG \
 EXCEPT_EBC_DEBUG
#define EFI_SW_EC_EBC_BREAKPOINT \
 EXCEPT_EBC_BREAKPOINT
#define EFI_SW_EC_EBC_OVERFLOW \
 EXCEPT_EBC_OVERFLOW
#define EFI_SW_EC_EBC_INVALID_OPCODE \
 EXCEPT_EBC_INVALID_OPCODE
#define EFI_SW_EC_EBC_STACK_FAULT \
 EXCEPT_EBC_STACK_FAULT
#define EFI_SW_EC_EBC_ALIGNMENT_CHECK \
 EXCEPT_EBC_ALIGNMENT_CHECK
#define EFI_SW_EC_EBC_INSTRUCTION_ENCODING \
 EXCEPT_EBC_INSTRUCTION_ENCODING
#define EFI_SW_EC_EBC_BAD_BREAK \
 EXCEPT_EBC_BAD_BREAK
#define EFI_SW_EC_EBC_STEP EXCEPT_EBC_STEP

//
// Software Class IA32 Exception Subclass Error Code
// definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI specification.
//
#define EFI_SW_EC_IA32_DIVIDE_ERROR \
 EXCEPT_IA32_DIVIDE_ERROR
#define EFI_SW_EC_IA32_DEBUG \
 EXCEPT_IA32_DEBUG
#define EFI_SW_EC_IA32_NMI EXCEPT_IA32_NMI
#define EFI_SW_EC_IA32_BREAKPOINT \
 EXCEPT_IA32_BREAKPOINT
#define EFI_SW_EC_IA32_OVERFLOW \
 EXCEPT_IA32_OVERFLOW
#define EFI_SW_EC_IA32_BOUND \
 EXCEPT_IA32_BOUND
#define EFI_SW_EC_IA32_INVALID_OPCODE \
 EXCEPT_IA32_INVALID_OPCODE

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 267

#define EFI_SW_EC_IA32_DOUBLE_FAULT \
 EXCEPT_IA32_DOUBLE_FAULT
#define EFI_SW_EC_IA32_INVALID_TSS \
 EXCEPT_IA32_INVALID_TSS
#define EFI_SW_EC_IA32_SEG_NOT_PRESENT \
 EXCEPT_IA32_SEG_NOT_PRESENT
#define EFI_SW_EC_IA32_STACK_FAULT \
 EXCEPT_IA32_STACK_FAULT
#define EFI_SW_EC_IA32_GP_FAULT \
 EXCEPT_IA32_GP_FAULT
#define EFI_SW_EC_IA32_PAGE_FAULT \
 EXCEPT_IA32_PAGE_FAULT
#define EFI_SW_EC_IA32_FP_ERROR \
 EXCEPT_IA32_FP_ERROR
#define EFI_SW_EC_IA32_ALIGNMENT_CHECK \
 EXCEPT_IA32_ALIGNMENT_CHECK
#define EFI_SW_EC_IA32_MACHINE_CHECK \
 EXCEPT_IA32_MACHINE_CHECK
#define EFI_SW_EC_IA32_SIMD EXCEPT_IA32_SIMD

//
// Software Class IPF Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI specification.
//
#define EFI_SW_EC_IPF_ALT_DTLB \
 EXCEPT_IPF_ALT_DTLB
#define EFI_SW_EC_IPF_DNESTED_TLB \
 EXCEPT_IPF_DNESTED_TLB
#define EFI_SW_EC_IPF_BREAKPOINT \
 EXCEPT_IPF_BREAKPOINT
#define EFI_SW_EC_IPF_EXTERNAL_INTERRUPT \
 EXCEPT_IPF_EXTERNAL_INTERRUPT
#define EFI_SW_EC_IPF_GEN_EXCEPT \
 EXCEPT_IPF_GEN_EXCEPT
#define EFI_SW_EC_IPF_NAT_CONSUMPTION \
 EXCEPT_IPF_NAT_CONSUMPTION
#define EFI_SW_EC_IPF_DEBUG_EXCEPT \
 EXCEPT_IPF_DEBUG_EXCEPT
#define EFI_SW_EC_IPF_UNALIGNED_ACCESS \
 EXCEPT_IPF_UNALIGNED_ACCESS
#define EFI_SW_EC_IPF_FP_FAULT \
 EXCEPT_IPF_FP_FAULT
#define EFI_SW_EC_IPF_FP_TRAP \
 EXCEPT_IPF_FP_TRAP
#define EFI_SW_EC_IPF_TAKEN_BRANCH \

Status Codes Platform Initialization Specification, Vol. 3

268 May 2017 Version 1.6

 EXCEPT_IPF_TAKEN_BRANCH
#define EFI_SW_EC_IPF_SINGLE_STEP \
 EXCEPT_IPF_SINGLE_STEP

//
// Software Class PEI Service Subclass Error Code definitions.
//
#define EFI_SW_PS_EC_RESET_NOT_AVAILABLE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_PS_EC_MEMORY_INSTALLED_TWICE \
 (EFI_SUBCLASS_SPECIFIC | 0x00000001)

//
// Software Class EFI Boot Service Subclass Error Code
// definitions.
//

//
// Software Class EFI Runtime Service Subclass Error Code \
// definitions.

//
//
// Software Class EFI DXE Service Subclass Error Code \
// definitions.
//

#define EFI_SW_DXE_BS_PC_BEGIN_CONNECTING_DRIVERS \
 (EFI_SUBCLASS_SPECIFIC | 0x00000005)
#define EFI_SW_DXE_BS_PC_VERIFYING_PASSWORD \
 (EFI_SUBCLASS_SPECIFIC | 0x00000006)

//
// Software Class DXE RT Driver Subclass Progress Code
// definitions.
//
#define EFI_SW_DXE_RT_PC_S0 (EFI_SUBCLASS_SPECIFIC | 0x00000000)
#define EFI_SW_DXE_RT_PC_S1 (EFI_SUBCLASS_SPECIFIC | 0x00000001)
#define EFI_SW_DXE_RT_PC_S2 (EFI_SUBCLASS_SPECIFIC | 0x00000002)
#define EFI_SW_DXE_RT_PC_S3 (EFI_SUBCLASS_SPECIFIC | 0x00000003)
#define EFI_SW_DXE_RT_PC_S4 (EFI_SUBCLASS_SPECIFIC | 0x00000004)
#define EFI_SW_DXE_RT_PC_S5 (EFI_SUBCLASS_SPECIFIC | 0x00000005)

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 269

//
// Software Class X64 Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI
// specification.
//
#define EFI_SW_EC_X64_DIVIDE_ERROR EXCEPT_X64_DIVIDE_ERROR
#define EFI_SW_EC_X64_DEBUG EXCEPT_X64_DEBUG
#define EFI_SW_EC_X64_NMI EXCEPT_X64_NMI
#define EFI_SW_EC_X64_BREAKPOINT EXCEPT_X64_BREAKPOINT
#define EFI_SW_EC_X64_OVERFLOW EXCEPT_X64_OVERFLOW
#define EFI_SW_EC_X64_BOUND EXCEPT_X64_BOUND
#define EFI_SW_EC_X64_INVALID_OPCODE EXCEPT_X64_INVALID_OPCODE
#define EFI_SW_EC_X64_DOUBLE_FAULT EXCEPT_X64_DOUBLE_FAULT
#define EFI_SW_EC_X64_INVALID_TSS EXCEPT_X64_INVALID_TSS
#define EFI_SW_EC_X64_SEG_NOT_PRESENT \
 EXCEPT_X64_SEG_NOT_PRESENT
#define EFI_SW_EC_X64_STACK_FAULT EXCEPT_X64_STACK_FAULT
#define EFI_SW_EC_X64_GP_FAULT EXCEPT_X64_GP_FAULT
#define EFI_SW_EC_X64_PAGE_FAULT EXCEPT_X64_PAGE_FAULT
#define EFI_SW_EC_X64_FP_ERROR EXCEPT_X64_FP_ERROR
#define EFI_SW_EC_X64_ALIGNMENT_CHECK \
 EXCEPT_X64_ALIGNMENT_CHECK
#define EFI_SW_EC_X64_MACHINE_CHECK EXCEPT_X64_MACHINE_CHECK
#define EFI_SW_EC_X64_SIMD EXCEPT_X64_SIMD

//
// Software Class ARM Exception Subclass Error Code definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI
// specification.
//
#define EFI_SW_EC_ARM_RESET EXCEPT_ARM_RESET
#define EFI_SW_EC_ARM_UNDEFINED_INSTRUCTION \
 EXCEPT_ARM_UNDEFINED_INSTRUCTION
#define EFI_SW_EC_ARM_SOFTWARE_INTERRUPT \
 EXCEPT_ARM_SOFTWARE_INTERRUPT
#define EFI_SW_EC_ARM_PREFETCH_ABORT \
 EXCEPT_ARM_PREFETCH_ABORT
#define EFI_SW_EC_ARM_DATA_ABORT EXCEPT_ARM_DATA_ABORT
#define EFI_SW_EC_ARM_RESERVED EXCEPT_ARM_RESERVED
#define EFI_SW_EC_ARM_IRQ EXCEPT_ARM_IRQ
#define EFI_SW_EC_ARM_FIQ EXCEPT_ARM_FIQ
#define EFI_SW_EC_AARCH64_SYNCHRONOUS_EXCEPTIONS \
 EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS

Status Codes Platform Initialization Specification, Vol. 3

270 May 2017 Version 1.6

#define EFI_SW_EC_AARCH64_IRQ EXCEPT_AARCH64_IRQ
#define EFI_SW_EC_AARCH64_FIQ EXCEPT_AARCH64_FIQ
#define EFI_SW_EC_AARCH64_SERROR EXCEPT_AARCH64_SERROR

//
// Software Class RISC-V Exception Subclass Error Code
definitions.
// These exceptions are derived from the debug protocol
// definitions in the EFI specification.
//

#define EFI_SW_EC_RISCV_INST_MISALIGNED
EXCEPT_RISCV_INST_MISALIGNED
#define EFI_SW_EC_RISCV_INST_ACCESS_FAULT
EXCEPT_RISCV_INST_ACCESS_FAULT
#define EFI_SW_EC_RISCV_ILLEGAL_INSTEXCEPT_RISCV_ILLEGAL_INST
#define EFI_SW_EC_RISCV_BREAKPOINTEXCEPT_RISCV_ BREAKPOINT
#define EFI_SW_EC_RISCV_LOAD_ADDRESS_MISALIGNED\
EXCEPT_RISCV_LOAD_ADDRESS_MISALIGNED
#define EFI_SW_EC_RISCV_LOAD_ACCESS_FAULT
EXCEPT_RISCV_LOAD_ACCESS_FAULT
#define EFI_SW_EC_RISCV_STORE_AMO_ADDRESS_MISALIGNED\
EXCEPT_RISCV_STORE_AMO_ADDRESS_MISALIGNED
#define EFI_SW_EC_RISCV_STORE_AMO_ACCESS_FAULT \
EXCEPT_RISCV_STORE_AMO_ACCESS_FAULT
#define EFI_SW_EC_RISCV_ENV_CALL_FROM_UMODE
EXCEPT_RISCV_ENV_CALL_FROM_UMODE
#define EFI_SW_EC_RISCV_ENV_CALL_FROM_SMODE
EXCEPT_RISCV_ENV_CALL_FROM_SMODE
#define EFI_SW_EC_RISCV_ENV_CALL_FROM_HMOD
EXCEPT_RISCV_ENV_CALL_FROM_HMODE
#define EFI_SW_EC_RISCV_ENV_CALL_FROM_MMODE
EXCEPT_RISCV_ENV_CALL_FROM_MMODE

6.7.4.4 Extended Data Formats
In addition to the other class-specific error definitions in this subsection, the Host Software class
uses the following extended error data definition:

• EFI_DEVICE_HANDLE_EXTENDED_DATA

See section 6.6.4 for its definition.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 271

EFI_DEBUG_ASSERT_DATA

Summary
This structure provides the assert information that is typically associated with a debug assertion
failing.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 UINT32 LineNumber;
 UINT32 FileNameSize;
 EFI_STATUS_CODE_STRING_DATA *FileName;
} EFI_DEBUG_ASSERT_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_DEBUG_ASSERT_DATA) – HeaderSize , and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

LineNumber

The line number of the source file where the fault was generated.

FileNameSize

The size in bytes of FileName.

FileName

A pointer to a NULL-terminated ASCII or Unicode string that represents the file name
of the source file where the fault was generated. Type
EFI_STATUS_CODE_STRING_DATA is defined in section 6.6.2.

Description
The data indicates the location of the assertion that failed in the source code. This information
includes the file name and line number that are necessary to find the failing assertion in source code.

Status Codes Platform Initialization Specification, Vol. 3

272 May 2017 Version 1.6

EFI_STATUS_CODE_EXCEP_EXTENDED_DATA

Summary
This structure defines extended data describing a processor exception error.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT Context;
} EFI_STATUS_CODE_EXCEP_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_EXCEP_EXTENDED_DATA) – HeaderSize,
and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

Context

The system context. Type EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT is
defined in “Related Definitions” below.

Description
This extended data allows the processor context that is present at the time of the exception to be
reported with the exception. The format and contents of the context data varies depending on the
processor architecture.

Related Definitions
//**
// EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT
//**
typedef union {
 EFI_SYSTEM_CONTEXT_EBC SystemContextEbc;
 EFI_SYSTEM_CONTEXT_IA32 SystemContextIa32;
 EFI_SYSTEM_CONTEXT_IPF SystemContextIpf;
 EFI_SYSTEM_CONTEXT_X64 SystemContextX64;
 EFI_SYSTEM_CONTEXT_ARM SystemContextArm;
 EFI_SYSTEM_CONTEXT_RISCV32 SystemContextRiscV32;
 EFI_SYSTEM_CONTEXT_RISCV64 SystemContextRiscV64;
 EFI_SYSTEM_CONTEXT_RISCV128 SystemContextRiscv128;
} EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT;

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 273

SystemContextEbc

The context of the EBC virtual machine when the exception was generated. Type
EFI_SYSTEM_CONTEXT_EBC is defined in EFI_DEBUG_SUPPORT_PROTOCOL
in the UEFI Specification.

SystemContextIa32

The context of the IA-32 processor when the exception was generated. Type
EFI_SYSTEM_CONTEXT_IA32 is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextIpf

The context of the Itanium® processor when the exception was generated. Type
EFI_SYSTEM_CONTEXT_IPF is defined in the
EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextX64

The context of the X64 processor when the exception was generated. Type

EFI_SYSTEM_CONTEXT_X64 is defined in the

EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextArm

The context of the ARM processor when the exception was generated. Type

EFI_SYSTEM_CONTEXT_ARM is defined in the

EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextRiscV32

The context of the RISC-V RV32 processor when the exception was generated. Type

EFI_SYSTEM_CONTEXT_RISCV32 is defined in the

EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextRiscV64

The context of the RISC-V RV64 processor when the exception was generated. Type

EFI_SYSTEM_CONTEXT_RISCV64 is defined in the

EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

SystemContextRiscV128

The context of the RISC-V RV128 processor when the exception was generated. Type

EFI_SYSTEM_CONTEXT_RISCV128 is defined in the

EFI_DEBUG_SUPPORT_PROTOCOL in the UEFI Specification.

Status Codes Platform Initialization Specification, Vol. 3

274 May 2017 Version 1.6

EFI_STATUS_CODE_START_EXTENDED_DATA

Summary
This structure defines extended data describing a call to a driver binding protocol start function.

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE ControllerHandle;
 EFI_HANDLE DriverBindingHandle;
 UINT16 DevicePathSize;
 // EFI_DEVICE_PATH_PROTOCOL RemainingDevicePath;
} EFI_STATUS_CODE_START_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_STATUS_CODE_START_EXTENDED_DATA) - HeaderSize,
and DataHeader.Type should be
EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

ControllerHandle

The controller handle.

DriverBindingHandle

The driver binding handle.

DevicePathSize

The size of the RemainingDevicePath. It is zero if the Start() function is
called with RemainingDevicePath = NULL. The UEFI Specification allows
that the Start() function of bus drivers can be called in this way.

RemainingDevicePath

Matches the RemainingDevicePath parameter being passed to the Start()
function. Note that this parameter is the variable-length device path and not a pointer
to the device path.

Description
This extended data records information about a Start() function call. Start() is a member of
the UEFI Driver Binding Protocol.

Platform Initialization Specification, Vol. 3 Status Codes

Version 1.6 May 2017 275

EFI_LEGACY_OPROM_EXTENDED_DATA

Summary
This structure defines extended data describing a legacy option ROM (OpROM).

Prototype
typedef struct {
 EFI_STATUS_CODE_DATA DataHeader;
 EFI_HANDLE DeviceHandle;
 EFI_PHYSICAL_ADDRESS RomImageBase;
} EFI_LEGACY_OPROM_EXTENDED_DATA;

Parameters
DataHeader

The data header identifying the data. DataHeader.HeaderSize should be
sizeof (EFI_STATUS_CODE_DATA), DataHeader.Size should be
sizeof (EFI_LEGACY_OPROM_EXTENDED_DATA) - HeaderSize, and
DataHeader.Type should be EFI_STATUS_CODE_SPECIFIC_DATA_GUID.

DeviceHandle

The handle corresponding to the device that this legacy option ROM is being invoked.

RomImageBase

The base address of the shadowed legacy ROM image. May or may not point to the
shadow RAM area. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI Specification.

Description
The device handle and ROM image base can be used by consumers to determine which option ROM
failed. Due to the black-box nature of legacy option ROMs, the amount of information that can be
obtained may be limited.

Status Codes Platform Initialization Specification, Vol. 3

276 May 2017 Version 1.6

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 277

7 Report Status Code Routers

7.1 Overview
This section provides the code definitions for the PPI and Protocols used in a Report Status Code
Router. These interfaces allow multiple platform dependent drivers for displaying status code
information to coexist without prior knowledge of one another.

Status Code Producer

Generic Status Code Driver

ReportStatusCode

Status Code
Consumer

Status Code
Consumer

Status Code
Consumer

Call each Callback

Figure 13. Status Code Services

There is a generic status code driver in each phase. In each case the driver consumes the Report
Status Code Protocol and produces the Report Status Code Handler PPI or Protocol. Each consumer
of the Report Status Code Handler PPI or Protocol will register a callback to receive notification of
new Status Codes from the Generic Status Code Driver.

7.2 Code Definitions

7.2.1 Report Status Code Handler Protocol

EFI_RSC_HANDLER_PROTOCOL

Summary
Provide registering and unregistering services to status code consumers while in DXE.

Report Status Code Routers Platform Initialization Specification, Vol. 3

278 May 2017 Version 1.6

GUID
#define EFI_RSC_HANDLER_PROTOCOL_GUID \
 { \
 0x86212936, 0xe76, 0x41c8, \
 0xa0, 0x3a, 0x2a, 0xf2, 0xfc, 0x1c, 0x39, 0xe2 \
 }

Protocol Interface Structure
typedef struct {
 EFI_RSC_HANDLER_REGISTER Register;
 EFI_RSC_HANDLER_UNREGISTER Unregister;
} EFI_RSC_HANDLER_PROTOCOL;

Members
Register

Register the callback for notification of status code messages.

Unregister

Unregister the callback.

Description
Once registered, status code messages will be forwarded to the callback. The callback must be
unregistered before it is deallocated.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_RSC_HANDLER_CALLBACK) (
 IN EFI_STATUS_CODE_TYPE CodeType,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN EFI_GUID * CallerId,
 IN EFI_STATUS_CODE_DATA * Data
);

For parameter descriptions, function descriptions and status code values, see
ReportStatusCode() in the PI Specification,Volume 2, section 14.2.

Platform Initialization Specification, Vol. 3 Report Status Code Routers

Version 1.6 May 2017 279

EFI_RSC_HANDLER_PROTOCOL.Register()

Summary
Register the callback function for ReportStatusCode() notification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RSC_HANDLER_REGISTER) (
 IN EFI_RSC_HANDLER_CALLBACK Callback,
 IN EFI_TPL Tpl
);

Parameters
Callback

A pointer to a function of type EFI_RSC_HANDLER_CALLBACK that is called when
a call to ReportStatusCode() occurs.

Tpl

TPL at which callback can be safely invoked.

Description
When this function is called the function pointer is added to an internal list and any future calls to
ReportStatusCode() will be forwarded to the Callback function. During the boot-
services, this is the callback for which this service can be invoked. The report status code router
will create an event such that the callback function is only invoked at the TPL for which it was
registered. The entity that registers for the callback should also register for an event upon
generation of exit boot services and invoke the unregister service.

If the handler does not have a TPL dependency, it should register for a callback at TPL high. The
router infrastructure will support making callbacks at runtime, but the caller for runtime invocation
must meet the following criteria:

1. must be a runtime driver type so that its memory is not reclaimed

2. not unregister at exit boot services so that the router will still have its callback address

3. the caller must be self-contained (eg. Not call out into any boot-service interfaces) and be
runtime safe, in general.

Status Codes Returned

EFI_SUCCESS Function was successfully registered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_OUT_OF_RESOURCES The internal buffer ran out of space. No more functions can be
registered.

EFI_ALREADY_STARTED The function was already registered. It can’t be registered again.

Report Status Code Routers Platform Initialization Specification, Vol. 3

280 May 2017 Version 1.6

EFI_RSC_HANDLER_PROTOCOL.Unregister()

Summary
Remove a previously registered callback function from the notification list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_RSC_HANDLER_UNREGISTER) (
 IN EFI_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_RSC_HANDLER_CALLBACK that is to be
unregistered.

Description
A callback function must be unregistered before it is deallocated. It is important that any registered
callbacks that are not runtime complaint be unregistered when ExitBootServices() is called.

Status Codes Returned

EFI_SUCCESS The function was successfully unregistered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_NOT_FOUND The callback function was not found to be unregistered.

7.2.2 Report Status Code Handler PPI

EFI_PEI_RSC_HANDLER_PPI

Summary
Provide registering and unregistering services to status code consumers.

Platform Initialization Specification, Vol. 3 Report Status Code Routers

Version 1.6 May 2017 281

GUID
#define EFI_PEI_RSC_HANDLER_PPI_GUID \
 { \
 0x65d394, 0x9951, 0x4144, \
 0x82, 0xa3, 0xa, 0xfc, 0x85, 0x79, 0xc2, 0x51 \
 }

PPI Interface Structure
typedef struct _EFI_PEI_RSC_HANDLER_PPI {
 EFI_PEI_RSC_HANDLER_REGISTER Register;
 EFI_PEI_RSC_HANDLER_UNREGISTER Unregister;
} EFI_PEI_RSC_HANDLER_PPI;

Members
Register

Register the callback for notification of status code messages.

Unregister

Unregister the callback.

Description
Once registered, status code messages will be forwarded to the callback.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RSC_HANDLER_CALLBACK) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId,
 IN CONST EFI_STATUS_CODE_DATA *Data
);

For parameter descriptions, function descriptions and status code values, see
ReportStatusCode() in the PI specification Volume 1, section 4.5.

Report Status Code Routers Platform Initialization Specification, Vol. 3

282 May 2017 Version 1.6

EFI_PEI_RSC_HANDLER_PPI.Register()

Summary
Register the callback function for ReportStatusCode() notification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RSC_HANDLER_REGISTER) (
 IN EFI_PEI_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_PEI_RSC_HANDLER_CALLBACK that is called
when a call to ReportStatusCode() occurs.

Description
When this function is called the function pointer is added to an internal list and any future calls to
ReportStatusCode() will be forwarded to the Callback function.

Status Codes Returned

EFI_SUCCESS Function was successfully registered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_OUT_OF_RESOURCES The internal buffer ran out of space. No more functions can be
registered.

EFI_ALREADY_STARTED The function was already registered. It can’t be registered again.

Platform Initialization Specification, Vol. 3 Report Status Code Routers

Version 1.6 May 2017 283

EFI_PEI_RSC_HANDLER_PPI.Unregister()

Summary
Remove a previously registered callback function from the notification list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RSC_HANDLER_UNREGISTER) (
 IN EFI_PEI_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_PEI_RSC_HANDLER_CALLBACK that is to be
unregistered.

Description
ReportStatusCode() messages will no longer be forwarded to the Callback function.

Status Codes Returned

EFI_SUCCESS The function was successfully unregistered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_NOT_FOUND The callback function was not found to be unregistered.

7.2.3 SMM Report Status Code Handler Protocol

EFI_SMM_RSC_HANDLER_PROTOCOL

Summary
Provide registering and unregistering services to status code consumers while in DXE SMM.

Report Status Code Routers Platform Initialization Specification, Vol. 3

284 May 2017 Version 1.6

GUID
#define EFI_SMM_RSC_HANDLER_PROTOCOL_GUID \
 { \
0x2ff29fa7, 0x5e80, 0x4ed9, 0xb3, 0x80, 0x1, 0x7d, 0x3c, 0x55,
0x4f, 0xf4
 }

Protocol Interface Structure
typedef struct _EFI_SMM_RSC_HANDLER_PROTOCOL {
 EFI_SMM_RSC_HANDLER_REGISTER Register;
 SMM_RSC_HANDLER_UNREGISTER Unregister;
} EFI_SMM_RSC_HANDLER_PROTOCOL;

Members
Register

Register the callback for notification of status code messages.

Unregister

Unregister the callback.

Description
Once registered, status code messages will be forwarded to the callback. The callback must be
unregistered before it is deallocated.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_RSC_HANDLER_CALLBACK) (
 IN EFI_STATUS_CODE_TYPE CodeType,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN EFI_GUID * CallerId,
 IN EFI_STATUS_CODE_DATA * Data
);

For parameter descriptions, function descriptions and status code values, see
ReportStatusCode() in the PI specification Volume 2, section 14.2.

Platform Initialization Specification, Vol. 3 Report Status Code Routers

Version 1.6 May 2017 285

EFI_SMM_RSC_HANDLER_PROTOCOL.Register()

Summary
Register the callback function for ReportStatusCode() notification.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_RSC_HANDLER_REGISTER) (
 IN EFI_SMM_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_RSC_HANDLER_CALLBACK that is called when
a call to ReportStatusCode() occurs.

Description
When this function is called the function pointer is added to an internal list and any future calls to
ReportStatusCode() will be forwarded to the Callback function.

Status Codes Returned

EFI_SUCCESS Function was successfully registered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_OUT_OF_RESOURCES The internal buffer ran out of space. No more functions can be
registered.

EFI_ALREADY_STARTED The function was already registered. It can’t be registered again.

Report Status Code Routers Platform Initialization Specification, Vol. 3

286 May 2017 Version 1.6

EFI_SMM_RSC_HANDLER_PROTOCOL.Unregister()

Summary
Remove a previously registered callback function from the notification list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMM_RSC_HANDLER_UNREGISTER) (
 IN EFI_SMM_RSC_HANDLER_CALLBACK Callback
);

Parameters
Callback

A pointer to a function of type EFI_SMM_RSC_HANDLER_CALLBACK that is to be
unregistered.

Description
A callback function must be unregistered before it is deallocated. It is important that any registered
callbacks that are not runtime complaint be unregistered when ExitBootServices() is called.

Status Codes Returned

EFI_SUCCESS The function was successfully unregistered.

EFI_INVALID_PARAMETER The callback function was NULL.

EFI_NOT_FOUND The callback function was not found to be unregistered.

Platform Initialization Specification, Vol. 3

Version 1.6 May 2017 287

8 PCD

8.1 PCD Protocol Definitions

8.1.1 PCD Protocol

EFI_PCD_PROTOCOL

Summary

A platform database that contains a variety of current platform settings or directives that can be
accessed by a driver or application.

GUID
#define EFI_PCD_PROTOCOL_GUID \
 { 0x13a3f0f6, 0x264a, 0x3ef0, \
 { 0xf2, 0xe0, 0xde, 0xc5, 0x12, 0x34, 0x2f, 0x34 } }

Protocol Interface Structure
typedef struct _EFI_PCD_PROTOCOL {
 EFI_PCD_PROTOCOL_SET_SKU SetSku;

 EFI_PCD_PROTOCOL_GET_8 Get8;
 EFI_PCD_PROTOCOL_GET_16 Get16;
 EFI_PCD_PROTOCOL_GET_32 Get32;
 EFI_PCD_PROTOCOL_GET_64 Get64;
 EFI_PCD_PROTOCOL_GET_POINTER GetPtr;
 EFI_PCD_PROTOCOL_GET_BOOLEAN GetBool;
 EFI_PCD_PROTOCOL_GET_SIZE GetSize;

 EFI_PCD_PROTOCOL_SET_8 Set8;
 EFI_PCD_PROTOCOL_SET_16 Set16;
 EFI_PCD_PROTOCOL_SET_32 Set32;
 EFI_PCD_PROTOCOL_SET_64 Set64;
 EFI_PCD_PROTOCOL_SET_POINTER SetPtr;
 EFI_PCD_PROTOCOL_SET_BOOLEAN SetBool;

 EFI_PCD_PROTOCOL_CALLBACK_ON_SET CallbackOnSet;
 EFI_PCD_PROTOCOL_CANCEL_CALLBACK CancelCallback;
 EFI_PCD_PROTOCOL_GET_NEXT_TOKEN GetNextToken;
 EFI_PCD_PROTOCOL_GET_NEXT_TOKEN_SPACE GetNextTokenSpace;
} EFI_PCD_PROTOCOL;

PCD Platform Initialization Specification, Vol. 3

288 May 2017 Version 1.6

Parameters
SetSku

Establish a current SKU value for the PCD service to use for subsequent data Get/Set
requests.

Get8

Retrieve an 8-bit value from the PCD service using a GUIDed token namespace.

Get16

Retrieve a 16-bit value from the PCD service using a GUIDed token namespace.

Get32

Retrieve a 32-bit value from the PCD service using a GUIDed token namespace.

Get64

Retrieve a 64-bit value from the PCD service using a GUIDed token namespace.

GetPtr

Retrieve a pointer to a value from the PCD service using a GUIDed token namespace.
Can be used to retrieve an array of bytes that may represent a data structure, ASCII
string, or Unicode string

GetBool

Retrieve a Boolean value from the PCD service using a GUIDed token namespace.

GetSize

Retrieve the size of a particular PCD Token value using a GUIDed token namespace.

Set8

Set an 8-bit value in the PCD service using a GUIDed token namespace

 Set16

Set a 16-bit value in the PCD service using a GUIDed token namespace.

Set32

Set a 32-bit value in the PCD service using a GUIDed token namespace.

Set64

Set a 64-bit value in the PCD service using a GUIDed token namespace.

SetPtr

Set a pointer to a value in the PCD service using a GUIDed token namespace. Can be
used to set an array of bytes that may represent a data structure, ASCII string, or
Unicode string

SetBool

Set a Boolean value in the PCD service using a GUIDed token namespace.

CallBackOnSet

Establish a notification to alert when a particular PCD Token value is set.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 289

CancelCallBackOnSet

Cancel a previously set notification for a particular PCD Token value.

GetNextToken

Retrieve the next token number that is contained in the PCD name-space.

GetNextTokenSpace

Retrieve the next valid PCD token namespace for a given name-space.

Description
Callers to this protocol must be at a TPL_APPLICATION task priority level.

This is the base PCD service API that provides an abstraction for accessing configuration content in
the platform. It a seamless mechanism for extracting information regardless of where the
information is stored (such as in Read-only data, or an EFI Variable).

This protocol allows access to data through size-granular APIs and provides a mechanism for a
firmware component to monitor specific settings and be alerted when a setting is changed.

PCD Platform Initialization Specification, Vol. 3

290 May 2017 Version 1.6

EFI_PCD_PROTOCOL.SetSku ()

Summary
Sets the SKU value for subsequent calls to set or get PCD token values.

Prototype
typedef
VOID
(EFIAPI *EFI_PCD_PROTOCOL_SET_SKU) (
 IN UINTN SkuId
);

Parameters
SkuId

The SKU value to set.

Description
SetSku() sets the SKU Id to be used for subsequent calls to set or get PCD values. SetSku() is
normally called only once by the system.

For each item (token), the database can hold a single value that applies to all SKUs, or multiple
values, where each value is associated with a specific SKU Id. Items with multiple, SKU-specific
values are called SKU enabled.

The SKU Id of zero is reserved as a default. For tokens that are not SKU enabled, the system ignores
any set SKU Id and works with the single value for that token. For SKU-enabled tokens, the system
will use the SKU Id set by the last call to SetSku(). If no SKU Id is set or the currently set SKU Id
isn’t valid for the specified token, the system uses the default SKU Id. If the system attempts to use
the default SKU Id and no value has been set for that Id, the results are unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 291

EFI_PCD_PROTOCOL.Get8 ()

Summary
Retrieves an 8-bit value for a given PCD token.

Prototype
typedef
UINT8
(EFIAPI *EFI_PCD_PROTOCOL_GET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current byte-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

PCD Platform Initialization Specification, Vol. 3

292 May 2017 Version 1.6

EFI_PCD_PROTOCOL.Get16 ()

Summary
Retrieves a 16-bit value for a given PCD token.

Prototype
typedef
UINT16
(EFIAPI *EFI_PCD_PROTOCOL_GET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current word-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 293

EFI_PCD_PROTOCOL.Get32 ()

Summary
Retrieves a 32-bit value for a given PCD token.

Prototype
typedef
UINT32
(EFIAPI *EFI_PCD_PROTOCOL_GET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current 32-bit sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

PCD Platform Initialization Specification, Vol. 3

294 May 2017 Version 1.6

EFI_PCD_PROTOCOL.Get64 ()

Summary
Retrieves a 64 -bit value for a given PCD token.

Prototype
typedef
UINT64
(EFIAPI *EFI_PCD_PROTOCOL_GET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the 64-bit sized value for a PCD token number. If the TokenNumber is invalid, the
results are unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 295

EFI_PCD_PROTOCOL.GetPtr ()

Summary
Retrieves a pointer to a value for a given PCD token.

Prototype
typedef
VOID *
(EFIAPI *EFI_PCD_PROTOCOL_GET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current pointer to the value for a PCD token number. Do not make any assumptions
about the alignment of the pointer that is returned by this function call. If the TokenNumber is
invalid, the results are unpredictable.

PCD Platform Initialization Specification, Vol. 3

296 May 2017 Version 1.6

EFI_PCD_PROTOCOL.GetBool ()

Summary
Retrieves a Boolean value for a given PCD token.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_PCD_PROTOCOL_GET_BOOLEAN) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current BOOLEAN-sized value for a PCD token number. If the TokenNumber is
invalid, the results are unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 297

EFI_PCD_PROTOCOL.GetSize ()

Summary
Retrieves the size of the value for a given PCD token.

Prototype
typedef
UINTN
(EFIAPI *EFI_PCD_PROTOCOL_GET_SIZE) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current size of a particular PCD token. If the TokenNumber is invalid, the results are
unpredictable.

PCD Platform Initialization Specification, Vol. 3

298 May 2017 Version 1.6

EFI_PCD_PROTOCOL.Set8 ()

Summary
Sets an 8-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT 8 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 299

EFI_PCD_PROTOCOL.Set16 ()

Summary
Sets a 16-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT16 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.The 128-bit unique value that designates the
namespace from which to extract the value.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to retrieve the

size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD Platform Initialization Specification, Vol. 3

300 May 2017 Version 1.6

EFI_PCD_PROTOCOL.Set32 ()

Summary
Sets a 32-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT32 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token's existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to retrieve the

size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 301

EFI_PCD_PROTOCOL.Set64 ()

Summary
Sets a 64-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT64 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token's existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to retrieve the

size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD Platform Initialization Specification, Vol. 3

302 May 2017 Version 1.6

EFI_PCD_PROTOCOL.SetPtr ()

Summary
Sets a value of a specified size for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN OUT UINTN *SizeOfValue,
 IN VOID *Buffer
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

SizeOfValue

The length of the value being set for the PCD token. If too large of a length is
specified, upon return from this function the value of SizeOfValue will
reflect the maximum size for the PCD token.

Buffer

A pointer to the buffer containing the value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token's existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was
incompatible with a call to this function. The SizeofValue

parameter reflects the maximum size of the PCD token referenced.

Use GetSize() to retrieve
the current size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 303

EFI_PCD_PROTOCOL.SetBool ()

Summary
Sets a Boolean value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_SET_BOOLEAN) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN BOOLEAN Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

Token

NumberThe PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was incom-

patible with a call to this function. Use GetBool() to retrieve the size

of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD Platform Initialization Specification, Vol. 3

304 May 2017 Version 1.6

EFI_PCD_PROTOCOL.CallbackOnSet ()

Summary
Specifies a function to be called anytime the value of a designated token is changed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_CALLBACK_ON_SET) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PCD_PROTOCOL_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number to monitor.

CallBackFunction

The function prototype called when the value associated with the CallBackToken
is set.

Related Definitions
typedef
VOID
(EFIAPI *EFI_PCD_PROTOCOL_CALLBACK) {
 IN EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN OUT VOID *TokenData,
 IN UINTN TokenDataSize
 };

Description
Specifies a function to be called anytime the value of a designated token is changed.

Status Codes Returned

EFI_SUCCESS The PCD service has successfully established a call event for the

CallBackToken requested.

EFI_NOT_FOUND The PCD service could not find the referenced token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 305

EFI_PCD_PROTOCOL.CancelCallback ()

Summary
Cancels a previously set callback function for a particular PCD token number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_CANCEL_CALLBACK) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PCD_PROTOCOL_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number for which to cancel monitoring.

CallBackFunction

The function prototype that was originally passed to the CallBackOnSet function.

Description
Cancels a callback function that was set through a previous call to the CallBackOnSet function.

Status Codes Returned

EFI_SUCCESS The PCD service has cancelled the call event associated with the

CallBackToken.

EFI_INVALID_PARAMETER The PCD service did not match the CallBackFunction to one

that is currently being monitored.

EFI_NOT_FOUND The PCD service could not find data the requested token number.

PCD Platform Initialization Specification, Vol. 3

306 May 2017 Version 1.6

EFI_PCD_PROTOCOL.GetNextToken ()

Summary
Retrieves the next valid PCD token for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_GET_NEXT_TOKEN) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN *TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to retrieve the
next token.

TokenNumber

A pointer to the PCD token number to use to find the subsequent token number. To
retrieve the "first" token, have the pointer reference a TokenNumber value of 0.

Description
Gets the next valid token number in a given namespace. This is useful since the PCD infrastructure
contains a sparse list of token numbers, and one cannot a priori know what token numbers are valid
in the database.

Status Codes Returned

EFI_SUCCESS The PCD service has retrieved the value requested

EFI_NOT_FOUND The PCD service could not find data from the requested token
number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 307

EFI_PCD_PROTOCOL.GetNextTokenSpace ()

Summary
Retrieves the next valid PCD token namespace for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCD_PROTOCOL_GET_NEXT_TOKEN_SPACE) (
 IN OUT CONST EFI_GUID **Guid
);

Parameters
Guid

An indirect pointer to EFI_GUID. On input it designates a known token namespace
from which the search will start. On output, it designates the next valid token
namespace on the platform. If *Guid is NULL, then the GUID of the first token
space of the current platform is returned. If the search cannot locate the next valid
token namespace, an error is returned and the value of *Guid is undefined.

Description
Gets the next valid token namespace for a given namespace. This is useful to traverse the valid
token namespaces on a platform.

Status Codes Returned

EFI_SUCCESS The PCD service retrieved the value requested.

EFI_NOT_FOUND The PCD service could not find the next valid token namespace.

8.1.2 Get PCD Information Protocol

EFI_GET_PCD_INFO_PROTOCOL

Summary
The protocol that provides additional information about items that reside in the PCD database.

GUID
#define EFI_GET_PCD_INFO_PROTOCOL_GUID \
 { 0xfd0f4478, 0xefd, 0x461d, \
 { 0xba, 0x2d, 0xe5, 0x8c, 0x45, 0xfd, 0x5f, 0x5e } }

Protocol Interface Structure
typedef struct _EFI_GET_PCD_INFO_PROTOCOL {
 EFI_GET_PCD_INFO_PROTOCOL_GET_INFO GetInfo;

PCD Platform Initialization Specification, Vol. 3

308 May 2017 Version 1.6

 EFI_GET_PCD_INFO_PROTOCOL_GET_SKU GetSku;
} EFI_GET_PCD_INFO_PROTOCOL;

Parameters
GetInfo

Retrieve additional information associated with a PCD.

GetSku

Retrieve the currently set SKU Id.

Description
Callers to this protocol must be at a TPL_APPLICATION task priority level.

This is the PCD service to use when querying for some additional data that can be contained in the
PCD database.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 309

EFI_GET_PCD_INFO_PROTOCOL.GetInfo ()

Summary
Retrieve additional information associated with a PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_PCD_INFO_PROTOCOL_GET_INFO) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 OUT EFI_PCD_INFO *PcdInfo
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

PcdInfo

The returned information associated with the requested TokenNumber. See related
definitions below.

Description
GetInfo() retrieves additional information associated with a PCD token. This includes
information such as the type of value the TokenNumber is associated with as well as possible
human readable name that is associated with the token.

Related Definitions
typedef struct {
 EFI_PCD_TYPE PcdType;
 UINTN PcdSize;
 CHAR8 *PcdName;
} EFI_PCD_INFO;

PcdType

The returned information associated with the requested TokenNumber. If
TokenNumber is 0, then PcdType is set to EFI_PCD_TYPE_8.

PCD Platform Initialization Specification, Vol. 3

310 May 2017 Version 1.6

PcdSize

The size of the data in bytes associated with the TokenNumber specified. If
TokenNumber is 0, then PcdSize is set 0.

PcdName

The null-terminated ASCII string associated with a given token. If the
TokenNumber specified was 0, then this field corresponds to the null-terminated
ASCII string associated with the token’s namespace Guid. If NULL, there is no
name associated with this request.

typedef enum {
 EFI_PCD_TYPE_8,
 EFI_PCD_TYPE_16,
 EFI_PCD_TYPE_32,
 EFI_PCD_TYPE_64,
 EFI_PCD_TYPE_BOOL,
 EFI_PCD_TYPE_PTR
 } EFI_PCD_TYPE;

Status Codes Returned

EFI_SUCCESS The PCD information was returned successfully

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 311

EFI_GET_PCD_INFO_PROTOCOL.GetSku ()

Summary
Retrieve the currently set SKU Id.

Prototype
typedef
UINTN
(EFIAPI *EFI_GET_PCD_INFO_PROTOCOL_GET_SKU) (
 VOID
);

Description
GetSku() returns the currently set SKU Id. If the platform has not set at a SKU Id, then the
default SKU Id value of 0 is returned. If the platform has set a SKU Id, then the currently set SKU
Id is returned.

8.2 PCD PPI Definitions

8.2.1 PCD PPI

EFI_PEI_PCD_PPI

Summary
A platform database that contains a variety of current platform settings or directives that can be
accessed by a driver or application.

GUID
#define EFI_PEI_PCD_PPI_GUID \
 { 0x1f34d25, 0x4de2, 0x23ad, \
 { 0x3f, 0xf3, 0x36, 0x35, 0x3f, 0xf3, 0x23, 0xf1 } }

PPI Structure
typedef struct {
 EFI_PEI_PCD_PPI_SET_SKU SetSku;

 EFI_PEI_PCD_PPI_GET_8 Get8;
 EFI_PEI_PCD_PPI_GET_16 Get16;
 EFI_PEI_PCD_PPI_GET_32 Get32;
 EFI_PEI_PCD_PPI_GET_64 Get64;
 EFI_PEI_PCD_PPI_GET_POINTER GetPtr;
 EFI_PEI_PCD_PPI_GET_BOOLEAN GetBool;
 EFI_PEI_PCD_PPI_GET_SIZE GetSize;

PCD Platform Initialization Specification, Vol. 3

312 May 2017 Version 1.6

 EFI_PEI_PCD_PPI_SET_8 Set8;
 EFI_PEI_PCD_PPI_SET_16 Set16;
 EFI_PEI_PCD_PPI_SET_32 Set32;
 EFI_PEI_PCD_PPI_SET_64 Set64;
 EFI_PEI_PCD_PPI_SET_POINTER SetPtr;
 EFI_PEI_PCD_PPI_SET_BOOLEAN SetBool;

 EFI_PEI_PCD_PPI_CALLBACK_ON_SET CallbackOnSet;
 EFI_PEI_PCD_PPI_CANCEL_CALLBACK CancelCallback;
 EFI_PEI_PCD_PPI_GET_NEXT_TOKEN GetNextToken;
 EFI_PEI_PCD_PPI_GET_NEXT_TOKEN_SPACE GetNextTokenSpace;
} EFI_PEI_PCD_PPI;

Parameters
SetSku

Establish a current SKU value for the PCD service to use for subsequent data Get/Set
requests.

Get8

Retrieve an 8-bit value from the PCD service using a GUIDed token namespace.

Get16

Retrieve a 16-bit value from the PCD service using a GUIDed token namespace.

Get32

Retrieve a 32-bit value from the PCD service using a GUIDed token namespace.

Get64

Retrieve a 64-bit value from the PCD service using a GUIDed token namespace.

GetPtr

Retrieve a pointer to a value from the PCD service using a GUIDed token namespace.
Can be used to retrieve an array of bytes that represents a data structure, ASCII string,
or Unicode string

GetBool

Retrieve a Boolean value from the PCD service using a GUIDed token namespace.

GetBool

Retrieve the size of a particular PCD Token value using a GUIDed token namespace.

Set8

Set an 8-bit value in the PCD service using a GUIDed token namespace.

Set16

Set a 16-bit value in the PCD service using a GUIDed token namespace.

Set32

Set a 32-bit value in the PCD service using a GUIDed token namespace.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 313

Set64

Set a 64-bit value in the PCD service using a GUIDed token namespace.

SetPtr

Set a pointer to a value in the PCD service using a GUIDed token namespace. Can be
used to set an array of bytes that represents a data structure, ASCII string, or Unicode
string

SetBool

Set a Boolean value in the PCD service using a GUIDed token namespace.

CallBackOnSet

Establish a notification when a particular PCD Token value is set.

CancelCallBackOnSet

Cancel a previously set notification for a particular PCD Token value.

GetNextToken

Retrieve the next token number that is contained in the PCD name -space.

Description
This is the base PCD service API that provides an abstraction for accessing configuration content in
the platform. It is a seamless mechanism for extracting information regardless of where the
information is stored (such as in Read-only data in an EFI Variable).

This ppi provides access to data through size-granular APIs and provides a mechanism for a
firmware component to monitor specific settings and be alerted when a setting is changed.

PCD Platform Initialization Specification, Vol. 3

314 May 2017 Version 1.6

EFI_PEI_PCD_PPI.SetSku ()

Summary
Sets the SKU value for subsequent calls to set or get PCD token values.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_PCD_PPI_SET_SKU) (
 IN UINTN SkuId
);

Parameters
SkuId

The SKU value to set.

Description
SetSku() sets the SKU Id to be used for subsequent calls to set or get PCD values. SetSku() is
normally called only once by the system.

For each item (token), the database can hold a single value that applies to all SKUs, or multiple
values, where each value is associated with a specific SKU Id. Items with multiple, SKU-specific
values are called SKU enabled.

The SKU Id of zero is reserved as a default. For tokens that are not SKU enabled, the system ignores
any set SKU Id and works with the single value for that token. For SKU-enabled tokens, the system
will use the SKU Id set by the last call to SetSku(). If no SKU Id is set or the currently set SKU Id
isn’t valid for the specified token, the system uses the default SKU Id. If the system attempts to use
the default SKU Id and no value has been set for that Id, the results are unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 315

EFI_PEI_PCD_PPI.Get8 ()

Summary
Retrieves an 8-bit value for a given PCD token.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_PCD_PPI_GET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates which namespace to extract the value from.

TokenNumber

The PCD token number.

Description
Retrieves the current byte-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

PCD Platform Initialization Specification, Vol. 3

316 May 2017 Version 1.6

EFI_PEI_PCD_PPI.Get16 ()

Summary
Retrieves a value for a given PCD token.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_PCD_PPI_GET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current word-sized value for a PCD token number. If the TokenNumber is invalid,
the results are unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 317

EFI_PEI_PCD_PPI.Get32 ()

Summary
Retrieves a 32-bit value for a given PCD token.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_PCD_PPI_GET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current 32-bit value for a PCD token number. If the TokenNumber is invalid, the
results are unpredictable.

PCD Platform Initialization Specification, Vol. 3

318 May 2017 Version 1.6

EFI_PEI_PCD_PPI.Get64 ()

Summary

Retrieves a 64-bit value for a given PCD token.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_PCD_PPI_GET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the 64-bit value for a PCD token number. If the TokenNumber is invalid, the results are
unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 319

EFI_PEI_PCD_PPI.GetPtr ()

Summary
Retrieves a pointer to the value for a given PCD token.

Prototype
typedef
VOID *
(EFIAPI *EFI_PEI_PCD_PPI_GET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current pointer to the value for a PCD token number. There should not be any
alignment assumptions about the pointer that is returned by this function call. If the TokenNumber
is invalid, the results are unpredictable.

PCD Platform Initialization Specification, Vol. 3

320 May 2017 Version 1.6

EFI_PEI_PCD_PPI.GetBool ()

Summary
Retrieves a Boolean value for a given PCD token.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_PEI_PCD_PPI_GET_BOOLEAN) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current Boolean-sized value for a PCD token number. If the TokenNumber is
invalid, the results are unpredictable.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 321

EFI_PEI_PCD_PPI.GetSize ()

Summary
Retrieves the size of the value for a given PCD token.

Prototype
typedef
UINTN
(EFIAPI *EFI_PEI_PCD_PPI_GET_SIZE) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Description
Retrieves the current size of a particular PCD token. If the TokenNumber is invalid, the results are
unpredictable.

PCD Platform Initialization Specification, Vol. 3

322 May 2017 Version 1.6

EFI_PEI_PCD_PPI.Set8 ()

Summary
Sets an 8-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_8) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT8 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 323

EFI_PEI_PCD_PPI.Set16 ()

Summary
Sets a 16-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_16) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT16 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD Platform Initialization Specification, Vol. 3

324 May 2017 Version 1.6

EFI_PEI_PCD_PPI.Set32 ()

Summary
Sets a 32-bit value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_32) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT32 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 325

EFI_PEI_PCD_PPI.Set64 ()

Summary
Sets a 64-bit value for a given PCD token.

Prototype
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_64) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN UINT64 Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD Platform Initialization Specification, Vol. 3

326 May 2017 Version 1.6

EFI_PEI_PCD_PPI.SetPtr ()

Summary
Sets a value of the specified size for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_POINTER) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 IN OUT UINTN *SizeOfValue,
 IN VOID *Buffer
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

SizeOfValue

The length of the value being set for the PCD token. If too large of a length is
specified, upon return from this function the value of SizeOfValue will reflect the
maximum size for the PCD token.

Buffer

A pointer to the buffer containing the value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was
incompatible with a call to this function. The SizeofValue

parameter reflects the maximum size of the PCD token referenced.

Use GetSize() to retrieve
the current size of the target data.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 327

EFI_NOT_FOUND The PCD service could not find the requested token number.

PCD Platform Initialization Specification, Vol. 3

328 May 2017 Version 1.6

EFI_PEI_PCD_PPI.SetBool()

Summary
Sets a Boolean value for a given PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_SET_BOOLEAN) (
 IN CONST EFI_GUID Guid,
 IN UINTN TokenNumber,
 IN BOOLEAN Value
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

Value

The value to set for the PCD token.

Description
When the PCD service sets a value, it will check to ensure that the size of the value being set is
compatible with the Token’s existing definition. If it is not, an error will be returned.

Status Codes Returned

EFI_SUCCESS The PCD service has set the value requested

EFI_INVALID_PARAMETER The PCD service determined that the size of the data being set was

incompatible with a call to this function. Use GetBool() to

retrieve the size of the target data.

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 329

EFI_PEI_PCD_PPI.CallbackOnSet ()

Summary
Specifies a function to be called anytime the value of a designated token is changed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_CALLBACK_ON_SET) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PEI_PCD_PPI_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number to monitor.

CallBackFunction

The function prototype that will be called when the value associated with the
CallBackToken is set.

Related Definitions
typedef
VOID
(EFIAPI * EFI_PEI_PCD_PPI_CALLBACK) {
IN EFI_GUID *Guid, OPTIONAL,
IN UINTN CallBackToken,
IN OUT VOID *TokenData,
IN UINTN TokenDatSize
 };

Description
Specifies a function to be called anytime the value of a designated token is changed.

Status Codes Returned

EFI_SUCCESS The PCD service has successfully established a call event for the

CallBackToken requested.

EFI_NOT_FOUND The PCD service could not find the referenced token number.

PCD Platform Initialization Specification, Vol. 3

330 May 2017 Version 1.6

EFI_PEI_PCD_PPI.CancelCallback ()

Summary
Cancels a previously set callback function for a particular PCD token number.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_CANCEL_CALLBACK) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN CallBackToken,
 IN EFI_PEI_PCD_PPI_CALLBACK CallBackFunction
);

Parameters
Guid

The 128-bit unique value that designates which namespace to monitor. If NULL, use
the standard platform namespace.

CallBackToken

The PCD token number to cancel monitoring.

CallBackFunction

The function prototype that was originally passed to the CallBackOnSet function.

Description
Cancels a callback function that was set through a previous call to the CallBackOnSet function.

Status Codes Returned

EFI_SUCCESS The PCD service has cancelled the call event associated with the

CallBackToken.

EFI_INVALID_PARAMETER The PCD service did not match the CallBackFunction to one

that is currently being monitored.

EFI_NOT_FOUND The PCD service could not find data the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 331

EFI_PEI_PCD_PPI.GetNextToken ()

Summary
Retrieves the next valid PCD token for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PPI_GET_NEXT_TOKEN) (
 IN CONST EFI_GUID *Guid, OPTIONAL
 IN UINTN *TokenNumber
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

A pointer to the PCD token number to use to find the subsequent token number. To
retrieve the “first” token, have the pointer reference a TokenNumber value of 0.

Description
This provides a means by which to get the next valid token number in a given namespace. This is
useful since the PCD infrastructure has a sparse list of token numbers in it, and one cannot a priori
know what token numbers are valid in the database.

Status Codes Returned

EFI_SUCCESS The PCD service has retrieved the value requested

EFI_NOT_FOUND The PCD service could not find data from the requested token
number.

PCD Platform Initialization Specification, Vol. 3

332 May 2017 Version 1.6

EFI_PEI_PCD_PPI.GetNextTokenSpace ()

Summary
Retrieves the next valid PCD token namespace for a given namespace.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCD_PROTOCOL_GET_NEXT_TOKEN_SPACE) (
 IN OUT CONST EFI_GUID **Guid
);

Parameters
Guid

An indirect pointer to EFI_GUID. On input it designates a known token
namespace from which the search will start. On output, it designates the next valid
token namespace on the platform. If *Guid is NULL, then the GUID of the first token
space of the current platform is returned. If the search cannot locate the next valid
token namespace, an error is returned and the value of *Guid is undefined.

Description
Gets the next valid token namespace for a given namespace. This is useful to traverse the valid
token namespaces on a platform.

Status Codes Returned

EFI_SUCCESS The PCD service retrieved the value requested.

EFI_NOT_FOUND The PCD service could not find the next valid token namespace.

8.2.2 Get PCD Information PPI

EFI_GET_PCD_INFO_PPI

Summary
The PPI that provides additional information about items that reside in the PCD database.

GUID
#define EFI_GET_PCD_INFO_PPI_GUID \
 { 0xa60c6b59, 0xe459, 0x425d, \
 { 0x9c, 0x69, 0xb, 0xcc, 0x9c, 0xb2, 0x7d, 0x81 } }

Protocol Interface Structure
typedef struct _EFI_GET_PCD_INFO_PPI {
 EFI_GET_PCD_INFO_PPI_GET_INFO GetInfo;

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 333

 EFI_GET_PCD_INFO_PPI_GET_SKU GetSku;
} EFI_GET_PCD_INFO_PPI;

Parameters
GetInfo

Retrieve additional information associated with a PCD.

GetSku

Retrieve the currently set SKU Id.

Description
This is the PCD service to use when querying for some additional data that can be contained in the
PCD database.

PCD Platform Initialization Specification, Vol. 3

334 May 2017 Version 1.6

EFI_GET_PCD_INFO_PPI.GetInfo ()

Summary
Retrieve additional information associated with a PCD token.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_PCD_INFO_PPI_GET_INFO) (
 IN CONST EFI_GUID *Guid,
 IN UINTN TokenNumber,
 OUT EFI_PCD_INFO *PcdInfo
);

Parameters
Guid

The 128-bit unique value that designates the namespace from which to extract the
value.

TokenNumber

The PCD token number.

PcdInfo

The returned information associated with the requested TokenNumber.

Description
GetInfo() retrieves additional information associated with a PCD token. This includes
information such as the type of value the TokenNumber is associated with as well as possible
human readable name that is associated with the token.

Status Codes Returned

EFI_SUCCESS The PCD information was returned successfully

EFI_NOT_FOUND The PCD service could not find the requested token number.

Platform Initialization Specification, Vol. 3 PCD

Version 1.6 May 2017 335

EFI_GET_PCD_INFO_PPI.GetSku ()

Summary
Retrieve the currently set SKU Id.

Prototype
typedef
UINTN
(EFIAPI *EFI_GET_PCD_INFO_PPI_GET_SKU) (
 VOID
);

Description
GetSku() returns the currently set SKU Id. If the platform has not set at a SKU Id, then the
default SKU Id value of 0 is returned. If the platform has set a SKU Id, then the currently set SKU
Id is returned.

PCD Platform Initialization Specification, Vol. 3

336 May 2017 Version 1.6

Platform Initialization (PI) Specification

Volume 4:
Management Mode Core Interface

Version 1.6

May 2017

Platform Initialization Specification, Vol. 4
The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or to any
contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the
maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties
and conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and
of lack of negligence, all with regard to this material and any contribution thereto. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION
OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY
CONTRIBUTION THERETO.
IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY
CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS
OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING
IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright 2017 Unified EFI, Inc. All Rights Reserved.
ii May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
Revision History

Revision Mantis ID / Description Date

1.6 • 1567 Layered SPI bus

• 1648 PI Binding for RISC-V

• 1746 Add an FV Extended Header entry that contains the used size of the
FV

• 1763 MM Handler state notification protocol

• 1764 Add additional alignment

• 1768 Update the PI Spec to 1.6

• 1777 Update Revision History

• 1778 Update front matter

April 2017

1.5 Errata A • 1587 pre permanent memory page allocation

• 1665 Incorrect status code for an AP calling
EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

• 1734 Outdated EFI spec reference in Save State Write

• 1735 Several copy & paste errors in Save State Write

• 1747 Clarify that MM_ACCESS_PROTOCOL should cover all MMRAM
region used by the platform

April 2017

1.5 • 1315 SMM Environment to Support Newer Architecture/Platform Designs

• 1317 additional I2C PPI's (vol5)

• 1321 ARM Extensions to Volume 4

• 1330 Add PPI to allow SEC pass HOBs into PEI

• 1336 Provide For Pre-DXE Initialization Of The SM Foundation

• 1369 Handling PEI PPI descriptor notifications from SEC

• 1387 Variable services errors not consistent

• 1390 SM stand-alone infrastructure

• 1396 Update SEC HOB Capabilities of 1330 with additional guidance

• 1413 Communicate protocol enhancements

• 1506 New MP protocol

• 1513 Need a way to propagate PEI-phase FV verification status to DXE

• 1563 Update MM PPIs to match existing implementations

• 1566 PI.next - update the specification revisions

• 1568 Add SD/MMC GUID to DiskInfo protocol

• 1592 Add EFI_FV_FILETYPE_SMM_CORE_STANDALONE file type

• 1593 coalesce language enhancements

• 1594 Pei GetVaiable M1387 issue

• 1595 M1568 Disk Info issue

• 1596 M1489 GCD issue

• 1603 Minor erratas in Vol4 PI 1.5 draft related to ECR 0001506

• 1607 Update MM guid def'n to match edkII impl

• 1626 Add new Status Code for BDS Attempting UEFI BootOrder entries

• 1628 Minor feedback for PI 1.5 Vol 4 SMM Draft

• 1666 Graphics Device Info Hob

4/26/16
Version 1.6 May 2017 iii

Platform Initialization Specification, Vol. 4
1.4 Errata A • 1574 Fix artificial limitation in the PCD.SetSku support

• 1565 Update status code to include AArch64 exception error codes

• 1564 SMM Software Dispatch Protocol Errata

• 1562 Errata to remove statement from DXE vol about PEI dispatch
behavior

• 1561 Errata to provide Equivalent of DXE-CIS Mantis 247 for the PEI-CIS

• 1532 Allow S3 Resume without having installed permanent memory (via
InstallPeiMemory)

• 1530 errata on dxe report status code

• 1529 address space granularity errata

• 1525 PEI Services Table Retrieval for AArch64

• 1515 EFI_PEIM_NOTIFY_ENTRY_POINT return values are undefined

• 1497 Fixing language in SMMStartupThisAP

• 1489 GCD Conflict errata

• 1485 Minor Errata in SMM Vo2 description of SMMStartupThisAP

• 1397 PEI 1.4 specification revision errata

• 1394 Errata to Relax requirements on CPU rendez in SEC

• 1351 EndOfDxe and SmmReadyToLock

• 1322 Minor Updates to handle Asynchronous CPU Entry Into SMM

3/15/16

1.4 • 1210 Adding persistence attribute to GCD

• 1235 PI.Next Feature - no execute support

• 1236 PI.Next feature - Graphics PPI

• 1237 PI.Next feature - add reset2 PPI

• 1239 PI.Next feature - Disk Info Guid UFS

• 1240 PI.Next feature - Recovery Block IO PPI - UFS

• 1259 PI.Next feature - MP PPI

• 1273 PI.Next feature - capsule PPI

• 1274 Recovery Block I/O PPI Update

• 1275 GetMemoryMap Update

• 1277 PI1.next feature - multiple CPU health info

• 1278 PI1.next - Memory relative reliability definition

• 1305 PI1.next - specification number encoding

• 1331 Remove left-over Boot Firmware Volume references in the SEC
Platform Information PPI

• 1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record needs to be
indexed / CPU.

2/20/15

Revision Mantis ID / Description Date
iv May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
1.3 Errata A • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

2/19/15

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958

• 969Vol 1 errata: TE Header parameters

10/26/12

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

Revision Mantis ID / Description Date
Version 1.6 May 2017 v

Platform Initialization Specification, Vol. 4
1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP) clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM Migration is not
required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

Revision Mantis ID / Description Date
vi May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState() return code

• 737 Remove SMM Communication ACPI Table definition .

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• 753 SIO PEI and UEFI-Driver Model Architecture

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT,
Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Revision Mantis ID / Description Date
Version 1.6 May 2017 vii

Platform Initialization Specification, Vol. 4
1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl has
EFI_STATUS w/o return code & errror on stage 3 recovery description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Revision Mantis ID / Description Date
viii May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Revision Mantis ID / Description Date
Version 1.6 May 2017 ix

Platform Initialization Specification, Vol. 4
1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489 (from
USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

1.1 Errata • 247 Clarification regarding use of dependency expression section types
with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

Revision Mantis ID / Description Date
x May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
1.1 Errata • 204 Stack HOB update 1.1errata

• 225 Correct references from EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 - return error
language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

•

01/13/09

1.1 Errata Revises typographical errors and minor omissions--see Errata for details 04/25/08

1.1 correction Restore (missing) MP protocol 03/12/08

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter 12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

Revision Mantis ID / Description Date
Version 1.6 May 2017 xi

Platform Initialization Specification, Vol. 4
Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth,
and printing convenience. The Platform Initialization Specification consists of the following volumes:

Volume 1: Pre-EFI Initialization Core Interface

Volume 2: Driver Execution Environment Core Interface

Volume 3: Shared Architectural Elements

Volume 4: System Management Mode

Volume 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult
the entire specification when researching areas of interest. Additionally, a single-file version of the Platform
Initialization Specification is available to aid search functions through the entire specification.

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to th:e
original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in the
Metronome

• M178 Remove references to tail in file header and made file checksum for
the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and update
all FV

10/29/07

1.0 Initial public release. 8/21/06

Revision Mantis ID / Description Date
xii May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
Table of Contents

Revision History ... iii
Table of Contents ... xiii
List of Figures... xxi
List of Tables .. xxiii

1 Overview... 1
1.1 Definition of Terms.. 1
1.2 Management Mode (MM).. 2
1.3 MM Driver Execution Environment ... 2
1.4 Initializing Management Mode in MM Traditional Mode.. 3

1.4.1 SEC Initialization ... 4
1.4.2 PEI Initialization... 4
1.4.3 DXE Initialization ... 4

1.5 Initializing Management Mode in MM Standalone Mode .. 6
1.5.1 Initializing MM Standalone Mode in PEI phase... 6
1.5.2 Initializing MM Standalone Mode in SEC phase ... 8

1.6 Entering & Exiting MM .. 9
1.7 MM Traditional Drivers.. 9

1.7.1 MM Drivers.. 9
1.7.2 Combination MM/DXE Drivers .. 9
1.7.3 MM Standalone Drivers .. 10
1.7.4 MM_IMAGE_ENTRY_POINT .. 10
1.7.5 SOR and Dependency Expressions for SM .. 11

1.8 MM Traditional Driver Initialization.. 11
1.9 MM Standalone Driver Initialization ... 11
1.10 MM Traditional Driver Runtime ... 11
1.11 MM Standalone Driver Runtime.. 12
1.12 Dispatching MMI Handlers.. 12
1.13 MM Services ... 13

1.13.1 MM Driver Model... 13
1.13.2 MM Protocols .. 13

1.14 MM UEFI Protocols... 14
1.14.1 UEFI Protocols .. 14
1.14.2 MM Protocols ... 14

2 MM Foundation Entry Point.. 17
2.1 EFI_MM_ENTRY_POINT ... 17
2.2 MM_FOUNDATION_ENTRY_POINT .. 18

3 Management Mode System Table (MMST) .. 19
3.1 MMST Introduction.. 19
3.2 EFI_MM_SYSTEM_TABLE .. 19

MmInstallConfigurationTable() .. 24
Version 1.6 May 2017 xiii

Platform Initialization Specification, Vol. 4
MmAllocatePool() .. 26
MmFreePool() ... 27
MmAllocatePages() ... 28
MmFreePages() .. 29
MmStartupThisAp() ... 30
MmInstallProtocolInterface() ... 31
MmUninstallProtocolInterface() ... 32
MmHandleProtocol() ... 33
MmRegisterProtocolNotify() .. 34
MmLocateHandle().. 36
MmLocateProtocol() .. 37
MmiManage() .. 38
MmiHandlerRegister() ... 40
MmiHandlerUnRegister()... 42

4 MM Protocols ... 43
4.1 Introduction ... 43
4.2 Status Codes Services.. 43

EFI_MM_STATUS_CODE_PROTOCOL.. 43
EFI_MM_STATUS_CODE_PROTOCOL.ReportStatusCode() 44

4.3 CPU Save State Access Services .. 45
EFI_MM_CPU_PROTOCOL... 45
EFI_MM_CPU_PROTOCOL.ReadSaveState() .. 47
AARCH32/AARCH64 REGISTER AVAILABILITY .. 52
EFI_MM_SAVE_STATE_ARM_CSR, EFI_MM_SAVE_STATE_AARCH64_CSR .

53
EFI_MM_SAVE_STATE_REGISTER_PROCESSOR_ID................................... 53
EFI_MM_SAVE_STATE_REGISTER_LMA.. 53
EFI_MM_CPU_PROTOCOL.WriteSaveState()... 55

4.3.1 MM Save State IO Info.. 56
EFI_MM_SAVE_STATE_IO_INFO ... 56

4.4 MM CPU I/O Protocol ... 57
EFI_MM_CPU_IO_PROTOCOL ... 57
EFI_MM_CPU_IO_PROTOCOL.Mem().. 59
EFI_MM_CPU_IO_PROTOCOL.Io()... 61

4.5 MM PCI I/O Protocol ... 62
EFI_MM_PCI_ROOT_BRIDGE_IO_PROTOCOL... 62

4.6 MM Ready to Lock Protocol.. 62
EFI_MM_READY_TO_LOCK_PROTOCOL ... 62

4.7 MM MP protocol .. 63
EFI_MM_MP_PROTOCOL .. 63
EFI_MM_MP_PROTOCOL.Revision ... 64
EFI_MM_MP_PROTOCOL.Attributes .. 64
EFI_MM_MP_PROTOCOL.GetNumberOfProcessors() 65
EFI_MM_MP_PROTOCOL.DispatchProcedure() ... 66
EFI_MM_MP_PROTOCOL.BroadcastProcedure() .. 68
EFI_MM_MP_PROTOCOL.SetStartupProcedure() .. 70
xiv May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
EFI_MM_MP_PROTOCOL.CheckOnProcedure() ... 71
EFI_MM_MP_PROTOCOL.WaitForProcedure() .. 72

4.8 MM Configuration Protocol ... 73
EFI_MM_CONFIGURATION_PROTOCOL .. 73
EFI_MM_CONFIGURATION_PROTOCOL.RegisterMmFoundationEntry() 75

4.9 MM End Of PEI Protocol ... 75
EFI_MM_END_OF_PEI_PROTOCOL .. 75

4.10 MM UEFI Ready Protocol ... 76
EFI_MM_UEFI_READY_PROTOCOL.. 76

4.11 MM Ready To Boot Protocol ... 76
EFI_MM_READY_TO_BOOT_PROTOCOL... 76

4.12 MM Exit Boot Services Protocol.. 77
EFI_MM_EXIT_BOOT_SERVICES_PROTOCOL .. 77

4.13 MM Security Architecture Protocol.. 77
EFI_MM_SECURITY_ARCHITECTURE_PROTOCOL 77

4.14 MM End of DXE Protocol .. 78
EFI_MM_END_OF_DXE_PROTOCOL .. 78

4.15 MM Handler State Notification Protocol .. 78
EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL 78
EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL.

HandlerStateNotifierRegister... 79
EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL.

HandlerStateNotifierUnregister ... 81

5 UEFI Protocols... 85
5.1 Introduction ... 85
5.2 EFI MM Base Protocol .. 85

EFI_MM_BASE_PROTOCOL... 85
EFI_MM_BASE_PROTOCOL.InMm() .. 87
EFI_MM_BASE_PROTOCOL.GetMmstLocation() ... 88

5.3 MM Access Protocol ... 88
EFI_MM_ACCESS_PROTOCOL.. 88
EFI_MM_ACCESS_PROTOCOL.Open().. 90
EFI_MM_ACCESS_PROTOCOL.Close() ... 91
EFI_MM_ACCESS_PROTOCOL.Lock()... 92
EFI_MM_ACCESS_PROTOCOL.GetCapabilities() .. 93

5.4 MM Control Protocol ... 95
EFI_MM_CONTROL_PROTOCOL... 95
EFI_MM_CONTROL_PROTOCOL.Trigger() .. 97
EFI_MM_CONTROL_PROTOCOL.Clear() .. 99

5.5 MM Configuration Protocol ... 100
EFI_MM_CONFIGURATION_PROTOCOL .. 100
EFI_MM_CONFIGURATION_PROTOCOL.RegisterMmEntry() 102

5.6 DXE MM Ready to Lock Protocol ... 102
EFI_DXE_MM_READY_TO_LOCK_PROTOCOL.. 102

5.7 MM Communication Protocol .. 103
EFI_MM_COMMUNICATION_PROTOCOL ... 103
Version 1.6 May 2017 xv

Platform Initialization Specification, Vol. 4
EFI_MM_COMMUNICATION_PROTOCOL.Communicate() 104

6 PI PEI PPIs.. 107
6.1 MM Access PPI... 107

EFI_PEI_MM_ACCESS_PPI .. 107
EFI_PEI_MM_ACCESS_PPI.Open() .. 109
EFI_PEI_MM_ACCESS_PPI.Close().. 110
EFI_PEI_MM_ACCESS_PPI.Lock() ... 111
EFI_PEI_MM_ACCESS_PPI.GetCapabilities()... 112

6.2 MM Control PPI... 113
EFI_PEI_MM_CONTROL_PPI.Trigger()... 114
EFI_PEI_MM_CONTROL_PPI.Clear().. 116

6.3 MM Configuration PPI... 117
EFI_PEI_MM_CONFIGURATION_PPI ... 117
EFI_PEI_MM_CONFIGURATION_PPI.RegisterMmEntry().............................. 118

6.4 MM Communication PPI ... 118
EFI_PEI_MM_COMMUNICATION_PPI .. 118
EFI_PEI_MM_COMMUNICATION_PPI.Communicate() 120

7 MM Child Dispatch Protocols... 121
7.1 Introduction ... 121
7.2 MM Software Dispatch Protocol.. 121

EFI_MM_SW_DISPATCH_PROTOCOL .. 121
EFI_MM_SW_DISPATCH_PROTOCOL.Register() ... 123
EFI_MM_SW_DISPATCH_PROTOCOL.UnRegister() 126

7.3 MM Sx Dispatch Protocol.. 126
EFI_MM_SX_DISPATCH_PROTOCOL ... 126
EFI_MM_SX_DISPATCH_PROTOCOL.Register() .. 128
EFI_MM_SX_DISPATCH_PROTOCOL.UnRegister() 130

7.4 MM Periodic Timer Dispatch Protocol... 130
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL 130
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.Register() 132
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.UnRegister() 135
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.

GetNextShorterInterval() ... 136
7.5 MM USB Dispatch Protocol .. 136

EFI_MM_USB_DISPATCH_PROTOCOL .. 136
EFI_MM_USB_DISPATCH_PROTOCOL.Register() 138
EFI_MM_USB_DISPATCH_PROTOCOL.UnRegister() 140

7.6 MM General Purpose Input (GPI) Dispatch Protocol .. 140
EFI_MM_GPI_DISPATCH_PROTOCOL ... 140
EFI_MM_GPI_DISPATCH_PROTOCOL.Register() ... 142
EFI_MM_GPI_DISPATCH_PROTOCOL.UnRegister() 144

7.7 MM Standby Button Dispatch Protocol ... 144
EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL............................... 144
EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL.Register() 146
EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL.UnRegister() 148

7.8 MM Power Button Dispatch Protocol .. 148
xvi May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL 148
EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL. Register() 150
EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL.UnRegister() 152

7.9 MM IO Trap Dispatch Protocol.. 152
EFI_MM_IO_TRAP_DISPATCH_PROTOCOL... 152
EFI_MM_IO_TRAP_DISPATCH_PROTOCOL.Register () 154
EFI_MM_IO_TRAP_DISPATCH_PROTOCOL.UnRegister ()........................... 156

7.10 HOBs .. 156
EFI_PEI_MM_CORE_GUID.. 156

8 Interactions with PEI, DXE, and BDS... 159
8.1 Introduction ... 159
8.2 MM and DXE... 159

8.2.1 Software MMI Communication Interface (Method #1)....................................... 159
8.2.2 Software MMI Communication Interface (Method #2)....................................... 159

8.3 MM and PEI .. 160
8.3.1 Software MMI Communication Interface (Method #1)....................................... 160

9 Other Related Notes For Support Of MM Drivers 161
9.1 File Types ... 161

9.1.1 File Type EFI_FV_FILETYPE_MM ... 161
9.1.2 File Type EFI_FV_FILETYPE_COMBINED_MM_DXE 161

9.2 File Type EFI_FV_FILETYPE_MM_STANDALONE .. 162
9.3 File Section Types .. 162

9.3.1 File Section Type EFI_SECTION_MM_DEPEX.. 162

10 MCA/INIT/PMI Protocol ... 163
10.1 Machine Check and INIT ... 163
10.2 MCA Handling... 165
10.3 INIT Handling .. 167
10.4 PMI.. 168
10.5 Event Handlers ... 169

10.5.1 MCA Handlers... 169
MCA Handler... 169

10.5.2 INIT Handlers .. 170
INIT Handler .. 170

10.5.3 PMI Handlers .. 171
PMI Handler .. 171

10.6 MCA PMI INIT Protocol... 171
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterMcaHandler () 173
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterInitHandler () 174
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterPmiHandler () 175

11 Extended SAL Services ... 177
11.1 SAL Overview ... 177
11.2 Extended SAL Boot Service Protocol ... 179

EXTENDED_SAL_BOOT_SERVICE_PROTOCOL ... 179
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableInfo() 181
Version 1.6 May 2017 xvii

Platform Initialization Specification, Vol. 4
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableEntry() ...
183

EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddExtendedSalProc() 184
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.ExtendedSalProc()........... 187

11.3 Extended SAL Service Classes .. 188
11.3.1 Extended SAL Base I/O Services Class ... 190

ExtendedSalIoRead .. 191
ExtendedSalIoWrite... 193
ExtendedSalMemRead ... 195
ExtendedSalMemWrite.. 197

11.4 Extended SAL Stall Services Class .. 198
ExtendedSalStall ... 200

11.4.1 Extended SAL Real Time Clock Services Class ... 201
ExtendedSalGetTime .. 203
ExtendedSalSetTime... 205
ExtendedSalGetWakeupTime ... 207
ExtendedSalSetWakeupTime ... 209

11.4.2 Extended SAL Reset Services Class .. 210
ExtendedSalResetSystem... 212

11.4.3 Extended SAL PCI Services Class ... 213
ExtendedSalPciRead .. 215
ExtendedSalPciWrite... 217

11.4.4 Extended SAL Cache Services Class ... 218
ExtendedSalCacheInit... 219
ExtendedSalCacheFlush... 221

11.4.5 Extended SAL PAL Services Class... 222
ExtendedSalPalProc ... 223
ExtendedSalSetNewPalEntry.. 225
ExtendedSalGetNewPalEntry ... 227
ExtendedSalUpdatePal ... 229

11.4.6 Extended SAL Status Code Services Class... 230
ExtendedSalReportStatusCode .. 231

11.4.7 Extended SAL Monotonic Counter Services Class .. 232
ExtendedSalGetNextHighMtc.. 234

11.4.8 Extended SAL Variable Services Class ... 235
ExtendedSalGetVariable ... 237
ExtendedSalGetNextVariableName.. 239
ExtendedSalSetVariable ... 241
ExtendedSalQueryVariableInfo ... 243

11.4.9 Extended SAL Firmware Volume Block Services Class 244
ExtendedSalRead ... 247
ExtendedSalWrite.. 249
ExtendedSalEraseBlock.. 251
ExtendedSalGetAttributes ... 253
ExtendedSalSetAttributes ... 255
ExtendedSalGetPhysicalAddress.. 257
ExtendedSalGetBlockSize .. 259
xviii May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
ExtendedSalEraseCustomBlockRange... 261
11.4.10 Extended SAL MCA Log Services Class ... 262

ExtendedSalGetStateInfo.. 264
ExtendedSalGetStateInfoSize... 266
ExtendedSalClearStateInfo ... 268
ExtendedSalGetStateBuffer .. 270
ExtendedSalSaveStateBuffer.. 272

11.4.11 Extended SAL Base Services Class .. 273
ExtendedSalSetVectors .. 275
ExtendedSalMcRendez... 277
ExtendedSalMcSetParams ... 279
ExtendedSalGetVectors .. 281
ExtendedSalMcGetParams... 283
ExtendedSalMcGetMcParams .. 285
ExtendedSalGetMcCheckinFlags.. 287
ExtendedSalGetPlatformBaseFreq ... 289
ExtendedSalRegisterPhysicalAddr.. 291

11.4.12 Extended SAL MP Services Class ... 292
ExtendedSalAddCpuData ... 294
ExtendedSalRemoveCpuData .. 296
ExtendedSalModifyCpuData ... 298
ExtendedSalGetCpuDataById... 300
ExtendedSalGetCpuDataByIndex ... 302
ExtendedSalWhoiAmI ... 304
ExtendedSalNumProcessors .. 306
ExtendedSalSetMinState .. 308
ExtendedSalGetMinState .. 310
ExtendedSalPhysicalIdInfo.. 312

11.4.13 Extended SAL MCA Services Class .. 313
ExtendedSalMcaGetStateInfo ... 314
ExtendedSalMcaRegisterCpu ... 316

12 SMM SPI Protocol Stack .. 319
12.1 Design... 319
12.2 SMM SPI Protocols... 319

EFI_LEGACY _SPI_SMM_FLASH_PROTOCOL GUID 319
EFI_SPI_SMM_NOR_FLASH_PROTOCOL GUID... 319
EFI- SPI- SMM- CONFIGURATION PROTOCOL GUID................................... 319
EFI- SPI- SMM HC- PROTOCOL GUID.. 320
EFI LEGACY- SPI- SMM- CONTROLLER- PROTOCOL GUID 320

Appendix A
Management Mode Backward Compatibility Types 321

EFI_SMM_CONFIGURATION_PROTOCOL .. 327
EFI_SMM_CAPABILITIES2 .. 327
EFI_SMM_INSIDE_OUT2... 327
EFI_SMM_SW_CONTEXT ... 327
EFI_SMM_SW_REGISTER_CONTEXT ... 328
Version 1.6 May 2017 xix

Platform Initialization Specification, Vol. 4
EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT 328
EFI_SMM_SAVE_STATE_IO_WIDTH.. 328
EFI_SMM_IO_WIDTH... 328
xx May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
List of Figures

Figure 1. MM Architecture... 3
Figure 2. Example MM Initialization Components... 6
Figure 3. MMI Handler Relationships.. 13
Figure 4. Published Protocols for IA-32 Systems ... 15
Figure 5. Early Reset, MCA and INIT flow .. 164
Figure 6. Basic MCA processing flow ... 165
Figure 7. PI MCA processing flow... 165
Figure 8. PI architectural data in the min-state ... 166
Figure 9. PI INIT processing flow.. 168
Figure 10. PMI handling flow .. 168
Figure 11. SAL Calling Diagram ... 178
Version 1.6 May 2017 xxi

Platform Initialization Specification, Vol. 4
xxii May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
List of Tables

Table 1. Extended SAL Service Classes – EFI Runtime Services 189
Table 2. Extended SAL Service Classes – SAL Procedures .. 189
Table 3. Extended SAL Service Classes – Hardware Abstractions.................................... 189
Table 4. Extended SAL Service Classes – Other ... 189
Table 5. Extended SAL Base I/O Services Class ... 190
Table 6. Extended SAL Stall Services Class .. 199
Table 7. Extended SAL Real Time Clock Services Class... 202
Table 8. Extended SAL Reset Services Class.. 211
Table 9. Extended SAL PCI Services Class ... 214
Table 10. Extended SAL Cache Services Class... 218
Table 11. Extended SAL PAL Services Class .. 222
Table 12. Extended SAL Status Code Services Class ... 230
Table 13. Extended SAL Monotonic Counter Services Class... 233
Table 14. Extended SAL Variable Services Class .. 236
Table 15. Extended SAL Variable Services Class .. 245
Table 16. Extended SAL MP Services Class.. 274
Table 17. Extended SAL MP Services Class.. 292
Table 18. Extended SAL MCA Services Class ... 313
Version 1.6 May 2017 xxiii

Platform Initialization Specification, Vol. 4
xxiv May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
1 Overview

1.1 Definition of Terms
The following terms are used in the MM Core Interface Specification (CIS). See Glossary in the
master help system for additional definitions.

IP

Instruction pointer.

IPI

Interprocessor Interrupt. This interrupt is the means by which multiple processors in a system
or a single processor can issue APIC-directed messages for communicating with self or other
processors.

MM

Management Mode. Generic term for a secure, isolated execution environment entered when a
CPU core detects an MMI and jumps to the MM Entry Point within MMRAM. This can be
implemented by System Management Mode on x86 processors and TrustZone on ARM
processors.

MM Driver

A driver launched directly into MMRAM, with access to the MM interfaces.

MM Driver Initialization

The phase of MM Driver initialization which starts with the call to the driver's entry point and
ends with the return from the driver's entry point.

MM Driver Runtime

The phase of MM Driver initialization which starts after the return from the driver's entry
point.

MM Entry Point

When the CPU core(s) enter MM, they begin execution at a pre-defined addresses in a pre-
defined operating mode. At some point later, they jump into the MM Foundation entry point.

MM handler

A DXE driver that is loaded into and executed from MMRAM. MM Handlers are dispatched
during boot services time and invoked synchronously or asynchronously thereafter. MM
handlers remain present during runtime.

MMI

Management Mode Invocation.The CPU instruction or high-priority interrupt which
transitions CPU core(s) into MM via the MM Entry Point.
Version 1.6 May 2017 1

Overview Platform Initialization Specification, Vol. 4
MMI Source.

The instruction, interrupt or exception which caused the CPU core(s) to enter MM. An MMI
source can be detected, quiesced and disabled.

MMST

Management Mode System Table. Hand-off to handler.

MTRR

Memory Type Range Register.

RSM

Resume. The process by which a CPU exits MM.

1.2 Management Mode (MM)
Management Mode (MM) is a generic term used to describe a secure execution environment
provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86
systems, this can be implemented with System Management Mode (SMM). For ARM systems, this
can be implemented with TrustZone (TZ).

A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the
MM Entry Point and save some portion of its state (the "save state") such that execution can be
resumed.

The MMI can be generated synchronously by software or asynchronously by a hardware event. Each
MMI source can be detected, cleared and disabled.

Some systems provide for special memory (Management Mode RAM or MMRAM) which is set
aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution,
but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system
reset.

1.3 MM Driver Execution Environment

The MM Core Interface Specification describes the optional MM environment, which exists in
parallel with the other PI Architecture phases into runtime.

The MM Core Interface Specification describes three pieces of the PI Management Mode
architecture:

MM Dispatch

During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers
for execution in the discovered firmware volumes.

MM Initialization

MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM
Foundation, which provides the necessary services to launch MM-related drivers. Then,
sometime before boot, MMRAM is closed and locked. This piece may be completed during the
SEC, PEI or DXE phases.
2 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Overview
MMI Management

When an MMI generated, the MM environment is created and then the MMI sources are
detected and MMI handlers called.

The figure below shows the MM architecture.

Figure 1. MM Architecture

Note: The MM architecture does not guarantee support for the execution of handlers written to the EFI
Byte Code (EBC) specification.

1.4 Initializing Management Mode in MM Traditional Mode
Management Mode initialization prepares the hardware for MMI generation and creates the
necessary data structures for managing the MM resources such as MMRAM.

This specification supports three MM initialization models: SEC, PEI and DXE. This specification
does not describe MM Dispatch or MMI handling during SEC or PEI. Previous versions of this
specification only supported DXE Initialization.
Version 1.6 May 2017 3

Overview Platform Initialization Specification, Vol. 4
1.4.1 SEC Initialization
In this model, the MM Entry Points are initialized and the MM Foundation is loaded into MMRAM
during the SEC phase. Optionally, MMRAM is hidden and locked. Then, during the DXE phase,
MM or MM/DXE drivers are loaded normally. This is detailed in the following steps:

1. The SEC code initializes the MM environment, including initializing the MM Entry Points,
setting up MMRAM, initializing the MM Foundation in MMRAM.

2. Optionally, the SEC code hides and locks the MMRAM.

3. The SEC code produces the EFI_SEC_HOB_DATA_PPI, which produces a HOB with the
GUID EFI_PEI_MM_CORE_GUID, and the EFI_PEI_MM_CORE_LOADED flag set which
indicates that the MM Foundation is already installed.

After this, the steps follow those in DXE initialization. There is not architectural provision for
loading MM-related drivers during the SEC phase.

1.4.2 PEI Initialization
In this model, the MM Entry Points are initialized and the MM Foundation is loaded into MMRAM
during the PEI phase. Optionally, MMRAM is hidden and locked. Then, during the DXE phase, MM
or MM/DXE drivers are loaded normally. This is detailed in the following steps:

1. The PEI code initializes the MM environment, including initializing the MM Entry Points,
setting up MMRAM and initializing the MM Foundation in MMRAM.

2. Optionally, the PEI code hides and locks the MMRAM.

3. The PEI code produces the HOB with the GUID EFI_PEI_MM_CORE_GUID, and the
EFI_PEI_MM_CORE_LOADED flag set, which indicates that the MM Foundation has already
been installed.

After this, the steps follow those in DXE initialization. There is not architectural provision for
loading MM-related drivers during the PEI phase.

1.4.3 DXE Initialization
It is initialized with the cooperation of several DXE drivers.

1. A DXE driver produces the EFI_MM_ACCESS_PROTOCOL, which describes the different
MMRAM regions available in the system.

2. A DXE driver produces the EFI_MM_CONTROL_PROTOCOL, which allows synchronous
MMIs to be generated.

3. A DXE driver (dependent on the EFI_MM_ACCESS_PROTOCOL and, perhaps, the
EFI_MM_CONTROL_PROTOCOL), does the following:

• If the MM_CORE_LOADED flag is not set in the EFI_PEI_MM_CORE_GUID HOB was not
set, initializes the MM entry vector with the code necessary to meet the entry point
requirements described in “Entering & Exiting MM”.

• If the MM_CORE_LOADED flag is not set in the EFI_PEI_MM_CORE_GUID HOB or that
HOB does not exist, then produces the EFI_MM_CONFIGURATION _PROTOCOL, which
describes those areas of MMRAM which should be excluded from the memory map.

• NOTE: This implies that this DXE driver is completely optional if the MM_CORE_LOADED
flag is set in the EFI_PEI_MM_CORE_GUID HOB.
4 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Overview
4. The MM IPL DXE driver (dependent on the EFI_MM_CONTROL_PROTOCOL) does the
following:

• If MM_CORE_LOADED flags is set in the EFI_PEI_MM_CORE_GUID HOB, register for
notification of the installation of the EFI_MM_ACCESS_PROTOCOL and the
EFI_MM_CONFIGURATION_PROTOCOL. Once both are available, opens MMRAM and:

• Creates the MMRAM heap, excluding any areas listed in
EFI_MM_CONFIGURATION_PROTOCOL MmramReservedRegions field.

• Loads the MM Foundation into MMRAM. The MM Foundation produces the MMST.

• Invokes the EFI_MM_CONFIGURATION_PROTOCOL.RegisterMmEntry() function
with the MM Foundation entry point.

• Publishes the EFI_MM_BASE_PROTOCOL in the UEFI Protocol Database

• At this point MM is initially configured and MMIs can be generated.

• Call the Communicate() member of the EFI_MM_COMMUNICATION_PROTOCOL
with a buffer containing the EFI_MM_INITIALIAZATION_HEADER and the pointer to
the UEFI System Table in the communication buffer. This gives the MM Core access to the
UEFI Boot Services. Before this point, the MM Core must not use any UEFI services or
protocols. NOTE: It also implies that the MM Core cannot find or dispatch any MM drivers
from firmware volumes, since access to UEFI Boot Services is required to find instances for
the Firmware Volume protocols.

• Register for notification upon installation of the
EFI_DXE_MM_READY_TO_LOCK_PROTOCOL in the UEFI protocol database.

5. During the remainder of the DXE phase, additional drivers may load and be initialized in
MMRAM.

6. At some point prior to the processing of boot options, a DXE driver will install the
EFI_DXE_MM_READY_TO_LOCK_PROTOCOL protocol in the UEFI protocol database.
(outside of MM).

7. As a result, some DXE driver will cause the EFI_MM_READY_TO_LOCK_PROTOCOL
protocol to be installed in the SM protocol database.

• Optionally, close the MMRAM so that it is no longer visible using the
EFI_MM_ACCESS_PROTOCOL. Closing MMRAM may not be supported on all platforms.

• Optionally, lock the MMRAM so that its configuration can no longer be altered using the
EFI_MM_ACCESS_PROTCOL. Locking MMRAM may not be supported on all platforms.
Version 1.6 May 2017 5

Overview Platform Initialization Specification, Vol. 4
Figure 2. Example MM Initialization Components

1.5 Initializing Management Mode in MM Standalone Mode

1.5.1 Initializing MM Standalone Mode in PEI phase
Management Mode initialization prepares the hardware for MMI generation and creates the
necessary data structures for managing the MM resources such as MMRAM. It is initialized with the
cooperation of several DXE driver or PEIMs. Details below:

1. A PEIM produces the EFI_PEI_MM_ACCESS_PPI, which describes the different MMRAM
regions available in the system.

2. A PEIM produces the EFI_PEI_MM_CONTROL_PPI, which allows synchronous MMIs to be
generated.
6 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Overview
3. A PEIM (dependent on the EFI_PEI_MM_ACCESS_PPI and, perhaps, the
EFI_PEI_MM_CONTROL_PPI), does the following:

• Initializes the MM entry vector with the code necessary to meet the entry point requirements
described in “Entering & Exiting MM”.

• Produces the EFI_MM_CONFIGURATION_PPI, which describes those areas of MMRAM
which should be excluded from the memory map.

• The MM IPL PEIM (dependent on the EFI_PEI_MM_ACCESS_PPI,
EFI_PEI_MM_CONTROL_PPI and EFI_PEI_MM_CONFIGURATION_PPI) does the
following:

• Opens MMRAM.

• Creates the MMRAM heap, excluding any areas listed in
EFI_PEI_MM_CONFIGURATION_PPI MmramReservedRegions field.

• Loads the MM Foundation into MMRAM. The MM Foundation produces the MMST.

• Invokes the EFI_PEI_MM_CONFIGURATION_PPI.RegisterMmEntry() function
with the MM Foundation entry point.

• At this point MM is initially configured and MMIs can be generated.

• •Publishes the EFI_PEI_MM_COMMUNICATION_PPI

4. During the remainder of the PEI phase, additional MM standalone drivers may load and be
initialized in MMRAM.

5. During the remainder of the DXE phase, additional MM standalone drivers may load and be
initialized in MMRAM.

6. A special MM IPL DXE driver does the following:

• Communicate with MM Foundation and tell EFI_SYSTEM_TABLE pointer.

• Publishes the EFI_MM_BASE_PROTOCOL in the UEFI Protocol Database

• Publishes the EFI_MM_COMMUNICATION_PROTOCOL in the UEFI Protocol Database

7. During the remainder of the DXE phase, additional MM Traditional drivers may load and be
initialized in MMRAM.

8. At some point prior to the processing of boot options, a DXE driver will install the
EFI_DXE_MM_READY_TO_LOCK_PROTOCOL protocol in the UEFI protocol database.
(outside of MM).

9. As a result, some DXE driver will cause the EFI_MM_READY_TO_LOCK_PROTOCOL
protocol to be installed in the MM protocol database.

• Optionally, close the MMRAM so that it is no longer visible using the
EFI_MM_ACCESS_PROTOCOL. Closing MMRAM may not be supported on all platforms.

• Optionally, lock the MMRAM so that its configuration can no longer be altered using the
EFI_MM_ACCESS_PROTCOL. Locking MMRAM may not be supported on all platforms.

Note: In order to support both MM standalone driver and MM traditional driver, the MM Foundation must
have same calling convention as DXE phase, instead of PEI phase. It means, if PEI phase is 32bit,
Version 1.6 May 2017 7

Overview Platform Initialization Specification, Vol. 4
DXE phase is 64bit, then the MM Foundation must be 64bit. The 32bit MM IPL PEIM must have
ability to launch 64bit MM Foundation.

1.5.2 Initializing MM Standalone Mode in SEC phase
Standalone Mode can also be initialized in SEC phase. We take SEC phase initialization as example
for MM Standalone Mode. Detail below:

1. SEC does the following:

• Initializes the MM entry vector with the code necessary to meet the entry point requirements
described in “Entering & Exiting MM”.

• Opens MMRAM.

• Creates the MMRAM heap.

• Loads the MM Foundation into MMRAM. The MM Foundation produces the MMST.

• Invokes the RegisterMmEntry() function with the MM Foundation entry point.

• At this point MM is initially configured and MMIs can be generated.

• Optionally, closes MMRAM so that it is no longer visible.

• Optionally, locks MMRAM so that its configuration can no longer be altered.

2. Then SEC Core can load PEI core as normal process.

3. A special MM IPL PEIM does the following:

• Publishes the EFI_PEI_MM_COMMUNICATION_PPI

4. During the remainder of the PEI phase, additional MM standalone drivers may load and be
initialized in MMRAM.

5. During the remainder of the DXE phase, additional MM standalone drivers may load and be
initialized in MMRAM.

6. A special MM IPL DXE driver does the following:

• Communicate with MM Foundation and tell EFI_SYSTEM_TABLE pointer.

• Publishes the EFI_MM_BASE_PROTOCOL in the UEFI Protocol Database

• Publishes the EFI_MM_COMMUNICATION_PROTOCOL in the UEFI Protocol Database

7. During the remainder of the DXE phase, additional MM traditional drivers may load and be
initialized in MMRAM.

8. At some point prior to the processing of boot options, a DXE driver will install the
EFI_DXE_MM_READY_TO_LOCK_PROTOCOL protocol in the UEFI protocol database.
(outside of MM).

9. As a result, some DXE driver will cause the EFI_MM_READY_TO_LOCK_PROTOCOL
protocol to be installed in the MM protocol database.

Note: In order to support both MM standalone driver and MM traditional driver, the MM Foundation must
have same calling convention as DXE phase, instead of SEC phase. It means, if SEC phase is
8 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Overview
32bit, DXE phase is 64bit, then the MM Foundation must be 64bit. The 32bit SEC must have ability
to launch 64bit MM Foundation.

1.6 Entering & Exiting MM

The code at the entry vector must:

• Save any CPU state necessary for supporting the EFI_MM_CPU_PROTOCOL

• Save any CPU state so that the normal operation can be resumed.

• Select a single CPU to enter the MM Foundation.

• If an entry point has been registered via RegisterMmEntry(), switch to the same CPU
mode as the MM Foundation and call the MM Foundation entry point.

The MM Foundation entry point must:

• Update the MMST with the CPU information passed to the entry point.

• Call all root MMI controller handlers using MmiManage (NULL)

• Return to the entry vector code.

After returning from the MM Foundation entry point, the code at the entry vector must:

• Restore any CPU state information necessary for normal operation.

• Resume normal operation

1.7 MM Traditional Drivers
There are two types of SM-related drivers: MM Drivers and Combination SM/DXE Drivers. Both
types of drivers are initialized by calling their main entry point.

The entry point of the driver is the same as a UEFI Specification EFI_IMAGE_ENTRY_POINT.

1.7.1 MM Drivers
MM Drivers must have the file type EFI_FV_FILETYPE_MM. MM Drivers are launched once,
directly into MMRAM in MM Traditional Mode. MM Drivers cannot be launched until the
dependency expression in the file section EFI_SECTION_MM_DEPEX evaluates to true. This
dependency expression can refer to both UEFI and SM protocols.

The entry point of the driver is the same as a UEFI Specification EFI_IMAGE_ENTRY_POINT.

1.7.2 Combination MM/DXE Drivers
Combination MM/DXE Drivers must have the file type
EFI_FV_FILETYPE_COMBINED_MM_DXE. Combination Drivers are launched twice.

They are launched by the DXE Dispatcher as a normal DXE driver outside of MMRAM in MM
Tradtional Mode after the dependency expression in the file section EFI_SECTION_DXE_DEPEX
evaluates to true. As DXE Drivers, they have access to the normal UEFI interfaces.

Combination Drivers are also launched as MM Drivers inside of MMRAM after the dependency
expression in the file section EFI_SECTION_MM_DEPEX evaluates to true. Combination Drivers
Version 1.6 May 2017 9

Overview Platform Initialization Specification, Vol. 4
have access to DXE, UEFI and SM services during MM Initialization. Combination Drivers have
access to MM services during MM Runtime.

Combination Drivers can determine whether or not they are executing during MM Initialization or
MM Runtime by locating the EFI_MM_READY_TO_LOCK_MM_PROTOCOL.

On the first load, the entry point of the driver is the same as a UEFI specification
EFI_IMAGE_ENTRY_POINT since the driver is loaded by the DXE core.

On the second load, the entry point of the driver is the same as a UEFI Specification
EFI_IMAGE_ENTRY_POINT.

1.7.3 MM Standalone Drivers
MM Standalone Drivers must have the file type EFI_FV_FILETYPE_MM_STANDALONE. MM
Standalone Drivers are launched once, directly into MMRAM. MM Standalone Drivers cannot be
launched until the dependency expression in the file section EFI_SECTION_MM_DEPEX evaluates
to true. This dependency expression must refer to MM protocols.

The entry point of the driver is defined below as MM_IMAGE_ENTRY_POINT.

1.7.4 MM_IMAGE_ENTRY_POINT

Summary

This function is the main entry point to an MM Standalone Driver.

Prototype
typedef
VOID
(EFIAPI *MM_IMAGE_ENTRY_POINT) (
IN EFI_HANDLE ImageHandle,
IN EFI_MM_SYSTEM_TABLE *MmSystemTable
);

Parameters
ImageHandle

The handle allocated for the MM Standalone Driver.

MmSystemTable

A pointer to the MM System Table.

Description
This function is the entry point to an MM Standalone Driver. An MM Standalone Driver is loaded
and relocated into MMRAM by MM Foundation. The first argument is the image’s image handle.
The second argument is a pointer to the MM system table.
10 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Overview
1.7.5 SOR and Dependency Expressions for SM
The Apriori file can also contain DXE and SM FFS files. The implementation doesn't support SOR
for the MM drivers, though.

1.8 MM Traditional Driver Initialization
An MM Driver’s initialization phase begins when the driver has been loaded into MMRAM in MM
Traditional Mode and its entry point is called. An MM Driver’s initialization phase ends when the
entry point returns.

During MM Driver initialization, MM Drivers have access to two sets of protocols: UEFI and SM.
UEFI protocols are those which are installed and discovered using the UEFI Boot Services. UEFI
protocols can be located and used by MM drivers only during MM Initialization. SM protocols are
those which are installed and discovered using the Management Mode Services Table (MMST). SM
protocols can be discovered by MM drivers during initialization time and accessed while inside of
SM.

MM Drivers shall not use the following UEFI Boot Services during MM Driver Initialization:

• Exit()

• ExitBootServices()

1.9 MM Standalone Driver Initialization
An MM Standalone Driver’s initialization phase begins when the driver has been loaded into
MMRAM in MM Standalone Mode and its entry point is called. An MM Standalone Driver’s
initialization phase ends when the entry point returns.

During MM Standalone Driver initialization, MM Standalone Drivers can only access MM
protocols. MM protocols are those which are installed and discovered using the Management Mode
Services Table (MMST). MM protocols can be discovered by MM Drivers during initialization time
and accessed while inside of MM.

1.10 MM Traditional Driver Runtime
During MM Driver runtime, MM Drivers only have access to MM protocols. In addition, depending
on the platform architecture, memory areas outside of MMRAM may not be accessible to MM
Drivers. Likewise, memory areas inside of MMRAM may not be accessible to UEFI drivers.

These MM Driver Runtime characteristics lead to several restrictions regarding the usage of UEFI
services:

• UEFI interfaces and services which are located during MM Driver Initialization should not be
called or referenced during MM Driver Runtime. This includes the EFI System Table, the UEFI
Boot Services and the UEFI Runtime Services.

• Installed UEFI protocols should be uninstalled before exiting the driver entry point, or the UEFI
protocol should refer to addresses which are not within MMRAM.
Version 1.6 May 2017 11

Overview Platform Initialization Specification, Vol. 4
• Events created during MM Driver Initialization should be closed before exiting the drier entry
point.

1.11 MM Standalone Driver Runtime
During MM Standalone Driver runtime, MM drivers only have access to MM protocols. In addition,
depending on the platform architecture, memory areas outside of MMRAM may not be accessible to
MM Drivers.

1.12 Dispatching MMI Handlers
MMI handlers are registered using the MMST’s MmiHandlerRegister() function. MMI
handlers fall into three categories:

RootMMI Controller Handlers

These are handlers for devices which directly control MMI generation for the CPU(s). The
handlers have the ability to detect, clear and disable one or more MMI sources. They are
registered by calling MmiHandlerRegister() with HandlerType set to NULL. After
an MMI source has been detected, the Root MMI handler calls the Child MMI Controllers or
MMI Handlers whose handler functions were registered using either an MM Child Dispatch
protocols or using MmiHandlerRegister(). To call the latter, it calls Manage() with a
GUID identifying the MMI source so that any registered Child MMI Handlers or Leaf MMI
Handlers will be called. If the handler returns EFI_INTERRUPT_PENDING, it indicates that
the interrupt source could not be quiesced. If possible, the Root MMI handler should disable
and clear the MMI source. If the handler does not return an error, the Root MMI Handler
should clear the MMI source.

Child MMI Controller Handlers

These are MMI handlers which handle a single interrupt source from a Root or Child MMI
handler and, in turn, control one or more child MMI sources which can be detected, cleared
and disabled. They are registered by calling the MmiHandlerRegister() function with
HandlerType set to the GUID of the Parent MMI Controller MMI source. Handlers for this
MMI handler’s MMI sources are called in the same manner as Root MMI Handlers.

MMI Handlers

These MMI handlers perform basic software or hardware services based on the MMI source
received. If the MMI handler manages a device outside the control of the Parent MMI
Controller, it must make sure that the device is quiesced, especially if the device drives a level-
active input.
12 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Overview
Figure 3. MMI Handler Relationships

1.13 MM Services

1.13.1 MM Driver Model
The MM Driver model has similar constraints to those of UEFI runtime drivers. Specifically, during
MM Driver Runtime, the drivers must not use core protocol services. There will be MMST-based
services, which the drivers can access, but the UEFI System Table and other protocols installed
during boot services are not available.

Instead, the full collection of UEFI Boot Services and UEFI Runtime Services are available only
during the MM Driver Initialization phase. This visibility is useful so that the MM Driver can
leverage the rich set of UEFI services. This design makes the UEFI protocol database useful to these
drivers while outside of SM and during their initial load within SM.

The MMST-based services that are available include the following:

• A minimal, blocking variant of the device I/O protocol

• A memory allocator from MM memory

• A minimal protocol database for protocols for use inside of SM.

These services are exposed by entries in the Management Mode System Table (MMST).

1.13.2 MM Protocols
Additional standard protocols are exposed as SM protocols and accessed using the protocol services
provided by the MMST. They may be located during MM Driver Initialization or MM Driver
Runtime. MM Driver. For example, the status code equivalent in MM is simply a UEFI protocol
Version 1.6 May 2017 13

Overview Platform Initialization Specification, Vol. 4
whose interface references an MM-based driver's service. Other MM Drivers locate this MM-based
status code protocol and can use it during runtime to emit error or progress information.

1.14 MM UEFI Protocols
This section describes those protocols related to MM that are available through the UEFI boot
services (called "UEFI Protocols") or through the MMST (called "MM Protocols").

1.14.1 UEFI Protocols
The system architecture of the MM driver is broken into the following pieces:

• MM Base Protocol

• MM Access Protocol

• MM Control Protocol

The MM Base Protocol will be published by the MM IPL driver which activates the MM Foundation
for usage during the DXE phase.The MM Access Protocol understands the particular enable and
locking mechanisms that memory controller might support while executing in MM.

The MM Control Protocol understands how to trigger synchronous MMIs either once or
periodically.

1.14.2 MM Protocols
The following figure shows the MM protocols that are published for an IA-32 system.
14 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Overview
Figure 4. Published Protocols for IA-32 Systems
Version 1.6 May 2017 15

Overview Platform Initialization Specification, Vol. 4
16 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Foundation Entry Point
2 MM Foundation Entry Point

2.1 EFI_MM_ENTRY_POINT

Summary

This function is the main entry point to the MM Foundation.

Prototype
typedef
VOID
(EFIAPI *EFI_MM_ENTRY_POINT) (
 IN CONST EFI_MM_ENTRY_CONTEXT *MmEntryContext
);

Parameters
MmEntryContext

Processor information and functionality needed by MM Foundation.

Description
This function is the entry point to the MM Foundation. The processor MM entry code will call this
function with the processor information and functionality necessary for MM.

Related Definitions
typedef struct _EFI_MM_ENTRY_CONTEXT {
 EFI_MM_STARTUP_THIS_AP MmStartupThisAp;
 UINTN CurrentlyExecutingCpu;
 UINTN NumberOfCpus;
 UINTN *CpuSaveStateSize;
 VOID **CpuSaveState;
} EFI_MM_ENTRY_CONTEXT;

MmStartupThisAp

Initiate a procedure on an application processor while in SM. See the
MmStartupThisAp() function description.

CurrentlyExecutingCpu

A number between zero and the NumberOfCpus field. This field designates which
processor is executing the MM Foundation.

NumberOfCpus

The number of current operational processors in the platform. This is a 1 based
counter. This does not indicate the number of processors that entered MM.
Version 1.6 May 2017 17

MM Foundation Entry Point Platform Initialization Specification, Vol. 4
CpuSaveStateSize

Points to an array, where each element describes the number of bytes in the
corresponding save state specified by CpuSaveState. There are always
NumberOfCpus entries in the array.

CpuSaveState

Points to an array, where each element is a pointer to a CPU save state. The
corresponding element in CpuSaveStateSize specifies the number of bytes in the
save state area. There are always NumberOfCpus entries in the array.

2.2 MM_FOUNDATION_ENTRY_POINT

Summary
This function is the image entry point of a standalone MM Foundation.

Prototype
typedef
VOID
(EFIAPI *MM_FOUNDATION_ENTRY_POINT) (
 IN CONST VOID *HobStart
);

Parameters
HobStart

A pointer to the HOB list.

Description
This function is the image entry point of a standalone MM Foundation. Standalone MM IPL passes
HobStart to standalone MM Foundation. HOB list that describes the system state at the hand-off
to the MM Foundation. At a minimum, this system state must include the following:

• PHIT HOB

• CPU HOB

• Description of MMRAM

• Description of one or more firmware volumes

MM Foundation can use MMRAM hob to build heap base upon MMRAM hob information. MM
Foundation can use FV hob to dispatch standalone MM driver.
18 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
3 Management Mode System Table (MMST)

3.1 MMST Introduction
This section describes the Management Mode System Table (MMST). The MMST is a set of
capabilities exported for use by all drivers that are loaded into Management Mode RAM
(MMRAM).

The MMST is similar to the UEFI System Table. It is a fixed set of services and data that are
designed to provide basic services for MM Drivers. The MMST is provided by the MM IPL driver,
which also manages the following:

• Dispatch of drivers in MM

• Allocations of MMRAM

• Installation/discovery of MM protocols

3.2 EFI_MM_SYSTEM_TABLE

Summary

The Management Mode System Table (MMST) is a table that contains a collection of common
services for managing MMRAM allocation and providing basic I/O services. These services are
intended for both preboot and runtime usage.

Related Definitions
#define MM_MMST_SIGNATURE EFI_SIGNATURE_32('S','M','S','T')
#define MM_SPECIFICATION_MAJOR_REVISION 1
#define MM_SPECIFICATION_MINOR_REVISION 60
#define EFI_MM_SYSTEM_TABLE_REVISION
((MM_SPECIFICATION_MAJOR_REVISION<<16) |
(MM_SPECIFICATION_MINOR_REVISION)

typedef struct _EFI_MM_SYSTEM_TABLE {
 EFI_TABLE_HEADER Hdr;

 CHAR16 *MmFirmwareVendor;
 UINT32 MmFirmwareRevision;

 EFI_MM_INSTALL_CONFIGURATION_TABLE MmInstallConfigurationTable;

EFI_MM_CPU_IO_PROTOCOL MmIo;

 //
 // Runtime memory service
 //
 EFI_ALLOCATE_POOL MmAllocatePool;
Version 1.6 May 2017 19

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
 EFI_FREE_POOL MmFreePool;
 EFI_ALLOCATE_PAGES MmAllocatePages;
 EFI_FREE_PAGES MmFreePages;

 //
 // MP service
 //
 EFI_MM_STARTUP_THIS_AP MmStartupThisAp;

 //
 // CPU information records
 //
 UINTN CurrentlyExecutingCpu;
 UINTN NumberOfCpus;
UINTN *CpuSaveStateSize;
VOID **CpuSaveState;

 //
 // Extensibility table
 //
 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *MmConfigurationTable;

//
// Protocol services
//
 EFI_INSTALL_PROTOCOL_INTERFACE MmInstallProtocolInterface;
 EFI_UNINSTALL_PROTOCOL_INTERFACE MmUninstallProtocolInterface;
 EFI_HANDLE_PROTOCOL MmHandleProtocol;
 EFI_MM_REGISTER_PROTOCOL_NOTIFY MmRegisterProtocolNotify;
EFI_LOCATE_HANDLE MmLocateHandle;
EFI_LOCATE_PROTOCOL MmLocateProtocol;

//
// MMI management functions
//
EFI_MM_INTERRUPT_MANAGE MmiManage;
EFI_MM_INTERRUPT_REGISTER MmiHandlerRegister;
EFI_MM_INTERRUPT_UNREGISTER MmiHandlerUnRegister;
} EFI_MM_SYSTEM_TABLE;

Parameters
Hdr

The table header for the Management Mode System Table (MMST). This header
contains the MM_SMST_SIGNATURE, MM_MMST_SIGNATURE and
EFI_MM_SYSTEM_TABLE_REVISION values along with the size of the
EFI_MM_SYSTEM_TABLE structure.
20 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
Note: In the MM Foundation use of the EFI_TABLE_HEADER for the Management Mode Services
Table (MMST), there is special treatment of the CRC32 field. This value is reserved for MM and
should be set to zero

MmFirmwareVendor

A pointer to a NULL-terminated Unicode string containing the vendor name. It is
permissible for this pointer to be NULL.

MmFirmwareRevision

The particular revision of the firmware.

MmInstallConfigurationTable

Adds, updates, or removes a configuration table entry from the MMST. See the
MmInstallConfigurationTable() function description.

MmIo

Provides the basic memory and I/O interfaces that are used to abstract accesses to
devices. The I/O services are provided by the driver which produces the MM CPU I/O
Protocol. If that driver has not been loaded yet, this function pointer will return
EFI_UNSUPPORTED.

MmAllocatePool

Allocates MMRAM.

MmFreePool

Returns pool memory to the system.

MmAllocatePages

Allocates pages from MMRAM.

MmFreePages

Returns pages of memory to the system.

MmStartupThisAp

Initiate a procedure on an application processor while in MM. See the
MmStartupThisAp() function description. MmStartupThisAp may not be
used during MM Driver Initialization, and MM and MM Driver must be considered
"undefined". This service only defined while an MMI is being processed.

CurrentlyExecutingCpu

A number between zero and the value in the field NumberOfCpus. This field
designates which processor is executing the MM infrastructure.
CurrentlyExecutingCpu may not be used during MM Driver Initialization, and
MM and MM Driver and must be considered "undefined". This field is only defined
while an MMI is being processed.

NumberOfCpus

The number of possible processors in the platform. This is a 1 based counter.
NumberOfCpus may not be used in the entry point of an MM MM Driver and must
be considered "undefined". This field is only defined while an MMI is being
processed.
Version 1.6 May 2017 21

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
CpuSaveStateSize

Points to an array, where each element describes the number of bytes in the
corresponding save state specified by CpuSaveState. There are always
NumberOfCpus entries in the array. CpuSaveStateSize may not be used
during MM Driver Initialization Driver and must be considered "undefined". This
field is only defined while an MMI is being processed.

CpuSaveState

Points to an array, where each element is a pointer to a CPU save state. The
corresponding element in CpuSaveStateSize specifies the number of bytes in
the save state area. There are always NumberOfCpus entries in the array.
CpuSaveState may not be used during MM Driver Initialization MM Driver and
must be considered "undefined". This field is only defined while an MMI is being
processed.

NumberOfTableEntries

The number of UEFI Configuration Tables in the buffer
MmConfigurationTable.

MmConfigurationTable

A pointer to the UEFI Configuration Tables. The number of entries in the table is
NumberOfTableEntries. Type EFI_CONFIGURATION_TABLE is defined in
the UEFI Specification, section 4.6.

MmInstallProtocolInterface

Installs an MM protocol interface on a device handle. Type
EFI_INSTALL_PROTOCOL_INTERFACE is defined in the UEFI Specification,
section 4.4.

MmUninstallProtocolInterface

Removes an MM protocol interface from a device handle. Type
EFI_UNINSTALL_PROTOCOL_INTERFACE is defined in the UEFI Specification,
section 4.4.

MmHandleProtocol

Queries a handle to determine if it supports a specified MM protocol. Type
EFI_HANDLE_PROTOCOL is defined in the UEFI Specification, section 4.4.

MmRegisterProtocolNotify

Registers a callback routine that will be called whenever an interface is installed for a
specified MM protocol.

MmLocateHandle

Returns an array of handles that support a specified MM protocol. Type
EFI_LOCATE_HANDLE is defined in the UEFI Specification, section 4.4.

MmLocateProtocol

Returns the first installed interface for a specific MM protocol. Type
EFI_LOCATE_PROTOCOL is defined in the UEFI Specification, section 4.4.
22 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
MmiManage

Manage MMI sources of a particular type.

MmiHandlerRegister

Registers an MMI handler for an MMI source.

MmiHandlerUnRegister

Unregisters an MMI handler for an MMI source.

Description
The CurrentlyExecutingCpu parameter is a value that is less than the NumberOfCpus field.
The CpuSaveState is a pointer to an array of CPU save states in MMRAM. The
CurrentlyExecutingCpu can be used as an index to locate the respective save-state for which
the given processor is executing, if so desired.

The EFI_MM_SYSTEM_TABLE provides support for MMRAM allocation. The functions have the
same function prototypes as those found in the UEFI Boot Services, but are only effective in
allocating and freeing MMRAM. Drivers cannot allocate or free UEFI memory using these services.
Drivers cannot allocate or free MMRAM using the UEFI Boot Services. The functions are:

• MmAllocatePages()

• MmFreePages()

• MmAllocatePool()

• MmFreePool()

The EFI_MM_SYSTEM_TABLE provides support for MM protocols, which are runtime protocols
designed to execute exclusively inside of MM. Drivers cannot access protocols installed using the
UEFI Boot Services through this interface. Drivers cannot access protocols installed using these
interfaces through the UEFI Boot Services interfaces.

Five of the standard protocol-related functions from the UEFI boot services table are provided in the
MMST and perform in a similar fashion. These functions are required to be available until the
EFI_MM_READY_TO_LOCK_PROTOCOL notification has been installed. The functions are:

• MmInstallProtocolInterface()

• MmUninstallProtocolInterface()

• MmLocateHandle()

• MmHandleProtocol()

• MmLocateProtocol().

Noticeably absent are services which support the UEFI driver model. The function
MmRegisterProtocolNotify(), works in a similar fashion to the UEFI function except that
it does not use an event.
Version 1.6 May 2017 23

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmInstallConfigurationTable()

Summary
Adds, updates, or removes a configuration table entry from the Management Mode System Table
(MMST).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_INSTALL_CONFIGURATION_TABLE) (
 IN CONST EFI_MM_SYSTEM_TABLE *SystemTable,
 IN CONST EFI_GUID *Guid,
 IN VOID *Table,
 IN UINTN TableSize
)

Parameters
SystemTable

A pointer to the Management Mode System Table (MMST).

Guid

A pointer to the GUID for the entry to add, update, or remove.

Table

A pointer to the buffer of the table to add.

TableSize

The size of the table to install.

Description
The MmInstallConfigurationTable() function is used to maintain the list of
configuration tables that are stored in the MMST. The list is stored as an array of (GUID, Pointer)
pairs. The list must be allocated from pool memory with PoolType set to
EfiRuntimeServicesData.

If Guid is not a valid GUID, EFI_INVALID_PARAMETER is returned. If Guid is valid, there
are four possibilities:

• If Guid is not present in the MMST and Table is not NULL, then the (Guid, Table) pair is
added to the MMST. See Note below.

• If Guid is not present in the MMST and Table is NULL, then EFI_NOT_FOUND is returned.

• If Guid is present in the MMST and Table is not NULL, then the (Guid, Table) pair is
updated with the new Table value.

• If Guid is present in the MMST and Table is NULL, then the entry associated with Guid is
removed from the MMST.

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.
24 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
Note: If there is not enough memory to perform an add operation, then EFI_OUT_OF_RESOURCES is
returned.

Status Codes Returned

EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is not valid.

EFI_NOT_FOUND An attempt was made to delete a nonexistent entry.

EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.
Version 1.6 May 2017 25

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmAllocatePool()

Summary
Allocates pool memory from MMRAM.

Prototype
Type EFI_ALLOCATE_POOL is defined in the UEFI Specification, section 4.4. The function
description is found in the UEFI Specification, section 6.2.

Description
The MmAllocatePool() function allocates a memory region of Size bytes from memory of
type PoolType and returns the address of the allocated memory in the location referenced by
Buffer. This function allocates pages from EfiConventionalMemory as needed to grow the
requested pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the MmFreePool() function.

Note: All allocations of MMRAM should use EfiRuntimeServicesCode or
EfiRuntimeServicesData.

Status Codes Returned

EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_INVALID_PARAMETER PoolType was invalid.

26 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
MmFreePool()

Summary
Returns pool memory to the system.

Prototype
Type EFI_FREE_POOL is defined in the UEFI Specification, section 4.4. The function description
is found in the UEFI Specification, section 6.2.

Description
The MmFreePool() function returns the memory specified by Buffer to the MMRAM heap.
The Buffer that is freed must have been allocated by MmAllocatePool().

Status Codes Returned

EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.
Version 1.6 May 2017 27

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmAllocatePages()

Summary
Allocates page memory from MMRAM.

Prototype
Type EFI_ALLOCATE_PAGES is defined in the UEFI Specification, section 4.4. The function
description is found in the UEFI Specification, section 6.2.

Description
The MmAllocatePages() function allocates the requested number of pages from the MMRAM
heap and returns a pointer to the base address of the page range in the location referenced by
Memory. The function scans the MM memory map to locate free pages. When it finds a physically
contiguous block of pages that is large enough and also satisfies the allocation requirements of Type,
it changes the memory map to indicate that the pages are now of type MemoryType.

All allocations of MMRAM should use EfiRuntimeServicesCode or
EfiRuntimeServicesData.

Allocation requests of Type

• AllocateAnyPages allocate any available range of pages that satisfies the request. On input,
the address pointed to by Memory is ignored.

• AllocateMaxAddress allocate any available range of pages whose uppermost address is
less than or equal to the address pointed to by Memory on input.

• AllocateAddress allocate pages at the address pointed to by Memory on input.

Status Codes Returned

EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or
AllocateMaxAddress or AllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range EfiMaxMemoryType
…0x7FFFFFFF.

EFI_NOT_FOUND The requested pages could not be found.
28 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
MmFreePages()

Summary
Returns pages of memory to the system.

Protocol
Type EFI_FREE_PAGES is defined in the UEFI Specification, section 4.4. The function
description is found in the UEFI Specification, section 6.2.

Description
The MmFreePages() function returns memory allocated by MmAllocatePages() to the
MMRAM heap.

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with

MmAllocatePages().

EFI_NOT_FOUND EFI_INVALID_PARAMETER Memory is not a page-aligned

address or Pages is invalid.
Version 1.6 May 2017 29

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmStartupThisAp()

Summary
This service lets the caller to get one distinct application processor (AP) to execute a caller-provided
code stream while in MM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_STARTUP_THIS_AP) (
 IN EFI_AP_PROCEDURE Procedure
 IN UINTN CpuNumber,
 IN OUT VOID *ProcArguments OPTIONAL
);

Parameters
Procedure

A pointer to the code stream to be run on the designated AP of the system. Type
EFI_AP_PROCEDURE is defined below.

CpuNumber

The zero-based index of the processor number of the AP on which the code stream is
supposed to run. If the processor number points to the current processor, then it will
not run the supplied code.

ProcArguments

Allows the caller to pass a list of parameters to the code that is run by the AP. It is an
optional common mailbox between APs and the caller to share information.

Related Definitions
See Volume 2, EFI_MP_SERVICES_PROTOCOL.StartupAllAPs, Related definitions.

Description
This function is used to dispatch one specific, healthy, enabled, and non-busy AP out of the
processor pool to the code stream that is provided by the caller while in MM. The recovery of a
failed AP is optional and the recovery mechanism is implementation dependent.

Status Codes Returned

EFI_SUCCESS The call was successful and the return parameters are valid.

EFI_INVALID_PARAMETER The input arguments are out of range.

EFI_INVALID_PARAMETER The CPU requested is not available on this MMI invocation.

EFI_INVALID_PARAMETER The CPU cannot support an additional service invocation.
30 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
MmInstallProtocolInterface()

Summary
Installs a MM protocol interface on a device handle. If the handle does not exist, it is created and
added to the list of handles in the system.

Prototype
Type EFI_INSTALL_PROTOCOL_INTERFACE is defined in the UEFI Specification, section 4.4.
The function description is found in the UEFI Specification, section 6.3.1.

Description
The MmInstallProtocolInterface() function installs a protocol interface (a
GUID/Protocol Interface structure pair) on an MM device handle. The same GUID cannot be
installed more than once onto the same handle. If installation of a duplicate GUID on a handle is
attempted, an EFI_INVALID_PARAMETER will result. Installing a protocol interface allows other
MM MM Drivers to locate the Handle, and the interfaces installed on it.

When a protocol interface is installed, the firmware calls all notification functions that have
registered to wait for the installation of Protocol. For more information, see the
MmRegisterProtocolNotify() function description.

Status Codes Returned

EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER InterfaceType is not EFI_NATIVE_INTERFACE.

EFI_INVALID_PARAMETER Protocol is already installed on the handle specified by

Handle.
Version 1.6 May 2017 31

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmUninstallProtocolInterface()

Summary
Removes a MM protocol interface from a device handle.

Prototype
Type EFI_UNINSTALL_PROTOCOL_INTERFACE is defined in the UEFI Specification, section
4.4. The function description is found in the UEFI Specification, section 6.3.1.

Description
The MmUninstallProtocolInterface() function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has been
removed. If the last protocol interface is removed from a handle, the handle is freed and is no longer
valid.

Status Codes Returned

EFI_SUCCESS The interface was removed.

 EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface is still being
used by a driver.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

 EFI_INVALID_PARAMETER Protocol is NULL.
32 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
MmHandleProtocol()

Summary

Queries a handle to determine if it supports a specified MM protocol.

Prototype

Type EFI_HANDLE_PROTOCOL is defined in the UEFI Specification, section 4.4. The function
description is found in the UEFI Specification, section 6.3.1.

Description

The MmHandleProtocol() function queries Handle to determine if it supports Protocol. If
it does, then, on return, Interface points to a pointer to the corresponding Protocol Interface.

Interface can then be passed to any protocol service to identify the context of the request.

Status Codes Returned

EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER Handle is not a valid EFI_HANDLE.

EFI_INVALID_PARAMETER Protocol is NULL.

EFI_INVALID_PARAMETER Interface is NULL.
Version 1.6 May 2017 33

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmRegisterProtocolNotify()

Summary
Register a callback function be called when a particular protocol interface is installed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_REGISTER_PROTOCOL_NOTIFY)(
 IN CONST EFI_GUID *Protocol,
 IN EFI_MM_NOTIFY_FN Function,
 IN OUT VOID **Registration
);

Parameters
Protocol

The unique ID of the protocol for which the event is to be registered. Type
EFI_GUID is defined in the InstallProtocolInterface() function
description.

Function

Points to the notification function, which is described below.

Registration

A pointer to a memory location to receive the registration value. This value must be
saved and used by the notification function to retrieve the list of handles that have
added a protocol interface of type Protocol.

Description
The MmRegisterProtocolNotify() function creates a registration Function that is to be
called whenever a protocol interface is installed for Protocol by
MmInstallProtocolInterface().

When Function has been called, the MmLocateHandle() function can be called to identify
the newly installed handles that support Protocol. The Registration parameter in
MmRegisterProtocolNotify() corresponds to the SearchKey parameter in
MmLocateHandle(). Note that the same handle may be returned multiple times if the handle
reinstalls the target protocol ID multiple times.

If Function == NULL and Registration is an existing registration, then the callback is
unhooked. *Protocol must be validated it with *Registration. If Registration is not
found then EFI_NOT_FOUND is returned.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_MM_NOTIFY_FN)(
 IN CONST EFI_GUID *Protocol,
34 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
 IN VOID *Interface,
 IN EFI_HANDLE Handle
);

Protocol

Points to the protocol’s unique identifier.

Interface

Points to the interface instance.

Handle

The handle on which the interface was installed.

Status Codes Returned

EFI_SUCCESS Successfully returned the registration record that has been
added or unhooked.

EFI_INVALID_PARAMETER Protocolis NULL or Registration is NULL.

EFI_OUT_OF_RESOURCES Not enough memory resource to finish the request.

EFI_NOT_FOUND If the registration is not found when Function == NULL
Version 1.6 May 2017 35

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmLocateHandle()

Summary
Returns an array of handles that support a specified protocol.

Prototype
Type EFI_LOCATE_HANDLE is defined in the UEFI Specification, section 4.4. The function
description is found in the UEFI Specification, section 6.3.1.

Description
The MmLocateHandle() function returns an array of handles that match the SearchType
request. If the input value of BufferSize is too small, the function returns
EFI_BUFFER_TOO_SMALL and updates BufferSize to the size of the buffer needed to obtain
the array.

Status Codes Returned

EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been

updated with the size needed to complete the request.

EFI_INVALID_PARAMETER SearchType is not a member of EFI_LOCATE_SEARCH_TYPE.

EFI_INVALID_PARAMETER SearchType is ByRegisterNotify and SearchKey is

NULL.

EFI_INVALID_PARAMETER SearchType is ByProtocol and Protocol is NULL.

EFI_INVALID_PARAMETER One or more matches are found and BufferSize is NULL.

EFI_INVALID_PARAMETER BufferSize is large enough for the result and Bufferis NULL.
36 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
MmLocateProtocol()

Summary
Returns the first MM protocol instance that matches the given protocol.

Prototype
Type EFI_LOCATE_PROTOCOL is defined in the UEFI Specification, section 4.4. The function
description is found in the UEFI Specification, section 6.3.1.

Description
The MmLocateProtocol() function finds the first device handle that support Protocol, and
returns a pointer to the protocol interface from that handle in Interface. If no protocol instances are
found, then Interface is set to NULL.

If Interface is NULL, then EFI_INVALID_PARAMETER is returned.

If Registration is NULL, and there are no handles in the handle database that support
Protocol, then EFI_NOT_FOUND is returned.

If Registration is not NULL, and there are no new handles for Registration, then
EFI_NOT_FOUND is returned.

Status Codes Returned

EFI_SUCCESS A protocol instance matching Protocol was found and
returned in Interface.

EFI_INVALID_PARAMETER Interface is NULL.

EFI_NOT_FOUND No protocol instances were found that match Protocol
and Registration .
Version 1.6 May 2017 37

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmiManage()

Summary
Manage MMI of a particular type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_INTERRUPT_MANAGE)(
 IN CONST EFI_GUID *HandlerType,
 IN CONST VOID *Context OPTIONAL,
 IN OUT VOID *CommBuffer OPTIONAL,
 IN OUT UINTN *CommBufferSize OPTIONAL
);

Parameters
HandlerType

Points to the handler type or NULL for root MMI handlers.

Context

Points to an optional context buffer. The format of the contents of the context buffer
depends on HandlerType.

CommBuffer

Points to the optional communication buffer. The format of the contents of the
communication buffer depends on HandlerType. The contents of the buffer (and its
size) may be altered if EFI_SUCCESS is returned.

CommBufferSize

Points to the size of the optional communication buffer. The size of the buffer may be
altered if EFI_SUCCESS is returned.

Description
This function will call the registered handler functions which match the specified invocation type.

If NULL is passed in HandlerType, then only those registered handler functions which passed
NULL as their HandlerType will be called. If NULL is passed in HandlerType, then Context
should be NULL, CommBuffer should point to an instance of EFI_MM_ENTRY_CONTEXT and
CommBufferSize should point to the size of that structure. Type EFI_MM_ENTRY_CONTEXT
is defined in “Related Definitions” below.

If at least one of the handlers returns EFI_WARN_INTERRUPT_SOURCE_QUIESCED or
EFI_SUCCESS then the function will return EFI_SUCCESS. If a handler returns EFI_SUCCESS
and HandlerType is not NULL then no additional handlers will be processed.

If a handler returns EFI_INTERRUPT_PENDING and HandlerType is not NULL then no
additional handlers will be processed and EFI_INTERRUPT_PENDING will be returned.

If all the handlers returned EFI_WARN_INTERRUPT_SOURCE_PENDING then
EFI_WARN_INTERRUPT_SOURCE_PENDING will be returned.
38 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
If no handlers of HandlerType are found then EFI_NOT_FOUND will be returned.

Status Codes Returned

EFI_WARN_INTERRUPT_SOURCE_PENDING The MMI was processed successfully but
the MMI source not quiesced.

EFI_INTERRUPT_PENDING One or more MMI sources could not be
quiesced.

EFI_NOT_FOUND The MMI was not handled and the MMI
source was not quiesced.

EFI_SUCCESS The MMI was handled and the MMI source
was quiesced.
Version 1.6 May 2017 39

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmiHandlerRegister()

Summary
Registers a handler to execute within MM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_INTERRUPT_REGISTER) (
 IN EFI_MM_HANDLER_ENTRY_POINT Handler,
 IN CONST EFI_GUID *HandlerType OPTIONAL,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
Handler

Handler service function pointer. Type EFI_MM_HANDLER_ENTRY_POINT is
defined in “Related Definitions” below.

HandlerType

Points to an EFI_GUID which describes the type of invocation that this handler is for
or NULL to indicate a root MMI handler.

DispatchHandle

On return, contains a unique handle which can be used to later unregister the handler
function. It is also passed to the handler function itself.

Description
This service allows the registration of a MMI handling function from within MM.

The handler should have the EFI_MM_HANDLER_ENTRY_POINT interface defined in “Related
Definitions” below.

Related Definitions
//***
// EFI_MM_HANDLER_ENTRY_POINT
//***

typedef
EFI_STATUS
(EFIAPI *EFI_MM_HANDLER_ENTRY_POINT) (
 IN EFI_HANDLE DispatchHandle,
 IN CONST VOID *Context OPTIONAL,
 IN OUT VOID *CommBuffer OPTIONAL,
 IN OUT UINTN *CommBufferSize OPTIONAL
);
40 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Management Mode System Table (MMST)
DispatchHandle

The unique handle assigned to this handler by MmiHandlerRegister().Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
Specification.

Context

Points to the optional handler context which was specified when the handler was
registered.

CommBuffer

A pointer to a collection of data in memory that will be conveyed from a non-MM
environment into an MM environment. The buffer must be contiguous, physically
mapped, and be a physical address.

CommBufferSize

The size of the CommBuffer.

 MmiHandlerRegister() returns one of two status codes:

Status Codes Returned (MmiHandlerRegister)

EFI_SUCCESS MMI handler added successfully.

 EFI_INVALID_PARAMETER Handler is NULL or DispatchHandle is NULL

EFI_MM_HANDLER_ENTRY_POINT returns one of four status codes:

Status Codes Returned (EFI_MM_HANDLER_ENTRY_POINT)

EFI_SUCCESS The MMI was handled and the MMI source the MMI source
was quiesced. No other handlers should still be called.

EFI_WARN_INTERRUPT_SOURCE_Q
UIESCED

The MMI source has been quiesced but other handlers
should still be called.

EFI_WARN_INTERRUPT_SOURCE_P
ENDING

 The MMI source is still pending and other handlers should
still be called.

 EFI_INTERRUPT_PENDING The MMI source could not be quiesced.
Version 1.6 May 2017 41

Management Mode System Table (MMST) Platform Initialization Specification, Vol. 4
MmiHandlerUnRegister()

Summary
Unregister a handler in MM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_INTERRUPT_UNREGISTER)(
 IN EFI_HANDLE DispatchHandle,
);

Parameters
DispatchHandle

The handle that was specified when the handler was registered.

Description
This function unregisters the specified handler function.

Status Codes Returned

EFI_SUCCESS Handler function was successfully unregistered.

EFI_INVALID_PARAMETER DispatchHandle does not refer to a valid

handle.
42 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
4 MM Protocols

4.1 Introduction

There is a share-nothing model that is employed between the management-mode application and the
boot service/runtime UEFI environment. As such, a minimum set of services needs to be available
to the boot service agent.

The services described in this section coexist with a foreground pre-boot or runtime environment.
The latter can include both UEFI and non-UEFI aware operating systems. As such, the
implementation of these services must save and restore any "shared" resources with the foreground
environment or only use resources that are private to the MM code.

4.2 Status Codes Services

EFI_MM_STATUS_CODE_PROTOCOL

Summary
Provides status code services from MM.

GUID
#define EFI_MM_STATUS_CODE_PROTOCOL_GUID \
 { 0x6afd2b77, 0x98c1, 0x4acd, 0xa6, 0xf9, 0x8a, 0x94, \
 0x39, 0xde, 0xf, 0xb1 }

Protocol Interface Structure
typedef struct _EFI_MM_STATUS_CODE_PROTOCOL {
 EFI_MM_REPORT_STATUS_CODE ReportStatusCode;
} EFI_MM_STATUS_CODE_PROTOCOL;

Parameters
ReportStatusCode

Allows for the MM agent to produce a status code output. See the
ReportStatusCode() function description.

Description
The EFI_MM_STATUS_CODE_PROTOCOL provides the basic status code services while in
MMRAM.
Version 1.6 May 2017 43

MM Protocols Platform Initialization Specification, Vol. 4
EFI_MM_STATUS_CODE_PROTOCOL.ReportStatusCode()

Summary
Service to emit the status code in MM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_REPORT_STATUS_CODE) (
 IN CONST EFI_MM_STATUS_CODE_PROTOCOL *This,
 IN EFI_STATUS_CODE_TYPE CodeType,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId,
 IN EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
This

Points to this instance of the EFI_MM_STATUS_CODE_PROTOCOL.

CodeType

Indicates the type of status code being reported. Type EFI_STATUS_CODE_TYPE
is defined in "Related Definitions" below.

Value

Describes the current status of a hardware or software entity. This status includes
information about the class and subclass that is used to classify the entity, as well as an
operation. For progress codes, the operation is the current activity. For error codes, it
is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in "Related Definitions" below.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in "Related Definitions" below. The contents
of this data type may have additional GUID-specific data.
44 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
Description
The EFI_MM_STATUS_CODE_PROTOCOL.ReportStatusCode() function enables a driver
to emit a status code while in MM. The reason that there is a separate protocol definition from the
DXE variant of this service is that the publisher of this protocol will provide a service that is
capability of coexisting with a foreground operational environment, such as an operating system
after the termination of boot services.

In case of an error, the caller can specify the severity. In most cases, the entity that reports the error
may not have a platform-wide view and may not be able to accurately assess the impact of the error
condition. The MM MM Driver that produces the Status Code MM Protocol is responsible for
assessing the true severity level based on the reported severity and other information. This MM MM
Driver may perform platform specific actions based on the type and severity of the status code being
reported.

If Data is present, the driver treats it as read only data. The driver must copy Data to a local
buffer in an atomic operation before performing any other actions. This is necessary to make this
function re-entrant. The size of the local buffer may be limited. As a result, some of the Data can be
lost. The size of the local buffer should at least be 256 bytes in size. Larger buffers will reduce the
probability of losing part of the Data. If all of the local buffers are consumed, then this service may
not be able to perform the platform specific action required by the status code being reported. As a
result, if all the local buffers are consumed, the behavior of this service is undefined.

If the CallerId parameter is not NULL, then it is required to point to a constant GUID. In other
words, the caller may not reuse or release the buffer pointed to by CallerId.

Status Codes Returned

EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR The function should not be completed due to a device error.

4.3 CPU Save State Access Services

EFI_MM_CPU_PROTOCOL

Summary
Provides access to CPU-related information while in MM.

GUID
#define EFI_MM_CPU_PROTOCOL_GUID \
 { 0xeb346b97, 0x975f, 0x4a9f, \
 0x8b, 0x22, 0xf8, 0xe9, 0x2b, 0xb3, 0xd5, 0x69 }

Prototype
typedef struct _EFI_MM_CPU_PROTOCOL {
 EFI_MM_READ_SAVE_STATE ReadSaveState;
 EFI_MM_WRITE_SAVE_STATE WriteSaveState;
} EFI_MM_CPU_PROTOCOL;
Version 1.6 May 2017 45

MM Protocols Platform Initialization Specification, Vol. 4
Members
ReadSaveState

Read information from the CPU save state. See ReadSaveState() for more
information.

WriteSaveState

Write information to the CPU save state. See WriteSaveState() for more
information.

Description
This protocol allows MM Drivers to access architecture-standard registers from any of the CPU save
state areas. In some cases, difference processors provide the same information in the save state, but
not in the same format. These so-called pseudo-registers provide this information in a standard
format.
46 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_CPU_PROTOCOL.ReadSaveState()

Summary
Read data from the CPU save state.

Prototype
typedef
 EFI_STATUS
(EFIAPI *EFI_MM_READ_SAVE_STATE (
 IN CONST EFI_MM_CPU_PROTOCOL *This,
 IN UINTN Width,
 IN EFI_MM_SAVE_STATE_REGISTER Register,
 IN UINTN CpuIndex,
 OUT VOID *Buffer
);

Parameters
Width

The number of bytes to read from the CPU save state. If the register specified by
Register does not support the size specified by Width, then
EFI_INVALID_PARAMETER is returned.

Register

Specifies the CPU register to read form the save state. The type
EFI_MM_SAVE_STATE_REGISTER is defined in “Related Definitions” below. If
the specified register is not implemented in the CPU save state map then
EFI_NOT_FOUND error will be returned.

CpuIndex

Specifies the zero-based index of the CPU save state

*Buffer

Upon return, this holds the CPU register value read from the save state.

Description
This function is used to read the specified number of bytes of the specified register from the CPU
save state of the specified CPU and place the value into the buffer. If the CPU does not support the
specified register Register, then EFI_NOT_FOUND should be returned. If the CPU does not
support the specified register width Width, then EFI_INVALID_PARAMETER is returned.

Related Definitions
typedef enum {

 //
 // x86/X64 standard registers
 //
 EFI_MM_SAVE_STATE_REGISTER_GDTBASE = 4,
 EFI_MM_SAVE_STATE_REGISTER_IDTBASE = 5,
Version 1.6 May 2017 47

MM Protocols Platform Initialization Specification, Vol. 4
 EFI_MM_SAVE_STATE_REGISTER_LDTBASE = 6,
 EFI_MM_SAVE_STATE_REGISTER_GDTLIMIT = 7,
 EFI_MM_SAVE_STATE_REGISTER_IDTLIMIT = 8,
 EFI_MM_SAVE_STATE_REGISTER_LDTLIMIT = 9,
 EFI_MM_SAVE_STATE_REGISTER_LDTINFO = 10,

 EFI_MM_SAVE_STATE_REGISTER_ES = 20,
 EFI_MM_SAVE_STATE_REGISTER_CS = 21,
 EFI_MM_SAVE_STATE_REGISTER_SS = 22,
 EFI_MM_SAVE_STATE_REGISTER_DS = 23,
 EFI_MM_SAVE_STATE_REGISTER_FS = 24,
 EFI_MM_SAVE_STATE_REGISTER_GS = 25,
 EFI_MM_SAVE_STATE_REGISTER_LDTR_SEL = 26,
 EFI_MM_SAVE_STATE_REGISTER_TR_SEL = 27,
 EFI_MM_SAVE_STATE_REGISTER_DR7 = 28,
 EFI_MM_SAVE_STATE_REGISTER_DR6 = 29,

 EFI_MM_SAVE_STATE_REGISTER_R8 = 30,
 EFI_MM_SAVE_STATE_REGISTER_R9 = 31,
 EFI_MM_SAVE_STATE_REGISTER_R10 = 32,
 EFI_MM_SAVE_STATE_REGISTER_R11 = 33,
 EFI_MM_SAVE_STATE_REGISTER_R12 = 34,
 EFI_MM_SAVE_STATE_REGISTER_R13 = 35,
 EFI_MM_SAVE_STATE_REGISTER_R14 = 36,
 EFI_MM_SAVE_STATE_REGISTER_R15 = 37,

 EFI_MM_SAVE_STATE_REGISTER_RAX = 38,
 EFI_MM_SAVE_STATE_REGISTER_RBX = 39,
 EFI_MM_SAVE_STATE_REGISTER_RCX = 40,
 EFI_MM_SAVE_STATE_REGISTER_RDX = 41,
 EFI_MM_SAVE_STATE_REGISTER_RSP = 42,
 EFI_MM_SAVE_STATE_REGISTER_RBP = 43,
 EFI_MM_SAVE_STATE_REGISTER_RSI = 44,
 EFI_MM_SAVE_STATE_REGISTER_RDI = 45,
 EFI_MM_SAVE_STATE_REGISTER_RIP = 46,

 EFI_MM_SAVE_STATE_REGISTER_RFLAGS = 51,
 EFI_MM_SAVE_STATE_REGISTER_CR0 = 52,
 EFI_MM_SAVE_STATE_REGISTER_CR3 = 53,
 EFI_MM_SAVE_STATE_REGISTER_CR4 = 54,

 EFI_MM_SAVE_STATE_REGISTER_FCW = 256,
 EFI_MM_SAVE_STATE_REGISTER_FSW = 257,
 EFI_MM_SAVE_STATE_REGISTER_FTW = 258,
 EFI_MM_SAVE_STATE_REGISTER_OPCODE = 259,
 EFI_MM_SAVE_STATE_REGISTER_FP_EIP = 260,
 EFI_MM_SAVE_STATE_REGISTER_FP_CS = 261,
 EFI_MM_SAVE_STATE_REGISTER_DATAOFFSET = 262,
 EFI_MM_SAVE_STATE_REGISTER_FP_DS = 263,
 EFI_MM_SAVE_STATE_REGISTER_MM0 = 264,
 EFI_MM_SAVE_STATE_REGISTER_MM1 = 265,
48 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
 EFI_MM_SAVE_STATE_REGISTER_MM2 = 266,
 EFI_MM_SAVE_STATE_REGISTER_MM3 = 267,
 EFI_MM_SAVE_STATE_REGISTER_MM4 = 268,
 EFI_MM_SAVE_STATE_REGISTER_MM5 = 269,
 EFI_MM_SAVE_STATE_REGISTER_MM6 = 270,
 EFI_MM_SAVE_STATE_REGISTER_MM7 = 271,
 EFI_MM_SAVE_STATE_REGISTER_XMM0 = 272,
 EFI_MM_SAVE_STATE_REGISTER_XMM1 = 273,
 EFI_MM_SAVE_STATE_REGISTER_XMM2 = 274,
 EFI_MM_SAVE_STATE_REGISTER_XMM3 = 275,
 EFI_MM_SAVE_STATE_REGISTER_XMM4 = 276,
 EFI_MM_SAVE_STATE_REGISTER_XMM5 = 277,
 EFI_MM_SAVE_STATE_REGISTER_XMM6 = 278,
 EFI_MM_SAVE_STATE_REGISTER_XMM7 = 279,
 EFI_MM_SAVE_STATE_REGISTER_XMM8 = 280,
 EFI_MM_SAVE_STATE_REGISTER_XMM9 = 281,
 EFI_MM_SAVE_STATE_REGISTER_XMM10 = 282,
 EFI_MM_SAVE_STATE_REGISTER_XMM11 = 283,
 EFI_MM_SAVE_STATE_REGISTER_XMM12 = 284,
 EFI_MM_SAVE_STATE_REGISTER_XMM13 = 285,
 EFI_MM_SAVE_STATE_REGISTER_XMM14 = 286,
 EFI_MM_SAVE_STATE_REGISTER_XMM15 = 287,

 //
 // Pseudo-Registers
 //
 EFI_MM_SAVE_STATE_REGISTER_IO = 512,
 EFI_MM_SAVE_STATE_REGISTER_LMA = 513,
 EFI_MM_SAVE_STATE_REGISTER_PROCESSOR_ID = 514,

//
// ARM Registers. X0 corresponds to R0
//

EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X0 = 1024,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X1 = 1025,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X2 = 1026,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X3 = 1027,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X4 = 1028,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X5 = 1029,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X6 = 1030,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X7 = 1031,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X8 = 1032,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X9 = 1033,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X10 = 1034,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X11 = 1035,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X12 = 1036,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X13 = 1037,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X14 = 1038,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X15 = 1039,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X16 = 1040,
Version 1.6 May 2017 49

MM Protocols Platform Initialization Specification, Vol. 4
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X17 = 1041,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X18 = 1042,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X19 = 1043,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X20 = 1044,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X21 = 1045,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X22 = 1046,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X23 = 1047,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X24 = 1048,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X25 = 1049,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X26 = 1050,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X27 = 1051,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X28 = 1052,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X29 = 1053,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X30 = 1054,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_X31 = 1055,

EFI_SMM_SAVE_STATE_REGISTER_AARCH64_FP = 1053, // x29 - Frame Pointer
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_LR = 1054, // x30 - Link Register
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SP = 1055, // x31 - Stack Pointer

// AArch64 EL1 Context System Registers
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_ELR_EL1 = 1300,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_ESR_EL1 = 1301,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_FAR_EL1 = 1302,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_ISR_EL1 = 1303,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_MAIR_EL1 = 1304,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_MIDR_EL1 = 1305,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_MPIDR_EL1 = 1306,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SCTLR_EL1 = 1307,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SP_EL0 = 1308,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SP_EL1 = 1309,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SPSR_EL1 = 1310,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TCR_EL1 = 1311,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TPIDR_EL0 = 1312,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TPIDR_EL1 = 1313,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TPIDRRO_EL0 = 1314,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TTBR0_EL1 = 1315,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TTBR1_EL1 = 1316,

// AArch64 EL2 Context System Registers
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_ELR_EL2 = 1320,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_ESR_EL2 = 1321,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_FAR_EL2 = 1322,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_HACR_EL2 = 1333,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_HCR_EL2 = 1334,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_HPFAR_EL2 = 1335,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_MAIR_EL2 = 1336,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SCTLR_EL2 = 1337,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SP_EL2 = 1338,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SPSR_EL2 = 1339,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TCR_EL2 = 1340,
50 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TPIDR_EL2 = 1341,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TTBR0_EL2 = 1342,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_VTCR_EL2 = 1343,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_VTTBR_EL2 = 1344,

// AArch64 EL3 Context System Registers
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_ELR_EL3 = 1350,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_ESR_EL3 = 1351,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_FAR_EL3 = 1352,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_MAIR_EL3 = 1353,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SCTLR_EL3 = 1354,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SP_EL3 = 1355,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_SPSR_EL3 = 1356,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TCR_EL3 = 1357,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TPIDR_EL3 = 1358,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_TTBR0_EL3 = 1359,

// 32-bit aliases for Rx->Xx
EFI_SMM_SAVE_STATE_REGISTER_ARM_R0 = 1024,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R1 = 1025,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R2 = 1026,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R3 = 1027,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R4 = 1028,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R5 = 1029,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R6 = 1030,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R7 = 1031,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R8 = 1032,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R9 = 1033,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R10 = 1034,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R11 = 1035,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R12 = 1036,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R13 = 1037,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R14 = 1038,
EFI_SMM_SAVE_STATE_REGISTER_ARM_R15 = 1039,
// Unique AArch32 Registers
EFI_SMM_SAVE_STATE_REGISTER_ARM_SP = 1037, // alias for R13
EFI_SMM_SAVE_STATE_REGISTER_ARM_LR = 1038, // alias for R14
EFI_SMM_SAVE_STATE_REGISTER_ARM_PC = 1040, // alias for R15

// AArch32 EL1 Context System Registers
EFI_SMM_SAVE_STATE_REGISTER_ARM_DFAR = 1222,
EFI_SMM_SAVE_STATE_REGISTER_ARM_DFSR = 1223,
EFI_SMM_SAVE_STATE_REGISTER_ARM_IFAR = 1224,
EFI_SMM_SAVE_STATE_REGISTER_ARM_ISR = 1225,
EFI_SMM_SAVE_STATE_REGISTER_ARM_MAIR0 = 1226,
EFI_SMM_SAVE_STATE_REGISTER_ARM_MAIR1 = 1227,
EFI_SMM_SAVE_STATE_REGISTER_ARM_MIDR = 1228,
EFI_SMM_SAVE_STATE_REGISTER_ARM_MPIDR = 1229,
EFI_SMM_SAVE_STATE_REGISTER_ARM_NMRR = 1230,
EFI_SMM_SAVE_STATE_REGISTER_ARM_PRRR = 1231,
Version 1.6 May 2017 51

MM Protocols Platform Initialization Specification, Vol. 4
EFI_SMM_SAVE_STATE_REGISTER_ARM_SCTLR_NS = 1231,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR = 1232,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR_abt = 1233,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR_fiq = 1234,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR_irq = 1235,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR_svc = 1236,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR_und = 1237,
EFI_SMM_SAVE_STATE_REGISTER_ARM_TPIDRPRW = 1238,
EFI_SMM_SAVE_STATE_REGISTER_ARM_TPIDRURO = 1239,
EFI_SMM_SAVE_STATE_REGISTER_ARM_TPIDRURW = 1240,
EFI_SMM_SAVE_STATE_REGISTER_ARM_TTBCR = 1241,
EFI_SMM_SAVE_STATE_REGISTER_ARM_TTBR0 = 1242,
EFI_SMM_SAVE_STATE_REGISTER_ARM_TTBR1 = 1243,
EFI_SMM_SAVE_STATE_REGISTER_ARM_DACR = 1244,

// AArch32 EL1 Context System Registers
EFI_SMM_SAVE_STATE_REGISTER_ARM_ELR_hyp = 1245,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HAMAIR0 = 1246,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HAMAIR1 = 1247,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HCR = 1248,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HCR2 = 1249,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HDFAR = 1250,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HIFAR = 1251,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HPFAR = 1252,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HSR = 1253,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HTCR = 1254,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HTPIDR = 1255,
EFI_SMM_SAVE_STATE_REGISTER_ARM_HTTBR = 1256,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR_hyp = 1257,
EFI_SMM_SAVE_STATE_REGISTER_ARM_VTCR = 1258,
EFI_SMM_SAVE_STATE_REGISTER_ARM_VTTBR = 1259,
EFI_SMM_SAVE_STATE_REGISTER_ARM_DACR32_EL2 = 1260,

// AArch32 EL2 Secure Context System Registers
EFI_SMM_SAVE_STATE_REGISTER_ARM_SCTLR_S = 1261,
EFI_SMM_SAVE_STATE_REGISTER_ARM_SPSR_mon = 1262,

// Context System Registers: 32768 - 65535
EFI_SMM_SAVE_STATE_REGISTER_ARM_CSR = 32768,
EFI_SMM_SAVE_STATE_REGISTER_AARCH64_CSR = 32768
} EFI_SMM_SAVE_STATE_REGISTER;

} EFI_MM_SAVE_STATE_REGISTER;

AARCH32/AARCH64 REGISTER AVAILABILITY

Depending on the platform policy, not all registers may be available in the MM Save State. These
registers will return the status code EFI_NOT_FOUND when calling ReadSaveState() or
WriteSaveState(). In some cases this may be done to protect sensitive information in the non-
secure execution environment.
52 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_SAVE_STATE_ARM_CSR,
EFI_MM_SAVE_STATE_AARCH64_CSR

The Read/Write interface can be used to retrieve AARCH32/AARCH64 Context System Registers
that were saved upon entry to MM. These registers have the CPU Register Index starting with
EFI_MM_SAVE_STATE_ARM_CSR. The actual CPU register index for a specific CSR register is
calculated by adding the encoding of the MRS instruction, bits 5:19, to
EFI_MM_SAVE_STATE_REGISTER_ARM_CSR. That is: (MRSIntruction[5:19] << 5 +
EFI_MM_SAVE_STATE_ARM_CSR). See the UEFI Specification, Table 275 in Appendix N for
more information.

EFI_MM_SAVE_STATE_REGISTER_PROCESSOR_ID

The Read/Write interface for the pseudo-register
EFI_MM_SAVE_STATE_REGISTER_PROCESSOR_ID follows these rules:

For ReadSaveState():

The pseudo-register only supports the 64-bit size specified by Width.

If the processor is in SM at the time the MMI occurred, the pseudo register value
EFI_MM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer. The value should
match the ProcessorId value, as described in the EFI_PROCESSOR_INFORMATION record
defined in Volume 2 of the Platform Initialization Specification.

For WriteSaveState():

Write operations to this pseudo-register are ignored.

EFI_MM_SAVE_STATE_REGISTER_LMA

The Read/Write interface for the pseudo-register EFI_MM_SAVE_STATE_REGISTER_LMA
follows these rules:

For ReadSaveState():

The pseudo-register only supports the single Byte size specified by Width. If the processor acts in
32-bit mode at the time the MMI occurred, the pseudo register value
EFI_MM_SAVE_STATE_REGISTER_LMA_32BIT is returned in Buffer. Otherwise,
EFI_MM_SAVE_STATE_REGISTER_LMA_64BIT is returned in Buffer.

#define EFI_MM_SAVE_STATE_REGISTER_LMA_32BIT = 32
#define EFI_MM_SAVE_STATE_REGISTER_LMA_64BIT = 64

 For WriteSaveState():

 Write operations to this pseudo-register are ignored.
Version 1.6 May 2017 53

MM Protocols Platform Initialization Specification, Vol. 4
Status Codes Returned

EFI_SUCCESS The register was read or written from Save State

EFI_NOT_FOUND The register is not defined for the Save State of Processor

EFI_NOT_FOUND The processor is not in SM.

EFI_INVALID_PARAMETER Input parameters are not valid. For ex: Processor No or register width

is not correct.This or Buffer is NULL.
54 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_CPU_PROTOCOL.WriteSaveState()

Summary
Write data to the CPU save state.

Prototype
typedef
 EFI_STATUS
(EFIAPI *EFI_MM_WRITE_SAVE_STATE (
 IN CONST EFI_MM_CPU_PROTOCOL *This,
 IN UINTN Width,
 IN EFI_MM_SAVE_STATE_REGISTER Register,
 IN UINTN CpuIndex,
 IN CONST VOID *Buffer
);

Parameters
Width

The number of bytes to write to the CPU save state. If the register specified by
Register does not support the size specified by Width, then
EFI_INVALID_PARAMETER s returned.

Register

Specifies the CPU register to write to the save state. The type
EFI_MM_SAVE_STATE_REGISTER is defined in ReadSaveState()above. If
the specified register is not implemented in the CPU save state map then
EFI_NOT_FOUND error will be returned.

CpuIndex

Specifies the zero-based index of the CPU save state.

Buffer

Upon entry, this holds the new CPU register value.

Description
This function is used to write the specified number of bytes of the specified register to the CPU save
state of the specified CPU and place the value into the buffer. If the CPU does not support the
specified register Register, then EFI_NOT_FOUND should be returned. If the CPU does not
support the specified register width Width, then EFI_INVALID_PARAMETER is returned.
Version 1.6 May 2017 55

MM Protocols Platform Initialization Specification, Vol. 4
Status Codes Returned

EFI_SUCCESS The register was read or written from Save State

EFI_NOT_FOUND The register Register is not defined for the Save
State of Processor

EFI_INVALID_PARAMETER Input parameters are not valid. For example:

ProcessorIndex or Width is not correct. This

or Buffer is NULL.

4.3.1 MM Save State IO Info

EFI_MM_SAVE_STATE_IO_INFO

Summary
Describes the I/O operation which was in process when the MMI was generated.

Prototype

typedef struct _EFI_MM_SAVE_STATE_IO_INFO {
 UINT64 IoData;
 UINT16 IoPort;
 EFI_MM_SAVE_STATE_IO_WIDTH IoWidth;
 EFI_MM_SAVE_STATE_IO_TYPE IoType;
} EFI_MM_SAVE_STATE_IO_INFO

Parameters
IoData

For input instruction (IN, INS), this is data read before the MMI occurred. For output
instructions (OUT, OUTS) this is data that was written before the MMI occurred. The
width of the data is specified by IoWidth. The data buffer is allocated by the Called
MMfunction, and it is the Caller's responsibility to free this buffer.

IoPort

The I/O port that was being accessed when the MMI was triggered.

IoWidth

Defines the size width (UINT8, UINT16, UINT32, UINT64) for IoData. See Related
Definitions.

IoType

Defines type of I/O instruction. See Related Definitions.

 Description
This is the structure of the data which is returned when ReadSaveState() is called with
EFI_MM_SAVE_STATE_REGISTER_IO. If there was no I/O then ReadSaveState() will
return EFI_NOT_FOUND.
56 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
Related Definitions
typedef enum {
 EFI_MM_SAVE_STATE_IO_WIDTH_UINT8 = 0,
 EFI_MM_SAVE_STATE_IO_WIDTH_UINT16 = 1,
 EFI_MM_SAVE_STATE_IO_WIDTH_UINT32 = 2,
 EFI_MM_SAVE_STATE_IO_WIDTH_UINT64 = 3
} EFI_MM_SAVE_STATE_IO_WIDTH

typedef enum {
 EFI_MM_SAVE_STATE_IO_TYPE_INPUT = 1,
 EFI_MM_SAVE_STATE_IO_TYPE_OUTPUT = 2,
 EFI_MM_SAVE_STATE_IO_TYPE_STRING = 4,
 EFI_MM_SAVE_STATE_IO_TYPE_REP_PREFIX = 8
} EFI_MM_SAVE_STATE_IO_TYPE

4.4 MM CPU I/O Protocol

EFI_MM_CPU_IO_PROTOCOL

Summary
Provides CPU I/O and memory access within SM

GUID
#define EFI_MM_CPU_IO_PROTOCOL_GUID \
 { 0x3242a9d8, 0xce70, 0x4aa0, \
 0x95, 0x5d, 0x5e, 0x7b, 0x14, 0xd, 0xe4, 0xd2 }

Protocol Interface Structure
typedef struct _EFI_MM_CPU_IO_PROTOCOL {
 EFI_MM_IO_ACCESS Mem;
 EFI_MM_IO_ACCESS Io;
} EFI_MM_CPU_IO_PROTOCOL;

Parameters
Mem

Allows reads and writes to memory-mapped I/O space. See the Mem() function
description. Type EFI_MM_IO_ACCESS is defined in “Related Definitions” below.

Io

Allows reads and writes to I/O space. See the Io() function description. Type
EFI_MM_IO_ACCESS is defined in “Related Definitions” below.

Description
The EFI_MM_CPU_IO_PROTOCOL service provides the basic memory, I/O, and PCI interfaces
that are used to abstract accesses to devices.
Version 1.6 May 2017 57

MM Protocols Platform Initialization Specification, Vol. 4
The interfaces provided in EFI_MM_CPU_IO_PROTOCOL are for performing basic operations to
memory and I/O. The EFI_MM_CPU_IO_PROTOCOL can be thought of as the bus driver for the
system. The system provides abstracted access to basic system resources to allow a driver to have a
programmatic method to access these basic system resources.

Related Definitions
//***
// EFI_MM_IO_ACCESS
//***
typedef struct {
 EFI_MM_CPU_IO Read;
 EFI_MM_CPU_IO Write;
} EFI_MM_IO_ACCESS;

Read

This service provides the various modalities of memory and I/O read.

Write

This service provides the various modalities of memory and I/O write.
58 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_CPU_IO_PROTOCOL.Mem()

Summary
Enables a driver to access device registers in the memory space.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_MM_CPU_IO (
 IN CONST EFI_MM_CPU_IO_PROTOCOL *This,
 IN EFI_MM_IO_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

The EFI_MM_CPU_IO_PROTOCOL instance.

Width

Signifies the width of the I/O operations. Type EFI_MM_IO_WIDTH is defined in
“Related Definitions” below.

Address

The base address of the I/O operations. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. Bytes moved is Width size * Count,
starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations,
the source buffer from which to write data.

Description
The EFI_MM_CPU_IO.Mem() function enables a driver to access device registers in the memory.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues that the bus, device, platform, or type of I/O might require. For example, on
IA-32 platforms, width requests of MM_IO_UINT64 do not work.

The Address field is the bus relative address as seen by the device on the bus.

Related Definitions
//***
// EFI_MM_IO_WIDTH
Version 1.6 May 2017 59

MM Protocols Platform Initialization Specification, Vol. 4
//***

typedef enum {
 MM_IO_UINT8 = 0,
 MM_IO_UINT16 = 1,
 MM_IO_UINT32 = 2,
 MM_IO_UINT64 = 3
} EFI_MM_IO_WIDTH;

Status Codes Returned

EFI_SUCCESS The data was read from or written to the device.

EFI_UNSUPPORTED The Address is not valid for this system.

EFI_INVALID_PARAMETER Width or Count, or both, were invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
60 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_CPU_IO_PROTOCOL.Io()

Summary
Enables a driver to access device registers in the I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_MM_CPU_IO) (
 IN CONST EFI_MM_CPU_IO_PROTOCOL *This,
 IN EFI_MM_IO_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

The EFI_MM_CPU_IO_PROTOCOL instance.

Width

Signifies the width of the I/O operations. Type EFI_MM_IO_WIDTH is defined in
Mem().

Address

The base address of the I/O operations. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. Bytes moved is Width size * Count,
starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations,
the source buffer from which to write data.

Description
The EFI_MM_CPU_IO.Io() function enables a driver to access device registers in the I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example, on
IA-32 platforms, width requests of MM_IO_UINT64 do not work.

The caller must align the starting address to be on a proper width boundary.
Version 1.6 May 2017 61

MM Protocols Platform Initialization Specification, Vol. 4
Status Codes Returned

EFI_SUCCESS The data was read from or written to the device.

EFI_UNSUPPORTED The Address is not valid for this system.

EFI_INVALID_PARAMETER Width or Count, or both, were invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

4.5 MM PCI I/O Protocol

EFI_MM_PCI_ROOT_BRIDGE_IO_PROTOCOL

Summary
Provides access to PCI I/O, memory and configuration space inside of SM.

GUID
#define EFI_MM_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID \
 {0x8bc1714d, 0xffcb, 0x41c3, \
 0x89, 0xdc, 0x6c, 0x74, 0xd0, 0x6d, 0x98, 0xea}

Prototype
typedef EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
EFI_MM_PCI_ROOT_BRIDGE_IO_PROTOCOL;

Description
This protocol provides the same functionality as the PCI Root Bridge I/O Protocol defined in the
UEFI Specifcation, section 13.2, except that the functions for Map(), Unmap(), Flush(),
AllocateBuffer(), FreeBuffer(), SetAttributes(), and Configuration() may
return EFI_UNSUPPORTED.

4.6 MM Ready to Lock Protocol

EFI_MM_READY_TO_LOCK_PROTOCOL

Summary
Indicates that MM resources and services that should not be used by the third party code are about to
be locked.

GUID
#define EFI_MM_READY_TO_LOCK_PROTOCOL_GUID \
 { 0x47b7fa8c, 0xf4bd, 0x4af6, \
 {0x82, 0x0, 0x33, 0x30, 0x86, 0xf0, 0xd2, 0xc8 } }
62 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
Prototype
NULL

Description
This protocol is a mandatory protocol published by the MM Foundation code when the system is
preparing to lock certain resources and interfaces in anticipation of the invocation of 3rd party
extensible modules. This protocol is an SM counterpart of the DXE MM Ready to Lock Protocol.
This protocol prorogates resource locking notification into SM environment. This protocol is
installed after installation of the SM End of DXE Protocol.

4.7 MM MP protocol

EFI_MM_MP_PROTOCOL

Summary
The MM MP protocol provides a set of functions to allow execution of procedures on processors that
have entered MM. This protocol has the following properties:

• The caller can only invoke execution of a procedure on a processor, other than the caller, that
has also entered MM.

• It is possible to invoke a procedure on multiple processors.

• Supports blocking and non-blocking modes of operation.

GUID
 // {5D5450D7-990C-4180-A803-8E63F0608307}
 #define EFI_MM_MP_PROTOCOL_GUID \
 { 0x5d5450d7, 0x990c, 0x4180,
 { 0xa8, 0x3, 0x8e, 0x63, 0xf0, 0x60, 0x83, 0x7 } };

Protocol
typedef struct _EFI_MM_MP_PROTOCOL {
 UINT32 Revision,
 UINT32 Attributes,

 EFI_MM_ GET_NUMBER_OF_PROCESSORS GetNumberOfProcessors,
 EFI_MM_DISPATCH_PROCEDURE DispatchProcedure,
 EFI_MM_BROADCAST_PROCEDURE BroadcastProcedure,
 EFI_MM_SET_STARTUP_PROCEDURE SetStartupProcedure,
 EFI_CHECK_FOR_PROCEDURE CheckOnProcedure,
 EFI_WAIT_FOR_PROCEDURE WaitForProcedure,
}EFI_MM_MP_PROTOCOL;

Members
Revision

Revision information for the interface
Version 1.6 May 2017 63

MM Protocols Platform Initialization Specification, Vol. 4
Attributes

Provides information about the capabilities of the implementation.

GetNumberOfProcessors

Return the number of processors in the system.

DispatchProcedure

Run a procedure on one AP.

BroadcastProcedure

Run a procedure on all processors except the caller.

SetStartupProcedure

Provide a procedure to be executed when an AP starts up from power state where core
context and configuration is lost.

CheckOnProcedure

Check whether a procedure on one or all APs has completed.

WaitForProcedure

Wait until a procedure on one or all APs has completed execution.

EFI_MM_MP_PROTOCOL.Revision

Summary
For implementations compliant with this revision of the specification this value must be 0.

EFI_MM_MP_PROTOCOL.Attributes

Summary
This parameter takes the following format:

Field Number
of bits

Bit
Offset

Description

Timeout
support flag

1 0 This bit describes whether timeouts are supported in

DispatchProcedure and BroadcastProcedure

functions.
This bit is set to one if timeouts are supported in

DispatchProcedure and BroadcastProcedure.

This bit is set to zero if timeouts are not supported in

DispatchProcedure and BroadcastProcedure.

In implementations where timeouts are not supported, timeout
values are always treated as infinite.

See EFI_MM_MP_TIMEOUT_SUPPORTED in Related

Definitions below.

Reserved 31 1 Reserved must be zero.
64 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_MP_PROTOCOL.GetNumberOfProcessors()

Summary
This service retrieves the number of logical processor in the platform.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_MM_ GET_NUMBER_OF_PROCESSORS) (
 IN CONST EFI_MM_MP_PROTOCOL *This,
 OUT UINTN *NumberOfProcessors
);

Parameters
This

The EFI_MM_MP_PROTOCOL instance.

NumberOfProcessors

Pointer to the total number of logical processors in the system, including the BSP and
all APs.

Status Codes Returned

EFI_SUCCESS The number of processors was retrieved successfully

EFI_INVALID_PARAMETER NumberOfProcessors is NULL
Version 1.6 May 2017 65

MM Protocols Platform Initialization Specification, Vol. 4
EFI_MM_MP_PROTOCOL.DispatchProcedure()

Summary
This service allows the caller to invoke a procedure one of the application processors (AP). This
function uses an optional token parameter to support blocking and non-blocking modes. If the token
is passed into the call, the function will operate in a non-blocking fashion and the caller can check
for completion with CheckOnProcedure or WaitForProcedure.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_MM_DISPATCH_PROCEDURE) (
 IN CONST EFI_MM_MP_PROTOCOL *This,
 IN EFI_AP_PROCEDURE Procedure,
 IN UINTN CpuNumber,
 IN UINTN TimeoutInMicroseconds,
 IN OUT VOID *ProcedureArguments OPTIONAL,
 IN OUT MM_DISPATCH_COMPLETION_TOKEN *Token
);

Parameters
This

The EFI_MM_MP_PROTOCOL instance.

Procedure

A pointer to the procedure to be run on the designated target AP of the system. Type
EFI_AP_PROCEDURE2 is defined below in related definitions.

CpuNumber

The zero-based index of the processor number of the target AP, on which the code
stream is supposed to run. If the number points to the calling processor then it will not
run the supplied code.

TimeoutInMicroseconds

Indicates the time limit in microseconds for this AP to finish execution of
Procedure, either for blocking or non-blocking mode. Zero means infinity. If the
timeout expires before this AP returns from Procedure, then Procedure on the AP
is terminated. If the timeout expires in blocking mode, the call returns
EFI_TIMEOUT. If the timeout expires in non-blocking mode, the timeout determined
can be through CheckOnProcedure or WaitForProcedure.

Note that timeout support is optional. Whether an implementation supports this
feature, can be determined via the Attributes data member.

ProcedureArguments

Allows the caller to pass a list of parameters to the code that is run by the AP. It is an
optional common mailbox between APs and the caller to share information.
66 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
Token

This is parameter is broken into two components:

• Token->Completion is an optional parameter that allows the caller to execute
the procedure in a blocking or non-blocking fashion. If it is NULL the call is
blocking, and the call will not return until the AP has completed the procedure. If
the token is not NULL, the call will return immediately. The caller can check
whether the procedure has completed with CheckOnProcedure or
WaitForProcedure.

• Token->Status The implementation updates the address pointed at by this
variable with the status code returned by Procedure when it completes execution
on the target AP, or with EFI_TIMEOUT if the Procedure fails to complete
within the optional timeout. The implementation will update this variable with
EFI_NOT_READY prior to starting Procedure on the target AP.

Type MM_DISPATCH_COMPLETION_TOKEN is defined below in related definitions

Status Codes Returned

EFI_SUCCESS In the blocking case, this indicates that Procedure has completed
execution on the target AP.
In the non-blocking case this indicates that the procedure has
been successfully scheduled for execution on the target AP.

EFI_INVALID_PARAMETER The input arguments are out of range. Either the target AP is the
caller of the function, or the Procedure or Token is NULL

EFI_NOT_READY If the target AP is busy executing another procedure

EFI_ALREADY_STARTED Token is already in use for another procedure

EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP
has finished.
Version 1.6 May 2017 67

MM Protocols Platform Initialization Specification, Vol. 4
EFI_MM_MP_PROTOCOL.BroadcastProcedure()

Summary
This service allows the caller to invoke a procedure on all running application processors (AP)
except the caller. This function uses an optional token parameter to support blocking and non-
blocking modes. If the token is passed into the call, the function will operate in a non-blocking
fashion and the caller can check for completion with CheckOnProcedure or
WaitForProcedure.

It is not necessary for the implementation to run the procedure on every processor on the platform.
Processors that are powered down in such a way that they cannot respond to interrupts, may be
excluded from the broadcast.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_MM_BROADCAST_PROCEDURE) (
 IN CONST EFI_MM_MP_PROTOCOL *This,
 IN EFI_AP_PROCEDURE2 Procedure,
 IN UINTN TimeoutInMicroseconds,
 IN OUT VOID *ProcedureArguments OPTIONAL,
 IN OUT MM_DISPATCH_COMPLETION_TOKEN *Token,
 IN OUT EFI_STATUS *CPUStatus,
);

Parameters
This

The EFI_MM_MP_PROTOCOL instance.

Procedure

A pointer to the code stream to be run on the APs that have entered MM. Type
EFI_AP_PROCEDURE is defined below in related definitions.

TimeoutInMicroseconds

Indicates the time limit in microseconds for the APs to finish execution of Procedure,
either for blocking or non-blocking mode. Zero means infinity. If the timeout expires
before all APs return from Procedure, then Procedure on the failed APs is
terminated. If the timeout expires in blocking mode, the call returns EFI_TIMEOUT.
If the timeout expires in non-blocking mode, the timeout determined can be through
CheckOnProcedure or WaitForProcedure.

Note that timeout support is optional. Whether an implementation supports this
feature can be determined via the Attributes data member.

ProcedureArguments

Allows the caller to pass a list of parameters to the code that is run by the AP. It is an
optional common mailbox between APs and the caller to share information.

Token
68 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
This is parameter is broken into two components:

• Token->Completion is an optional parameter that allows the caller to execute
the procedure in a blocking or non-blocking fashion. If it is NULL the call is
blocking, and the call will not return until the AP has completed the procedure. If
the token is not NULL, the call will return immediately. The caller can check
whether the procedure has completed with CheckOnProcedure or
WaitForProcedure.

• Token->Status If all APs complete the procedure successfully, then this is
updated with a value of EFI_SUCCESS. Otherwise the value is updated with the
first AP failure observed by the implementation. Individual statuses for each AP
may be obtained through the optional CPUStatus parameter. The implementation
will update token->Status with EFI_NOT_READY prior to starting
Procedure on the target AP.

Type MM_DISPATCH_COMPLETION_TOKEN is defined below in related
definitions

CPUStatus

This optional pointer may be used to get the individual status returned by every AP
that participated in the broadcast. This parameter if used provides the base address of
an array to hold the EFI_STATUS value of each AP in the system. The size of the
array can be ascertained by the GetNumberOfProcessors function.

As mentioned above, the broadcast may not include every processor in the system.
Some implementations may exclude processors that have been powered down in such
a way that they are not responsive to interrupts. Additionally the broadcast excludes
the processor which is making the BroadcastProcedure call. For every excluded
processor, the array entry must contain a value of EFI_NOT_STARTED.

 Status Codes Returned

EFI_SUCCESS In the blocking case, this indicates that Procedure has
completed execution on the APs.
In the non-blocking case this indicates that the procedure has
been successfully scheduled for execution on the APs.

EFI_INVALID_PARAMETER Procedure or Token is NULL

EFI_NOT_READY If a target AP is busy executing another procedure

EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs
have finished.
Version 1.6 May 2017 69

MM Protocols Platform Initialization Specification, Vol. 4
EFI_MM_MP_PROTOCOL.SetStartupProcedure()

Summary
This service allows the caller to set a startup procedure that will be executed when an AP powers up
from a state where core configuration and context is lost. The procedure is execution has the
following properties:

• The procedure executes before the processor is handed over to the operating system.

• All processors execute the same startup procedure.

• The procedure may run in parallel with other procedures invoked through the functions in this
protocol, or with processors that are executing an MM handler or running in the operating
system.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_SET_STARTUP_ PROCEDURE) (
 IN CONST EFI_MM_MP_PROTOCOL *This,
 IN EFI_AP_PROCEDURE Procedure,
 IN OUT VOID *ProcedureArguments OPTIONAL,
);

Parameters
This

The EFI_MM_MP_PROTOCOL instance.

Procedure

A pointer to the code stream to be run on the designated target AP of the system. Type
EFI_AP_PROCEDURE is defined below in Volume 2 with the related definitions of
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs.

If caller may pass a value of NULL to deregister any existing startup procedure.

ProcedureArguments

Allows the caller to pass a list of parameters to the code that is run by the AP. It is an
optional common mailbox between APs and the caller to share information.

Status Codes Returned

EFI_SUCCESS The Procedure has been set successfully.

EFI_INVALID_PARAMETER The Procedure is NULL
70 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_MP_PROTOCOL.CheckOnProcedure()

Summary
When non-blocking execution of a procedure on an AP is invoked with DispatchProcedure,
via the use of a token, this function can be used to check for completion of the procedure on the AP.
The function takes the token that was passed into the DispatchProcedure call. If the procedure
is complete, and therefore it is now possible to run another procedure on the same AP, this function
returns EFI_SUCESS. In this case the status returned by the procedure that executed on the AP is
returned in the token’s Status field. If the procedure has not yet completed, then this function
returns EFI_NOT_READY.

When a non-blocking execution of a procedure is invoked with BroadcastProcedure, via the
use of a token, this function can be used to check for completion of the procedure on all the
broadcast APs. The function takes the token that was passed into the BroadcastProcedure
call. If the procedure is complete on all broadcast APs this function returns EFI_SUCESS. In this
case the Status field in the token passed into the function reflects the overall result of the
invocation, which may be EFI_SUCCESS, if all executions succeeded, or the first observed failure.
If the procedure has not yet completed on the broadcast APs, the function returns
EFI_NOT_READY.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_CHECK_FOR_PRODCEDURE)
 IN CONST EFI_MM_MP_PROTOCOL *This,
 IN OUT MM_DISPATCH_COMPLETION_TOKEN *Token
);

Parameters
This

The EFI_MM_MP_PROTOCOL instance.

Token

This parameter describes the token that was passed into DispatchProcedure or
BroadcastProcedure.

Type MM_DISPATCH_COMPLETION is defined below in related definitions.

Status Codes Returned

EFI_SUCCESS Procedure has completed.

EFI_NOT_READY The Procedure has not completed.

EFI_INVALID_PARAMETER Token or Token->Completion is NULL

EFI_NOT_FOUND Token is not currently in use for a non-blocking call
Version 1.6 May 2017 71

MM Protocols Platform Initialization Specification, Vol. 4
EFI_MM_MP_PROTOCOL.WaitForProcedure()

Summary
When a non-blocking execution of a procedure on an AP is invoked via DispatchProcedure,
this function will block the caller until the remote procedure has completed on the designated AP.
The non-blocking procedure invocation is identified by the Token parameter, which must match the
token that used when DispatchProcedure was called. Upon completion the status returned by
the procedure that executed on the AP is used to update the token’s Status field.

When a non-blocking execution of a procedure on an AP is invoked via BroadcastProcedure
this function will block the caller until the remote procedure has completed on all of the APs that
entered MM. The non-blocking procedure invocation is identified by the Token parameter, which
must match the token that used when BroadcastProcedure was called. Upon completion the
overall status returned by the procedures that executed on the broadcast AP is used to update the
token’s Status field. The overall status may be EFI_SUCCESS, if all executions succeeded, or the
first observed failure.

Prototype
 typedef
 EFI_STATUS
 (EFIAPI *EFI_WAIT_FOR_PROCEDURE)
 IN CONST EFI_MM_MP_PROTOCOL*This,
 IN OUT MM_DISPATCH_COMPLETION_TOKEN *Token,
);

Parameters
This

The EFI_MM_MP_PROTOCOL instance.

Token

This parameter describes token that was passed into DispatchProcedure or
BroadcastProcedure.

Type MM_ DISPATCH_COMPLETION is defined below in related definitions.

Status Codes Returned

EFI_SUCCESS The procedure has completed.

EFI_INVALID_PARAMETER Token or Token->Completion is NULL

EFI_NOT_FOUND Token is not currently in use for a non-blocking call

Related Definitions
EFI_AP_PROCEDURE is defined in Volume 2, with
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs Related Definitions.
72 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
// Attribute flags
#define EFI_MM_MP_TIMEOUT_SUPPORTED 0x1

// Procedure callback
typedef
EFI_STATUS
(EFIAPI *EFI_AP_PROCEDURE2)(
IN VOID *ProcedureArgument
);

// completion token
typedef VOID* MM_COMPLETION;

typedef struct {
 MM_COMPLETION Completion;
 EFI_STATUS Status;
} MM_DISPATCH_COMPLETION_TOKEN;

4.8 MM Configuration Protocol

EFI_MM_CONFIGURATION_PROTOCOL

Summary
Register MM Foundation entry point.

GUID
#define EFI_MM_CONFIGURATION_PROTOCOL_GUID { \
 0xc109319, 0xc149, 0x450e, 0xa3, 0xe3, 0xb9, 0xba, 0xdd, 0x9d, 0xc3,
0xa4 \
}

Prototype
typedef struct _EFI_MM_CONFIGURATION_PROTOCOL {
EFI_MM_REGISTER_MM_FOUNDATION_ENTRY RegisterMmFoundationEntry;
} EFI_MM_CONFIGURATION_PROTOCOL;

Members
RegisterMmFoundationEntry

A function to register the MM Foundation entry point.

Description
This Protocol is an MM Protocol published by a standalone MM CPU driver to allow MM
Foundation register MM Foundation entry point. If a platform chooses to let MM Foundation load
standalone MM CPU driver for MM relocation, this protocol must be produced this standalone MM
CPU driver.
Version 1.6 May 2017 73

MM Protocols Platform Initialization Specification, Vol. 4
The RegisterMmFoundationEntry() function allows the MM Foundation to register the
MM Foundation entry point with the MM entry vector code.
74 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
EFI_MM_CONFIGURATION_PROTOCOL.RegisterMmFoundationEntry(
)

Summary
Register the MM Foundation entry point in MM standalone mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_REGISTER_MM_FOUNDATION_ENTRY) (
 IN CONST EFI_MM_CONFIGURATION_PROTOCOL *This,
 IN EFI_MM_ENTRY_POINT MmEntryPoint
)

Parameters
 This

The EFI_MM_CONFIGURATION_PROTOCOL instance.

MmEntryPoint

MM Foundation entry point.

Description
This function registers the MM Foundation entry point with the processor code. This entry point will
be invoked by the MM Processor entry code as defined in section 2.5.

Status Codes Returned

EFI_SUCCESS The entry-point was successfully registered.

4.9 MM End Of PEI Protocol

EFI_MM_END_OF_PEI_PROTOCOL

Summary
Indicate that the UEFI/PI firmware is about to exit PEI phase.

GUID
#define EFI_MM_END_OF_PEI_PROTOCOL_GUID { \
 0xf33e1bf3, 0x980b, 0x4bfb, 0xa2, 0x9a, 0xb2, 0x9c, 0x86, 0x45, 0x37,
0x32 \
}

Prototype
NULL
Version 1.6 May 2017 75

MM Protocols Platform Initialization Specification, Vol. 4
Description
This protocol is a MM Protocol published by a standalone MM Foundation code if MM Foundation
is loaded in PEI phase. This protocol should be installed immediately after DXE IPL installs
EFI_PEI_END_OF_PEI_PHASE_PPI.

4.10 MM UEFI Ready Protocol

EFI_MM_UEFI_READY_PROTOCOL

Summary
Indicate that the UEFI/PI firmware is in UEFI phase and EFI_SYSTEM_TABLE is ready to use.

GUID
#define EFI_MM_UEFI_READY_PROTOCOL_GUID { \
 0xc63a953b, 0x73b0, 0x482f, 0x8d, 0xa6, 0x76, 0x65, 0x66, 0xf6, 0x5a,
0x82 \
}

Prototype
NULL

Description
This protocol is a MM Protocol published by a standalone MM Foundation code after DXE MM IPL
communicates with MM Foundation to tell MM Foundation UEFI system table location. After
that tradition MM driver can be dispatched.

4.11 MM Ready To Boot Protocol

EFI_MM_READY_TO_BOOT_PROTOCOL

Summary
Indicate that the UEFI/PI firmware is about to load and execute a boot option.

GUID
#define EFI_MM_READY_TO_BOOT_PROTOCOL_GUID { \
 0x6e057ecf, 0xfa99, 0x4f39, 0x95, 0xbc, 0x59, 0xf9, 0x92, 0x1d, 0x17,
0xe4 \
}

Prototype
NULL
76 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
Description
This protocol is a MM Protocol published by a standalone MM Foundation code, when UEFI/PI
firmware is about to load and execute a boot option. There is an associated event GUID that is
signaled for the DXE drivers called EFI_EVENT_GROUP_READY_TO_BOOT.

4.12 MM Exit Boot Services Protocol

EFI_MM_EXIT_BOOT_SERVICES_PROTOCOL

Summary
Indicate that the UEFI/PI firmware is about to enter UEFI runtime phase.

GUID
#define EFI_MM_EXIT_BOOT_SERVICES_PROTOCOL_GUID { \
0x296eb418, 0xc4c8, 0x4e05, 0xab, 0x59, 0x39, 0xe8, 0xaf, 0x56, 0xf0,
0xa \
}

Prototype
NULL

Description
This protocol is a MM Protocol published by a standalone MM Foundation code, when UEFI/PI
firmware is about to enter UEFI runtime phase. There is an associated event GUID that is signaled
for the DXE drivers called EFI_EVENT_GROUP_EXIT_BOOT_SERVICES.

4.13 MM Security Architecture Protocol

EFI_MM_SECURITY_ARCHITECTURE_PROTOCOL

Summary
Abstracts security-specific functions from the MM Foundation for purposes of handling GUIDed
section encapsulations in standalone mode. This protocol must be produced by a MM driver and
may only be consumed by the MM Foundation and any other MM drivers that need to validate the
authentication of files.

GUID
#define EFI_MM_SECURITY_ARCH_PROTOCOL_GUID { \
 0xb48e70a3, 0x476f, 0x486d, 0xb9, 0xc0, 0xc2, 0xd0, 0xf8, 0xb9, 0x44,
0xd9 \
}

Version 1.6 May 2017 77

MM Protocols Platform Initialization Specification, Vol. 4
Prototype
Same as EFI_SECURITY_ARCH_PROTOCOL.

Description
The EFI_MM_SECURITY_ARCH_PROTOCOL is used to abstract platform-specific policy from the
MM Foundation in standalone mode. This includes locking flash upon failure to authenticate,
attestation logging, and other exception operations.

The usage is same as DXE EFI_SECURITY_ARCH_PROTOCOL.

4.14 MM End of DXE Protocol

EFI_MM_END_OF_DXE_PROTOCOL

Summary
Indicates end of the execution phase when all of the components are under the authority of the
platform manufacturer.

GUID
#define EFI_MM_END_OF_DXE_PROTOCOL_GUID \
{ 0x24e70042, 0xd5c5, 0x4260, \
{ 0x8c, 0x39, 0xa, 0xd3, 0xaa, 0x32, 0xe9, 0x3d } }

Prototype
NULL

Description
This protocol is a mandatory protocol published by MM Foundation code. This protocol is an MM
counterpart of the End of DXE Event. This protocol prorogates End of DXE notification into MM
environment. This protocol is installed prior to installation of the MM Ready to Lock Protocol.

4.15 MM Handler State Notification Protocol

EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL

Summary
Register or unregister a MM Handler State notification function

GUID
// {30C8340F-4C30-41D9-BFAE-444ACB2C1F76}
#define EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL_GUID \
 {0x30c8340f, 0x4c30, 0x41d9, {0xbf, 0xae, 0x44, 0x4a, \
 0xcb, 0x2c, 0x1f, 0x76}}
78 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
Prototype
typedef
struct _EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL {
 EFI_MM_HANDLER_STATE_NOTIFIER_REGISTER
HandlerStateNotifierRegister;
 EFI_MM_HANDLER_STATE_NOTIFIER_UNREGISTER
HandlerStateNotifierUnregister;
} EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL;

Members
HandlerStateNotifierRegister

Register notification function

HandlerStateNotifierUnRegister

Un-register previously registered notification function

Description
This protocol is an MM Protocol published by Standalone MM Foundation code if MM Foundation
is loaded in SEC Phase. This protocol must be installed before any MM Standalone or Traditional
drivers are initialized in MMRAM.

The MM Handler State notification protocol provides a set of functions to allow registration and un-
registration of a notification procedure that is invoked whenever a MM Handler is registered or un-
registered through an invocation of MmiHandlerRegister() or MmiHandlerUnRegister()
services in the MMST.

EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL.
HandlerStateNotifierRegister

Summary
Register notification function

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_MM_HANDLER_STATE_NOTIFIER_REGISTER)(

 IN EFI_MM_HANDLER_STATE_NOTIFY_FN Notifier,

 OUT VOID **Registration

);
Version 1.6 May 2017 79

MM Protocols Platform Initialization Specification, Vol. 4
Parameters
Notifier

Pointer to function to invoke whenever MmiHandlerRegister() or
MmiHandlerUnRegister() in the MMST are called. Type
EFI_MM_HANDLER_STATE_NOTIFY_FN is defined in “Related Definitions”
below

Registration

Returns the registration record that has been successfully added

Description
This service registers a function (Notifier) which will be called whenever a MM Handler is
registered or un-registered through invocations of MmiHandlerRegister() or
MmiHandlerUnRegister() in the MMST. On a successful return, Registration contains a
record that can be later used to unregister the Notifier function.

Related Definitions
//***
// EFI_MM_HANDLER_STATE_NOTIFY_FN
//***
typedef
EFI_STATUS
(EFIAPI *EFI_MM_HANDLER_STATE_NOTIFY_FN)(
 IN EFI_MM_HANDLER_ENTRY_POINT Handler,
 IN CONST EFI_GUID *HandlerType OPTIONAL,
 IN EFI_MM_HANDLER_STATE HandlerState
);

Handler

MM Handler function pointer. The Handler parameter is the same as the one passed
to MmiHandlerRegister().Type EFI_MM_HANDLER_ENTRY_POINT is defined
in Volume 4 of the Platform Initialization Specification.

HandlerType

Points to an EFI_GUID which describes the type of invocation that this handler is for
or NULL to indicate a root MMI handler. The HandlerType parameter is the same as
the one passed to MmiHandlerRegister().

HandlerState

Handler state i.e. registered or unregistered. Type EFI_MM_HANDLER_STATE is
defined below. This parameter indicates whether
EFI_MM_HANDLER_STATE_NOTIFY_FN has been invoked in response to
MmiHandlerRegister()or MmiHandlerUnRegister().
80 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
//***
// EFI_MM_HANDLER_STATE
//***
typedef enum {
 HandlerRegistered,
 HandlerUnregistered,
} EFI_MM_HANDLER_STATE;

Status Codes Returned (EFI_MM_HANDLER_STATE_NOTIFY_FN)

EFI_SUCCESS Notification function was successfully invoked

EFI_INVALID_PARAMETER Handler is NULL or HandlerType is unrecognized

Status Codes Returned (HandlerStateNotifierRegister)

EFI_SUCCESS Notification function registered successfully

EFI_INVALID_PARAMETER Registration is NULL

EFI_OUT_OF_RESOURCES Not enough memory resource to finish the request

EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL.
HandlerStateNotifierUnregister

Summary
Un-register notification function.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_HANDLER_STATE_NOTIFIER_UNREGISTER)(
 IN VOID *Registration
);

Parameters
Registration

Registration record returned upon successfully registering the callback function
Version 1.6 May 2017 81

MM Protocols Platform Initialization Specification, Vol. 4
Description
This service un-registers a previously registered Notifier function. The function is identified by
the Registration parameter. Subsequent invocations of MmiHandlerRegister() or
MmiHandlerUnRegister() will not invoke the Notifier function.
82 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Protocols
Status Codes Returned (HandlerStateNotifierUnRegister)

EFI_SUCCESS Notification function un-registered successfully

EFI_INVALID_PARAMETER Registration is NULL

EFI_NOT_FOUND Registration record not found
Version 1.6 May 2017 83

MM Protocols Platform Initialization Specification, Vol. 4
84 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
5 UEFI Protocols

5.1 Introduction
The services described in this Mode chapter describe a series of protocols that locate the MMST,
manipulate the Management RAM (MMRAM) apertures, and generate MMIs. Some of these
protocols provide only boot services while others have both boot services and runtime services.

The following protocols are defined in this chapter:

• EFI_MM_BASE_PROTOCOL

• EFI_MM_ACCESS_PROTOCOL

• EFI_MM_CONTROL_PROTOCOL

• EFI_MM_CONFIGURATION_PROTOCOL

• EFI_MM_COMMUNICATION_PROTOCOL

5.2 EFI MM Base Protocol

EFI_MM_BASE_PROTOCOL

Summary

This protocol is used to locate the MMST during MM Driver Initialization.

GUID
#define EFI_MM_BASE_PROTOCOL_GUID \
 { 0xf4ccbfb7, 0xf6e0, 0x47fd, \
 0x9d, 0xd4, 0x10, 0xa8, 0xf1, 0x50, 0xc1, 0x91 }

Protocol Interface Structure
typedef struct _EFI_MM_BASE_PROTOCOL {
 EFI_MM_INSIDE_OUT InMm;
 EFI_MM_GET_MMST_LOCATION GetMmstLocation;
} EFI_MM_BASE_PROTOCOL;

Parameters
InMm

Detects whether the caller is inside or outside of MMRAM. See the InMm() function
description.

GetMmstLocation

Retrieves the location of the Management Mode System Table (MMST). See the
GetMmstLocation() function description.
Version 1.6 May 2017 85

UEFI Protocols Platform Initialization Specification, Vol. 4
Description
The EFI_MM_BASE_PROTOCOL is provided by the MM IPL driver. It is a required protocol. It will
be utilized by all MM Drivers to locate the MM infrastructure services and determine whether the
driver is being invoked as a DXE or MM Driver.
86 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
EFI_MM_BASE_PROTOCOL.InMm()

Summary
Service to indicate whether the driver is currently executing in the MM Driver Initialization phase.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_INSIDE_OUT) (
 IN CONST EFI_MM_BASE_PROTOCOL *This,
 OUT BOOLEAN *InMmram
)

Parameters
This

The EFI_MM_BASE_PROTOCOL instance.

InMmram

Pointer to a Boolean which, on return, indicates that the driver is currently executing
inside of MMRAM (TRUE) or outside of MMRAM (FALSE).

Description
This service returns whether the caller is being executed in the MM Driver Initialization phase. For
MM Drivers, this will return TRUE in InMmram while inside the driver’s entry point and otherwise
FALSE. For combination MM/DXE drivers, this will return FALSE in the DXE launch. For the MM
launch, it behaves as an MM Driver.

Status Codes Returned

EFI_SUCCESS The call returned successfully.

EFI_INVALID_PARAMETER InMmram was NULL.
Version 1.6 May 2017 87

UEFI Protocols Platform Initialization Specification, Vol. 4
EFI_MM_BASE_PROTOCOL.GetMmstLocation()

Summary
Returns the location of the Management Mode Service Table (MMST).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_GET_MMST_LOCATION) (
 IN CONST EFI_MM_BASE_PROTOCOL *This,
 IN OUT EFI_MM_SYSTEM_TABLE **Mmst
)

Parameters
This

The EFI_MM_BASE_PROTOCOL instance.

Mmst

On return, points to a pointer to the Management Mode Service Table (MMST).

Description
This function returns the location of the Management Mode Service Table (MMST). The use of the
API is such that a driver can discover the location of the MMST in its entry point and then cache it in
some driver global variable so that the MMST can be invoked in subsequent handlers.

Status Codes Returned

EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Mmst was invalid.

EFI_UNSUPPORTED Not in MM.

5.3 MM Access Protocol

EFI_MM_ACCESS_PROTOCOL

Summary
This protocol is used to control the visibility of the MMRAM on the platform.

GUID
#define EFI_MM_ACCESS_PROTOCOL_GUID \
 { 0xc2702b74, 0x800c, 0x4131, \
 0x87, 0x46, 0x8f, 0xb5, 0xb8, 0x9c, 0xe4, 0xac }
88 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
Protocol Interface Structure
typedef struct _EFI_MM_ACCESS_PROTOCOL {
 EFI_MM_OPEN Open;
 EFI_MM_CLOSE Close;
 EFI_MM_LOCK Lock;
 EFI_MM_CAPABILITIES GetCapabilities;
 BOOLEAN LockState;
 BOOLEAN OpenState;
} EFI_MM_ACCESS_PROTOCOL;

Parameters
Open

Opens the MMRAM. See the Open() function description.

Close

Closes the MMRAM. See the Close() function description.

Lock

Locks the MMRAM. See the Lock() function description.

GetCapabilities

Gets information about all MMRAM regions. See the GetCapabilities()
function description.

LockState

Indicates the current state of the MMRAM. Set to TRUE if MMRAM is locked.

OpenState

Indicates the current state of the MMRAM. Set to TRUE if MMRAM is open.

Description
The EFI_MM_ACCESS_PROTOCOL abstracts the location and characteristics of MMRAM. The
platform should report all MMRAM via EFI_MM_ACCESS_PROTOCOL. The principal
functionality found in the memory controller includes the following:

• Exposing the MMRAM to all non-MM agents, or the "open" state

• Hiding the MMRAM to all but the MM agents, or the "closed" state

• Securing or "locking" the MMRAM, such that the settings cannot be changed by either boot
service or runtime agents
Version 1.6 May 2017 89

UEFI Protocols Platform Initialization Specification, Vol. 4
EFI_MM_ACCESS_PROTOCOL.Open()

Summary
Opens the MMRAM area to be accessible by a boot-service driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_OPEN) (
 IN EFI_MM_ACCESS_PROTOCOL *This
);

Parameters
This

The EFI_MM_ACCESS_PROTOCOL instance.

Description
This function “opens” MMRAM so that it is visible while not inside of MM. The function should
return EFI_UNSUPPORTED if the hardware does not support hiding of MMRAM. The function
should return EFI_DEVICE_ERROR if the MMRAM configuration is locked.

Status Codes Returned

EFI_SUCCESS The operation was successful.

EFI_UNSUPPORTED The system does not support opening and closing of MMRAM.

EFI_DEVICE_ERROR MMRAM cannot be opened, perhaps because it is locked.
90 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
EFI_MM_ACCESS_PROTOCOL.Close()

Summary
Inhibits access to the MMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_CLOSE) (
 IN EFI_MM_ACCESS_PROTOCOL *This
);

Parameters
This

The EFI_MM_ACCESS_PROTOCOL instance.

Description
This function “closes” MMRAM so that it is not visible while outside of MM. The function should
return EFI_UNSUPPORTED if the hardware does not support hiding of MMRAM.

Status Codes Returned

EFI_SUCCESS The operation was successful.

EFI_UNSUPPORTED The system does not support opening and closing of MMRAM.

EFI_DEVICE_ERROR MMRAM cannot be closed.

Version 1.6 May 2017 91

UEFI Protocols Platform Initialization Specification, Vol. 4
EFI_MM_ACCESS_PROTOCOL.Lock()

Summary
Inhibits access to the MMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_LOCK) (
 IN EFI_MM_ACCESS_PROTOCOL *This
);

Parameters
This

The EFI_MM_ACCESS_PROTOCOL instance.

Description
This function prohibits access to the MMRAM region. This function is usually implemented such
that it is a write-once operation.

Status Codes Returned

EFI_SUCCESS The device was successfully locked.

EFI_UNSUPPORTED The system does not support locking of MMRAM.

92 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
EFI_MM_ACCESS_PROTOCOL.GetCapabilities()

Summary
Queries the memory controller for the regions that will support MMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_CAPABILITIES) (
 IN CONST EFI_MM_ACCESS_PROTOCOL *This,
 IN OUT UINTN *MmramMapSize,
 IN OUT EFI_MMRAM_DESCRIPTOR *MmramMap
);

Parameters
This

The EFI_MM_ACCESS_PROTOCOL instance.

MmramMapSize

A pointer to the size, in bytes, of the MmramMemoryMap buffer. On input, this value
is the size of the buffer that is allocated by the caller. On output, it is the size of the
buffer that was returned by the firmware if the buffer was large enough, or, if the
buffer was too small, the size of the buffer that is needed to contain the map.

MmramMap

A pointer to the buffer in which firmware places the current memory map. The map is
an array of EFI_MMRAM_DESCRIPTORs. Type EFI_MMRAM_DESCRIPTOR is
defined in “Related Definitions” below.

Description
This function describes the MMRAM regions.

This data structure forms the contract between the MM Access and MM IPL drivers. There is an
ambiguity when any MMRAM region is remapped. For example, on some chipsets, some MMRAM
regions can be initialized at one physical address but is later accessed at another processor address.
There is currently no way for the MM IPL driver to know that it must use two different addresses
depending on what it is trying to do. As a result, initial configuration and loading can use the
physical address PhysicalStart while MMRAM is open. However, once the region has been
closed and needs to be accessed by agents in MM, the CpuStart address must be used.

This protocol publishes the available memory that the chipset can shroud for the use of installing
code.

These regions serve the dual purpose of describing which regions have been open, closed, or locked.
In addition, these regions may include overlapping memory ranges, depending on the chipset
implementation. The latter might include a chipset that supports T-SEG, where memory near the top
of the physical DRAM can be allocated for MMRAM too.
Version 1.6 May 2017 93

UEFI Protocols Platform Initialization Specification, Vol. 4
The key thing to note is that the regions that are described by the protocol are a subset of the
capabilities of the hardware.

Related Definitions
//***
//EFI_MMRAM_STATE
//***
//
// Hardware state
//
#define EFI_MMRAM_OPEN 0x00000001
#define EFI_MMRAM_CLOSED 0x00000002
#define EFI_MMRAM_LOCKED 0x00000004
//
// Capability
//
#define EFI_CACHEABLE 0x00000008
//
// Logical usage
//
#define EFI_ALLOCATED 0x00000010
//
// Directive prior to usage
//
#define EFI_NEEDS_TESTING 0x00000020
#define EFI_NEEDS_ECC_INITIALIZATION 0x00000040

//***
// EFI_MMRAM_DESCRIPTOR
//***
typedef struct _EFI_MMRAM_DESCRIPTOR {
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 EFI_PHYSICAL_ADDRESS CpuStart;
 UINT64 PhysicalSize;
 UINT64 RegionState;
} EFI_MMRAM_DESCRIPTOR;

PhysicalStart

Designates the physical address of the MMRAM in memory. This view of memory is
the same as seen by I/O-based agents, for example, but it may not be the address seen
by the processors. Type EFI_PHYSICAL_ADDRESS is defined in
AllocatePages() in the UEFI Specification.
94 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
CpuStart

Designates the address of the MMRAM, as seen by software executing on the
processors. This address may or may not match PhysicalStart.

PhysicalSize

Describes the number of bytes in the MMRAM region.

RegionState

Describes the accessibility attributes of the MMRAM. These attributes include the
hardware state (e.g., Open/Closed/Locked), capability (e.g., cacheable), logical
allocation (e.g., allocated), and pre-use initialization (e.g., needs testing/ECC
initialization).

Status Codes Returned

EFI_SUCCESS The chipset supported the given resource.

EFI_BUFFER_TOO_SMALL The MmramMap parameter was too small. The current buffer size

needed to hold the memory map is returned in MmramMapSize.

5.4 MM Control Protocol

EFI_MM_CONTROL_PROTOCOL

Summary

This protocol is used initiate synchronous MMIs.

GUID
#define EFI_MM_CONTROL_PROTOCOL_GUID \
 { 0x843dc720, 0xab1e, 0x42cb, \
 0x93, 0x57, 0x8a, 0x0, 0x78, 0xf3, 0x56, 0x1b }

Protocol Interface Structure
typedef struct _EFI_MM_CONTROL_PROTOCOL {
 EFI_MM_ACTIVATE Trigger;
 EFI_MM_DEACTIVATE Clear;
 EFI_MM_PERIOD MinimumTriggerPeriod;
} EFI_MM_CONTROL_PROTOCOL;

Parameters
Trigger

Initiates the MMI. See the Trigger() function description.

Clear

Quiesces the MMI source. See the Clear() function description.
Version 1.6 May 2017 95

UEFI Protocols Platform Initialization Specification, Vol. 4
MinimumTriggerPeriod

Minimum interval at which the platform can set the period. A maximum is not
specified. That is, the MM infrastructure code can emulate a maximum interval that is
greater than the hardware capabilities by using software emulation in the MM
infrastructure code. Type EFI_MM_PERIOD is defined in "Related Definitions"
below.

Description

The EFI_MM_CONTROL_PROTOCOL is produced by a runtime driver. It provides an abstraction of
the platform hardware that generates an MMI. There are often I/O ports that, when accessed, will
generate the MMI. Also, the hardware optionally supports the periodic generation of these signals.

Related Definitions
//**
// EFI_MM_PERIOD
//**
typedef UINTN EFI_MM_PERIOD;

Note: The period is in increments of 10 ns.
96 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
EFI_MM_CONTROL_PROTOCOL.Trigger()

Summary
Invokes MMI activation from either the preboot or runtime environment.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_ACTIVATE) (
 IN CONST EFI_MM_CONTROL_PROTOCOL *This,
 IN OUT UINT8 *CommandPort OPTIONAL,
 IN OUT UINT8 *DataPort OPTIONAL,
 IN BOOLEAN Periodic OPTIONAL,
 IN UINTN ActivationInterval OPTIONAL
);

Parameters
This

The EFI_MM_CONTROL_PROTOCOL instance.

CommandPort

The value written to the command port; this value corresponds to the
SwMmiInputValue in the RegisterContext parameter for the Register()
function in the EFI_MM_SW_DISPATCH_PROTOCOL and in the Context
parameter in the call to the DispatchFunction, see section 7.2.

DataPort

The value written to the data port; this value corresponds to the DataPort member
in the CommBuffer parameter in the call to the DispatchFunction, see
section 7.2.

Periodic

Optional mechanism to engender a periodic stream.

ActivationInterval

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description
This function generates an MMI.
Version 1.6 May 2017 97

UEFI Protocols Platform Initialization Specification, Vol. 4
Status Codes Returned

EFI_SUCCESS The MMI has been engendered.

EFI_DEVICE_ERROR The timing is unsupported.

EFI_INVALID_PARAMETER The activation period is unsupported.

EFI_INVALID_PARAMETER The last periodic activation has not been cleared.

EFI_NOT_STARTED The MM base service has not been initialized.
98 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
EFI_MM_CONTROL_PROTOCOL.Clear()

Summary

Clears any system state that was created in response to the Trigger() call.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_DEACTIVATE) (
 IN CONST EFI_MM_CONTROL_PROTOCOL *This,
 IN BOOLEAN Periodic OPTIONAL
);

Parameters
This

The EFI_MM_CONTROL_PROTOCOL instance.

Periodic

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description

This function acknowledges and causes the deassertion of the MMI activation source.that was
initiated by a preceding Trigger invocation.

The results of this function update the software state of the communication infrastructure in the
runtime code, but it is ignorable from the perspective of the hardware state, though. This distinction
stems from the fact that many implementations clear the hardware acknowledge in the MM-resident
infrastructure itself and may also have other actions using that same activation hardware generated
by MM Drivers. This clear-in MM distinction also avoids having the possible pathology of an
asynchronous MMI being received in the time window between the RSM instruction (or other means
of exiting MM) that followed the flows engendered by the Trigger and the subsequent non-MM
resident runtime driver code invocation of the Clear.

Status Codes Returned

EFI_SUCCESS The MMI has been engendered.

EFI_DEVICE_ERROR The source could not be cleared.

EFI_INVALID_PARAMETER The service did not support the Periodic input argument.
Version 1.6 May 2017 99

UEFI Protocols Platform Initialization Specification, Vol. 4
5.5 MM Configuration Protocol

EFI_MM_CONFIGURATION_PROTOCOL

Summary
Reports the portions of MMRAM regions which cannot be used for the MMRAM heap.

GUID
#define EFI_MM_CONFIGURATION_PROTOCOL_GUID \
 { 0x26eeb3de, 0xb689, 0x492e, \
 0x80, 0xf0, 0xbe, 0x8b, 0xd7, 0xda, 0x4b, 0xa7 }

Prototype
typedef struct _EFI_MM_CONFIGURATION_PROTOCOL {
 EFI_MM_RESERVED_MMRAM_REGION *MmramReservedRegions;
 EFI_MM_REGISTER_MM_ENTRY RegisterMmEntry;
} EFI_MM_CONFIGURATION_PROTOCOL;

Members
MmramReservedRegions

A pointer to an array MMRAM ranges used by the initial MM Entry Point code.

RegisterMmEntry

A function to register the MM Foundation entry point.

Description
This protocol is a mandatory protocol published by a DXE CPU driver to indicate which areas
within MMRAM are reserved for use by the CPU for any purpose, such as stack, save state or MM
Entry Point.

The MmramReservedRegions points to an array of one or more
EFI_MM_RESERVED_MMRAM_REGION structures, with the last structure having the
MmramReservedSize set to 0. An empty array would contain only the last structure.

The RegisterMmEntry() function allows the MM IPL DXE driver to register the MM
Foundation entry point with the MM entry vector code.

Related Definitions
typedef struct _EFI_MM_RESERVED_MMRAM_REGION {
 EFI_PHYSICAL_ADDRESS MmramReservedStart;
 UINT64 MmramReservedSize;
} EFI_MM_RESERVED_MMRAM_REGION;

MmramReservedStart

Starting address of the reserved MMRAM area, as it appears while MMRAM is open.
Ignored if MmramReservedSize is 0.
100 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
MmramReservedSize

Number of bytes occupied by the reserved MMRAM area. A size of zero indicates the
last MMRAM area.
Version 1.6 May 2017 101

UEFI Protocols Platform Initialization Specification, Vol. 4
EFI_MM_CONFIGURATION_PROTOCOL.RegisterMmEntry()

Summary
Register the MM Foundation entry point.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_REGISTER_MM_ENTRY) (
 IN CONST EFI_MM_CONFIGURATION_PROTOCOL *This,
 IN EFI_MM_ENTRY_POINT MmEntryPoint
)

Parameters
This

The EFI_MM_CONFIGURATION_PROTOCOL instance.

MmEntryPoint

MM Foundation entry point.

Description

This function registers the MM Foundation entry point with the processor code. This entry point will
be invoked by the MM Processor entry code as defined in section 2.5.

Status Codes Returned

EFI_SUCCESS The entry-point was successfully registered.

5.6 DXE MM Ready to Lock Protocol

EFI_DXE_MM_READY_TO_LOCK_PROTOCOL

Summary
Indicates that MM is about to be locked.

GUID
#define EFI_DXE_MM_READY_TO_LOCK_PROTOCOL_GUID \
{ 0x60ff8964, 0xe906, 0x41d0, \
0xaf, 0xed, 0xf2, 0x41, 0xe9, 0x74, 0xe0, 0x8e}

Prototype
NULL
102 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
Description
This protocol is a mandatory protocol published by PI platform code.

This protocol in tandem with the End of DXE Event facilitates transition of the platform from the
environment where all of the components are under the authority of the platform manufacturer to the
environment where third party extensible modules such as UEFI drivers and UEFI applications are
executed.

The protocol is published immediately after signaling of the End of DXE Event.

PI modules that need to lock or protect their resources in anticipation of the invocation of 3rd party
extensible modules should register for notification on installation of this protocol and effect the
appropriate protections in their notification handlers. For example, PI platform code may choose to
use notification handler to lock MM by invoking EFI_MM_ACCESS_PROTOCOL.Lock()
function.

5.7 MM Communication Protocol

EFI_MM_COMMUNICATION_PROTOCOL

Summary

This protocol provides a means of communicating between drivers outside of MM and MMI
handlers inside of MM.

GUID
#define EFI_MM_COMMUNICATION_PROTOCOL_GUID \
 { 0xc68ed8e2, 0x9dc6, 0x4cbd, 0x9d, 0x94, 0xdb, 0x65, \
 0xac, 0xc5, 0xc3, 0x32 }

Prototype
typedef struct _EFI_MM_COMMUNICATION_PROTOCOL {
 EFI_MM_COMMUNICATE Communicate;
} EFI_MM_COMMUNICATION_PROTOCOL;

Members
Communicate

Sends/receives a message for a registered handler. See the Communicate()
function description.

Description

This protocol provides runtime services for communicating between DXE drivers and a registered
MMI handler.
Version 1.6 May 2017 103

UEFI Protocols Platform Initialization Specification, Vol. 4
EFI_MM_COMMUNICATION_PROTOCOL.Communicate()

Summary
Communicates with a registered handler.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_COMMUNICATE) (
 IN CONST EFI_MM_COMMUNICATION_PROTOCOL *This,
 IN OUT VOID *CommBuffer,
 IN OUT UINTN *CommSize OPTIONAL
);

Parameters
This

The EFI_MM_COMMUNICATION_PROTOCOL instance.

CommBuffer

Pointer to the buffer to convey into MMRAM.

CommSize

The size of the data buffer being passed in. On exit, the size of data being returned.
Zero if the handler does not wish to reply with any data. This parameter is optional
and may be NULL.

Description
This function provides a service to send and receive messages from a registered UEFI service. The
EFI_MM_COMMUNICATION_PROTOCOL driver is responsible for doing any of the copies such
that the data lives in boot-service-accessible RAM.

A given implementation of the EFI_MM_COMMUNICATION_PROTOCOL may choose to use the
EFI_MM_CONTROL_PROTOCOL for effecting the mode transition, or it may use some other
method.

The agent invoking the communication interface at runtime may be virtually mapped. The MM
infrastructure code and handlers, on the other hand, execute in physical mode. As a result, the non-
MM agent, which may be executing in the virtual-mode OS context (as a result of an OS invocation
of the UEFI SetVirtualAddressMap() service), should use a contiguous memory buffer with
a physical address before invoking this service. If the virtual address of the buffer is used, the MM
Driver may not know how to do the appropriate virtual-to-physical conversion.

To avoid confusion in interpreting frames, the CommunicateBuffer parameter should always
begin with EFI_MM_COMMUNICATE_HEADER, which is defined in “Related Definitions” below.
The header data is mandatory for messages sent into the MM agent.

If the CommSize parameter is omitted the MessageLength field in the
EFI_MM_COMMUNICATE_HEADER, in conjunction with the size of the header itself, can be used
to ascertain the total size of the communication payload.
104 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 UEFI Protocols
If the MessageLength is zero, or too large for the MM implementation to manage, the MM
implementation must update the MessageLength to reflect the size of the Data buffer that it can
tolerate.

 If the CommSize parameter is passed into the call, but the integer it points to, has a value of 0, then
this must be updated to reflect the maximum size of the CommBuffer that the implementation can
tolerate.

Once inside of MM, the MM infrastructure will call all registered handlers with the same
HandlerType as the GUID specified by HeaderGuid and the CommBuffer pointing to Data.

This function is not reentrant.

The standard header is used at the beginning of the EFI_MM_INITIALIATION_HEADER
structure during MM initialization. See "Related Definitions" below for more information.

Related Definitions
typedef struct {
 EFI_GUID HeaderGuid;
 UINTN MessageLength;
 UINT8 Data[ANYSIZE_ARRAY];
} EFI_MM_COMMUNICATE_HEADER;

HeaderGuid

Allows for disambiguation of the message format. Type EFI_GUID is defined in
InstallProtocolInterface() in the UEFI Specification.

MessageLength

Describes the size of Data (in bytes) and does not include the size of the header..

Data

Designates an array of bytes that is MessageLength in size.

typedef struct {
 EFI_MM_COMMUNICATE_HEADER Header;
 EFI_SYSTEM_TABLE *SystemTable;
} EFI_MM_INITIALIZATION_HEADER;

#define EFI_MM_INITIALIZATION_GUID \
 0x99be0d8f, 0x3548, 0x48aa, \
 {0xb5, 0x77, 0xfc, 0xfb, 0xa5, 0x6a, 0x67, 0xf7}}

Header

A standard MM communication buffer header, where HeaderGuid is set to
EFI_MM_INITIALIZATION_GUID.

SystemTable
Version 1.6 May 2017 105

UEFI Protocols Platform Initialization Specification, Vol. 4
A pointer to the UEFI System Table. As with DXE driver initialization, there is no
guarantee that the entries in this structure which rely on architectural protocols are
implemented at the time when this event is generated.

Status Codes Returned

EFI_SUCCESS The message was successfully posted

EFI_INVALID_PARAMETER The buffer was NULL.

EFI_BAD_BUFFER_SIZE The buffer is too large for the MM implementation. If this error is

returned, the MessageLength field in the CommBuffer

header or the integer pointed by CommSize, are updated to reflect

the maximum payload size the implementation can accommodate.
See the function description above for more details.

EFI_ACCESS_DENIED The CommunicateBuffer parameter or CommSize

parameter, if not omitted, are in address range that cannot be
accessed by the MM environment.
106 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 PI PEI PPIs
6 PI PEI PPIs

6.1 MM Access PPI

EFI_PEI_MM_ACCESS_PPI

Summary
This PPI is used to control the visibility of the MMRAM on the platform.

GUID
#define EFI_PEI_MM_ACCESS_PROTOCOL_GUID { \
 0x268f33a9, 0xcccd, 0x48be, { 0x88, 0x17, 0x86, 0x5, 0x3a,
0xc3, 0x2e, 0xd6 } \
 }

PPI Structure
typedef struct _EFI_PEI_MM_ACCESS_PPI {
 EFI_PEI_MM_OPEN Open;
 EFI_PEI_MM_CLOSE Close;
 EFI_PEI_MM_LOCK Lock;
 EFI_PEI_MM_CAPABILITIES GetCapabilities;
 BOOLEAN LockState;
 BOOLEAN OpenState;
} EFI_PEI_MM_ACCESS_PPI;

Parameters
 Open

Opens the MMRAM. See the Open() function description.

 Close

Closes th MMRAM. See the Close() function description.

 Lock

Locks the MMRAM. See the Lock() function description.

 GetCapabilities

Gets information about all MMRAM regions. See the GetCapabilities()
function description.

 LockState

Indicates the current state of the MMRAM. Set to TRUE if MMRAM is locked.

 OpenState

Indicates the current state of the MMRAM. Set to TRUE if MMRAM is open.
Version 1.6 May 2017 107

PI PEI PPIs Platform Initialization Specification, Vol. 4
Description
The EFI_PEI_MM_ACCESS_PPI abstracts the location and characteristics of MMRAM. The
principal functionality found in the memory controller includes the following:

• Exposing the MMRAM to all non-MM agents, or the "open" state

• Shrouding the MMRAM to all but the MM agents, or the "closed" state

• Preserving the system integrity, or "locking" the MMRAM, such that the settings cannot be
perturbed by either boot service or runtime agents
108 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 PI PEI PPIs
EFI_PEI_MM_ACCESS_PPI.Open()

Summary
Opens the MMRAM area to be accessible by a PEIM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_MM_OPEN) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN PEI_MM_ACCESS_PPI *This,
 IN UINTN DescriptorIndex
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

The EFI_PEI_MM_ACCESS_PPI instance.

DescriptorIndex

The region of MMRAM to Open.

Description
This function “opens” MMRAM so that it is visible while not inside of MM. The function should
return EFI_UNSUPPORTED if the hardware does not support hiding of MMRAM. The function
should return EFI_DEVICE_ERROR if the MMRAM configuration is locked.

Status Codes Returned

EFI_SUCCESS The operation was successful.

EFI_UNSUPPORTED The system does not support opening and closing of
MMRAM.

EFI_DEVICE_ERROR MMRAM cannot be opened, perhaps because it is locked.
Version 1.6 May 2017 109

PI PEI PPIs Platform Initialization Specification, Vol. 4
EFI_PEI_MM_ACCESS_PPI.Close()

Summary
Inhibits access to the MMRAM.

Prototype
typedef
EFI_STATUS
 (EFIAPI EFI_PEI_MM_CLOSE)(
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_MM_ACCESS_PPI *This
 IN UINTN DescriptorIndex
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

The EFI_PEI_MM_ACCESS_PPI instance.

DescriptorIndex

The region of MMRAM to Open.

Description
This function “closes” MMRAM so that it is not visible while outside of MM. The function should
return EFI_UNSUPPORTED if the hardware does not support hiding of MMRAM.

Status Codes Returned

EFI_SUCCESS The operation was successful.

EFI_UNSUPPORTED The system does not support opening and closing of
MMRAM.

EFI_DEVICE_ERROR MMRAM cannot be closed.
110 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 PI PEI PPIs
EFI_PEI_MM_ACCESS_PPI.Lock()

Summary
This function prohibits access to the MMRAM region. This function is usually implemented such
that it is a write-once operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_MM_LOCK) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_MM_ACCESS_PPI *This
 IN UINTN DescriptorIndex
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

The EFI_PEI_MM_ACCESS_PPI instance.

DescriptorIndex

The region of MMRAM to Lock.

Description
Inhibits access to the MMRAM.

Status Codes Returned

EFI_SUCCESS The device was successfully locked.

EFI_UNSUPPORTED The system does not support locking of MMRAM.
Version 1.6 May 2017 111

PI PEI PPIs Platform Initialization Specification, Vol. 4
EFI_PEI_MM_ACCESS_PPI.GetCapabilities()

Summary
Queries the memory controller for the regions that will support MMRAM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_MM_CAPABILITIES) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_MM_ACCESS_PPI *This,
 IN OUT UINTN *MmramMapSize,
 IN OUT EFI_MMRAM_DESCRIPTOR *MmramMap
);

Parameters
 PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

The EFI_PEI_MM_ACCESS_PPI instance.

 MmramMapSize

A pointer to the size, in bytes, of the MmramMemoryMap buffer. On input, this value is
the size of the buffer that is allocated by the caller. On output, it is the size of the
buffer that was returned by the firmware if the buffer was large enough, or, if the
buffer was too small, the size of the buffer that is needed to contain the map.

 MmramMap

A pointer to the buffer in which firmware places the current memory map. The map is
an array of EFI_MMRAM_DESCRIPTORs

Description
This function describes the MMRAM regions.

This data structure forms the contract between the MM_ACCESS and MM_IPL drivers. There is an
ambiguity when any MMRAM region is remapped. For example, on some chipsets, some MMRAM
regions can be initialized at one physical address but is later accessed at another processor address.
There is currently no way for the MM IPL driver to know that it must use two different addresses
depending on what it is trying to do. As a result, initial configuration and loading can use the
physical address PhysicalStart while MMRAM is open. However, once the region has been
closed and needs to be accessed by agents in MM, the CpuStart address must be used.

This PPI publishes the available memory that the chipset can shroud for the use of installing code.

These regions serve the dual purpose of describing which regions have been open, closed, or locked.
In addition, these regions may include overlapping memory ranges, depending on the chipset
implementation. The latter might include a chipset that supports T-SEG, where memory near the top
of the physical DRAM can be allocated for MMRAM too.
112 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 PI PEI PPIs
The key thing to note is that the regions that are described by the PPI are a subset of the capabilities
of the hardware.

Status Codes Returned

EFI_SUCCESS The chipset supported the given resource.

EFI_BUFFER_TOO_SMALL The MmramMap parameter was too small. The current
buffer size needed to hold the memory map is returned in

MmramMapSize.

6.2 MM Control PPI

EFI_PEI_MM_CONTROL_PPI

Summary
This PPI is used initiate synchronous MMI activations. This PPI could be published by a processor
driver to abstract the MMI IPI or a driver which abstracts the ASIC that is supporting the APM port.

Because of the possibility of performing MMI IPI transactions, the ability to generate this event
from a platform chipset agent is an optional capability for both IA-32 and x64-based systems.

GUID
#define EFI_PEI_MM_CONTROL_PPI_GUID { \
 0x61c68702, 0x4d7e, 0x4f43, { 0x8d, 0xef, 0xa7, 0x43, 0x5, 0xce,
0x74, 0xc5 } \
}

PPI Structure
typedef struct _EFI_PEI_MM_CONTROL_PPI {
 EFI_PEI_MM_ACTIVATE Trigger;
 EFI_PEI_MM_DEACTIVATE Clear;
} EFI_PEI_MM_CONTROL_PPI;

Parameters
Trigger

Initiates the MMI activation. See the Trigger() function description.

Clear

Quiesces the MMI activation. See the Clear() function description.

Description
The EFI_PEI_MM_CONTROL_PPI is produced by a PEIM. It provides an abstraction of the
platform hardware that generates an MMI. There are often I/O ports that, when accessed, will
generate the MMI. Also, the hardware optionally supports the periodic generation of these signals.
Version 1.6 May 2017 113

PI PEI PPIs Platform Initialization Specification, Vol. 4
EFI_PEI_MM_CONTROL_PPI.Trigger()

Summary
Invokes PPI activation from the PI PEI environment.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_MM_ACTIVATE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_MM_CONTROL_PPI *This,
 IN OUT INT8 *ArgumentBuffer OPTIONAL,
 IN OUT UINTN *ArgumentBufferSize OPTIONAL,
 IN BOOLEAN Periodic OPTIONAL,
 IN UINTN ActivationInterval OPTIONAL
);

Parameters
 PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

The EFI_PEI_MM_CONTROL_PPI instance.

 ArgumentBuffer

The value passed to the MMI handler. This value corresponds to the
SwMmiInputValue in the RegisterContext parameter for the Register()
function in the EFI_MM_SW_DISPATCH_PROTOCOL and in the Context parameter
in the call to the DispatchFunction, see section 6.2.

ArgumentBufferSize

The size of the data passed in ArgumentBuffer or NULL if ArgumentBuffer is
NULL.

 Periodic

Optional mechanism to engender a periodic stream.

 ActivationInterval

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description
This function generates an MMI.

Status Codes Returned

EFI_SUCCESS The MMI has been engendered.
114 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 PI PEI PPIs
EFI_DEVICE_ERROR The timing is unsupported.

EFI_INVALID_PARAMETER The activation period is unsupported.

EFI_INVALID_PARAMETER The last periodic activation has not been cleared.

EFI_NOT_STARTED The MM base service has not been initialized.
Version 1.6 May 2017 115

PI PEI PPIs Platform Initialization Specification, Vol. 4
EFI_PEI_MM_CONTROL_PPI.Clear()

Summary
Clears any system state that was created in response to the Trigger() call.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_MM_DEACTIVATE) (
IN EFI_PEI_SERVICES **PeiServices,
IN CONST EFI_PEI_MM_CONTROL_PPI *This,
 IN BOOLEAN Periodic OPTIONAL
);

Parameters
 This

The EFI_PEI_MM_CONTROL_PPI instance.

 Periodic

Optional parameter to repeat at this period one time or, if the Periodic Boolean is
set, periodically.

Description
This function acknowledges and causes the deassertion of the MMI activation source. that was
initiated by a preceding Trigger invocation. The results of this function update the software state
of the communication infrastructure in the PEIM code, but it is ignorable from the perspective of the
hardware state, though. This distinction stems from the fact that many implementations clear the
hardware acknowledge in the MM-resident infrastructure itself and may also have other actions
using that same activation hardware generated by MM drivers. This clear-in-MM distinction also
avoids having the possible pathology of an asynchronous MMI being received in the time window
between the RSM instruction (or other means of exiting MM) followed the flows engendered by the
Trigger and the subsequent non-MM resident PEIM code invocation of the Clear.
116 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 PI PEI PPIs
Status Codes Returned

EFI_SUCCESS The MMI has been engendered.

EFI_DEVICE_ERROR The source could not be cleared.

EFI_INVALID_PARAMETER The service did not support the Periodic input
argument.

6.3 MM Configuration PPI

EFI_PEI_MM_CONFIGURATION_PPI

Summary
Reports the portions of MMRAM regions which cannot be used for the MMRAM heap.

GUID
#define EFI_PEI_MM_CONFIGURATION_PPI_GUID { \
 0xc109319, 0xc149, 0x450e, 0xa3, 0xe3, 0xb9, 0xba, 0xdd, 0x9d, 0xc3,
0xa4 \
}

PPI Structure
typedef struct _EFI_PEI_MM_CONFIGURATION_PPI {
 EFI_MM_RESERVED_MMRAM_REGION *MmramReservedRegions;
 EFI_PEI_MM_REGISTER_MM_ENTRY RegisterMmEntry;
} EFI_PEI_MM_CONFIGURATION_PPI;

Members
 MmramReservedRegions

A pointer to an array MMRAM ranges used by the initial MM entry code.

 RegisterMmEntry

A function to register the MM Foundation entry point.

Description
This PPI is a PPI published by a CPU PEIM to indicate which areas within MMRAM are reserved
for use by the CPU for any purpose, such as stack, save state or MM entry point. If a platform
chooses to let a CPU PEIM do MMRAM relocation, this PPI must be produced by this CPU PEIM.

The MmramReservedRegions points to an array of one or more
EFI_MM_RESERVED_MMRAM_REGION structures, with the last structure having the
MmramReservedSize set to 0. An empty array would contain only the last structure.

The RegisterMmEntry() function allows the MM IPL PEIM to register the MM Foundation
entry point with the MM entry vector code.
Version 1.6 May 2017 117

PI PEI PPIs Platform Initialization Specification, Vol. 4
EFI_PEI_MM_CONFIGURATION_PPI.RegisterMmEntry()

Summary
Register the MM Foundation entry point.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_MM_REGISTER_MM_ENTRY) (
 IN CONST EFI_PEI_MM_CONFIGURATION_PPI *This,
 IN EFI_MM_ENTRY_POINT MmEntryPoint
)

Parameters
 This

The EFI_PEI_MM_CONFIGURATION_PPI instance.

MmEntryPoint

MM Foundation entry point.

Description
This function registers the MM Foundation entry point with the processor code. This entry point will
be invoked by the MM Processor entry code as defined in section 2.5.

Status Codes Returned

EFI_SUCCESS The entry-point was successfully registered.

6.4 MM Communication PPI

EFI_PEI_MM_COMMUNICATION_PPI

Summary
This PPI provides a means of communicating between drivers outside of MM and MMI handlers
inside of MM in PEI phase.

GUID
#define EFI_PEI_MM_COMMUNICATION_PPI_GUID { \
 0xae933e1c, 0xcc47, 0x4e38, \
 { 0x8f, 0xe, 0xe2, 0xf6, 0x1d, 0x26, 0x5, 0xdf } \
}

PPI Structure
typedef struct _EFI_PEI_MM_COMMUNICATION_PPI {
118 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 PI PEI PPIs
 EFI_PEI_MM_COMMUNICATE Communicate;
} EFI_PEI_MM_COMMUNICATION_PPI;

Members
Communicate

Sends/receives a message for a registered handler. See the Communicate()
function description.

Description
This PPI provides services for communicating between PEIM and a registered MMI handler.
Version 1.6 May 2017 119

PI PEI PPIs Platform Initialization Specification, Vol. 4
EFI_PEI_MM_COMMUNICATION_PPI.Communicate()

Summary
Communicates with a registered handler.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_MM_COMMUNICATE) (
 IN CONST EFI_PEI_MM_COMMUNICATION_PPI *This,
 IN OUT VOID *CommBuffer,
 IN OUT UINTN *CommSize
);

Parameters
 This

The EFI_PEI_MM_COMMUNICATION_PPI instance.

CommBuffer

Pointer to the buffer to convey into MMRAM.

CommSize

The size of the data buffer being passed in. On exit, the size of data being returned.
Zero if the handler does not wish to reply with any data.

Description
This function provides a service to send and receive messages from a registered PEI service. The
EFI_PEI_MM_COMMUNICATION_PPI driver is responsible for doing any of the copies such that
the data lives in PEI-service-accessible RAM.

A given implementation of the EFI_PEI_MM_COMMUNICATION_PPI may choose to use the
EFI_MM_CONTROL_PPI for effecting the mode transition, or it may use some other method.

The agent invoking the communication interface must be physical/virtually 1:1 mapped.

To avoid confusion in interpreting frames, the CommBuffer parameter should always begin with
EFI_MM_COMMUNICATE_HEADER. The header data is mandatory for messages sent into the MM
agent.

Once inside of MM, the MM infrastructure will call all registered handlers with the same
HandlerType as the GUID specified by HeaderGuid and the CommBuffer pointing to Data.

This function is not reentrant.

Status Codes Returned

EFI_SUCCESS The message was successfully posted

EFI_INVALID_PARAMETER The buffer was NULL
120 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
7 MM Child Dispatch Protocols

7.1 Introduction

The services described in this chapter describe a series of protocols that abstract installation of
handlers for a chipset-specific MM design. These services are all scoped to be usable only from
within MMRAM.

The following protocols are defined in this chapter:

• EFI_MM_SW_DISPATCH_PROTOCOL

• EFI_MM_SX_DISPATCH_PROTOCOL

• EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL

• EFI_MM_USB_DISPATCH_PROTOCOL

• EFI_MM_GPI_DISPATCH_PROTOCOL

• EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL

• EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL

• EFI_MM_IO_TRAP_DISPATCH_PROTOCOL

MM Drivers which create instances of these protocols should install an instance of the
EFI_DEVICE_PATH_PROTOCOL on the same handle. This allows other MM Drivers to
distinguish between multiple instances of the same child dispatch protocol

7.2 MM Software Dispatch Protocol

EFI_MM_SW_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for a given MMI source generator.

GUID
#define EFI_MM_SW_DISPATCH_PROTOCOL_GUID \
{ 0x18a3c6dc, 0x5eea, 0x48c8, \
0xa1, 0xc1, 0xb5, 0x33, 0x89, 0xf9, 0x89, 0x99}

Protocol Interface Structure
typedef struct _EFI_MM_SW_DISPATCH_PROTOCOL {
 EFI_MM_SW_REGISTER Register;
 EFI_MM_SW_UNREGISTER UnRegister;
 UINTN MaximumSwiValue;
} EFI_MM_SW_DISPATCH_PROTOCOL;
Version 1.6 May 2017 121

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

MaximumSwiValue

A read-only field that describes the maximum value that can be used in the
EFI_MM_SW_DISPATCH_PROTOCOL.Register() service.

Description
The EFI_MM_SW_DISPATCH_PROTOCOL provides the ability to install child handlers for the
given software. These handlers will respond to software-generated MMI,s, and the maximum
software-generated MMI value in the EFI_MM_SW_REGISTER_CONTEXT is denoted by
MaximumSwiValue.
122 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
EFI_MM_SW_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given MMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_SW_REGISTER) (
 IN CONST EFI_MM_SW_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN EFI_MM_SW_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_SW_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when the specified software MMI is generated. Type
EFI_MM_HANDLER_ENTRY_POINT is defined in "Related Definitions" in
MmiHandlerRegister().

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the Register() function to indicate to the Register() function the software
MMI input value for which the dispatch function should be invoked. Type
EFI_MM_SW_REGISTER_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
Specification.

Description
This service registers a function (DispatchFunction) which will be called when the software
MMI source specified by RegisterContext->SwMmiCpuIndex is detected. On return,
DispatchHandle contains a unique handle which may be used later to unregister the function
using UnRegister().

If SwMmiInputValue is set to (UINTN) -1 then a unique value will be assigned and returned
in the structure. If no unique value can be assigned then EFI_OUT_OF_RESOURCES will be
returned.

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer (and CommBufferSize) pointing
Version 1.6 May 2017 123

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
to an instance of EFI_MM_SW_CONTEXT indicating the index of the CPU which generated the
software MMI.

Related Definitions
//**
// EFI_MM_SW_CONTEXT
//**
typedef struct {
UINTN SwMmiCpuIndex;
UINT8 CommandPort;
UINT8 DataPort;
} EFI_MM_SW_CONTEXT;

SwMmiCpuIndex

The 0-based index of the CPU which generated the software MMI.

CommandPort

This value corresponds directly to the CommandPort parameter used in the call to
Trigger(), see section 5.4.

DataPort

This value corresponds directly to the DataPort parameter used in the call to
Trigger(), see section 5.4.

//**
// EFI_MM_SW_REGISTER_CONTEXT
//**
typedef struct {
 UINTN SwMmiInputValue;
} EFI_MM_SW_REGISTER_CONTEXT;

SwMmiInputValue

A number that is used during the registration process to tell the dispatcher which
software input value to use to invoke the given handler.
124 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

MMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the MMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The SW MMI input value is

not within a valid range or is already in use.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SM) to manage this
child.

EFI_OUT_OF_RESOURCES A unique software MMI value could not be assigned for this
dispatch.
Version 1.6 May 2017 125

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_SW_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a software service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_SW_UNREGISTER) (
 IN CONST EFI_MM_SW_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_SW_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called in response to a software MMI.

Status Codes Returned

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

7.3 MM Sx Dispatch Protocol

EFI_MM_SX_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for a given Sx-state source generator.

GUID
#define EFI_MM_SX_DISPATCH_PROTOCOL_GUID \
{ 0x456d2859, 0xa84b, 0x4e47, \
0xa2, 0xee, 0x32, 0x76, 0xd8, 0x86, 0x99, 0x7d }

Protocol Interface Structure
typedef struct _EFI_MM_SX_DISPATCH_PROTOCOL {
126 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
 EFI_MM_SX_REGISTER Register;
 EFI_MM_SX_UNREGISTER UnRegister;
} EFI_MM_SX_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_MM_SX_DISPATCH_PROTOCOL provides the ability to install child handlers to respond
to sleep state related events.
Version 1.6 May 2017 127

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_SX_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given Sx source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_SX_REGISTER) (
 IN CONST EFI_MM_SX_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN CONST EFI_MM_SX_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_SX_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when the specified sleep state event occurs. Type
EFI_MM_HANDLER_ENTRY_POINT is defined in "Related Definitions" in
MmiHandlerRegister() in the MMST.

RegisterContext

Pointer to the dispatch function's context. The caller in fills this context before calling
the Register() function to indicate to the Register() function on which Sx
state type and phase the caller wishes to be called back. For this interface, the Sx
driver will call the registered handlers for all Sx type and phases, so the Sx state
handler(s) must check the Type and Phase field of
EFI_MM_SX_REGISTER_CONTEXT and act accordingly.

DispatchHandle

Handle of the dispatch function, for when interfacing with the parent Sx state MM
Driver. Type EFI_HANDLE is defined in InstallProtocolInterface() in
the UEFI Specification.

Description
This service registers a function (DispatchFunction) which will be called when the sleep state
event specified by RegisterContext is detected. On return, DispatchHandle contains a
unique handle which may be used later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer and CommBufferSize set to
NULL and 0 respectively.
128 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Related Definitions
//**
// EFI_MM_SX_REGISTER_CONTEXT
//**
typedef struct {
 EFI_SLEEP_TYPE Type;
 EFI_SLEEP_PHASE Phase;
} EFI_MM_SX_REGISTER_CONTEXT;

//**
// EFI_SLEEP_TYPE
//**
typedef enum {
 SxS0,
 SxS1,
 SxS2,
 SxS3,
 SxS4,
 SxS5,
 EfiMaximumSleepType
} EFI_SLEEP_TYPE;

//**
// EFI_SLEEP_PHASE
//**
typedef enum {
 SxEntry,
 SxExit,
 EfiMaximumPhase
} EFI_SLEEP_PHASE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

MMI source has been enabled.

EFI_UNSUPPORTED The Sx driver or hardware does not support that Sx

Type/Phase.

EFI_DEVICE_ERROR The Sx driver was unable to enable the MMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The ICHN input value is not

within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SM) to manage this child.
Version 1.6 May 2017 129

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_SX_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters an Sx-state service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_SX_UNREGISTER) (
 IN CONST EFI_MM_SX_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_SX_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called in response to sleep event.

Status Codes Returned

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

7.4 MM Periodic Timer Dispatch Protocol

EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL

Summary

Provides the parent dispatch service for the periodical timer MMI source generator.

GUID
#define EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL_GUID \
 { 0x4cec368e, 0x8e8e, 0x4d71, \
 0x8b, 0xe1, 0x95, 0x8c, 0x45, 0xfc, 0x8a, 0x53}

Protocol Interface Structure
typedef struct _EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL {
130 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
 EFI_MM_PERIODIC_TIMER_REGISTER Register;
 EFI_MM_PERIODIC_TIMER_UNREGISTER UnRegister;
 EFI_MM_PERIODIC_TIMER_INTERVAL GetNextShorterInterval;
} EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

GetNextShorterInterval

Returns the next MMI tick period that is supported by the chipset. See the
GetNextShorterInterval() function description.

Description
The EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL provides the ability to install child
handlers for the given event types.
Version 1.6 May 2017 131

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given MMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_PERIODIC_TIMER_REGISTER) (
 IN CONST EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN CONST EFI_MM_PERIODIC_TIMER_REGISTER_CONTEXT
*RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when at least the specified amount of time has elapsed.
Type EFI_MM_HANDLER_ENTRY_POINT is defined in "Related Definitions" in
MmiHandlerRegister() in theMMST.

RegisterContext

Pointer to the dispatch function's context. The caller fills this context in before calling
the Register() function to indicate to the Register() function the period at
which the dispatch function should be invoked. Type
EFI_MM_PERIODIC_TIMER_REGISTER_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
Specification.

Description
This service registers a function (DispatchFunction) which will be called when at least the
amount of time specified by RegisterContext has elapsed. On return, DispatchHandle
contains a unique handle which may be used later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer pointing to an instance of
EFI_MM_PERIODIC_TIMER_CONTEXT and CommBufferSize pointing to its size.
132 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Related Definitions
//***
// EFI_MM_PERIODIC_TIMER_REGISTER_CONTEXT
//***

typedef struct {
 UINT64 Period;
 UINT64 MmiTickInterval;
} EFI_MM_PERIODIC_TIMER_REGISTER_CONTEXT;

Period

The minimum period of time in 100 nanosecond units that the child gets called. The
child will be called back after a time greater than the time Period.

MmiTickInterval

The period of time interval between MMIs. Children of this interface should use this
field when registering for periodic timer intervals when a finer granularity periodic
MMI is desired.

Example: A chipset supports periodic MMIs on every 64 ms or 2 seconds. A child wishes to
schedule a periodic MMI to fire on a period of 3 seconds. There are several ways to approach the
problem:

The child may accept a 4 second periodic rate, in which case it registers with the following:
Period = 40000
MmiTickInterval = 20000
The resulting MMI will occur every 2 seconds with the child called back on every second MMI.

Note: The same result would occur if the child set MmiTickInterval = 0.

The child may choose the finer granularity MMI (64 ms):
Period = 30000
MmiTickInterval = 640
The resulting MMI will occur every 64 ms with the child called back on every 47th MMI.

Note: The child driver should be aware that this will result in more MMIs occurring during system
runtime, which can negatively impact system performance.

typedef struct _EFI_MM_PERIODIC_TIMER_CONTEXT {
UINT64 ElapsedTime;
} EFI_MM_PERIODIC_TIMER_CONTEXT;

ElapsedTime

The actual time in 100 nanosecond units elapsed since last called. A value of 0
indicates an unknown amount of time.
Version 1.6 May 2017 133

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

MMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the MMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The ICHN input value is not

within a valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SM) to manage this child.
134 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a periodic timer service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_PERIODIC_TIMER_UNREGISTER) (
 IN CONST EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the time has elapsed.

Status Codes Returned

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.
Version 1.6 May 2017 135

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.
GetNextShorterInterval()

Summary
Returns the next MMI tick period that is supported by the chipset.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_PERIODIC_TIMER_INTERVAL) (
 IN CONST EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL *This,
 IN OUT UINT64 **MmiTickInterval
);

Parameters
This

Pointer to the EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL instance.

MmiTickInterval

Pointer to pointer of the next shorter MMI interval period that is supported by the
child. This parameter works as a get-first, get-next field. The first time that this
function is called, *MmiTickInterval should be set to NULL to get the longest
MMI interval. The returned *MmiTickInterval should be passed in on
subsequent calls to get the next shorter interval period until *MmiTickInterval
= NULL.

Description
This service returns the next MMI tick period that is supported by the device. The order returned is
from longest to shortest interval period.

Status Codes Returned

EFI_SUCCESS The service returned successfully.

7.5 MM USB Dispatch Protocol

EFI_MM_USB_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the USB MMI source generator.

GUID
#define EFI_MM_USB_DISPATCH_PROTOCOL_GUID \
 { 0xee9b8d90, 0xc5a6, 0x40a2, \
136 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
 0xbd, 0xe2, 0x52, 0x55, 0x8d, 0x33, 0xcc, 0xa1 }

Protocol Interface Structure
typedef struct _EFI_MM_USB_DISPATCH_PROTOCOL {
 EFI_MM_USB_REGISTER Register;
 EFI_MM_USB_UNREGISTER UnRegister;
} EFI_MM_USB_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_MM_USB_DISPATCH_PROTOCOL provides the ability to install child handlers for the
given event types.
Version 1.6 May 2017 137

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_USB_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for the USB MMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_USB_REGISTER) (
 IN CONST EFI_MM_USB_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN CONST EFI_MM_USB_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_USB_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when a USB-related MMI occurs. Type
EFI_MM_HANDLER_ENTRY_POINT is defined in "Related Definitions" in
MmiHandlerRegister() in the MMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills this context in before calling
the Register() function to indicate to the Register() function the USB MMI
source for which the dispatch function should be invoked. Type
EFI_MM_USB_REGISTER_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the
UEFISpecification.

Description
This service registers a function (DispatchFunction) which will be called when the USB-
related MMI specified by RegisterContext has occurred. On return, DispatchHandle
contains a unique handle which may be used later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer containing NULL and
CommBufferSize containing zero.

Related Definitions
//**
// EFI_MM_USB_REGISTER_CONTEXT
138 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
//**

typedef struct {
 EFI_USB_MMI_TYPE Type;
 EFI_DEVICE_PATH_PROTOCOL *Device;
} EFI_MM_USB_REGISTER_CONTEXT;

Type

Describes whether this child handler will be invoked in response to a USB legacy
emulation event, such as port-trap on the PS/2* keyboard control registers, or to a
USB wake event, such as resumption from a sleep state. Type EFI_USB_MMI_TYPE
is defined below.

Device

The device path is part of the context structure and describes the location of the
particular USB host controller in the system for which this register event will occur.
This location is important because of the possible integration of several USB host
controllers in a system. Type EFI_DEVICE_PATH is defined in the UEFI
Specification.

//**
// EFI_USB_MMI_TYPE
//**
typedef enum {
 UsbLegacy,
 UsbWake
} EFI_USB_MMI_TYPE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the MMI

source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the MMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The ICHN input value is not

within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or MM) to manage this child.
Version 1.6 May 2017 139

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_USB_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a USB service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_USB_UNREGISTER) (
 IN CONST EFI_MM_USB_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_USB_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the USB event occurs.

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully unregistered and the
MMI source has been disabled, if there are no other registered child
dispatch functions for this MMI source.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

7.6 MM General Purpose Input (GPI) Dispatch Protocol

EFI_MM_GPI_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the General Purpose Input (GPI) MMI source generator.

GUID
#define EFI_MM_GPI_DISPATCH_PROTOCOL_GUID \
{ 0x25566b03, 0xb577, 0x4cbf, \
0x95, 0x8c, 0xed, 0x66, 0x3e, 0xa2, 0x43, 0x80 }
140 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Protocol Interface Structure
typedef struct _EFI_MM_GPI_DISPATCH_PROTOCOL {
 EFI_MM_GPI_REGISTER Register;
 EFI_MM_GPI_UNREGISTER UnRegister;
 UINTN NumSupportedGpis;
} EFI_MM_GPI_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

NumSupportedGpis

Denotes the maximum value of inputs that can have handlers attached.

Description
The EFI_MM_GPI_DISPATCH_PROTOCOL provides the ability to install child handlers for the
given event types. Several inputs can be enabled. This purpose of this interface is to generate an
MMI in response to any of these inputs having a true value provided.
Version 1.6 May 2017 141

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_GPI_DISPATCH_PROTOCOL.Register()

Summary
Registers a child MMI source dispatch function with a parent MM driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_GPI_REGISTER) (
 IN CONST EFI_MM_GPI_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN CONST EFI_MM_GPI_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_GPI_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when the specified GPI causes an MMI. Type
EFI_MM_HANDLER_ENTRY_POINT is defined in "Related Definitions" in
MmiHandlerRegister() in the MMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the Register() function to indicate to the Register() function the GPI MMI
source for which the dispatch function should be invoked. Type
EFI_MM_GPI_REGISTER_CONTEXT is defined in "Related Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
Specification.

Description
This service registers a function (DispatchFunction) which will be called when an MMI is
generated because of one or more of the GPIs specified by RegisterContext. On return,
DispatchHandle contains a unique handle which may be used later to unregister the function
using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer pointing to another instance of
EFI_MM_GPI_REGISTER_CONTEXT describing the GPIs which actually caused the MMI and
CommBufferSize pointing to the size of the structure.
142 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Related Definitions
//**
// EFI_MM_GPI_REGISTER_CONTEXT
//**

typedef struct {
 UINT64 GpiNum;
} EFI_MM_GPI_REGISTER_CONTEXT;

GpiNum

A number from one of 2^64 possible GPIs that can generate an MMI. A 0 corresponds
to logical GPI[0]; 1 corresponds to logical GPI[1]; and GpiNum of N corresponds to
GPI[N], where N can span from 0 to 2^64-1.

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

MMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the MMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The GPI input value is not

within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SM) to manage this child.
Version 1.6 May 2017 143

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_GPI_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a General Purpose Input (GPI) service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_GPI_UNREGISTER) (
 IN CONST EFI_MM_GPI_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_GPI_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the GPI triggers an MMI.

Status Codes Returned

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

7.7 MM Standby Button Dispatch Protocol

EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the standby button MMI source generator.

GUID
#define EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL_GUID \
 { 0x7300c4a1, 0x43f2, 0x4017, \
 0xa5, 0x1b, 0xc8, 0x1a, 0x7f, 0x40, 0x58, 0x5b }

Protocol Interface Structure
typedef struct _EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL {
144 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
 EFI_MM_STANDBY_BUTTON_REGISTER Register;
 EFI_MM_STANDBY_BUTTON_UNREGISTER UnRegister;
} EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service dispatched by this protocol. See the UnRegister()
function description.

Description
The EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL provides the ability to install child
handlers for the given event types.
Version 1.6 May 2017 145

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL.Register()

Summary
Provides the parent dispatch service for a given MMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_STANDBY_BUTTON_REGISTER) (
 IN CONST EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN EFI_MM_STANDBY_BUTTON_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when the standby button is pressed or released. Type
EFI_MM_HANDLER_ENTRY_POINT is defined in "Related Definitions" in
MmiHandlerRegister() in the MMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the register function to indicate to the register function the standby button MMI source
for which the dispatch function should be invoked. Type
EFI_MM_STANDBY_BUTTON_REGISTER_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Description
This service registers a function (DispatchFunction) which will be called when an MMI is
generated because the standby button was pressed or released, as specified by
RegisterContext. On return, DispatchHandle contains a unique handle which may be used
later to unregister the function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer and CommBufferSize set to
NULL.
146 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Related Definitions
//***
// EFI_MM_STANDBY_BUTTON_REGISTER_CONTEXT
//***
typedef struct {
 EFI_STANDBY_BUTTON_PHASE Phase;
} EFI_MM_STANDBY_BUTTON_REGISTER_CONTEXT;

Phase

Describes whether the child handler should be invoked upon the entry to the button
activation or upon exit (i.e., upon receipt of the button press event or upon release of
the event). This differentiation allows for workarounds or maintenance in each of
these execution regimes. Type EFI_STANDBY_BUTTON_PHASE is defined below.

//***
// EFI_STANDBY_BUTTON_PHASE;
//***
typedef enum {
 EfiStandbyButtonEntry,
 EfiStandbyButtonExit,
 EfiStandbyButtonMax
} EFI_STANDBY_BUTTON_PHASE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

MMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the MMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The standby button input value

is not within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SM) to manage this child.
Version 1.6 May 2017 147

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a child MMI source dispatch function with a parent MM Driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_STANDBY_BUTTON_UNREGISTER) (
 IN CONST EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI Specification.

Description
This service removes the handler associated with DispatchHandle so that it will no longer be
called when the standby button is pressed or released.

Status Codes Returned

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

7.8 MM Power Button Dispatch Protocol

EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL

Summary
Provides the parent dispatch service for the power button MMI source generator.

GUID
#define EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL_GUID \
 { 0x1b1183fa, 0x1823, 0x46a7, \
 0x88, 0x72, 0x9c, 0x57, 0x87, 0x55, 0x40, 0x9d }

Protocol Interface Structure
typedef struct _EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL {
148 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
 EFI_MM_POWER_BUTTON_REGISTER Register;
 EFI_MM_POWER_BUTTON_UNREGISTER UnRegister;
} EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched by this protocol. See the Register()
function description.

UnRegister

Removes a child service that was dispatched by this protocol. See the
UnRegister() function description.

Description
The EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL provides the ability to install child
handlers for the given event types.
Version 1.6 May 2017 149

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL. Register()

Summary
Provides the parent dispatch service for a given MMI source generator.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_POWER_BUTTON_REGISTER) (
 IN CONST EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN EFI_MM_POWER_BUTTON_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when power button is pressed or released. Type
EFI_MM_HANDLER_ENTRY_POINT is defined in "Related Definitions" in
MmiHandlerRegister() in theMMST.

RegisterContext

Pointer to the dispatch function’s context. The caller fills in this context before calling
the Register() function to indicate to the Register() function the power
button MMI phase for which the dispatch function should be invoked. Type
EFI_MM_POWER_BUTTON_REGISTER_CONTEXT is defined in "Related
Definitions" below.

DispatchHandle

Handle generated by the dispatcher to track the function instance. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
Specification.

Description
This service registers a function (DispatchFunction) which will be called when an MMI is
generated because the power button was pressed or released, as specified by RegisterContext.
On return, DispatchHandle contains a unique handle which may be used later to unregister the
function using UnRegister().

The DispatchFunction will be called with Context set to the same value as was passed into
this function in RegisterContext and with CommBuffer and CommBufferSize set to
NULL.
150 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Related Definitions
//**
// EFI_MM_POWER_BUTTON_REGISTER_CONTEXT
//**
typedef struct {
 EFI_POWER_BUTTON_PHASE Phase;
} EFI_MM_POWER_BUTTON_REGISTER_CONTEXT;

Phase

Designates whether this handler should be invoked upon entry or exit. Type
EFI_POWER_BUTTON_PHASE is defined in "Related Definitions" below.

//**
// EFI_POWER_BUTTON_PHASE
//**
typedef enum {
 EfiPowerButtonEntry,
 EfiPowerButtonExit,
 EfiPowerButtonMax
} EFI_POWER_BUTTON_PHASE;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered and the

MMI source has been enabled.

EFI_DEVICE_ERROR The driver was unable to enable the MMI source.

EFI_INVALID_PARAMETER RegisterContext is invalid. The power button input value is

not within valid range.

EFI_OUT_OF_RESOURCES There is not enough memory (system or SM) to manage this child.
Version 1.6 May 2017 151

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL.UnRegister()

Summary
Unregisters a power-button service.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_MM_POWER_BUTTON_UNREGISTER) (
 IN CONST EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI Specification.

Description

This service removes the handler associated with DispatchHandle so that it will no longer be
called when the standby button is pressed or released.

Status Codes Returned

EFI_SUCCESS The service has been successfully removed.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

7.9 MM IO Trap Dispatch Protocol

EFI_MM_IO_TRAP_DISPATCH_PROTOCOL

Summary
This protocol provides a parent dispatch service for IO trap MMI sources.

GUID
#define EFI_MM_IO_TRAP_DISPATCH_PROTOCOL_GUID \
 { 0x58dc368d, 0x7bfa, 0x4e77, \
 0xab, 0xbc, 0xe, 0x29, 0x41, 0x8d, 0xf9, 0x30 }
152 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
Protocol Interface Structure
struct _EFI_MM_IO_TRAP_DISPATCH_PROTOCOL {
 EFI_MM_IO_TRAP_DISPATCH_REGISTER Register;
 EFI_MM_IO_TRAP_DISPATCH_UNREGISTER UnRegister;
} EFI_MM_IO_TRAP_DISPATCH_PROTOCOL;

Parameters
Register

Installs a child service to be dispatched when the requested IO trap MMI occurs. See
the Register() function description.

UnRegister

Removes a previously registered child service. See the Register() and
UnRegister() function descriptions.

Description
This protocol provides the ability to install child handlers for IO trap MMI. These handlers will be
invoked to respond to specific IO trap MMI. IO trap MMI would typically be generated on reads or
writes to specific processor IO space addresses or ranges. This protocol will typically abstract a
limited hardware resource, so callers should handle errors gracefully.
Version 1.6 May 2017 153

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_IO_TRAP_DISPATCH_PROTOCOL.Register ()

Summary
Register an IO trap MMI child handler for a specified MMI.

Prototype
EFI_STATUS
(EFIAPI *EFI_MM_IO_TRAP_DISPATCH_REGISTER) (
 IN CONST EFI_MM_IO_TRAP_DISPATCH_PROTOCOL *This,
 IN EFI_MM_HANDLER_ENTRY_POINT DispatchFunction,
 IN OUT EFI_MM_IO_TRAP_REGISTER_CONTEXT *RegisterContext,
 OUT EFI_HANDLE *DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_IO_TRAP_DISPATCH_PROTOCOL instance.

DispatchFunction

Function to register for handler when I/O trap location is accessed. Type
EFI_MM_HANDLER_ENTRY_POINTis defined in "Related Definitions" in
MmiHandlerRegister() in the MMST.

RegisterContext

Pointer to the dispatch function's context. The caller fills this context in before calling
the register function to indicate to the register function the IO trap MMI source for
which the dispatch function should be invoked.

DispatchHandle

Handle of the dispatch function, for when interfacing with the parent MM Driver.
Type EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI
Specification.

Description
This service registers a function (DispatchFunction) which will be called when an MMI is
generated because of an access to an I/O port specified by RegisterContext. On return,
DispatchHandle contains a unique handle which may be used later to unregister the function
using UnRegister(). If the base of the I/O range specified is zero, then an I/O range with the
specified length and characteristics will be allocated and the Address field in RegisterContext
updated. If no range could be allocated, then EFI_OUT_OF_RESOURCES will be returned.

The service will not perform GCD allocation if the base address is non-zero or
EFI_MM_READY_TO_LOCK has been installed. In this case, the caller is responsible for the
existence and allocation of the specific IO range.

An error may be returned if some or all of the requested resources conflict with an existing IO trap
child handler.
154 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
It is not required that implementations will allow multiple children for a single IO trap MMI source.
Some implementations may support multiple children.

The DispatchFunction will be called with Context updated to contain information
concerning the I/O action that actually happened and is passed in RegisterContext, with
CommBuffer pointing to the data actually written and CommBufferSize pointing to the size of
the data in CommBuffer.

Related Definitions
//
// IO Trap valid types
//
typedef enum {
 WriteTrap,
 ReadTrap,
 ReadWriteTrap,
 IoTrapTypeMaximum
} EFI_MM_IO_TRAP_DISPATCH_TYPE;

//
// IO Trap context structure containing information about the
// IO trap event that should invoke the handler
//
typedef struct {
 UINT16 Address;
 UINT16 Length;
 EFI_MM_IO_TRAP_DISPATCH_TYPE Type;
} EFI_MM_IO_TRAP_REGISTER_CONTEXT;

//
// IO Trap context structure containing information about the IO
trap that occurred
//
typedef struct {
 UINT32 WriteData;
} EFI_MM_IO_TRAP_CONTEXT;

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully registered.

EFI_DEVICE_ERROR The driver was unable to complete due to hardware error.

EFI_OUT_OF_RESOURCES Insufficient resources are available to fulfill the IO trap range request.

EFI_INVALID_PARAMETER RegisterContext is invalid. The input value is not within a

valid range.
Version 1.6 May 2017 155

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
EFI_MM_IO_TRAP_DISPATCH_PROTOCOL.UnRegister ()

Summary
Unregister a child MMI source dispatch function with a parent MM Driver.

Prototype
EFI_STATUS
(EFIAPI *EFI_MM_IO_TRAP_DISPATCH_UNREGISTER) (
 IN CONST EFI_MM_IO_TRAP_DISPATCH_PROTOCOL *This,
 IN EFI_HANDLE DispatchHandle
);

Parameters
This

Pointer to the EFI_MM_IO_TRAP_DISPATCH_PROTOCOL instance.

DispatchHandle

Handle of the child service to remove. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This service removes a previously installed child dispatch handler. This does not guarantee that the
system resources will be freed from the GCD.

Related Definitions
None

Status Codes Returned

EFI_SUCCESS The dispatch function has been successfully unregistered.

EFI_INVALID_PARAMETER The DispatchHandle was not valid.

7.10 HOBs

EFI_PEI_MM_CORE_GUID

Summary
A GUIDed HOB that indicates whether the MM Core has been loaded.

GUID
#define EFI_PEI_MM_CORE_GUID \
 {0x8d1b3618, 0x111b, 0x4cba, \
 {0xb7, 0x9a, 0x55, 0xb3, 0x2f, 0x60, 0xf0, 0x29} }
156 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MM Child Dispatch Protocols
HOB Structure
typedef struct _EFI_PEI_MM_CORE_HOB {
 EFI_HOB_GENERIC_HEADER Header;
 EFI_GUID Name;
 UINT32 Flags;
} EFI_PEI_MM_CORE_HOB;

Members
Header

The HOB generic header with Header.HobType set to
EFI_HOB_TYPE_GUID_EXTENSION.

Name

The GUID that specifies this particular HOB structure. Set to
EFI_PEI_MM_CORE_GUID.

Flags

Bitmask that specifies which MM features have been initialized in SEC.

All other bits must be set to 0.

#define EFI_PEI_MM_CORE_LOADED 0x00000001
MM Core Loaded

Description
This HOB is consumed by the MM IPL driver to understand which portions of MM initialization
have been completed. For example the DXE MM IPL driver can determine whether MMRAM has
been initialized and the MM Core loaded.
Version 1.6 May 2017 157

MM Child Dispatch Protocols Platform Initialization Specification, Vol. 4
158 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Interactions with PEI, DXE, and BDS
8 Interactions with PEI, DXE, and BDS

8.1 Introduction
This chapter describes issues related to image verification and interactions between SM and other PI
Architecture phases.

8.2 MM and DXE

8.2.1 Software MMI Communication Interface (Method #1)
During the boot service phase of DXE/UEFI, there will be a messaging mechanism between MM
and DXE drivers. This mechanism will allow a gradual state evolution of the SM handlers during the
boot phase.

The purpose of the DXE/UEFI communication is to allow interfaces from either runtime or boot
services to be proxied into SM. For example, a vendor may choose to implement their UEFI
Variable Services in SM. The motivation to do so would include a design in which the SM code
performed error logging by writing data to an UEFI variable in flash. The error generation would be
asynchronous with respect to the foreground operating system (OS). A problem is that the OS could
be writing an UEFI variable when the error condition, such as a Single-Bit Error (SBE) that was
generated from main memory, occurred. To avoid two agents—SM and UEFI Runtime—both trying
to write to flash at the same time, the runtime implementation of the SetVariable() UEFI call
would simply be an invocation of the
EFI_MM_COMMUNICATION_PROTOCOL.Communicate() interface. Then, the SM code
would internally serialize the error logging flash write request and the OS SetVariable()
request.

See the EFI_MM_COMMUNICATION_PROTOCOL.Communicate() service for more
information on this interface.

8.2.2 Software MMI Communication Interface (Method #2)
This section describes an alternative mechanism that can be used to initiate inter-mode
communication. This mechanism can be used in the OS present environment by non-firmware
agents. Inter-mode communication can be initiated using special software MMI.

Details regarding the MMI are described in the SM Communication ACPI Table. This table is
described in Appendix O of the UEFI Specification.

Firmware processes this software MMI in the same manner it processes direct invocation of the
Communicate() function.
Version 1.6 May 2017 159

Interactions with PEI, DXE, and BDS Platform Initialization Specification, Vol. 4
8.3 MM and PEI

8.3.1 Software MMI Communication Interface (Method #1)
During the PI PEI, there will be a messaging mechanism between MM and PEI drivers. This
mechanism will allow a gradual state evolution of the MM Handlers during the PI PEI phase.

The purpose of the PEI communication is to allow interfaces from PEI services to be proxied into
MM. For example, a vendor may choose to implement the LockBox Services in MM. The
motivation to do so would include a design in which the MM code performed secure storage to save
data for S3 resume. PEI phase LockBox service would simply be an invocation of the
EFI_PEI_MM_COMMUNICATION_PPI.Communicate() interface. Then, the MM code
would perform LockBox request.

See the EFI_PEI_MM_COMMUNICATION_PPI.Communicate() service for more
information on this interface.
160 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Other Related Notes For Support Of MM Drivers
9 Other Related Notes For Support Of MM Drivers

9.1 File Types

The following new file types are added:
#define EFI_FV_FILETYPE_MM 0x0A
#define EFI_FV_FILETYPE_COMBINED_MM_DXE 0x0C
#define EFI_FV_FILETYPE_MM_STANDALONE 0x0E

9.1.1 File Type EFI_FV_FILETYPE_MM
The file type EFI_FV_FILETYPE_MM denotes a file that contains a PE32+ image that will be
loaded into MMRAM in MM Tradition Mode.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_MM_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

9.1.2 File Type EFI_FV_FILETYPE_COMBINED_MM_DXE
The file type EFI_FV_FILETYPE_COMBINED_MM_DXE denotes a file that contains a PE32+
image that will be dispatched by the DXE Dispatcher and will also be loaded into MMRAM in MM
Tradition Mode.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_DXE_DEPEX section. This section is
ignored when the file is loaded into MMRAM.

• The file must contain no more than one EFI_SECTION_MM_DEPEX section. This section is
ignored when the file is dispatched by the DXE Dispatcher.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the DXE driver that will be dispatched is defined by the LoadImage() boot service,
which is used by the DXE Dispatcher. See the Platform Initialization Specification, Volume 2 for
Version 1.6 May 2017 161

Other Related Notes For Support Of MM Drivers Platform Initialization Specification, Vol. 4
details. The file may contain other leaf and encapsulation sections as required or enabled by the
platform design.

9.2 File Type EFI_FV_FILETYPE_MM_STANDALONE
The file type EFI_FV_FILETYPE_MM_STANDALONE denotes a file that contains a PE32+ image
that will be loaded into MMRAM in MM Standalone Mode.

This file type is a sectioned file that must be constructed in accordance with the following rules:

• The file must contain at least one EFI_SECTION_PE32 section. There are no restrictions on
encapsulation of this section.

• The file must contain no more than one EFI_SECTION_VERSION section.

• The file must contain no more than one EFI_SECTION_MM_DEPEX section.

There are no restrictions on the encapsulation of the leaf sections. In the event that more than one
EFI_SECTION_PE32 section is present in the file, the selection algorithm for choosing which one
represents the MM driver that will be dispatched is defined by MM Foundation Dispatcher. See the
Platform Initialization Specification, Volume 4 for details. The file may contain other leaf and
encapsulation sections as required or enabled by the platform design.

9.3 File Section Types

The following new section type must be added:
#define EFI_SECTION_MM_DEPEX 0x1c

9.3.1 File Section Type EFI_SECTION_MM_DEPEX

Summary

A leaf section type that is used to determine the dispatch order for an MM Driver.

Prototype
typedef EFI_COMMON_SECTION_HEADER EFI_MM_DEPEX_SECTION;

Description

The MM dependency expression section is a leaf section that contains a dependency expression that
is used to determine the dispatch order for MM Drivers. Before the MMRAM invocation of the MM
Driver’s entry point, this dependency expression must evaluate to TRUE. See the Platform
Initialization Specification, Volume 2 for details regarding the format of the dependency expression.

The dependency expression may refer to protocols installed in either the UEFI or the MM protocol
database.
162 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MCA/INIT/PMI Protocol
10 MCA/INIT/PMI Protocol

This document defines the basic plumbing required to run the MCA, PMI & INIT in a generic
framework. They have been group together since MCA and INIT follows a very similar flow and all
three have access to the min-state as defined by PAL.

It makes an attempt to bind the platform knowledge by the way of generic abstraction to the SAL
MCA, PMI & INIT code. We have tried to create a private & public data structures for each CPU.
For example, any CPU knowledge that should remain within the context of that CPU should be
private. Any CPU knowledge that may be accessed by another CPU should be a Global Structure
that can be accessed by any CPU for that domain. There are some flags that may be required globally
(Sal Proc, Runtime Services, PMI, INIT, MCA) are made accessible through a protocol pointer that
is described in section 5.

10.1 Machine Check and INIT
This section describes how Machine Check Abort Interrupt and INIT are handled in a UEFI 2.0
compliant system.
Version 1.6 May 2017 163

MCA/INIT/PMI Protocol Platform Initialization Specification, Vol. 4
PALE_CHECK

SALE_ENTRY

INIT dispatcherdispatch eventMCA dispatcher

Reset event

Normal RESET flow
(SecStartup)

MCA Event INIT Event

PALE_RESET PALE_INIT

PAL processing

Context save, processor
setup

Figure 5. Early Reset, MCA and INIT flow

As shown in Figure 5 resets, MCA and INIT follow a near identical early flow. For all three events,
PAL first processes the event, save some states if needed in the min-state before jumping to SAL
through the common SALE_ENTRY entry point. SAL performs some early processor initialization,
save some extra states to set up an environment in which the event can be handled and then branch to
the appropriate event dispatcher (normal reset flow, MCA, INIT).

MCA/INIT handling per say consists of a generic dispatcher and one or more platform specific
handlers. The dispatcher is responsible for handling tasks specified in SAL specification, such as
performing rendezvous, before calling the event handlers in a fixed order. The handlers are
responsible for error logging, error correction and any other platform specific task required to
properly handle a MCA or INIT event.
164 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MCA/INIT/PMI Protocol
10.2 MCA Handling
The machine check (MCA) code path in a typical machine based on IPF architecture is shown in the
diagram below (see Figure 6).

Figure 6. Basic MCA processing flow

MCA processing starts in PAL, running in physical mode. Control is then pass to SAL through the
SALE_ENTRY entry point which in turn, after processing the MCA, pass control to the OS MCA
handler.

In the PI architecture, OEMs have the choice to process MCA events in either entirely in ROM code,
entirely in the RAM code or partly in ROM and partly in RAM. The early part of the MCA flow
follow the SEC->PEI boot flow, with SALE_ENTRY residing in SEC while the MCA dispatcher is
a PEIM dispatcher (see Figure 7). From that point on the rest of the code can reside in ROM or
RAM.

..
.PALE_CHECK SALE_ENTRY

MCA Dispatcher
(PEIM dispatcher)

MCA handler #n

MCA handler #1

Figure 7. PI MCA processing flow

When PAL hands off control to SALE_ENTRY, it will supply unique hand off state in the processor
registers as well as the minimum state saved buffer area pointer called “min-state pointer”. The min-
state pointer is the only context available to SALE_ENTRY. This buffer is a unique per processor
save area registered to each processor during normal OS boot path.
Version 1.6 May 2017 165

MCA/INIT/PMI Protocol Platform Initialization Specification, Vol. 4
A sample implementation is described below to clarify some of the finer points of MCA/INIT/PMI.
Actual implementations may vary.

 Usually, we can anchor some extra data (the MCA_INIT_PMI_PER_PROCESSOR_DATA data
structure) required by the PEIM dispatcher and the MCA and INIT dispatchers to the min-state (see
Figure 8).

Architectural State

 Processor Data

PAL Scratch area

1 KiB

3+ KiB

Processor’s min-state Buffer
512 bytes aligned

Figure 8. PI architectural data in the min-state

The software component (a PEIM or a DXE module) that includes the MCA and INIT dispatchers is
responsible for registering the min-state on all processors and initializing
MCA_INIT_PMI_PER_PROCESSOR_DATA data structures. Only then can MCA be properly
handled by the platform. To guarantee proper MCA and INIT handling, at least one handler is
required to be registered with the MCA dispatcher. OEM might decide to use a monolithic handler
or use multiple handlers.

The register state at the MCA dispatcher entry point is the same as the PALE_CHECK exit state
with the following exceptions -

• GR1 contains GP for the McaDispatcherProc.

• PAL saves b0 in the min-state and can be used as scratch. b0 contains the address of the
McaDispatcherProc.

• PAL saves static registers to the min-state. All static registers in both banks except GR16-GR20
in bank 0 can be used as scratch registers. SALE_ENTRY may freely modify these registers.

The MCA dispatcher is responsible for setting up a stack and backing store based on the values in
the MCA_INIT_PMI_PER_PROCESSOR_DATA data structure. The OS stack and backing store
cannot be used since they might point to virtual addresses. The MCA dispatcher is also responsible
for saving any registers not saved in the min-state that may be used by the MCA handling code in the
PI per processor data. Since we want to use high-level language such as C, floating point registers f2
to f31 as well as branch registers b6 and b7 must be saved. Code used during MCA handling must be
compiled with /f32 option to prevent the use of registers f33-f127. Otherwise, such code is
responsible for saving and restoring floating point registers f33-f127 as well as any other registers
not saved in the min-state or the PI per processor data.

Note that nested MCA recovery is not supported by the Itanium architecture as PAL uses the same
min-state for every MCA and INIT event. As a result, the same context within the min-state is used
by PI every time the MCA dispatcher is entered.
166 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MCA/INIT/PMI Protocol
All the MCA handles are presented in a form of an Ordered List. The head of the Ordered List is a
member of the Private Data Structure. In order to reach the MCA handle Ordered List the following
steps are used:

1. PerCpuInfoPointer = MinStatePointer (From SALE_CHECK) + 4K

2. ThisCpuMcaPrivateData = PerCpuInfoPointer->Private

3. McaHandleListHead = ThisCpuMcaPrivateData->McaList

Or ((EFI_MCA_SAVE_DATA*)(((UINT8*) MinStatePointer) + 4*1024))-
>Private-> McaList

On reaching the Ordered List from the private data we can obtain Plabel & MCA Handle Context.
Using that we can execute each handle as they appear in the ordered list.

Once the last handler has completed execution, the MCA dispatcher is responsible for deciding
whether to resume execution, halt the platform or reset the platform. This is based on the OS request
and platform policies. Resuming to the interrupted context is accomplished by calling
PAL_MC_RESUME.

As shown in Figure 6, the MCA handling flow requires access to certain shared hardware and
software resources to support things such as error logging, error handling/correction and processor
rendezvous. In addition, since MCAs are asynchronous, they might happen while other parts of the
system are using those shared resources or while accessing those resources (for example during the
execution of a SAL_PROC like PCI config write). We thus need a mechanism to allow shared
access to two isolated model which are not aware of each others.

This is handled through the use of common code (libraries) and semaphores. The SAL PROCs and
the MCAA/INIT code use the same libraries to implement any functionality shared between them
such as platform reset, stall, PCI read/write. Semaphores are used to gate access to critical portion of
the code and prevent multiple accesses to the same HW resource at the same time. To prevent
deadlocks and guarantee proper OS handling of an MCA it might be necessary for the MCA/INIT
handler to break semaphore or gets priority access to protected resources.

In addition to the previously mentioned semaphores used for gating access to HW resource, the
multithreaded/MP MCA model may require an MCA specific semaphore to support things like
monarch processor selection and log access. This semaphore should be visible from all processors.
In addition some global are required for MCA processing to indicate a processor status (entering
MCA, in MCA rendezvous, ready to enter OS MCA) with regards to the current MCA. This flags
need to have a global scope since the MCA monarch may need to access them to make sure all
processor are where they are supposed to be.

10.3 INIT Handling
Most of what have been defined for the MCA handling and dispatcher applies to the INIT code path.
The early part of the INIT code path, up to the INIT dispatcher is identical to the MCA code path
while some of the INIT handler code, like logging, can be shared with the MCA handler.
Version 1.6 May 2017 167

MCA/INIT/PMI Protocol Platform Initialization Specification, Vol. 4
The INIT code path in a typical machine based on IPF architecture is shown in the diagram below.

..
.PALE_CHECK SALE_ENTRY

INIT Dispatcher
(PEIM dispatcher)

INIT handler #n

INIT handler #1

Figure 9. PI INIT processing flow

Like MCA, INIT processing starts in the PAL code in physical mode and then flows into PI code
(OEM firmware code) through SALE_ENTRY. The INIT dispatcher is responsible for setting up a
stack and backing store, saving the floating point registers before calling any code that may be
written in higher level languages. At that point the dispatcher is ready to call the INIT handlers. As
with MCA only one handler is required to exist but OEMs are free to implement a monolithic
handler or use multiple handlers. Once the last handler has been executed, the dispatcher will resume
to the interrupted context or reset the platform based on the OS request.

The MCA handler limitations regarding access to shared HW and SW resources applies to the INIT
handler, as such library code and common semaphores should be used.

INIT events are always local to each processor. As a result we do not need INIT specific flags or
semaphore in the MCA_INIT_PMI_PER_PROCESSOR_DATA data structures.

10.4 PMI
This section describes how PMI, platform management interrupts, are handled in EFI 2.0 compliant
system. PMIs provide an operating system-independent interrupt mechanism to support OEM and
vendor specific hardware event.

..
.PALE_PMI
SALE_PMI

(PMI dispatcher)

INIT handler #n

INIT handler #1

Figure 10. PMI handling flow

As shown in Figure 10, PMI handling is pretty similar to MCA and INIT handling in such that it
consists of a generic dispatcher and one of more platform specific handlers. The dispatchers is the
SAL PMI entry point (SALE_PMI) and is responsible for saving state and setting up the
environment for the handler to execute. Contrary to MCA and INIT, PAL does not save any context
in the min-state and it is the responsibility of the PMI dispatcher to save state. Since the min-state is
available during PMI handling (PAL provides its address to the SAL PMI handler) the
168 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MCA/INIT/PMI Protocol
MCA_INIT_PMI_PER_PROCESSOR_DATA data structure present in the min-state can be used.
However an MCA/INIT event occurring while PMI is being would preclude the system from
resuming from the PMI event. To alleviate this, a platform may decide to implement a separate copy
of the MCA_INIT_PMI_PER_PROCESSOR_DATA data structure out side of the min-state, to be
used for PMI state saving.

Once the state is saved, the platform specific PMI handlers are found using the order handler list
provided in the private data structure. The mechanism used is the same one used in MCA and INIT
handling.

10.5 Event Handlers
The events handlers are called by the various dispatchers.

10.5.1 MCA Handlers

MCA Handler

typedef
EFI_STATUS
SAL_RUNTIMESERVICE
(EFIAPI *EFI_SAL_MCA_HANDLER) (
 IN VOID *ModuleGlobal,
 IN UINT64 ProcessorStateParameters,
 IN EFI_PHYSICAL_ADDRESS MinstateBase,
 IN UINT64 RendezvouseStateInformation,
 IN UINT64 CpuIndex,
 IN SAL_MCA_COUNT_STRUCTURE *McaCountStructure,
 IN OUT BOOLEAN *CorrectedMachineCheck
);

Parameters
ModuleGlobal

The context of MCA Handler.

ProcessorStateParameters

The processor state parameters (PSP),

MinstateBase

Base address of the min-state.

RendezvousStateInformation

Rendezvous state information to be passed to the OS on OS MCA entry. Refer to the
Sal Specification 3.0 , section 4.8 for more information.

CpuIndex

Index of the logical processor
Version 1.6 May 2017 169

MCA/INIT/PMI Protocol Platform Initialization Specification, Vol. 4
McaCountStructure

Pointer to the MCA records structure

CorrectedMachineCheck

This flag is set to TRUE is the MCA has been corrected by the handler or by a
previous handler.

#pragma pack(1)
//
// MCA Records Structure
//
typedef struct {
 UINT64 First : 1;
 UINT64 Last : 1;
 UINT64 EntryCount : 16;
 UINT64 DispatchedCount : 16;
 UINT64 Reserved : 30;
} SAL_MCA_COUNT_STRUCTURE;

#pragma pack()

10.5.2 INIT Handlers

INIT Handler

typedef
EFI_STATUS
SAL_RUNTIMESERVICE
(EFIAPI *EFI_SAL_INIT_HANDLER) (
 IN VOID *ModuleGlobal,
 IN UINT64 ProcessorStateParameters,
 IN EFI_PHYSICAL_ADDRESS MinstateBase,
 IN BOOLEAN McaInProgress,
 IN UINT64 CpuIndex,
 IN SAL_MCA_COUNT_STRUCTURE *McaCountStructure,
 OUT BOOLEAN *DumpSwitchPressed
);

Parameters
ModuleGlobal

The context of MCA Handler.

ProcessorStateParameters

The processor state parameters (PSP),
170 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MCA/INIT/PMI Protocol
MinstateBase

Base address of the min-state.

McaInProgress

This flag indicates if an MCA is in progress.

CpuIndex

Index of the logical processor

McaCountStructure

Pointer to the MCA records structure

DumpSwitchPressed

This flag indicates the crash dump switch has been pressed.

10.5.3 PMI Handlers

PMI Handler

typedef
EFI_STATUS
(EFIAPI *SAL_PMI_HANDLER) (
 IN VOID *ModuleGlobal,
 IN UINT64 CpuIndex,
 IN UINT64 PmiVector
);

Description
ModuleGlobal

The context of MCA Handler.

CpuIndex

Index of the logical processor

PmiVector

The PMI vector number as received from the PALE_PMI exit state (GR24).

10.6 MCA PMI INIT Protocol

Summary
This protocol is used to register MCA, INIT and PMI handlers with their respective dispatcher.

GUID
#define EFI_SAL_MCA_INIT_PMI_PROTOCOL_GUID \
 {
0xb60dc6e8,0x3b6f,0x11d5,0xaf,0x9,0x0,0xa0,0xc9,0x44,0xa0,0x5b }
Version 1.6 May 2017 171

MCA/INIT/PMI Protocol Platform Initialization Specification, Vol. 4
Protocol Interface Structure
typedef struct {
 EFI_SAL_REGISTER_MCA_HANDLER RegisterMcaHandler;
 EFI_SAL_REGISTER_INIT_HANDLER RegisterInitHandler;
 EFI_SAL_REGISTER_PMI_HANDLER RegisterPmiHandler;
 BOOLEAN McaInProgress;
 BOOLEAN InitInProgress;
 BOOLEAN PmiInProgress;
} EFI_SAL_MCA_INIT_PMI_PROTOCOL;

Parameters
RegisterMcaHandler

Function to register a MCA handler.

RegisterInitHandler

Function to register an INIT handler.

RegisterPmiHandler

Function to register a PMI hander.

McaInProgress

Whether MCA handler is in progress

InitInProgress

Whether Init handler is in progress

PmiInProgress

Whether Pmi handler is in progress
172 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MCA/INIT/PMI Protocol
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterMcaHandler ()

Summary
Register a MCA handler with the MCA dispatcher.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SAL_REGISTER_MCA_HANDLER) (
 IN struct _EFI_SAL_MCA_INIT_PMI_PROTOCOL *This,
 IN EFI_SAL_MCA_HANDLER McaHandler,
 IN VOID ModuleGlobal
 IN BOOLEAN MakeFirst,
 IN BOOLEAN MakeLast
);

Parameters
This

The EFI_SAL_MCA_INIT_PMI_PROTOCOL instance.

McaHandler

The MCA handler to register as defined in section 10.5.1.

ModuleGlobal

The context of the MCA Handler.

MakeFirst

This flag specifies the handler should be made first in the list.

MakeLast

This flag specifies the handler should be made last in the list.

Status Codes Returned

EFI_SUCCESS MCA Handle was registered

EFI_OUT_OF_RESOURCES No more resources to register an MCA handler

EFI_INVALID_PARAMETER Invalid parameters were passed.
Version 1.6 May 2017 173

MCA/INIT/PMI Protocol Platform Initialization Specification, Vol. 4
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterInitHandler ()

Summary
Register an INIT handler with the INIT dispatcher.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SAL_REGISTER_INIT_HANDLER) (
 IN struct _EFI_SAL_MCA_INIT_PMI_PROTOCOL *This,
 IN EFI_SAL_INIT_HANDLER InitHandler,
 IN VOID ModuleGlobal
 IN BOOLEAN MakeFirst,
 IN BOOLEAN MakeLast
);

Parameters
This

The EFI_SAL_MCA_INIT_PMI_PROTOCOL instance.

InitHandlerT

The INIT handler to register as defined in section 10.5.2

ModuleGlobal

The context of the INIT Handler.

MakeFirst

This flag specifies the handler should be made first in the list.

MakeLast

This flag specifies the handler should be made last in the list.

Status Codes Returned

EFI_SUCCESS INIT Handle was registered

EFI_OUT_OF_RESOURCES No more resources to register an INIT handler

EFI_INVALID_PARAMETER Invalid parameters were passed.
174 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 MCA/INIT/PMI Protocol
EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterPmiHandler ()

Summary
Register a PMI handler with the PMI dispatcher.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SAL_REGISTER_PMI_HANDLER) (
 IN struct _EFI_SAL_MCA_INIT_PMI_PROTOCOL *This,
 IN EFI_SAL_PMI_HANDLER PmiHandler,
 IN VOID ModuleGlobal
 IN BOOLEAN MakeFirst,
 IN BOOLEAN MakeLast
);

Parameters
This

The EFI_SAL_MCA_INIT_PMI_PROTOCOL instance.

PmiHandler

The PMI handler to register as defined in section 10.5.3.

ModuleGlobal

The context of the PMI Handler.

MakeFirst

This flag specifies the handler should be made first in the list.

MakeLast

This flag specifies the handler should be made last in the list.

Status Codes Returned

EFI_SUCCESS INIT Handle was registered

EFI_OUT_OF_RESOURCES No more resources to register a PMI handler

EFI_INVALID_PARAMETER Invalid parameters were passed.
Version 1.6 May 2017 175

MCA/INIT/PMI Protocol Platform Initialization Specification, Vol. 4
176 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
11 Extended SAL Services

This document describes the Extended SAL support for the EDK II. The Extended SAL uses a
calling convention that is very similar to the SAL calling convention. This includes the ability to
call Extended SAL Procedures in physical mode prior to SetVirtualAddressMap(), and the
ability to call Extended SAL Procedures in physical mode or virtual mode after
SetVirtualAddressMap().

11.1 SAL Overview
The Extended SAL can be used to implement the following services:

• SAL Procedures required by the Intel Itanium Processor Family System Abstraction Layer
Specification.

• EFI Runtime Services required by the UEFI 2.0 Specification, that may also be required by SAL
Procedures, other Extended SAL Procedures, or MCA, INIT, and PMI flows.

• Services required to abstract hardware accesses from SAL Procedures and Extended SAL
Procedures. This includes I/O port accesses, MMIO accesses, PCI Configuration Cycles, and
access to non-volatile storage for logging purposes.

• Services required during the MCA, INIT, and PMI flows.

Note: Arguments to SAL procedures are formatted the same as arguments and paramenters in this
document. Example “address parameter to . . .”

The Extended SAL support includes a DXE Protocol that supports the publishing of the SAL System
Table along with services to register and call Extended SAL Procedures. It also includes a number
of standard Extended SAL Service Classes that are required to implement EFI Runtime Services, the
minimum set of required SAL Procedures, services to abstract hardware accesses, and services to
support the MSA, INIT, and PMI flows. Platform developer may define addition Extended SAL
Service Classes to provide platform specific functionality that requires the Extended SAL calling
conventions.The SAL calling convention requires operation in both physical and virtual mode.
Standard EFI runtime services work in either physical mode or virtual mode at a time. Therefore, the
EFI code can call the SAL code, but not vice versa. To reduce code duplication resulting out of
multiple operating modes, additional procedures called Extended SAL Procedures are implemented.
Architected SAL procedures are a subset of the Extended SAL procedures. The individual Extended
SAL procedures can be called through the entry point ExtendedSalProc() in the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL. The cost of writing dual mode code is that one
must strictly follow the SAL runtime coding rules. Experience on prior IPF platform shows us that
the benefits outweigh the cost.
Version 1.6 May 2017 177

Extended SAL Services Platform Initialization Specification, Vol. 4

E xtended SAL
R T C class
driver

E xtended SAL
R eset class
driver

E xtended SAL
class X Y Z
driver

E xtended SA L B oot Ser vice Dr iver

E xtended SAL Procedure L ook-up table. (Prepared during B oot Services)

E X T E NDE D_SA L _PR OC () SA L _PR OC ()

Operating
System

(Can call
SA L _PR OCs or
E FI R T
services)

E FI R untime
Services (e.g.
runtime R T C
services, or
R eset service)

MCA , INIT ,
PMI code
(needs to get
current time
during logging
events)

Coded to EFI runtime conventions (Physical or Virtual)

PE32+ Image Type is EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER.

Physical Mode Only. PE32+ Image Type is EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER.

Coded to SAL conventions (both physical and virtual mode).

 PE32+ Image Type is EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER.

Figure 11. SAL Calling Diagram

Note: In the figure above, arrows indicate the direction of calling. For example, OS code may call EFI
runtime services or SAL_PROCs. Extended SAL functions are divided in several classes based
on their functionality, with no defined hierarchy. It is legal for an EFI Boot Service Code to call
ExtendedSalProc(). It is also legal for an Extended SAL procedure to call another Extended
SAL Procedure via ExtendedSalProc(). These details are not shown in the figure in order to
maintain clarity.

A driver with a module type of DXE_SAL_DRIVER is required to produce the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL. This driver contains the entry point of the
Extended SAL Procedures and dispatches previously registered procedures. It also provides services
to register Extended SAL Procedures and functions to help construct the SAL System Table.

Drivers with a module type of DXE_SAL_DRIVER are required to produce the various Extended
SAL Service Classes. It is expected that a single driver will supply all the Extended SAL Procedures
that belong to a single Extended SAL Service Class. As each Extended SAL Service Class is
registered, the GUID associated with that class is also installed into the EFI Handle Database. This
allows other DXE drivers to use the Extended SAL Service Class GUIDs in their dependency
expressions, so they only execute once their dependent Extended SAL Service Classes are available.
178 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
Drivers register the set of Extended SAL Procedures they produce with the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL. Once this registration step is complete, the
Extended SAL Procedure are available for use by other drivers.

11.2 Extended SAL Boot Service Protocol
This protocol supports the creation of the SAL System Table, and provides services to register and
call Extended SAL Procedures. The driver that produces this protocol is required to allocate and
initialize the SAL System Table. The SAL System Table must also be registered in the list of EFI
System Configuration tables. The driver that produces this protocol must be of type
DXE_SAL_DRIVER. This is required because the entry point to the ExtendedSalProc()
function is always available, even after the OS assumes control of the platform at
ExitBootServices().

EXTENDED_SAL_BOOT_SERVICE_PROTOCOL

Summary
This section provides a detailed description of the
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.

GUID
#define EXTENDED_SAL_BOOT_SERVICE_PROTOCOL_GUID \
 {0xde0ee9a4,0x3c7a,0x44f2, \
 {0xb7,0x8b,0xe3,0xcc,0xd6,0x9c,0x3a,0xf7}}

Protocol Interface Structure
typedef struct _EXTENDED_SAL_BOOT_SERVICE_PROTOCOL {
 EXTENDED_SAL_ADD_SST_INFO AddSalSystemTableInfo;
 EXTENDED_SAL_ADD_SST_ENTRY AddSalSystemTableEntry;
 EXTENDED_SAL_REGISTER_INTERNAL_PROC RegisterExtendedSalProc;
 EXTENDED_SAL_PROC ExtendedSalProc;
} EXTENDED_SAL_BOOT_SERVICE_PROTOCOL;

Parameters
AddSalSystemTableInfo

Adds platform specific information to the to the header of the SAL System Table.
Only available prior to ExitBootServices().

AddSalSystemTableEntry

Add an entry into the SAL System Table. Only available prior to
ExitBootServices().

RegisterExtendedSalProc

Registers an Extended SAL Procedure. Extended SAL Procedures are named by a
(GUID, FunctionID) pair. Extended SAL Procedures are divided into classes based on
the functionality they provide. Extended SAL Procedures are callable only in
Version 1.6 May 2017 179

Extended SAL Services Platform Initialization Specification, Vol. 4
physical mode prior to SetVirtualAddressMap(), and are callable in both
virtual and physical mode after SetVirtualAddressMap(). Only available
prior to ExitBootServices().

ExtendedSalProc

Entry point for all extended SAL procedures. This entry point is always available.

Description
The EXTENDED_SAL_BOOT_SERVICE_PROTOCOL provides a mechanisms for platform specific
drivers to update the SAL System Table and register Extended SAL Procedures that are callable in
physical or virtual mode using the SAL calling convention. The services exported by the SAL
System Table are typically implemented as Extended SAL Procedures. Services required by MCA,
INIT, and PMI flows that are also required in the implementation of EFI Runtime Services are also
typically implemented as Extended SAL Procedures. Extended SAL Procedures are named by a
(GUID, FunctionID) pair. A standard set of these (GUID, FunctionID) pairs are defined in this
specification. Platforms that require additional functionality from their Extended SAL Procedures
may define additional (GUID, FunctionID) pairs.
180 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableIn
fo()

Summary
Adds platform specific information to the to the header of the SAL System Table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EXTENDED_SAL_ADD_SST_INFO) (
 IN EXTENDED_SAL_BOOT_SERVICE_PROTOCOL *This,
 IN UINT16 SalAVersion,
 IN UINT16 SalBVersion,
 IN CHAR8 *OemId,
 IN CHAR8 *ProductId
);

Parameters
This

A pointer to the EXTENDED_SAL_BOOT_SERVICE_PROTOCOL instance.

SalAVersion
Version of recovery SAL PEIM(s) in BCD format. Higher byte contains the major
revision and the lower byte contains the minor revision.

SalBVersion

Version of DXE SAL Driver in BCD format. Higher byte contains the major revision
and the lower byte contains the minor revision.

OemId

A pointer to a Null-terminated ASCII string that contains OEM unique string. The
string cannot be longer than 32 bytes in total length.

ProductId

A pointer to a Null-terminated ASCII string that uniquely identifies a family of
compatible products. The string cannot be longer than 32 bytes in total length.

Description
This function updates the platform specific information in the SAL System Table header. The
SAL_A_VERSION field of the SAL System Table is set to the value specified by SalAVersion.
The SAL_B_VERSION field of the SAL System Table is set to the value specified by
SalBVersion. The OEM_ID field of the SAL System Table is filled in with the contents of the
Null-terminated ASCII string specified by OemId. If OemId is NULL or the length of OemId is
greater than 32 characters, then EFI_INVALID_PARAMETER is returned. The PRODUCT_ID
field of the SAL System Table is filled in with the contents of the Null-terminated ASCII string
specified by ProductId. If ProductId is NULL or the length of ProductId is greater than 32
characters, then EFI_INVALID_PARAMETER is returned. This function is also responsible for re-
Version 1.6 May 2017 181

Extended SAL Services Platform Initialization Specification, Vol. 4
computing the CHECKSUM field of the SAL System Table after the SAL_A_REVISION,
SAL_B_REVISION, OEM_ID, and PRODUCT_ID fields have been filled in. Once the CHEKSUM
field has been updated, EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The SAL System Table header was updated successfully.

EFI_INVALID_PARAMETER OemId is NULL.

EFI_INVALID_PARAMETER ProductId is NULL.

EFI_INVALID_PARAMETER The length of OemId is greater than 32 characters.

EFI_INVALID_PARAMETER The length of ProductId is greater than 32 characters.
182 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableE
ntry()

Summary
Adds an entry to the SAL System Table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EXTENDED_SAL_ADD_SST_ENTRY) (
 IN EXTENDED_SAL_BOOT_SERVICE_PROTOCOL *This,
 IN UINT8 *TableEntry,
 IN UINTN EntrySize
);

Parameters
This

A pointer to the EXTENDED_SAL_BOOT_SERVICE_PROTOCOL instance.

TableEntry

Pointer to a buffer containing a SAL System Table entry that is EntrySize bytes
in length. The first byte of the TableEntry describes the type of entry. See the
Intel Itanium Processor Family System Abstraction Layer Specification for more
details.

EntrySize

The size, in bytes, of TableEntry.

Description
This function adds the SAL System Table Entry specified by TableEntry and EntrySize to the
SAL System Table. If TableEntry is NULL, then EFI_INVALID_PARAMETER is returned. If
the entry type specified in TableEntry is invalid, then EFI_INVALID_PARAMETER is
returned. If the length of the TableEntry is not valid for the entry type specified in
TableEntry, then EFI_INVALID_PARAMETER is returned. Otherwise, TableEntry is
added to the SAL System Table. This function is also responsible for re-computing the CHECKSUM
field of the SAL System Table. Once the CHEKSUM field has been updated, EFI_SUCCESS is
returned.

Status Codes Returned

EFI_SUCCESS The SAL System Table was updated successfully

EFI_INVALID_PARAMETER TableEntry is NULL.

EFI_INVALID_PARAMETER TableEntry specifies an invalid entry type.

EFI_INVALID_PARAMETER EntrySize is not valid for this type of entry.
Version 1.6 May 2017 183

Extended SAL Services Platform Initialization Specification, Vol. 4
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddExtendedSalProc(
)

Summary
Registers an Extended SAL Procedure.

Prototype
typedef
EFI_STATUS
(EFIAPI *EXTENDED_SAL_REGISTER_INTERNAL_PROC) (
 IN EXTENDED_SAL_BOOT_SERVICE_PROTOCOL *This,
 IN UINT64 ClassGuidLo,
 IN UINT64 ClassGuidHi,
 IN UINT64 FunctionId,
 IN SAL_INTERNAL_EXTENDED_SAL_PROC InternalSalProc,
 IN VOID \
 *PhysicalModuleGlobal OPTIONAL
);

Parameters
This

A pointer to the EXTENDED_SAL_BOOT_SERVICE_PROTOCOL instance.

ClassGuidLo

The lower 64-bits of the class GUID for the Extended SAL Procedure being added.
Each class GUID contains one or more functions specified by a Function ID.

ClassGuidHi

The upper 64-bits of the class GUID for the Extended SAL Procedure being added.
Each class GUID contains one or more functions specified by a Function ID.

FunctionId

The Function ID for the Extended SAL Procedure that is being added. This Function
ID is a member of the Extended SAL Procedure class specified by ClassGuidLo
and ClassGuidHi.

InternalSalProc

A pointer to the Extended SAL Procedure being added. The Extended SAL Procedure
is named by the GUID and Function ID specified by ClassGuidLo,
ClassGuidHi, and FunctionId.

PhysicalModuleGlobal

Pointer to a module global structure. This is a physical mode pointer. This pointer is
passed to the Extended SAL Procedure specified by ClassGuidLo,
ClassGuidHi, FunctionId, and InternalSalProc. If the system is in
physical mode, then this pointer is passed unmodified to InternalSalProc. If the
system is in virtual mode, then the virtual address associated with this pointer is
184 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
passed to InternalSalProc. This parameter is optional and may be NULL. If it
is NULL, then NULL is always passed to InternalSalProc.

Related Definitions
typedef
SAL_RETURN_REGS
(EFIAPI *SAL_INTERNAL_EXTENDED_SAL_PROC) (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

FunctionId

The Function ID associated with this Extended SAL Procedure.

Arg2

Second argument to the Extended SAL procedure.

Arg3

Third argument to the Extended SAL procedure.

Arg4

Fourth argument to the Extended SAL procedure.

Arg5

Fifth argument to the Extended SAL procedure.

Arg6

Sixth argument to the Extended SAL procedure.

Arg7

Seventh argument to the Extended SAL procedure.

Arg8

Eighth argument to the Extended SAL procedure.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Version 1.6 May 2017 185

Extended SAL Services Platform Initialization Specification, Vol. 4
Description
The Extended SAL Procedure specified by InternalSalProc and named by
ClassGuidLo, ClassGuidHi, and FunctionId is added to the set of available Extended
SAL Procedures. Each Extended SAL Procedure is allowed one module global to record any state
information required during the execution of the Extended SAL Procedure. This module global is
specified by PhysicalModuleGlobal.

If there are not enough resource available to add the Extended SAL Procedure, then
EFI_OUT_OF_RESOURCES is returned.

If the Extended SAL Procedure specified by InternalSalProc and named by ClassGuidLo,
ClassGuidHi, and FunctionId was not previously registered, then the Extended SAL
Procedure along with its module global specified by PhysicalModuleGlobal is added to the
set of Extended SAL Procedures, and EFI_SUCCESS is returned.

If the Extended SAL Procedure specified by InternalSalProc and named by ClassGuidLo,
ClassGuidHi, and FunctionId was previously registered, then the module global is replaced
with PhysicalModuleGlobal, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The Extended SAL Procedure was added.

EFI_OUT_OF_RESOURCES There are not enough resources available to add the Extended SAL
Procedure.
186 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.ExtendedSalProc()

Summary
Calls a previously registered Extended SAL Procedure.

Prototype
typedef
SAL_RETURN_REGS
(EFIAPI *EXTENDED_SAL_PROC) (
 IN UINT64 ClassGuidLo,
 IN UINT64 ClassGuidHi,
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8
);

Parameters
ClassGuidLo

The lower 64-bits of the class GUID for the Extended SAL Procedure that is being
called.

ClassGuidHi

The upper 64-bits of the class GUID for the Extended SAL Procedure that is being
called.

FunctionId

Function ID for the Extended SAL Procedure being called.

Arg2

Second argument to the Extended SAL procedure.

Arg3

Third argument to the Extended SAL procedure.

Arg4

Fourth argument to the Extended SAL procedure.

Arg5

Fifth argument to the Extended SAL procedure.

Arg6

Sixth argument to the Extended SAL procedure.
Version 1.6 May 2017 187

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Seventh argument to the Extended SAL procedure.

Arg8

Eighth argument to the Extended SAL procedure.

Description
This function calls the Extended SAL Procedure specified by ClassGuidLo, ClassGuidHi,
and FunctionId. The set of previously registered Extended SAL Procedures is searched for a
matching ClassGuidLo, ClassGuidHi, and FunctionId. If a match is not found, then
EFI_SAL_NOT_IMPLEMENTED is returned. The module global associated with ClassGuidLo,
ClassGuidHi, and FunctionId is retrieved. If that module global is not NULL and the system
is in virtual mode, and the virtual address of the module global is not available, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the Extended SAL Procedure
associated with ClassGuidLo, ClassGuidHi, and FunctionId is called. The arguments
specified by FunctionId, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, and Arg8 are passed into
the Extended SAL Procedure along with the VirtrualMode flag and ModuleGlobal pointer.

If the system is in physical mode, then the ModuleGlobal that was originally registered with
AddExtendedSalProc() is passed into the Extended SAL Procedure. If the system is in virtual
mode, then the virtual address associated with ModuleGlobal is passed to the Extended SAL
Procedure. The EFI Runtime Service ConvertPointer() is used to convert the physical
address of ModuleGlobal to a virtual address. If ModuleGlobal was registered as NULL, then
NULL is always passed into the Extended SAL Procedure.

The return status from this Extended SAL Procedure is returned.

Status Codes Returned

EFI_SAL_NOT_IMPLEMENTED The Extended SAL Procedure specified by ClassGuidLo,

ClassGuidHi, and FunctionId has not been

registered.

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other The result returned from the specified Extended SAL Procedure

11.3 Extended SAL Service Classes
This chapter contains the standard set of Extended SAL service classes. These include EFI Runtime
Services in the UEFI 2.0 Specification, SAL Procedures required by the Intel Itanium Processor
Family System Abstraction Layer Specification , services required to abstract access to hardware
devices, and services required in the handling of MCA, INIT, and PMI flows. Extended SAL
Service Classes behave like PPIs and Protocols. They are named by GUID and contain a set of
services for each GUID. This also allows platform developers to add new Extended SAL service
classes over time to implement platform specific features that require the Extended SAL capabilities.

The following tables list the Extended SAL Service Classes defined by this specification. The
following sections contain detailed descriptions of the functions in each of the classes.
188 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
Table 1. Extended SAL Service Classes – EFI Runtime Services

Name Description

Real Time Clock Services Class The Extended SAL Real Time Clock Services Class provides
functions to access the real time clock.

Reset Services Class The Extended SAL Reset Services Class provides platform reset
services.

Status Code Services Class The Extended SAL Status Code Services Class provides
services to report status code information.

Monotonic Counter Services Class The Extended SAL Monotonic Counter Services Class provides
functions to access the monotonic counter.

Variable Services Class The Extended SAL Variable Services Class provides functions
to access EFI variables.

Table 2. Extended SAL Service Classes – SAL Procedures

Name Description

Base Services Class The Extended SAL Base Services Class provides base services
that do not have any hardware dependencies including a
number of SAL Procedures required by the Intel Itanium
Processor Family System Abstraction Layer Specification.

Cache Services Class The Extended SAL Cache Services Class provides services to
initialize and flush the caches.

PAL Services Class The Extended SAL PAL Services Class provides services to
make PAL calls.

PCI Services Class The Extended SAL PCI Services Class provides services to
perform PCI configuration cycles.

MCA Log Services Class The Extended SAL MCA Log Services Class provides logging
services for MCA events.

Table 3. Extended SAL Service Classes – Hardware Abstractions

Name Description

Base I/O Services Class The Extended SAL Base I/O Services Class provides the basic
abstractions for accessing I/O ports and MMIO.

Stall Services Class The Extended SAL Stall Services Class provides functions to
perform calibrated delays.

Firmware Volume Block Services Class The Extended SAL Firmware Volume Block Services Class
provides services that are equivalent to the Firmware Volume
Block Protocol in the Platform Initialization Specification.

Table 4. Extended SAL Service Classes – Other

Name Description

MP Services Class The Extended SAL MP Services Class provides services for
managing multiple CPUs.
Version 1.6 May 2017 189

Extended SAL Services Platform Initialization Specification, Vol. 4
11.3.1 Extended SAL Base I/O Services Class

Summary
The Extended SAL Base I/O Services Class provides the basic abstractions for accessing I/O ports
and MMIO.

GUID
#define EFI_EXTENDED_SAL_BASE_IO_SERVICES_PROTOCOL_GUID_LO \
 0x451531e15aea42b5
#define EFI_EXTENDED_SAL_BASE_IO_SERVICES_PROTOCOL_GUID_HI \
 0xa6657525d5b831bc
#define EFI_EXTENDED_SAL_BASE_IO_SERVICES_PROTOCOL_GUID \
 {0x5aea42b5,0x31e1,0x4515,
 {0xbc,0x31,0xb8,0xd5,0x25,0x75,0x65,0xa6}}

Related Definitions
typedef enum {
 IoReadFunctionId,
 IoWriteFunctionId,
 MemReadFunctionId,
 MemWriteFunctionId,
} EFI_EXTENDED_SAL_BASE_IO_SERVICES_FUNC_ID;

Description

Table 5. Extended SAL Base I/O Services Class

Name Description

ExtendedSalIoRead This function is equivalent in functionality to the Io.Read() function of the
CPU I/O PPI. See Volume1:Platform Initialization Specification Section 7.2.
The function prototype for the Io.Read() service is shown in Related
Definitions.

ExtendedSalIoWrite This function is equivalent in functionality to the Io.Write() function of
the CPU I/O PPI. See Volume1:Platform Initialization Specification Section
7.2. The function prototype for the Io.Write() service is shown in
Related Definitions.

ExtendedSalMemRead This function is equivalent in functionality to the Mem.Read() function of
the CPU I/O PPI. See Volume1:Platform Initialization Specification Section
7.2. The function prototype for the Mem.Read() service is shown in
Related Definitions.

ExtendedSalMemWrite This function is equivalent in functionality to the Mem.Write() function of
the CPU I/O PPI. See Volume1:Platform Initialization Specification Section
7.2. The function prototype for the Mem.Write() service is shown in
Related Definitions.

MCA Services Class TBD
190 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalIoRead

Summary
This function is equivalent in functionality to the Io.Read() function of the CPU I/O PPI. See
Volume1:Platform Initialization Specification Section 7.2. The function prototype for the
Io.Read() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalIoRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalIoReadFunctionId.

Arg2

Signifies the width of the I/O read operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the I/O read operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of I/O read operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The destination buffer to store the results. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 191

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Io.Read() function in the CPU I/O PPI. If
this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Io.Read() function of the CPU I/O PPI is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Io.Read() function in the
CPU I/O PPI.
192 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalIoWrite

Summary
This function is equivalent in functionality to the Io.Write() function of the CPU I/O PPI. See
Volume1:Platform Initialization Specification Section 7.2. The function prototype for the
Io.Write() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalIoWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalIoWriteFunctionId.

Arg2

Signifies the width of the I/O write operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the I/O write operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of I/O write operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The source buffer of the value to write. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 193

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Io.Write() function in the CPU I/O PPI.
If this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Io.Write() function of the CPU I/O PPI is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Io.Write() function in the
CPU I/O PPI.
194 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalMemRead

Summary
This function is equivalent in functionality to the Mem.Read() function of the CPU I/O PPI. See
Volume 1:Platform Initialization Specification Section 7.2. The function prototype for the
Mem.Read() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMemRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL

);

Parameters
FunctionId

Must be EsalMemReadFunctionId.

Arg2

Signifies the width of the MMIO read operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the MMIO read operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of MMIO read operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The destination buffer to store the results. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 195

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Mem.Read() function in the CPU I/O PPI.
If this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Mem.Read() function of the CPU I/O PPI is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Mem.Read() function in the
CPU I/O PPI.
196 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalMemWrite

Summary
This function is equivalent in functionality to the Mem.Write() function of the CPU I/O PPI. See
Volume 1:Platform Initialization Specification Section 7.2. The function prototype for the
Mem.Write() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMemWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMemWriteFunctionId.

Arg2

Signifies the width of the MMIO write operation. This argument is interpreted as type
EFI_PEI_CPU_IO_PPI_WIDTH. See the Width parameter in Related
Definitions.

Arg3

The base address of the MMIO write operation. This argument is interpreted as a
UINT64. See the Address parameter in Related Definitions.

Arg4

The number of MMIO write operations to perform. This argument is interpreted as a
UINTN. See the Count parameter in Related Definitions.

Arg5

The source buffer of the value to write. This argument is interpreted as a VOID *.
See the Buffer parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 197

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Description
This function performs the equivalent operation as the Mem.Write() function in the CPU I/O PPI.
If this function is called in virtual mode before any required mapping have been converted to virtual
addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the status from
performing the Mem.Write() function of the CPU I/O PPI is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Mem.Write() function in the
CPU I/O PPI.

11.4 Extended SAL Stall Services Class

Summary
The Extended SAL Stall Services Class provides functions to perform calibrated delays.

GUID
#define EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID_LO \
198 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
 0x4d8cac2753a58d06
#define EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID_HI \
 0x704165808af0e9b5
#define EFI_EXTENDED_SAL_STALL_SERVICES_PROTOCOL_GUID \
 {0x53a58d06,0xac27,0x4d8c,\
 {0xb5,0xe9,0xf0,0x8a,0x80,0x65,0x41,0x70}}

Related Definitions
typedef enum {
 StallFunctionId,
} EFI_EXTENDED_SAL_STALL_FUNC_ID;

Description

Table 6. Extended SAL Stall Services Class

Name Description

ExtendedSalStall This function is equivalent in functionality to the EFI Boot Service

Stall(). See UEFI 2.0 Specification Section 6.5. The function

prototype for the Stall() service is shown in Related Definitions.
Version 1.6 May 2017 199

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalStall

Summary
This function is equivalent in functionality to the EFI Boot Service Stall(). See UEFI 2.0
Specification Section 6.5. The function prototype for the Stall() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalStall (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalStallFunctionId.

Arg2

Specifies the delay in microseconds. This argument is interpreted as type UINTN.
See Microseconds in Related Definitions.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
200 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_STALL) (
 IN UINTN Microseconds
);

Description
This function performs the equivalent operation as the Stall() function in the EFI Boot Services
Table. If this function is called in virtual mode before any required mapping have been converted to
virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the one
of the status codes defined in the Stall() function of the EFI Boot Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Stall() function in the EFI
Boot Services Table.

11.4.1 Extended SAL Real Time Clock Services Class

Summary
The Extended SAL Real Time Clock Services Class provides functions to access the real time clock.

GUID
#define EFI_EXTENDED_SAL_RTC_SERVICES_PROTOCOL_GUID_LO \
 0x4d02efdb7e97a470
#define EFI_EXTENDED_SAL_RTC_SERVICES_PROTOCOL_GUID_HI \
 0x96a27bd29061ce8f
#define EFI_EXTENDED_SAL_RTC_SERVICES_PROTOCOL_GUID \
 {0x7e97a470,0xefdb,0x4d02, \
 {0x8f,0xce,0x61,0x90,0xd2,0x7b,0xa2,0x96}

Related Definitions
typedef enum {
 GetTimeFunctionId,
 SetTimeFunctionId,
Version 1.6 May 2017 201

Extended SAL Services Platform Initialization Specification, Vol. 4
 GetWakeupTimeFunctionId,
 SetWakeupTimeFunctionId,
 GetRtcClassMaxFunctionId
 InitializeThresholdFunctionId,
 BumpThresholdCountFunctionId,
 GetThresholdCountFunctionId
} EFI_EXTENDED_SAL_RTC_SERVICES_FUNC_ID;

Description

Table 7. Extended SAL Real Time Clock Services Class

Name Description

ExtendedSalGetTime This function is equivalent in functionality to the EFI Boot Service

GetTime(). See UEFI 2.0 Specification Section 7.2. The function

prototype for the GetTime() service is shown in Related Definitions.

ExtendedSalSetTime This function is equivalent in functionality to the EFI Runtime Service

SetTime(). See UEFI 2.0 Specification Section 7.2. The function

prototype for the SetTime() service is shown in Related Definitions.

ExtendedSalGetWakeupTime This function is equivalent in functionality to the EFI Runtime Service

GetWakeupTime(). See UEFI 2.0 Specification Section 7.2. The

function prototype for the GetWakeupTime() service is shown in

Related Definitions.

ExtendedSalSetWakeupTime This function is equivalent in functionality to the EFI Runtime Service

SetWakeupTime(). See UEFI 2.0 Specification Section 7.2. The

function prototype for the SetWakeupTime() service is shown in

Related Definitions.
202 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetTime

Summary
This function is equivalent in functionality to the EFI Runtime Service GetTime(). See UEFI 2.0
Specification Section 7.2. The function prototype for the GetTime() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetTimeFunctionId.

Arg2

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_TIME_CAPABILITIES
structure. See Capabilities in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.6 May 2017 203

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_TIME) (
 OUT EFI_TIME *Time,
 OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
);

Description
This function performs the equivalent operation as the GetTime() function in the EFI Runtime
Services Table. If this function is called in virtual mode before any required mapping have been
converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the GetTime() function of the EFI Runtime
Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetTime() function in the
EFI Runtime Services Table.
204 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalSetTime

Summary
This function is equivalent in functionality to the EFI Runtime Service SetTime(). See UEFI 2.0
Specification Section 7.2. The function prototype for the SetTime() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetTimeFunctionId.

Arg2

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 205

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SET_TIME) (
 IN EFI_TIME *Time
);

Description
This function performs the equivalent operation as the SetTime() function in the EFI Runtime
Services Table. If this function is called in virtual mode before any required mapping have been
converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the SetTime() function of the EFI Runtime
Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetTime() function in the
EFI Runtime Services Table.
206 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetWakeupTime

Summary
This function is equivalent in functionality to the EFI Runtime Service GetWakeupTime(). See
UEFI 2.0 Specification Section 7.2. The function prototype for the GetWakeupTime() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetWakeupTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetWakeupTimeFunctionId.

Arg2

This argument is interpreted as a pointer to a BOOLEAN value. See Enabled in
Related Definitions.

Arg3

This argument is interpreted as a pointer to a BOOLEAN value. See Pending in
Related Definitions.

Arg4

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.6 May 2017 207

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_WAKEUP_TIME) (
 OUT BOOLEAN *Enabled,
 OUT BOOLEAN *Pending,
 OUT EFI_TIME *Time
);

Description
This function performs the equivalent operation as the GetWakeupTime() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the GetWakeupTime() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetWakeupTime() function
in the EFI Runtime Services Table.
208 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalSetWakeupTime

Summary
This function is equivalent in functionality to the EFI Runtime Service SetWakeupTime(). See
UEFI 2.0 Specification Section 7.2. The function prototype for the SetWakeupTime() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetWakeupTime (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetWakeupTimeFunctionId.

Arg2

This argument is interpreted as a BOOLEAN value. See Enable in Related
Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_TIME structure. See Time in
Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.6 May 2017 209

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SET_WAKEUP_TIME) (
 IN BOOLEAN Enable,
 IN EFI_TIME *Time OPTIONAL
);

Description
This function performs the equivalent operation as the SetWakeupTime() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the SetWakeupTime() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetWakeupTime() function
in the EFI Runtime Services Table.

11.4.2 Extended SAL Reset Services Class

Summary
The Extended SAL Reset Services Class provides platform reset services.

GUID
#define EFI_EXTENDED_SAL_RESET_SERVICES_PROTOCOL_GUID_LO \
 0x46f58ce17d019990
#define EFI_EXTENDED_SAL_RESET_SERVICES_PROTOCOL_GUID_HI \
 0xa06a6798513c76a7
#define EFI_EXTENDED_SAL_RESET_SERVICES_PROTOCOL_GUID \
 {0x7d019990,0x8ce1,0x46f5,
 {0xa7,0x76,0x3c,0x51,0x98,0x67,0x6a,0xa0}}
210 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
Related Definitions
typedef enum {
 ResetSystemFunctionId,
} EFI_EXTENDED_SAL_RESET_FUNC_ID;

Description

Table 8. Extended SAL Reset Services Class

Name Description

ExtendedSalResetSystem This function is equivalent in functionality to the EFI Runtime Service

ResetSystem(). See UEFI 2.0 Specification Section 7.4.1. The

function prototype for the ResetSystem() service is shown in Related

Definitions.
Version 1.6 May 2017 211

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalResetSystem

Summary
This function is equivalent in functionality to the EFI Runtime Service ResetSystem(). See
UEFI 2.0 Specification Section 7.4.1. The function prototype for the ResetSystem() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalResetSystem (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalResetSystemFunctionId.

Arg2

This argument is interpreted as a EFI_RESET_TYPE value. See ResetType in
Related Definitions.

Arg3

This argument is interpreted as EFI_STATUS value. See ResetStatus in Related
Definitions.

Arg4

This argument is interpreted as UINTN value. See DataSize in Related
Definitions.

Arg5

This argument is interpreted a pointer to a Unicode string. See ResetData in
Related Definitions.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
212 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
VOID
(EFIAPI *EFI_RESET_SYSTEM) (
 IN EFI_RESET_TYPE ResetType,
 IN EFI_STATUS ResetStatus,
 IN UINTN DataSize,
 IN CHAR16 *ResetData OPTIONAL
);

Description
This function performs the equivalent operation as the ResetSystem() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the ResetSystem() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the ResetSystem() function in
the EFI Runtime Services Table.

11.4.3 Extended SAL PCI Services Class

Summary
The Extended SAL PCI Services Class provides services to perform PCI configuration cycles.

GUID
#define EFI_EXTENDED_SAL_PCI_SERVICES_PROTOCOL_GUID_LO \
 0x4905ad66a46b1a31
#define EFI_EXTENDED_SAL_PCI_SERVICES_PROTOCOL_GUID_HI \
 0x6330dc59462bf692
#define EFI_EXTENDED_SAL_PCI_SERVICES_PROTOCOL_GUID \
Version 1.6 May 2017 213

Extended SAL Services Platform Initialization Specification, Vol. 4
 {0xa46b1a31,0xad66,0x4905,
 {0x92,0xf6,0x2b,0x46,0x59,0xdc,0x30,0x63}}

Related Definitions
typedef enum {
 SalPciConfigReadFunctionId,
 SalPciConfigWriteFunctionId,
} EFI_EXTENDED_SAL_PCI_SERVICES_FUNC_ID;

Description

Table 9. Extended SAL PCI Services Class

Name Description

ExtendedSalPciRead This function is equivalent in functionality to the SAL Procedure

SAL_PCI_CONFIG_READ. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.

ExtendedSalPciWrite This function is equivalent in functionality to the SAL Procedure

SAL_PCI_CONFIG_WRITE. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.
214 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalPciRead

Summary
This function is equivalent in functionality to the SAL Procedure SAL_PCI_CONFIG_READ. See
the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalPciRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPciReadFunctionId.

Arg2

address parameter to SAL_PCI_CONFIG_WRITE.

Arg3

size parameter to SAL_PCI_CONFIG_WRITE.

Arg4

address_type parameter to SAL_PCI_CONFIG_WRITE.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 215

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
216 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalPciWrite

Summary
This function is equivalent in functionality to the SAL Procedure SAL_PCI_CONFIG_WRITE.
See the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalPciWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPciWriteFunctionId.

Arg2

address parameter to SAL_PCI_CONFIG_WRITE.

Arg3

size parameter to SAL_PCI_CONFIG_WRITE.

Arg4

value parameter to SAL_PCI_CONFIG_WRITE.

Arg5

address_type parameter to SAL_PCI_CONFIG_WRITE.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 217

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

11.4.4 Extended SAL Cache Services Class

Summary
The Extended SAL Cache Services Class provides services to initialize and flush the caches.

GUID
#define EFI_EXTENDED_SAL_CACHE_SERVICES_PROTOCOL_GUID_LO \
 0x4ba52743edc9494
#define EFI_EXTENDED_SAL_CACHE_SERVICES_PROTOCOL_GUID_HI \
 0x88f11352ef0a1888
#define EFI_EXTENDED_SAL_CACHE_SERVICES_PROTOCOL_GUID \
 {0xedc9494,0x2743,0x4ba5,\
 {0x88,0x18,0x0a,0xef,0x52,0x13,0xf1,0x88}}

Related Definitions
typedef enum {
 SalCacheInitFunctionId,
 SalCacheFlushFunctionId,
 SalCacheClassMaxFunctionId
} EFI_EXTENDED_SAL_CACHE_SERVICES_FUNC_ID;

Description

Table 10. Extended SAL Cache Services Class

Name Description

ExtendedSalCacheInit This function is equivalent in functionality to the SAL Procedure

SAL_CACHE_INIT. See the Intel Itanium Processor Family System

Abstraction Layer Specification Chapter 9.

ExtendedSalCacheFlush This function is equivalent in functionality to the SAL Procedure

SAL_CACHE_FLUSH. See the Intel Itanium Processor Family System

Abstraction Layer Specification Chapter 9.
218 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalCacheInit

Summary
This function is equivalent in functionality to the SAL Procedure SAL_CACHE_INIT. See the Intel
Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalCacheInit (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalCacheInitFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 219

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
220 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalCacheFlush

Summary
This function is equivalent in functionality to the SAL Procedure SAL_CACHE_FLUSH. See the
Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalCacheFlush (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalCacheFlushFunctionId.

Arg2

i_or_d parameter in SAL_CACHE_FLUSH.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 221

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

11.4.5 Extended SAL PAL Services Class

Summary
The Extended SAL PAL Services Class provides services to make PAL calls.

GUID
#define EFI_EXTENDED_SAL_PAL_SERVICES_PROTOCOL_GUID_LO \
 0x438d0fc2e1cd9d21
#define EFI_EXTENDED_SAL_PAL_SERVICES_PROTOCOL_GUID_HI \
 0x571e966de6040397
#define EFI_EXTENDED_SAL_PAL_SERVICES_PROTOCOL_GUID \
 {0xe1cd9d21,0x0fc2,0x438d, \
 {0x97,0x03,0x04,0xe6,0x6d,0x96,0x1e,0x57}}

Related Definitions
typedef enum {
 PalProcFunctionId,
 SetNewPalEntryFunctionId,
 GetNewPalEntryFunctionId,
 EsalUpdatePalFunctionId,
} EFI_EXTENDED_SAL_PAL_SERVICES_FUNC_ID;

Description

Table 11. Extended SAL PAL Services Class

Name Description

ExtendedSalPalProc This function provides a C wrapper for making PAL Procedure calls. See
the Intel Itanium Architecture Software Developers Manual Volume2:
System Architecture Section 11.10 for details on the PAL calling
conventions and the set of PAL Procedures.

ExtendedSalSetNewPalEntry This function records the physical or virtual PAL entry point.

ExtendedSalSetNewPalEntry This function retrieves the physical or virtual PAL entry point.
222 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalPalProc

Summary
This function provides a C wrapper for making PAL Procedure calls. See the Intel Itanium
Architecture Software Developers Manual Volume2: System Architecture Section 11.10 for details
on the PAL calling conventions and the set of PAL Procedures.

Prototype
PAL_PROC_RETURN
EFIAPI
ExtendedSalPalProc (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPalProcFunctionId.

Arg2

PAL_PROC Function ID.

Arg3

Arg2of the PAL_PROC.

Arg4

Arg3 of the PAL_PROC.

Arg5

Arg4 of the PAL_PROC.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 223

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function provide a C wrapper for making PAL Procedure calls. The PAL_PROC Function ID in
Arg2 is used to determine if the PAL_PROC is stacked or static. If the PAL has been shadowed, then
the memory copy of the PAL is called. Otherwise, the ROM version of the PAL is called. The caller
does not need to worry whether or not the PAL has been shadowed or not (except for the fact that
some of the PAL calls don’t work until PAL has been shadowed). If this function is called in virtual
mode before any required mapping have been converted to virtual addresses, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the return status from the
PAL_PROC is returned.
224 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalSetNewPalEntry

Summary
This function records the physical or virtual PAL entry point.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetNewPalEntry (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetNewPalEntryFunctionId.

Arg2

This parameter is interpreted as a BOOLEAN. If it is TRUE, then PAL Entry Point
specified by Arg3 is a physical address. If it is FALSE, then the Pal Entry Point
specified by Arg3 is a virtual address.

Arg3

The PAL Entry Point that is being set.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 225

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function records the PAL Entry Point specified by Arg3, so PAL_PROC calls can be made
with the EsalPalProcFunctionId Function ID. If Arg2 is TRUE, then Arg3 is the physical
address of the PAL Entry Point. If Arg2 is FALSE, then Arg3 is the virtual address of the PAL
Entry Point. If this function is called in virtual mode before any required mapping have been
converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The PAL Entry Point was set

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.
226 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetNewPalEntry

Summary
This function retrieves the physical or virtual PAL entry point.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetNewPalEntry (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetNewPalEntryFunctionId.

Arg2

This parameter is interpreted as a BOOLEAN. If it is TRUE, then physical address of
the PAL Entry Point is retrieved. If it is FALSE, then the virtual address of the Pal
Entry Point is retrieved.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 227

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function retrieves the PAL Entry Point that as previously set with
EsalSetNewPalEntryFunctionId. If Arg2 is TRUE, then the physical address of the PAL
Entry Point is returned in SAL_RETURN_REGS.r9 and EFI_SAL_SUCCESS is returned. If Arg2
is FALSE and a virtual mapping for the PAL Entry Point is not available, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. If Arg2 is FALSE and a virtual mapping
for the PAL Entry Point is available, then the virtual address of the PAL Entry Point is returned in
SAL_RETURN_REGS.r9 and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The PAL Entry Point was retrieved and returned in
SAL_RETURN_REGS.r9.

EFI_SAL_VIRTUAL_ADDRESS_ERROR A request for the virtual mapping of the PAL Entry Point was
requested, and a virtual mapping is not currently available.
228 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalUpdatePal

Summary
This function is equivalent in functionality to the SAL Procedure SAL_UPDATE_PAL. See the Intel
Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalUpdatePal (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalUpdatePal.

Arg2

param_buf parameter to SAL_UPDATE_PAL.

Arg3

scratch_buf parameter to SAL_UPDATE_PAL.

Arg4

scratch_buf_size parameter to SAL_UPDATE_PAL.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 229

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

11.4.6 Extended SAL Status Code Services Class

Summary
The Extended SAL Status Code Services Class provides services to report status code information.

GUID
#define EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_PROTOCOL_GUID_LO \
 0x420f55e9dbd91d
#define EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_PROTOCOL_GUID_HI \
 0x4fb437849f5e3996
#define EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_PROTOCOL_GUID \
 {0xdbd91d,0x55e9,0x420f,
 {0x96,0x39,0x5e,0x9f,0x84,0x37,0xb4,0x4f}}

Related Definitions
typedef enum {
 ReportStatusCodeServiceFunctionId,
} EFI_EXTENDED_SAL_STATUS_CODE_SERVICES_FUNC_ID;

Description

Table 12. Extended SAL Status Code Services Class

Name Description

ExtendedSalReportStatusCode This function is equivalent in functionality to the
ReportStatusCode() service of the Status Code Runtime

Protocol. See Section 12.2 of the Volume 2:Platform Initialization
Specification, Driver Execution Environment, Core Interface. The

function prototype for the ReportStatusCode() service is shown

in Related Definitions.
230 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalReportStatusCode

Summary
This function is equivalent in functionality to the ReportStatusCode() service of the Status
Code Runtime Protocol. See Section 12.2 of the Volume 2:Platform Initialization Specification,
Driver Execution Environment, Core Interface. The function prototype for the
ReportStatusCode() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalReportStatusCode (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalReportStatusCodeFunctionId.

Arg2

This argument is interpreted as type EFI_STATUS_CODE_TYPE. See the Type
parameter in Related Definitions.

Arg3 T

his argument is interpreted as type EFI_STATUS_CODE_VALUE. See the Value
parameter in Related Definitions.

Arg4

This argument is interpreted as type UINT32. See the Instance parameter in
Related Definitions.

Arg5

This argument is interpreted as a pointer to type CONST EFI_GUID. See the
CallerId parameter in Related Definitions.

Arg6

This argument is interpreted as pointer to type CONST EFI_STATUS_CODE_DATA.
See the Data parameter in Related Definitions.
Version 1.6 May 2017 231

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_REPORT_STATUS_CODE) (
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId OPTIONAL,
 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Description
This function performs the equivalent operation as the ReportStatusCode function of the Status
Code Runtime Protocol. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the ReportStatusCode() function of the
Status Code Runtime Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the ReportStatusCode()
function in the Status Code Runtime Protocol.

11.4.7 Extended SAL Monotonic Counter Services Class

Summary
The Extended SAL Monotonic Counter Services Class provides functions to access the monotonic
counter.

GUID
#define EFI_EXTENDED_SAL_MTC_SERVICES_PROTOCOL_GUID_LO \
232 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
 0x408b75e8899afd18
#define EFI_EXTENDED_SAL_MTC_SERVICES_PROTOCOL_GUID_HI \
 0x54f4cd7e2e6e1aa4
#define EFI_EXTENDED_SAL_MTC_SERVICES_PROTOCOL_GUID \
 {0x899afd18,0x75e8,0x408b,\
 {0xa4,0x1a,0x6e,0x2e,0x7e,0xcd,0xf4,0x54}}

Related Definitions
typedef enum {
 GetNextHighMotonicCountFunctionId,
} EFI_EXTENDED_SAL_MTC_SERVICES_FUNC_ID;

Description

Table 13. Extended SAL Monotonic Counter Services Class

Name Description

ExtendedSalGetNextHighMtc This function is equivalent in functionality to the EFI Runtime Service

GetNextHighMonotonicCount(). See UEFI 2.0 Specification

Section 7.4.2. The function prototype for the

GetNextHighMonotonicCount() service is shown in Related

Definitions.
Version 1.6 May 2017 233

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetNextHighMtc

Summary
This function is equivalent in functionality to the EFI Runtime Service
GetNextHighMonotonicCount(). See UEFI 2.0 Specification Section 7.4.2. The function
prototype for the GetNextHighMonotonicCount() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetNextHighMtc (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetNextHighMtcFunctionId.

Arg2

This argument is interpreted as a pointer to a UINT32. See the HighCount
parameter in Related Definitions.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
234 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_NEXT_HIGH_MONO_COUNT) (
 OUT UINT32 *HighCount
);

Description
This function performs the equivalent operation as the GetNextHighMonotoicCount()
function in the EFI Runtime Services Table. If this function is called in virtual mode before any
required mapping have been converted to virtual addresses, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the one of the status codes
defined in the GetNextHighMonotonicCount() function of the EFI Runtime Services Table
is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the
GetNextHighMonotonicCount() function in the EFI Runtime
Services Table.

11.4.8 Extended SAL Variable Services Class

Summary
The Extended SAL Variable Services Class provides functions to access EFI variables.

GUID
#define EFI_EXTENDED_SAL_VARIABLE_SERVICES_PROTOCOL_GUID_LO \
 0x4370c6414ecb6c53
#define EFI_EXTENDED_SAL_VARIABLE_SERVICES_PROTOCOL_GUID_HI \
 0x78836e490e3bb28c
#define EFI_EXTENDED_SAL_VARIABLE_SERVICES_PROTOCOL_GUID \
 {0x4ecb6c53,0xc641,0x4370, \
 {0x8c,0xb2,0x3b,0x0e,0x49,0x6e,0x83,0x78}}
Version 1.6 May 2017 235

Extended SAL Services Platform Initialization Specification, Vol. 4
Related Definitions
typedef enum {
 EsalGetVariableFunctionId,
 EsalGetNextVariableNameFunctionId,
 EsalSetVariableFunctionId,
 EsalQueryVariableInfoFunctionId,
} EFI_EXTENDED_SAL_VARIABLE_SERVICES_FUNC_ID;

Description

Table 14. Extended SAL Variable Services Class

Name Description

ExtendedSalGetVariable This function is equivalent in functionality to the EFI Runtime Service

GetVariable(). See UEFI 2.0 Specification Section 7.1. The

function prototype for the GetVariable() service is shown in

Related Definitions.

ExtendedSalGetNextVariableName This function is equivalent in functionality to the EFI Runtime Service

GetNextVariableName(). See UEFI 2.0 Specification

Section 7.1. The function prototype for the

GetNextVariableName() service is shown in Related

Definitions.

ExtendedSalSetVariable This function is equivalent in functionality to the EFI Runtime Service

SetVariable(). See UEFI 2.0 Specification Section 7.1. The

function prototype for the SetVariable() service is shown in

Related Definitions.

ExtendedSalQueryVariableInfo This function is equivalent in functionality to the EFI Runtime Service

QueryVariableInfo(). See UEFI 2.0 Specification Section

7.1. The function prototype for the QueryVariableInfo()

service is shown in Related Definitions.
236 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetVariable

Summary
This function is equivalent in functionality to the EFI Runtime Service GetVariable(). See
UEFI 2.0 Specification Section 7.1. The function prototype for the GetVariable() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetVariable (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetVariableFunctionId.

Arg2

This argument is interpreted as a pointer to a Unicode string. See the
VariableName parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_GUID. See the VendorGuid
parameter in Related Definitions.

Arg4

This argument is interpreted as a pointer to a value of type UINT32. See the
Attributes parameter in Related Definitions.

Arg5

This argument is interpreted as a pointer to a value of type UINTN. See the
DataSize parameter in Related Definitions.

Arg6

This argument is interpreted as a pointer to a buffer with type VOID *. See the Data
parameter in Related Definitions.
Version 1.6 May 2017 237

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_VARIABLE) (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 OUT UINT32 *Attributes, OPTIONAL
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Description
This function performs the equivalent operation as the GetVariable() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the GetVariable() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetVariable() function in the
EFI Runtime Services Table.
238 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetNextVariableName

Summary
This function is equivalent in functionality to the EFI Runtime Service
GetNextVariableName(). See UEFI 2.0 Specification Section 7.1. The function prototype
for the GetNextVariableName() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetNextVariableName (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetNextVariableNameFunctionId.

Arg2

This argument is interpreted as a pointer to value of type UINTN. See the
VariableNameSize parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to a Unicode string. See the VendorName
parameter in Related Definitions.

Arg4

This argument is interpreted as a pointer to a value of type EFI_GUID. See the
VendorGuid parameter in Related Definitions.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.6 May 2017 239

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_GET_NEXT_VARIABLE_NAME) (
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VendorGuid
);

Description
This function performs the equivalent operation as the GetNextVariableName() function in
the EFI Runtime Services Table. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetNextVariableName()
function of the EFI Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetNextVariableName()
function in the EFI Runtime Services Table.
240 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalSetVariable

Summary
This function is equivalent in functionality to the EFI Runtime Service SetVariable(). See
UEFI 2.0 Specification Section 7.1. The function prototype for the SetVariable() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetVariable (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetVariableFunctionId.

Arg2

This argument is interpreted as a pointer to a Unicode string. See the
VariableName parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to an EFI_GUID. See the VendorGuid
parameter in Related Definitions.

Arg4

This argument is interpreted as a value of type UINT32. See the Attributes
parameter in Related Definitions.

Arg5

This argument is interpreted as a value of type UINTN. See the DataSize
parameter in Related Definitions.

Arg6

This argument is interpreted as a pointer to a buffer with type VOID *. See the
Data parameter in Related Definitions.
Version 1.6 May 2017 241

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_SET_VARIABLE) (
 IN CHAR16 *VariableName,
 IN EFI_GUID *VendorGuid,
 IN UINT32 Attributes,
 IN UINTN DataSize,
 IN VOID *Data
);

Description
This function performs the equivalent operation as the SetVariable() function in the EFI
Runtime Services Table. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the SetVariable() function of the EFI
Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetVariable() function in the
EFI Runtime Services Table.
242 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalQueryVariableInfo

Summary
This function is equivalent in functionality to the EFI Runtime Service
QueryVariableInfo(). See UEFI 2.0 Specification Section 7.1. The function prototype for
the QueryVariableInfo() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalQueryVariableInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalQueryVariableInfoFunctionId.

Arg2

This argument is interpreted as a value of type UINT32. See the Attributes
parameter in Related Definitions.

Arg3

This argument is interpreted as a pointer to a value of type UINT64. See the
MaximumVariableStorageSize parameter in Related Definitions.

Arg4

This argument is interpreted as a pointer to a value of type UINT64. See the
RemainingVariableStorageSize parameter in Related Definitions.

Arg5

This argument is interpreted as a pointer to a value of type UINT64. See the
MaximumVariableSize parameter in Related Definitions.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.6 May 2017 243

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_QUERY_VARIABLE_INFO) (
 IN UINT32 Attributes,
 OUT UINT64 *MaximumVariableStorageSize,
 OUT UINT64 *RemainingVariableStorageSize,
 OUT UINT64 *MaximumVariableSize
);

Description
This function performs the equivalent operation as the QueryVariableInfo() function in the
EFI Runtime Services Table. If this function is called in virtual mode before any required mapping
have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is
returned. Otherwise, the one of the status codes defined in the QueryVariableInfo() function
of the EFI Runtime Services Table is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the QueryVariableInfo() function
in the EFI Runtime Services Table.

11.4.9 Extended SAL Firmware Volume Block Services Class

Summary
The Extended SAL Firmware Volume Block Services Class provides services that are equivalent to
the Firmware Volume Block Protocol in the Platform Initialization Specification.

GUID
#define EFI_EXTENDED_SAL_FVB_SERVICES_PROTOCOL_GUID_LO \
 0x4f1dbcbba2271df1
#define EFI_EXTENDED_SAL_FVB_SERVICES_PROTOCOL_GUID_HI \
 0x1a072f17bc06a998
244 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
#define EFI_EXTENDED_SAL_FVB_SERVICES_PROTOCOL_GUID \
 {0xa2271df1,0xbcbb,0x4f1d,\
 {0x98,0xa9,0x06,0xbc,0x17,0x2f,0x07,0x1a}}

Related Definitions
typedef enum {
 ReadFunctionId,
 WriteFunctionId,
 EraseBlockFunctionId,
 GetVolumeAttributesFunctionId,
 SetVolumeAttributesFunctionId,
 GetPhysicalAddressFunctionId,
 GetBlockSizeFunctionId,
} EFI_EXTENDED_SAL_FV_BLOCK_SERVICES_FUNC_ID;

Description

Table 15. Extended SAL Variable Services Class

Name Description

ExtendedSalRead This function is equivalent in functionality to the Read() service of the

EFI Firmware Volume Block Protocol. See Section 2.4 of the Volume
3:Platform Initialization Specification, Shared Architectural Elements.

The function prototype for the Read() service is shown in Related

Definitions.

ExtendedSalWrite This function is equivalent in functionality to the Write() service of

the EFI Firmware Volume Block Protocol. See Section 2.4 of the
Volume 3:Platform Initialization Specification, Shared Architectural

Elements. The function prototype for the Write() service is shown in

Related Definitions.

ExtendedSalEraseBlock This function is equivalent in functionality to the EraseBlocks()

service of the EFI Firmware Volume Block Protocol except this function
can only erase one block per request. See Section 2.4 of the Volume
3:Platform Initialization Specification, Shared Architectural Elements.

The function prototype for the EraseBlock() service is shown in

Related Definitions.

ExtendedSalGetAttributes This function is equivalent in functionality to the

GetAttributes() service of the EFI Firmware Volume Block

Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for

the GetAttributes() service is shown in Related Definitions.

ExtendedSalSetAttributes This function is equivalent in functionality to the

SetAttributes() service of the EFI Firmware Volume Block

Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for

the SetAttributes() service is shown in Related Definitions.
Version 1.6 May 2017 245

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetPhysicalAddress This function is equivalent in functionality to the

GetPhysicalAddress() service of the EFI Firmware Volume

Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for

the GetPhysicalAddress() service is shown in Related

Definitions.

ExtendedSalGetBlockSize This function is equivalent in functionality to the GetBlockSize()

service of the EFI Firmware Volume Block Protocol. See Section 2.4 of
the Volume 3:Platform Initialization Specification, Shared Architectural

Elements. The function prototype for the GetBlockSize() service

is shown in Related Definitions.

ExtendedSalEraseCustomBlockR
ange

This function is similar in functionality to the EraseBlocks() service of
the EFI Firmware Volume Block Protocol except this function can specify
a range of blocks with offsets into the starting and ending block. See
Section 2.4 of the Volume 3:Platform Initialization Specification, Shared
Architectural Elements. The function prototype for the

EraseBlock() service is shown in Related Definitions.
246 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalRead

Summary
This function is equivalent in functionality to the Read() service of the EFI Firmware Volume
Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification, Shared
Architectural Elements. The function prototype for the Read() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalRead (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbReadFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. See the Lba parameter in Related
Definitions.

Arg4

This argument is interpreted as type UINTN. See the Offset parameter in Related
Definitions.

Arg5

This argument is interpreted as a pointer to type UINTN. See the NumBytes
parameter in Related Definitions.
Version 1.6 May 2017 247

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg6

This argument is interpreted as pointer to a buffer of type VOID *. See the Buffer
parameter in Related Definitions.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_READ) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 OUT UINT8 *Buffer
);

Description
This function performs the equivalent operation as the Read() function of the EFI Firmware
Volume Block Protocol. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the Read() function of the EFI Firmware Volume
Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Read() function in the EFI
Firmware Volume Block Protocol.
248 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalWrite

Summary
This function is equivalent in functionality to the Write() service of the EFI Firmware Volume
Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification, Shared
Architectural Elements. The function prototype for the Write() service is shown in Related
Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalWrite (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbWriteFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. See the Lba parameter in Related
Definitions.

Arg4

This argument is interpreted as type UINTN. See the Offset parameter in Related
Definitions.

Arg5

This argument is interpreted as a pointer to type UINTN. See the NumBytes
parameter in Related Definitions.
Version 1.6 May 2017 249

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg6

This argument is interpreted as pointer to a buffer of type VOID *. See the Buffer
parameter in Related Definitions.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_WRITE) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN EFI_LBA Lba,
 IN UINTN Offset,
 IN OUT UINTN *NumBytes,
 IN UINT8 *Buffer
);

Description
This function performs the equivalent operation as the Write() function of the EFI Firmware
Volume Block Protocol. If this function is called in virtual mode before any required mapping have
been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned.
Otherwise, the one of the status codes defined in the Write() function of the EFI Firmware
Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the Write() function in the EFI
Firmware Volume Block Protocol.
250 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalEraseBlock

Summary
This function is equivalent in functionality to the EraseBlocks() service of the EFI Firmware
Volume Block Protocol except this function can only erase one block per request. See Section 2.4 of
the Volume 3:Platform Initialization Specification, Shared Architectural Elements. The function
prototype for the EraseBlock() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalEraseBlock (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbEraseBlockFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. This is the logical block address in
the firmware volume to erase. Only a single block can be specified with this Extended
SAL Procedure. The EraseBlocks() function in the EFI Firmware Volume Block
Protocol supports a variable number of arguments that allow one or more block ranges
to be specified.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.
Version 1.6 May 2017 251

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_ERASE_BLOCKS) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 ...
);

Description
This function performs the equivalent operation as the EraseBlock() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the EraseBlock() function of the
EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the EraseBlock() function in the
EFI Firmware Volume Block Protocol.
252 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetAttributes

Summary
This function is equivalent in functionality to the GetAttributes() service of the EFI Firmware
Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the GetAttributes() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetAttributes (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbGetAttributesFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as pointer to a value of type EFI_FVB_ATTRIBUTES.
See the Attributes parameter in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 253

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
EFI_STATUS
(EFIAPI *EFI_FVB_GET_ATTRIBUTES) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 OUT EFI_FVB_ATTRIBUTES *Attributes
);

Description
This function performs the equivalent operation as the GetAttributes() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetAttributes() function of
the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetAttributes() function in
the EFI Firmware Volume Block Protocol.
254 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalSetAttributes

Summary
This function is equivalent in functionality to the SetAttributes() service of the EFI Firmware
Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the SetAttributes() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetAttributes (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbSetAttributesFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as pointer to a value of type EFI_FVB_ATTRIBUTES.
See the Attributes parameter in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 255

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if
the Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_SET_ATTRIBUTES) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN OUT EFI_FVB_ATTRIBUTES *Attributes
);

Description
This function performs the equivalent operation as the SetAttributes() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the SetAttributes() function of
the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the SetAttributes() function in
the EFI Firmware Volume Block Protocol.
256 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetPhysicalAddress

Summary
This function is equivalent in functionality to the GetPhysicalAddress() service of the EFI
Firmware Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization
Specification, Shared Architectural Elements. The function prototype for the
GetPhysicalAddress() service is shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetPhysicalAddress (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbGetPhysicalAddressFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as pointer to a value of type
EFI_PHYSICAL_ADDRESS. See the Address parameter in Related Definitions.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 257

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_GET_PHYSICAL_ADDRESS) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 OUT EFI_PHYSICAL_ADDRESS *Address
);

Description

This function performs the equivalent operation as the GetPhysicalAddress() function of the
EFI Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetPhysicalAddress() func-
tion of the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetPhysicalAddress()
function in the EFI Firmware Volume Block Protocol.
258 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetBlockSize

Summary
This function is equivalent in functionality to the GetBlockSize() service of the EFI Firmware
Volume Block Protocol. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the GetBlockSize() service is
shown in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetBlockSize (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbGetBlockSizeFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL.

Arg3

This argument is interpreted as type EFI_LBA. See Lba parameter in Related
Definitions.

Arg4 T

his argument is interpreted as a pointer to a value of type UINTN. See BlockSize
parameter in Related Definitions.

Arg5

This argument is interpreted as a pointer to a value of type UINTN. See
NumberOfBlocks parameter in Related Definitions.

Arg6

Reserved. Must be zero.
Version 1.6 May 2017 259

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_GET_BLOCK_SIZE) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 IN EFI_LBA Lba,
 OUT UINTN *BlockSize,
 OUT UINTN *NumberOfBlocks
);

Description
This function performs the equivalent operation as the GetBlockSize() function of the EFI
Firmware Volume Block Protocol. If this function is called in virtual mode before any required
mapping have been converted to virtual addresses, then EFI_SAL_VIRTUAL_ADDRESS_ERROR
is returned. Otherwise, the one of the status codes defined in the GetBlockSize() function of
the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the GetBlockSize() function in
the EFI Firmware Volume Block Protocol.
260 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalEraseCustomBlockRange

Summary
This function is similar in functionality to the EraseBlocks() service of the EFI Firmware
Volume Block Protocol except this function can specify a range of blocks with offsets into the
starting and ending block. See Section 2.4 of the Volume 3:Platform Initialization Specification,
Shared Architectural Elements. The function prototype for the EraseBlock() service is shown
in Related Definitions.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalEraseCustomBlockRange (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalFvbEraseCustomBlockRangeFunctionId.

Arg2

This argument is interpreted as type UINTN that represents the Firmware Volume
Block instance. This instance value is used to lookup a
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL. See the This parameter in
Related Definitions.

Arg3

This argument is interpreted as type EFI_LBA. This is the starting logical block
address in the firmware volume to erase.

Arg4

This argument is interpreted as type UINTN. This is the offset into the starting logical
block to erase.

Arg5

This argument is interpreted as type EFI_LBA. This is the ending logical block
address in the firmware volume to erase.
Version 1.6 May 2017 261

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg6

This argument is interpreted as type UINTN. This is the offset into the ending logical
block to erase.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_ERASE_BLOCKS) (
 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
 ...
);

Description
This function performs a similar operation as the EraseBlock() function of the EFI Firmware
Volume Block Protocol. The main difference is that this function can perform a partial erase of the
starting and ending blocks. The start of the erase operation is specified by Arg3 and Arg4. The
end of the erase operation is specified by Arg5 and Arg6. If this function is called in virtual mode
before any required mapping have been converted to virtual addresses, then
EFI_SAL_VIRTUAL_ADDRESS_ERROR is returned. Otherwise, the one of the status codes
defined in the EraseBlock() function of the EFI Firmware Volume Block Protocol is returned.

Status Codes Returned

EFI_SAL_VIRTUAL_ADDRESS_ERROR This function was called in virtual mode before virtual mappings
for the specified Extended SAL Procedure are available.

Other See the return status codes for the EraseBlock() function in the
EFI Firmware Volume Block Protocol.

11.4.10 Extended SAL MCA Log Services Class

Summary
The Extended SAL MCA Log Services Class provides logging services for MCA events.
262 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
GUID
#define EFI_EXTENDED_SAL_MCA_LOG_SERVICES_PROTOCOL_GUID_LO \
 0x4c0338a3cb3fd86e
#define EFI_EXTENDED_SAL_MCA_LOG_SERVICES_PROTOCOL_GUID_HI \
 0x7aaba2a3cf905c9a
#define EFI_EXTENDED_SAL_MCA_LOG_SERVICES_PROTOCOL_GUID \
 {0xcb3fd86e,0x38a3,0x4c03,\
 {0x9a,0x5c,0x90,0xcf,0xa3,0xa2,0xab,0x7a}}

Related Definitions
typedef enum {
 SalGetStateInfoFunctionId,
 SalGetStateInfoSizeFunctionId,
 SalClearStateInfoFunctionId,
 SalGetStateBufferFunctionId,
 SalSaveStateBufferFunctionId,
} EFI_EXTENDED_SAL_MCA_LOG_SERVICES_FUNC_ID;
Version 1.6 May 2017 263

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetStateInfo

Summary
This function is equivalent in functionality to the SAL Procedure SAL_GET_STATE_INFO. See
the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetStateInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateInfoFunctionId.

Arg2

type parameter to SAL_GET_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

memaddr parameter to SAL_GET_STATE_INFO.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
264 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
Version 1.6 May 2017 265

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetStateInfoSize

Summary
This function is equivalent in functionality to the SAL Procedure SAL_GET_STATE_INFO_SIZE.
See the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetStateInfoSize (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateInfoSizeFunctionId.

Arg2

type parameter to SAL_GET_STATE_INFO_SIZE.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
266 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
Version 1.6 May 2017 267

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalClearStateInfo

Summary
This function is equivalent in functionality to the SAL Procedure SAL_CLEAR_STATE_INFO.
See the Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalClearStateInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateInfoFunctionId.

Arg2

type parameter to SAL_CLEAR_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
268 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
Version 1.6 May 2017 269

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetStateBuffer

Summary

Returns a memory buffer to store error records.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetStateBuffer (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetStateBufferFunctionId.

Arg2

Same as type parameter to SAL_GET_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
270 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns a memory buffer to store error records. The base address of the buffer is
returned in SAL_RETURN_REGS.r9, and the size of the buffer, in bytes, is returned in
SAL_RETURN_REGS.r10. If a buffer is not available, then EFI_OUT_OF_RESOURCES is
returned. Otherwise, EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The memory buffer to store error records was returned in r9 and r10.

EFI_OUT_OF_RESOURCES A memory buffer for string error records in not available.
Version 1.6 May 2017 271

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalSaveStateBuffer

Summary
Saves a memory buffer containing an error records to nonvolatile storage.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSaveStateBuffer (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSaveStateBufferFunctionId.

Arg2

Same as type parameter to SAL_GET_STATE_INFO.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
272 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description

This function saved a memory buffer containing an error record to nonvolatile storage.

Status Codes Returned

EFI_SUCCESS The memory buffer containing the error record was written to nonvolatile
storage.

TBD

11.4.11 Extended SAL Base Services Class

Summary
The Extended SAL Base Services Class provides base services that do not have any hardware
dependencies including a number of SAL Procedures required by the Intel Itanium Processor
Family System Abstraction Layer Specification.

GUID
#define EFI_EXTENDED_SAL_BASE_SERVICES_PROTOCOL_GUID_LO \
 0x41c30fe0d9e9fa06
#define EFI_EXTENDED_SAL_BASE_SERVICES_PROTOCOL_GUID_HI \
 0xf894335a4283fb96
#define EFI_EXTENDED_SAL_BASE_SERVICES_PROTOCOL_GUID \
 {0xd9e9fa06,0x0fe0,0x41c3,\
 {0x96,0xfb,0x83,0x42,0x5a,0x33,0x94,0xf8}}

Related Definitions
typedef enum {
 SalSetVectorsFunctionId,
 SalMcRendezFunctionId,
 SalMcSetParamsFunctionId,
 EsalGetVectorsFunctionId,
 EsalMcGetParamsFunctionId,
 EsalMcGetMcParamsFunctionId,
 EsalGetMcCheckinFlagsFunctionId,
 EsalGetPlatformBaseFreqFunctionId,
 EsalRegisterPhysicalAddrFunctionId,
 EsalBaseClassMaxFunctionId
} EFI_EXTENDED_SAL_BASE_SERVICES_FUNC_ID;
Version 1.6 May 2017 273

Extended SAL Services Platform Initialization Specification, Vol. 4
Description

Table 16. Extended SAL MP Services Class

Name Description

ExtendedSalSetVectors This function is equivalent in functionality to the SAL Procedure

SAL_SET_VECTORS. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.

ExtendedSalMcRendez This function is equivalent in functionality to the SAL Procedure

SAL_MC_RENDEZ. See the Intel Itanium Processor Family System

Abstraction Layer Specification Chapter 9.

ExtendedSalMcSetParams This function is equivalent in functionality to the SAL Procedure

SAL_MC_SET_PARAMS. See the Intel Itanium Processor Family

System Abstraction Layer Specification Chapter 9.

ExtendedSalGetVectors Retrieves information that was previously registered with the SAL

Procedure SAL_SET_VECTORS.

ExtendedSalMcGetParams Retrieves information that was previously registered with the SAL

Procedure SAL_MC_SET_PARAMS.

ExtendedSalMcGetMcParams Retrieves information that was previously registered with the SAL

Procedure SAL_MC_SET_PARAMS.

ExtendedSalGetMcCheckinFlags Used to determine if a specific CPU has called the SAL Procedure

SAL_MC_RENDEZ.

ExtendedSalGetPlatformBaseFreq This function is equivalent in functionality to the SAL Procedure

SAL_FREQ_BASE with a clock_type of 0. See the Intel Itanium

Processor Family System Abstraction Layer Specification Chapter 9.

ExtendedSalRegisterPhysicalAddr This function is equivalent in functionality to the SAL Procedure

SAL_REGISTER_PHYSICAL_ADDR. See the Intel Itanium

Processor Family System Abstraction Layer Specification Chapter 9.
274 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalSetVectors

Summary
This function is equivalent in functionality to the SAL Procedure SAL_SET_VECTORS. See the
Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetVectors (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetVectorsFunctionId.

Arg2

vector_type parameter to SAL_SET_VECTORS.

Arg3

phys_addr_1 parameter to SAL_SET_VECTORS.

Arg4

gp_1 parameter to SAL_SET_VECTORS.

Arg5

length_cs_1 parameter to SAL_SET_VECTORS.

Arg6

phys_addr_2 parameter to SAL_SET_VECTORS.

Arg7

gp_2 parameter to SAL_SET_VECTORS.

Arg8

length_cs_2 parameter to SAL_SET_VECTORS.
Version 1.6 May 2017 275

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
276 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalMcRendez

Summary
This function is equivalent in functionality to the SAL Procedure SAL_MC_RENDEZ. See the Intel
Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcRendez (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcRendezFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 277

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
278 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalMcSetParams

Summary

This function is equivalent in functionality to the SAL Procedure SAL_MC_SET_PARAMS. See the
Intel Itanium Processor Family System Abstraction Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcSetParams (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcSetParamsFunctionId.

Arg2

param_type parameter to SAL_MC_SET_PARAMS.

Arg3

i_or_m parameter to SAL_MC_SET_PARAMS.

Arg4

i_or_m_val parameter to SAL_MC_SET_PARAMS.

Arg5

time_out parameter to SAL_MC_SET_PARAMS.

Arg6

mca_opt parameter to SAL_MC_SET_PARAMS.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 279

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
280 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetVectors

Summary
Retrieves information that was previously registered with the SAL Procedure
SAL_SET_VECTORS.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetVectors (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetVectorsFunctionId.

Arg2

The vector type to retrieve. 0 – MCA, 1-BSP INIT, 2 – BOOT_RENDEZ, 3 – AP
INIT.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 281

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns the vector information for the vector specified by Arg2. If the specified vector
was not previously registered with the SAL Procedure SAL_SET_VECTORS, then
SAL_NO_INFORMATION_AVAILABLE is returned. Otherwise, the physical address of the
requested vector is returned in SAL_RETURN_REGS.r9, the global pointer(GP) value is returned in
SAL_RETURN_REGS.r10, the length and checksum information is returned in
SAL_RETURN_REGS.r10, and EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The information for the requested vector was returned,

SAL_NO_INFORMATION_AVAILABLE The requested vector has not been registered with the SAL
Procedure SAL_SET_VECTORS.
282 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalMcGetParams

Summary
Retrieves information that was previously registered with the SAL Procedure
SAL_MC_SET_PARAMS.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetParams (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetParamsFunctionId.

Arg2

The parameter type to retrieve. 1 – rendezvous interrupt, 2 – wake up, 3 – Corrected
Platform Error Vector.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 283

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns information for the parameter type specified by Arg2 that was previously
registered with the SAL Procedure SAL_MC_SET_PARAMS. If the parameter type specified by
Arg2 was not previously registered with the SAL Procedure SAL_MC_SET_PARAMS, then
SAL_NO_INFORMATION_AVAILABLE is returned. Otherwise, the i_or_m value is returned in
SAL_RETURN_REGS.r9, the i_or_m_val value is returned in SAL_RETURN_REGS.r10, and
EFI_SUCCESS is returned.

Status Codes Returned

EFI_SUCCESS The information for the requested vector was returned,

SAL_NO_INFORMATION_AVAILABLE The requested vector has not been registered with the SAL
Procedure SAL_SET_VECTORS.
284 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalMcGetMcParams

Summary
Retrieves information that was previously registered with the SAL Procedure
SAL_MC_SET_PARAMS.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetMcParams (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetMcParamsFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 285

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns information that was previously registered with the SAL Procedure
SAL_MC_SET_PARAMS. If the information was not previously registered with the SAL Procedure
SAL_MC_SET_PARAMS, then SAL_NO_INFORMATION_AVAILABLE is returned. Otherwise,
the rz_always value is returned in SAL_RETURN_REGS.r9, time_out value is returned in
SAL_RETURN_REGS.r10, binit_escalate value is returned in SAL_RETURN_REGS.r11.

Status Codes Returned

EFI_SUCCESS The information for the requested vector was returned,

SAL_NO_INFORMATION_AVAILABLE The requested vector has not been registered with the SAL
Procedure SAL_SET_VECTORS.
286 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetMcCheckinFlags

Summary
Used to determine if a specific CPU has called the SAL Procedure SAL_MC_RENDEZ.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetMcCheckinFlags (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetMcChckinFlagsFunctionId.

Arg2

The index of the CPU in the set of enabled CPUs to check.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
Version 1.6 May 2017 287

Extended SAL Services Platform Initialization Specification, Vol. 4
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function check to see if the CPU index specified by Arg2 has called the SAL Procedure
SAL_MC_RENDEZ. The CPU index values are assigned by the Extended SAL MP Services Class.
If the CPU specified by Arg2 has called the SAL Procedure SAL_MC_RENDEZ, then 1 is returned
in SAL_RETURN_REGS.r9. Otherwise, SAL_RETURN_REGS.r9 is set to 0.
EFI_SAL_SUCCESS is always returned.

Status Codes Returned

EFI_SAL_SUCCESS The checkin status of the requested CPU was returned.
288 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetPlatformBaseFreq

Summary
This function is equivalent in functionality to the SAL Procedure SAL_FREQ_BASE with a
clock_type of 0. See the Intel Itanium Processor Family System Abstraction Layer Specification
Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcGetPlatformBaseFreq (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcGetPlatformBaseFreqFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.
Version 1.6 May 2017 289

Extended SAL Services Platform Initialization Specification, Vol. 4
Arg8 Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended

SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.
290 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalRegisterPhysicalAddr

Summary
This function is equivalent in functionality to the SAL Procedure
SAL_REGISTER_PHYSICAL_ADDR. See the Intel Itanium Processor Family System Abstraction
Layer Specification Chapter 9.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalRegisterPhysicalAddr (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalRegisterPhysicalAddrFunctionId.

Arg2

phys_entity parameter to SAL_REGISTER_PHYSICAL_ADDRESS.

Arg3

paddr parameter to SAL_REGISTER_PHYSICAL_ADDRESS.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
Version 1.6 May 2017 291

Extended SAL Services Platform Initialization Specification, Vol. 4
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

11.4.12 Extended SAL MP Services Class

Summary
The Extended SAL MP Services Class provides services for managing multiple CPUs.

GUID
#define EFI_EXTENDED_SAL_MP_SERVICES_PROTOCOL_GUID_LO \
 0x4dc0cf18697d81a2
#define EFI_EXTENDED_SAL_MP_SERVICES_PROTOCOL_GUID_HI \
 0x3f8a613b11060d9e
#define EFI_EXTENDED_SAL_MP_SERVICES_PROTOCOL_GUID \
 {0x697d81a2,0xcf18,0x4dc0,\
 {0x9e,0x0d,0x06,0x11,0x3b,0x61,0x8a,0x3f}}

Related Definitions
typedef enum {
 AddCpuDataFunctionId,
 RemoveCpuDataFunctionId,
 ModifyCpuDataFunctionId,
 GetCpuDataByIdFunctionId,
 GetCpuDataByIndexFunctionId,
 SendIpiFunctionId,
 CurrentProcInfoFunctionId,
 NumProcessorsFunctionId,
 SetMinStateFunctionId,
 GetMinStateFunctionId,
 EsalPhysicalIdInfo,
} EFI_EXTENDED_SAL_MP_SERVICES_FUNC_ID;

Description

Table 17. Extended SAL MP Services Class

Name Description

ExtendedSalAddCpuData Add a CPU to the database of CPUs.

ExtendedSalRemoveCpuData Add a CPU to the database of CPUs.

ExtendedSalModifyCpuData Updates the data for a CPU that is already in the database of CPUs.

ExtendedSalGetCpuDataById Returns the information on a CPU specified by a Global ID.
292 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ExtendedSalGetCpuDataByIndex Returns information on a CPU specified by an index.

ExtendedSalWhoAmI Returns the Global ID for the calling CPU.

ExtendedSalNumProcessors Returns the number of currently enabled CPUs, the total number of
CPUs, and the maximum number of CPUs that the platform supports.

ExtendedSalSetMinState Sets the MINSTATE pointer for the CPU specified by a Global ID.

ExtendedSalGetMinState Retrieves the MINSTATE pointer for the CPU specified by a Global ID.

ExtendedSalPhysicalIdInfo Retrieves the Physical ID of a CPU in the platform.
Version 1.6 May 2017 293

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalAddCpuData

Summary
Add a CPU to the database of CPUs.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalAddCpuData (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalAddCpuDataFunctionId.

Arg2

The 64-bit Global ID of the CPU being added.

Arg3

The enable flag for the CPU being added. This value is interpreted as type BOOLEAN.
TRUE means the CPU is enabled. FALSE means the CPU is disabled.

Arg4 T

he PAL Compatibility value for the CPU being added.

Arg5

The 16-bit Platform ID of the CPU being added.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
294 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function adds the CPU with a Global ID specified by Arg2, the enable flag specified by Arg3,
and the PAL Compatibility value specified by Arg4 to the database of CPUs in the platform. If
there are not enough resource available to add the CPU, then EFI_SAL_NOT_ENOUGH_SCRATCH
is returned. Otherwise, the CPU to added to the database, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU was added to the database.

EFI_SAL_NOT_ENOUGH_SCRATCH There are not enough resource available to add the CPU.
Version 1.6 May 2017 295

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalRemoveCpuData

Summary
Add a CPU to the database of CPUs.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalRemoveCpuData (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalRemoveCpuDataFunctionId.

Arg2

The 64-bit Global ID of the CPU being added.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
296 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function removes the CPU with a Global ID specified by Arg2 from the database of CPUs in
the platform. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, the CPU specified by Arg2 is removed
from the database of CPUs, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU was removed from the database.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.6 May 2017 297

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalModifyCpuData

Summary
Updates the data for a CPU that is already in the database of CPUs.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalModifyCpuData (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalModifyCpuDataFunctionId.

Arg2

The 64-bit Global ID of the CPU being updated.

Arg3

The enable flag for the CPU being updated. This value is interpreted as type
BOOLEAN. TRUE means the CPU is enabled. FALSE means the CPU is disabled.

Arg4

The PAL Compatibility value for the CPU being updated.

Arg5

The 16-bit Platform ID of the CPU being updated.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
298 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function updates the CPU with a Global ID specified by Arg2, the enable flag specified by
Arg3, and the PAL Compatibility value specified by Arg4 in the database of CPUs in the platform.
If the CPU specified by Arg2 is not present in the database, then EFI_SAL_NO_INFORMATION is
returned. Otherwise, the CPU specified by Arg2 is updates with the enable flag specified by Arg3
and the PAL Compatibility value specified by Arg4, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU database was updated.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.6 May 2017 299

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetCpuDataById

Summary
Returns the information on a CPU specified by a Global ID.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetCpuDataById (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetCpuDataByIdFunctionId.

Arg2

The 64-bit Global ID of the CPU to lookup.

Arg3 T

his parameter is interpreted as a BOOLEAN value. If TRUE, then the index in the set of
enabled CPUs in the database is returned. If FALSE, then the index in the set of all
CPUs in the database is returned.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
300 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the CPU specified by Arg2 in the CPU database and returns the enable status
and PAL Compatibility value. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, the enable status is returned in
SAL_RETURN_REGS.r9, the PAL Compatibility value is returned in SAL_RETURN_REGS.r10,
and EFI_SAL_SUCCESS is returned. If Arg3 is TRUE, then the index of the CPU specified by
Arg2 in the set of enabled CPUs is returned in SAL_RETURN_REGS.r11. If Arg3 is FALSE,
then the index of the CPU specified by Arg2 in the set of all CPUs is returned in
SAL_RETURN_REGS.r11.

Status Codes Returned

EFI_SAL_SUCCESS The information on the specified CPU was returned.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.6 May 2017 301

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetCpuDataByIndex

Summary
Returns information on a CPU specified by an index.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalGetCpuDataByIndex (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalGetCpuDataByIndexFunctionId.

Arg2

The index of the CPU to lookup.

Arg3

This parameter is interpreted as a BOOLEAN value. If TRUE, then the index in Arg2
is the index in the set of enabled CPUs. If FALSE, then the index in Arg2 is the index
in the set of all CPUs.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
302 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the CPU specified by Arg2 in the CPU database and returns the enable status
and PAL Compatibility value. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, the enable status is returned in
SAL_RETURN_REGS.r9, the PAL Compatibility value is returned in SAL_RETURN_REGS.r10,
the Global ID is returned in SAL_RETURN_REGS.r11, and EFI_SAL_SUCCESS is returned. If
Arg3 is TRUE, then Arg2 is the index in the set of enabled CPUs. If Arg3 is FALSE, then Arg2
is the index in the set of all CPUs.

Status Codes Returned

EFI_SAL_SUCCESS The information on the specified CPU was returned.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.6 May 2017 303

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalWhoiAmI

Summary
Returns the Global ID for the calling CPU.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalWhoAmI (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalWhoAmIFunctionId.

Arg2 T

his parameter is interpreted as a BOOLEAN value. If TRUE, then the index in the set of
enabled CPUs in the database is returned. If FALSE, then the index in the set of all
CPUs in the database is returned.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
304 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the Global ID of the calling CPU. If the calling CPU is not present in the
database, then EFI_SAL_NO_INFORMATION is returned. Otherwise, the Global ID is returned in
SAL_RETURN_REGS.r9, the PAL Compatibility value is returned in SAL_RETURN_REGS.r10,
and EFI_SAL_SUCCESS is returned. If Arg2 is TRUE, then the index of the calling CPU in the
set of enabled CPUs is returned in SAL_RETURN_REGS.r11. If Arg3 is FALSE, then the index of
the calling CPU in the set of all CPUs is returned in SAL_RETURN_REGS.r11.

Status Codes Returned

EFI_SAL_SUCCESS The Global ID for the calling CPU was returned.

EFI_SAL_NO_INFORMATION The calling CPU is not in the database.
Version 1.6 May 2017 305

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalNumProcessors

Summary
Returns the number of currently enabled CPUs, the total number of CPUs, and the maximum
number of CPUs that the platform supports.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalNumProcessors (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalNumProcessorsFunctionId.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
306 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function returns the maximum number of CPUs that the platform supports in
SAL_RETURN_REGS.r9, the total number of CPUs in SAL_RETURN_REGS.r10, and the
number of enabled CPUs in SAL_RETURN_REGS.r11. EFI_SAL_SUCCESS is always returned.

Status Codes Returned

EFI_SAL_SUCCESS The information on the number of CPUs in the platform was
returned.
Version 1.6 May 2017 307

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalSetMinState

Summary
Sets the MINSTATE pointer for the CPU specified by a Global ID.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetMinState (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetMinStateFunctionId.

Arg2

The 64-bit Global ID of the CPU to set the MINSTATE pointer.

Arg3

This parameter is interpreted as a pointer to the MINSTATE area for the CPU
specified by Arg2.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.
308 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.

ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function sets the MINSTATE pointer for the CPU specified by Arg2 to the buffer specified by
Arg3. If the CPU specified by Arg2 is not present in the database, then
EFI_SAL_NO_INFORMATION is returned. Otherwise, EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The MINSTATE pointer was set for the specified CPU.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.6 May 2017 309

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalGetMinState

Summary
Retrieves the MINSTATE pointer for the CPU specified by a Global ID.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalSetMinState (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalSetMinStateFunctionId.

Arg2

The 64-bit Global ID of the CPU to get the MINSTATE pointer.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
310 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function retrieves the MINSTATE pointer for the CPU specified by Arg2. If the CPU specified
by Arg2 is not present in the database, then EFI_SAL_NO_INFORMATION is returned. Other-
wise, the MINSTATE pointer for the specified CPU is returned in SAL_RETURN_REGS.r9, and
EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The MINSTATE pointer for the specified CPU was retrieved.

EFI_SAL_NO_INFORMATION The specified CPU is not in the database.
Version 1.6 May 2017 311

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalPhysicalIdInfo

Summary
Returns the Physical ID for the calling CPU.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalPhysicalIdInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalPhysicalIdInfo.

Arg2

Reserved. Must be zero.

Arg3

Reserved. Must be zero.

Arg4

Reserved. Must be zero.

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
312 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function looks up the Physical ID of the calling CPU. If the calling CPU is not present in the
database, then EFI_SAL_NO_INFORMATION is returned. Otherwise, the Physical ID is returned
in SAL_RETURN_REGS.r9, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS The Physical ID for the calling CPU was returned.

EFI_SAL_NO_INFORMATION The calling CPU is not in the database.

11.4.13 Extended SAL MCA Services Class

Summary
The Extended SAL MCA Services Class provides services to

GUID
#define EFI_EXTENDED_SAL_MCA_SERVICES_PROTOCOL_GUID_LO \
 0x42b16cc72a591128
#define EFI_EXTENDED_SAL_MCA_SERVICES_PROTOCOL_GUID_HI \
 0xbb2d683b9358f08a
#define EFI_EXTENDED_SAL_MCA_SERVICES_PROTOCOL_GUID \
 {0x2a591128,0x6cc7,0x42b1,\
 {0x8a,0xf0,0x58,0x93,0x3b,0x68,0x2d,0xbb}}

Related Definitions
typedef enum {
 McaGetStateInfoFunctionId,
 McaRegisterCpuFunctionId,
} EFI_EXTENDED_SAL_MCA_SERVICES_FUNC_ID;

Description

Table 18. Extended SAL MCA Services Class

Name Description

ExtendedSalMcaGetStateInfo Obtain the buffer corresponding to the Machine Check Abort state
information.

ExtendedSalMcaRegisterCpu Register the CPU instance for the Machine Check Abort handling.
Version 1.6 May 2017 313

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalMcaGetStateInfo

Summary
Obtain the buffer corresponding to the Machine Check Abort state information.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcaGetStateInfo (
 IN UINT64 FunctionId,
 IN UINT64 Arg2,
 IN UINT64 Arg3,
 IN UINT64 Arg4,
 IN UINT64 Arg5,
 IN UINT64 Arg6,
 IN UINT64 Arg7,
 IN UINT64 Arg8,
 IN BOOLEAN VirtualMode,
 IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcaGetStateInfoFunctionId.

Arg2

The 64-bit Global ID of the CPU to get the MINSTATE pointer.

Arg3

Pointer to the state buffer for output.

Arg4

Pointer to the required buffer size for output

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
314 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function retrieves the MINSTATE pointer specified by Arg3 for the CpuId specified by Arg2,
and calculates required size specified by Arg4. If the CPU specified by Arg2 was not registered in
system, then EFI_SAL_NO_INFORMATION is returned. Otherwise, the CPU state buffer related
information will be returned, and EFI_SAL_SUCCESS is returned.

Status Codes Returned

EFI_SAL_SUCCESS MINSTATE successfully got and size calculated.

EFI_SAL_NO_INFORMATION The CPU was not registered in system.
Version 1.6 May 2017 315

Extended SAL Services Platform Initialization Specification, Vol. 4
ExtendedSalMcaRegisterCpu

Summary
Register the CPU instance for the Machine Check Abort handling.

Prototype
SAL_RETURN_REGS
EFIAPI
ExtendedSalMcaRegisterCpu (
IN UINT64 FunctionId,
IN UINT64 Arg2,
IN UINT64 Arg3,
IN UINT64 Arg4,
IN UINT64 Arg5,
IN UINT64 Arg6,
IN UINT64 Arg7,
IN UINT64 Arg8,
IN BOOLEAN VirtualMode,
IN VOID *ModuleGlobal OPTIONAL
);

Parameters
FunctionId

Must be EsalMcaRegisterCpuFunctionId.

Arg2

The 64-bit Global ID of the CPU to register its MCA state buffer.

Arg3

The pointer of the CPU's state buffer.

Arg4

Reserved. Must be zero

Arg5

Reserved. Must be zero.

Arg6

Reserved. Must be zero.

Arg7

Reserved. Must be zero.

Arg8

Reserved. Must be zero.

VirtualMode

TRUE if the Extended SAL Procedure is being invoked in virtual mode. FALSE if the
Extended SAL Procedure is being invoked in physical mode.
316 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 Extended SAL Services
ModuleGlobal

A pointer to the global context associated with this Extended SAL Procedure.
Implementation dependent.

Description
This function registers MCA state buffer specified by Agr3 for CPU specified by Arg2. If the CPU
specified by Arg2 was not registered in system, then EFI_SAL_NO_INFORMATION is returned.
Otherwise, the CPU state buffer is registered for MCA handing, and EFI_SAL_SUCCESS is
returned.

Status Codes Returned

EFI_SAL_SUCCESS The CPU state buffer is registered for MCA handing
successfully.

EFI_SAL_NO_INFORMATION The CPU was not registered in system.
Version 1.6 May 2017 317

Extended SAL Services Platform Initialization Specification, Vol. 4
318 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4 SMM SPI Protocol Stack
12 SMM SPI Protocol Stack

12.1 Design
The design of the SPI protocol stack is almost identical between SMM and DXE. See the section on
SPI Protocol Stack in Volume 5 for more details. The differences are described in this section.

SMM SPI support is primarily used to support SPI flash devices. Since SMM does not support
device paths, there is no mechanism to identify a SPI controller and properly connect it to the
corresponding bus in the board database. As such, only a single SPI host controller is allowed in
SMM. The SMM version of the SPI bus driver connects to the first and only SPI host controller
identified by gEfiSpiSmmHcProtocolGuid.

A separate SMM specific SPI configuration database is provided by the board layer. The SMM SPI
bus driver connects to the SMM version of the SPI configuration database identified by
gEfiSpiSmmConfigurationProtocolGuid. The SMM version of the SPI bus driver verifies that there
is a single bus in the SMM version of the board database and connects this to the SPI controller.

The SPI protocol declarations are identical between SMM and DXE but SMM uses different GUIDs
to identify the SPI protocols for SMM.

12.2 SMM SPI Protocols

EFI_LEGACY _SPI_SMM_FLASH_PROTOCOL GUID

// {Se3848d4-0db5-4fc0-9729-3f353d4f879f}
#define EFI_LEGACY_SPI_SMM_FLASH_PROTOCOL \
{ 0x5e3848d4, 0x0db5, 0x4fc0, { 0x97, 0x29, 0x3f, 0x35, \ 0x3d,
0x4f, 0x87, 0x9f }}

EFI_SPI_SMM_NOR_FLASH_PROTOCOL GUID

// {aab18f19-fe14-4666-8604-87ff6d662c9a}
#define EFI_SPI_SMM_NOR_FLASH_PROTOCOL \
{ 0xaab18f19, 0xfe14, 0x4666, { 0x86, 0x04, 0x87, 0xff, \ 0x6d,
0x66, 0x2c, 0x9a }}

SSM Flash Driver GUID
Use a pointer to gEfiSpiSmmNorFlashDriverGuid in the EFI_SPI_PERIPHERAL structure to connect a SPI

NOR flash part to the SMM SPI flash driver.

EFI- SPI- SMM- CONFIGURATION PROTOCOL GUID

// {995c6eca-171b-45fd-a3aa-fd4c9c9def59}
#define EFI_SPI_SMM_CONFIGURATION_PROTOCOL \
Version 1.6 May 2017 319

SMM SPI Protocol Stack Platform Initialization Specification, Vol. 4
{ 0x995c6eca, 0x171b, 0x45fd, { 0xa3, 0xaa, 0xfd, 0x4c, \ 0x9c,
0x9d, 0xef, 0x59 }}

EFI- SPI- SMM HC- PROTOCOL GUID

// {e9f02217-2093-4470-8a54-5c2cffe73ecb}
#define EFI_SPI_SMM_HC_PROTOCOL \
{ 0xe9f02217, 0x2093, 0x4470, { 0x8a, 0x54, 0x5c, 0x2c, \
0xff, 0xe7, 0x3e, 0xcb }}

EFI LEGACY- SPI- SMM- CONTROLLER- PROTOCOL GUID

// {62331b78-d8d0-4c8c-8ccb-d27dfe32db9b}
#define EFI_LEGACY_SPI_SMM_CONTROLLER_GUID \
{ 0x62331b78, 0xd8d0, 0x4c8c, { 0x8c, 0xcb, 0xd2, 0x7d, \ 0xfe,
0x32, 0xdb, 0x9b }}
320 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
Appendix A
Management Mode Backward Compatibility Types

In versions of the PI specification up to and including version 1.4, this volume described System
Management Mode (SMM), and many of the types were named with this acronym as a part of their
name. With later versions of the PI specification, these types and constants were renamed to follow
the Management Mode (MM) nomenclature, to abstract the concepts from the x86 architecture
System Management Mode.

In order to maintain continuity, this appendix details typedefs and #define statements that allow code
developed with these earlier versions of the specification to compile unchanged.
Version 1.6 May 2017 321

Platform Initialization Specification, Vol. 4
typedef EFI_MM_ENTRY_POINT EFI_SMM_ENTRY_POINT;
typedef EFI_MM_ENTRY_CONTEXT EFI_SMM_ENTRY_CONTEXT;
typedef EFI_MM_STARTUP_THIS_AP EFI_SMM_STARTUP_THIS_AP;
#define EFI_SMM_SYSTEM_TABLE2_REVISION EFI_MM_SYSTEM_TABLE_REVISION
#define SMM_SMST_SIGNATURE MM_MMST_SIGNATURE
#define SMM_SPECIFICATION_MAJOR_REVISION
MM_SPECIFICATION_MAJOR_REVISION
#define SMM_SPECIFICATION_MINOR_REVISION
MM_SPECIFICATION_MINOR_REVISION
typedef EFI_MM_INSTALL_CONFIGURATION_TABLE
EFI_SMM_INSTALL_CONFIGURATION_TABLE2;
typedef EFI_MM_CPU_IO_PROTOCOL EFI_SMM_CPU_IO2_PROTOCOL;
typedef EFI_MM_REGISTER_PROTOCOL_NOTIFY
EFI_SMM_REGISTER_PROTOCOL_NOTIFY;
typedef EFI_MM_INTERRUPT_MANAGE EFI_SMM_INTERRUPT_MANAGE;
typedef EFI_MM_INTERRUPT_REGISTER EFI_SMM_INTERRUPT_REGISTER;
typedef EFI_MM_INTERRUPT_UNREGISTER EFI_SMM_INTERRUPT_UNREGISTER;
typedef EFI_MM_NOTIFY_FN EFI_SMM_NOTIFY_FN;
typedef EFI_MM_HANDLER_ENTRY_POINT EFI_SMM_HANDLER_ENTRY_POINT2;
typedef EFI_MM_STATUS_CODE_PROTOCOL EFI_SMM_STATUS_CODE_PROTOCOL;
#define EFI_SMM_STATUS_CODE_PROTOCOL_GUID
EFI_MM_STATUS_CODE_PROTOCOL_GUID
typedef EFI_MM_REPORT_STATUS_CODE EFI_SMM_REPORT_STATUS_CODE;
typedef EFI_MM_CPU_PROTOCOL EFI_SMM_CPU_PROTOCOL;
#define EFI_SMM_CPU_PROTOCOL_GUID EFI_MM_CPU_PROTOCOL_GUID
typedef EFI_MM_READ_SAVE_STATE EFI_SMM_READ_SAVE_STATE;
#define EFI_SMM_SAVE_STATE_REGISTER_GDTBASE
EFI_MM_SAVE_STATE_REGISTER_GDTBASE
#define EFI_SMM_SAVE_STATE_REGISTER_IDTBASE
EFI_MM_SAVE_STATE_REGISTER_IDTBASE
#define EFI_SMM_SAVE_STATE_REGISTER_LDTBASE
EFI_MM_SAVE_STATE_REGISTER_LDTBASE
#define EFI_SMM_SAVE_STATE_REGISTER_GDTLIMIT
EFI_MM_SAVE_STATE_REGISTER_GDTLIMIT
#define EFI_SMM_SAVE_STATE_REGISTER_IDTLIMIT
EFI_MM_SAVE_STATE_REGISTER_IDTLIMIT
#define EFI_SMM_SAVE_STATE_REGISTER_LDTLIMIT
EFI_MM_SAVE_STATE_REGISTER_LDTLIMIT
#define EFI_SMM_SAVE_STATE_REGISTER_LDTINFO
EFI_MM_SAVE_STATE_REGISTER_LDTINFO
#define EFI_SMM_SAVE_STATE_REGISTER_ES EFI_MM_SAVE_STATE_REGISTER_ES
#define EFI_SMM_SAVE_STATE_REGISTER_CS EFI_MM_SAVE_STATE_REGISTER_CS
#define EFI_SMM_SAVE_STATE_REGISTER_SS EFI_MM_SAVE_STATE_REGISTER_SS
#define EFI_SMM_SAVE_STATE_REGISTER_DS EFI_MM_SAVE_STATE_REGISTER_DS
#define EFI_SMM_SAVE_STATE_REGISTER_FS EFI_MM_SAVE_STATE_REGISTER_FS
#define EFI_SMM_SAVE_STATE_REGISTER_GS EFI_MM_SAVE_STATE_REGISTER_GS
#define EFI_SMM_SAVE_STATE_REGISTER_LDTR_SEL
EFI_MM_SAVE_STATE_REGISTER_LDTR_SEL
#define EFI_SMM_SAVE_STATE_REGISTER_TR_SEL
EFI_MM_SAVE_STATE_REGISTER_TR_SEL
#define EFI_SMM_SAVE_STATE_REGISTER_DR7 EFI_MM_SAVE_STATE_REGISTER_DR7
322 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
#define EFI_SMM_SAVE_STATE_REGISTER_DR6 EFI_MM_SAVE_STATE_REGISTER_DR6
#define EFI_SMM_SAVE_STATE_REGISTER_R8 EFI_MM_SAVE_STATE_REGISTER_R8
#define EFI_SMM_SAVE_STATE_REGISTER_R9 EFI_MM_SAVE_STATE_REGISTER_R9
#define EFI_SMM_SAVE_STATE_REGISTER_R10 EFI_MM_SAVE_STATE_REGISTER_R10
#define EFI_SMM_SAVE_STATE_REGISTER_R11 EFI_MM_SAVE_STATE_REGISTER_R11
#define EFI_SMM_SAVE_STATE_REGISTER_R12 EFI_MM_SAVE_STATE_REGISTER_R12
#define EFI_SMM_SAVE_STATE_REGISTER_R13 EFI_MM_SAVE_STATE_REGISTER_R13
#define EFI_SMM_SAVE_STATE_REGISTER_R14 EFI_MM_SAVE_STATE_REGISTER_R14
#define EFI_SMM_SAVE_STATE_REGISTER_R15 EFI_MM_SAVE_STATE_REGISTER_R15
#define EFI_SMM_SAVE_STATE_REGISTER_RAX EFI_MM_SAVE_STATE_REGISTER_RAX
#define EFI_SMM_SAVE_STATE_REGISTER_RBX EFI_MM_SAVE_STATE_REGISTER_RBX
#define EFI_SMM_SAVE_STATE_REGISTER_RCX EFI_MM_SAVE_STATE_REGISTER_RCX
#define EFI_SMM_SAVE_STATE_REGISTER_RDX EFI_MM_SAVE_STATE_REGISTER_RDX
#define EFI_SMM_SAVE_STATE_REGISTER_RSP EFI_MM_SAVE_STATE_REGISTER_RSP
#define EFI_SMM_SAVE_STATE_REGISTER_RBP EFI_MM_SAVE_STATE_REGISTER_RBP
#define EFI_SMM_SAVE_STATE_REGISTER_RSI EFI_MM_SAVE_STATE_REGISTER_RSI
#define EFI_SMM_SAVE_STATE_REGISTER_RDI EFI_MM_SAVE_STATE_REGISTER_RDI
#define EFI_SMM_SAVE_STATE_REGISTER_RIP EFI_MM_SAVE_STATE_REGISTER_RIP
#define EFI_SMM_SAVE_STATE_REGISTER_RFLAGS
EFI_MM_SAVE_STATE_REGISTER_RFLAGS
#define EFI_SMM_SAVE_STATE_REGISTER_CR0 EFI_MM_SAVE_STATE_REGISTER_CR0
#define EFI_SMM_SAVE_STATE_REGISTER_CR3 EFI_MM_SAVE_STATE_REGISTER_CR3
#define EFI_SMM_SAVE_STATE_REGISTER_CR4 EFI_MM_SAVE_STATE_REGISTER_CR4
#define EFI_SMM_SAVE_STATE_REGISTER_FCW EFI_MM_SAVE_STATE_REGISTER_FCW
#define EFI_SMM_SAVE_STATE_REGISTER_FSW EFI_MM_SAVE_STATE_REGISTER_FSW
#define EFI_SMM_SAVE_STATE_REGISTER_FTW EFI_MM_SAVE_STATE_REGISTER_FTW
#define EFI_SMM_SAVE_STATE_REGISTER_OPCODE
EFI_MM_SAVE_STATE_REGISTER_OPCODE
#define EFI_SMM_SAVE_STATE_REGISTER_FP_EIP
EFI_MM_SAVE_STATE_REGISTER_FP_EIP
#define EFI_SMM_SAVE_STATE_REGISTER_FP_CS
EFI_MM_SAVE_STATE_REGISTER_FP_CS
#define EFI_SMM_SAVE_STATE_REGISTER_DATAOFFSET
EFI_MM_SAVE_STATE_REGISTER_DATAOFFSET
#define EFI_SMM_SAVE_STATE_REGISTER_FP_DS
EFI_MM_SAVE_STATE_REGISTER_FP_DS
#define EFI_SMM_SAVE_STATE_REGISTER_MM0 EFI_MM_SAVE_STATE_REGISTER_MM0
#define EFI_SMM_SAVE_STATE_REGISTER_MM1 EFI_MM_SAVE_STATE_REGISTER_MM1
#define EFI_SMM_SAVE_STATE_REGISTER_MM2 EFI_MM_SAVE_STATE_REGISTER_MM2
#define EFI_SMM_SAVE_STATE_REGISTER_MM3 EFI_MM_SAVE_STATE_REGISTER_MM3
#define EFI_SMM_SAVE_STATE_REGISTER_MM4 EFI_MM_SAVE_STATE_REGISTER_MM4
#define EFI_SMM_SAVE_STATE_REGISTER_MM5 EFI_MM_SAVE_STATE_REGISTER_MM5
#define EFI_SMM_SAVE_STATE_REGISTER_MM6 EFI_MM_SAVE_STATE_REGISTER_MM6
#define EFI_SMM_SAVE_STATE_REGISTER_MM7 EFI_MM_SAVE_STATE_REGISTER_MM7
#define EFI_SMM_SAVE_STATE_REGISTER_XMM0
EFI_MM_SAVE_STATE_REGISTER_XMM0
#define EFI_SMM_SAVE_STATE_REGISTER_XMM1
EFI_MM_SAVE_STATE_REGISTER_XMM1
#define EFI_SMM_SAVE_STATE_REGISTER_XMM2
EFI_MM_SAVE_STATE_REGISTER_XMM2
#define EFI_SMM_SAVE_STATE_REGISTER_XMM3
Version 1.6 May 2017 323

Platform Initialization Specification, Vol. 4
EFI_MM_SAVE_STATE_REGISTER_XMM3
#define EFI_SMM_SAVE_STATE_REGISTER_XMM4
EFI_MM_SAVE_STATE_REGISTER_XMM4
#define EFI_SMM_SAVE_STATE_REGISTER_XMM5
EFI_MM_SAVE_STATE_REGISTER_XMM5
#define EFI_SMM_SAVE_STATE_REGISTER_XMM6
EFI_MM_SAVE_STATE_REGISTER_XMM6
#define EFI_SMM_SAVE_STATE_REGISTER_XMM7
EFI_MM_SAVE_STATE_REGISTER_XMM7
#define EFI_SMM_SAVE_STATE_REGISTER_XMM8
EFI_MM_SAVE_STATE_REGISTER_XMM8
#define EFI_SMM_SAVE_STATE_REGISTER_XMM9
EFI_MM_SAVE_STATE_REGISTER_XMM9
#define EFI_SMM_SAVE_STATE_REGISTER_XMM10
EFI_MM_SAVE_STATE_REGISTER_XMM10
#define EFI_SMM_SAVE_STATE_REGISTER_XMM11
EFI_MM_SAVE_STATE_REGISTER_XMM11
#define EFI_SMM_SAVE_STATE_REGISTER_XMM12
EFI_MM_SAVE_STATE_REGISTER_XMM12
#define EFI_SMM_SAVE_STATE_REGISTER_XMM13
EFI_MM_SAVE_STATE_REGISTER_XMM13
#define EFI_SMM_SAVE_STATE_REGISTER_XMM14
EFI_MM_SAVE_STATE_REGISTER_XMM14
#define EFI_SMM_SAVE_STATE_REGISTER_XMM15
EFI_MM_SAVE_STATE_REGISTER_XMM15
#define EFI_SMM_SAVE_STATE_REGISTER_IO EFI_MM_SAVE_STATE_REGISTER_IO
#define EFI_SMM_SAVE_STATE_REGISTER_LMA EFI_MM_SAVE_STATE_REGISTER_LMA
#define EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
EFI_MM_SAVE_STATE_REGISTER_PROCESSOR_ID
#define EFI_SMM_SAVE_STATE_REGISTER EFI_MM_SAVE_STATE_REGISTER
#define EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT
EFI_MM_SAVE_STATE_REGISTER_LMA_32BIT
#define EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT
EFI_MM_SAVE_STATE_REGISTER_LMA_64BIT
#define EFI_SMM_WRITE_SAVE_STATE EFI_MM_WRITE_SAVE_STATE
#define EFI_SMM_SAVE_STATE_IO_INFO EFI_MM_SAVE_STATE_IO_INFO

typedef EFI_MM_CPU_IO_PROTOCOL EFI_SMM_CPU_IO2_PROTOCOL;
#define EFI_SMM_CPU_IO2_PROTOCOL_GUID EFI_MM_CPU_IO_PROTOCOL_GUID
typedef EFI_MM_IO_ACCESS EFI_SMM_IO_ACCESS2;
typedef EFI_MM_CPU_IO EFI_SMM_CPU_IO2;
typedef EFI_MM_PCI_ROOT_BRIDGE_IO_PROTOCOL
EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL;
#define EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID
EFI_MM_PCI_ROOT_BRIDGE_IO_PROTOCOL_GUID
typedef EFI_MM_READY_TO_LOCK_SMM_PROTOCOL
EFI_SMM_READY_TO_LOCK_SMM_PROTOCOL;
#define EFI_SMM_READY_TO_LOCK_PROTOCOL_GUID
EFI_MM_READY_TO_LOCK_PROTOCOL_GUID
typedef EFI_MM_END_OF_DXE_PROTOCOL EFI_SMM_END_OF_DXE_PROTOCOL;
#define EFI_SMM_END_OF_DXE_PROTOCOL_GUID
324 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
EFI_MM_END_OF_DXE_PROTOCOL_GUID
#define EFI_SMM_BASE2_PROTOCOL_GUID EFI_MM_BASE_PROTOCOL_GUID
typedef EFI_MM_GET_MMST_LOCATION EFI_SMM_GET_SMST_LOCATION2;
typedef EFI_MM_ACCESS_PROTOCOL EFI_SMM_ACCESS2_PROTOCOL;
#define EFI_SMM_ACCESS2_PROTOCOL_GUID EFI_MM_ACCESS_PROTOCOL_GUID
typedef EFI_MM_OPEN EFI_SMM_OPEN2;
typedef EFI_MM_CLOSE EFI_SMM_CLOSE2;
typedef EFI_MM_LOCK EFI_SMM_LOCK2;
typedef EFI_MM_CONTROL_PROTOCOL EFI_SMM_CONTROL2_PROTOCOL;
#define EFI_SMM_CONTROL2_PROTOCOL_GUID EFI_MM_CONTROL_PROTOCOL_GUID
typedef EFI_MM_PERIOD EFI_SMM_PERIOD;
typedef EFI_MM_ACTIVATE EFI_SMM_ACTIVATE2;
typedef EFI_MM_DEACTIVATE EFI_SMM_DEACTIVATE2;
#define EFI_SMM_CONFIGURATION_PROTOCOL_GUID
EFI_MM_CONFIGURATION_PROTOCOL_GUID
typedef EFI_MM_REGISTER_SMM_ENTRY EFI_SMM_REGISTER_SMM_ENTRY;
typedef EFI_MM_COMMUNICATION_PROTOCOL EFI_SMM_COMMUNICATION_PROTOCOL;
#define EFI_SMM_COMMUNICATION_PROTOCOL_GUID
EFI_MM_COMMUNICATION_PROTOCOL_GUID
typedef EFI_MM_COMMUNICATE EFI_SMM_COMMUNICATE2;
typedef EFI_MM_COMMUNICATE_HEADER EFI_SMM_COMMUNICATE_HEADER;
typedef EFI_MM_SW_DISPATCH_PROTOCOL EFI_SMM_SW_DISPATCH2_PROTOCOL;
#define EFI_SMM_SW_DISPATCH2_PROTOCOL_GUID
EFI_MM_SW_DISPATCH_PROTOCOL_GUID
typedef EFI_MM_SW_REGISTER EFI_SMM_SW_REGISTER2;
typedef EFI_MM_SW_UNREGISTER EFI_SMM_SW_UNREGISTER2;
typedef EFI_MM_SX_DISPATCH_PROTOCOL EFI_SMM_SX_DISPATCH2_PROTOCOL;
typedef EFI_MM_SX_DISPATCH_PROTOCOL_GUID
EFI_SMM_SX_DISPATCH2_PROTOCOL_GUID;
typedef EFI_MM_SX_REGISTER EFI_SMM_SX_REGISTER2;
typedef EFI_MM_SX_REGISTER_CONTEXT EFI_SMM_SX_REGISTER_CONTEXT;
typedef EFI_MM_SX_UNREGISTER EFI_SMM_SX_UNREGISTER2;
typedef EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL
EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL;
#define EFI_SMM_PERIODIC_TIMER_DISPATCH2_PROTOCOL_GUID
EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL_GUID
typedef EFI_MM_PERIODIC_TIMER_REGISTER
EFI_SMM_PERIODIC_TIMER_REGISTER2;
typedef EFI_MM_PERIODIC_TIMER_CONTEXT EFI_SMM_PERIODIC_TIMER_CONTEXT;
typedef EFI_MM_PERIODIC_TIMER_UNREGISTER
EFI_SMM_PERIODIC_TIMER_UNREGISTER2;
typedef EFI_MM_PERIODIC_TIMER_INTERVAL
EFI_SMM_PERIODIC_TIMER_INTERVAL2;
typedef EFI_MM_USB_DISPATCH_PROTOCOL EFI_SMM_USB_DISPATCH2_PROTOCOL;
#define EFI_SMM_USB_DISPATCH2_PROTOCOL_GUID
EFI_MM_USB_DISPATCH_PROTOCOL_GUID
typedef EFI_MM_USB_REGISTER EFI_SMM_USB_REGISTER2;
typedef EFI_MM_USB_REGISTER_CONTEXT EFI_SMM_USB_REGISTER_CONTEXT;
typedef EFI_USB_MMI_TYPE EFI_USB_SMI_TYPE;
typedef EFI_MM_GPI_DISPATCH_PROTOCOL EFI_SMM_GPI_DISPATCH2_PROTOCOL;
#define EFI_SMM_GPI_DISPATCH2_PROTOCOL_GUID
Version 1.6 May 2017 325

Platform Initialization Specification, Vol. 4
EFI_MM_GPI_DISPATCH_PROTOCOL_GUID
typedef EFI_MM_GPI_REGISTER EFI_SMM_GPI_REGISTER2;
typedef EFI_MM_GPI_REGISTER_CONTEXT EFI_SMM_GPI_REGISTER_CONTEXT;
typedef EFI_MM_GPI_UNREGISTER EFI_SMM_GPI_UNREGISTER2;
typedef EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL
EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL;
#define EFI_SMM_STANDBY_BUTTON_DISPATCH2_PROTOCOL_GUID
EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL_GUID
typedef EFI_MM_STANDBY_BUTTON_REGISTER
EFI_SMM_STANDBY_BUTTON_REGISTER2;
typedef EFI_MM_STANDBY_BUTTON_REGISTER_CONTEXT
EFI_SMM_STANDBY_BUTTON_REGISTER_CONTEXT;
typedef EFI_MM_STANDBY_BUTTON_UNREGISTER
EFI_SMM_STANDBY_BUTTON_UNREGISTER2;
typedef EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL
EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL;
#define EFI_SMM_POWER_BUTTON_DISPATCH2_PROTOCOL_GUID
EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL_GUID
typedef EFI_MM_POWER_BUTTON_REGISTER EFI_SMM_POWER_BUTTON_REGISTER2;
typedef EFI_MM_POWER_BUTTON_REGISTER_CONTEXT
EFI_SMM_POWER_BUTTON_REGISTER_CONTEXT;
typedef EFI_MM_POWER_BUTTON_UNREGISTER
EFI_SMM_POWER_BUTTON_UNREGISTER2;
typedef EFI_MM_IO_TRAP_DISPATCH_PROTOCOL
EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL;
#define EFI_SMM_IO_TRAP_DISPATCH2_PROTOCOL_GUID
EFI_MM_IO_TRAP_DISPATCH_PROTOCOL_GUID
typedef EFI_MM_IO_TRAP_DISPATCH_REGISTER
EFI_SMM_IO_TRAP_DISPATCH2_REGISTER;
typedef EFI_MM_IO_TRAP_DISPATCH_TYPE EFI_SMM_IO_TRAP_DISPATCH_TYPE;
typedef EFI_MM_IO_TRAP_REGISTER_CONTEXT
EFI_SMM_IO_TRAP_REGISTER_CONTEXT;
typedef EFI_SMM_IO_TRAP_CONTEXT EFI_MM_IO_TRAP_CONTEXT;
typedef EFI_MM_IO_TRAP_DISPATCH_UNREGISTER
EFI_SMM_IO_TRAP_DISPATCH2_UNREGISTER;
typedef EFI_MM_IO_TRAP_DISPATCH_REGISTER
EFI_SMM_IO_TRAP_DISPATCH2_REGISTER;
#define EFI_FV_FILETYPE_SMM EFI_FV_FILETYPE_MM
#define EFI_FV_FILETYPE_COMBINED_SMM_DXE EFI_FV_FILETYPE_MM_DXE
#define EFI_FV_FILETYPE_SMM_CORE EFI_FV_FILETYPE_MM_CORE
#define EFI_SECTION_SMM_DEPEX EFI_SECTION_MM_DEPEX
typedef EFI_MM_DEPEX_SECTION EFI_SMM_DEPEX_SECTION2;
typedef EFI_MM_DEPEX_SECTION EFI_SMM_DEPEX_SECTION;

A.1 EFI_SMM_BASE2_PROTOCOL
This structure is deprecated. It is identical in content to EFI_MM_BASE_PROTOCOL.
326 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
typedef struct _EFI_SMM_BASE2_PROTOCOL {
 EFI_SMM_INSIDE_OUT2 InSmm;
 EFI_SMM_GET_SMST_LOCATION2 GetSmstLocation;
} EFI_SMM_BASE2_PROTOCOL;
EFI_SMM_RESERVED_SMRAM_REGION

This structure is deprecated. It is identical in content to EFI_MM_RESERVED_MMRAM_REGION.

typedef struct _EFI_SMM_RESERVED_SMRAM_REGION {
 EFI_PHYSICAL_ADDRESS SmramReservedStart;
 UINT64 SmramReservedSize;
} EFI_SMM_RESERVED_SMRAM_REGION;

EFI_SMM_CONFIGURATION_PROTOCOL

This structure is deprecated. It is identical in content to EFI_MM_CONFIGURATION_PROTOCOL.

typedef struct _EFI_SMM_CONFIGURATION_PROTOCOL {
 EFI_SMM_RESERVED_SMRAM_REGION *SmramReservedRegions;
 EFI_SMM_REGISTER_SMM_ENTRY RegisterSmmEntry;
} EFI_SMM_CONFIGURATION_PROTOCOL;

EFI_SMM_CAPABILITIES2

This type is deprecated. It is identical in content to EFI_MM_CAPABILITIES.

typedef
EFI_STATUS
(EFIAPI *EFI_SMM_CAPABILITIES2) (
 IN CONST EFI_SMM_ACCESS2_PROTOCOL *This,
 IN OUT UINTN *SmramMapSize,
 IN OUT EFI_SMRAM_DESCRIPTOR *SmramMap
);

EFI_SMM_INSIDE_OUT2

This type is deprecated. It is identical in content to EFI_MM_INSIDE_OUT.

typedef
EFI_STATUS
(EFIAPI *EFI_SMM_INSIDE_OUT2) (
 IN CONST EFI_SMM_BASE2_PROTOCOL *This,
 OUT BOOLEAN *InSmram
);

EFI_SMM_SW_CONTEXT

This structure is deprecated. It is identical in content to EFI_MM_SW_CONTEXT;
Version 1.6 May 2017 327

Platform Initialization Specification, Vol. 4
typedef struct {
 UINTN SwSmiCpuIndex;
 UINT8 CommandPort;
 UINT8 DataPort;
} EFI_SMM_SW_CONTEXT;

EFI_SMM_SW_REGISTER_CONTEXT

This structure is deprecated. It is identical in content to EFI_MM_SW_REGISTER_CONTEXT.

typedef struct {
 UINTN SwSmiInputValue;
} EFI_SMM_SW_REGISTER_CONTEXT;

EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT

This structure is deprecated. It is identical in content to
EFI_MM_PERIODIC_TIMER_REGISTER_CONTEXT.

typedef struct {
 UINT64 Period;
 UINT64 SmiTickInterval;
} EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT;

EFI_SMM_SAVE_STATE_IO_WIDTH

This type is deprecated. It is identical in content to EFI_MM_SAVE_STATE_IO_WIDTH.

typedef enum {
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 = 0,
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT16 = 1,
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT32 = 2,
 EFI_SMM_SAVE_STATE_IO_WIDTH_UINT64 = 3
} EFI_SMM_SAVE_STATE_IO_WIDTH

EFI_SMM_SAVE_STATE_IO_TYPE
This type is deprecated. It is identical in content to EFI_MM_SAVE_STATE_IO_TYPE.

typedef enum {
 EFI_SMM_SAVE_STATE_IO_TYPE_INPUT = 1,
 EFI_SMM_SAVE_STATE_IO_TYPE_OUTPUT = 2,
 EFI_SMM_SAVE_STATE_IO_TYPE_STRING = 4,
 EFI_SMM_SAVE_STATE_IO_TYPE_REP_PREFIX = 8
} EFI_SMM_SAVE_STATE_IO_TYPE

EFI_SMM_IO_WIDTH

This type is deprecated. It is identical in content to EFI_MM_IO_WIDTH.
328 May 2017 Version 1.6

Platform Initialization Specification, Vol. 4
typedef enum {
 SMM_IO_UINT8 = 0,
 SMM_IO_UINT16 = 1,
 SMM_IO_UINT32 = 2,
 SMM_IO_UINT64 = 3
} EFI_SMM_IO_WIDTH;
EFI_SMM_SYSTEM_TABLE2

This structure must match the members of EFI_MM_SYSTEM_TABLE up to and including
MmiHandlerUnregister.

typedef struct _EFI_SMM_SYSTEM_TABLE2 {
EFI_TABLE_HEADER
Hdr;

CHAR16 *SmmFirmwareVendor;
UINT32 SmmFirmwareRevision;

EFI_SMM_INSTALL_CONFIGURATION_TABLE2 SmmInstallConfigurationTable;

 EFI_SMM_CPU_IO_PROTOCOL SmmIo;

//

// Runtime memory service
Version 1.6 May 2017 329

Platform Initialization Specification, Vol. 4
//
EFI_ALLOCATE_POOL SmmAllocatePool;
EFI_FREE_POOL SmmFreePool;
EFI_ALLOCATE_PAGES SmmAllocatePages;
EFI_FREE_PAGES SmmFreePages;

//
// MP service
//
EFI_SMM_STARTUP_THIS_AP SmmStartupThisAp;

//
// CPU information records
//
UINTN CurrentlyExecutingCpu;
UINTN NumberOfCpus;

 UINTN *CpuSaveStateSize;
 VOID **CpuSaveState;

//
// Extensibility table
//
UINTN NumberOfTableEntries;
EFI_CONFIGURATION_TABLE *SmmConfigurationTable;

 //
 // Protocol services
 //

EFI_INSTALL_PROTOCOL_INTERFACE SmmInstallProtocolInterface;
EFI_UNINSTALL_PROTOCOL_INTERFACE SmmUninstallProtocolInterface;
EFI_HANDLE_PROTOCOL SmmHandleProtocol;
EFI_SMM_REGISTER_PROTOCOL_NOTIFY SmmRegisterProtocolNotify;

 EFI_LOCATE_HANDLE SmmLocateHandle;
 EFI_LOCATE_PROTOCOL SmmLocateProtocol;

 //
 // MMI management functions
 //
 EFI_SMM_INTERRUPT_MANAGE SmiManage;
 EFI_SMM_INTERRUPT_REGISTER SmiHandlerRegister;
 EFI_SMM_INTERRUPT_UNREGISTER SmiHandlerUnRegister;
} EFI_SMM_SYSTEM_TABLE2;
330 May 2017 Version 1.6

Platform Initialization (PI) Specification

Volume 5:
Standards

Version 1.6

May 2017

Platform Initialization Specification, Vol. 5

ii May 2017 Version 1.6

The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or to any
contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the
maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties
and conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and
of lack of negligence, all with regard to this material and any contribution thereto. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION
OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY
CONTRIBUTION THERETO.
IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY
CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS
OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING
IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright 2017 Unified EFI Forum, Inc. All Rights Reserved.

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 iii

Revision History

Revision Mantis ID / Description Date

1.6 • 1567 Layered SPI bus

• 1648 PI Binding for RISC-V

• 1746 Add an FV Extended Header entry that contains the used size of the
FV

• 1763 MM Handler state notification protocol

• 1764 Add additional alignment

• 1768 Update the PI Spec to 1.6

• 1777 Update Revision History

• 1778 Update front matter

April 2017

1.5 Errata A • 1587 pre permanent memory page allocation

• 1665 Incorrect status code for an AP calling
EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

• 1734 Outdated EFI spec reference in Save State Write

• 1735 Several copy & paste errors in Save State Write

• 1747 Clarify that MM_ACCESS_PROTOCOL should cover all MMRAM
region used by the platform

April 2017

1.5 • 1315 SMM Environment to Support Newer Architecture/Platform Designs

• 1317 additional I2C PPI's (vol5)

• 1321 ARM Extensions to Volume 4

• 1330 Add PPI to allow SEC pass HOBs into PEI

• 1336 Provide For Pre-DXE Initialization Of The SM Foundation

• 1369 Handling PEI PPI descriptor notifications from SEC

• 1387 Variable services errors not consistent

• 1390 SM stand-alone infrastructure

• 1396 Update SEC HOB Capabilities of 1330 with additional guidance

• 1413 Communicate protocol enhancements

• 1506 New MP protocol

• 1513 Need a way to propagate PEI-phase FV verification status to DXE

• 1563 Update MM PPIs to match existing implementations

• 1566 PI.next - update the specification revisions

• 1568 Add SD/MMC GUID to DiskInfo protocol

• 1592 Add EFI_FV_FILETYPE_SMM_CORE_STANDALONE file type

• 1593 coalesce language enhancements

• 1594 Pei GetVaiable M1387 issue

• 1595 M1568 Disk Info issue

• 1596 M1489 GCD issue

• 1603 Minor erratas in Vol4 PI 1.5 draft related to ECR 0001506

• 1607 Update MM guid def'n to match edkII impl

• 1626 Add new Status Code for BDS Attempting UEFI BootOrder entries

• 1628 Minor feedback for PI 1.5 Vol 4 SMM Draft

• 1666 Graphics Device Info Hob

4/26/16

Platform Initialization Specification, Vol. 5

iv May 2017 Version 1.6

1.4 Errata A • 1574 Fix artificial limitation in the PCD.SetSku support

• 1565 Update status code to include AArch64 exception error codes

• 1564 SMM Software Dispatch Protocol Errata

• 1562 Errata to remove statement from DXE vol about PEI dispatch
behavior

• 1561 Errata to provide Equivalent of DXE-CIS Mantis 247 for the PEI-CIS

• 1532 Allow S3 Resume without having installed permanent memory (via
InstallPeiMemory)

• 1530 errata on dxe report status code

• 1529 address space granularity errata

• 1525 PEI Services Table Retrieval for AArch64

• 1515 EFI_PEIM_NOTIFY_ENTRY_POINT return values are undefined

• 1497 Fixing language in SMMStartupThisAP

• 1489 GCD Conflict errata

• 1485 Minor Errata in SMM Vo2 description of SMMStartupThisAP

• 1397 PEI 1.4 specification revision errata

• 1394 Errata to Relax requirements on CPU rendez in SEC

• 1351 EndOfDxe and SmmReadyToLock

• 1322 Minor Updates to handle Asynchronous CPU Entry Into SMM

3/15/16

1.4 • 1210 Adding persistence attribute to GCD

• 1235 PI.Next Feature - no execute support

• 1236 PI.Next feature - Graphics PPI

• 1237 PI.Next feature - add reset2 PPI

• 1239 PI.Next feature - Disk Info Guid UFS

• 1240 PI.Next feature - Recovery Block IO PPI - UFS

• 1259 PI.Next feature - MP PPI

• 1273 PI.Next feature - capsule PPI

• 1274 Recovery Block I/O PPI Update

• 1275 GetMemoryMap Update

• 1277 PI1.next feature - multiple CPU health info

• 1278 PI1.next - Memory relative reliability definition

• 1305 PI1.next - specification number encoding

• 1331 Remove left-over Boot Firmware Volume references in the SEC
Platform Information PPI

• 1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record needs to be
indexed / CPU.

2/20/15

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 v

1.3 Errata A • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

2/19/15

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958

• 969Vol 1 errata: TE Header parameters

10/26/12

1.2.1 Errata A • 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

vi May 2017 Version 1.6

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP) clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM Migration is not
required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 vii

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState() return code

• 737 Remove SMM Communication ACPI Table definition .

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• 753 SIO PEI and UEFI-Driver Model Architecture

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT,
Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

viii May 2017 Version 1.6

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl has
EFI_STATUS w/o return code & errror on stage 3 recovery description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume2)
and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 ix

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

x May 2017 Version 1.6

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489 (from
USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

1.1 Errata • 247 Clarification regarding use of dependency expression section types
with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 xi

1.1 Errata • 204 Stack HOB update 1.1errata

• 225 Correct references from EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 - return error
language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

•

01/13/09

1.1 Errata Revises typographical errors and minor omissions--see Errata for details 04/25/08

1.1 correction Restore (missing) MP protocol 03/12/08

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter 12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

xii May 2017 Version 1.6

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth,
and printing convenience. The Platform Initialization Specification consists of the following volumes:

Volume 1: Pre-EFI Initialization Core Interface

Volume 2: Driver Execution Environment Core Interface

Volume 3: Shared Architectural Elements

Volume 4: System Management Mode

Volume 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult
the entire specification when researching areas of interest. Additionally, a single-file version of the Platform
Initialization Specification is available to aid search functions through the entire specification.

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to th:e
original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in the
Metronome

• M178 Remove references to tail in file header and made file checksum for
the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and update
all FV

10/29/07

1.0 Initial public release. 8/21/06

Revision Mantis ID / Description Date

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 xiii

Table of Contents

Revision History ... iii
Table of Contents ... xiii
List of Tables .. xxi
List of Figures... xxiii

1 Introduction.. 1
1.1 Overview ... 1
1.2 Terms Used in this Document... 1
1.3 Conventions Used in this Document... 5

1.3.1 Data Structure Descriptions .. 6
1.3.2 Protocol Descriptions .. 6
1.3.3 Procedure Descriptions... 7
1.3.4 Pseudo-Code Conventions ... 7
1.3.5 Typographic Conventions ... 7

1.4 Requirements.. 8

2 SMBus Host Controller Design Discussion .. 11
2.1 SMBus Host Controller Overview ... 11
2.2 Related Information... 11
2.3 SMBus Host Controller Protocol Terms .. 11
2.4 SMBus Host Controller Protocol Overview ... 12

3 SMBus Host Controller Code Definitions.. 13
3.1 Introduction ... 13
3.2 SMBus Host Controller Protocol ... 13

EFI_SMBUS_HC_PROTOCOL .. 13
EFI_SMBUS_HC_PROTOCOL.Execute() .. 14
EFI_SMBUS_HC_PROTOCOL.ArpDevice()... 16
EFI_SMBUS_HC_PROTOCOL.GetArpMap()... 17
EFI_SMBUS_HC_PROTOCOL.Notify() .. 19

4 SMBus Design Discussion .. 21
4.1 Introduction ... 21
4.2 Target Audience.. 21
4.3 Related Information... 21
4.4 PEI SMBus PPI Overview... 21

5 SMBus PPI Code Definitions .. 23
5.1 Introduction ... 23
5.2 PEI SMBus PPI... 24

EFI_PEI_SMBUS2_PPI .. 24
EFI_PEI_SMBUS2_PPI.Execute() ... 26
EFI_PEI_SMBUS2_PPI.ArpDevice() .. 29
EFI_PEI_SMBUS2_PPI.GetArpMap()... 32

Platform Initialization Specification, Vol. 5

xiv May 2017 Version 1.6

EFI_PEI_SMBUS2_PPI.Notify().. 34

6 SMBIOS Protocol... 37
EFI_SMBIOS_PROTOCOL .. 37

EFI_SMBIOS_PROTOCOL.Add()... 39
EFI_SMBIOS_PROTOCOL.UpdateString() .. 42
 EFI_SMBIOS_PROTOCOL.Remove()... 43
EFI_SMBIOS_PROTOCOL.GetNext() .. 44

7 IDE Controller .. 47
7.1 IDE Controller Overview ... 47
7.2 Design Discussion .. 47

7.2.1 IDE Controller Initialization Protocol Overview.. 47
7.2.2 IDE Controller Initialization Protocol References .. 48
7.2.3 Background ... 49
7.2.4 Simplifying the Design of IDE Drivers ... 50
7.2.5 Configuring Devices on the IDE Bus... 50
7.2.6 Sample Implementation for a Simple PCI IDE Controller.................................... 52

7.3 Code Definitions.. 53
EFI_IDE_CONTROLLER_INIT_PROTOCOL... 53
EFI_IDE_CONTROLLER_INIT_PROTOCOL... 54

EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()......................... 56
 EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase() 58
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() 61
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() 68
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode().......................... 72
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming().................................. 74

7.3.1 IDE Disk Information Protocol .. 75
 EFI_DISK_INFO_PROTOCOL .. 75

EFI_DISK_INFO_PROTOCOL.Interface... 77
EFI_DISK_INFO_PROTOCOL.Inquiry() ... 79
EFI_DISK_INFO_PROTOCOL.Identify()... 80
EFI_DISK_INFO_PROTOCOL.SenseData() .. 81
EFI_DISK_INFO_PROTOCOL.WhichIde() ... 82

8 S3 Resume ... 83
8.1 S3 Overview.. 83
8.2 Goals... 83
8.3 Requirements.. 83
8.4 Assumptions ... 83

8.4.1 Multiple Phases of Platform Initialization... 83
8.4.2 Process of Platform Initialization ... 84

8.5 Restoring the Platform .. 84
8.5.1 Phases in the S3 Resume Boot Path.. 85

8.6 PEI Boot Script Executer PPI.. 88
EFI_PEI_S3_RESUME2_PPI ... 89
EFI_PEI_S3_RESUME_PPI. S3RestoreConfig().. 90

8.7 S3 Save State Protocol.. 91

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 xv

EFI_S3_SAVE_STATE_PROTOCOL... 91
8.7.1 Save State Write ... 92

EFI_S3_SAVE_STATE_PROTOCOL.Write() ... 93
EFI_BOOT_SCRIPT_IO_WRITE_OPCODE .. 95

EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE .. 97
EFI_BOOT_SCRIPT_IO_POLL_OPCODE... 99
 EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE... 101
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE.................................... 103
EFI_BOOT_SCRIPT_MEM_POLL_OPCODE .. 104
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE 106
 EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE 108
EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE..................................... 110
EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE 112
EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE 114
EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE................................... 116
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE...................................... 118
EFI_BOOT_SCRIPT_STALL_OPCODE... 120
EFI_BOOT_SCRIPT_DISPATCH_OPCODE.. 121
EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE.. 122
EFI_BOOT_SCRIPT_INFORMATION_OPCODE... 123

8.7.2 Save State Insert... 123
EFI_S3_SAVE_STATE_PROTOCOL.Insert()... 124

8.7.3 Save State Label... 125
EFI_S3_SAVE_STATE_PROTOCOL.Label()... 126

8.7.4 Save State Compare... 127
EFI_S3_SAVE_STATE_PROTOCOL.Compare()... 128

8.8 S3 SMM Save State Protocol ... 128
EFI_S3_SMM_SAVE_STATE_PROTOCOL .. 129

9 ACPI System Description Table Protocol .. 131
9.1 EFI_ACPI_SDT_PROTOCOL... 131

EFI_ACPI_SDT_PROTOCOL.GetAcpiTable().. 133
EFI_ACPI_SDT_PROTOCOL.RegisterNotify() ... 135
EFI_ACPI_SDT_PROTOCOL.Open()... 137
EFI_ACPI_SDT_PROTOCOL.OpenSdt() ... 138
EFI_ACPI_SDT_PROTOCOL.Close() .. 139
EFI_ACPI_SDT_PROTOCOL.GetChild().. 140
EFI_ACPI_SDT_PROTOCOL.GetOption() ... 141
EFI_ACPI_SDT_PROTOCOL.SetOption().. 147
EFI_ACPI_SDT_PROTOCOL.FindPath() ... 148

10 PCI Host Bridge ... 149
10.1 PCI Host Bridge Overview .. 149
10.2 PCI Host Bridge Design Discussion.. 149
10.3 PCI Host Bridge Resource Allocation Protocol ... 150

10.3.1 PCI Host Bridge Resource Allocation Protocol Overview 150
10.3.2 Host Bus Controllers ... 150
10.3.3 Producing the PCI Host Bridge Resource Allocation Protocol 151

Platform Initialization Specification, Vol. 5

xvi May 2017 Version 1.6

10.3.4 Required PCI Protocols... 152
10.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 152

10.4 Sample PCI Architectures... 153
10.4.1 Sample PCI Architectures Overview ... 153
10.4.2 Desktop System with 1 PCI Root Bridge... 153
10.4.3 Server System with 4 PCI Root Bridges ... 154
10.4.4 Server System with 2 PCI Segments .. 155
10.4.5 Server System with 2 PCI Host Buses.. 155

10.5 ISA Aliasing Considerations.. 156
10.6 Programming of Standard PCI Configuration Registers ... 157
10.7 Sample Implementation .. 158

10.7.1 PCI enumeration process.. 161
10.7.2 Sample Enumeration Implementation ... 163

10.8 PCI HostBridge Code Definitions.. 164
10.8.1 Introduction ... 164
10.8.2 PCI Host Bridge Resource Allocation Protocol ... 164

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL 164
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhas
e() .. 170
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetNextRo
otBridge()... 174
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAt
tributes() .. 176
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusE
numeration() .. 178
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNu
mbers() .. 180
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitRes
ources() ... 183
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetPropos
edResources()... 186
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Preproces
sController()... 189

10.9 End of PCI Enumeration Overview ... 192
10.9.1 End of PCI Enumeration Protocol ... 192

11 PCI Platform... 193
11.1 Introduction ... 193
11.2 PCI Platform Overview.. 193
11.3 PCI Platform Support Related Information.. 194

11.3.1 Industry Specifications .. 194
11.3.2 PCI Specifications ... 194

11.4 PCI Platform Protocol ... 194
11.4.1 PCI Platform Protocol Overview.. 194

11.5 Incompatible PCI Device Support Protocol ... 195
11.5.1 Incompatible PCI Device Support Protocol Overview 195
11.5.2 Usage Model for the Incompatible PCI Device Support Protocol.................... 195

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 xvii

11.6 PCI Code Definitions... 196
11.6.1 PCI Platform Protocol.. 196

EFI_PCI_PLATFORM_PROTOCOL... 196
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify() 198
EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController() 200
EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()................................. 202
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() ... 204

11.6.2 PCI Override Protocol ... 205
EFI_PCI_OVERRIDE_PROTOCOL ... 205

11.6.3 Incompatible PCI Device Support Protocol .. 206
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL............................. 206

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice()
208

12 Hot Plug PCI... 211
12.1 HOT PLUG PCI Overview... 211
12.2 Hot Plug PCI Initialization Protocol Introduction ... 211
12.3 Hot Plug PCI Initialization Protocol Related Information... 211
12.4 Requirements.. 212
12.5 Sample Implementation for a Platform Containing PCI Hot Plug* Slots 213
12.6 PCI Hot Plug PCI Initialization Protocol .. 214

EFI_PCI_HOT_PLUG_INIT_PROTOCOL .. 214
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()............................ 217
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() 219
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()................... 223

12.7 PCI Hot Plug Request Protocol... 225
EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify() 227

12.8 Sample Implementation for a Platform Containing PCI Hot Plug* Slots 229

13 Super I/O Protocol ... 231
13.1 Super I/O Protocol .. 231

EFI_SIO_PROTOCOL .. 231
EFI_SIO_PROTOCOL.RegisterAccess() .. 233
EFI_SIO_PROTOCOL.GetResources() .. 235
EFI_SIO_PROTOCOL.SetResources() .. 237
EFI_SIO_PROTOCOL.PossibleResources() .. 238
EFI_SIO_PROTOCOL.Modify() .. 239

14 Super I/O and ISA Host Controller Interactions...................................... 241
14.1 Design Descriptions .. 241

14.1.1 Super I/O .. 242
14.1.2 ISA Bus ... 244
14.1.3 ISA Host Controller .. 245
14.1.4 Logical Devices .. 245

14.2 Code Definitions.. 246
14.2.1 EFI_SIO_PPI... 246
14.2.2 EFI_ISA_HC_PPI.. 252
14.2.3 EFI_ISA_HC_PROTOCOL ... 254

Platform Initialization Specification, Vol. 5

xviii May 2017 Version 1.6

14.2.4 EFI_ISA_HC_SERVICE_BINDING_PROTOCOL... 257
14.2.5 EFI_SIO_CONTROL_PROTOCOL... 257

15 CPU I/O Protocol.. 261
15.1 CPU I/O Protocol Terms ... 261
15.2 CPU I/O Protocol2 Description ... 261

15.2.1 EFI CPU I/O Overview .. 261
15.3 Code Definitions.. 262

15.3.1 CPU I/O Protocol... 262
EFI_CPU_IO2_PROTOCOL... 262

EFI_CPU_IO2_PROTOCOL.Mem.Read() and Mem.Write() 265
EFI_CPU_IO2_PROTOCOL.Io.Read() and Io.Write() 267

16 Legacy Region Protocol ... 269
16.1 Legacy Region Protocol .. 269
16.2 Code Definitions.. 269

16.2.1 Legacy Region Protocol .. 269
EFI_LEGACY_REGION2_PROTOCOL ... 269

EFI_LEGACY_REGION2_PROTOCOL.Decode() .. 271
EFI_LEGACY_REGION2_PROTOCOL.Lock()... 272
EFI_LEGACY_REGION2_PROTOCOL.BootLock() ... 273
EFI_LEGACY_REGION2_PROTOCOL.UnLock() .. 274
EFI_LEGACY_REGION2_PROTOCOL.GetInfo()... 275

17 I2C Protocol Stack... 279
17.1 Design Discussion .. 279

17.1.1 I2C Bus Overview ... 279
17.1.2 2C Protocol Stack Overview ... 281
17.1.3 PCI Comparison.. 289
17.1.4 Hot Plug Support... 290

17.2 DXE Code definitions.. 291
17.2.1 I2C Master Protocol .. 292

EFI_I2C_MASTER_PROTOCOL.. 292
EFI_I2C_MASTER_PROTOCOL.SetBusFrequency() 299
EFI_I2C_MASTER_PROTOCOL.Reset() ... 300
EFI_I2C_MASTER_PROTOCOL.StartRequest().. 301

17.2.2 I2C Host Protocol .. 302
EFI_I2C_HOST_PROTOCOL... 302

EFI_I2C_HOST_PROTOCOL.QueueRequest() ... 304
17.2.3 I2C I/O Protocol... 306

EFI_I2C_IO_PROTOCOL... 306
 EFI_I2C_IO_PROTOCOL.QueueRequest()... 309

17.2.4 I2C Bus Configuration Management Protocol... 310
EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL 310

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.
EnableI2cBusConfiguration() .. 313

17.2.5 I2C Enumerate Protocol.. 314
EFI_I2C_ENUMERATE_PROTOCOL .. 314

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 xix

EFI_I2C_ENUMERATE_PROTOCOL.Enumerate() ... 316
EFI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency() 317

17.3 PEI Code definitions ... 317
17.3.1 I2C Master PPI.. 318

EFI_PEI_I2C_MASTER .. 318
EFI_PEI_I2C_MASTER_PPI.SetBusFrequency()... 319
EFI_PEI_I2C_MASTER_PPI.Reset().. 320
EFI_PEI_I2C_MASTER_PPI.StartRequest() .. 321

17.3.2 I2C Host PPI ... 322
EFI_PEI_I2C_HOST ... 322

EFI_PEI_I2C_HOST.StartRequest() ... 324
17.3.3 I2C I/O PPI .. 325

EFI_PEI_I2C_IO ... 325
EFI_I2C_IO_PROTOCOL.GetDeviceInfo() ... 328
EFI_I2C_IO_PROTOCOL.GetDeviceInfoIdList() .. 329
EFI_PEI_I2C_IO.StartRequest() ... 330

17.3.4 I2C Bus Configuration Management PPI .. 331
EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT...................................... 331

EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT.
EnableI2cBusConfiguration() .. 333
EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT.I2cDeviceReset () .. 335

17.3.5 I2C Enumerate PPI ... 336
EFI_PEI_I2C_ENUMERATE .. 336

EFI_PEI_I2C_ENUMERATE_PROTOCOL.Enumerate().................................. 337
EFI_PEI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency() 338

18 SPI Protocol Stack... 339
18.1 Design Discussion .. 339

18.1.1 SPI Bus Overview ... 339
18.1.2 SPI Protocol Stack Overview .. 340
18.1.3 Application Layer... 341
18.1.4 SPI Peripheral Layer ... 342
18.1.5 SPI 10 Interface .. 342
18.1.6 SPI Bus Layer ... 343
18.1.7 SPI Host Controller Layer ... 344

18.2 DXE Code Definitions ... 346
EFI_SPI_CONFIGURATION_PROTOCOL .. 346
EFI_SPI_CHIP_SELECT .. 347
EFI_SPI_PART ... 348
EFI_SPI_PERIPHERAL.. 348
EFI_SPI_CLOCK .. 350
EFI_SPI_BUS ... 351
EFI_SPI_NOR_FLASH_PROTOCOL... 352
EFI_SPI_NOR_FLASH_PROTOCOL.GetFlashld() .. 353
EFI_SPI_NOR_FLASH_PROTOCOL.ReadData() ... 354
EFI_SPI_NOR_FLASH_PROTOCOL.LfReadData() .. 355
EFIEFI_SPI_NOR_FLASH_PROTOCOL.ReadStatus() ... 356

Platform Initialization Specification, Vol. 5

xx May 2017 Version 1.6

EFI_SPI_NOR_FLASH_PROTOCOL.WriteStatus() ... 357
EFI_SPI_NOR_FLASH_PROTOCOL.WriteData() ... 357
EFI_SPI_NOR_FLASH_PROTOCOL.Erase() .. 359
EFI_LEGACY_SPI_FLASH_PROTOCOL .. 360
EFI_LEGACY _SPI_FLASH_PROTOCOL.BiosBaseAddress() 360
EFI_LEGACY _SPI_FLASH_PROTOCOL.ClearSpiProtect()................................. 361
EFI_LEGACY _SPI_FLASH_PROTOCOL.lsRangeProtected() 362
EFI_LEGACY_SPI_FLASH_PROTOCOL.ProtectNextRange() 363
EFI_LEGACY _SPI_FLASH_PROTOCOL.LockController()................................... 364
EFI_SPI_IO_PROTOCOL... 365
EFI_SPI_BUS_ TRANSACTION .. 366
EFI_SPI_IO_PROTOCOL.Transaction() .. 367
EFI_SPI_IO_PROTOCOL.UpdateSpiPeripheral() .. 370
EFI_SPI_HC_PROTOCOL ... 370
EFI_SPI_HC_PROTOCOL.ChipSelect() .. 372
EFI_SPI_HC_PROTOCOL.Clock() ... 373
EFI_SPI_HC_PROTOCOL.Transaction() ... 374
EFI_LEGACY_SPI_CONTROLLER_PROTOCOL ... 375
EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.EraseB1ock0pcode()............... 376
EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.WriteStatusPrefix() 376
EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.BiosBaseAddress() 377
EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.ClearSpiProtect()..................... 378
EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.lsRangeProtected() 379
EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.ProtectNextRange() 380
EFI_LEGACY _SPI_CONTROLLER_PROTOCOL.LockController()...................... 381

Appendix A Error Codes... 383

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 xxi

List of Tables

Table 1. Drivers Involved in Configuring IDE Devices .. 51
Table 2. Field descriptiond for EFI_IDE_CONTROLLER_ENUM_PHASE........................... 59
Table 3. EFI_ATAPI_IDENTIFY_DATA Definition 63
Table 4. EFI_ATA_EXT_TRANSFER_PROTOCOL field descriptions 71
Table 5. AML terms and supported options ... 143
Table 6. Standard PCI Devices – Header Type 0... 157
Table 7. PCI-to-PCI Bridge – Header Type 1 ... 158
Table 8. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage................................. 168
Table 9. ACPI 2.0 & 3.0 End Tag Usage .. 169
Table 10. I/O Resource Flag (Resource Type = 1) Usage.. 169
Table 11. Memory Resource Flag (Resource Type = 0) Usage ... 169
Table 12. Enumeration Descriptions... 172
Table 13. EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES field

descriptions.. 177
Table 14. ACPI 2.0 & 3.0 Resource Descriptor Field Values for StartBusEnumeration() ... 179
Table 15. ACPI 2.0 & 3.0 Resource Descriptor Field Values for SetBusNumbers() 181
Table 16. ACPI 2.0& 3.0 Resource Descriptor Field Values for SubmitResources().......... 184
Table 17. ACPI 2.0 & 3.0 GetProposedResources() Resource Descriptor Field Values ... 187
Table 18. EFI_RESOURCE_ALLOCATION_STATUS field descriptions 188
Table 19. EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE field descriptions.

191
Table 20. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage............................... 210
Table 21. ACPI 2.0 & 3.0 End Tag Usage .. 210
Table 22. Description of possible states for EFI_HPC_STATE .. 222
Table 23. EFI_HPC_PADDING_ATTRIBUTES field descriptions 225
Table 24. Functions in Legacy Region Protocol ... 269

Platform Initialization Specification, Vol. 5

xxii May 2017 Version 1.6

Platform Initialization Specification, Vol. 5

Version 1.6 May 2017 xxiii

List of Figures

Figure 1. PI Architechture S3 Resume Boot Path... 85
Figure 2. PEI Phase in S3 Resume Boot Path ... 86
Figure 3. Configuration Save for PEI Phase ... 87
Figure 4. Host Bus Controllers.. 151
Figure 5. Producing the PCI Host Bridge Resource Allocation Protocol............................. 152
Figure 6. Desktop System with 1 PCI Root Bridge ... 154
Figure 7. Server System with 4 PCI Root Bridges .. 154
Figure 8. Server System with 2 PCI Segments... 155
Figure 9. Server System with 2 PCI Host Buses .. 156
Figure 10. Super I/O and ISA Host Controller Interactions ... 241
Figure 11. EFI CPU I/O2 Protocol... 262
Figure 12. Simple 12C Bus ... 279
Figure 13. Multiple I2C Bus Frequencies.. 280
Figure 14. Limited address Space .. 280
Figure 15. I2C Protocol Stack ... 282
Figure 16. SPI Bus.. 339
Figure 17. SPI Layers ... 340

Platform Initialization Specification, Vol. 5

xxiv May 2017 Version 1.6

Platform Initialization Spec, Vol. 5

Version 1.6 May 2017 1

1 Introduction

1.1 Overview
This chapter defines the core code and services that are required for an implementation of the
System Management Bus (SMBus) Host Controller Protocol and System Management Bus (SMBus)
PEIM-to-PEIM Interface (PPI).

The SMBus Host Controller Protocol is used by code, typically early chipset drivers, and SMBus
bus drivers that are running in the UEFI Boot Services environment to perform data transactions
over the SMBus. This specification does the following:

• Describes the basic components of the SMBus Host Controller Protocol

• Provides code definitions for the SMBus Host Controller Protocol and the SMBus-related type
definitions that are architecturally required.

The SMBus PPI is used by other Pre-EFI Initialization Modules (PEIMs) to control an SMBus host
controller.

This specification does the following:

• Describes the basic components of the PEI SMBus PPI

• Provides code definitions for the PEI SMBus PPI and SMBus-related type definitions that are
architecturally required.

1.2 Terms Used in this Document
16-bit PC Card

Legacy cards that follow the PC Card Standard and operate in 16-bit mode.

CardBay PC Card

32-bit PC Cards that follow the high-performance serial PC Card Standard. After
initialization, these devices appear as standard PCI devices.

CardBus bridge

A hardware controller that produces a CardBus bus. A CardBus bus can accept a CardBus PC
Card as well as legacy 16-bit PC Cards. CardBus PC Cards appear just like PCI devices to the
configuration software.

CardBus PC Card

32-bit PC Cards that follow the PC Card Standard.

HB

Host bridge. See PCI host bridge.

HPB

Hot Plug Bus.

Introduction Platform Initialization Spec, Vol. 5

2 May 2017 Version 1.6

HPC

Hot Plug Controller. A generic term that refers to both a PHPC and a CardBus bridge.

HPRT

Hot Plug Resource Table.

incompatible PCI device

A PCI device that does not fully comply with the PCI Specification. Typically, this kind of
device has a special requirement for Base Address Register (BAR) allocation. Some devices
may want a special resource length or alignment, while others may want fixed I/O or memory
locations.

JEITA

Japan Electronics and Information Technology Association.

legacy PHPC

PCI devices that can be identified by their class code but were defined prior to the PCI
Standard Hot-Plug Controller and Subsystem Specification, revision 1.0. These devices have a
base class of 0x6, subclass of 0x4, and programming interface of 0.

MWI

Memory Write and Invalidate. See the PCI Local Bus Specification, revision 2.3, for more
information.

PC Card

Integrated circuit cards that follow the PC Card Standard. "PC Card" is a generic term that is
used to refer to 16-bit PC Cards, 32-bit CardBus PC Cards, and high-performance CardBay
PC Cards.

PC Card Standard

Refers to the set of specifications that are produced jointly by the PCMCIA and JEITA. This
standard was defined to promote interchangeability among mobile computers.

PCI bus

A generic term used to describe any PCI-like buses, including conventional PCI, PCI-X*, and
PCI Express*. From a software standpoint, a PCI bus is collection of up to 32 physical PCI
devices that share the same physical PCI bus.

PCI bus driver

Software that creates a handle for every PCI controller in the system and installs both the PCI
I/O Protocol and the Device Path Protocol onto that handle. It may optionally perform PCI
enumeration if resources have not already been allocated to all the PCI controllers. It also
loads and starts any EFI drivers that are found in any PCI option ROMs that were discovered
during PCI enumeration.

PCI configuration space

The configuration channel that is defined by PCI to configure PCI devices into the resource
domain of the system. Each PCI device must produce a standard set of registers in the form of
a PCI configuration header and can optionally produce device-specific registers. The registers

Platform Initialization Spec, Vol. 5 Introduction

Version 1.6 May 2017 3

are addressed via Type 0 or Type 1 PCI configuration cycles as described by the PCI
Specification. The PCI configuration space can be shared across multiple PCI buses. On
Intel® architecture-based systems, the PCI configuration space is accessed via I/O ports
0xCF8 and 0xCFC. The PCI Express configuration space is accessed via a memory-mapped
aperture.

PCI controller

A hardware components that is discovered by a PCI bus driver and is managed by a PCI
device driver. This document uses the terms "PCI function" and "PCI controller" equivalently.

PCI device

A collection of up to 8 PCI functions that share the same PCI configuration space. A PCI
device is physically connected to a PCI bus.

PCI enumeration

The process of assigning resources to all the PCI controllers on a given PCI host bridge. This
process includes the following:

• Assigning PCI bus numbers and PCI interrupts

• Allocating PCI I/O resources, PCI memory resources, and PCI prefetchable memory
resources

• Setting miscellaneous PCI DMA values

Typically, PCI enumeration is to be performed only once during the boot process.

PCI function

A controller that provides some type of I/O services. It consumes some combination of PCI I/
O, PCI memory, and PCI prefetchable memory regions and the PCI configuration space. The
PCI function is the basic unit of configuration for PCI.

PCI host bridge

The software abstraction that produces one or more PCI root bridges. All the PCI buses that
are produced by a host bus controller are part of the same coherency domain. A PCI host
bridge is an abstraction and may be made up of multiple hardware devices. Most systems can
be modeled as having one PCI host bridge. This software abstraction is necessary while
dealing with PCI resource allocation because resources that are assigned to one PCI root
bridge depend on another and all the "related" PCI root bridges must be considered together
during resource allocation.

PCI root bridge

A PCI root bridge that produces a root PCI bus. It bridges a root PCI bus and a bus that is not a
PCI bus (e.g., processor local bus, InfiniBand* fabric). A PCI host bridge may have one or
more root PCI bridges. Configurations of a root PCI bridge within a host bridge can have
dependencies upon other root PCI bridges within the same host bridge.

PCI segment

A collection of up to 256 PCI buses that share the same PCI configuration space. A
PCI segment is defined in section 6.5.6 of the ACPI 2.0 Specification (also ACPI 3.0)
as the _SEG object. If a system supports only a single PCI segment, the PCI segment

Introduction Platform Initialization Spec, Vol. 5

4 May 2017 Version 1.6

number is defined to be zero.The existence of PCI segments enables the construction
of systems with greater than 256 PCI buses.

PEC

Packet Error Code. It is similar to a checksum data of the data coming across the SMBus wire.

PCI-to-CardBus bridges

A PCI device that produces a CardBus bus. The PCI-to-CardBus bridge has a PEI

Pre-EFI Initialization.

PEIM

Pre-EFI Initialization Module.

greater than 256 PCI buses.

PERR

Parity Error.

type 2 PCI configuration header and has a class code of 0x070600.

PHPC

PCI Hot Plug* Controller. A hardware component that controls the power to one or more
conventional PCI slots or PCI Express slots.

PPI

PEIM-to-PEIM Interface.

RB

Root bridge. See PCI root bridge.

resource padding

Also known as resource overallocation. System resources are said to be overallocated if more
resources are allocated to a PCI bus than are required. Resource padding allows a limited
number of add-in cards to be hot added to a PCI bus without disturbing allocation to the rest of
the buses.

root HPC

Root Hot Plug Controller. An HPC that gets reset only when the entire system is reset. Such
HPCs can depend upon the system firmware to initialize them because system firmware is
guaranteed to run after a system reset. An HPC that is embedded in the PCI root bridge is
considered a root HPC bridge. Some platform chipsets include special-purpose PCI-to-PCI
bridges. They appear like a PCI-to-PCI bridge to the configuration software, but their primary
bus interface is not a PCI bus. Such a component can be considered a root HPC if it is not
subordinate to an HPC. Legacy HPCs may be implemented as chipset devices that appear to be
behind a special-purpose PCI-to-PCI bridge, but these HPCs are not reset when the secondary
bus reset bit in the parent PCI-to-PCI bridge is set. Such HPCs are considered as root HPCs as
well.

An HPC that is a child of a PCI-to-PCI bridge is not a root HPC. Such an HPC can be reset if
the secondary bus reset bit in the PCI-to-PCI bridge is set by an operating system. Because the

Platform Initialization Spec, Vol. 5 Introduction

Version 1.6 May 2017 5

initialization code in the system firmware may not be executed during this case, such an HPC
must initialize itself using hardware mechanisms, without any firmware intervention. An HPC
that is a child of another HPC is not a root HPC. See section 3.5.1.3 in the PCI Standard Hot-
Plug Controller and Subsystem Specification, revision 1.0, for details regarding this term.

root PCI bus

A PCI bus that is not a child of another PCI bus. For every root PCI bus, there is an object in
the ACPI name space with a Plug and Play (PNP) ID of "PNP0A03." Typical desktop systems
include only one root PCI bus.

SERR

System error.

SHPC

Standard (PCI) Hot Plug Controller. A PCI Hot Plug controller that conforms to the PCI Standard Hot-Plug
Controller and Subsystem Specification, revision 1.0. This specification is published by the PCI Special Interest
Group (PCI-SIG). An SHPC can either be embedded in a PCI root bridge or a PCI-to-PCI bridge.coherency
domain

The address resources of a system as seen by a processor. It consists of both system memory
and I/O space.

SMBus

System Management Bus.

SMBus host controller

Provides a mechanism for the processor to initiate communications with SMBus slave devices.
This controller can be connected to a main I/O bus such as PCI.

SMBus master device

Any device that initiates SMBus transactions and drives the clock.

SMBus PPI

A software interface that provides a method to control an SMBus host controller and access
the data of the SMBus slave devices that are attached to it.

SMBus slave device

The target of an SMBus transaction, which is driven by some master.

UDID

Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

Introduction Platform Initialization Spec, Vol. 5

6 May 2017 Version 1.6

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Platform Initialization Spec, Vol. 5 Introduction

Version 1.6 May 2017 7

1.3.3 Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.4 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.5 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Introduction Platform Initialization Spec, Vol. 5

8 May 2017 Version 1.6

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.4 Requirements
This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

Platform Initialization Spec, Vol. 5 Introduction

Version 1.6 May 2017 9

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

Introduction Platform Initialization Spec, Vol. 5

10 May 2017 Version 1.6

Platform Initialization Spec, Vol. 5

Version 1.6 May 2017 11

2 SMBus Host Controller Design Discussion

2.1 SMBus Host Controller Overview
These section describe the System Management Bus (SMBus) Host Controller Protocol. This
protocol provides an I/O abstraction for an SMBus host controller. An SMBus host controller is a
hardware component that interfaces to an SMBus. It moves data between system memory and
devices on the SMBus by processing data structures and generating transactions on the SMBus. The
following use this protocol:

• An SMBus bus driver to perform all data transactions over the SMBus

• Early chipset drivers that need to manage devices that are required early in the Driver Execution
Environment (DXE) phase, before the Boot Device Selection (BDS) phase

This protocol should be used only by drivers that require direct access to the SMBus.

Considerable discussion has been done to understand the usage model of the UEFI Driver Model in
the SMBus. Although, the UEFI Driver Model concepts can be applied to SMBus, only the SMBus
Host Controller Protocol was created for now for the following reasons:

• The UEFI Driver Model is designed primarily for boot devices. Boot devices are unlikely to be
connected to the SMBus because of SMBus-intrinsic capability. They are slow and not
enumerable.

• The current usage model of SMBus is to enable and configure devices early during the boot
phase, before BDS.

A DXE driver that publishes this protocol will either support Execute, ArpDevice, GetArpMap, and
Notify; alternatively, a driver will support only Execute and return “not supported” for the latter 3
services.

If some of these assumptions become obsolete and require being revisited in the future, this
specification is extensible to convert to the UEFI Driver Model.

2.2 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementers Forum,

August 3, 2000: http://www.smbus.org

• PCI Local Bus Specification, revision 3.0, PCI Special Interest Group.

2.3 SMBus Host Controller Protocol Terms
The following terms are used throughout this document to describe the model for constructing
SMBus Host Controller Protocol instances in the DXE environment.

http://www.smbus.org

SMBus Host Controller Design Discussion Platform Initialization Spec, Vol. 5

12 May 2017 Version 1.6

PEC

Packet Error Code. It is similar to a checksum data of the data coming across the SMBus wire.

SMBus

System Management Bus.

SMBus host controller

Provides a mechanism for the processor to initiate communications with SMBus slave devices.
This controller can be connected to a main I/O bus such as PCI.

SMBus master device

Any device that initiates SMBus transactions and drives the clock.

SMBus slave device

The target of an SMBus transaction, which is driven by some master.

UDID

Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

2.4 SMBus Host Controller Protocol Overview
The interfaces that are provided in the EFI_SMBUS_HC_PROTOCOL are used to manage data
transactions on the SMBus. The EFI_SMBUS_HC_PROTOCOL is designed to support SMBus 1.0–
and 2.0–compliant host controllers.

Each instance of the EFI_SMBUS_HC_PROTOCOL corresponds to an SMBus host controller in a
platform. To provide support for early drivers that need to communicate on the SMBus, this protocol
is available before the Boot Device Selection (BDS) phase. During BDS, this protocol can be
attached to the device handle of an SMBus host controller that is created by a device driver for the
SMBus host controller's parent bus type. For example, an SMBus controller that is implemented as a
PCI device would require a PCI device driver to produce an instance of the
EFI_SMBUS_HC_PROTOCOL.

See “SMBus Host Controller Protocol” on page 13 for the definition of this protocol.

Platform Initialization Spec, Vol. 5

Version 1.6 May 2017 13

3 SMBus Host Controller Code Definitions

3.1 Introduction
This section contains the basic definitions of the SMBus Host Controller Protocol. The following
protocol is defined in this section:

• EFI_SMBUS_HC_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_SMBUS_NOTIFY_FUNCTION

3.2 SMBus Host Controller Protocol

EFI_SMBUS_HC_PROTOCOL

Summary
Provides basic SMBus host controller management and basic data transactions over the SMBus.

GUID
#define EFI_SMBUS_HC_PROTOCOL_GUID \
 {0xe49d33ed, 0x513d, 0x4634, 0xb6, 0x98, 0x6f, 0x55, \
 0xaa, 0x75, 0x1c, 0x1b}

Protocol Interface Structure
typedef struct _EFI_SMBUS_HC_PROTOCOL {
 EFI_SMBUS_HC_EXECUTE_OPERATION Execute;
 EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE ArpDevice;
 EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP GetArpMap;
 EFI_SMBUS_HC_PROTOCOL_NOTIFY Notify;
} EFI_SMBUS_HC_PROTOCOL;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

SMBus Host Controller Code Definitions Platform Initialization Spec, Vol. 5

14 May 2017 Version 1.6

GetArpMap

Allows a driver to retrieve the address that was allocated by the SMBus host controller
during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a driver to register for a callback to the SMBus host controller driver when the
bus issues a notification to the bus controller driver. See the Notify() function
description.

Description
The EFI_SMBUS_HC_PROTOCOL provides SMBus host controller management and basic data
transactions over SMBus. There is one EFI_SMBUS_HC_PROTOCOL instance for each SMBus
host controller.

Early chipset drivers can communicate with specific SMBus slave devices by calling this protocol
directly. Also, for drivers that are called during the Boot Device Selection (BDS) phase, the device
driver that wishes to manage an SMBus bus in a system retrieves the EFI_SMBUS_HC_PROTOCOL
instance that is associated with the SMBus bus to be managed. A device handle for an SMBus host
controller will minimally contain an EFI_DEVICE_PATH_PROTOCOL instance and an
EFI_SMBUS_HC_PROTOCOL instance.

EFI_SMBUS_HC_PROTOCOL.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_EXECUTE_OPERATION) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

SlaveAddress

The SMBus slave address of the device with which to communicate. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in

Platform Initialization Spec, Vol. 5 SMBus Host Controller Code Definitions

Version 1.6 May 2017 15

EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Command

This command is transmitted by the SMBus host controller to the SMBus slave device
and the interpretation is SMBus slave device specific. It can mean the offset to a list of
functions inside an SMBus slave device. Not all operations or slave devices support
this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
SMBus Specification and is not related to PI Architecture. Type
EFI_SMBUS_OPERATION is defined in EFI_PEI_SMBUS_PPI.Execute() in
the Platform Initialization SMBus PPI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This field will contain the actual
number of bytes that are executed for this operation. Not all operations require this
argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the System
Management Bus (SMBus) Specification. The resulting transaction will be either that the SMBus
slave devices accept this transaction or that this function returns with error.

SMBus Host Controller Code Definitions Platform Initialization Spec, Vol. 5

16 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll exit
criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect).

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is

determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure that was reflected in the
Host Status Register bit. Device errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or bus
errors (collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for

EfiSmbusQuickRead and EfiSmbusQuickWrite. Length

is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

EFI_SMBUS_HC_PROTOCOL.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

ArpAll

A Boolean expression that indicates if the host drivers need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll is
TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

Platform Initialization Spec, Vol. 5 SMBus Host Controller Code Definitions

Version 1.6 May 2017 17

SmbusUdid

The Unique Device Identifier (UDID) that is associated with this device. Type
EFI_SMBUS_UDID is defined in EFI_PEI_SMBUS_PPI.ArpDevice() in the
Platform Initialization SMBus PPI Specification.

SlaveAddress

The SMBus slave address that is associated with an SMBus UDID. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Description
The ArpDevice() function provides a standard way for a device driver to enumerate the entire
SMBus or specific devices on the bus.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll exit
criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect).

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is

determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure was reflected in the Host
Status Register bit. Device Errors are a result of a transaction collision,
illegal command field, unclaimed cycle (host initiated), or bus errors
(collisions).

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented

by this driver.

EFI_SMBUS_HC_PROTOCOL.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair of
the slave devices that were enumerated by the SMBus host controller driver.

SMBus Host Controller Code Definitions Platform Initialization Spec, Vol. 5

18 May 2017 Version 1.6

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

Length

Size of the buffer that contains the SMBus device map.

SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller driver. Type
EFI_SMBUS_DEVICE_MAP is defined in
EFI_PEI_SMBUS_PPI.GetArpMap() in the Platform Initialization SMBus PPI
Specification.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that were enumerated
by the SMBus host driver.

Status Codes Returned

EFI_SUCCESS The SMBus returned the current device map.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented by

this driver.

Platform Initialization Spec, Vol. 5 SMBus Host Controller Code Definitions

Version 1.6 May 2017 19

EFI_SMBUS_HC_PROTOCOL.Notify()

Summary
Allows a device driver to register for a callback when the bus driver detects a state that it needs to
propagate to other drivers that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_NOTIFY) (
 IN CONST EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_SMBUS_NOTIFY_FUNCTION NotifyFunction
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.

SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered function. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification.

Data

Data that the host controller detects as sending a message and calls all the registered
function.

NotifyFunction

The function to call when the bus driver detects the SlaveAddress and Data pair.
Type EFI_SMBUS_NOTIFY_FUNCTION is defined in “Related Definitions” below.

Description
The Notify() function registers all the callback functions to allow the bus driver to call these
functions when the SlaveAddress/Data pair happens.

SMBus Host Controller Code Definitions Platform Initialization Spec, Vol. 5

20 May 2017 Version 1.6

Related Definitions
//***
// EFI_SMBUS_NOTIFY_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_NOTIFY_FUNCTION) (
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Platform Initialization SMBus PPI
Specification..

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned

EFI_SUCCESS NotifyFunction was registered.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not implemented by

this driver.

Platform Initialization Spec, Vol. 5 SMBus Design Discussion

Version 1.6 May 2017 21

4 SMBus Design Discussion

4.1 Introduction
These sections describe the System Management Bus (SMBus) PEIM-to-PEIM Interfaces (PPIs).
This document provides enough material to implement an SMBus Pre-EFI Initialization Module
(PEIM) that can control transactions between an SMBus host controller and its slave devices.

The material that is contained in this document is designed to support communication via the
SMBus. These extensions are provided in the form of SMBus-specific protocols. This document
provides the information that is required to implement an SMBus PEIM in the Pre-EFI Initialization
(PEI) portion of system firmware.

A full understanding of the Unified Extensible Firmware Interface Specification (UEFI
specification) and the System Management Bus (SMBus) Specification is assumed throughout this
document. See “Related Information,” below, for the URL for the System Management Bus (SMBus)
Specification.

4.2 Target Audience
This document is intended for the following readers:

• Original equipment manufacturers (OEMs) who will be creating platforms that are intended to
boot shrink-wrap operating systems.

• BIOS developers, either those who create general-purpose BIOS and other firmware products, or
those who modify these productss.

• Operating system developers who will be creating and/or adapting their shrink-wrap operating
system products.

4.3 Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementer's Forum,

August 3, 2000:
http://www.smbus.org

• PCI Local Bus Specification, revision 3.0, PCI Special Interest Group.

4.4 PEI SMBus PPI Overview
The PEI SMBus PPI is used by code, typically other PEIMs, that is running in the PEI environment
to access data on an SMBus slave device via the SMBus host controller. In particular, functions for
managing devices on SMBus buses are defined in this specification.

http://www.smbus.org

 SMBus Design Discussion Platform Initialization Spec, Vol. 5

22 May 2017 Version 1.6

The interfaces that are provided in the EFI_PEI_SMBUS2_PPI are for performing basic
operations to an SMBus slave device. The system provides abstracted access to basic system
resources to allow a PEIM to have a programmatic method to access these basic system resources.
The main goal of this PPI is to provide an abstraction that simplifies the writing of PEIMs for
SMBus slave devices. This goal is accomplished by providing a standard interface to the SMBus
slave devices that does not require detailed knowledge about the particular hardware implementation
or protocols of the SMBus.

Certain implentations of the module may omit Arp capabilities. Specifically, a module will either
support Execute, ArpDevice, GetArpMap, and Notify; alternatively, a module will support only
Execute and return “not supported” for the latter 3 services.

See “EFI_PEI_SMBUS2_PPI” on page 24 for the definition of EFI_PEI_SMBUS2_PPI. This PPI
is produced by each of the SMBus host controllers in the system.

Platform Initialization Spec, Vol. 5 SMBus PPI Code Definitions

Version 1.6 May 2017 23

5 SMBus PPI Code Definitions

5.1 Introduction
This section contains the basic definitions for PEIMs and SMBus devices to use during the PEI
phase. The following PPI is defined in this section:

• EFI_PEI_SMBUS2_PPI

This section also contains the definitions for additional SMBus-related data types and structures that
are subordinate to the structures in which they are called. All of the data structures below except for
EFI_PEI_SMBUS_NOTIFY_FUNCTION can be used in the DXE phase as well. The following
types or structures can be found in "Related Definitions" of the parent function definition:

• EFI_SMBUS_DEVICE_ADDRESS

• EFI_SMBUS_DEVICE_COMMAND

• EFI_SMBUS_OPERATION

• EFI_SMBUS_UDID

• EFI_SMBUS_DEVICE_MAP

• EFI_PEI_SMBUS_NOTIFY_FUNCTION

 SMBus PPI Code Definitions Platform Initialization Spec, Vol. 5

24 May 2017 Version 1.6

5.2 PEI SMBus PPI

EFI_PEI_SMBUS2_PPI

Summary
Provides the basic I/O interfaces that a PEIM uses to access its SMBus controller and the slave
devices attached to it.

GUID
#define EFI_PEI_SMBUS2_PPI_GUID \
 { 0x9ca93627, 0xb65b, 0x4324, \
 0xa2, 0x2, 0xc0, 0xb4, 0x61, 0x76, 0x45, 0x43 }

PPI Interface Structure
typedef struct _EFI_PEI_SMBUS2_PPI {
 EFI_PEI_SMBUS2_PPI_EXECUTE_OPERATION Execute;
 EFI_PEI_SMBUS2_PPI_ARP_DEVICE ArpDevice;
 EFI_PEI_SMBUS2_PPI_GET_ARP_MAP GetArpMap;
 EFI_PEI_SMBUS2_PPI_NOTIFY Notify;
 EFI_GUID Identifier
} EFI_PEI_SMBUS2_PPI;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

GetArpMap

Allows a PEIM to retrieve the address that was allocated by the SMBus host controller
during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a PEIM to register for a callback to the SMBus host controller PEIM when the
bus issues a notification to the bus controller PEIM. See the Notify() function
description.

Identifier

Identifier which uniquely identifies this SMBus controller in a system.

Platform Initialization Spec, Vol. 5 SMBus PPI Code Definitions

Version 1.6 May 2017 25

Description
The EFI_PEI_SMBUS2_PPI provides the basic I/O interfaces that are used to abstract accesses to
SMBus host controllers. There is one EFI_PEI_SMBUS2_PPI instance for each SMBus host
controller in a system. A PEIM that wishes to manage an SMBus slave device in a system will have
to retrieve the EFI_PEI_SMBUS2_PPI instance that is associated with its SMBus host controller.

 SMBus PPI Code Definitions Platform Initialization Spec, Vol. 5

26 May 2017 Version 1.6

EFI_PEI_SMBUS2_PPI.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_EXECUTE_OPERATION) (
 IN CONST EFI_PEI_SMBUS2_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in "Related
Definitions" below.

Command

This command is transmitted by the SMBus host controller to the SMBus slave device
and the interpretation is SMBus slave device specific. It can mean the offset to a list of
functions inside an SMBus slave device. Not all operations or slave devices support
this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is defined in
"Related Definitions" below.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
System Management Bus (SMBus) Specification and is not related to UEFI. Type
EFI_SMBUS_OPERATION is defined in "Related Definitions" below.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This parameter will contain the

Platform Initialization Spec, Vol. 5 SMBus PPI Code Definitions

Version 1.6 May 2017 27

actual number of bytes that are executed for this operation. Not all operations require
this argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the System
Management Bus (SMBus) Specification. The resulting transaction will be either that the SMBus
slave devices accept this transaction or that this function returns with error.

Related Definitions
//***
// EFI_SMBUS_DEVICE_ADDRESS
//***
typedef struct _EFI_SMBUS_DEVICE_ADDRESS {
 UINTN SmbusDeviceAddress:7;
} EFI_SMBUS_DEVICE_ADDRESS;

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated.

//***
// EFI_SMBUS_DEVICE_COMMAND
//***
typedef UINTN EFI_SMBUS_DEVICE_COMMAND;

//***
// EFI_SMBUS_OPERATION
//***
typedef enum _EFI_SMBUS_OPERATION {
 EfiSmbusQuickRead,
 EfiSmbusQuickWrite,
 EfiSmbusReceiveByte,
 EfiSmbusSendByte,
 EfiSmbusReadByte,
 EfiSmbusWriteByte,
 EfiSmbusReadWord,
 EfiSmbusWriteWord,
 EfiSmbusReadBlock,
 EfiSmbusWriteBlock,
 EfiSmbusProcessCall,
 EfiSmbusBWBRProcessCall

 SMBus PPI Code Definitions Platform Initialization Spec, Vol. 5

28 May 2017 Version 1.6

} EFI_SMBUS_OPERATION;

See the System Management Bus (SMBus) Specification for descriptions of the fields in the above
definition.

Status Codes Returned

EFI_SUCCESS The last data that was returned from the access matched the poll
exit criteria.

EFI_CRC_ERROR The checksum is not correct (PEC is incorrect).

EFI_TIMEOUT Timeout expired before the operation was completed.

Timeout is determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure reflected in the
Host Status Register bit. Device errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or
bus errors (collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for

EfiSmbusQuickRead and EfiSmbusQuickWrite.

Length is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

Platform Initialization Spec, Vol. 5 SMBus PPI Code Definitions

Version 1.6 May 2017 29

EFI_PEI_SMBUS2_PPI.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_ARP_DEVICE) (
 IN CONST EFI_PEI_SMBUS2_PPI *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

ArpAll

A Boolean expression that indicates if the host PEIMs need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll is
TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

SmbusUdid

The targeted SMBus Unique Device Identifier (UDID). The UDID may not exist for
SMBus devices with fixed addresses. Type EFI_SMBUS_UDID is defined in
"Related Definitions" below.

SlaveAddress

The new SMBus address for the slave device for which the operation is targeted. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Description
The ArpDevice() function enumerates the entire bus or enumerates a specific device that is
identified by SmbusUdid.

 SMBus PPI Code Definitions Platform Initialization Spec, Vol. 5

30 May 2017 Version 1.6

Related Definitions
//***
// EFI_SMBUS_UDID
//***
typedef struct _EFI_SMBUS_UDID {
 UINT32 VendorSpecificId;
 UINT16 SubsystemDeviceId;
 UINT16 SubsystemVendorId;
 UINT16 Interface;
 UINT16 DeviceId;
 UINT16 VendorId;
 UINT8 VendorRevision;
 UINT8 DeviceCapabilities;
} EFI_SMBUS_UDID;

VendorSpecificId

A unique number per device.

SubsystemDeviceId

Identifies a specific interface, implementation, or device. The subsystem ID is defined
by the party that is identified by the SubsystemVendorId field.

SubsystemVendorId

This field may hold a value that is derived from any of several sources:

• The device manufacturer’s ID as assigned by the SBS Implementer's Forum or the
PCI SIG.

• The device OEM’s ID as assigned by the SBS Implementer's Forum or the PCI
SIG.

• A value that, in combination with the SubsystemDeviceId, can be used to
identify an organization or industry group that has defined a particular common
device interface specification.

Interface

Identifies the protocol layer interfaces that are supported over the SMBus connection
by the device. For example, Alert Standard Format (ASF) and IPMI.

DeviceId

The device ID as assigned by the device manufacturer (identified by the VendorId
field).

VendorId

The device manufacturer’s ID as assigned by the SBS Implementer's Forum or the
PCI SIG.

VendorRevision

UDID version number and a silicon revision identification.

DeviceCapabilities

Describes the device’s capabilities.

Platform Initialization Spec, Vol. 5 SMBus PPI Code Definitions

Version 1.6 May 2017 31

Status Codes Returned

EFI_SUCCESS The SMBus slave device address was set.

EFI_INVALID_PARAMETER SlaveAddress is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The SMBus slave device did not respond.

EFI_DEVICE_ERROR The request was not completed because the transaction failed.
Device errors are a result of a transaction collision, illegal command
field, or unclaimed cycle (host initiated).

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

 SMBus PPI Code Definitions Platform Initialization Spec, Vol. 5

32 May 2017 Version 1.6

EFI_PEI_SMBUS2_PPI.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair of
the slave devices that were enumerated by the SMBus host controller PEIM.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_GET_ARP_MAP) (
 IN CONST EFI_PEI_SMBUS_PPI *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

Length

Size of the buffer that contains the SMBus device map.

SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller PEIM. Type
EFI_SMBUS_DEVICE_MAP is defined in "Related Definitions" below.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that are enumerated by
the SMBus host PEIM.

Related Definitions
//***
// EFI_SMBUS_DEVICE_MAP
//***
typedef struct _EFI_SMBUS_DEVICE_MAP {
 EFI_SMBUS_DEVICE_ADDRESS SmbusDeviceAddress;
 EFI_SMBUS_UDID SmbusDeviceUdid;
} EFI_SMBUS_DEVICE_MAP;

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Platform Initialization Spec, Vol. 5 SMBus PPI Code Definitions

Version 1.6 May 2017 33

SmbusDeviceUdid

The SMBUS Unique Device Identifier (UDID) as defined in EFI_SMBUS_UDID.
Type EFI_SMBUS_UDID is defined in
EFI_PEI_SMBUS2_PPI.ArpDevice().

Status Codes Returned

EFI_SUCCESS The device map was returned correctly in the buffer.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

 SMBus PPI Code Definitions Platform Initialization Spec, Vol. 5

34 May 2017 Version 1.6

EFI_PEI_SMBUS2_PPI.Notify()

Summary
Allows a PEIM to register for a callback when the PEIM detects a state that it needs to propagate to
other PEIMs that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS2_PPI_NOTIFY) (
 IN CONST EFI_PEI_SMBUS_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_PEI_SMBUS_NOTIFY2_FUNCTION NotifyFunction
);

Parameters
This

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered functions. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Data

Data that the host controller detects as sending a message and calls all the registered
functions.

NotifyFunction

The function to call when the PEIM detects the SlaveAddress and Data pair.
Type EFI_PEI_SMBUS_NOTIFY2_FUNCTION is defined in "Related
Definitions" below.

Description
The Notify() function registers all the callback functions to allow the PEIM to call these
functions when the SlaveAddress/Data pair happens.

Platform Initialization Spec, Vol. 5 SMBus PPI Code Definitions

Version 1.6 May 2017 35

Related Definitions
//***
// EFI_PEI_SMBUS_NOTIFY2_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_NOTIFY2_FUNCTION) (
 IN CONST EFI_PEI_SMBUS_PPI *SmbusPpi,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

SmbusPpi

A pointer to the EFI_PEI_SMBUS2_PPI instance.

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS2_PPI.Execute().

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned

EFI_SUCCESS NotifyFunction has been registered.

EFI_UNSUPPORTED ArpDevice, GetArpMap, and Notify are not

implemented by this PEIM.

 SMBus PPI Code Definitions Platform Initialization Spec, Vol. 5

36 May 2017 Version 1.6

Platform Initialization Spec, Vol. 5 SMBIOS Protocol

Version 1.6 May 2017 37

6 SMBIOS Protocol

EFI_SMBIOS_PROTOCOL

Summary
Allows consumers to log SMBIOS data records, and enables the producer to create the SMBIOS
tables for a platform.

GUID
#define EFI_SMBIOS_PROTOCOL_GUID \
 { 0x3583ff6, 0xcb36, 0x4940, { 0x94, 0x7e, 0xb9, 0xb3, 0x9f,\
 0x4a, 0xfa, 0xf7 } }

Protocol Interface Structure
typedef struct _EFI_SMBIOS_PROTOCOL {
 EFI_SMBIOS_ADD Add;
 EFI_SMBIOS_UPDATE_STRINGUpdateString;
 EFI_SMBIOS_REMOVE Remove;
 EFI_SMBIOS_GET_NEXT GetNext;
 UINT8 MajorVersion;
 UINT8 MinorVersion;
} EFI_SMBIOS_PROTOCOL;

Member Description
Add

Add an SMBIOS record including the formatted area and the optional strings that
follow the formatted area.

UpdateString

Update a string in the SMBIOS record.

Remove

Remove an SMBIOS record.

GetNext

Discover all SMBIOS records.

MajorVersion

The major revision of the SMBIOS specification supported.

MinorVersion

The minor revision of the SMBIOS specification supported.

SMBIOS Protocol Platform Initialization Spec, Vol. 5

38 May 2017 Version 1.6

Description
This protocol provides an interface to add, remove or discover SMBIOS records. The driver which
produces this protocol is responsible for creating the SMBIOS data tables and installing the pointer
to the tables in the EFI System Configuration Table.

The caller is responsible for only adding SMBIOS records that are valid for the SMBIOS
MajorVersion and MinorVersion. When an enumerated SMBIOS field's values are
controlled by the DMTF, new values can be used as soon as they are defined by the DMTF without
requiring an update to MajorVersion and MinorVersion.

The SMBIOS protocol can only be called a TPL < TPL_NOTIFY.

Platform Initialization Spec, Vol. 5 SMBIOS Protocol

Version 1.6 May 2017 39

EFI_SMBIOS_PROTOCOL.Add()

Summary
Add an SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_ADD) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_HANDLE ProducerHandle, OPTIONAL
 IN OUT EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN EFI_SMBIOS_TABLE_HEADER *Record
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

ProducerHandle

The handle of the controller or driver associated with the SMBIOS information. NULL
means no handle.

SmbiosHandle

On entry, the handle of the SMBIOS record to add. If FFFEh, then a unique handle
will be assigned to the SMBIOS record. If the SMBIOS handle is already in use,
EFI_ALREADY_STARTED is returned and the SMBIOS record is not updated.

Record

The data for the fixed portion of the SMBIOS record. The format of the record is
determined by EFI_SMBIOS_TABLE_HEADER.Type. The size of the formatted
area is defined by EFI_SMBIOS_TABLE_HEADER.Length and either followed
by a double-null (0x0000) or a set of null terminated strings and a null.

Description
This function allows any agent to add SMBIOS records. The caller is responsible for ensuring
Record is formatted in a way that matches the version of the SMBIOS specification as defined in
the MajorRevision and MinorRevision fields of the EFI_SMBIOS_PROTOCOL.

Record must follow the SMBIOS structure evolution and usage guidelines in the SMBIOS
specification. Record starts with the formatted area of the SMBIOS structure and the length is
defined by EFI_SMBIOS_TABLE_HEADER.Length. Each SMBIOS structure is terminated by a
double-null (0x0000), either directly following the formatted area (if no strings are present) or
directly following the last string. The number of optional strings is not defined by the formatted area,
but is fixed by the call to Add(). A string can be a place holder, but it must not be a NULL string as
two NULL strings look like the double-null that terminates the structure.

SMBIOS Protocol Platform Initialization Spec, Vol. 5

40 May 2017 Version 1.6

Related Definitions
typedef UINT8 EFI_SMBIOS_TYPE;
typedef UINT16 EFI_SMBIOS_HANDLE;

typedef struct {
 EFI_SMBIOS_TYPE Type;
 UINT8 Length;
 EFI_SMBIOS_HANDLE Handle;
} EFI_SMBIOS_TABLE_HEADER;

#define EFI_SMBIOS_TYPE_BIOS_INFORMATION 0
#define EFI_SMBIOS_TYPE_SYSTEM_INFORMATION 1
#define EFI_SMBIOS_TYPE_BASEBOARD_INFORMATION 2
#define EFI_SMBIOS_TYPE_SYSTEM_ENCLOSURE 3
#define EFI_SMBIOS_TYPE_PROCESSOR_INFORMATION 4
#define EFI_SMBIOS_TYPE_MEMORY_CONTROLLER_INFORMATION 5
#define EFI_SMBIOS_TYPE_MEMORY_MODULE_INFORMATON 6
#define EFI_SMBIOS_TYPE_CACHE_INFORMATION 7
#define EFI_SMBIOS_TYPE_PORT_CONNECTOR_INFORMATION 8
#define EFI_SMBIOS_TYPE_SYSTEM_SLOTS 9
#define EFI_SMBIOS_TYPE_ONBOARD_DEVICE_INFORMATION 10
#define EFI_SMBIOS_TYPE_OEM_STRINGS 11
#define EFI_SMBIOS_TYPE_SYSTEM_CONFIGURATION_OPTIONS 12
#define EFI_SMBIOS_TYPE_BIOS_LANGUAGE_INFORMATION 13
#define EFI_SMBIOS_TYPE_GROUP_ASSOCIATIONS 14
#define EFI_SMBIOS_TYPE_SYSTEM_EVENT_LOG 15
#define EFI_SMBIOS_TYPE_PHYSICAL_MEMORY_ARRAY 16
#define EFI_SMBIOS_TYPE_MEMORY_DEVICE 17
#define EFI_SMBIOS_TYPE_32BIT_MEMORY_ERROR_INFORMATION 18
#define EFI_SMBIOS_TYPE_MEMORY_ARRAY_MAPPED_ADDRESS 19
#define EFI_SMBIOS_TYPE_MEMORY_DEVICE_MAPPED_ADDRESS 20
#define EFI_SMBIOS_TYPE_BUILT_IN_POINTING_DEVICE 21
#define EFI_SMBIOS_TYPE_PORTABLE_BATTERY 22
#define EFI_SMBIOS_TYPE_SYSTEM_RESET 23
#define EFI_SMBIOS_TYPE_HARDWARE_SECURITY 24
#define EFI_SMBIOS_TYPE_SYSTEM_POWER_CONTROLS 25
#define EFI_SMBIOS_TYPE_VOLTAGE_PROBE 26
#define EFI_SMBIOS_TYPE_COOLING_DEVICE 27
#define EFI_SMBIOS_TYPE_TEMPERATURE_PROBE 28
#define EFI_SMBIOS_TYPE_ELECTRICAL_CURRENT_PROBE 29
#define EFI_SMBIOS_TYPE_OUT_OF_BAND_REMOTE_ACCESS 30
#define EFI_SMBIOS_TYPE_BOOT_INTEGRITY_SERVICE 31
#define EFI_SMBIOS_TYPE_SYSTEM_BOOT_INFORMATION 32
#define EFI_SMBIOS_TYPE_64BIT_MEMORY_ERROR_INFORMATION 33
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE 34
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE_COMPONENT 35
#define EFI_SMBIOS_TYPE_MANAGEMENT_DEVICE_THRESHOLD_DATA 36

Platform Initialization Spec, Vol. 5 SMBIOS Protocol

Version 1.6 May 2017 41

#define EFI_SMBIOS_TYPE_MEMORY_CHANNEL 37
#define EFI_SMBIOS_TYPE_IPMI_DEVICE_INFORMATION 38
#define EFI_SMBIOS_TYPE_SYSTEM_POWER_SUPPLY 39

#define EFI_SMBIOS_TYPE_ADDITIONAL_INFORMATION 40
#define EFI_SMBIOS_TYPE_ONBOARD_DEVICES_EXTENDED_INFORMATION 41
#define EFI_SMBIOS_TYPE_MANAGEMENT_CONTROLLER_HOST_INTERFACE 42

#define EFI_SMBIOS_TYPE_INACTIVE 126
#define EFI_SMBIOS_TYPE_END_OF_TABLE 127
#define EFI_SMBIOS_OEM_BEGIN 128
#define EFI_SMBIOS_OEM_END 255

typedef UINT8 EFI_SMBIOS_STRING;

Note: These types are consistent with the DMTF SMBIOS 2.7 specification.

Status Codes Returned

EFI_SUCCESS Record was added.

EFI_OUT_OF_RESOURCES Record was not added.

EFI_ALREADY_STARTED The SmbiosHandle passed in was already in use.

SMBIOS Protocol Platform Initialization Spec, Vol. 5

42 May 2017 Version 1.6

EFI_SMBIOS_PROTOCOL.UpdateString()

Summary
Update the string associated with an existing SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_UPDATE_STRING) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN UINTN *StringNumber,
 IN CHAR8 *String
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

SMBIOS Handle of structure that will have its string updated.

StringNumber

The non-zero string number of the string to update

String

Update the StringNumber string with String.

Description
This function allows the update of specific SMBIOS strings. The number of valid strings for any
SMBIOS record is defined by how many strings were present when Add() was called.

Status Codes Returned

EFI_SUCCESS SmbiosHandle had its StringNumber String updated.

EFI_INVALID_PARAMETER SmbiosHandle does not exist.

EFI_UNSUPPORTED String was not added because it is longer than the SMBIOS Table
supports.

EFI_NOT_FOUND The StringNumber.is not valid for this SMBIOS record.

Platform Initialization Spec, Vol. 5 SMBIOS Protocol

Version 1.6 May 2017 43

 EFI_SMBIOS_PROTOCOL.Remove()

Summary
Remove an SMBIOS record.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_REMOVE) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN EFI_SMBIOS_HANDLE SmbiosHandle
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

The handle of the SMBIOS record to remove.

Description
This function removes an SMBIOS record using the handle specified by SmbiosHandle.

Status Codes Returned

EFI_SUCCESS SMBIOS record was removed.

EFI_INVALID_PARAMETER SmbiosHandle does not specify a valid SMBIOS record.

SMBIOS Protocol Platform Initialization Spec, Vol. 5

44 May 2017 Version 1.6

EFI_SMBIOS_PROTOCOL.GetNext()

Summary
Allow the caller to discover all or some of the SMBIOS records.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBIOS_GET_NEXT) (
 IN CONST EFI_SMBIOS_PROTOCOL *This,
 IN OUT EFI_SMBIOS_HANDLE *SmbiosHandle,
 IN EFI_SMBIOS_TYPE *Type, OPTIONAL
 OUT EFI_SMBIOS_TABLE_HEADER **Record,
 OUT EFI_HANDLE *ProducerHandle OPTIONAL
);

Parameters
This

The EFI_SMBIOS_PROTOCOL instance.

SmbiosHandle

On entry, points to the previous handle of the SMBIOS record. On exit, points to the
next SMBIOS record handle. If it is FFFEh on entry, then the first SMBIOS record
handle will be returned. If it returns FFFEh on exit, then there are no more SMBIOS
records.

Type

On entry, it points to the type of the next SMBIOS record to return. If NULL, it
indicates that the next record of any type will be returned. Type is not modified by
the this function.

Record

On exit, points to a pointer to the the SMBIOS Record consisting of the formatted area
followed by the unformatted area. The unformatted area optionally contains text
strings.

ProducerHandle

On exit, points to the ProducerHandle registered by Add(). If no
ProducerHandle was passed into Add() NULL is returned. If a NULL pointer is
passed in no data will be returned

Description
This function allows all of the SMBIOS records to be discovered. It's possible to find
only the SMBIOS records that match the optional Type argument.

Platform Initialization Spec, Vol. 5 SMBIOS Protocol

Version 1.6 May 2017 45

Status Codes Returned.

EFI_SUCCESS .SMBIOS record information was successfully returned in Record.

SmbiosHandle is the handle of the current SMBIOS record

EFI_NOT_FOUND The SMBIOS record with SmbiosHandle was the last available

record.

SMBIOS Protocol Platform Initialization Spec, Vol. 5

46 May 2017 Version 1.6

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 47

7 IDE Controller

7.1 IDE Controller Overview
This specification defines the core code and services that are required for an implementation of the
IDE Controller Initialization Protocol of the UEFI Platform Initialization Specification. This
protocol isa driver entity such as a driver entity to program an IDE controller and to obtain IDE
device timing information. This protocol abstracts the nonstandard parts of an IDE controller. This
protocol is not tied to any specific bus.

This specification does the following:

• Describes the basic components of the IDE Controller Initialization Protocol

• Provides code definitions for the IDE Controller Initialization Protocol and other IDE-
controller-related type definitions that are architecturally required

7.2 Design Discussion

7.2.1 IDE Controller Initialization Protocol Overview
This section discusses the IDE Controller Initialization Protocol. This protocol is used by a driver
entity to program an IDE controller and to obtain IDE device timing information. This protocol
abstracts the nonstandard parts of IDE controller. This protocol is mandatory on platforms with IDE
controllers that are managed by a driver entity.

See IDE Controller Initialization Protocol in Code Definitions for the definition of
EFI_IDE_CONTROLLER_INIT_PROTOCOL.

7.2.1.1 IDE Controller Terms
The following terms are used throughout this document.

AHCI

Advanced Host Controller Interface.

ATAPI

AT Attachment Packet Interface

enumeration group

The set of IDE devices that must be enumerated as a group. In other words, if device A and
device B belong to an enumeration group and device A needs to be configured, device B must
be configured at the same time and vice versa. There are two possible enumeration groupings
for an IDE controller:

• "All the devices on a channel. In this case, the number of enumeration groups is equal to the
number of channels.

 IDE Controller Platform Initialization Spec, Vol. 5

48 May 2017 Version 1.6

• "All the devices on all the channels behind an IDE controller. This enumeration grouping
may arise because multiple channels share some hardware registers or have some other
dependencies. In this case, the number of enumeration groups is 1.

The IDE controller indicates the type of enumeration group that is applicable. In case 2, the
driver entity must enumerate all the devices on all the channels if there is a request to
configure a single device. In case 1, the driver entity must enumerate all the devices on the
same channel if there is a request to configure a single device. Case 1 will lead to faster boot.

IDE controller

The hardware device that produces one or more IDE buses (channels). Each channel can host
one or more IDE devices.

PATA

Parallel ATA.

PATA controller

An IDE controller that supports PATA devices. Traditionally, a PATA controller supports up
to two channels: primary and secondary. Each channel traditionally supports up to two
devices: master and slave.

SATA

Serial ATA.

SATA controller

An IDE controller that supports the SATA driver. SATA controllers can emulate PATA
behavior. The behavior of command and control block registers, PIO and DMA data transfers,
resets, and interrupts are all emulated. In addition, SATA controllers can implement a more
modern register interface, namely AHCI. AHCI allows the host software to overcome the
limitations that are imposed by PATA emulation and to use advanced SATA features.

Some chipsets contain both PATA and SATA controllers and support a combined mode. In
combined mode, the two controllers are logically merged into one controller. The PATA
drives can appear behind the SATA controller to the host software. In such a mode, all the
PATA rules in terms of IDE timing configuration apply to SATA controllers.

7.2.2 IDE Controller Initialization Protocol References
The following sources of information are referenced in this specification or may be useful to you.

• "ATA Host Adapter Standards, Working Draft Version of: http://www.t13.org/*

• "Information Technology - AT Attachment with Packet Interface - 6 (ATA/ATAPI-6): http://
www.t13.org/*

• Serial ATA Advanced Host Controller Interface (AHCI) Specification, version 1.0: http://
developer.intel.com/technology/serialata/ahci.htm

• Serial ATA: High Speed Serialized AT Attachment, revision 1.0a (may also be referred to as
Serial ATA Specification 1.0a): http://www.serialata.org/*

• "Serial ATA II: Port Multiplier Specification, revision 1.1: http://www.serialata.org/*

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 49

7.2.3 Background

7.2.3.1 IDE Requirements
The IDE Controller Initialization Protocol is designed to work for both Parallel ATA (PATA) and
Serial ATA (SATA) IDE controllers.

This protocol is designed with the following requirements in mind:

1. The timing registers in a PATA IDE controller are vendor specific. (See ATA Host Adapter
Standards, Working Draft Version 0f, for more information.) The programming of these
registers needs to be abstracted from the driver entity.

2. The IDE Controller Initialization Protocol should also support a case where a specific channel is
disabled and/or it should not be scanned. This protocol also needs a mechanism to address
individual devices in various SATA and PATA configurations. This protocol needs to support
the following:

• "A variable number of channels per controller

• "A variable number of devices per channel

7.2.3.1.1 PATA Controllers

PATA controllers support up to two channels and each channel can have a maximum of two
devices.

7.2.3.1.2 SATA Contollers

SATA controllers can support standard ATA emulation. As described in the Serial ATA
Specification 1.0a, ATA emulation can either be master-only emulation or master-slave
emulation. In either case, the SATA controller appears to have one or two channels. In master-
only emulation, a maximum of one drive appears on a channel. In master-slave emulation, one
or two drives can show up behind a channel.

When an SATA controller is operating in Advanced Host Controller Interface (AHCI) mode, it
can support up to 32 ports. The SATA port that is generated by an SATA controller can host an
SATA port multiplier. There can be up to 16 SATA devices on the other side of the SATA port
multiplier.

In this geometry, each SATA port that is generated by the SATA controller is treated as a
channel, and this channel can have up to 16 devices. This is done so that PATA drives as well as
SATA drives can be represented using a (Channel, Device) address pair. Note that the
SATA channels work very differently from PATA channels in the sense that the SATA channels
do not have the concept of master/slave or daisy chaining.

See Figure 2 1 and Figure 2 2 below for explanations how the devices are addressed.

7.2.3.1.3 Bus Neutral

It should be possible to use the same abstractions to support an IDE controller on the PCI bus or
some other bus. The IDE controller driver will know which controller devices it can support.
Because the majority of IDE controllers that exist today are located on the PCI bus, all the examples
will refer to PCI IDE controllers, but the protocol is not tied to the PCI bus.

 IDE Controller Platform Initialization Spec, Vol. 5

50 May 2017 Version 1.6

7.2.3.2 PCI IDE controller
PCI IDE controllers can operate in native PCI mode or compatibility mode. The IDE Controller
Initialization Protocol should permit both modes.

The design should use the EFI Driver Model to support the quick boot feature. The smallest unit of
initialization is one channel. By default, the driver entity initializes only the channel on which the
user-requested drive resides. The IDE Controller Initialization Protocol should support the case
where various channels share the same hardware bits and cannot be independently enumerated. The
controller driver can specify that all the channels should be enumerated as one unit.

The IDE Controller Initialization Protocol must support SATA controllers that may or may not
implement AHCI register interface.

7.2.4 Simplifying the Design of IDE Drivers
The IDE bus is not a general-purpose bus. The standard ATA and ATAPI command sets support
only a storage class of devices. The following design decisions can be made to simplify the IDE
Controller Initialization Protocol and the design of IDE drivers:

• "The driver entity is the only driver that will send commands to the ATA devices. No device-
specific drivers are needed for IDE devices because all the devices belong to the same class (i.e.,
storage) and the driver entity can have inherent knowledge of these commands. IDE bus
equivalents of EFI_PCI_IO_PROTOCOL and EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
for accessing IDE devices are not required. It is possible to further simplify the design of the
driver entity if it does not have to deal with the ATAPI devices. It can enumerate the ATA and
ATAPI devices and install the EFI_SCSI_PASSTHRU_PROTOCOL on ATAPI device
handles. Either way, IDE-bus-specific I/O protocols are not needed. See the UEFI Specification
for the definitions of the EFI PCI I/O Protocol, PCI Root Bridge I/O Protocol, and the SCSI Pass
Thru Protocol.

• "IDE devices are accessed and configured through a set of standard registers in the IDE
controller. The ATA committee is standardizing the layout of these registers. (See ATA Host
Adapter Standards, Working Draft Version 0f, for more information.) For Serial ATA (SATA)
controllers, the Serial ATA Advanced Host Controller Interface (AHCI) Specification defines a
standard register interface. Although the layout is dependent on the bus on which the controller
is located, the layout for a particular bus is fixed. As a result, the driver entity can be required to
know about the register layout for buses that it chooses to support. For example, for a PCI IDE
controller, the IDE driver can access the base of the command block register for channel 0 using
the following steps:

1. Check bit 0 of register 0x9 (Programming Interface Code) in the PCI configuration space of the
controller to determine whether it is operating in compatibility mode or native PCI mode. For
this example, we will assume that the controller is operating in native mode.

2. Read register 0x10 (Base Address Register [BAR] 0) of the controller. Clear bit 0 of the value
that was read to get the command block base

7.2.5 Configuring Devices on the IDE Bus
The table below lists the various drivers that may participate in configuring the devices on the IDE
bus.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 51

Table 1. Drivers Involved in Configuring IDE Devices

Driver Follows the EFI
Driver Model?

Description

IDE controller driver Yes Produces the

EFI_IDE_CONTROLLER_INIT_PROTOCOL.

Consumes the bus-specific I/O protocol.

EFI_IDE_CONTROLLER_INIT_PROTOCOL abstracts

the chipset-specific IDE controller registers and is responsible for
early initialization of the IDE controller. Note that

EFI_IDE_CONTROLLER_INIT_PROTOCOL is not

tied to a specific bus although most IDE controllers today are on the
PCI or ISA bus.

Driver entity Yes Consumes the

EFI_IDE_CONTROLLER_INIT_PROTOCOL and the

bus-specific I/O protocol. It enumerates the IDE buses. This driver
will check for the presence of the

EFI_IDE_CONTROLLER_INIT_PROTOCOL on the

controller handle before enumerating the child devices. This driver
uses the presence of the

EFI_IDE_CONTROLLER_INIT_PROTOCOL to

determine whether a controller is an IDE controller or not. This
driver will use bus-specific methods to access the standard ATA
registers (such as the control block, command block, and bus master
DMA registers) for a particular device. The driver not only knows
the address of a specific register block, but it also knows the layout
of that register block. This driver may produce the

EFI_SCSI_PASSTHRU_PROTOCOL for ATAPI devices

or it may directly manage the ATAPI devices by producing the

EFI_BLOCK_IO_PROTOCOL. This driver produces the

EFI_BLOCK_IO_PROTOCOL for ATA devices.

Generic SCSI or
ATAPI storage driver

Yes This optional driver manages the ATAPI device using the

EFI_SCSI_PASSTHRU_PROTOCOL and produces the

EFI_BLOCK_IO_PROTOCOL if requested.

Driver entity and IDE
controller driver
combined as one
driver

Yes It is also possible to combine the driver entity and the IDE
controller driver into one driver. In this case,

EFI_IDE_CONTROLLER_INIT_PROTOCOL is not

installed on the IDE controller handle. The monolithic driver is
responsible for initializing the IDE controller as well as the IDE
devices behind that controller.

EFI_IDE_CONTROLLER_INIT_PROTOCOL is

mandatory if the IDE devices behind the controller are to be
enumerated by the generic driver entity.

See the UEFI Specification for the definitions of the Block I/O Protocol and the SCSI Pass Thru
Protocol. The IDE Controller Initialization Protocol is defined in Code Definitions of this
specification.

 IDE Controller Platform Initialization Spec, Vol. 5

52 May 2017 Version 1.6

7.2.6 Sample Implementation for a Simple PCI IDE Controller
This topic provides a sample implementation only. The sequencing of various notifications cannot
be changed. The steps below apply if EFI_IDE_CONTROLLER_INIT_PROTOCOL.EnumAll =
FALSE.

See the UEFI Specification for definitions of the Driver Binding Protocol, EFI PCI I/O Protocol,
Device Path Protocol, and Block I/O Protocol. See Code Definitions in this specification for the
definition of the IDE Controller Initialization Protocol.

1. The IDE controller driver as well as the driver entity follow the EFI Driver Model. They are
loaded and both install (at least) one instance of the EFI_DRIVER_BINDING_PROTOCOL on
their image handle. An ATA hard drive behind a PCI IDE controller is one of the boot devices.

2. The PCI bus driver enumerates the PCI bus, finds the PCI IDE controller, creates a handle for it,
and installs an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on that handle.

3. The Boot Device Selection (BDS) phase searches for an appropriate driver to own the IDE
controller device and finds the IDE controller driver. It then connects the IDE controller device
and the IDE controller driver. The IDE controller driver opens the EFI_PCI_IO_PROTOCOL
BY_DRIVER. It may perform some other preprogramming at this point.

4. BDS searches for a driver to own the IDE device and finds the driver entity. The driver entity's
Supported() function checks for the presence of EFI_IDE_CONTROLLER_INIT_PROTOCOL
on the parent of the IDE device (i.e., the IDE controller).

5. The EFI Boot Services function ConnectController() calls the Start() function of
the driver entity, which starts the IDE bus enumeration. The following steps are performed by
the Start() function.

• The driver entity locates the EFI_IDE_CONTROLLER_INIT_PROTOCOL. It opens the
EFI_IDE_CONTROLLER_INIT_PROTOCOL BY_DRIVER. If it needs to open
EFI_PCI_IO_PROTOCOL, it may open it by GET_PROTOCOL. The driver entity reads
the EnumAll and ChannelCount fields in
EFI_IDE_CONTROLLER_INIT_PROTOCOL. In this case, EnumAll is FALSE. The
driver entity also obtains the channel number from Start().RemainingDevicePath.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeBeforeChannelEnumeration, Channel).

• The driver entity calls
EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo (This, Channel,
*Enabled, *MaxDevices) to find out the number of devices on this channel. If
*Enabled = FALSE, it exits with an error code. If the device number of the device to be
connected is too large, it exits with an error code.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeBeforeChannelReset, Channel).

• The driver entity resets the channel.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeAfterChannelReset, Channel).

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeBeforeDevicePresenceDetection, Channel). The IDE
controller driver may insert a predelay here or may ensure that various IDE bus signals are at
desired levels.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 53

• The driver entity attempts to detect devices on the channel. Note than there can be no more
than MaxDevices on the channel.

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeAfterDevicePresenceDetection, Channel).

• The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeResetMode, Channel). The IDE controller sets up the controller with
the default timings.

6. For all the devices on this channel:

• The driver entity gathers EFI_IDENTIFY_DATA for the device and submits it to the IDE
controller driver using EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData().
Submit NULL data for devices that do not exist.

• The driver entity may call
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() to disqualify
modes that it does not support.

7. For all the detected devices on this channel:

• Call EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() to get the
optimum mode settings. The IDE controller driver uses controller-specific algorithms and
platform information to calculate the best modes.

• The driver entity enables the appropriate modes by sending an ATA SET_FEATURES
command to the device. It the device returns an error, it disqualifies that mode for that
device and goes back to step 7. This time step 7 (first bullet) will not consider the failed
mode. The implementation then returns here to step 7 (second bullet) with new (less
optimum) modes.

8. For all the detected devices on this channel, call
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()to program the timings. Note
that we reset the mode settings in step 5(last bullet), so the settings for nonexistent devices will
remain at their default levels.

9. The driver entity calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase
(This, EfiIdeAfterChannelEnumeration, Channel).

10. Install EFI_BLOCK_IO_PROTOCOL on that device handle.

7.3 Code Definitions
This section contains the basic definitions of the IDE Controller Initialization Protocol. The IDE
Controller Initialization Protocol

following protocol is defined in this section:

EFI_IDE_CONTROLLER_INIT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

 IDE Controller Platform Initialization Spec, Vol. 5

54 May 2017 Version 1.6

EFI_IDE_CONTROLLER_ENUM_PHASE
EFI_IDENTIFY_DATA
EFI_ATA_IDENTIFY_DATA
EFI_ATAPI_IDENTIFY_DATA
EFI_ATA_COLLECTIVE_MODE
EFI_ATA_MODE
EFI_ATA_EXTENDED_MODE
EFI_ATA_EXT_TRANSFER_PROTOCOL

EFI_IDE_CONTROLLER_INIT_PROTOCOL

Summary
Provides the basic interfaces to abstract an IDE controller.

GUID
#define EFI_IDE_CONTROLLER_INIT_PROTOCOL_GUID \
 { 0xa1e37052, 0x80d9, 0x4e65, 0xa3, 0x17, 0x3e, 0x9a, \
 0x55, 0xc4, 0x3e, 0xc9 }

Protocol Interface Structure
typedef struct _EFI_IDE_CONTROLLER_INIT_PROTOCOL {
 EFI_IDE_CONTROLLER_GET_CHANNEL_INFO GetChannelInfo;
 EFI_IDE_CONTROLLER_NOTIFY_PHASE NotifyPhase;
 EFI_IDE_CONTROLLER_SUBMIT_DATA SubmitData;
 EFI_IDE_CONTROLLER_DISQUALIFY_MODE DisqualifyMode;
 EFI_IDE_CONTROLLER_CALCULATE_MODE CalculateMode;
 EFI_IDE_CONTROLLER_SET_TIMING SetTiming;
 BOOLEAN EnumAll;
 UINT8 ChannelCount;
} EFI_IDE_CONTROLLER_INIT_PROTOCOL;

Parameters
GetChannelInfo

Returns the information about a specific channel. See the GetChannelInfo() function
description.

NotifyPhase

The notification that the driver entity is about to enter the specified phase during the
enumeration process. See the NotifyPhase() function description.

SubmitData

Submits the Drive Identify data that was returned by the device. See the
SubmitData() function description.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 55

DisqualifyMode

Submits information about modes that should be disqualified. The specified IDE
device does not support these modes and these modes should not be returned by
CalculateMode . See the DisqualifyMode() function description.

CalculateMode

Calculates and returns the optimum mode for a particular IDE device. See the
CalculateMode() function description.

SetTiming

Programs the IDE controller hardware to the default timing or per the modes that were
returned by the last call to CalculateMode(). See the SetTiming() function
description.

EnumAll

Set to TRUE if the enumeration group includes all the channels that are produced by
this controller. FALSE if an enumeration group consists of only one channel.

ChannelCount

The number of channels that are produced by this controller. Parallel ATA (PATA)
controllers can support up to two channels. Advanced Host Controller Interface
(AHCI) Serial ATA (SATA) controllers can support up to 32 channels, each of which
can have up to one device. In the presence of a multiplier, each channel can have 15
devices.

Description
The EFI_IDE_CONTROLLER_INIT_PROTOCOL provides the chipset-specific information to the
driver entity. This protocol is mandatory for IDE controllers if the IDE devices behind the controller
are to be enumerated by a driver entity.

There can only be one instance of EFI_IDE_CONTROLLER_INIT_PROTOCOL for each IDE
controller in a system. It is installed on the handle that corresponds to the IDE controller. A driver
entity that wishes to manage an IDE bus and possibly IDE devices in a system will have to retrieve
the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance that is associated with the controller to
be managed.

A device handle for an IDE controller must contain an EFI_DEVICE_PATH_PROTOCOL.

 IDE Controller Platform Initialization Spec, Vol. 5

56 May 2017 Version 1.6

EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()

Summary
Returns the information about the specified IDE channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_GET_CHANNEL_INFO) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 OUT BOOLEAN *Enabled,
 OUT UINT8 *MaxDevices
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Enabled

TRUE if this channel is enabled. Disabled channels are not scanned to see if any
devices are present.

MaxDevices

The maximum number of IDE devices that the bus driver can expect on this channel.
For the ATA/ATAPI specification, version 6, this number will either be 1 or 2. For
Serial ATA (SATA) configurations with a port multiplier, this number can be as large
as 15.

Description
This function can be used to obtain information about a particular IDE channel. The driver entity
uses this information during the enumeration process.

If Enabled is set to FALSE, the driver entity will not scan the channel. Note that it will not prevent
an operating system driver from scanning the channel.

For most of today's controllers, MaxDevices will either be 1 or 2. For SATA controllers, this value
will always be 1. SATA configurations can contain SATA port multipliers. SATA port multipliers
behave like SATA bridges and can support up to 16 devices on the other side. If an SATA port out of
the IDE controller is connected to a port multiplier, MaxDevices will be set to the number of
SATA devices that the port multiplier supports. Because today's port multipliers support up to 15
SATA devices, this number can be as large as 15. The driver entity is required to scan for the
presence of port multipliers behind an SATA controller and enumerate up to MaxDevices number
of devices behind the port multiplier.

In this context, the devices behind a port multiplier constitute a channel.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 57

Status Codes Returned

EFI_SUCCESS Information was returned without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

 IDE Controller Platform Initialization Spec, Vol. 5

58 May 2017 Version 1.6

 EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase()

Summary
The notifications from the driver entity that it is about to enter a certain phase of the IDE channel
enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_NOTIFY_PHASE) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN EFI_IDE_CONTROLLER_ENUM_PHASE Phase,
 IN UINT8 Channel
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Phase

The phase during enumeration. Type EFI_IDE_CONTROLLER_ENUM_PHASE is
defined in "Related Definitions" below.

Channel

Zero-based channel number.

Description
This function can be used to notify the IDE controller driver to perform specific actions, including
any chipset-specific initialization, so that the chipset is ready to enter the next phase. Seven
notification points are defined at this time. See "Related Definitions" below for the definition of
various notification points and Sample Implementation for a Simple PCI IDE Controller in the
Design Discussion chapter for usage.

More synchronization points may be added as required in the future.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 59

Related Definitions
//***
// EFI_IDE_CONTROLLER_ENUM_PHASE
//***
typedef enum {
 EfiIdeBeforeChannelEnumeration,
 EfiIdeAfterChannelEnumeration,
 EfiIdeBeforeChannelReset,
 EfiIdeAfterChannelReset,
 EfiIdeBusBeforeDevicePresenceDetection,
 EfiIdeBusAfterDevicePresenceDetection,
 EfiIdeResetMode,
 EfiIdeBusPhaseMaximum
} EFI_IDE_CONTROLLER_ENUM_PHASE;

Table 2. Field descriptiond for EFI_IDE_CONTROLLER_ENUM_PHASE

EfiIdeBeforeChannelEnumeration The driver entity is about to begin enumerating the devices
behind the specified channel. This notification can be used to
perform any chipset-specific programming.

EfiIdeAfterChannelEnumeration The driver entity has completed enumerating the devices
behind the specified channel. This notification can be used to
perform any chipset-specific programming.

EfiIdeBeforeChannelReset The driver entity is about to reset the devices behind the
specified channel. This notification can be used to perform any
chipset-specific programming.

EfiIdeAfterChannelReset The driver entity has completed resetting the devices behind
the specified channel. This notification can be used to perform
any chipset-specific programming.

EfiIdeBusBeforeDevicePresenceDetection The driver entity is about to detect the presence of devices
behind the specified channel. This notification can be used to
set up the bus signals to default levels or for implementing
predelays.

EfiIdeBusAfterDevicePresenceDetection The driver entity is done with detecting the presence of
devices behind the specified channel. This notification can be
used to perform any chipset-specific programming.

EfiIdeResetMode The IDE bus is requesting the IDE controller driver to
reprogram the IDE controller hardware and thereby reset all
the mode and timing settings to default settings.

 Status Codes Returned

EFI_SUCCESS The notification was accepted without any errors.

EFI_UNSUPPORTED Phase is not supported.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

 IDE Controller Platform Initialization Spec, Vol. 5

60 May 2017 Version 1.6

EFI_NOT_READY This phase cannot be entered at this time; for example, an attempt was

made to enter a Phase without having entered one or more previous

Phase.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 61

EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()

Summary
Submits the device information to the IDE controller driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_SUBMIT_DATA) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_IDENTIFY_DATA *IdentifyData
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

IdentifyData

The device's response to the ATA IDENTIFY_DEVICE command. Type
EFI_IDENTIFY_DATA is defined in "Related Definitions" below.

Related Definitions
//***
// EFI_IDENTIFY_DATA
//***
typedef union {
 EFI_ATA_IDENTIFY_DATA AtaData;
 EFI_ATAPI_IDENTIFY_DATA AtapiData;
} EFI_IDENTIFY_DATA;

#define EFI_ATAPI_DEVICE_IDENTIFY_DATA 0x8000

AtaData

The data that is returned by an ATA device upon successful completion of the ATA
IDENTIFY_DEVICE command. The IDENTIFY_DEVICE command is defined in
the ATA/ATAPI specification. Type EFI_ATA_IDENTIFY_DATA is defined
below.

 IDE Controller Platform Initialization Spec, Vol. 5

62 May 2017 Version 1.6

AtapiData

The data that is returned by an ATAPI device upon successful completion of the ATA
IDENTIFY_PACKET_DEVICE command. The IDENTIFY_PACKET_DEVICE
command is defined in the ATA/ATAPI specification. Type
EFI_ATAPI_IDENTIFY_DATA is defined below.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 63

Table 3. EFI_ATAPI_IDENTIFY_DATA Definition .

EFI_ATAPI_DEVICE_IDENTIFY_DATA This flag indicates whether the IDENTIFY data is a response from an

ATA device (EFI_ATA_IDENTIFY_DATA) or response from

an ATAPI device (EFI_ATAPI_IDENTIFY_DATA).

According to the ATA/ATAPI specification,

EFI_IDENTIFY_DATA is for an ATA device if bit 15 of the

Config field is zero. The Config field is common to both

EFI_ATA_IDENTIFY_DATA and

EFI_ATAPI_IDENTIFY_DATA.

//***
// EFI_ATA_IDENTIFY_DATA
//***
//
// This structure definition is not part of the protocol
// definition because the ATA/ATAPI Specification controls
// the definition of all the fields. The ATA/ATAPI
// Specification can obsolete old fields or redefine existing
// fields. This definition is provided here for reference only.
//

#pragma pack(1)
///
/// EFI_ATA_IDENTIFY_DATA is strictly complied with ATA/ATAPI-8
Spec
///
typedef struct {
 UINT16 config; ///< General
Configuration
 UINT16 obsolete_1;
 UINT16 specific_config; ///< Specific
Configuration
 UINT16 obsolete_3;
 UINT16 retired_4_5[2];
 UINT16 obsolete_6;
 UINT16 cfa_reserved_7_8[2];
 UINT16 retired_9;
 CHAR8 SerialNo[20]; ///< word 10~19
 UINT16 retired_20_21[2];
 UINT16 obsolete_22;
 CHAR8 FirmwareVer[8]; ///< word 23~26
 CHAR8 ModelName[40]; ///< word 27~46
 UINT16 multi_sector_cmd_max_sct_cnt;
 UINT16 trusted_computing_support;
 UINT16 capabilities_49;

 IDE Controller Platform Initialization Spec, Vol. 5

64 May 2017 Version 1.6

 UINT16 capabilities_50;
 UINT16 obsolete_51_52[2];
 UINT16 field_validity;
 UINT16 obsolete_54_58[5];
 UINT16 multi_sector_setting;
 UINT16 user_addressable_sectors_lo;
 UINT16 user_addressable_sectors_hi;
 UINT16 obsolete_62;
 UINT16 multi_word_dma_mode;
 UINT16 advanced_pio_modes;
 UINT16 min_multi_word_dma_cycle_time;
 UINT16 rec_multi_word_dma_cycle_time;
 UINT16 min_pio_cycle_time_without_flow_control;
 UINT16 min_pio_cycle_time_with_flow_control;
 UINT16 reserved_69_74[6];
 UINT16 queue_depth;
 UINT16 reserved_76_79[4]; ///< reserved for
Serial ATA
 UINT16 major_version_no;
 UINT16 minor_version_no;
 UINT16 command_set_supported_82; ///< word 82
 UINT16 command_set_supported_83; ///< word 83
 UINT16 command_set_feature_extn; ///< word 84
 UINT16 command_set_feature_enb_85; ///< word 85
 UINT16 command_set_feature_enb_86; ///< word 86
 UINT16 command_set_feature_default; ///< word 87
 UINT16 ultra_dma_mode; ///< word 88
 UINT16 time_for_security_erase_unit;
 UINT16 time_for_enhanced_security_erase_unit;
 UINT16 advanced_power_management_level;
 UINT16 master_password_identifier;
 UINT16 hardware_configuration_test_result;
 UINT16 acoustic_management_value;
 UINT16 stream_minimum_request_size;
 UINT16 streaming_transfer_time_for_dma;
 UINT16 streaming_access_latency_for_dma_and_pio;
 UINT16 streaming_performance_granularity[2];///< word 98~99
 UINT16 maximum_lba_for_48bit_addressing[4]; ///< word 100~103
 UINT16 streaming_transfer_time_for_pio;
 UINT16 reserved_105;
 UINT16 phy_logic_sector_support; ///< word 106
 UINT16 interseek_delay_for_iso7779;
 UINT16 world_wide_name[4]; ///< word 108~111
 UINT16 reserved_for_128bit_wwn_112_115[4];
 UINT16 reserved_for_technical_report;
 UINT16 logic_sector_size_lo; ///< word 117
 UINT16 logic_sector_size_hi; ///< word 118

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 65

 UINT16 features_and_command_sets_supported_ext; ///< word 119
 UINT16 features_and_command_sets_enabled_ext; ///< word 120
 UINT16 reserved_121_126[8];
 UINT16 obsolete_127;
 UINT16 security_status; ///< word 128
 UINT16 vendor_specific_129_159[31];
 UINT16 cfa_power_mode; ///< word 160
 UINT16 reserved_for_compactflash_161_175[15];
 CHAR8 media_serial_number[60]; ///< word
176~205
 UINT16 sct_command_transport; ///< word 206
 UINT16 reserved_207_208[2];
 UINT16 alignment_logic_in_phy_blocks; ///< word 209
 UINT16 write_read_verify_sector_count_mode3[2]; ///< word
210~211
 UINT16 verify_sector_count_mode2[2];
 UINT16 nv_cache_capabilities;
 UINT16 nv_cache_size_in_logical_block_lsw; ///< word 215
 UINT16 nv_cache_size_in_logical_block_msw; ///< word 216
 UINT16 nv_cache_read_speed;
 UINT16 nv_cache_write_speed;
 UINT16 nv_cache_options; ///< word 219
 UINT16 write_read_verify_mode; ///< word 220
 UINT16 reserved_221;
 UINT16 transport_major_revision_number;
 UINT16 transport_minor_revision_number;
 UINT16 reserved_224_233[10];
 UINT16 min_number_per_download_microcode_mode3; ///< word 234
 UINT16 max_number_per_download_microcode_mode3; ///< word 235
 UINT16 reserved_236_254[19];
 UINT16 integrity_word;
} EFI_ATA_IDENTIFY_DATA;
#pragma pack()

//***
// EFI_ATAPI_IDENTIFY_DATA
//***
#pragma pack(1)
///
/// EFI_ATAPI_IDENTIFY_DATA is strictly complied with ATA/ATAPI-
8 Spec
///
typedef struct {
 UINT16 config; ///< General Configuration
 UINT16 reserved_1;
 UINT16 specific_config; ///< Specific Configuration
 UINT16 reserved_3_9[7];

 IDE Controller Platform Initialization Spec, Vol. 5

66 May 2017 Version 1.6

 CHAR8 SerialNo[20]; ///< word 10~19
 UINT16 reserved_20_22[3];
 CHAR8 FirmwareVer[8]; ///< word 23~26
 CHAR8 ModelName[40]; ///< word 27~46
 UINT16 reserved_47_48[2];
 UINT16 capabilities_49;
 UINT16 capabilities_50;
 UINT16 obsolete_51;
 UINT16 reserved_52;
 UINT16 field_validity; ///< word 53
 UINT16 reserved_54_61[8];
 UINT16 dma_dir;
 UINT16 multi_word_dma_mode; ///< word 63
 UINT16 advanced_pio_modes; ///< word 64
 UINT16 min_multi_word_dma_cycle_time;
 UINT16 rec_multi_word_dma_cycle_time;
 UINT16 min_pio_cycle_time_without_flow_control;
 UINT16 min_pio_cycle_time_with_flow_control;
 UINT16 reserved_69_70[2];
 UINT16 obsolete_71_72[2];
 UINT16 reserved_73_74[2];
 UINT16 queue_depth;
 UINT16 reserved_76_79[4];
 UINT16 major_version_no; ///< word 80
 UINT16 minor_version_no; ///< word 81
 UINT16 cmd_set_support_82;
 UINT16 cmd_set_support_83;
 UINT16 cmd_feature_support;
 UINT16 cmd_feature_enable_85;
 UINT16 cmd_feature_enable_86;
 UINT16 cmd_feature_default;
 UINT16 ultra_dma_select;
 UINT16 time_required_for_sec_erase; ///< word 89
 UINT16 time_required_for_enhanced_sec_erase; ///< word 90
 UINT16 reserved_91;
 UINT16 master_pwd_revison_code;
 UINT16 hardware_reset_result; ///< word 93
 UINT16 current_auto_acoustic_mgmt_value;
 UINT16 reserved_95_107[13];
 UINT16 world_wide_name[4]; ///< word 108~111
 UINT16 reserved_for_128bit_wwn_112_115[4];
 UINT16 reserved_116_124[9];
 UINT16 atapi_byte_count_0_behavior; ///< word 125
 UINT16 obsolete_126;
 UINT16 removable_media_status_notification_support;
 UINT16 security_status;
 UINT16 reserved_129_160[32];

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 67

 UINT16 cfa_reserved_161_175[15];
 UINT16 reserved_176_254[79];
 UINT16 integrity_word;
} EFI_ATAPI_IDENTIFY_DATA;
#pragma pack()

Description
This function is used by the driver entity to pass detailed information about a particular device to the
IDE controller driver. The driver entity obtains this information by issuing an ATA or ATAPI
IDENTIFY_DEVICE command. IdentifyData is the pointer to the response data buffer. The
IdentifyData buffer is owned by the driver entity, and the IDE controller driver must make a
local copy of the entire buffer or parts of the buffer as needed. The original IdentifyData buffer
pointer may not be valid when
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() or
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() is called at a later point.

The IDE controller driver may consult various fields of EFI_IDENTIFY_DATA to compute the
optimum mode for the device. These fields are not limited to the timing information. For example,
an implementation of the IDE controller driver may examine the vendor and type/mode field to
match known bad drives.

The driver entity may submit drive information in any order, as long as it submits information for all
the devices belonging to the enumeration group before CalculateMode() is called for any
device in that enumeration group. If a device is absent, SubmitData() should be called with
IdentifyData set to NULL. The IDE controller driver may not have any other mechanism to
know whether a device is present or not. Therefore, setting IdentifyData to NULL does not
constitute an error condition. SubmitData() can be called only once for a given (Channel,
Device) pair.

Status Codes Returned

EFI_SUCCESS The information was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

 IDE Controller Platform Initialization Spec, Vol. 5

68 May 2017 Version 1.6

EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()

Summary
Disqualifies specific modes for an IDE device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_DISQUALIFY_MODE) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_ATA_COLLECTIVE_MODE *BadModes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

BadModes

The modes that the device does not support and that should be disqualified. Type
EFI_ATA_COLLECTIVE_MODE is defined in "Related Definitions" below.

Description
This function allows the driver entity or other drivers (such as platform drivers) to reject certain
timing modes and request the IDE controller driver to recalculate modes. This function allows the
driver entity and the IDE controller driver to negotiate the timings on a per-device basis. This
function is useful in the case of drives that lie about their capabilities. An example is when the IDE
device fails to accept the timing modes that are calculated by the IDE controller driver based on the
response to the Identify Drive command.

If the driver entity does not want to limit the ATA timing modes and leave that decision to the IDE
controller driver, it can either not call this function for the given device or call this function and set
the Valid flag to FALSE for all modes that are listed in EFI_ATA_COLLECTIVE_MODE.

The driver entity may disqualify modes for a device in any order and any number of times.

This function can be called multiple times to invalidate multiple modes of the same type (e.g.,
Programmed Input/Output [PIO] modes 3 and 4). See the ATA/ATAPI specification for more
information on PIO modes.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 69

For Serial ATA (SATA) controllers, this member function can be used to disqualify a higher transfer
rate mode on a given channel. For example, a platform driver may inform the IDE controller driver
to not use second-generation (Gen2) speeds for a certain SATA drive.

Related Definitions
//**
// EFI_ATA_COLLECTIVE_MODE
//**
typedef struct {
 EFI_ATA_MODE PioMode;
 EFI_ATA_MODE SingleWordDmaMode;
 EFI_ATA_MODE MultiWordDmaMode;
 EFI_ATA_MODE UdmaMode;
 UINT32 ExtModeCount;
 EFI_ATA_EXTENDED_MODE ExtMode[1];
} EFI_ATA_COLLECTIVE_MODE;

PioMode

This field specifies the PIO mode. PIO modes are defined in the ATA/ATAPI
specification. The ATA/ATAPI specification defines the enumeration. In other words,
a value of 1 in this field means PIO mode 1. The actual meaning of PIO mode 1 is
governed by the ATA/ATAPI specification. Type EFI_ATA_MODE is defined
below.

SingleWordDmaMode

This field specifies the single word DMA mode. Single word DMA modes are defined
in the ATA/ATAPI specification, versions 1 and 2. Single word DMA support was
obsoleted in the ATA/ATAPI specification, version 3; therefore, most devices and
controllers will not support this transfer mode. The ATA/ATAPI specification defines
the enumeration. In other words, a value of 1 in this field means single word DMA
mode 1. The actual meaning of single word DMA mode 1 is governed by the ATA/
ATAPI specification.

MultiWordDmaMode

This field specifies the multiword DMA mode. Various multiword DMA modes are
defined in the ATA/ATAPI specification. A value of 1 in this field means multiword
DMA mode 1. The actual meaning of multiword DMA mode 1 is governed by the
ATA/ATAPI specification.

UdmaMode

This field specifies the ultra DMA (UDMA) mode. UDMA modes are defined in the
ATA/ATAPI specification. A value of 1 in this field means UDMA mode 1. The
actual meaning of UDMA mode 1 is governed by the ATA/ATAPI specification.

 IDE Controller Platform Initialization Spec, Vol. 5

70 May 2017 Version 1.6

ExtModeCount

The number of extended-mode bitmap entries. Extended modes describe transfer
protocols beyond PIO, single word DMA, multiword DMA, and UDMA. This field
can be zero and provides extensibility.

ExtMode

ExtModeCount number of entries. Each entry represents a transfer protocol other
than the ones defined above (i.e., PIO, single word DMA, multiword DMA, and
UDMA). This field is defined for extensibility. At this time, only one extended
transfer protocol is defined to cover SATA transfers. Type
EFI_ATA_EXTENDED_MODE is defined below.

//**
// EFI_ATA_MODE
//**
typedef struct {
 BOOLEAN Valid;
 UINT32 Mode;
} EFI_ATA_MODE;

Valid

TRUE if Mode is valid.

Mode

The actual ATA mode. This field is not a bit map.

//**
// EFI_ATA_EXTENDED_MODE
//**
typedef struct {
 EFI_ATA_EXT_TRANSFER_PROTOCOL TransferProtocol;
 UINT32 Mode;
} EFI_ATA_EXTENDED_MODE;

TransferProtocol

An enumeration defining various transfer protocols other than the protocols that exist
at the time this specification was developed (i.e., PIO, single word DMA, multiword
DMA, and UDMA). Each transfer protocol is associated with a mode. The various
transfer protocols are defined by the ATA/ATAPI specification. This enumeration
makes the interface extensible because we can support new transport protocols
beyond UDMA. Type EFI_ATA_EXT_TRANSFER_PROTOCOL is defined below.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 71

Mode

The mode for operating the transfer protocol that is identified by
TransferProtocol.

//**
// EFI_ATA_EXT_TRANSFER_PROTOCOL
//**
//
// This extended mode describes the SATA physical protocol.
// SATA physical layers can operate at different speeds.
// These speeds are defined below. Various PATA protocols
// and associated modes are not applicable to SATA devices.
//
typedef enum {
 EfiAtaSataTransferProtocol
} EFI_ATA_EXT_TRANSFER_PROTOCOL;

#define EFI_SATA_AUTO_SPEED 0
#define EFI_SATA_GEN1_SPEED 1
#define EFI_SATA_GEN2_SPEED 2

Table 4. EFI_ATA_EXT_TRANSFER_PROTOCOL

EFI_SATA_AUTO_SPEED Automatically detects the optimum SATA speed.

EFI_SATA_GEN1_SPEED Indicates a first-generation (Gen1) SATA speed.

EFI_SATA_GEN2_SPEED Indicates a second-generation (Gen2) SATA speed.

 field descriptions

Status Codes Returned

EFI_SUCCESS The modes were accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_INVALID_PARAMETER IdentifyData is NULL.

 IDE Controller Platform Initialization Spec, Vol. 5

72 May 2017 Version 1.6

EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()

Summary
Returns the information about the optimum modes for the specified IDE device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_CALCULATE_MODES) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 OUT EFI_ATA_COLLECTIVE_MODE **SupportedModes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

SupportedModes

The optimum modes for the device. Type EFI_ATA_COLLECTIVE_MODE is
defined in EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().

Description
This function is used by the driver entity to obtain the optimum ATA modes for a specific device.
The IDE controller driver takes into account the following while calculating the mode:

• "The IdentifyData inputs to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()

• "The BadModes inputs to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()

The driver entity is required to call SubmitData() for all the devices that belong to an
enumeration group before calling CalculateMode() for any device in the same group.

The IDE controller driver will use controller- and possibly platform-specific algorithms to arrive at
SupportedModes. The IDE controller may base its decision on user preferences and other
considerations as well. This function may be called multiple times because the driver entity may
renegotiate the mode with the IDE controller driver using DisqualifyMode().

The driver entity may collect timing information for various devices in any order. The driver entity
is responsible for making sure that all the dependencies are satisfied; for example, the

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 73

SupportedModes information for device A that was previously returned may become stale after a
call to DisqualifyMode() for device B.

The buffer SupportedModes is allocated by the callee because the caller does not necessarily
know the size of the buffer. The type EFI_ATA_COLLECTIVE_MODE is defined in a way that
allows for future extensibility and can be of variable length. This memory pool should be
deallocated by the caller when it is no longer necessary.

The IDE controller driver for a Serial ATA (SATA) controller can use this member function to force
a lower speed (first-generation [Gen1] speeds on a second-generation [Gen2]-capable hardware).
The IDE controller driver can also allow the driver entity to stay with the speed that has been
negotiated by the physical layer.

Status Codes Returned

EFI_SUCCESS SupportedModes was returned.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_INVALID_PARAMETER SupportedModes is NULL.

EFI_NOT_READY Modes cannot be calculated due to a lack of data. This error may happen

if SubmitData() and DisqualifyData() were not

called for at least one drive in the same enumeration group.

 IDE Controller Platform Initialization Spec, Vol. 5

74 May 2017 Version 1.6

EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()

Summary
Commands the IDE controller driver to program the IDE controller hardware so that the specified
device can operate at the specified mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_SET_TIMING) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_ATA_COLLECTIVE_MODE *Modes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.

Channel

Zero-based channel number.

Device

Zero-based device number on the Channel.

Modes

The modes to set. Type EFI_ATA_COLLECTIVE_MODE is defined in
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().

Description
This function is used by the driver entity to instruct the IDE controller driver to program the IDE
controller hardware to the specified modes. This function can be called only once for a particular
device. For a Serial ATA (SATA) Advanced Host Controller Interface (AHCI) controller, no
controller-specific programming may be required.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 75

Status Codes Returned

EFI_SUCCESS The command was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_NOT_READY Modes cannot be set at this time due to lack of data.

EFI_DEVICE_ERROR Modes cannot be set due to hardware failure. The driver entity should

not use this device.

7.3.1 IDE Disk Information Protocol
This section contains the basic definitions of the IDE Disk Information Protocol.

 EFI_DISK_INFO_PROTOCOL

Summary
Provides the basic interfaces to abstract platform information regarding an IDE controller.

GUID
#define EFI_DISK_INFO_PROTOCOL_GUID \
 { 0xd432a67f, 0x14dc, 0x484b, 0xb3, 0xbb, 0x3f, 0x02, 0x91,\
 0x84, 0x93, 0x27 }

Protocol Interface Structure
typedef struct _EFI_DISK_INFO_PROTOCOL {
 EFI_GUID Interface;
 EFI_DISK_INFO_INQUIRY Inquiry;
 EFI_DISK_INFO_IDENTIFY Identify;
 EFI_DISK_INFO_SENSE_DATA SenseData;
 EFI_DISK_INFO_WHICH_IDE WhichIde;
} EFI_DISK_INFO_PROTOCOL;

Parameters
Interface

A GUID that defines the format of buffers for the other member functions of this
protocol.

Inquiry

Return the results of the Inquiry command to a drive in InquiryData. Data
format of Inquiry data is defined by the Interface GUID.

Identify

Return the results of the Identify command to a drive in IdentifyData. Data
format of Identify data is defined by the Interface GUID.

 IDE Controller Platform Initialization Spec, Vol. 5

76 May 2017 Version 1.6

SenseData

Return the results of the Request Sense command to a drive in SenseData. Data
format of Sense data is defined by the Interface GUID.

WhichIde

Specific controller.

Description
The EFI_DISK_INFO_PROTOCOL provides controller specific information.

There can only various instances of EFI_DISK_INFO_PROTOCOL for different interface types.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 77

EFI_DISK_INFO_PROTOCOL.Interface

Summary
GUID of the type of interfaces

 IDE Controller Platform Initialization Spec, Vol. 5

78 May 2017 Version 1.6

Related Definitions
#define EFI_DISK_INFO_IDE_INTERFACE_GUID \
 { \
 0x5e948fe3, 0x26d3, 0x42b5, 0xaf, 0x17, 0x61, 0x2, \
 0x87, 0x18, 0x8d, 0xec \
 }

#define EFI_DISK_INFO_SCSI_INTERFACE_GUID \
 { \
 0x8f74baa, 0xea36, 0x41d9, 0x95, 0x21, 0x21, 0xa7, \
 0xf, 0x87, 0x80, 0xbc \
 }

#define EFI_DISK_INFO_USB_INTERFACE_GUID \
 { \
 0xcb871572, 0xc11a, 0x47b5, 0xb4, 0x92, 0x67, 0x5e, \
 0xaf, 0xa7, 0x77, 0x27 \
 }

#define EFI_DISK_INFO_AHCI_INTERFACE_GUID \
 { \
 0x9e498932, 0x4abc, 0x45af, 0xa3, 0x4d, 0x2, 0x47, \
 0x78, 0x7b, 0xe7, 0xc6 \
 }

#define EFI_DISK_INFO_NVME_INTERFACE_GUID \
{ \
 0x3ab14680, 0x5d3f, 0x4a4d, 0xbc, 0xdc, 0xcc, 0x38, \
 0x0, 0x18, 0xc7, 0xf7 \
}

#define EFI_DISK_INFO_UFS_INTERFACE_GUID \
{ \
 0x4b3029cc, 0x6b98, 0x47fb, 0xbc, 0x96, 0x76, 0xdc, \
 0xb8, 0x4, 0x41, 0xf0 \
}
#define EFI_DISK_INFO_SD_MMC_INTERFACE_GUID \
 { \
 {0x8deec992, 0xd39c, 0x4a5c, { 0xab, 0x6b, 0x98, 0x6e, \
 0x14, 0x24, 0x2b, 0x9d } \
}

The data format of InquiryData of EFI_DISK_INFO_PROTOCOL.Inquiry() is the card
CID register content defined at SD physical layer specification or MMC/eMMC electrical standard.

Description
The type of interface being described.

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 79

EFI_DISK_INFO_PROTOCOL.Inquiry()

Summary
Provides inquiry information for the controller type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_INFO_INQUIRY) (
 IN EFI_DISK_INFO_PROTOCOL *This,
 IN OUT VOID *InquiryData,
 IN OUT UINT32 *InquiryDataSize
);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

InquiryData

Pointer to a buffer for the inquiry data.

InquiryDataSize

Pointer to the value for the inquiry data size.

Description
This function is used by the driver entity to get inquiry data. Data format of Identify data is
defined by the Interface GUID.

Status Codes Returned

EFI_SUCCESS The command was accepted without any errors.

EFI_NOT_FOUND Device does not support this data class

EFI_DEVICE_ERROR Error reading InquiryData from device

EFI_BUFFER_TOO_SMALL InquiryDataSize not big enough

 IDE Controller Platform Initialization Spec, Vol. 5

80 May 2017 Version 1.6

EFI_DISK_INFO_PROTOCOL.Identify()

Summary
Provides identify information for the controller type.

Prototype
typedef

EFI_STATUS

(EFIAPI *EFI_DISK_INFO_IDENTIFY) (

 IN EFI_DISK_INFO_PROTOCOL *This,

 IN OUT VOID *IdentifyData,

 IN OUT UINT32 *IdentifyDataSize

);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

IdentifyData

Pointer to a buffer for the identify data.

IdentifyDataSize

Pointer to the value for the identify data size.

Description
This function is used by the driver entity to get identify data. Data format of Identify data is defined
by the Interface GUID.

Status Codes Returned

EFI_SUCCESS The command was accepted without any errors.

EFI_NOT_FOUND Device does not support this data class

EFI_DEVICE_ERROR Error reading IdentifyData from device

EFI_BUFFER_TOO_SMALL IdentifyDataSize not big enough

Platform Initialization Spec, Vol. 5 IDE Controller

Version 1.6 May 2017 81

EFI_DISK_INFO_PROTOCOL.SenseData()

Summary
Provides sense data information for the controller type.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_INFO_SENSE_DATA) (
 IN EFI_DISK_INFO_PROTOCOL *This,
 IN OUT VOID *SenseData,
 IN OUT UINT32 *SenseDataSize
 OUT UINT8 *SenseDataNumber
);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

SenseData

Pointer to the SenseData.

SenseDataSize

Size of SenseData in bytes.

SenseDataNumber

Pointer to the value for the sense data size.

Description
This function is used by the driver entity to get sense data. Data format of Identify data is
defined by the Interface GUID.

Status Codes Returned

EFI_SUCCESS The command was accepted without any errors.

EFI_NOT_FOUND Device does not support this data class

EFI_DEVICE_ERROR Error reading SenseData from device

EFI_BUFFER_TOO_SMALL SenseDataSize not big enough

 IDE Controller Platform Initialization Spec, Vol. 5

82 May 2017 Version 1.6

EFI_DISK_INFO_PROTOCOL.WhichIde()

Summary
Provides IDE channel and device information for the interface

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DISK_INFO_WHICH_IDE) (
 IN EFI_DISK_INFO_PROTOCOL *This,
 OUT UINT32 *IdeChannel,
 OUT UINT32 *IdeDevice
);

Parameters
This

Pointer to the EFI_DISK_INFO_PROTOCOL instance.

IdeChannel

Pointer to the Ide Channel number. Primary or secondary.This should also return the
port.

IdeDevice

Pointer to the Ide Device number. Master or slave.This should also return the port-
multiplier port for AHCI. The format will be the same as for port above.

Description
This function is used by the driver entity to get controller information.

Status Codes Returned

EFI_SUCCESS IdeChannel and IdeDevice are valid

EFI_UNSUPPORTED This is not an IDE Device

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 83

8 S3 Resume

8.1 S3 Overview
This specification defines the core code and services that are required for an implementation of the
S3 resume boot path in the PI. The S3 resume boot path is a special boot path that causes the system
to take actions different from those in the normal boot path. In this special path, the system derives
pre-saved data about the platform's configuration from persistent storage and configures the platform
before jumping to the operating system's waking vector.

This specification does the following:

• "Describes the basic components of the S3 resume boot path, how it relates to a normal boot
path, and how it interacts with other PI phases and code

• "Provides code definitions for the S3-related protocols and PPIs that are architecturally required
by the PI Specification.

8.2 Goals
This PI S3 resume boot path design has the following goals:

Extensibility:

The PI S3 resume boot path should easily adapt to different platforms, such as Itanium®-based
platforms those based on 32-bit Intel® architecture (IA-32), and x64 platforms by replacing
only a few platform-specific modules.

High performance:

The performance of the PI S3 resume boot path is highly visible to end users and must be optimized.

8.3 Requirements
All aspects of this PI S3 resume boot path design must comply with the Advanced Configuration and
Power Interface Specification (hereafter referred to as the "ACPI specification").

The design should emphasize size efficiency, code reuse and maintainability.

8.4 Assumptions

8.4.1 Multiple Phases of Platform Initialization
The PI Architecture consists of multiple phases. For example:

• Pre-EFI Initialization (PEI)

• Driver Execution Environment (DXE)

• SMM (System Management Mode)

S3 Resume Platform Initialization Spec, Vol. 5

84 May 2017 Version 1.6

The PEI phase is responsible for initializing enough of the platform's resources to enable the
execution of the DXE phase, which is where the majority of platform configuration is performed by
different DXE drivers.

Initialization that is done in PEI is not necessarily preserved in DXE. In other words, a DXE driver
can override the configuration settings that were derived from PEI. In light of this fact, the preboot
platform state that the S3 resume boot path needs to restore is the DXE snapshot of the platform
state, rather than the PEI snapshot of the platform state.

8.4.2 Process of Platform Initialization
Platform initialization can be viewed as a flow of the following:

• I/O operations

• Memory operations

• Accessing the PCI configuration space

• A collection of platform-specific actions that can be abstracted by Pre-EFI Initialization Module
(PEIM) PEIM-to-PEIM Interfaces (PPIs)

The process of restoring hardware settings in different platforms involves different actions or even
different instruction sets. These differences, however, can be abstracted behind PEIM PPIs.

8.5 Restoring the Platform
The goal of the S3 resume process is to restore the platform to its preboot configuration. However, it
is impossible to restore the platform in only one step, without going through all the PI initialization
phases, because the PI Architechture cannot have a priori knowledge of the following:

• Preboot configuration that is introduced by various PEIMs

• Drivers provided by different vendors

As a result, the PI Architechture still needs to restore the platform in a phased fashion as it does in a
normal boot path. The figure below shows the phases in an S3 resume boot path. See the following
subsections for details of each phase.

SEC PEI DXE BDS

SEC

PEI
(S3-aware

PEIMs to restore
PEI phase

configuration)

Boot Script
Executor PEIM to
restore DXE phase

configuration

OS loadNormal Boot

S3 Resume

Boot Script
Table in NVS

Save

Execute

OS waking vector

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 85

Figure 1. PI Architechture S3 Resume Boot Path

8.5.1 Phases in the S3 Resume Boot Path

8.5.1.1 SEC and the S3 Resume Boot Path
The Security (SEC) phase is the first architectural phase in the PI Architecture. It builds the root of
trust for the entire system. As such, the SEC phase remains intact in the S3 resume boot path.

8.5.1.2 PEI

8.5.1.2.1 PEI and the S3 Resume Boot Path

The PEI phase initializes the platform with the minimum configuration needed to enable the
execution of the DXE phase. During the S3 resume boot path, the PI Architechture still needs to
restore the PEI portion of configuration.

Each PEIM is "boot path aware" in that the PEIM can call the appropriate PEI service to find out
what the current boot path is. This awareness enables the platform to restore more efficiently
because the same PEIM can save the configuration during a normal boot path and take advantage of
that configuration in the S3 resume boot path. The figure below shows how the PEI phase works in a
normal boot path and in an S3 resume boot path.

PEIM initializes
the platform

without known
configuration

Normal Boot Path

Nonvolatile
storage

Save Configuration

PEIM initializes
the platform
with known

configuration

Retrieve Configuration

S3 Resume Boot Path

S3 Resume Platform Initialization Spec, Vol. 5

86 May 2017 Version 1.6

Figure 2. PEI Phase in S3 Resume Boot Path

8.5.1.2.2 Saving Configuration Data in PEI

There are different ways to save configuration data, such as the firmware volume variable, for the
PEI phase in nonvolatile storage (NVS). One way is to save the data directly in the PEI phase.
However, if the PEI phase does not implement the capability to write to a firmware volume, a PEIM
can choose to pass the configuration data to the DXE phase using a Hand-Off Block (HOB). The
PEIM's DXE counterpart or another appropriate DXE component can then save the configuration
data. The figure below illustrates this mechanism to save the configuration data. See the PI
Specification for more details on HOBs.

To achieve higher performance, it is recommended to implement the latter mechanism because code
running in the PEI phase is more time consuming than code running in the DXE phase. Note that the
way to save the configuration data during the PEI phase is outside the scope of this document.

P E IM in itia lize s

th e p la tfo rm

w ith ou t kn ow n

co n figu ra tio n

N o n vo la tile

s to ra ge

N o rm a l

B o o t P a th

P E IM in itia lize s

th e p la tfo rm

w ith kno w n

co n figu ra tio n

S 3 R e su m e

 B o o t P a th

D isp a tch D X E

com po ne n ts

R e trie ve

con figu ra tio n

S ave

con figu ra tion

P a ss H O B from P E I

ph ase to D X E p ha se

H O B

B u ild co n fig u ra tio n

in to H O B

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 87

Figure 3. Configuration Save for PEI Phase

8.5.1.3 DXE

8.5.1.3.1 DXE and the S3 Resume Boot Path

In the DXE phase during a normal boot path, various DXE drivers collectively bring the platform to
the preboot state. However, bringing DXE into the S3 resume boot path and making a DXE driver
boot-path aware is very risky for the following reasons:

• The DXE phase hosts numerous services, which makes it rather large.

• Loading DXE from flash is very time consuming.

Even if DXE could be relocated into NVS during a normal boot, the large amount of memory that
DXE consumes and the complexity of executing the DXE phase do not justify doing so.

Instead, the PI Architechture provides a boot script that lets the S3 resume boot path avoid the DXE
phase altogether, which helps to maximize optimum performance. During a normal boot, DXE
drivers record the platform's configuration in the boot script, which is saved in NVS. During the S3
resume boot path, a boot script engine executes the script, thereby restoring the configuration.

S3 Resume Platform Initialization Spec, Vol. 5

88 May 2017 Version 1.6

The ACPI specification only requires the BIOS to restore chipset and processor configuration. The
chipset configuration can be viewed as a series of memory, I/O, and PCI configuration operations,
which DXE drivers record in the PI Architechture boot script. During an S3 resume, a boot script
engine executes the boot script to restore the chipset settings. Processor configuration involves the
following:

• "Basic setup for System Management Mode (SMM)

• "Microcode updates

• "Processor-specific initialization

• "Processor cache setting

DXE drivers register a pointer to a function in the boot script to restore processor configuration.
During the S3 resume boot path, the boot script engine can jump to execute the registered code to
restore all processor-related configurations.

8.5.1.3.2 S3 Resume PPI and DXE IPL PPI

The DXE Initial Program Load (IPL) PPI is architecturally the last PPI that is executed in the PEI
phase. It is also made aware of the exact boot path that the PI Architechture is currently using. It
discovers the boot mode and initiates the process of restoring the pre-boot platform state and
jumping to the operating system (OS) waking vector. The DXE phase is not entered, as it would be
during a normal boot.

When resuming from S3, the DXE IPL PEIM will transfer control to the S3 Resume PPI, which is
responsible for restoring the platform configuration and jumping to the waking vector.

8.5.1.4 SMM
The EFI_S3_SMM_SAVE_STATE_PROTOCOL publishes the PI SMM boot script abstractions

In the S3 boot mode the data stored via this protocol is replayed in the order it was stored.

The order of replay is the order either of the S3 Save State Protocol or S3 SMM Save State Protocol
Write() functions were called during the boot process. Insert(), Label(), and
Compare() operations are ordered relative other S3 SMM Save State Protocol Write()
operations and the order relative to S3 State Save Write() operations is not defined. Due to these
ordering restrictions it is recommended that the S3 State Save Protocol be used during the DXE
phase when every possible.

The EFI_S3_SMM_SAVE_STATE_PROTOCOL can be called at runtime and
EFI_OUT_OF_RESOURCES may be returned from a runtime call. It is the responsibility of the
platform to ensure enough memory resource exists to save the system state. It is recommended that
runtime calls be minimized by the caller.3

8.6 PEI Boot Script Executer PPI

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 89

EFI_PEI_S3_RESUME2_PPI

Summary
This PPI produces functions to interpret and execute the PI boot script table.

GUID
#define EFI_PEI_S3_RESUME2_PPI_GUID \
 {0x6d582dbc, 0xdb85, 0x4514, \
 0x8f, 0xcc, 0x5a, 0xdf, 0x62, 0x27, 0xb1,0x47}

PPI Interface Structure
typedef struct _EFI_PEI_S3_RESUME2_PPI {
 EFI_PEI_S3_RESUME_PPI_RESTORE_CONFIG2 S3RestoreConfig2;
} EFI_PEI_S3_RESUME2_PPI;

Parameters
S3RestoreConfig2

Perform S3 resume operation.

Description
This PPI is published by a PEIM and provides for the restoration of the platform's configuration
when resuming from the ACPI S3 power state. The ability to execute the boot script may depend on
the availability of other PPIs. For example, if the boot script includes an SMBus command, this
PEIM looks for the relevant PPI that is able to execute that command.

S3 Resume Platform Initialization Spec, Vol. 5

90 May 2017 Version 1.6

EFI_PEI_S3_RESUME_PPI. S3RestoreConfig()

Summary
Restores the platform to its pre-boot configuration for an S3 resume and jumps to the OS waking
vector.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_S3_RESUME_PPI_RESTORE_CONFIG) (
 IN EFI_PEI_S3_RESUME_PPI *This
);

Parameters
This

A pointer to this instance of the PEI_S3_RESUME_PPI.

Description
This function will restore the platform to its pre-boot configuration that was pre-stored in the boot
script table and transfer control to OS waking vector.

Upon invocation, this function is responsible for locating the following information before jumping
to OS waking vector:

• ACPI tables

• boot script table

• any other information that it needs

The S3RestoreConfig() function then executes the pre-stored boot script table and transitions
the platform to the pre-boot state. The boot script is recorded during regular boot using the
EFI_S3_SAVE_STATE_PROTOCOL.Write() and
EFI_S3_SMM_SAVE_STATE_PROTOCOL.Write() functions. Finally, this function transfers
control to the OS waking vector. If the OS supports only a real-mode waking vector, this function
will switch from flat mode to real mode before jumping to the waking vector.

If all platform pre-boot configurations are successfully restored and all other necessary information
is ready, this function will never return and instead will directly jump to the OS waking vector. If
this function returns, it indicates that the attempt to resume from the ACPI S3 sleep state failed.

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 91

Status Codes Returned

EFI_ABORTED Execution of the S3 resume boot script table failed.

EFI_NOT_FOUND Some necessary information that is used for the S3 resume boot path could
not be located.

8.7 S3 Save State Protocol
This section defines how a DXE PI module can record IO operations to be performed as part of the
S3 resume. This is done via the EFI_S3_SAVE_STATE_PROTOCOL and this allows the
implementation of the S3 resume boot path to be abstracted from DXE drivers.

EFI_S3_SAVE_STATE_PROTOCOL

Summary
Used to store or record various IO operations to be replayed during an S3 resume.

GUID
#define EFI_S3_SAVE_STATE_PROTOCOL_GUID \
 { 0xe857caf6, 0xc046, 0x45dc, { 0xbe, 0x3f, 0xee, 0x7, \
 0x65, 0xfb, 0xa8, 0x87 } }

Protocol Interface Structure
 typedef struct _EFI_S3_SAVE_STATE_PROTOCOL {
 EFI_S3_SAVE_STATE_WRITE Write;
 EFI_S3_SAVE_STATE_INSERT Insert;
 EFI_S3_SAVE_STATE_LABEL Label;
 EFI_S3_SAVE_STATE_COMPARE Compare;
} EFI_S3_SAVE_STATE_PROTOCOL;

Parameters
Write

Write an opcode at the end of the boot script table. See the Write() function
description.

Insert

Write an opcode at the specified position in the boot script table. See the Insert()
function description.

Label

Find an existing label in the boot script table or, if not present, create it. See the
Label() function description.

Compare

Compare two positions in the boot script table to determine their relative location. See
the Compare() function description.

S3 Resume Platform Initialization Spec, Vol. 5

92 May 2017 Version 1.6

Description
The EFI_S3_SAVE_STATE_PROTOCOL publishes the PI boot script abstractions. This protocol is
not required for all platforms.

On an S3 resume boot path the data stored via this protocol is replayed in the order it appears in the
boot script table.

8.7.1 Save State Write

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 93

EFI_S3_SAVE_STATE_PROTOCOL.Write()

Summary
Record operations that need to be replayed during an S3 resume .

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 ...
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

The operation code (opcode) number. See "Related Definitions" below for the
defined opcode types.

…

Argument list that is specific to each opcode. See the following subsections for the
definition of each opcode.

Description
This function is used to store an OpCode to be replayed as part of the S3 resume boot path. It is
assumed this protocol has platform specific mechanism to store the OpCode set and replay them
during the S3 resume.

Note: The opcode is inserted at the end of the boot script table.

This function has a variable parameter list. The exact parameter list depends on the OpCode that is
passed into the function. If an unsupported OpCode or illegal parameter list is passed in, this
function returns EFI_INVALID_PARAMETER.

If there are not enough resources available for storing more scripts, this function returns
EFI_OUT_OF_RESOURCES.

OpCode values of 0x80 - 0xFE are reserved for implementation-specific functions.

S3 Resume Platform Initialization Spec, Vol. 5

94 May 2017 Version 1.6

Related Definitions
//***
// EFI Boot Script Opcode definitions
//***

#define EFI_BOOT_SCRIPT_IO_WRITE_OPCODE 0x00
#define EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE 0x01
#define EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE 0x02
#define EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE 0x03
#define EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE 0x04
#define EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE 0x05
#define EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE 0x06
#define EFI_BOOT_SCRIPT_STALL_OPCODE 0x07
#define EFI_BOOT_SCRIPT_DISPATCH_OPCODE 0x08
#define EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE 0x09
#define EFI_BOOT_SCRIPT_INFORMATION_OPCODE 0x0A
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE 0x0B
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE 0x0C
#define EFI_BOOT_SCRIPT_IO_POLL_OPCODE 0x0D
#define EFI_BOOT_SCRIPT_MEM_POLL_OPCODE 0x0E
#define EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE 0x0F
#define EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE 0x10

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 95

//***
// EFI_BOOT_SCRIPT_WIDTH
//***

typedef enum {
 EfiBootScriptWidthUint8,
 EfiBootScriptWidthUint16,
 EfiBootScriptWidthUint32,
 EfiBootScriptWidthUint64,
 EfiBootScriptWidthFifoUint8,
 EfiBootScriptWidthFifoUint16,
 EfiBootScriptWidthFifoUint32,
 EfiBootScriptWidthFifoUint64,
 EfiBootScriptWidthFillUint8,
 EfiBootScriptWidthFillUint16,
 EfiBootScriptWidthFillUint32,
 EfiBootScriptWidthFillUint64,
 EfiBootScriptWidthMaximum
} EFI_BOOT_SCRIPT_WIDTH;

Status Codes Returned

EFI_SUCCESS The operation succeeded. A record was added into the specified
script table.

EFI_INVALID_PARAMETER The parameter is illegal or the given boot script is not supported.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

8.7.1.1 Opcodes for Write()
This section contains the prototypes for variations of the Write() function, based on the Opcode
parameter.

EFI_BOOT_SCRIPT_IO_WRITE_OPCODE

Summary
Adds a record for an I/O write operation into a specified boot script table.

S3 Resume Platform Initialization Spec, Vol. 5

96 May 2017 Version 1.6

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_WRITE_OPCODE. Value
EFI_BOOT_SCRIPT_IO_WRITE_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Count

The number of I/O operations to perform. The number of bytes moved is Width size
* Count, starting at Address.

Buffer

The source buffer from which to write data. The buffer size is Width size * Count.

Description
This function adds an I/O write record into a specified boot script table. On script execution, this
operation writes the presaved value into the specified I/O ports.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 97

EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE

Summary
Adds a record for an I/O modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_POLL_OPCODE. Value
EFI_BOOT_SCRIPT_IO_POLL_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write()

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Data

A pointer to the data to be OR-ed.

DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

Description
This function adds an I/O read and write record into the specified boot script table. When the script
is executed, the register at Address is read, AND-ed with DataMask, and OR-ed with Data, and
finally the result is written back.

S3 Resume Platform Initialization Spec, Vol. 5

98 May 2017 Version 1.6

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 99

EFI_BOOT_SCRIPT_IO_POLL_OPCODE

Summary
Adds a record for I/O reads the I/O location and continues when the exit criteria is satisfied or after a
defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE. Value
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the I/O operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH. Type
EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the I/O operations.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero
in Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

S3 Resume Platform Initialization Spec, Vol. 5

100 May 2017 Version 1.6

Description
This function adds a delay to the boot script table. The I/O read operation is repeated until either a
Delay of at least 100 ns units has expired, or (Data & DataMask) is equal to Data. At least one
I/O access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 101

 EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE

Summary
Adds a record for a memory write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE. Value
EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Count

The number of memory operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

Description
This function adds a memory write record into a specified boot script table. When the script is
executed, this operation writes the presaved value into the specified memory location.

S3 Resume Platform Initialization Spec, Vol. 5

102 May 2017 Version 1.6

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 103

EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE

Summary
Adds a record for a memory modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE. Value
EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Data

A pointer to the data to be OR-ed.

DataMask

A pointer to the data mask to be AND-ed with the data read from the register.

Description
This function adds a memory read and write record into a specified boot script table. When the script
is executed, the memory at Address is read, AND-ed with DataMask, and OR-ed with Data, and
finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

104 May 2017 Version 1.6

EFI_BOOT_SCRIPT_MEM_POLL_OPCODE

Summary
Adds a record for memory reads of the memory location and continues when the exit criteria is
satisfied or after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_MEM_POLL_OPCODE. Value
EFI_BOOT_SCRIPT_MEM_POLL_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the memory operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The base address of the memory operations. Address needs alignment if required.

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero in
Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 105

Description
This function adds a delay to the boot script table. The memory read operation is repeated until
either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to Data.
At least one I/O access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

106 May 2017 Version 1.6

EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
)

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE. Value
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. For address format details, see the
"PCI Configuration Address" in the UEFI Specification, under
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() and
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write().

Count

The number of PCI operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

http://uefi.org/specifications

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 107

Description
This function adds a PCI configuration space write record into a specified boot script table. When
the script is executed, this operation writes the presaved value into the specified location in PCI
configuration space.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

108 May 2017 Version 1.6

 EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE.
Value EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined in
"Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. For address format details, see the
"PCI Configuration Address" in the UEFI Specification, under
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() and
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write().

Data

A pointer to the data to be OR-ed. The size depends on Width.

DataMask

A pointer to the data mask to be AND-ed.

Description
This function adds a PCI configuration read and write record into a specified boot script table. When
the script is executed, the PCI configuration space location at Address is read, AND-ed with
DataMask, and OR-ed with, and finally the result is written back.

http://uefi.org/specifications

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 109

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

110 May 2017 Version 1.6

EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE

Summary
Adds a record for PCI configuration space reads and continues when the exit criteria is satisfied or
after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE. Value
EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Address

The address within the PCI configuration space. For address format details, see the
"PCI Configuration Address" in the UEFI Specification, under
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() and
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write().

Data

The comparison value used for the polling exit criteria.

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero
in Data are ignored when polling the memory address.

http://uefi.org/specifications

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 111

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Description
This function adds a delay to the boot script table. The PCI configuration read operation is repeated
until either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to
Data. At least one PCI configuration access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

112 May 2017 Version 1.6

EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space write operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN UINTN Count,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE. Value
EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. For address format details, see the
"PCI Configuration Address" in the UEFI Specification, under
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() and
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write().

Count

The number of PCI operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

The source buffer from which to write the data. The buffer size is Width size *
Count.

http://uefi.org/specifications

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 113

Description
This function adds a PCI configuration space write record into a specified boot script table. When
the script is executed, this operation writes the presaved value into the specified location in PCI
configuration space.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

114 May 2017 Version 1.6

EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE

Summary
Adds a record for a PCI configuration space modify operation into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask
)

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE.
Value EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE is defined
in "Related Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. For address format details, see the
"PCI Configuration Address" in the UEFI Specification, under
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() and
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write().

Data

A pointer to the data to be OR-ed. The size depends on Width.

DataMask

A pointer to the data mask to be AND-ed.

http://uefi.org/specifications

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 115

Description
This function adds a PCI configuration read and write record into a specified boot script table. When
the script is executed, the PCI configuration space location at Address is read, AND-ed with
DataMask, and OR-ed with, and finally the result is written back.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

116 May 2017 Version 1.6

EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE

Summary
Adds a record for PCI configuration space reads and continues when the exit criteria is satisfied or
after a defined duration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_BOOT_SCRIPT_WIDTH Width,
 IN UINT16 Segment,
 IN UINT64 Address,
 IN VOID *Data,
 IN VOID *DataMask,
 IN UINT64 Delay
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE. Value
EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

Width

The width of the PCI operations. Enumerated in EFI_BOOT_SCRIPT_WIDTH.
Type EFI_BOOT_SCRIPT_WIDTH is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Segment

The PCI segment number for Address.

Address

The address within the PCI configuration space. For address format details, see the
"PCI Configuration Address" in the UEFI Specification, under
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read() and
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Write().

Data

The comparison value used for the polling exit criteria.

http://uefi.org/specifications

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 117

DataMask

Mask used for the polling criteria. The bits in the bytes below Width which are zero in
Data are ignored when polling the memory address.

Delay

The number of 100ns units to poll. Note that timer available may be of poorer
granularity so the delay may be longer.

Description
This function adds a delay to the boot script table. The PCI configuration read operation is repeated
until either a timeout of Delay 100 ns units has expired, or (Data & DataMask) is equal to
Data. At least one PCI configuration access is always performed regardless of the value of Delay.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

118 May 2017 Version 1.6

EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE

Summary
Adds a record for an SMBus command execution into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST _EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN UINTN *Length,
 IN VOID *Buffer
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE. Value
EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE is defined in "Related
Definitions" in EFI_S3_SAVE_STATE_PROTOCOL.Write().

SlaveAddress

The SMBus address for the slave device that the operation is targeting. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

Command

The command that is transmitted by the SMBus host controller to the SMBus slave
device. The interpretation is SMBus slave device specific. It can mean the offset to a
list of functions inside an SMBus slave device. Type
EFI_SMBUS_DEVICE_COMMAND is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

Operation

Indicates which particular SMBus protocol it will use to execute the SMBus
transactions. Type EFI_SMBUS_OPERATION is defined in
EFI_PEI_SMBUS_PPI.Execute() in the PI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 119

Length

A pointer to signify the number of bytes that this operation will do.

Buffer

Contains the value of data to execute to the SMBUS slave device.

Description
This function adds an SMBus command execution record into a specified boot script table. When the
script is executed, this operation executes a specified SMBus command.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

120 May 2017 Version 1.6

EFI_BOOT_SCRIPT_STALL_OPCODE

Summary
Adds a record for an execution stall on the processor into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN UINTN Duration
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_STALL_OPCODE. Value
EFI_BOOT_SCRIPT_STALL_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

Duration

Duration in microseconds of the stall.

Description
This function adds a stall record into a specified boot script table. When the script is executed, this
operation will stall the system for Duration number of microseconds.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 121

EFI_BOOT_SCRIPT_DISPATCH_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_PHYSICAL_ADDRESS EntryPoint
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_OPCODE. Value
EFI_BOOT_SCRIPT_DISPATCH_OPCODE is defined in "Related Definitions" in
EFI_S3_SAVE_STATE_PROTOCOL.Write().

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI 2.0 Specification.

Description
This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table.

The EntryPoint must point to memory of type of EfiRuntimeServicesCode,
EfiRuntimeServicesData, or EfiACPIMemoryNVS. The EntryPoint must have the same
calling convention as the PI DXE Phase.

Status Codes Returned
See "Status Codes Returned" in Write().

S3 Resume Platform Initialization Spec, Vol. 5

122 May 2017 Version 1.6

EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN EFI_PHYSICAL_ADDRESS EntryPoint,
 IN EFI_PHYSICAL_ADDRESS Context
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE. Value
EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE is defined in "Related Definitions"
in EFI_S3_SAVE_STATE_PROTOCOL.Write().

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL_ADDRESS is
defined in AllocatePages() in the UEFI Specification.

Context

Argument to be passed into the EntryPoint of the code to be dispatched. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI
Specification.

Description
This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table.

The EntryPoint and Context must point to memory of type of
EfiRuntimeServicesCode, EfiRuntimeServicesData, or EfiACPIMemoryNVS. The
EntryPoint must have the same calling convention as the PI DXE Phase.

Status Codes Returned
See "Status Codes Returned" in Write().

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 123

EFI_BOOT_SCRIPT_INFORMATION_OPCODE

Summary
Store the pointer to the arbitrary information in the boot script table. This opcode is a no-op on
dispatch and is only used for debugging script issues.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT_WRITE) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN UINT16 OpCode,
 IN UINT32 InformationLength,
 IN EFI_PHYSICAL_ADDRESS Information
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

OpCode

Must be set to EFI_BOOT_SCRIPT_INFORMATION_OPCODE. Value
EFI_BOOT_SCRIPT_INFORMATION_OPCODE is defined in "Related Definitions"
in EFI_S3_SAVE_STATE_PROTOCOL.Write().

InformationLenght

Length of the data in bytes.

Information

Pointer to the information to be logged in the boot script.

Description
This function adds a record that has no impact on the S3 replay. This function is used to store debug
information in the S3 data stream.

The Information must point to memory of type of EfiRuntimeServicesCode,
EfiRuntimeServicesData, or EfiACPIMemoryNVS.

Status Codes Returned
See "Status Codes Returned" in Write().

8.7.2 Save State Insert

S3 Resume Platform Initialization Spec, Vol. 5

124 May 2017 Version 1.6

EFI_S3_SAVE_STATE_PROTOCOL.Insert()

Summary
Record operations that need to be replayed during an S3 resume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_INSERT) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN BOOLEAN BeforeOrAfter,
 IN OUT EFI_S3_BOOT_SCRIPT_POSITION *Position OPTIONAL,
 IN UINT16 OpCode,
 ...
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

BeforeOrAfter

Specifies whether the opcode is stored before (TRUE) or after (FALSE) the position
in the boot script table specified by Position. If Position is NULL or points to
NULL then the new opcode is inserted at the beginning of the table (if TRUE) or end
of the table (if FALSE).

Position

On entry, specifies the position in the boot script table where the opcode will be
inserted, either before or after, depending on BeforeOrAfter. On exit, if not
NULL, specifies the position of the inserted opcode in the boot script table.

OpCode

The operation code (opcode) number. See "Related Definitions" in Write() for the
defined opcode types.

…

Argument list that is specific to each opcode. See the following subsections for the
definition of each opcode.

Description
This function is used to store an OpCode to be replayed as part of the S3 resume boot path. It is
assumed this protocol has platform specific mechanism to store the OpCode set and replay them
during the S3 resume.

The opcode is stored before (TRUE) or after (FALSE) the position in the boot script table specified
by Position. If Position is NULL or points to NULL then the new opcode is inserted at the
beginning of the table (if TRUE) or end of the table (if FALSE).

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 125

The position which is pointed to by Position upon return can be used for subsequent insertions.

This function has a variable parameter list. The exact parameter list depends on the OpCode that is
passed into the function. If an unsupported OpCode or illegal parameter list is passed in, this
function returns EFI_INVALID_PARAMETER.

If there are not enough resources available for storing more scripts, this function returns
EFI_OUT_OF_RESOURCES.

OpCode values of 0x80 - 0xFE are reserved for implementation specific functions.

Related Definitions
typedef VOID *EFI_S3_BOOT_SCRIPT_POSITION;

Status Codes Returned

EFI_SUCCESS The operation succeeded. An opcode was added into the script
table.

EFI_INVALID_PARAMETER The Opcode is an invalid opcode value.

EFI_INVALID_PARAMETER The Position is not a valid position in the boot script table.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

8.7.3 Save State Label

S3 Resume Platform Initialization Spec, Vol. 5

126 May 2017 Version 1.6

EFI_S3_SAVE_STATE_PROTOCOL.Label()

Summary
Find a label within the boot script table and, if not present, optionally create it.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_LABEL) (
 IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN BOOLEAN BeforeOrAfter,
 IN BOOLEAN CreateIfNotFound,
 IN OUT EFI_S3_BOOT_SCRIPT_POSITION *Position OPTIONAL,
 IN CONST CHAR8 *Label
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

BeforeOrAfter

Specifies whether the label is stored before (TRUE) or after (FALSE) the position in
the boot script table specified by Position. If Position is NULL or points to
NULL then the new label is inserted at the beginning of the table (if TRUE) or end of
the table (if FALSE).

CreateIfNotFound

Specifies whether the label will be created if the label does not exists (TRUE) or not
(FALSE).

Position

On entry, specifies the position in the boot script table where the label will be inserted,
either before or after, depending on BeforeOrAfter. On exit, if not NULL,
specifies the position of the inserted label in the boot script table.

Label

Points to the NULL terminated label which will be inserted in the boot script table.

Description
If the label Label already exists in the boot script table, then no new label is created, the position
of the Label is returned in *Position (if Position is not NULL) and EFI_SUCCESS is
returned. If the label already exists, the input value of the Position is ignored.

If the label Label does not already exist and CreateIfNotFound is TRUE, then it will be
created before or after the specified position and EFI_SUCCESS is returned.

If the label Label does not already exist and CreateIfNotFound is FALSE, then
EFI_NOT_FOUND is returned.

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 127

Status Codes Returned

EFI_SUCCESS The label already exists or was inserted.

EFI_NOT_FOUND The label did not already exist and CreateifNotFound was
FALSE.

EFI_INVALID_PARAMETER The Label is NULL or points to an empty string.

EFI_INVALID_PARAMETER The Position is not a valid position in the boot script table.

EFI_OUT_OF_RESOURCES There is insufficient memory to store the boot script.

8.7.4 Save State Compare

S3 Resume Platform Initialization Spec, Vol. 5

128 May 2017 Version 1.6

EFI_S3_SAVE_STATE_PROTOCOL.Compare()

Summary
Compare two positions in the boot script table and return their relative position.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_S3_SAVE_STATE_COMPARE) (
IN CONST EFI_S3_SAVE_STATE_PROTOCOL *This,
 IN EFI_S3_BOOT_SCRIPT_POSITION Position1,
 IN EFI_S3_BOOT_SCRIPT_POSITION Position2,
 OUT UINTN *RelativePosition
);

Parameters
This

A pointer to the EFI_S3_SAVE_STATE_PROTOCOL instance.

Position1, Position2

The positions in the boot script table to compare.

RelativePosition

On return, points to the result of the comparison.

Description
This function compares two positions in the boot script table and returns their relative positions. If
Position1 is before Position2, then -1 is returned. If Position1 is equal to Position2,
then 0 is returned. If Position1 is after Position2, then 1 is returned.

Status Codes Returned

EFI_SUCCESS The operation succeeded.

EFI_INVALID_PARAMETER The Position1 or Position2 is not a valid position in
the boot script table.

EFI_INVALID_PARAMETER The RelativePosition is NULL.

8.8 S3 SMM Save State Protocol
This section defines how a SMM PI module can record IO operations to be performed as part of the
S3 resume. This is done via the EFI_S3_SMM_SAVE_STATE_PROTOCOL and this allows the
implementation of the S3 resume boot path to be abstracted from SMM drivers.

The S3 SMM Save State Protocol shares the interface definition with the S3 Save State Protocol but
it has a different GUID. It is an SMM protocol. Having separate protocols for SMM and DXE
makes it easier to accommodate the differences in the operating environment between SMM and
DXE.

Platform Initialization Spec, Vol. 5 S3 Resume

Version 1.6 May 2017 129

EFI_S3_SMM_SAVE_STATE_PROTOCOL

Summary
Used to store or record various IO operations to be replayed during an S3 resume.

GUID
#define EFI_S3_SMM_SAVE_STATE_PROTOCOL_GUID \
 { 0x320afe62, 0xe593, 0x49cb, { 0xa9, 0xf1, 0xd4, 0xc2, \
 0xf4, 0xaf, 0x1, 0x4c } }

Protocol Interface Structure
typedef struct _EFI_S3_SMM_SAVE_STATE_PROTOCOL {
 EFI_S3_SAVE_STATE_WRITE Write;
 EFI_S3_SAVE_STATE_INSERT Insert;
 EFI_S3_SAVE_STATE_LABEL Label;
 EFI_S3_SAVE_STATE_COMPARE Compare;
} EFI_S3_SMM_SAVE_STATE_PROTOCOL;

Parameters
Write

Write an opcode at the end of the boot script table. See the Write() function
description under the EFI_S3_SAVE_STATE_PROTOCOL definition.

Insert

Write an opcode at the specified position in the boot script table. See the Insert()
function description under the EFI_S3_SAVE_STATE_PROTOCOL definition.

Label

Find an existing label in the boot script table or, if not present, create it. See the
Label()function description under the EFI_S3_SAVE_STATE_PROTOCOL
definition.

Compare

Compare two positions in the boot script table to determine their relative location. See
the Compare() function description under the
EFI_S3_SAVE_STATE_PROTOCOL definition.

Description
The EFI_S3_SMM_SAVE_STATE_PROTOCOL provides the PI SMMboot script abstraction.

On an S3 resume boot path the data stored via this protocol is replayed in the order it was stored.

The order of replay is the order either of the S3 Save State Protocol or S3 SMM Save State Protocol
Write() functions were called during the boot process.

The EFI_S3_SMM_SAVE_STATE_PROTOCOL can be called at runtime and
EFI_OUT_OF_RESOURCES may be returned from a runtime call. It is the responsibility of the

S3 Resume Platform Initialization Spec, Vol. 5

130 May 2017 Version 1.6

platform to ensure enough memory resource exists to save the system state. It is recommended that
runtime calls be minimized by the caller.

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 131

9 ACPI System Description Table Protocol

9.1 EFI_ACPI_SDT_PROTOCOL

Summary
Provides services for creating ACPI system description tables.

GUID
#define EFI_ACPI_SDT_PROTOCOL_GUID \
 { 0xeb97088e, 0xcfdf, 0x49c6, \
 { 0xbe, 0x4b, 0xd9, 0x6, 0xa5, 0xb2, 0xe, 0x86 } }

Protocol Interface Structure
typedef struct _EFI_ACPI_SDT_PROTOCOL {
 EFI_ACPI_TABLE_VERSION AcpiVersion;
 EFI_ACPI_GET_TABLE2 GetAcpiTable;
 EFI_ACPI_REGISTER_NOTIFY RegisterNotify;
 EFI_ACPI_OPEN Open;
 EFI_ACPI_OPEN_SDT OpenSdt;
 EFI_ACPI_CLOSE Close;
 EFI_ACPI_GET_CHILD GetChild;
 EFI_ACPI_GET_OPTION GetOption;
 EFI_ACPI_SET_OPTION SetOption;
 EFI_ACPI_FIND_PATH FindPath;
} EFI_ACPI_SDT_PROTOCOL;

Related Definitions
#define UINT32 EFI_ACPI_TABLE_VERSION;

#define EFI_ACPI_TABLE_VERSION_NONE (1 << 0)
#define EFI_ACPI_TABLE_VERSION_1_0B (1 << 1)
#define EFI_ACPI_TABLE_VERSION_2_0 (1 << 2)
#define EFI_ACPI_TABLE_VERSION_3_0 (1 << 3)
#define EFI_ACPI_TABLE_VERSION_4_0 (1 << 4)
#define EFI_ACPI_TABLE_VERSION_5_0 (1 << 5)

Members
AcpiVersion

A bit map containing all the ACPI versions supported by this protocol.

GetTable

Enumerate the ACPI tables.

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

132 May 2017 Version 1.6

RegisterNotify

Register a notification when a table is installed.

Open

Create a handle from an ACPI opcode.

OpenSdt

Create a handle from an ACPI table.

Close

Close an ACPI handle.

GetChild

Cycle through the child objects of an ACPI handle.

GetOption

Return one of the optional pieces of the opcode.

SetOption

Change one of the optional pieces of the opcode.

FindPath

Given an ACPI path, return an ACPI handle.

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 133

EFI_ACPI_SDT_PROTOCOL.GetAcpiTable()

Summary
Returns a requested ACPI table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_GET_ACPI_TABLE) (
 IN UINTN Index,
 OUT EFI_ACPI_SDT_HEADER **Table,
 OUT EFI_ACPI_TABLE_VERSION *Version,
 OUT UINTN *TableKey
);

Parameters
Index

The zero-based index of the table to retrieve.

Table

Pointer for returning the table buffer. Type EFI_ACPI_SDT_HEADER is defined in
“Related Definitions” below.

Version

On return, updated with the ACPI versions to which this table belongs. Type
EFI_ACPI_TABLE_VERSION is defined in "Related Definitions” in the
EFI_ACPI_SDT_PROTOCOL.

TableKey

On return, points to the table key for the specified ACPI system definition table. This
is identical to the table key used in the EFI_ACPI_TABLE_PROTOCOL. The
TableKey can be passed to
EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable() to uninstall the
table.

Description
The GetAcpiTable() function returns a pointer to a buffer containing the ACPI table associated
with the Index that was input. The following structures are not considered elements in the list of
ACPI tables:

• Root System Description Pointer (RSD_PTR)

• Root System Description Table (RSDT)

• Extended System Description Table (XSDT)

Version is updated with a bit map containing all the versions of ACPI of which the table is a
member.

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

134 May 2017 Version 1.6

For tables installed via the EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable() interface,
the function returns the value of EFI_ACPI_STD_PROTOCOL.AcpiVersion.

Related Definitions
typedef struct {
 UINT32 Signature;
 UINT32 Length;
 UINT8 Revision;
 UINT8 Checksum;
 CHAR8 OemId[6];
 CHAR8 OemTableId[8];
 UINT32 OemRevision;
 UINT32 CreatorId;
 UINT32 CreatorRevision;
} EFI_ACPI_SDT_HEADER;

This structure is based on the DESCRIPTION_HEADER structure, defined in section 5.2.6 of the
ACPI 3.0 specification.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The requested index is too large and a table was not found.

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 135

EFI_ACPI_SDT_PROTOCOL.RegisterNotify()

Summary
Register or unregister a callback when an ACPI table is installed.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_REGISTER_NOTIFY) (
 IN BOOLEAN Register,
 IN EFI_ACPI_NOTIFICATION_FN Notification
);

Parameters
Register

If TRUE, then the specified function will be registered. If FALSE, then the specified
function will be unregistered.

Notification

Points to the callback function to be registered or unregistered. Type
EFI_ACPI_NOTIFICATION_FN is defined in “Related Definitions” below.

Description
This function registers or unregisters a function which will be called whenever a new ACPI table is
installed.

Status Codes Returned

EFI_SUCCESS Callback successfully registered or unregistered.

EFI_INVALID_PARAMETER Notification is NULL

EFI_INVALID_PARAMETER Register is FALSE and Notification does not match a known registration function.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_NOTIFICATION_FN)(
 IN EFI_ACPI_SDT_HEADER *Table,
 IN EFI_ACPI_TABLE_VERSION Version,
 IN UINTN TableKey
);

Table

A pointer to the ACPI table header.

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

136 May 2017 Version 1.6

Version

The ACPI table’s version. Type EFI_ACPI_TABLE_VERSION is defined in
"Related Definitions” in the EFI_ACPI_SDT_PROTOCOL.

TableKey

The table key for this ACPI table. This is identical to the table key used in the
EFI_ACPI_TABLE_PROTOCOL.

This function is called each time a new ACPI table is added using
EFI_ACPI_TABLE_PROTOCOl.InstallAcpiTable().

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 137

EFI_ACPI_SDT_PROTOCOL.Open()

Summary
Create a handle from an ACPI opcode

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_OPEN) (
 IN VOID *Buffer,
 OUT EFI_ACPI_HANDLE *Handle
);

Parameters
Buffer

Points to the ACPI opcode.

Handle

Upon return, holds the handle.

Related Definitions
typedef VOID *EFI_ACPI_HANDLE;

Description
Creates a handle from a single ACPI opcode.

Status Code Values

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Buffer is NULL or Handle is NULL or Buffer points to an

invalid opcode.

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

138 May 2017 Version 1.6

EFI_ACPI_SDT_PROTOCOL.OpenSdt()

Summary
Create a handle for the first ACPI opcode in an ACPI system description table.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_OPEN_SDT) (
 IN UINTN TableKey,
 OUT EFI_ACPI_HANDLE *Handle
);

Parameters
TableKey

The table key for the ACPI table, as returned by GetTable().

Handle

On return, points to the newly created ACPI handle. Type EFI_ACPI_HANDLE is
defined in “Related Definitions” below.

Description
Creates an ACPI handle for the top-level opcodes in the ACPI system description table specified by
TableKey.

 Related Definitions
typedef VOID *EFI_ACPI_HANDLE;

Status Codes Returned

EFI_SUCCESS Handle created successfully.

EFI_NOT_FOUND TableKey does not refer to a valid ACPI table.

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 139

EFI_ACPI_SDT_PROTOCOL.Close()

Summary
Close an ACPI handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_CLOSE) (
 IN EFI_ACPI_HANDLE Handle
);

Parameters
Handle

Returns the handle. Type EFI_ACPI_HANDLE is defined in Open().

Description
Closes the ACPI handle and, if any changes were made, updates the table checksum.

Status Code Values

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Handle is NULL or does not refer to a valid ACPI object.

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

140 May 2017 Version 1.6

EFI_ACPI_SDT_PROTOCOL.GetChild()

Summary
Return the child ACPI objects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_ENUM) (
 IN EFI_ACPI_HANDLE ParentHandle,
 IN OUT EFI_ACPI_HANDLE *Handle
);

Parameters
ParentHandle

Parent handle.

Handle

On entry, points to the previously returned handle or NULL to start with the first
handle. On return, points to the next returned ACPI handle or NULL if there are no
child objects.

Description
Iterates through all children ACPI objects of the ACPI object specified by the handle
ParentHandle.

Status Code Values

EFI_SUCCESS Success

EFI_INVALID_PARAMETER ParentHandle is NULL or does not refer to a valid ACPI object.

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 141

EFI_ACPI_SDT_PROTOCOL.GetOption()

Summary
Retrieve information about an ACPI object.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_GET_OPTION) (
 IN EFI_ACPI_HANDLE Handle,
 IN UINTN Index,
 OUT EFI_ACPI_DATA_TYPE *DataType,
 OUT CONST VOID **Data,
 OUT UINTN *DataSize
);

Parameters
Handle

ACPI object handle.

Index

Index of the data to retrieve from the object. In general, indexes read from left-to-right
in the ACPI encoding, with index 0 always being the ACPI opcode.

DataType

Points to the returned data type or EFI_ACPI_DATA_TYPE_NONE if no data exists
for the specified index. See EFI_ACPI_DATA_TYPE in Related Definitions.

Data

Upon return, points to the pointer to the data.

DataSize

Upon return, points to the size of Data.

Related Definitions
typedef UINT32 EFI_ACPI_DATA_TYPE;

#define EFI_ACPI_DATA_TYPE_NONE 0
#define EFI_ACPI_DATA_TYPE_OPCODE 1
#define EFI_ACPI_DATA_TYPE_NAME_STRING 2
#define EFI_ACPI_DATA_TYPE_OP 3
#define EFI_ACPI_DATA_TYPE_UINT 4
#define EFI_ACPI_DATA_TYPE_STRING 5
#define EFI_ACPI_DATA_TYPE_CHILD 6

Description
Retrieves various fields encoded within the ACPI object. All ACPI objects support at least index 0.

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

142 May 2017 Version 1.6

The EFI_ACPI_DATA_TYPE_NONE indicates that the specified ACPI object does not support the
specified option. The EFI_ACPI_DATA_TYPE_OPCODE indicates that the option is an ACPI
opcode. The EFI_ACPI_DATA_TYPE_NAME_STRING indicates that the option is an ACPI name
string. The EFI_ACPI_DATA_TYPE_OP indicates that the option is an ACPI opcode. The
Open() function can be used to manipulate the contents of this ACPI opcode. The
EFI_ACPI_DATA_TYPE_UINT indicates that the option is an unsigned integer. The size of the
integer is indicated by DataSize. The EFI_ACPI_DATA_TYPE_STRING indicates that the
option is a string whose length is indicated by DataSize. The EFI_ACPI_DATA_TYPE_CHILD
indicates that the opcode has child data, pointed to by Data, with the size DataSize.

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 143

Table 5. AML terms and supported options

Term 0 1 2 3 4 5 6

ACPI_OP_ZERO 0000

ACPI_OP_ONE 0001

ACPI_OP_ALIAS 0006 N N

ACPI_OP_NAME 0008 N O

ACPI_OP_BYTE 000A U8

ACPI_OP_WORD 000B U16

ACPI_OP_DWORD 000C U32

ACPI_OP_STRING 000D S

ACPI_OP_QWORD 000E U64

ACPI_OP_SCOPE 0010 N

ACPI_OP_BUFFER 0011 O

ACPI_OP_PACKAGE 0012 U8

ACPI_OP_PACKAGE1 0013 O

ACPI_OP_METHOD 0014 N U8

ACPI_OP_LOCAL0 0060

ACPI_OP_LOCAL1 0061

ACPI_OP_LOCAL2 0062

ACPI_OP_LOCAL3 0063

ACPI_OP_LOCAL4 0064

ACPI_OP_LOCAL5 0065

ACPI_OP_LOCAL6 0066

ACPI_OP_LOCAL7 0067

ACPI_OP_ARG0 0068

ACPI_OP_ARG1 0069

ACPI_OP_ARG2 006A

ACPI_OP_ARG3 006B

ACPI_OP_ARG4 006C

ACPI_OP_ARG5 006D

ACPI_OP_ARG6 006E

ACPI_OP_STORE 0070 O O

ACPI_OP_REFOF 0071 O

ACPI_OP_ADD 0072 O O O

ACPI_OP_CONCAT 0073 O O O

ACPI_OP_SUBTRACT 0074 O O O

ACPI_OP_INCREMENT 0075 O

ACPI_OP_DECREMENT 0076 O

ACPI_OP_MULTIPLY 0077 O O O

ACPI_OP_DIVIDE 0078 O O O O

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

144 May 2017 Version 1.6

ACPI_OP_SHIFTLEFT 0079 O O O

ACPI_OP_SHIFTRIGHT 007A O O O

ACPI_OP_AND 007B O O O

ACPI_OP_NAND 007C O O O

ACPI_OP_OR 007D O O O

ACPI_OP_NOR 007E O O O

ACPI_OP_XOR 007F O O O

ACPI_OP_NOT 0080 O O

ACPI_OP_FINDSETLEFTBIT 0081 O O

ACPI_OP_FINDSETRIGHTBIT 0082 O O

ACPI_OP_DEREFOF 0083 O

ACPI_OP_CONCATENATE 0084 O O O

ACPI_OP_MODULO 0085 O O O

ACPI_OP_NOTIFY 0086 O O

ACPI_OP_SIZEOF 0087 O

ACPI_OP_INDEX 0088 O O O

ACPI_OP_MATCH 0089 O U8 O U8 O O

ACPI_OP_OBJECTTYPE 008E O

ACPI_OP_LAND 0090 O O

ACPI_OP_LOR 0091 O O

ACPI_OP_LNOT 0092 O

ACPI_OP_LEQUAL 0093 O O

ACPI_OP_LGREATER 0094 O O

ACPI_OP_LLESS 0095 O O

ACPI_OP_TOBUFFER 0096 O O

ACPI_OP_TODECIMALSTRING 0097 O O

ACPI_OP_TOHEXSTRING 0098 O O

ACPI_OP_TOINTEGER 0099 O O

ACPI_OP_TOSTRING 009C O O O

ACPI_OP_COPYOBJECT 009D O O

ACPI_OP_MID 009E O O O

ACPI_OP_CONTINUE 009F

ACPI_OP_IF 00A0 O

ACPI_OP_ELSE 00A1

ACPI_OP_WHILE 00A2 O

ACPI_OP_NOP 00A3

ACPI_OP_RETURN 00A4 O

ACPI_OP_BREAK 00A5

ACPI_OP_BREAKPOINT 00CC

Term 0 1 2 3 4 5 6

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 145

ACPI_OP_ONES 00FF

ACPI_OP_MUTEX 5B01 N U8

ACPI_OP_EVENT 5B02 N

ACPI_OP_CONDREFOF 5B12 O O

ACPI_OP_CREATEFIELD 5B13 O O O N

ACPI_OP_LOADTABLE 5B1F O O O O O O

ACPI_OP_LOAD 5B20 N O

ACPI_OP_STALL 5B21 O

ACPI_OP_SLEEP 5B22 O

ACPI_OP_ACQUIRE 5B23 O U16

ACPI_OP_SIGNAL 5B24 O

ACPI_OP_WAIT 5B25 O O

ACPI_OP_RESET 5B26 O

ACPI_OP_RELEASE 5B27 O

ACPI_OP_FROMBCD 5B28 O O

ACPI_OP_TOBCD 5B29 O O

ACPI_OP_UNLOAD 5B2A O

ACPI_OP_REVISION 5B30

ACPI_OP_DEBUG 5B31

ACPI_OP_FATAL 5B32 U8 U32 O

ACPI_OP_TIMER 5B33

ACPI_OP_OPERATIONREGIO
N

5B80 N U8 O O

ACPI_OP_FIELD 5B81 N U8

ACPI_OP_DEVICE 5B82 N

ACPI_OP_PROCESSOR 5B83 N U8 U32 U8

ACPI_OP_POWERRESOURCE 5B84 N U8 U16

ACPI_OP_THERMALZONE 5B85 N

ACPI_OP_INDEXFIELD 5B86 N N U8

ACPI_OP_BANKFIELD 5B87 N N O U8

ACPI_OP_DATAREGION 5B88 N O O O

ACPI_OP_CREATEDWORDFIE
LD

5B8A O O N

ACPI_OP_CREATEWORDFIEL
D

5B8B O O N

ACPI_OP_CREATEBYTEFIELD 5B8C O O N

ACPI_OP_CREATEBITFIELD 5B8D O O N

ACPI_OP_CREATEQWORDFIE
LD

5B8F O O N

Term 0 1 2 3 4 5 6

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

146 May 2017 Version 1.6

Status Code Returns

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Handle is NULL or does not refer to a valid ACPI object.

Platform Initialization Spec, Vol. 5 ACPI System Description Table Protocol

Version 1.6 May 2017 147

EFI_ACPI_SDT_PROTOCOL.SetOption()

Summary
Change information about an ACPI object.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_SET_OPTION) (
 IN EFI_ACPI_HANDLE Handle,
 IN UINTN Index,
 IN CONST VOID *Data,
 IN UINTN DataSize
);

Parameters
Handle

ACPI object handle.

Index

Index of the data to retrieve from the object. In general, indexes read from left-to-right
in the ACPI encoding, with index 0 always being the ACPI opcode.

Data

Points to the data.

DataSize

The size of the Data.

Description
Changes fields within the ACPI object. If the new size will not fit in the space
occupied by the previous option, then his function will return
EFI_BAD_BUFFER_SIZE. The list of opcodes and their related options can be
found in GetOption().

Status Code Returns

EFI_SUCCESS Success

EFI_INVALID_PARAMETER Handle is NULL or does not refer to a valid ACPI object.

EFI_BAD_BUFFER_SIZE Data cannot be accommodated in the space occupied by
the option.

ACPI System Description Table Protocol Platform Initialization Spec, Vol. 5

148 May 2017 Version 1.6

EFI_ACPI_SDT_PROTOCOL.FindPath()

Summary
Returns the handle of the ACPI object representing the specified ACPI path.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ACPI_FIND_PATH) (
 IN EFI_ACPI_HANDLE HandleIn,
 IN VOID *AcpiPath,
 OUT EFI_ACPI_HANDLE *HandleOut
);

Parameters
HandleIn

Points to the handle of the object representing the starting point for the path search.

AcpiPath

Points to the ACPI path, which conforms to the ACPI encoded path format.

HandleOut

On return, points to the ACPI object which represents AcpiPath, relative to
HandleIn.

Description
Starting with the ACPI object represented by HandleIn, walk the specified ACPI path AcpiPath
and return the handle of the ACPI object it refers to. This function supports absolute paths, relative
paths and the special rules applied to single name segments.

Status Code Returns

EFI_SUCCESS Success

EFI_INVALID_PARAMETER HandleIn is NULL or does not refer to a valid ACPI object.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 149

10 PCI Host Bridge

10.1 PCI Host Bridge Overview
This specification defines the core code and services that are required for an implementation of the
PCI Host Bridge Resource Allocation Protocol. This protocol is used by a PCI bus driver to program
the PCI host bridge and configure the root PCI buses. The registers inside the PCI host bridge that
control root PCI bus configuration are not governed by the PCI specification and vary from chipset
to chipset. The PCI Host Bridge Resource Allocation Protocol is therefore specific to a particular
chipset.

This specification does the following:

• Describes the basic components of the PCI Host Bridge Resource Allocation Protocol

• Describes several sample PCI architectures and a sample implementation of the PCI Host Bridge
Resource Allocation Protocol

• Provides code definitions for the PCI Host Bridge Resource Allocation Protocol and the PCI-
host-bridge-related type definitions that are architecturally required by this specification.

The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe
platform policies. The platform policies are described by the
EFI_PCI_PLATFORM_PROTOCOL, which is desribed in section 11.6.1. Silicon-related
policies are described by the EFI_PCI_OVERRIDE_PROTOCOL, which is described in
section 11.6.2.

10.2 PCI Host Bridge Design Discussion
This section provides background and design information for the PCI Host Bridge Resource
Allocation Protocol. A PCI bus driver, running in the EFI Boot Services environment, uses this
protocol to program PCI host bridge hardware. This protocol abstracts a PCI host bridge. In
particular, functions for programming a PCI host bridge are defined here although other bus types
may be supported in a similar fashion as extensions to this specification.

This chapter discusses the following:

• PCI terms that are used in this document

• An overview of the PCI Host Bridge Resource Allocation Protocol

• Sample PCI architectures

• ISA aliasing considerations

• Programming of standard PCI configuration registers

• Sample implementation

PCI Host Bridge Platform Initialization Spec, Vol. 5

150 May 2017 Version 1.6

10.3 PCI Host Bridge Resource Allocation Protocol

10.3.1 PCI Host Bridge Resource Allocation Protocol Overview
The PCI Host Bridge Resource Allocation Protocol is used by a PCI bus driver to program a PCI
host bridge. The registers inside a PCI host bridge that control configuration of PCI root buses are
not governed by the PCI specification and vary from chipset to chipset. The PCI Host Bridge
Resource Allocation Protocol implementation is therefore specific to a particular chipset.

Each PCI host bridge is comprised of one or more PCI root bridges, and there are hardware registers
associated with each PCI root bridge. These registers control the bus, I/O, and memory resources
that are decoded by the PCI root bus that the PCI root bridge produces and all the PCI buses that are
children of that PCI root bus.

The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL allows for future
innovation of the chipsets. It abstracts the PCI bus driver from the chipset details. This design allows
system designers to make changes to the host bridge hardware without impacting a platform-
independent PCI bus driver.

See PCI Host Bridge Resource Allocation Protocol in Code Definitions for the definition of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

10.3.2 Host Bus Controllers
A platform can be viewed as the following:

• A set of processors

• A set of core chipset components that may produce one or more host buses

The figure below shows a platform with n processors (CPUs) and a set of core chipset components
that produce m host bridges (HBs).

Most systems with one PCI host bus controller will contain a single instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. More complex systems
may contain multiple instances of this protocol.

Note: There is no relationship between the number of chipset components in a platform and the number of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances. This protocol is
an abstraction from a software point of view. This protocol is attached to the device handle of a PCI host
bus controller, which itself is composed of one or more PCI root bridges. A PCI root bridge is a chipset
component(s) that produces a physical PCI bus whose parent is not another physical PCI bus.

CPU 1 CPU 2 CPU n

Front Side Bus

Core Chipset Components

HB 1 HB 2 HB m

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 151

Figure 4. Host Bus Controllers

10.3.3 Producing the PCI Host Bridge Resource Allocation Protocol
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instances are produced by
DXE drivers—most often by early DXE drivers.

The figure below shows how the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is used to identify the
associated PCI root bridges. After the steps in the figure are completed, the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL can then be queried to
identify the device handles of the associated PCI root bridges. See the UEFI 2.1 Specification for
details of the PCI Root Bridge I/O Protocol.

DXE driver produces
PCI Host Bridge

Resource Allocation
Protocol.

Protocol is placed on
the device handle

corresponding to the
PCI host bridge.

Same driver creates
device handles for all
associated PCI root

bridges.

Same driver installs an
instance of the

PCI Root Bridge
I/O Protocol on each

handle.

PCI Host Bridge Platform Initialization Spec, Vol. 5

152 May 2017 Version 1.6

Figure 5. Producing the PCI Host Bridge Resource Allocation Protocol

10.3.4 Required PCI Protocols
The following protocols are mandatory if the system supports PCI devices or slots:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

See the UEFI 2.1 Specification for more information on the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

10.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
It is expected, although not necessary, that a chipset-aware driver will produce the following
protocol instances:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

Care has been taken to avoid overlap between the member functions of the two protocols. For
example, EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL does not describe
the SegmentNumber or the final resource assignment for a root bridge, because these attributes
are available using the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. Both protocols contain links
to the associated instances of the other protocols, as follows:

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 153

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL: Includes the handle of the PCI host bridge that is
associated with the root bridge.

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL: Provides a member
function to retrieve the handles of the associated root bridges.

The definition of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL attempts
to maintain compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.

See the UEFI 2.1 Specification for more information on the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

10.4 Sample PCI Architectures

10.4.1 Sample PCI Architectures Overview
The PCI Host Bridge Resource Allocation Protocol is a protocol that is designed to provide a
software abstraction for a wide variety of PCI architectures. This section provides examples of the
following PCI architectures:

• Desktop system with 1 PCI root bridge

• Server system with 4 PCI root bridges

• Server system with 2 PCI segments

• Server system with 2 PCI host buses

This section is not intended to be an exhaustive list of the PCI architectures that the PCI Host Bridge
Resource Allocation Protocol can support. Instead, it is intended to show the flexibility of this
protocol to adapt to current and future platform designs.

10.4.2 Desktop System with 1 PCI Root Bridge
The figure below shows an example of a PCI host bus with one PCI root bridge. This PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard and/or PCI slots. This
setup would be typical of a desktop system. In this system, the PCI root bridge needs minimal setup.
Typically, the PCI root bridge will decode the following:

• The entire bus range on Segment 0

• The entire I/O space of the processor

• All the memory above the top of system memory

The firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• One instance of PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Core Chipset Components

PCI Host Bridge

PCI Root Bridge

PCI Host Bridge Platform Initialization Spec, Vol. 5

154 May 2017 Version 1.6

Figure 6. Desktop System with 1 PCI Root Bridge

10.4.3 Server System with 4 PCI Root Bridges
The figure below shows an example of a larger server with one PCI host Bus with four PCI root
bridges (RBs). The PCI devices that are attached to the PCI root bridges are all part of the same
coherency domain, which means they share the following:

• A common PCI I/O space

• A common PCI memory space

• A common PCI prefetchable memory space

As a result, each PCI root bridge must get resources out of a common pool. Each PCI root bridge
produces one PCI local bus that can contain PCI devices on the motherboard or PCI slots. The
firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• Four instances of the PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Core Chipset Components

PCI Host Bridge

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI

PCI RB

PCI

Figure 7. Server System with 4 PCI Root Bridges

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 155

10.4.4 Server System with 2 PCI Segments
The figure below shows an example of a server with one PCI host bus and two PCI root bridges
(RBs). Each of these PCI root bridges is on a different PCI segment, which allows the system to have
up to 512 PCI buses. A single PCI segment is limited to 256 PCI buses. These two segments do not
share the same PCI configuration space, but they do share the following, which is why they can be
described with a single PCI host bus:

• A common PCI I/O space

• A common PCI memory space

• A common PCI prefetchable memory space

The firmware for this platform would produce the following:

• One instance of the PCI Host Bridge Resource Allocation Protocol

• Two instances of the PCI Root Bridge I/O Protocol

See the UEFI 2.1 Specification, Chapter 13, for details of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Core Chipset Components

PCI Host Bridge

PCI RB

PCI Segment 0

PCI RB

PCI Segment 1

Figure 8. Server System with 2 PCI Segments

10.4.5 Server System with 2 PCI Host Buses
The figure below shows a server system with two PCI host buses and one PCI root bridge (RB) per
PCI host bus. As in Figure 8, this system supports up to 512 PCI buses, but the following resources
are not shared between the two PCI root bridges:

• PCI I/O space

• PCI memory space

• PCI prefetchable memory space

The firmware for this platform would produce the following:

• Two instances of the PCI Host Bridge Resource Allocation Protocol

• Two instances of the PCI Root Bridge I/O Protocol

PCI Host Bridge Platform Initialization Spec, Vol. 5

156 May 2017 Version 1.6

See the UEFI 2.1 Specification, Chapter 13, for details of t the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

Core Chipset Components

PCI Host Bus 0

PCI RB

PCI Segment 0

PCI Host Bus 1

PCI RB

PCI Segment 1

Figure 9. Server System with 2 PCI Host Buses

10.5 ISA Aliasing Considerations
The PCI host bridge driver will handle the ISA alias addresses based on the platform policy. The
platform communicates the policy to the PCI host bridge driver using the
EFI_PCI_PLATFORM_PROTOCOL. If the PCI host bridge driver cannot locate an instance of
EFI_PCI_PLATFORM_PROTOCOL, it will not reserve the ISA alias addresses. The PCI bus driver
is not aware of this policy and probes devices to gather resource requirements regardless of this
policy. The EFI_PCI_PLATFORM_PROTOCOL is defined in section 11.6.1.

Note: When it is started, a PCI device may request that the ISA alias ranges be forwarded to it through the
EFI_PCI_IO_PROTOCOL.Attributes() member function by setting the input parameter
Attributes to EFI_PCI_IO_ATTRIBUTE_ISA_IO. If the ISA alias I/O addresses are not reserved
during enumeration, such a request may fail because one or more PCI devices may be occupying aliased
addresses.

If the ISA alias I/O addresses are to be reserved during enumeration, the PCI host bridge driver is
responsible for allocating four times the amount of the requested I/O. The PCI bus driver obtains the
resources by calling one of the following member functions:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
GetProposedResources()

• EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()

The PCI host bridge driver sets the _RNG bit to communicate the availability of the ISA alias range
to the PCI bus driver. If the _RNG flag is set, the PCI bus enumerator is not allowed to allocate the
ISA alias addresses to any PCI device. See Table 10 in the "Description" section of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL for the definition of the
_RNG flag. In this case, a PCI device’s request to turn on aliasing will succeed because one or more
PCI devices may be occupying aliased addresses. The _RNG flag is the only aspect of the protocol
interface structure that is affected by ISA aliasing.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 157

10.6 Programming of Standard PCI Configuration Registers
This topic defines design guidelines for programming PCI configuration registers in the standard
PCI header. It defines roles and responsibilities of various drivers.

Table 6. Standard PCI Devices – Header Type 0

PCI Configuration Register Bits Programmed By

PCI command register – I/O, Memory, and
Bus Master enable

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

PCI command register – SERR, PERR, MWI,
Special Cycle Enable, Fast Back to Back
Enable

Chipset/platform-specific code

PCI command register – VGA palette snoop PCI device driver.

Cache line size Chipset/platform code to match the processor’s cache line size
or some other value.

Latency timer PCI bus driver. This driver programs this register to default
values before it sends the

EfiPciBeforeResourceCollection notification.

For PCI devices, this value is 0x20. PCI-X* devices come out of
reset with this register set to 0x40. The PCI bus driver does not
change the setting. The PCI bus driver will also make sure that
the default value for PCI devices is consistent with the MIN_LAT
and MAX_LAT register values in the device’s PCI configuration
space.
Chipset/platform code can overwrite this register during the
EfiPciBeforeResourceCollection notification call. The
new value may come from the end user using configuration options.
The device driver may overwrite this value during its own Start()
function.

BIST PCI bus driver.

Base address registers PCI bus driver.

Interrupt line Not touched.

Subsystem vendor ID and Device ID Chipset/platform code. Per the PCI Specification, these
registers must get programmed before system software
accesses the device. Some noncompliant or chipset devices
may require that these registers be programmed during the
preboot phase.

PCI Host Bridge Platform Initialization Spec, Vol. 5

158 May 2017 Version 1.6

Table 7. PCI-to-PCI Bridge – Header Type 1

PCI Configuration Register Bits Programmed By

PCI command register – I/O, Memory, Bus
Master enable, VGA palette snoop

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

PCI command register – SERR, PERR, MWI,
Fast Back to Back Enable, Special Cycle
Enable

Chipset/platform-specific code.

Cache line size Chipset/platform code to match the processor’s cache line size
or some other value.

Latency timer PCI bus driver. This driver programs to default values before it

sends the EfiPciBeforeResourceCollection
notification. For PCI devices, this value is 0x20. PCI-X devices
come out of reset with this register set to 0x40.The PCI bus
driver does not change the setting. The PCI bus driver will also
make sure that the default value for PCI devices is consistent
with the MIN_LAT and MAX_LAT register values in the device’s
PCI configuration space.
Chipset/platform code can overwrite this register during the
EfiPciBeforeResourceCollection notification call. The
new value may come from the end user using configuration options.

Base addresses registers, bus, I/O, and
memory aperture registers

PCI bus driver.

Interrupt line Not touched.

Bridge control register – ISA Enable, VGA
Enable

PCI bus driver. This driver sets these values as requested by
the device driver through the EFI_PCI_IO_PROTOCOL member
functions.

Bridge control register – PERR Enable, SERR
Enable, Fast Back to Back, Discard Timers

Chipset/platform-specific code.

Bridge control register – Secondary Bus
Reset

PCI bus driver is permitted to reset the secondary bus during
enumeration. The chipset/platform code may also reset the
secondary bus during the

EfiPciBeforeChildBusEnumeration notification.

10.7 Sample Implementation
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. Actual
implementations may vary. Calls to
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
PreprocessController() are not included for the sake of clarity.

Unless noted otherwise, all functions that are listed below are member functions of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 159

1. If the hardware supports dynamically changing the number of PCI root buses or changing the
segment number that is associated with a PCI root bus, such changes must be completed before
the next steps.

2. The chipset/platform driver(s) creates a device handle for the PCI host bridges in the system(s)
and installs an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL on that handle.

3. The chipset/platform driver(s) creates a device handle for every PCI root bridge and installs the
following on that handle:

• An instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• An instance of EFI_DEVICE_PATH_PROTOCOL

It is expected that a single driver will handle a PCI host bridge, as well as all the associated PCI
root bridges. The ParentHandle field of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must
be initialized with the handle for the PCI host bridge that contains an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

...Other initialization activities take place.
4. The EFI_DRIVER_BINDING_PROTOCOL.Start() function of the PCI bus driver is called

and is passed the device handle of a PCI root bridge. The
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is
associated with the PCI root bridge can be found by using the ParentHandle field of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL must be present in PI
Architecture systems.

5. Begin the PCI enumeration process. The order in which the various member functions are called
cannot be changed. Between any two steps, there can be any amount of implementation-specific
code as long as it does not call any member functions of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. This requirement is
necessary to keep the state machines in the PCI host bridge allocation driver and the PCI bus
enumerator in sync.

6. Notify the host bridge driver that PCI enumeration is about to begin by calling
NotifyPhase(EfiPciHostBridgeBeginEnumeration). This member function
must be the first one that gets called. PCI enumeration has two steps: bus enumeration and
resource enumeration.

7. Notify the host bridge driver that bus enumeration is about to begin by calling NotifyPhase
(EfiPciHostBridgeBeginBusAllocation).

8. Do the following for every PCI root bridge handle:

• Call StartBusEnumeration(This,RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

• Allocate memory to hold resource requirements. These resources can be two resource trees:
one to hold bus requirements and another to hold the I/O and memory requirements.

• Call GetAllocAttributes() to get the attributes of this PCI root bridge. This
information is used to combine different types of memory resources in the next step.

• Scan all the devices in the specified bus range and on the specified segment. If it is a PCI-to-
PCI bridge, update the bus numbers and program the bus number registers in the PCI-to-PCI
bridge hardware. If it is an ordinary device, collect the resource request and add up all of

PCI Host Bridge Platform Initialization Spec, Vol. 5

160 May 2017 Version 1.6

these requests in multiple pools (e.g., I/O, 32-bit prefetchable memory). Combine different
types of memory requests at an appropriate level based on the PCI root bridge attributes.
Update the resource requirement information accordingly. On every PCI root bridge, reserve
space to cover the largest expansion ROMs on that bus, which will allow the PCI bus driver
to retrieve expansion ROMs from the PCI card or device without having to reprogram the
PCI host bridge. Because the memory and I/O resource collection step does not call any
member function of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL, it can be
performed at a later time.

• Once the number of PCI buses under this PCI root bridge is known, call
SetBusNumbers() with this information.

9. Notify the host bridge driver that the bus allocation phase is over by calling NotifyPhase
(EfiPciHostBridgeEndBusAllocation).

10. Notify the host bridge driver that resource allocation is about to begin by calling
NotifyPhase(EfiPciHostBridgeBeginResourceAllocation).

11. For every PCI root bridge handle, call SubmitResources(). The Configuration
information is derived from the resource requirements that were computed in step 8 above.

12. Call NotifyPhase(EfiPciHostBridgeAllocateResources) to allocate the
necessary resources. This call should not be made unless resource requirements for all the PCI
root bridges have been submitted. If the call succeeds, go to next step. Otherwise, there are two
options:

• Make do with the smaller ranges.

• Call GetProposedResources() to retrieve the proposed settings and examine the
differences. Prioritize various requests and drop lower-priority requests. Call
NotifyPhase(EfiPciHostBridgeFreeResources) to undo the previous
allocation. Go back to step 11 with reduced requirements, which includes resubmitting
requests for all the root bridges.

13. Call NotifyPhase(EfiPciHostBridgeSetResources) to program the hardware. At
this point, the decode logic in this host bridge is fully set up.

14. Do the following for every root bridge handle:

• Obtain the resource range that is assigned to a PCI root bridge by calling the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function on
that handle.

• From the resource range that is assigned to the PCI root bridge, assign resources to all the
devices. Program the Base Address Registers (BARs) in all the PCI functions and decode
registers in PCI-to-PCI bridges. If a PCI device has a PCI option ROM, copy the contents to
a buffer in memory. It is possible to defer the BAR programming for a PCI controller until a
connect request for the device is received.

• Create a device handle for each PCI device as required.

• Install an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on each of these handles.

15. Notify the host bridge driver that resource allocation is complete by calling
NotifyPhase(EfiPciHostBridgeEndResourceAllocation).

16. Deallocate any temporary buffers.

Looping on PCI root bridges is accomplished with the following algorithm:

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 161

RootBridgeHandle = NULL;
while (GetNextRootBridge(RootBridgeHandle) == EFI_SUCCESS) {
 . . .

10.7.1 PCI enumeration process
1. If the hardware supports dynamically changing the number of PCI root buses or changing the

segment number that is associated with a PCI root bus, such changes must be completed before
the next steps.

2. The PCI host bridge driver (s) creates a device handle for the PCI host bridges in the system(s)
and installs an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL on that handle.

3. The PCI root bridge driver(s) creates a device handle for every PCI root bridge and installs the
following on that handle:

• An instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• An instance of EFI_DEVICE_PATH_PROTOCOL

It is expected that a single driver will handle a PCI host bridge, as well as all the associated PCI
root bridges. The ParentHandle field of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must
be initialized with the handle for the PCI host bridge that contains an instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.

10.7.1.1 Other initialization activities take place.
4. The EFI_DRIVER_BINDING_PROTOCOL.Start() function of the PCI bus driver is called

and is passed the device handle of a PCI root bridge. The
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is
associated with the PCI root bridge can be found by using the ParentHandle field of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL must be present.

5. Begin the PCI enumeration process. The order in which the various member functions are called
cannot be changed. Between any two steps, there can be any amount of implementation-specific
code as long as it does not call any member functions of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. This requirement is
necessary to keep the state machines in the PCI host bridge allocation driver and the PCI bus
enumerator in sync.

6. Notify drivers that PCI enumeration is about to begin using
EfiPciHostBridgeBeginenumeration.

10.7.1.2 PCI enumeration has two steps: bus enumeration and resource
enumeration.

7. Notify drivers that PCI bus enumeration is about to begin using
EfiPciHostBridgeBeginBusAllocation.

8. Do the following for every PCI root bridge handle:

• Call StartBusEnumeration (This, RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

• Allocate memory to hold resource requirements.

PCI Host Bridge Platform Initialization Spec, Vol. 5

162 May 2017 Version 1.6

• Call GetAllocAttributes() to get the attributes of this PCI root bridge. This
information is used to combine different types of memory resources in the next step.

• Scan all the devices in the specified bus range and on the specified segment.

If it is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in the
PCI-to-PCI bridge hardware. Call the drivers for preprocess notifications using
EfiPciBeforeChildBusEnumeration.

If it is an ordinary device, collect the resource request and add up all of these requests in multiple
pools (e.g., I/O, 32-bit prefetchable memory). Combine different types of memory requests at an
appropriate level based on the PCI root bridge attributes. Update the resource requirement
information accordingly.

On every PCI root bridge, reserve space to cover the largest expansion ROMs on that bus, which
will allow the PCI bus driver to retrieve expansion ROMs from the PCI card or device without
having to reprogram the PCI host bridge. Because the memory and I/O resource collection step
does not call any member function of
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL, it can be performed at
a later time.

• Once the number of PCI buses under this PCI root bridge is known, call
SetBusNumbers() with this information.

9. Notify drivers that the bus allocation phase is over using
EfiPciHostBridgeEndBusAllocation.

10. Notify drivers that resource allocation is about to begin using
EfiPciHostBridgeBeginResourceAllocation.

11. For every PCI root bridge handle, call SubmitResources(). The Configuration
information is derived from the resource requirements that were computed in step 8 above.

12. Notify the drivers to allocate the necessary resources using
EfiPciHostBridgeAllocateResources. This call should not be made unless resource
requirements for all the PCI root bridges have been submitted. If the call succeeds, go to next
step. Otherwise, there are two options:

• Make do with the smaller ranges.

• Call GetProposedResources() to retrieve the proposed settings and examine the
differences. Prioritize various requests and drop lower-priority requests. Notify the drivers
using EfiPciHostBridgeFreeResources to undo the previous allocation. Go back
to step 11 with reduced requirements, which includes resubmitting requests for all the root
bridges.

13. Notify the drivers using EfiPciHostBridgeSetResources to program the hardware. At
this point, the decode logic in this host bridge is fully set up.

14. Do the following for every root bridge handle:

• Obtain the resource range that is assigned to a PCI root bridge by calling the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function on
that handle.

• From the resource range that is assigned to the PCI root bridge, assign resources to all the
devices. Program the Base Address Registers (BARs) in all the PCI functions and decode
registers in PCI-to-PCI bridges. If a PCI device has a PCI option ROM, copy the contents to
a buffer in memory. It is possible to defer the BAR programming for a PCI controller until a
connect request for the device is received.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 163

• Create a device handle for each PCI device as required.

• Install an instance of EFI_PCI_IO_PROTOCOL and EFI_DEVICE_PATH_PROTOCOL
on each of these handles.

15. Notify the drivers that resource allocation is complete by using
EfiPciHostBridgeEndResourceAllocation.

16. Notify the drivers that bus enumeration is complete by calling
EfiPciHostBridgeEndEnumeration.

17. Deallocate any temporary buffers.

18. Install the EFI_PCI_ENUMERATION_COMPLETE_GUID protocol.

10.7.1.3 Sample PCI Device Set Up Implementation
This section describes further the outlines of the process in step 14, second bullet (above).

1. Call the PCI enumeration preprocess functions using
EfiPciBeforeResourceCollection.

2. Gather PCI device resource requirements.

3. If present, call EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL to see if there
is an alternate set of resources for this device.

4. Call the EFI_PCI_PLATFORM_PROTOCOL function GetPciRom(). If it returns
EFI_SUCCESS, go to step 7.

5. Call the EFI_PCI_OVERRIDE_PROTOCOL function GetPciRom(). If it returns
EFI_SUCCESS, go to step 7.

6. Find the PCI device's option ROM and copy its contents into memory. If there is no option
ROM, go to step 8.

7. Find and decompress the UEFI image within the option ROM image.

8. Exit

10.7.2 Sample Enumeration Implementation
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL. Actual
implementations may vary.

10.7.2.1 PCI Enumeration Phases
There are several phases of the PCI enumeration process. For each phase, the PCI platform drivers
and the PCI host bridge drivers are notified as follows:

1. The PlatformNotify() function of the EFI_PCI_PLATFORM_PROTOCOL is called with
the enumeration phase and the execution phase BeforePciHostBridge.

2. The PlatformNotify() function of the EFI_PCI_OVERRIDE_PROTOCOL is called with
the enumeration phase and the execution phase BeforePciHostBridge.

3. The NotifyPhase function of each instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is called with the
enumeration phase.

PCI Host Bridge Platform Initialization Spec, Vol. 5

164 May 2017 Version 1.6

4. The PlatformNotify() function of the EFI_PCI_PLATFORM_PROTOCOL is called
with the enumeration phase and the execution phase AfterPciHostBridge.

5. The PlatformNotify () function of the EFI_PCI_OVERRIDE_PROTOCOL is called
with the execution phase AfterPciHostBridge.

10.7.2.2 Additional locations to preprocess PCI devices
There are a few additional places during the PCI enumeration process where the platform or PCI
host bridge drivers are given the opportunity to preprocess individual PCI devices.

1. The PlatformPrepController function of the EFI_PCI_PLATFORM_PROTOCOL is
called with the preprocess phase and the execution phase of BeforePciHostBridge.

2. The PlatformPrepController function of each instance of the
EFI_PCI_OVERRIDE_PROTOCOL is called with the preprocess phase and the execution
phase of BeforePciHostBridge.

3. The PreprocessController function of each instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is called with the
preprocess phase.

4. The PlatformPrepController function of each instance of the
EFI_PCI_PLATFORM_PROTOCOL is called with the preprocess phase and the execution
phase of AfterPciHostBridge.

5. The PlatformPrepController function of the EFI_PCI_OVERRIDE_PROTOCOL is
called with the preprocess phase and the execution phase of AfterPciHostBridge.

10.8 PCI HostBridge Code Definitions

10.8.1 Introduction
This section contains the basic definitions of the PCI Host Bridge Resource Allocation Protocol.
This section defines the protocol
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE

• EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES

• EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE

10.8.2 PCI Host Bridge Resource Allocation Protocol

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL

Summary
Provides the basic interfaces to abstract a PCI host bridge resource allocation.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 165

Note: This protocol is mandatory if the system includes PCI devices.

GUID
#define EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GUID \
 {
0xCF8034BE,0x6768,0x4d8b,0xB7,0x39,0x7C,0xCE,0x68,0x3A,0x9F,0xBE
}

Protocol Interface Structure
typedef struct _EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
{
 EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE
 NotifyPhase;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_B
RIDGE
 GetNextRootBridge;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_ATTRIBUTES
 GetAllocAttributes;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUME
RATION
 StartBusEnumeration;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS
 SetBusNumbers;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCE
S
 SubmitResources;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RE
SOURCES
 GetProposedResources;

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONT
ROLLER
 PreprocessController;
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL;

Parameters
NotifyPhase

The notification from the PCI bus enumerator that it is about to enter a certain phase
during the enumeration process. See the NotifyPhase() function description.

PCI Host Bridge Platform Initialization Spec, Vol. 5

166 May 2017 Version 1.6

GetNextRootBridge

Retrieves the device handle for the next PCI root bridge that is produced by the host
bridge to which this instance of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is attached.
See the GetNextRootBridge() function description. See section 1.2 for a
definition of a PCI root bridge.

GetAllocAttributes

Retrieves the allocation-related attributes of a PCI root bridge. See the
GetAllocAttributes() function description.

StartBusEnumeration

Sets up a PCI root bridge for bus enumeration. See the
StartBusEnumeration() function description.

SetBusNumbers

Sets up the PCI root bridge so that it decodes a specific range of bus numbers. See the
SetBusNumbers() function description.

SubmitResources

Submits the resource requirements for the specified PCI root bridge. See the
SubmitResources() function description.

GetProposedResources

Returns the proposed resource assignment for the specified PCI root bridges. See the
GetProposedResources() function description.

PreprocessController

Provides hooks from the PCI bus driver to every PCI controller (device/function) at
various stages of the PCI enumeration process that allow the host bridge driver to
preinitialize individual PCI controllers before enumeration. See the
PreprocessController() function description.

Description
The EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL provides the basic
resource allocation services to the PCI bus driver. There is one
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance for each PCI host
bridge in a system. The following will typically have only one PCI host bridge:

• Embedded systems

• Desktops

• Workstations

• Most servers

High-end servers may have multiple PCI host bridges. A PCI bus driver that wishes to manage a PCI
bus in a system will have to retrieve the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance that is associated
with the PCI bus to be managed. A device handle for a PCI host bridge will not contain an

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 167

EFI_DEVICE_PATH_PROTOCOL instance because the PCI host bridge is a software abstraction
and has no equivalent in the ACPI name space.

All applicable member functions use ACPI 2.0 or ACPI 3.0 resource descriptors to describe
resources. Using ACPI resource descriptors does the following:

• Allows other types of resources to be described in the future because they are very generic in
nature.

• Avoids multiple structure definitions for describing resources.

• Maintains compatibility with the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL definition.

Only the following two resource descriptor types from the ACPI Specification may be used to
describe the current resources that are allocated to a PCI root bridge:

• QWORD Address Space Descriptor (ACPI 3.0)

• End Tag (ACPI 3.0)

The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more
QWORD Address Space Descriptors, followed by an End Tag. Table 8 and Table 9 below contain
these two descriptor types. Table 10 and Table 11 define how resource-specific flags are used. See
the ACPI Specification for details on the field values.

PCI Host Bridge Platform Initialization Spec, Vol. 5

168 May 2017 Version 1.6

Table 8. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields.

0x03 0x01 Resource type:
 0: Memory range
 1: I/O range
 2: Bus number range

0x04 0x01 General flags.
Flags that are common to all resource types:
Bits[7:4]: Reserved (must be 0)
Bit[3] _MAF: Always returned as 1 while returning allocated requests to
indicate that the specified max address is fixed.
Bit[2] _MIF: Always returned as 1 while returning allocated requests to
indicate that the specified min address is fixed.
Bit[1] _DEC: Ignored.
Bit[0]: Ignored.

0x05 0x01 Type-specific flags. Ignored except as defined in Table 3-3 and Table 3-4
below.

0x06 0x08 Address Space Granularity. Used to differentiate between a 32-bit memory
request and a 64-bit memory request. For a 32-bit memory request, this field
should be set to 32. For a 64-bit memory request, this field should be set to
64. Ignored for I/O and bus resource requests. Ignored during

GetProposedResources().

0x0E 0x08 Address Range Minimum. Set to the base of the allocated address range
(bus, I/O, memory) during GetProposedResources(). Ignored during

SubmitResources().

0x16 0x08 Address Range Maximum. Used to indicate alignment requirement during
SubmitResources() and ignored during GetProposedResources().

This value must be 2n-1. The address base must be a multiple of the
granularity field. That is, if this field is 4KiB-1, the allocated address must be a
multiple of 4 KiB.
Note: The interpretation of this field is different from the ACPI Specification
and PCI Root Bridge I/O Protocol.

0x1E 0x08 Address Translation Offset. Used to indicate the allocation status during
GetProposedResources() and ignored during SubmitResources().
Allocation status is defined in "Related Definitions" in
GetProposedResources().
Note: The interpretation of this field is different from the ACPI Specification
and PCI Root Bridge I/O Protocol.

0x26 0x08 Address Range Length. This field specifies the amount of resources that are
requested or allocated in number of bytes.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 169

Table 9. ACPI 2.0 & 3.0 End Tag Usage

Byte
Offset

Byte
Length

Data

Description

0x00 0x01 0x79 End Tag.

0x01 0x01 0x00 Checksum. Set to 0 to indicate that checksum is to be ignored.

Table 10. I/O Resource Flag (Resource Type = 1) Usage

Bits Meaning

Bits[7:1] Ignored.

Bit[0] _RNG. Ignored during an allocation request. Setting this bit while returning allocated
resources means that the I/O allocation must be limited to the ISA I/O ranges. In that case,
the PCI bus driver must allocate I/O addresses out of the ISA I/O ranges. The following are
the SA I/O ranges:
n100–n3FF
n500–n7FF
n900–nBFF
nD00–nFFF
See ISA Aliasing Considerations for more details.

Table 11. Memory Resource Flag (Resource Type = 0) Usage

Bits Meaning

Bits[7:3] Ignored.

Bit[2:1] _MEM. Memory attributes.
Value and Meaning:
 0 The memory is nonprefetchable.
 1 Invalid.
 2 Invalid.
 3 The memory is prefetchable.
Note: The interpretation of these bits is somewhat different from the ACPI Specification.
According to the ACPI Specification, a value of 0 implies noncacheable memory and the
value of 3 indicates prefetchable and cacheable memory.

Bit[0] Ignored.

PCI Host Bridge Platform Initialization Spec, Vol. 5

170 May 2017 Version 1.6

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Noti
fyPhase()

Summary
These are the notifications from the PCI bus driver that it is about to enter a certain phase of the PCI
enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_NOTIFY_PHASE)
(
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

Phase

The phase during enumeration. Type
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in
"Related Definitions" below.

Description
This member function can be used to notify the host bridge driver to perform specific actions,
including any chipset-specific initialization, so that the chipset is ready to enter the next phase. Nine
notification points are defined at this time. See "Related Definitions" below for definitions of various
notification points and section 10.7 for usage.

More synchronization points may be added as required in the future.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 171

Related Definitions

Related Definitions
//***
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE
//***
typedef enum {
 EfiPciHostBridgeBeginEnumeration,
 EfiPciHostBridgeBeginBusAllocation,
 EfiPciHostBridgeEndBusAllocation,
 EfiPciHostBridgeBeginResourceAllocation,
 EfiPciHostBridgeAllocateResources,
 EfiPciHostBridgeSetResources,
 EfiPciHostBridgeFreeResources,
 EfiPciHostBridgeEndResourceAllocation,
 EfiPciHostBridgeEndEnumeration,
 EfiMaxPciHostBridgeEnumeratonPhase
} EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE;

Table 12 provides a description of the fields in the above enumeration:

PCI Host Bridge Platform Initialization Spec, Vol. 5

172 May 2017 Version 1.6

Table 12. Enumeration Descriptions

Enumeration Description

EfiPciHostBridgeBeginEnum
eration

Resets the host bridge PCI apertures and internal data structures.
The PCI enumerator should issue this notification before starting a
fresh enumeration process. Enumeration cannot be restarted after
sending any other notification such as

EfiPciHostBridgeBeginBusAllocation.

EfiPciHostBridgeBeginBusA
llocation

The bus allocation phase is about to begin. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EfiPciHostBridgeEndBusAll
ocation

The bus allocation and bus programming phase is complete. No
specific action is required here. This notification can be used to
perform any chipset-specific programming.

EfiPciHostBridgeBeginReso
urceAllocation

The resource allocation phase is about to begin. No specific
action is required here. This notification can be used to perform
any chipset-specific programming.

EfiPciHostBridgeAllocateR
esources

Allocates resources per previously submitted requests for all the
PCI root bridges. These resource settings are returned on the

next call to GetProposedResources(). Before calling

NotifyPhase() with a Phase of

EfiPciHostBridgeAllocateResource, the PCI

bus enumerator is responsible for gathering I/O and memory
requests for all the PCI root bridges and submitting these requests

using SubmitResources(). This function pads the

resource amount to suit the root bridge hardware, takes care of
dependencies between the PCI root bridges, and calls the Global
Coherency Domain (GCD) with the allocation request. In the case
of padding, the allocated range could be bigger than what was
requested.
Note that the size of the allocated range could be smaller than
what was requested. This scenario could happen due to an
allocation failure, a host bridge hardware limitation, or any other
reason. In that case, the call will return an

EFI_OUT_OF_RESOURCES error. If the allocated windows

are smaller than what was requested, the PCI bus enumerator
may not be able to fit all the devices within the range. The PCI bus

driver can call GetProposedResouces() to find out

which of the resource types were partially allocated and the
difference between the amount that was requested and the
amount that was allocated. The PCI bus enumerator should
readjust the requested sizes (by dropping certain PCI devices or
PCI buses) to obtain a best fit. The PCI bus driver can call

NotifyPhase (EfiPciHostBridgeFreeResour
ces) to free up the original assignments and resubmit the

adjusted resource requests with SubmitResources().

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 173

Status Codes Returned

EFI_SUCCESS The notification was accepted without any errors.

EFI_INVALID_PARAMETER The Phase is invalid.

EFI_NOT_READY This phase cannot be entered at this time. For example, this error

is valid for a Phase of

EfiPciHostBridgeAllocateResources if

SubmitResources() has not been called for one or more

PCI root bridges before this call.

EFI_DEVICE_ERROR Programming failed due to a hardware error. This error is valid for

a Phase of EfiPciHostBridgeSetResources.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
This error is valid for a Phase of
EfiPciHostBridgeAllocateResources if the previously
submitted resource requests cannot be fulfilled or were only
partially fulfilled.

EfiPciHostBridgeSetResour
ces

Programs the host bridge hardware to decode previously
allocated resources (proposed resources) for all the PCI root
bridges. After the hardware is programmed, reassigning
resources will not be supported. The bus settings are not affected.

EfiPciHostBridgeFreeResou
rces

Deallocates resources that were previously allocated for all the
PCI root bridges and resets the I/O and memory apertures to their
initial state. The bus settings are not affected. If the request to
allocate resources fails, the PCI enumerator can use this
notification to deallocate previous resources, adjust the requests,
and retry allocation.

EfiPciHostBridgeEndResour
ceAllocation

The resource allocation phase is completed. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

EfiPciHostBridgeEndBusEnu
meration

The bus enumeration phase is completed. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.

Enumeration Description

PCI Host Bridge Platform Initialization Spec, Vol. 5

174 May 2017 Version 1.6

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
NextRootBridge()

Summary
Returns the device handle of the next PCI root bridge that is associated with this host bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_NEXT_ROOT_
BRIDGE) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN OUT EFI_HANDLE *RootBridgeHandle
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

Returns the device handle of the next PCI root bridge. On input, it holds the
RootBridgeHandle that was returned by the most recent call to
GetNextRootBridge(). If RootBridgeHandle is NULL on input, the handle
for the first PCI root bridge is returned. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Description
This function is called multiple times to retrieve the device handles of all the PCI root bridges that
are associated with this PCI host bridge. Each PCI host bridge is associated with one or more PCI
root bridges. On each call, the handle that was returned by the previous call is passed into the
interface, and on output the interface returns the device handle of the next PCI root bridge. The caller
can use the handle to obtain the instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL for
that root bridge. When there are no more PCI root bridges to report, the interface returns
EFI_NOT_FOUND. A PCI enumerator must enumerate the PCI root bridges in the order that they
are returned by this function.

The search is initiated by passing in a NULL device handle as input. Some of the member functions
of the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL operate on a PCI root
bridge and expect the RootBridgeHandle as an input.

There is no requirement that this function return the root bridges in any specific relation with the EFI
device paths of the root bridges.

This function can also be used to determine the number of PCI root bridges that were produced by
this PCI host bridge. The host bridge hardware may provide mechanisms to change the number of

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 175

root bridges that it produces, but such changes must be completed before the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed.

Status Codes Returned

EFI_SUCCESS The requested attribute information was returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not an EFI_HANDLE that was returned
on a previous call to GetNextRootBridge().

EFI_NOT_FOUND There are no more PCI root bridge device handles.

PCI Host Bridge Platform Initialization Spec, Vol. 5

176 May 2017 Version 1.6

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
AllocAttributes()

Summary
Returns the allocation attributes of a PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_GET_ATTRIBUTES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT UINT64 *Attributes
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The device handle of the PCI root bridge in which the caller is interested. Type
EFI_HANDLE is defined in InstallProtocolInterface() in the UEFI 2.1
Specification.

Attributes

The pointer to attributes of the PCI root bridge. The permitted attribute values are
defined in "Related Definitions" below.

Description
The function returns the allocation attributes of a specific PCI root bridge. The attributes can vary
from one PCI root bridge to another. These attributes are different from the decode-related attributes
that are returned by the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
member function. The RootBridgeHandle parameter is used to specify the instance of the PCI
root bridge. The device handles of all the root bridges that are associated with this host bridge must
be obtained by calling GetNextRootBridge(). The attributes are static in the sense that they do
not change during or after the enumeration process. The hardware may provide mechanisms to
change the attributes on the fly, but such changes must be completed before
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL is installed. The permitted
values of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES are defined in
"Related Definitions" below. The caller uses these attributes to combine multiple resource requests.
For example, if the flag EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM is set, the PCI bus
enumerator needs to include requests for the prefetchable memory in the nonprefetchable memory
pool and not request any prefetchable memory.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 177

Related Definitions
//***
// EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES
//***

#define EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM 1
#define EFI_PCI_HOST_BRIDGE_MEM64_DECODE 2

Following is a description of the fields in the above definition:

Table 13. EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_ATTRIBUTES field
descriptions

EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM If this bit is set, then the PCI root bridge does not
support separate windows for nonprefetchable and
prefetchable memory. A PCI bus driver needs to
include requests for prefetchable memory in the
nonprefetchable memory pool.

EFI_PCI_HOST_BRIDGE_MEM64_DECODE If this bit is set, then the PCI root bridge supports 64-
bit memory windows. If this bit is not set, the PCI bus
driver needs to include requests for a 64-bit memory
address in the corresponding 32-bit memory pool.

Status Codes Returned

EFI_SUCCESS The requested attribute information was returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Attributes is NULL.

PCI Host Bridge Platform Initialization Spec, Vol. 5

178 May 2017 Version 1.6

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Star
tBusEnumeration()

Summary
Sets up the specified PCI root bridge for the bus enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_START_BUS_ENUMERAT
ION) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge to be set up. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

Pointer to the pointer to the PCI bus resource descriptor.

Description
This member function sets up the root bridge for bus enumeration and returns the PCI bus range over
which the search should be performed in ACPI (2.0 & 3.0) resource descriptor format. The
following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
StartBusEnumeration().

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 179

Table 14. ACPI 2.0 & 3.0 Resource Descriptor Field Values for StartBusEnumeration()

Field Setting

Address Range Minimum Set to the lowest bus number to be scanned.

Address Range Length Set to the number of PCI buses that may be scanned. The highest bus number is
computed by adding the length to the lowest bus number and subtracting 1.

Address Range Maximum Ignored.

All other fields Ignored.

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

This function cannot return resource descriptors for anything other than bus resources. This function
can be used to prevent a PCI bus driver from scanning certain PCI buses to work around a chipset
limitation. Because the size of ACPI resource descriptors is not fixed,
StartBusEnumeration() is responsible for allocating memory for the buffer
Configuration.

The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle
RootBridgeHandle.

Status Codes Returned

EFI_SUCCESS The PCI root bridge was set up and the bus range was returned in
Configuration.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

PCI Host Bridge Platform Initialization Spec, Vol. 5

180 May 2017 Version 1.6

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Set
BusNumbers()

Summary
Programs the PCI root bridge hardware so that it decodes the specified PCI bus range.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SET_BUS_NUMBERS) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN VOID *Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge whose bus range is to be programmed. Type EFI_HANDLE is
defined in InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

The pointer to the PCI bus resource descriptor.

Description
This member function programs the specified PCI root bridge to decode the bus range that is
specified by the input parameter Configuration.

The bus range information is specified in terms of the ACPI (2.0 & 3.0) resource descriptor format.
The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
SetBusNumbers().

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 181

Table 15. ACPI 2.0 & 3.0 Resource Descriptor Field Values for SetBusNumbers()

Field Setting

Address Range Minimum Set to the lowest bus number to be decoded.

Address Range Length Set to the number of PCI buses that should be decoded. The highest bus number is
computed by adding the length to the lowest bus number and subtracting 1.

Address Range Maximum Ignored.

All other fields Ignored.

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

This call will return EFI_INVALID_PARAMETER without programming the hardware if either of
the following are specified:

• Any descriptors other than bus type descriptors

• Any invalid descriptors

The bus range is typically a subset of what was returned during StartBusEnumeration(). If
SetBusNumbers() is called with incorrect (but valid) parameters, it may cause system failure.

The PCI segment is implicit and is identified by the SegmentNumber field in the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the PCI root bridge handle
RootBridgeHandle. This call cannot alter the following:

• The SegmentNumber field in the corresponding instances of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

• The segment number settings in the hardware

The caller is responsible for allocating and deallocating a buffer to hold Configuration. If the
call returns EFI_DEVICE_ERROR, the PCI bus enumerator can optionally attempt another bus
setting.

PCI Host Bridge Platform Initialization Spec, Vol. 5

182 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The bus range for the PCI root bridge was programmed.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Configuration is NULL.

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)
resource descriptor.

EFI_INVALID_PARAMETER Configuration does not include a valid ACPI 2.0 bus resource
descriptor.

EFI_INVALID_PARAMETER Configuration includes valid ACPI (2.0 & 3.0) resource
descriptors other than bus descriptors.

EFI_INVALID_PARAMETER Configuration contains one or more invalid ACPI resource
descriptors.

EFI_INVALID_PARAMETER "Address Range Minimum" is invalid for this root bridge.

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this root bridge.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 183

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Sub
mitResources()

Summary
Submits the I/O and memory resource requirements for the specified PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_SUBMIT_RESOURCES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN VOID *Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge whose I/O and memory resource requirements are being
submitted. Type EFI_HANDLE is defined in InstallProtocolInterface()
in the UEFI 2.1 Specification.

Configuration

The pointer to the PCI I/O and PCI memory resource descriptor.

Description
This function is used to submit all the I/O and memory resources that are required by the specified
PCI root bridge. The input parameter Configuration is used to specify the following:

• The various types of resources that are required

• The associated lengths in terms of ACPI (2.0 & 3.0) resource descriptor format

The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
SubmitResources().

PCI Host Bridge Platform Initialization Spec, Vol. 5

184 May 2017 Version 1.6

Table 16. ACPI 2.0& 3.0 Resource Descriptor Field Values for SubmitResources()

Field Setting

Address Range Length Set to the size of the aperture that is requested.

Address Space Granularity Used to differentiate between a 32-bit memory request and a 64-bit memory
request. For a 32-bit memory request, this field should be set to 32. For a 64-bit
memory request, this field should be set to 64. All other values result in this
function returning the error code of EFI_INVALID_PARAMETER.

Address Range Maximum Used to specify the alignment requirement. If "Address Range Maximum" is of the

form 2n-1, this member function returns the error code
EFI_INVALID_PARAMETER. The address base must be a multiple of the
granularity field. That is, if this field is 4 KiB-1, the allocated address must be a
multiple of 4 KiB.

Address Range Minimum Ignored.

Address Translation Offset Ignored.

All other fields Ignored.

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

The caller must ask for appropriate alignment using the "Address Range Maximum" field. The caller
is responsible for allocating and deallocating a buffer to hold Configuration.

It is considered an error if no resource requests are submitted for a PCI root bridge. If a PCI root
bridge does not require any resources, a zero-length resource request must explicitly be submitted.

If the Configuration includes one or more invalid resource descriptors, all the resource
descriptors are ignored and the function returns EFI_INVALID_PARAMETER.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 185

Status Codes Returned

EFI_SUCCESS The I/O and memory resource requests for a PCI root bridge were
accepted.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Configuration is NULL.

EFI_INVALID_PARAMETER Configuration does not point to a valid ACPI (2.0 & 3.0)

resource descriptor.

EFI_INVALID_PARAMETER Configuration includes requests for one or more resource
types that are not supported by this PCI root bridge. This error will
happen if the caller did not combine resources according to
Attributes that were returned by

GetAllocAttributes().

EFI_INVALID_PARAMETER "Address Range Maximum" is invalid.

EFI_INVALID_PARAMETER "Address Range Length" is invalid for this PCI root bridge.

EFI_INVALID_PARAMETER "Address Space Granularity" is invalid for this PCI root bridge.

PCI Host Bridge Platform Initialization Spec, Vol. 5

186 May 2017 Version 1.6

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get
ProposedResources()

Summary
Returns the proposed resource settings for the specified PCI root bridge.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_GET_PROPOSED_RESOUR
CES) (
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
instance.

RootBridgeHandle

The PCI root bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Configuration

The pointer to the pointer to the PCI I/O and memory resource descriptor.

Description
This member function returns the proposed resource settings for the specified PCI root bridge. The
proposed resource settings are prepared when NotifyPhase() is called with a Phase of
EfiPciHostBridgeAllocateResources. The output parameter Configuration
specifies the following:

• The various types of resources, excluding bus resources, that are allocated

• The associated lengths in terms of ACPI (2.0 & 3.0) resource descriptor format

The following table lists the fields in the ACPI (2.0 & 3.0) resource descriptor that are set for
GetProposedResources().

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 187

Table 17. ACPI 2.0 & 3.0 GetProposedResources() Resource Descriptor Field Values

Field Setting

Address Range Length Set to the size of the aperture that is requested.

Address Space Granularity Ignored.

Address Range Minimum Indicates the starting address of the allocated ranges.

Address Translation Offset Indicates the allocation status. Allocation status is defined in "Related Definitions"
below.

Address Range Maximum Ignored.

All other fields Ignored.

Note: See the "Description" section of the PCI Host Bridge Resource Allocation Protocol definition for a
description of these ACPI resource descriptor fields.

The callee is responsible for allocating a buffer to hold Configuration because the caller does
not know the number of descriptors that are required. The caller is also responsible for deallocating
the buffer.

If NotifyPhase() is called with a Phase of EfiPciHostBridgeAllocateResources
and returns EFI_OUT_OF_RESOURCES, the PCI bus enumerator may use
GetProposedResources() to retrieve the proposed settings. The
EFI_OUT_OF_RESOURCES error status indicates that one or more requests could not be fulfilled
or were partially fulfilled. Additional details of the allocation status for each type of resource can be
retrieved from the "Address Translation Offset" field in the resource descriptor that was returned by
this function; also see "Related Definitions" below for defined allocation status values. This error
could happen for the following reasons:

• Allocation failure

• A limitation in the host bridge hardware

• Any other reason

If the allocated windows are smaller than what was requested, the PCI bus enumerator may not be
able to fit all the devices within the range. In that case, the PCI bus enumerator may choose to
readjust the requested sizes (by dropping certain devices or PCI buses) to obtain a best fit. The PCI
bus driver calls NotifyPhase() with a Phase of EfiPciHostBridgeFreeResources to
free the original assignments.

If this member function is able to only partially fulfill the requests for one or more resource types,
the root bridges that are first in the list will get resources first. The ordering of the root bridges is
determined by the output of GetNextRootBridge(). The handle to the first root bridge is
obtained by calling GetNextRootBridge() with an input handle of NULL.

In the case of I/O resources, the PCI bus enumerator must check the _RNG flag. If this flag is set, the
I/O ranges that are allocated to the devices must come from the non-ISA I/O subset.

For example, if this flag is set, the "Address Range Minimum" is 0x1000, and the "Address Range
Length" is 0x1000, then the following I/O ranges can be allocated to PCI devices:

• 0x1000–0x10FF

• 0x1400–0x14FF

PCI Host Bridge Platform Initialization Spec, Vol. 5

188 May 2017 Version 1.6

• 0x1800–0x18FF

• 0x1C00–0x1CFF

This call is made before NotifyPhase() is called with a Phase of
EfiPciHostBridgeSetResources. After that time, the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration() member function should be
used to obtain the resources that were consumed by a particular PCI root bridge.

Related Definitions
//

// EFI_RESOURCE_ALLOCATION_STATUS
//

typedef UINT64 EFI_RESOURCE_ALLOCATION_STATUS;

#define EFI_RESOURCE_SATISFIED 0
#define EFI_RESOURCE_NOT_SATISFIED (UINT64) -1

Following is a description of the fields in the above definition. All other values indicate that the
request of this resource type could be partially fulfilled. The exact value indicates how much more
space is still required to fulfill the requirement.

Table 18.

EFI_RESOURCE_SATISFIED The request of this resource type could be fulfilled.

EFI_RESOURCE_NOT_SATISFIED The request of this resource type could not be fulfilled for its absence
in the host bridge resource pool.

EFI_RESOURCE_ALLOCATION_STATUS field descriptions

Status Codes Returned

EFI_SUCCESS The requested parameters were returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_DEVICE_ERROR Programming failed due to a hardware error.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 189

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Pre
processController()

Summary
Provides the hooks from the PCI bus driver to every PCI controller (device/function) at various
stages of the PCI enumeration process that allow the host bridge driver to preinitialize individual
PCI controllers before enumeration.

Prototype
typedef
EFI_STATUS
(EFIAPI *
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL_PREPROCESS_CONT
ROLLER)(
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *This,
 IN EFI_HANDLE RootBridgeHandle,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
 IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
);

Parameters
This

Pointer to the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.

RootBridgeHandle

The associated PCI root bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

PciAddress

The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL member functions to access the PCI
configuration space of the device. See UEFI 2.1 Specification for the definition of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.

Phase

The phase of the PCI device enumeration. Type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in
"Related Definitions" below.

Description
This function is called during the PCI enumeration process. No specific action is expected from this
member function. It allows the host bridge driver to preinitialize individual PCI controllers before
enumeration.

The parameter RootBridgeHandle can be used to locate the instance of the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL that is installed on the root bridge that is the parent of

PCI Host Bridge Platform Initialization Spec, Vol. 5

190 May 2017 Version 1.6

the specific PCI function. The parameter PciAddress can be passed to the Pci.Read() and
Pci.Write() functions of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL instance to access
the PCI configuration space of the specific PCI function.

This member function is invoked during PCI enumeration and before the PCI enumerator has
created a handle for the PCI function. As a result, the EFI_PCI_IO_PROTOCOL cannot be used at
this point.

Two notification points are defined at this time. See type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE in "Related Definitions" below
for definitions of these notification points and ISA Aliasing Considerations for usage. More
synchronization points may be added as required in the future.

Related Definitions
//***
// EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE
//***
typedef enum {
 EfiPciBeforeChildBusEnumeration,
 EfiPciBeforeResourceCollection
} EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE;

Following is a description of the fields in the above enumeration:

Platform Initialization Spec, Vol. 5 PCI Host Bridge

Version 1.6 May 2017 191

Table 19.

EfiPciBeforeChildBusEnumeration This notification is applicable only to PCI-to-PCI bridges and
indicates that the PCI enumerator is about to begin enumerating the
bus behind the PCI-to-PCI bridge. This notification is sent after the
primary bus number, the secondary bus number, and the
subordinate bus number registers in the PCI-to-PCI bridge are
programmed to valid (but not necessary final) values. Programming
of the bus number register allows the chipset code to scan devices
on the bus that are immediately behind the PCI-to-PCI bridge. This
notification can be used to reset the secondary PCI bus. Some PCI-
to-PCI bridges can drive their secondary bus at various clock speeds
(33 MHz or 66 MHz, for example) and support PCI-X* or
conventional PCI mode. These bridges must be set up to operate at
the correct speed and correct mode before the downstream devices
and buses are enumerated. This notification can be used to perform
that activity. The host bridge code cannot reprogram the bus
numbers in the PCI-to-PCI bridge or reprogram any upstream
devices during this notification. It can touch the downstream devices
because the PCI enumerator has not found these devices. If there
are multiple PCI-to-PCI bridges on the same PCI bus, the order in
which the notification is sent to these bridges is implementation
specific. On the other hand, it is guaranteed that a PCI-to-PCI bridge
will see this notification before the downstream bridge receives this
notification or its child devices receive the
EfiPciBeforeResourceCollection notification.

EfiPciBeforeResourceCollection This notification is sent before the PCI enumerator probes the Base
Address Register (BAR) registers for every valid PCI function. This
notification can be used to program the backside registers that
determine the BAR size or any other programming such as the
master latency timer, cache line size, and PERR and SERR control.
This notification is sent regardless of whether the function
implements BAR or not. In the case of a multifunction device, this
notification is sent for every function of the device. The order within
the functions is not specified. The order in which this notification is
sent to various devices/functions on the same bus is implementation
specific.

EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE field descriptions

Status Codes Returned

EFI_SUCCESS The requested parameters were returned.

EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.

EFI_INVALID_PARAMETER Phase is not a valid phase that is defined in

EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_
PHASE.

EFI_DEVICE_ERROR Programming failed due to a hardware error. The PCI enumerator
should not enumerate this device, including its child devices if it is
a PCI-to-PCI bridge.

PCI Host Bridge Platform Initialization Spec, Vol. 5

192 May 2017 Version 1.6

10.9 End of PCI Enumeration Overview
This specification defines the indicia to inform the platform when the PCI enumeration process has
completed. This allows for some post enumeration finalization actions to occur, if necessary.

10.9.1 End of PCI Enumeration Protocol
The indicia for this finalization action is a protocol. The obligation of the platform that supports this
capability is as follows. Once PCI enumeration is complete, the
EFI_PCI_ENUMERATION_PROTOCOL shall be installed on the same handle as the host bridge
protocol.

This protocol is always installed with a NULL pointer.

GUID
#define EFI_PCI_ENUMERATION_COMPLETE_GUID \
 { \
 0x30cfe3e7, 0x3de1, 0x4586,
 { 0xbe, 0x20, 0xde, 0xab, 0xa1, 0xb3, 0xb7, 0x93 } \
 }

The protocol can be used as an indicia by other DXE agents that the process of PCI device
enumeration has been completed.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 193

11 PCI Platform

11.1 Introduction
This section contains the basic definitions of protocols that provide PCI platform support. The
following protocols are defined in this section:

EFI_PCI_PLATFORM_PROTOCOL
EFI_PCI_OVERRIDE_PROTOCOL
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

EFI_PCI EXECUTION_PHASE
EFI_PCI_PLATFORM_POLICY

11.2 PCI Platform Overview
This section defines the core code and services that are required for an implementation of the
following protocols in this specification:

• PCI Platform Protocol

• PCI Override Protocol

• Incompatible PCI Device Support Protocol

The PCI Platform Protocol allows a PCI bus driver to obtain the platform policy and call a platform
driver at various points in the enumeration phase. The Incompatible PCI Device Support Protocol
allows a PCI bus driver to handle resource allocation for some PCI devices that do not comply with
the PCI Specification.

This specification does the following:

• Describes the basic components of the PCI Platform Protocol

• Describes the basic components of the Incompatible PCI Device Support Protocol and how
firmware configures incompatible PCI devices

• Provides code definitions for the PCI Platform Protocol, the Incompatible PCI Device Support
Protocol, and their related type definitions that are architecturally required by this specification.

This document is intended for the following readers:

• BIOS developers, either those who create general-purpose BIOS and other firmware products or
those who modify these products for use in IntelÆ architecture-based products.

• Operating system developers who will be adapting their shrink-wrapped operating system
products to run on Intel architecture-based platforms.

Readers of this specification are assumed to have solid knowledge of the UEFI 2.1 Specification.

PCI Platform Platform Initialization Spec, Vol. 5

194 May 2017 Version 1.6

11.3 PCI Platform Support Related Information
The following publications and sources of information may be useful to you or are referred to by this
specification.

11.3.1 Industry Specifications
• Advanced Configuration and Power Interface Specification (hereafter referred to as the ACPI

Specification), version 3.0.

11.3.2 PCI Specifications
• Conventional PCI Specification, version 3.0: http://www.pcisig.com*

• PCI-to-PCI Bridge Architecture Specification, revision 1.2: http://www.pcisig.com*

• PCI-to-PCI Bridges and CardBus Controllers on Windows 2000, Windows XP, and Windows
Server 2003:
http://www.microsoft.com/whdc/system/bus/PCI/pcibridge-cardbus.mspx*

11.4 PCI Platform Protocol

11.4.1 PCI Platform Protocol Overview
“PCI Host Bridge Resource Allocation Protocol”, Section 10.8.2 defines and describes the PCI Host
Bridge Resource Allocation Protocol. The PCI Host Bridge Resource Allocation Protocol driver
provides chipset-specific functionality that works across processor architectures and unique platform
features. It does not address issues where an implementation varies across platforms.

In contrast, the PCI Override Protocol and PCI Platform Protocol provide interfaces allow a platform
driver or codebase driver to perform platform-specific actions. For example:

• Allow a PCI bus driver to obtain platform policy. The platform can use this protocol to control
whether the PCI bus driver reserves I/O ranges for ISA aliases and VGA aliases. The default
policy for the PCI bus driver is to reserve I/O ranges for both ISA aliases and VGA aliases,
which may result in a large amount of I/O space being unavailable for PCI devices. This
protocol allows the platform driver to change this policy.

• Call a platform driver at various points in the enumeration phase. The platform driver can use
these hooks to perform various platform-specific activities. Examples of such activities include
but are not limited to the following:

• PlatformPrepController() can be used to program the PCI subsystem vendor ID and
device ID into onboard and chipset devices.

• PlatformPrepController() and PlatformNotify() can be used for implementing
hardware workarounds.

• PlatformPrepController() can be used for preprogramming any backside registers that
control the Base Address Register (BAR) window sizes.

• PlatformPrepController() can be used to set PCI or PCI-X* bus speeds for PCI
bridges that support multiple bus speeds.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 195

• Allow PCI option ROMs to be stored in local storage. The platform can store PCI option ROMs
in local storage (e.g., a firmware volume) and report their existence to the PCI bus driver using
the GetPciRom() member function. Option ROMs for embedded PCI controllers are often
stored in a platform-specific location. The same member function can be used to override the
default PCI ROM on an add-in card with one from platform-specific storage.

A platform should implement this protocol if any of the functionality that is listed above is required.

See Code Definitions for the definition of EFI_PCI_PLATFORM_PROTOCOL and the member
functions listed above. See Section 10.8.2 for additional PCI-related design discussion.

11.5 Incompatible PCI Device Support Protocol

11.5.1 Incompatible PCI Device Support Protocol Overview
Some PCI devices do not fully comply with the PCI Specification. For example, a PCI device may
request that its I/O Base Address Register (BAR) be placed on a 0x200 boundary even though it is
requesting an I/O with a length of 0x100. The Incompatible PCI Device Support Protocol allows a
PCI bus driver to handle resource allocation for some PCI devices that do not comply with the PCI
Specification.

In the PI Architecture, the platform-specific PCI host bridge driver works with the generic, standard
PCI bus driver to configure the entire PCI subsystem. Even though the exact configuration is up to
individual incompatible devices, it is a platform choice to support those incompatible PCI devices.
For example, one platform may not want to support those incompatible devices while another
platform appears more tolerant of those devices.

See Code Definitions for the definition of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.

11.5.2 Usage Model for the Incompatible PCI Device Support Protocol
The following describes the usage model for the Incompatible PCI Device Support Protocol:

1. The PCI bus driver locates EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. If
the PCI bus driver cannot find this protocol, simply follow the regular PCI enumeration path.
Otherwise, go to step 2.

2. For each PCI device that was detected, the PCI bus driver begins collecting the required PCI
resources by probing the Base Address Register (BAR) for each device.

3. For each device, call
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevice() to check
whether this PCI device is an incompatible device. If this device in not an incompatible device,
go to step 5.

4. Use the Configuration that is returned by CheckDevice() to override or modify the
original PCI resource requirements.

5. Follow the normal PCI enumeration process.

PCI Platform Platform Initialization Spec, Vol. 5

196 May 2017 Version 1.6

11.6 PCI Code Definitions
This section contains the basic definitions of protocols that provide PCI platform support. The
following protocols are defined in this section:

• EFI_PCI_PLATFORM_PROTOCOL

• EFI_PCI_OVERRIDE_PROTOCOL

• EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent function definition:

• EFI_PCI_CHIPSET_EXECUTION_PHASE

• EFI_PCI_PLATFORM_POLICY

11.6.1 PCI Platform Protocol

EFI_PCI_PLATFORM_PROTOCOL

Summary
This protocol provides the interface between the PCI bus driver/PCI Host Bridge Resource
Allocation driver and a platform-specific driver to describe the unique features of a platform. This
protocol is optional.

GUID
#define EFI_PCI_PLATFORM_PROTOCOL_GUID \
 { 0x7d75280, 0x27d4, 0x4d69, 0x90, 0xd0, 0x56, 0x43, 0xe2, \
 0x38, 0xb3, 0x41)

Protocol Interface Structure
typedef struct _EFI_PCI_PLATFORM_PROTOCOL {
 EFI_PCI_PLATFORM_PHASE_NOTIFY PlatformNotify;
 EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER PlatformPrepController;
 EFI_PCI_PLATFORM_GET_PLATFORM_POLICY GetPlatformPolicy;
 EFI_PCI_PLATFORM_GET_PCI_ROM GetPciRom;
} EFI_PCI_PLATFORM_PROTOCOL;

Parameters
PlatformNotify

The notification from the PCI bus enumerator to the platform that it is about to enter a
certain phase during the enumeration process. See the PlatformNotify()
function description.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 197

PlatformPrepController

The notification from the PCI bus enumerator to the platform for each PCI controller
at several predefined points during PCI controller initialization. See the
PlatformPrepController() function description.

GetPlatformPolicy

Retrieves the platform policy regarding enumeration. See the
GetPlatformPolicy() function description.

GetPciRom

Gets the PCI device’s option ROM from a platform-specific location. See the
GetPciRom() function description.

Description
The EFI_PCI_PLATFORM_PROTOCOL is published by a platform-aware driver. This protocol is
optional; see PCI Platform Protocol Overview in Design Discussion for scenarios in which this

protocol is required. There cannot be more than one instance of this protocol in the system.

If the PCI bus driver detects the presence of this protocol before enumeration, it will use the PCI
Platform Protocol to obtain information about the platform policy. The PCI bus driver will use this
protocol to get the PCI device's option ROM from a platform-specific location in storage. It will also
call the various member functions of this protocol at predefined points during PCI bus enumeration.
The member functions can be used for performing any platform-specific initialization that is
appropriate during the particular phase.

PCI Platform Platform Initialization Spec, Vol. 5

198 May 2017 Version 1.6

EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PHASE_NOTIFY) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI_EXECUTION_PHASE ExecPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

HostBridge

The handle of the host bridge controller. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

Phase

The phase of the PCI bus enumeration. Type
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPh
ase().

ExecPhase

Defines the execution phase of the PCI chipset driver. Type EFI_PCI_
EXECUTION_PHASE is defined in "Related Definitions" below.

Description
The PlatformNotify() function can be used to notify the platform driver so that it can
perform platform-specific actions. No specific actions are required.

Several notification points are defined at this time. More notification points may be added as
required in the future. The function should return EFI_UNSUPPORTED for any value of Phase that
that the function does not support.

The PCI bus driver calls this function twice for every Phase-once before the PCI Host Bridge
Resource Allocation Protocol driver is notified, and once after the PCI Host Bridge Resource
Allocation Protocol driver has been notified.

This member function may not perform any error checking on the input parameters. If this member
function detects any error condition, it needs to handle those errors on its own because there is no
way to surface any errors to the caller.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 199

Related Definitions
//**
// EFI_PCI_EXECUTION_PHASE
//**
typedef enum {
 BeforePciHostBridge = 0,
 ChipsetEntry = 0,
 AfterPciHostBridge = 1,
 ChipsetExit = 1,
 MaximumExecutionPhase
} EFI_PCI_EXECUTION_PHASE;

typedef EFI_PCI_EXECUTION_PHASE EFI_PCI_CHIPSET_EXECUTION_PHASE;

Note: EFI_PCI_EXECUTION_PHASE is used to call a platform protocol and execute platform-specific
code. Following is a description of the fields in the above enumeration.

BeforePciHostBridge

The phase that indicates the entry point to the PCI Bus Notify phase. This platform
hook is called before the PCI bus driver calls the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL driver.

AfterPciHostBridge

The phase that indicates the exit point to the PCI Bus Notify phase before returning to
the PCI Bus Driver Notify phase. This platform hook is called after the PCI bus driver
calls the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
driver.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_UNSUPPORTED The function does not support the phase specified by Phase.

PCI Platform Platform Initialization Spec, Vol. 5

200 May 2017 Version 1.6

EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()

Summary
The platform driver receives notifications from the PCI bus enumerator at various phases during PCI
controller initialization, just like the PCI host bridge driver.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_PREPROCESS_CONTROLLER) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE HostBridge,
 IN EFI_HANDLE RootBridge,
 IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS PciAddress,
 IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase,
 IN EFI_PCI_EXECUTION_PHASE ExecPhase
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

HostBridge

The associated PCI host bridge handle. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

RootBridge

The associated PCI root bridge handle.

PciAddress

The address of the PCI device on the PCI bus. This address can be passed to the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL functions to access the PCI
configuration space of the device. See the UEFI 2.1 Specification for the definition of
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS.

Phase

The phase of the PCI controller enumeration. Type
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE is defined in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Preproce
ssController().

ExecPhase

Defines the execution phase of the PCI chipset driver. Type
EFI_PCI_CHIPSET_EXECUTION_PHASE is defined in
EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify().

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 201

Description
The PlatformPrepController() function can be used to notify the platform driver so that it
can perform platform-specific actions. No specific actions are required.

Several notification points are defined at this time. More synchronization points may be added as
required in the future. The function should return EFI_UNSUPPORTED for any value of Phase that
that the function does not support.

The PCI bus driver calls the platform driver twice for every PCI controller—once before the PCI
Host Bridge Resource Allocation Protocol driver is notified, and once after the PCI Host Bridge
Resource Allocation Protocol driver has been notified.

This member function may not perform any error checking on the input parameters. It also does not
return any error codes. If this member function detects any error condition, it needs to handle those
errors on its own because there is no way to surface any errors to the caller.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

PCI Platform Platform Initialization Spec, Vol. 5

202 May 2017 Version 1.6

EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()

Summary
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve platform policies regarding PCI enumeration.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PLATFORM_POLICY) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 OUT EFI_PCI_PLATFORM_POLICY *PciPolicy,
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

PciPolicy

The platform policy with respect to VGA and ISA aliasing. Type
EFI_PCI_PLATFORM_POLICY is defined in "Related Definitions" below.

Description
The GetPlatformPolicy() function retrieves the platform policy regarding PCI enumeration.
The PCI bus driver and the PCI Host Bridge Resource Allocation Protocol driver can call this
member function to retrieve the policy.

The EFI_PCI_IO_PROTOCOL.Attributes() function allows a PCI device driver to ask for
various legacy ranges. Because PCI device drivers run after PCI enumeration, a request for legacy
allocation comes in after PCI enumeration. The only practical way to guarantee that such a request
from a PCI device driver will be fulfilled is to preallocate these ranges during enumeration. The PCI
bus enumerator does not know which legacy ranges may be requested and therefore must rely on
GetPlatformPolicy(). The data that is returned by GetPlatformPolicy() determines
the supported attributes that are returned by the EFI_PCI_IO_PROTOCOL.Attributes()
function.

See "Related Definitions" below for a description of the output parameter PciPolicy. For
example, the platform can decide if it wishes to support devices that require ISA aliases using this
parameter. Note that the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes()
function returns the attributes that the root bridge hardware supports and does not depend upon
preallocations.

Related Definitions
typedef UINT32 EFI_PCI_PLATFORM_POLICY;

EFI_PCI_PLATYFORM_POLICY is a bitmask with the following legal combinations.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 203

#define EFI_RESERVE_NONE_IO_ALIAS 0x0000
#define EFI_RESERVE_ISA_IO_ALIAS 0x0001
#define EFI_RESERVE_ISA_IO_NO_ALIAS 0x0002
#define EFI_RESERVE_VGA_IO_ALIAS 0x0004
#define EFI_RESERVE_VGA_IO_NO_ALIAS 0x0008

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_UNSUPPORTED The function is not supported.

EFI_INVALID_PARAMETER PciPolicy is NULL.

PCI Platform Platform Initialization Spec, Vol. 5

204 May 2017 Version 1.6

EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()

Summary
Gets the PCI device's option ROM from a platform-specific location.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PCI_PLATFORM_GET_PCI_ROM) (
 IN CONST EFI_PCI_PLATFORM_PROTOCOL *This,
 IN EFI_HANDLE PciHandle,
 OUT VOID **RomImage,
 OUT UINTN *RomSize
);

Parameters
This

Pointer to the EFI_PCI_PLATFORM_PROTOCOL instance.

PciHandle

The handle of the PCI device. Type EFI_HANDLE is defined in
InstallProtocolInterface() in the UEFI 2.1 Specification.

RomImage

If the call succeeds, the pointer to the pointer to the option ROM image. Otherwise,
this field is undefined. The memory for RomImage is allocated by
EFI_PCI_PLATFORM_PROTOCOL.GetPciRom() using the UEFI Boot Service
AllocatePool(). It is the caller's responsibility to free the memory using the
UEFI Boot Service FreePool(), when the caller is done with the option ROM.

RomSize

If the call succeeds, a pointer to the size of the option ROM size. Otherwise, this field
is undefined.

Description
The GetPciRom() function gets the PCI device's option ROM from a platform-specific location.
The option ROM will be loaded into memory. This member function is used to return an image that
is packaged as a PCI 2.2 option ROM. The image may contain both legacy and UEFI option ROMs.
See the UEFI 2.1 Specification for details. This member function can be used to return option ROM
images for embedded controllers. Option ROMs for embedded controllers are typically stored in
platform-specific storage, and this member function can retrieve it from that storage and return it to
the PCI bus driver. The PCI bus driver will call this member function before scanning the ROM that
is attached to any controller, which allows a platform to specify a ROM image that is different from
the ROM image on a PCI card.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 205

Status Codes Returned

EFI_SUCCESS The option ROM was available for this device and loaded into
memory.

EFI_NOT_FOUND No option ROM was available for this device.

EFI_OUT_OF_RESOURCES No memory was available to load the option ROM.

EFI_DEVICE_ERROR An error occurred in getting the option ROM.

11.6.2 PCI Override Protocol

EFI_PCI_OVERRIDE_PROTOCOL

Summary
This protocol provides the interface between the PCI bus driver/PCI Host Bridge Resource
Allocation driver and an implementation's driver to describe the unique features of a platform. This
protocol is optional.

GUID
#define EFI_PCI_OVERRIDE_GUID \
 { 0xb5b35764, 0x460c, 0x4a06, { 0x99, 0xfc, 0x77, 0xa1, \
 0x7c, 0x1b, 0x5c, 0xeb } }

Protocol Interface Structure
typedef EFI_PCI_PLATFORM_PROTOCOL EFI_PCI_OVERRIDE_PROTOCOL;

Description
The PCI Override Protocol is published by an implementation aware driver. This protocol is
optional. But it must be called, if present, during PCI enumeration. There cannot be more than one
instance of this protocol in the system.

If the PCI bus driver detects the presence of this protocol before bus enumeration, it will use the PCI
Override Protocol to obtain information about the platform policy. If the PCI Platform Protocol does
not exist or returns an error, then this protocol is called.

The PCI bus driver will use this protocol to get the PCI device's option ROM from an
implementation-specific location in storage. If the PCI Platform Protocol does not exist or returns an
error, then this function is called.

It will also call the various member functions of this protocol at predefined points during PCI bus
enumeration. The member functions can be used for performing any implementation-specific
initialization that is appropriate during the particular phase.

PCI Platform Platform Initialization Spec, Vol. 5

206 May 2017 Version 1.6

11.6.3 Incompatible PCI Device Support Protocol

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL

Summary
Allows the PCI bus driver to support resource allocation for some PCI devices that do not comply
with the PCI Specification.

Note: This protocol is optional. Only those platforms that implement this protocol will have the capability
to support incompatible PCI devices. The absence of this protocol can cause the PCI bus driver to
configure these incompatible PCI devices incorrectly. As a result, these devices may not work
properly.

GUID
#define EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL_GUID \
 {0xeb23f55a, 0x7863, 0x4ac2, 0x8d, 0x3d, 0x95, 0x65, 0x35, \
 0xde, 0x3, 0x75}

Protocol Interface Structure
typedef struct _EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL {
 EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE CheckDevice;
} EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL;

Parameters
CheckDevice

Returns a list of ACPI resource descriptors that detail any special resource
configuration requirements if the specified device is a recognized incompatible PCI
device. See the CheckDevice() function description.

Description
The EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL is used by the PCI bus driver
to support resource allocation for some PCI devices that do not comply with the PCI Specification.
This protocol can find some incompatible PCI devices and report their special resource requirements
to the PCI bus driver. The generic PCI bus driver does not have prior knowledge of any incompatible
PCI devices. It interfaces with the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
to find out if a device is incompatible and to obtain the special configuration requirements for a
specific incompatible PCI device.

This protocol is optional, and only one instance of this protocol can be present in the system. If a
platform supports this protocol, this protocol is produced by a Driver Execution Environment (DXE)
driver and must be made available before the Boot Device Selection (BDS) phase. The PCI bus
driver will look for the presence of this protocol before it begins PCI enumeration.

If this protocol exists in a platform, it indicates that the platform has the capability to support those
incompatible PCI devices. However, final support for incompatible PCI devices still depends on the
implementation of the PCI bus driver. The PCI bus driver may fully, partially, or not even support
these incompatible devices.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 207

During PCI bus enumeration, the PCI bus driver will probe the PCI Base Address Registers (BARs)
for each PCI device—regardless of whether the PCI device is incompatible or not—to determine the
resource requirements so that the PCI bus driver can invoke the proper PCI resources for them.
Generally, this resource information includes the following:

• Resource type

• Resource length

• Alignment

However, some incompatible PCI devices may have special requirements. As a result, the length or
the alignment that is derived through BAR probing may not be exactly the same as the actual
resource requirement of the device. For example, there are some devices that request I/O resources at
a length of 0x100 from their I/O BAR, but these incompatible devices will never work correctly if an
odd I/O base address, such as 0x100, 0x300, or 0x500, is assigned to the BAR. Instead, these devices
request an even base address, such as 0x200 or 0x400. The Incompatible PCI Device Support
Protocol can then be used to obtain these special resource requirements for these incompatible PCI
devices. In this way, the PCI bus driver will take special consideration for these devices during PCI
resource allocation to ensure that they can work correctly.

This protocol may support the following incompatible PCI BAR types:

• I/O or memory length that is different from what the BAR reports

• I/O or memory alignment that is different from what the BAR reports

• Fixed I/O or memory base address

See the Conventional PCI Specification 3.0 for the details of how a PCI BAR reports the resource
length and the alignment that it requires.

PCI Platform Platform Initialization Spec, Vol. 5

208 May 2017 Version 1.6

EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevi
ce()

Summary
Returns a list of ACPI resource descriptors that detail the special resource configuration
requirements for an incompatible PCI device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_CHECK_DEVICE) (
 IN EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL *This,
 IN UINTN VendorId,
 IN UINTN DeviceId,
 IN UINTN RevisionId,
 IN UINTN SubsystemVendorId,
 IN UINTN SubsystemDeviceId,
 OUT VOID **Configuration
);

Parameters
This

Pointer to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
instance.

VendorID

A unique ID to identify the manufacturer of the PCI device. See the Conventional PCI
Specification 3.0 for details.

DeviceID

A unique ID to identify the particular PCI device. See the Conventional PCI
Specification 3.0 for details.

RevisionID

A PCI device-specific revision identifier. See the Conventional PCI Specification 3.0
for details.

SubsystemVendorId

Specifies the subsystem vendor ID. See the Conventional PCI Specification 3.0 for
details.

SubsystemDeviceId

Specifies the subsystem device ID. See the Conventional PCI Specification 3.0 for
details.

Configuration

A list of ACPI resource descriptors that detail the configuration requirement. See
Table 20 in the "Description" subsection below for the definition.

Platform Initialization Spec, Vol. 5 PCI Platform

Version 1.6 May 2017 209

Description
The CheckDevice() function returns a list of ACPI resource descriptors that detail the special
resource configuration requirements for an incompatible PCI device.

Prior to bus enumeration, the PCI bus driver will look for the presence of the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. Only one instance of this
protocol can be present in the system. For each PCI device that the PCI bus driver discovers, the PCI
bus driver calls this function with the device’s vendor ID, device ID, revision ID, subsystem vendor
ID, and subsystem device ID. If the VendorId, DeviceId, RevisionId,
SubsystemVendorId, or SubsystemDeviceId value is set to (UINTN)-1, that field will
be ignored. The ID values that are not (UINTN)-1 will be used to identify the current device.

This function will only return EFI_SUCCESS. However, if the device is an incompatible PCI
device, a list of ACPI resource descriptors will be returned in Configuration. Otherwise, NULL
will be returned in Configuration instead. The PCI bus driver does not need to allocate memory
for Configuration. However, it is the PCI bus driver’s responsibility to free it. The PCI bus
driver then can configure this device with the information that is derived from this list of resource
nodes, rather than the result of BAR probing.

Only the following two resource descriptor types from the ACPI Specification may be used to
describe the incompatible PCI device resource requirements:

• QWORD Address Space Descriptor (ACPI 2.0, section 6.4.3.5.1; also ACPI 3.0)

• End Tag (ACPI 2.0, section 6.4.2.8; also ACPI 3.0)

The QWORD Address Space Descriptor can describe memory, I/O, and bus number ranges for
dynamic or fixed resources. The configuration of a PCI root bridge is described with one or more
QWORD Address Space Descriptors, followed by an End Tag. Table 20 and Table 21 below contain
these two descriptor types. See the ACPI Specification for details on the field values.

PCI Platform Platform Initialization Spec, Vol. 5

210 May 2017 Version 1.6

Table 20. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x8A QWORD Address Space Descriptor

0x01 0x02 0x2B Length of this descriptor in bytes, not including the first two fields.

0x03 0x01 Resource type:
 0: Memory range
 1: I/O range
Other values will be ignored.

0x04 0x01 General flags. Ignored.

0x05 0x01 Type-specific flags. Ignored.

0x06 0x08 Address Space Granularity. Ignored if the value is 0. Ignored if the PCI BAR is
I/O. Ignored if the PCI BAR is 32-bt memory.
If PCI BAR is 64-bit memory and this field is 32, then the PCI BAR resource is
allocated below 4GB. If the PCI BAR is 64-bit memory and this field is 64,
then the PCI BAR resource is allocated above 4GB.

0x16 0x08 Address Range Maximum. Used to convey the alignment information. This

value must be 2n-1. If no special alignment is required for the BAR, it must be
0. Then the alignment will set to (length-1), where the length is derived
through the BAR probing.

0x1E 0x08 Address Translation Offset. Used to indicate the BAR Index from 0 to 5.
Specially, (UINT64)-1 in this field means all the PCI BARs on the device.

0x26 0x08 Address Range Length. Length of the requested resource. If the device has
no special length request, it must be 0. Then the length that was obtained
from BAR probing will be applied.

Table 21. ACPI 2.0 & 3.0 End Tag Usage

Byte
Offset

Byte
Length

Data Description

0x00 0x01 0x79 End Tag.

0x01 0x01 0x00 Checksum. Set to 0 to indicate that checksum is to be ignored.

Status Codes Returned

EFI_SUCCESS The function always returns EFI_SUCCESS.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 211

12 Hot Plug PCI

12.1 HOT PLUG PCI Overview
This specification defines the core code and services that are required for an implementation of the
Hot-Plug PCI Initialization Protocol. A PCI bus driver, running in the EFI Boot Services
environment, uses this protocol to initialize the hot-plug subsystem. The same protocol may be used
by other buses such as CardBus that support hot plugging. This specification does the following:

• Describes the basic components of the hot-plug PCI subsystem and the Hot-Plug PCI
Initialization Protocol

• Provides code definitions for the Hot-Plug PCI Initialization Protocol and the hot-plug-PCI–
related type definitions that are architecturally required.

12.2 Hot Plug PCI Initialization Protocol Introduction
This chapter describes the Hot-Plug PCI Initialization Protocol. A PCI bus driver, running in the EFI
Boot Services environment, uses this protocol to initialize the hot-plug subsystem. This protocol is
generic enough to include PCI-to-CardBus bridges and PCI Express* systems. This protocol
abstracts the hot-plug controller initialization and resource padding. This protocol is required on
platforms that support PCI Hot Plug* or PCI Express slots. For the purposes of initialization, a
CardBus PC Card bus is treated in the same way. This protocol is not required on all other platforms.

This protocol is not intended to support hot plugging of PCI cards during the preboot stage. Separate
components can be developed if such support is desired.

See Hot-Plug PCI Initialization Protocol in Code Definitions for the definition of
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.

12.3 Hot Plug PCI Initialization Protocol Related Information
The following resources are referenced throughout this specification or may be useful to you:

• Conventional PCI Specification, revision 3.0: http://www.pcisig.com/*

• PC Card Standard, volumes 1, 7, and 8: http://www.pcmcia.org/*

• PCI Express Base Specification, revision 1.0a: http://www.pcisig.com/*

• PCI Hot-Plug Specification, revision 1.1: http://www.pcisig.com/*

• PCI Standard Hot-Plug Controller and Subsystem Specification, revision 1.0:
http://www.pcisig.com/*

Hot Plug PCI Platform Initialization Spec, Vol. 5

212 May 2017 Version 1.6

12.4 Requirements
PI Architecture firmware must support platforms with PCI Hot Plug* slots and PCI Express* Hot
Plug slots, as well as CardBus PC Card sockets. In both cases, the user is allowed to plug in new
devices or remove existing devices during runtime. PCI Hot Plug slots are controlled by a PCI Hot
Plug controller whereas CardBus sockets are controlled by a PCI-to-CardBus bridge. PCI Express
Hot Plug slots are controlled by a PCI Express root port or a downstream port in a switch. The term
"Hot Plug Controller" (HPC) in this document refers to all of these types of controllers. From the
standpoint of initialization, all three are identical and have the same general requirements, as
follows:

• The root HPCs may come up uninitialized after system reset. These HPCs must be initialized by
the system firmware.

• Every HPC may require resource padding. The padding must be taken into account during PCI
enumeration. This scenario is true for conventional PCI, PCI Express, and CardBus PC Cards
because they all consume shared system resources (I/O, memory, and bus). These resources are
produced by the root PCI bridge.

These general requirements place the following specific requirements on an implementation of the
PI Architechture PCI hot plug support:

• PI Architecture firmware must handle root HPCs differently than other regular PCI devices.
When a root HPC is initialized, the hot-plug slots or CardBus sockets are enabled and this
process may uncover more PCI buses and devices. In that respect, root HPCs are somewhat like
PCI bridges. The root HPC initialization process may involve detecting bus type and optimum
bus speed. The initialization process may also detect faults and voltage mismatches. The
initialization process may be specific to the controller and the platform. At the time of the root
HPC initialization, the PCI bus may not be fully initialized and the standard PCI bus-specific
protocols are not available. PI Architecture firmware must provide an alternate infrastructure for
the initialization code. In other words, the HPC initialization code should not be required to
understand the bus numbering scheme and other chipset details.

• PI Architecture firmware must support an unlimited number of HPCs in the system. PI
Architecture firmware must support various types of HPCs as long as they follow industry
standards or conventions. A mix of various types of HPCs is allowed.

• PI Architecture firmware must support legacy PCI Hot Plug Controllers (PHPCs; class code
0x6, subclass code 0x4) as well as Standard (PCI) Hot Plug Controllers (SHPCs). Other
conventional PCI Hot Plug controllers are not supported.

• PI Architecture firmware must be capable of supporting a PHPC that is a child of another PHPC.
In that case, the PCI Standard Hot-Plug Controller and Subsystem Specification requires that
the child PHPC must be initialized without firmware assistance because it is not a root PHPC.

• PI Architecture firmware must be capable of supporting SHPCs on an add-in card. In that case,
the PCI Standard Hot-Plug Controller and Subsystem Specification requires that such an SHPC
must be initialized without firmware assistance because it is not a root PHPC. PI Architecture
firmware must also support plug-in CardBus bridges that follow the CardBus Specification,
which is part of the PC Card Standard.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 213

• As stated above, root HPCs may require firmware initialization. PI Architecture firmware must
be capable of supporting root HPCs that are initialized by hardware and do not require any
firmware initialization.

• A PI Architecture PCI bus enumerator must overallocate resources for PCI Hot Plug buses and
CardBus sockets. The amount of overallocation may be platform specific.

• The root HPC initialization process may be time consuming. An SHPC can take as long as 15
seconds to enable power to a hot-plug bus without violating the PCI Special Interest Group
(PCI-SIG*) requirements. PI Architecture firmware should be able to initialize multiple HPCs in
parallel to reduce boot time. In contrast, CardBus initialization is quick.

• PI Architecture firmware should be able to handle when an HPC fails. PI Architecture firmware
should be able to handle an HPC that has been disabled.

• The PCI bus driver in PI Architecture firmware is not required to assume anything that is not in
one of the PCI-SIG specifications.

• It must be possible to produce legacy Hot Plug Resource Tables (HPRTs) if necessary. HPRTs
are described in the PCI Standard Hot-Plug Controller and Subsystem Specification.

12.5 Sample Implementation for a Platform Containing PCI
Hot Plug* Slots

Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI bus enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. Actual implementations may vary
although the relative ordering of events is critical. The activities related to PCI Hot Plug* are
underlined. Please note that multiple passes of bus enumeration are required in a system containing
PCI Hot Plug slots.

See section 10.3 for definitions of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL and its member functions.

If the platform supports PCI Hot Plug, an instance of the
EFI_PCI_HOT_PLUG_INIT_PROTOCOL is installed.

The PCI enumeration process begins.

Look for instances of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. If it is not found, all the hot-
plug subsystem initialization steps can be skipped. If one exists, create a list of root Hot Plug
Controllers (HPCs) by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList().

Notify the host bridge driver that bus enumeration is about to begin by calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhase
(EfiPciHostBridgeBeginBusAllocation).

For every PCI root bridge handle, do the following:

1. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnumera
tion (This,RootBridgeHandle).

Hot Plug PCI Platform Initialization Spec, Vol. 5

214 May 2017 Version 1.6

2. Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. See the UEFI 2.1 Specification for the definition
of the PCI Root Bridge I/O Protocol.

3. Allocate memory to hold resource requirements. These can be two resource descriptors, one to
hold bus requirements and another to hold the I/O and memory requirements.

4. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttribu
tes() to get the attributes of this PCI root bridge. This information is used to combine different
types of memory resources in the next step.

Scan all the devices in the specified bus range and the specified segment, one bus at a time. If the
device is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in
the PCI-to-PCI bridge hardware. If the device path of a device matches that of a root HPC and it
is not a PCI-to-CardBus bridge, it must be initialized by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() before the bus it
controls can be fully enumerated. The PCI bus enumerator determines the PCI address of the
PCI Hot Plug Controller (PHPC) and passes it as an input to InitializeRootHpc().

5. Continue to scan devices on that root bridge and start the initialization of all root HPCs.

6. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
so that the HPCs under initialization are still accessible. SetBusNumbers() cannot affect the PCI
addresses of the HPCs.

Wait until all the HPCs that were found on various root bridges in step 5 to complete initialization.

Go back to step 5 for another pass and rescan the PCI buses. For all the root HPCs and the nonroot
HPCs, call EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding() to obtain
the amount of overallocation and add that amount to the requests from the physical devices.
Reprogram the bus numbers by taking into account the bus resource padding information. This
action will require calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers().
The rescan is not required if there is only one root bridge in the system.

Once the memory resources are allocated and a PCI-to-CardBus bridge is part of the HpcList, it will
be initialized.

12.6 PCI Hot Plug PCI Initialization Protocol

EFI_PCI_HOT_PLUG_INIT_PROTOCOL

Summary
This protocol provides the necessary functionality to initialize the Hot Plug Controllers (HPCs) and
the buses that they control. This protocol also provides information regarding resource padding.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 215

Note: This protocol is required only on platforms that support one or more PCI Hot Plug* slots or CardBus
sockets.

GUID
#define EFI_PCI_HOT_PLUG_INIT_PROTOCOL_GUID \
 { 0xaa0e8bc1, 0xdabc, 0x46b0, 0xa8, 0x44, 0x37, 0xb8, 0x16,\
 0x9b, 0x2b, 0xea }

Protocol Interface Structure
typedef struct _EFI_PCI_HOT_PLUG_INIT_PROTOCOL {
 EFI_GET_ROOT_HPC_LIST GetRootHpcList;
 EFI_INITIALIZE_ROOT_HPC InitializeRootHpc;
 EFI_GET_HOT_PLUG_PADDING GetResourcePadding;
} EFI_PCI_HOT_PLUG_INIT_PROTOCOL;

Parameters
GetRootHpcList

Returns a list of root HPCs and the buses that they control. See the
GetRootHpcList() function description.

InitializeRootHpc

Initializes the specified root HPC. See the InitializeRootHpc() function
description.

GetResourcePadding

Returns the resource padding that is required by the HPC. See the
GetResourcePadding() function description.

Description
The EFI_PCI_HOT_PLUG_INIT_PROTOCOL provides a mechanism for the PCI bus enumerator
to properly initialize the HPCs and CardBus sockets that require initialization. The HPC
initialization takes place before the PCI enumeration process is complete. There cannot be more than
one instance of this protocol in a system. This protocol is installed on its own separate handle.

Because the system may include multiple HPCs, one instance of this protocol should represent all of
them. The protocol functions use the device path of the HPC to identify the HPC. When the PCI bus
enumerator finds a root HPC, it will call
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). If InitializeRootHpc() is
unable to initialize a root HPC, the PCI enumerator will ignore that root HPC and continue the
enumeration process. If the HPC is not initialized, the devices that it controls may not be initialized,
and no resource padding will be provided.

From the standpoint of the PCI bus enumerator, HPCs are divided into the following two classes:

Root HPC

These HPCs must be initialized by calling InitializeRootHpc() during the enumeration
process. These HPCs will also require resource padding. The platform code must have a priori
knowledge of these devices and must know how to initialize them. There may not be any way

Hot Plug PCI Platform Initialization Spec, Vol. 5

216 May 2017 Version 1.6

to access their PCI configuration space before the PCI enumerator programs all the upstream
bridges and thus enables the path to these devices. The PCI bus enumerator is responsible for
determining the PCI bus address of the HPC before it calls InitializeRootHpc().

Nonroot HPC

 These HPCs will not need explicit initialization during enumeration process. These HPCs will
require resource padding. The platform code does not have to have a priori knowledge of
these devices.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 217

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()

Summary
Returns a list of root Hot Plug Controllers (HPCs) that require initialization during the boot process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_ROOT_HPC_LIST) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 OUT UINTN *HpcCount,
 OUT EFI_HPC_LOCATION **HpcList
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcCount

The number of root HPCs that were returned.

HpcList

The list of root HPCs. HpcCount defines the number of elements in this list. Type
EFI_HPC_LOCATION is defined in "Related Definitions" below.

Description
This procedure returns a list of root HPCs. The PCI bus driver must initialize these controllers
during the boot process. The PCI bus driver may or may not be able to detect these HPCs. If the
platform includes a PCI-to-CardBus bridge, it can be included in this list if it requires initialization.
The HpcList must be self consistent. An HPC cannot control any of its parent buses. Only one HPC
can control a PCI bus. Because this list includes only root HPCs, no HPC in the list can be a child of
another HPC. This policy must be enforced by the EFI_PCI_HOT_PLUG_INIT_PROTOCOL.
The PCI bus driver may not check for such invalid conditions.

The callee allocates the buffer HpcList.

Hot Plug PCI Platform Initialization Spec, Vol. 5

218 May 2017 Version 1.6

Related Definitions
//***
// EFI_HPC_LOCATION
//***
typedef struct {
 EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath;
 EFI_DEVICE_PATH_PROTOCOL *HpbDevicePath;
} EFI_HPC_LOCATION;

HpcDevicePath

The device path to the root HPC. An HPC cannot control its parent buses. The PCI bus
driver requires this information so that it can pass the correct HpcPciAddress to the
InitializeRootHpc() and GetResourcePadding() functions. Type
EFI_DEVICE_PATH_PROTOCOL is defined in LocateDevicePath() in
section 11.2 of the UEFI 2.1 Specification.

HpbDevicePath

The device path to the Hot Plug Bus (HPB) that is controlled by the root HPC. The
PCI bus driver uses this information to check if a particular PCI bus has hot-plug slots.
The device path of a PCI bus is the same as the device path of its parent. For Standard
(PCI) Hot Plug Controllers (SHPCs) and PCI Express*, HpbDevicePath is the same as
HpcDevicePath.

Status Codes Returned

EFI_SUCCESS HpcList was returned.

EFI_OUT_OF_RESOURCES HpcList was not returned due to insufficient resources.

EFI_INVALID_PARAMETER HpcCount is NULL.

EFI_INVALID_PARAMETER HpcList is NULL.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 219

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()

Summary
Initializes one root Hot Plug Controller (HPC). This process may causes initialization of its
subordinate buses.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INITIALIZE_ROOT_HPC) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 IN EFI_EVENT Event, OPTIONAL
 OUT EFI_HPC_STATE *HpcState
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcDevicePath

The device path to the HPC that is being initialized. Type
EFI_DEVICE_PATH_PROTOCOL is defined in LocateDevicePath() in
section 11.2 of the UEFI 2.1 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.

Event

The event that should be signaled when the HPC initialization is complete. Set to
NULL if the caller wants to wait until the entire initialization process is complete. The
event must be of type EFI_EVENT_NOTIFY_SIGNAL. Type EFI_EVENT is
defined in CreateEvent() in the UEFI Specification.

HpcState

The state of the HPC hardware. The type EFI_HPC_STATE is defined in "Related
Definitions" below.

Description
This function initializes the specified HPC. At the end of initialization, the hot-plug slots or sockets
(controlled by this HPC) are powered and are connected to the bus. All the necessary registers in the
HPC are set up. For a Standard (PCI) Hot Plug Controller (SHPC), the registers that must be set up
are defined in the PCI Standard Hot Plug Controller and Subsystem Specification. For others HPCs,
they are specific to the HPC hardware. The initialization process may choose not to enable certain
PCI Hot Plug* slots or sockets for any reason. The PCI Hot Plug slots or CardBus sockets that are
left disabled at this stage are not available to the system. A PCI slot may be disabled due to a power

Hot Plug PCI Platform Initialization Spec, Vol. 5

220 May 2017 Version 1.6

fault, PCI bus type mismatch, or power budget constraints. The HPC initialization process can be
time consuming. Powering up the slots that are controlled by SHPCs can take up to 15 seconds. In a
system with multiple HPCs, it is desirable to perform these activities in parallel. Therefore, this
procedure supports nonblocking execution mode.

If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of the
HPC initialization.

The PCI bus enumerator will call this function for every root HPC that is returned by
GetRootHpcList().

The PCI bus enumerator must make sure that the registers that are required during HPC initialization
are accessible before calling InitializeRootHpc(). The determination of whether the
registers are accessible is based on the following rules:

• For HPCs (legacy HPCs, SHPCs inside a PCI-to-PCI bridge, and PCI Express* HPCs), the PCI
configuration space of the HPC device must be accessible. In other words, all the upstream
bridges including root bridges and special-purpose PCI-to-PCI bridges are programmed to
forward PCI configuration cycles to the HPC.

• SHPCs inside a root bridge are accessible without any initialization of the PCI bus.

• PCI-to-CardBus bridges have their registers mapped into the memory space using a memory
Base Address Register (BAR).

This function takes the device path of the HPC as an input. At the time of HPC initialization, the PCI
bus enumeration is not complete. The PCI bus enumerator may not have created a handle for the
HPC and the hot-plug initialization code cannot use the EFI_PCI_IO_PROTOCOL or
EFI_DEVICE_PATH_PROTOCOL like other PCI device drivers. The device path uniquely
identifies the HPC and also the PCI bus that it controls.

If the HPC is a PCI device, the hot-plug initialization code may need its address on the PCI bus
(EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS; see the UEFI 2.1 Specification
for its definition) to access its registers. The PCI address of a regular PCI device is dynamic but is
known to the PCI bus driver. Therefore, the PCI bus driver provides it through the input parameter
HpcPciAddress to this function. Passing this address eliminates the need for
InitializeRootHpc() to convert the device path into the PCI address. If the HPC is a
function in a multifunction device, this address is the PCI address of that function. The HPC’s
configuration space must be accessible at the specified HpcPciAddress until the HPC initialization is
complete. In other words, the PCI bus driver cannot renumber PCI buses that are upstream to the
HPC while it is being initialized.

This member function can use the LocateDevicePath() function to locate the appropriate
instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.

If the Event is not NULL, this function will return control to the caller without completing the
entire initialization. This function must perform some basic checks to make sure that it knows how
to initialize the specified HPC before returning control. The Event is signaled when the
initialization process completes, regardless of whether it results in a failure. The caller must check
HpcState to get the initialization status after the event is signaled.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 221

If Event is not NULL, it is possible that the Event may be signaled before this function returns.
There are at least two cases where that may happen:

• A simple implementation of EFI_PCI_HOT_PLUG_INIT_PROTOCOL may force the caller
to wait until the initialization is complete. In that case, the InitializeRootHpc() function may
signal the event before it returns control back to the caller.

• The HPC may already have been initialized by the time InitializeRootHpc() is called.
In that case, InitializeRootHpc() will signal Event and return control back to the
caller.

HpcState returns the state of the HPC at the time when control returns. If Event is NULL, HpcState
must indicate that the HPC has completed initialization. If Event is not NULL, HpcState can indicate
that the HPC has not completed initialization when this function returns, but HpcState must be
updated before Event is signaled.

The firmware may not wait until InitializeRootHpc() to start HPC initialization. The firmware may
start the initialization earlier in the boot process and the initialization may be completely done by the
time the PCI bus enumerator calls InitializeRootHpc(). An HPC can be initialized by hardware
alone, and no firmware initialization may be needed. For such HPCs, this member function does not
have to do any real work. In such cases, InitializeRootHpc() merely acts as a synchronization point.

Related Definitions
//***
// EFI_HPC_STATE
//***
// Describes current state of an HPC

typedef UINT16 EFI_HPC_STATE;

#define EFI_HPC_STATE_INITIALIZED 0x01
#define EFI_HPC_STATE_ENABLED 0x02

Following is a description of the possible states for EFI_HPC_STATE.

Hot Plug PCI Platform Initialization Spec, Vol. 5

222 May 2017 Version 1.6

Table 22. Description of possible states for EFI_HPC_STATE

0 Not initialized

EFI_HPC_STATE_INITIALIZED The HPC initialization function was called and the HPC completed
initialization, but it was not enabled for some reason. The HPC may be
disabled in hardware, or it may be disabled due to user preferences,
hardware failure, or other reasons. No resource padding is required.

EFI_HPC_STATE_INITIALIZED |
EFI_HPC_ENABLED

The HPC initialization function was called, the HPC completed
initialization, and it was enabled. Resource padding is required.

Status Codes Returned

EFI_SUCCESS If Event is NULL, the specific HPC was successfully initialized. If

Event is not NULL, Event will be signaled at a later time when

initialization is complete.

EFI_UNSUPPORTED This instance of EFI_PCI_HOT_PLUG_INIT_PROTOCOL does

not support the specified HPC. If Event is not NULL, it will not be

signaled.

EFI_OUT_OF_RESOURCES Initialization failed due to insufficient resources. If Event is not NULL,

it will not be signaled.

EFI_INVALID_PARAMETER HpcState is NULL.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 223

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()

Summary
Returns the resource padding that is required by the PCI bus that is controlled by the specified Hot
Plug Controller (HPC).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_HOT_PLUG_PADDING) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 OUT EFI_HPC_STATE *HpcState,
 OUT VOID **Padding,
 OUT EFI_HPC_PADDING_ATTRIBUTES *Attributes
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.

HpcDevicePath

The device path to the HPC. Type EFI_DEVICE_PATH_PROTOCOL is defined in
LocateDevicePath() in section 11.2 of the UEFI 2.1 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.

HpcState

The state of the HPC hardware. Type EFI_HPC_STATE is defined in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc().

Padding

The amount of resource padding that is required by the PCI bus under the control of
the specified HPC. Because the caller does not know the size of this buffer, this buffer
is allocated by the callee and freed by the caller.

Attributes

Describes how padding is accounted for. The padding is returned in the form of ACPI
(2.0 & 3.0) resource descriptors. The exact definition of each of the fields is the same
as in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitRe
sources() in section 10.8.2. Type EFI_HPC_PADDING_ATTRIBUTES is
defined in "Related Definitions" below.

Hot Plug PCI Platform Initialization Spec, Vol. 5

224 May 2017 Version 1.6

Description
This function returns the resource padding that is required by the PCI bus that is controlled by the
specified HPC. This member function is called for all the root HPCs and nonroot HPCs that are
detected by the PCI bus enumerator. This function will be called before PCI resource allocation is
completed. This function must be called after all the root HPCs, with the possible exception of a
PCI-to-CardBus bridge, have completed initialization. Waiting until initialization is completed
allows the HPC driver to optimize the padding requirement. The calculation may take into account
the number of empty and/or populated PCI Hot Plug* slots, the number of PCI-to-PCI bridges
among the populated slots, and other factors. This information is available only after initialization is
complete. PCI-to-CardBus bridges require memory resources before the initialization is started and
therefore are considered an exception. The padding requirements are relatively constant for PCI-to-
CardBus bridges and an estimated value must be returned.

If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of
HPC initialization.

The input parameters HpcDevicePath, HpcPciAddress, and HpcState are described in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). The value of
HpcPciAddress for the same root HPC may be different from what was passed to
InitializeRootHpc(). The HPC’s configuration space must be accessible at the specified
HpcPciAddress until this function returns control.

The padding is returned in the form of ACPI (2.0 & 3.0) resource descriptors. The exact definition of
each of the fields is the same as in the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitResources()
function. See the section 10.8 for the definition of this function.

The PCI bus driver is responsible for adding this resource request to the resource requests by the
physical PCI devices. If Attributes is EfiPaddingPciBus, the padding takes effect at the PCI bus
level. If Attributes is EfiPaddingPciRootBridge, the required padding takes effect at the root
bridge level. For details, see the definition of EFI_HPC_PADDING_ATTRIBUTES in "Related
Definitions" below.

Note that the padding request cannot ask for specific legacy resources such as COM port addresses.
Legacy PC Card devices may require such resources. Supporting these resource requirements is
outside the scope of this specification.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 225

Related Definitions
//***
// EFI_HPC_PADDING_ATTRIBUTES
//***
// Describes how resource padding should be applied

typedef enum {
 EfiPaddingPciBus,
 EfiPaddingPciRootBridge
} EFI_HPC_PADDING_ATTRIBUTES;

Following is a description of the fields in the above definition.

Table 23. EFI_HPC_PADDING_ATTRIBUTES field descriptions

EfiPaddingPciBus Apply the padding at a PCI bus level. In other words, the resources
that are allocated to the bus containing hot-plug slots are padded by
the specified amount. If the hot-plug bus is behind a PCI-to-PCI
bridge, the PCI-to-PCI bridge apertures will indicate the padding.

EfiPaddingPciRootBridge Apply the padding at a PCI root bridge level. If a PCI root bridge
includes more than one hot-plug bus, the resource padding requests
for these buses are added together and the resources that are
allocated to the root bridge are padded by the specified amount. This
strategy may reduce the total amount of padding, but requires
reprogramming of PCI-to-PCI bridges in a hot-add event. If the hot-
plug bus is behind a PCI-to-PCI bridge, the PCI-to-PCI bridge
apertures do not indicate the padding for that bus.

Status Codes Returned

EFI_SUCCESS The resource padding was successfully returned.

EFI_UNSUPPORTED This instance of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL

does not support the specified HPC.

EFI_NOT_READY This function was called before HPC initialization is complete.

EFI_INVALID_PARAMETER HpcState is NULL.

EFI_INVALID_PARAMETER Padding is NULL.

EFI_INVALID_PARAMETER Attributes is NULL.

EFI_OUT_OF_RESOURCES ACPI (2.0 & 3.0) resource descriptors for Padding cannot be allocated
due to insufficient resources.

12.7 PCI Hot Plug Request Protocol
A hot-plug capable PCI bus driver should produce the EFI PCI Hot Plug Request protocol. When a
PCI device or a PCI-like device (for example, 32-bit PC Card) is installed after PCI bus does the
enumeration, the PCI bus driver can be notified through this protocol. For example, when a 32-bit

Hot Plug PCI Platform Initialization Spec, Vol. 5

226 May 2017 Version 1.6

PC Card is inserted into the PC Card socket, the PC Card bus driver can call interface of this
protocol to notify PCI bus driver to allocate resource and create handles for this PC Card.

Summary
Provides services to notify PCI bus driver that some events have happened in a hot-plug controller
(for example, PC Card socket, or PHPC), and ask PCI bus driver to create or destroy handles for the
PCI-like devices.

GUID
#define EFI_PCI_HOTPLUG_REQUEST_PROTOCOL_GUID \
 {0x19cb87ab,0x2cb9,0x4665,0x83,0x60,0xdd,0xcf,0x60,0x54,\
 0xf7,0x9d}

Protocol Interface Structure
typedef struct _EFI_PCI_HOTPLUG_REQUEST_PROTOCOL {
 EFI_PCI_HOTPLUG_REQUEST_NOTIFY Notify;
} EFI_PCI_HOTPLUG_REQUEST_PROTOCOL;

Parameters
Notify

Notify the PCI bus driver that some events have happened in a hot-plug controller (for
example, PC Card socket, or PHPC), and ask PCI bus driver to create or destroy
handles for the PCI-like devices. See Section 0 for a detailed description.

Description
The EFI_PCI_HOTPLUG_REQUEST_PROTOCOL is installed by the PCI bus driver on a separate
handle when PCI bus driver starts up. There is only one instance in the system. Any driver that wants
to use this protocol must locate it globally.

The EFI_PCI_HOTPLUG_REQUEST_PROTOCOL allows the driver of hot-plug controller, for
example, PC Card Bus driver, to notify PCI bus driver that an event has happened in the hot-plug
controller, and the PCI bus driver is requested to create (add) or destroy (remove) handles for the
specified PCI-like devices. For example, when a 32-bit PC Card is inserted, this protocol interface
will be called with an add operation, and the PCI bus driver will enumerate and start the devices
inserted; when a 32-bit PC Card is removed, this protocol interface will be called with a remove
operation, and the PCI bus driver will stop the devices and destroy their handles.

The existence of this protocol represents the capability of the PCI bus driver. If this protocol exists in
system, it means PCI bus driver is hot-plug capable, thus together with the effort of PC Card bus
driver, hot-plug of PC Card can be supported. Otherwise, the hot-plug capability is not provided.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 227

EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify()

Summary
This function is used to notify PCI bus driver that some events happened in a hot-plug controller,
and the PCI bus driver is requested to start or stop specified PCI-like devices.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_HOTPLUG_REQUEST_NOTIFY) (
 IN EFI_PCI_HOTPLUG_REQUEST_PROTOCOL *This,
 IN EFI_PCI_HOTPLUG_OPERATION Operation,
 IN EFI_HANDLE Controller,
 IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL,
 IN OUT UINT8 NumberOfChildren,
 IN OUT EFI_HANDLE *ChildHandleBuffer
);

Parameters
This

A pointer to the EFI_PCI_HOTPLUG_REQUEST_PROTOCOL instance. Type
EFI_PCI_HOTPLUG_REQUEST_PROTOCOL is defined in Section 0.

Operation

The operation the PCI bus driver is requested to make. See "Related Definitions" for
the list of legal values.

Controller

The handle of the hot-plug controller.

RemainingDevicePath

The remaining device path for the PCI-like hot-plug device. It only contains device
path nodes behind the hot-plug controller. It is an optional parameter and only valid
when the Operation is a add operation. If it is NULL, all devices behind the PC Card
socket are started.

NumberOfChildren

The number of child handles. For a add operation, it is an output parameter. For a
remove operation, it’s an input parameter. When it contains a non-zero value, children
handles specified in ChildHandleBuffer are destroyed. Otherwise, PCI bus
driver is notified to stop managing the controller handle.

ChildHandleBuffer

The buffer which contains the child handles. For a add operation, it is an output
parameter and contains all newly created child handles. For a remove operation, it
contains child handles to be destroyed when NumberOfChildren contains a non-
zero value. It can be NULL when NumberOfChildren is 0. It’s the caller’s
responsibility to allocate and free memory for this buffer.

Hot Plug PCI Platform Initialization Spec, Vol. 5

228 May 2017 Version 1.6

Description
This function allows the PCI bus driver to be notified to act as requested when a hot-plug event has
happened on the hot-plug controller. Currently, the operations include add operation and remove
operation.

If it is a add operation, the PCI bus driver will enumerate, allocate resources for devices behind the
hot-plug controller, and create handle for the device specified by RemainingDevicePath. The
RemainingDevicePath is an optional parameter. If it is not NULL, only the specified device is
started; if it is NULL, all devices behind the hot-plug controller are started. The newly created
handles of PC Card functions are returned in the ChildHandleBuffer, together with the number
of child handle in NumberOfChildren.

If it is a remove operation, when NumberOfChildren contains a non-zero value, child handles
specified in ChildHandleBuffer are stopped and destroyed; otherwise, PCI bus driver is
notified to stop managing the controller handle.

Related Definitions
//***
// EFI PCI HOTPLUG NOTIFY OPERATION
//***
typedef enum {
 EfiPciHotPlugRequestAdd,
 EfiPciHotplugRequestRemove
} EFI_PCI_HOTPLUG_OPERATION;

EfiPciHotplugRequestAdd

The PCI bus driver is requested to create handles for the specified devices. An array of
EFI_HANDLE is returned, a NULL element marks the end of the array.

EfiPciHotplugRequestRemove

The PCI bus driver is requested to destroy handles for the specified devices.

Platform Initialization Spec, Vol. 5 Hot Plug PCI

Version 1.6 May 2017 229

Status Codes Returned

EFI_SUCCESS The handles for the specified device have been created or destroyed
as requested, and for an add operation, the new handles are
returned in ChildHandleBuffer.

EFI_INVALID_PARAMETER Operation is not a legal value.

EFI_INVALID_PARAMETER Controller is NULL or not a valid handle.

EFI_INVALID_PARAMETER NumberOfChildren is NULL.

EFI_INVALID_PARAMETER ChildHandleBuffer is NULL while Operation is ìremoveî and
NumberOfChildren contains a non-zero value.

EFI_INVALID_PARAMETER ChildHandleBuffer is NULL while Operation is ìaddî.

EFI_OUT_OF_RESOURCES There are no enough resources to start the devices.

12.8 Sample Implementation for a Platform Containing PCI
Hot Plug* Slots

Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI bus enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. Actual implementations may vary
although the relative ordering of events is critical. The activities related to PCI Hot Plug* are
underlined. Please note that hot plug PCI devices may require that multiple passes of bus
enumeration are required.

There are several phases during the PCI bus enumeration process when PCI hot plug slots are
present. At each phase, the PlatformNotify function of the EFI_PCI_PLATFORM_PROTOCOL and
EFI_PCI_OVERRIDE_PROTOCOL will be called with the execution phase BeforePciHostBridge.
Then the PCI host bridge driver function NotifyPhase is called. Finally, the PlatformNotify functions
are called again, but with the execution phase AfterPciHostBridge.

1. If the platform supports PCI Hot Plug, an instance of the
EFI_PCI_HOT_PLUG_INIT_PROTOCOL is installed.

2. The PCI enumeration process begins.

3. Look for instances of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. If it is not found, all the
hot-plug subsystem initialization steps can be skipped. If one exists, create a list of root Hot Plug
Controllers (HPCs) by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList().

4. Notify the drivers using EfiPciHostBridgeBeginBusAllocation.

5. For every PCI root bridge handle, do the following:

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnum
eration (This, RootBridgeHandle).

• Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. See the UEFI 2.1`Specification for the
definition of the PCI Root Bridge I/O Protocol.

• Allocate memory to hold resource requirements.

Hot Plug PCI Platform Initialization Spec, Vol. 5

230 May 2017 Version 1.6

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttr
ibutes() to get the attributes of this PCI root bridge. This information is used to
combine different types of memory resources in the next step.

Scan all the devices in the specified bus range and the specified segment, one bus at a time. If the
device is a PCI-to-PCI bridge, update the bus numbers and program the bus number registers in
the PCI-to-PCI bridge hardware. If the device path of a device matches that of a root HPC and it
is not a PCI-to-CardBus bridge, it must be initialized by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() before the bus it
controls can be fully enumerated. The PCI bus enumerator determines the PCI address of the
PCI Hot Plug Controller (PHPC) and passes it as an input to InitializeRootHpc().

• Continue to scan devices on that root bridge and start the initialization of all root HPCs.

• Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumber
s() so that the HPCs under initialization are still accessible. SetBusNumbers() cannot
affect the PCI addresses of the HPCs.

6. Wait until all the HPCs that were found on various root bridges in step 5 to complete
initialization.

7. Go back to step 5 for another pass and rescan the PCI buses. For all the root HPCs and the
nonroot HPCs, call EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()
to obtain the amount of overallocation and add that amount to the requests from the physical
devices. Reprogram the bus numbers by taking into account the bus resource padding
information. This action requires calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
. The rescan is not required if there is only one root bridge in the system.

Once the memory resources are allocated and a PCI-to-CardBus bridge is part of the HpcList, it will
be initialized.

Platform Initialization Spec, Vol. 5 Super I/O Protocol

Version 1.6 May 2017 231

13 Super I/O Protocol

13.1 Super I/O Protocol

EFI_SIO_PROTOCOL

Summary
The Super I/O driver installs an instance of this protocol on the handle of every device within the
Super I/O chip.

GUID
#define EFI_SIO_PROTOCOL_GUID \
 { 0x215fdd18, 0xbd50, 0x4feb, { 0x89, 0xb, 0x58, 0xca, \
 0xb, 0x47, 0x39, 0xe9 } }

Protocol Interface Structure
typedef struct _EFI_SIO_PROTOCOL {
 EFI_SIO_REGISTER_ACCESS RegisterAccess;
 EFI_SIO_GET_RESOURCES GetResources;
 EFI_SIO_SET_RESOURCES SetResources;
 EFI_SIO_POSSIBLE_RESOURCES PossibleResources;
 EFI_SIO_MODIFY Modify;
} EFI_SIO_PROTOCOL;

Parameters
RegisterAccess

Provides a low level access to the registers for the Super I/O.

GetResources

Provides a list of current resources consumed by the device in ACPI Resource
Descriptor Format.

SetResources

Sets resources for a device.

PossibleResources

Provides a collection of possible resource descriptors for the device. Each resource
descriptor in the collection defines a combination of resources that can potentially be
used by the device.

Modify

Provides an interface for table based programming of the Super I/O registers.

Super I/O Protocol Platform Initialization Spec, Vol. 5

232 May 2017 Version 1.6

Description
The Super I/O Protocol is installed by the Super I/O driver. The Super I/O driver is a UEFI driver
model compliant driver. In the Start() routine of the Super I/O driver, a handle with an instance
of EFI_SIO_PROTOCOL is created for each device within the Super I/O. The device within the
Super I/O is powered up, enabled, and assigned with the default set of resources. In the Stop()
routine of the Super I/O driver, the device is disabled and Super I/O protocol is uninstalled.

Platform Initialization Spec, Vol. 5 Super I/O Protocol

Version 1.6 May 2017 233

EFI_SIO_PROTOCOL.RegisterAccess()

Summary
Provides a low level access to the registers for the Super I/O.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_REGISTER_ACCESS) (
 IN CONST EFI_SIO_PROTOCOL *This,
 IN BOOLEAN Write,
 IN BOOLEAN ExitCfgMode,
 IN UINT8 Register,
 IN OUT UINT8 *Value
);

Parameters
This

Indicates a pointer to the calling context.

Write

Specifies the type of the register operation. If this parameter is TRUE, Value is
interpreted as an input parameter and the operation is a register write. If this parameter
is FALSE, Value is interpreted as an output parameter and the operation is a register
read.

ExitCfgMode

Exit Configuration Mode Indicator. If this parameter is set to TRUE, the Super I/O
driver will turn off configuration mode of the Super I/O prior to returning from this
function. If this parameter is set to FALSE, the Super I/O driver will leave Super I/O
in the configuration mode.

The Super I/O driver must track the current state of the Super I/O and enable the
configuration mode of Super I/O if necessary prior to register access.

Register

Register number.

Value

If Write is TRUE, Value is a pointer to the buffer containing the byte of data to be
written to the Super I/O register. If Write is FALSE, Value is a pointer to the
destination buffer for the byte of data to be read from the Super I/O register.

Description
The RegisterAccess() function provides low level interface to the registers in the Super I/O.

Note: This function only provides access to the internal registers of the Super I/O chip. For example, on
a typical desktop system, these are the registers accessed via the 0x2E/0x2F indexed port I/O.

Super I/O Protocol Platform Initialization Spec, Vol. 5

234 May 2017 Version 1.6

This function cannot be used to access I/O or memory locations assigned to individual logical
devices.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER The Value is NULL

EFI_INVALID_PARAMETER Invalid Register number

Platform Initialization Spec, Vol. 5 Super I/O Protocol

Version 1.6 May 2017 235

EFI_SIO_PROTOCOL.GetResources()

Summary
Provides an interface to get a list of the current resources consumed by the device in the ACPI
Resource Descriptor format.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_GET_RESOURCES)(
 IN CONST EFI_SIO_PROTOCOL *This,
 OUT ACPI_RESOURCE_HEADER_PTR *ResourceList
);

Parameters
This

Indicates a pointer to the calling context.

ResourceList

A pointer to an ACPI resource descriptor list that defines the current resources used by
the device. Type ACPI_RESOURCE_HEADER_PTR is defined in the “Related
Definitions” below.

Description
GetResources() returns a list of resources currently consumed by the device. The
ResourceList is a pointer to the buffer containing resource descriptors for the device. The
descriptors are in the format of Small or Large ACPI resource descriptor as defined by ACPI
specification (2.0 & 3.0). The buffer of resource descriptors is terminated with the ‘End tag’
resource descriptor.

Super I/O Protocol Platform Initialization Spec, Vol. 5

236 May 2017 Version 1.6

Related Definitions
typedef union {
 UINT8 Byte;
 struct{
 UINT8 Length : 3;
 UINT8 Name : 4;
 UINT8 Type : 1;
 }Bits;
} ACPI_SMALL_RESOURCE_HEADER;

typedef struct {
 union {
 UINT8 Byte;
 struct{
 UINT8 Name : 7;
 UINT8 Type : 1;
 }Bits;
 } Header;
 UINT16 Length;
} ACPI_LARGE_RESOURCE_HEADER;

typedef union {
 ACPI_SMALL_RESOURCE_HEADER *SmallHeader;
 ACPI_LARGE_RESOURCE_HEADER *LargeHeader;
} ACPI_RESOURCE_HEADER_PTR;

Length

Length of the resource descriptor in bytes.

Name

Resource descriptor name. Possible values for this field are defined in the ACPI
specification.

Type

Descriptor type.

0 – ACPI Small Resource Descriptor

1 – ACPI Large Resource Descriptor

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER ResourceList is NULL

Platform Initialization Spec, Vol. 5 Super I/O Protocol

Version 1.6 May 2017 237

EFI_SIO_PROTOCOL.SetResources()

Summary
Sets the resources for the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_SET_RESOURCES)(
 IN CONST EFI_SIO_PROTOCOL *This,
 IN ACPI_RESOURCE_HEADER_PTR ResourceList
);

Parameters
This

Indicates a pointer to the calling context.

ResourceList

Pointer to the ACPI resource descriptor list. Type ACPI_RESOURCE_HEADER_PTR
is defined in the “Related Definitions” section of
EFI_SIO_PROTOCOL.GetResources().

Description
SetResources() sets the resources for the device. ResourceList is a pointer to the ACPI
resource descriptor list containing requested resources for the device.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER ResourceList is invalid

EFI_ACCESS_DENIED Some of the resources in ResourceList are in use

Super I/O Protocol Platform Initialization Spec, Vol. 5

238 May 2017 Version 1.6

EFI_SIO_PROTOCOL.PossibleResources()

Summary
Provides a collection of resource descriptor lists. Each resource descriptor list in the collection
defines a combination of resources that can potentially be used by the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_POSSIBLE_RESOURCES)(
 IN CONST EFI_SIO_PROTOCOL *This,
 OUT ACPI_RESOURCE_HEADER_PTR *ResourceCollection
);

Parameters
This

Indicates a pointer to the calling context.

ResourceCollection

Collection of the resource descriptor lists. Type ACPI_RESOURCE_HEADER_PTR is
defined in the “Related Definitions” section of
EFI_SIO_PROTOCOL.GetResources().

Description
PossibleResources() returns a collection of resource descriptor lists. Each resource
descriptor list in the collection defines a combination of resources that can potentially be used by the
device. The descriptors are in the format of Small or Large ACPI Resource Descriptor as defined by
the ACPI Specification (2.0 & 3.0). The collection is terminated with the ‘End tag’ resource
descriptor.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER ResourceCollection is NULL

Platform Initialization Spec, Vol. 5 Super I/O Protocol

Version 1.6 May 2017 239

EFI_SIO_PROTOCOL.Modify()

Summary
Provides an interface for a table based programming of the Super I/O registers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_MODIFY)(
 IN CONST EFI_SIO_PROTOCOL *This,
 IN CONST EFI_SIO_REGISTER_MODIFY *Command,
 IN UINTN NumberOfCommands
);

Parameters
This

Indicates a pointer to the calling context.

Command

A pointer to an array of NumberOfCommands EFI_SIO_REGISTER_MODIFY
structures. Each structure specifies a single Super I/O register modify operation. Type
EFI_SIO_REGISTER_MODIFY is defined in the “Related Definitions” below.

NumberOfCommands

Number of elements in the Command array.

Description
The Modify() function provides an interface for table based programming of the Super I/O
registers. This function can be used to perform programming of multiple Super I/O registers with a
single function call. For each table entry, the Register is read, its content is bitwise ANDed with
AndMask, and then ORed with OrMask before being written back to the Register. The Super
I/O driver must track the current state of the Super I/O and enable the configuration mode of Super I/
O if necessary prior to table processing. Once the table is processed, the Super I/O device has to be
returned to the original state.

Note: This function only provides access to the internal registers of the Super I/O chip. For example, on
a typical desktop system, these are the registers accessed via the 0x2E/0x2F indexed port I/O.

Super I/O Protocol Platform Initialization Spec, Vol. 5

240 May 2017 Version 1.6

This function cannot be used to access I/O or memory locations assigned to individual logical
devices.

Related Definitions
typedef struct {
 UINT8 Register;
 UINT8 AndMask;
 UINT8 OrMask;
} EFI_SIO_REGISTER_MODIFY;

Register

Register number.

AndMask

Bitwise AND mask.

OrMask

Bitwise OR mask.

Status Codes Returned

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETER Command is NULL

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 241

14 Super I/O and ISA Host Controller Interactions

14.1 Design Descriptions
The PI architecture provides a means to interact in a standard fashion with Super I/O devices. For the
purposes of this specification, the Super I/O is a device residing on an ISA or LPC or similar bus that
consumes I/O and/or memory resources and provides multiple standard logical devices, such as PC/
AT compatible floppy, serial port, parallel port, keyboard or mouse. There may be more than one of
these devices behind each of the ISA/LPC buses.

PC/AT Floppy
Driver

PC/AT Serial
Driver

PC/AT
Keyboard

Driver

PC/AT Mouse
Driver

Super I/O Driver

ISA Host Controller Driver

SIO Protocol/PPI
SIO Control Protocol
Device Path
Driver Binding

Device Path
ISA Host Controller Protocol/PPI

Simple Pointer
Absolute Pointer
Driver Binding

Serial I/O
Driver Binding

Simple Text Input
Simple Text Input Ex
Driver Binding

Block I/O
Driver Binding

PCD ISA Bus Driver

ISA Host Controller Protocol
ISA Host Controller Service Binding Protocol

Figure 10. Super I/O and ISA Host Controller Interactions

Mouse, Floppy, Serial and keyboard Drivers
The Mouse, Floppy, Serial and Keyboard drivers are UEFI driver-model drivers that support devices
produced by the Super I/O component. When started, they use the optional SIO Control protocol to
enable the logical device, to produce the standard UEFI protocols used for console or booting, such
as Serial I/O or Block I/O. They typically examine the device paths on the child handles created by
the Super I/O drivers for the ACPI device path nodes that refer to their devices (e.g. PNP0501,
PNP0303, etc.).

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

242 May 2017 Version 1.6

Super I/O Driver
The Super I/O driver consists of a UEFI driver-model driver (in DXE) and PEIM (in PEI) that
supports a Super I/O component. The Super I/O components support multiple logical devices, such
as the PS/2 keyboard controller, a floppy controller or serial/IrDa controller. When started, the Super
I/O driver verifies it is present on the board and produces child handles for each of the logical
devices that are enabled. On each child handle it installs an instance of the Device Path protocol, the
SIO protocol and the SIO Control protocol.

ISA Bus Driver
The ISA Bus driver consists of a UEFI driver-model driver (DXE only) that produces the ISA Host
Controller Service Binding protocol, which manages the many-to-one relationship between Super I/
O drivers in the system and an ISA Host Controller.

ISA Host Controller Driver
The ISA Host Controller driver is a DXE driver that supports a PCI-ISA or PCI-LPC bridge
component. It creates a child handle that represents the ISA Bus and installs the ISA Host Controller
protocol and the Device Path protocol with an ACPI device path node (PNP0A05/PNP0A06).

PCD
The Platform Configuration Database (PCD) provides configuration information about the device
configuration. Information concerning configured I/O addresses can be placed into the PCD by
platform drivers and then used by the various silicon drivers, including SIO to find base addresses
and logical device configuration.

14.1.1 Super I/O
The Super I/O DXE driver and PEIM encapsulate the functionality of the Super I/O component.
They are both responsible to:

• Detect the presence of the component, using information from the PCD and the apertures opened
by the ISA host controller.

• Configure the component and its logical devices using information from the PCD.

• Publish information about the component and the logical devices it supports using the SIO
protocol/PPI.

14.1.1.1 DXE
The Super I/O DXE Driver is responsible for:

• Producing the Driver Binding protocol’s Supported(), Start()and Stop()member
functions on the driver image handle.

• Installing the same GUID as used for the SioGuid member of the Super I/O PPI on the image
handle. This allows other drivers to detect which Super I/O is present in the system.

• Checking Super I/O controller presence. The Supported() function must check whether the
Super I/O controller is present in the system and whether the handle has an instance of the ISA
Host Controller Service Binding protocol installed on it. For more information, see “Working
With The ISA Bus”, below.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 243

• Creatingchild handles for each logical device. The Start() function creates a child handle for
each logical device using the ISA Host Controller Service Binding protocol and installs the SIO
and SIO Control protocols on each one. For more information, see “Working With Logical
Devices”, below.

14.1.1.1.1 Working with the ISA Bus

The system may contain an ISA bus bridge and zero or more Extended I/O bus bridges. The Super I/
O driver checks each of these to see whether it is present.

Supported()
The Super I/O DXE driver’s Driver Binding protocol Supported() function typically performs
the following steps:

1. Verifies that the controller handle has an installed instance of the ISA Host Controller Service
Binding protocol.

2. Opens the apertures necessary to access the component’s configuration I/O address (i.e. 0x2e/
0x2f) using the ISA Host Controller protocol.

3. Verifies the device’s signature to determine whether the component is actually present using
these configuration I/O addresses. For example, it might read a device-specific register and
check for a signature.

4. Closes the aperture and any opened protocols.

Start()
The Super I/O DXE driver’s Driver Binding protocol Start()function typically performs the
following steps:

1. Detects whether Super I/O DXE driver is already managing the device indicated by the
configuration I/O address. One method of doing this is to create a Device Path with the
configuration I/O address embedded in one device node, then use LocateDevicePath to
determine whether a child handle with the ISA Host Controller protocol installed, exists.

2. Creates a child handle for the SIO using the ISA Host Controller Service Binding protocol.

• Opens the I/O apertures used for the configuration I/O address.

• Installs an instance of the Device Path and (optionally) the SIO and SIO Control protocol

3. Creates child handles for each logical device. Install an instance of the Device Path and SIO
protocol and (optionally) the SIO Control protocol on each child handle.

4. Installs an instance of the Device Path, SIO and SIO Control protocols on each of the child
handles.

Stop()
The Super I/O DXE driver’s Driver Binding protocol Stop()function typically performs the
following steps:

1. Uninstalls the instances of the Device Path, SIO and SIO control protocols from each of the
child handles.

2. Destroys the Super I/O’s own child handle using the ISA Host Controller Service Binding
protocol.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

244 May 2017 Version 1.6

SetResources()
The Super I/O DXE driver’s SIO protocol SetResources()function typically calls the
OpenIoAperture() and CloseIoAperture() member functions of the ISA Host Controller
protocol for the I/O addresses related to the individual logical devices.

14.1.1.1.2 Working with Logical Devices

The Super I/O controller supports many different logical devices. Some of these devices, such as the
floppy controller, keyboard controller, MIDI controller and serial port are standard PC/AT devices.
These drivers produce interfaces based on these industry-standard interfaces. Also, the Super I/O
component itself may act as a logical device.

For each logical device, the following steps are taken during Start():

1. Create a child handle.

2. Install the EFI_SIO_PROTOCOL (with correct current resource settings) on the child handle.

3. Install the EFI_SIO_CONTROL_PROTOCOL on the same child handle. This protocol allows a
standard drivers to correctly enable and disable their resources when the Start() and
Stop() members of the Driver Binding protocol that they produce is called.

4. If the device implements one of the standard PC/AT devices, install the
EFI_DEVICE_PATH_PROTOCOL by appending a device node containing the ACPI HID of
the PC/AT device to the device path of the ISA bus on which it is installed..

For more information, see “Logical Devices”

14.1.1.2 PEI
The Super I/O PEIM is responsible to:

• Read its configuration information from the PCD.

• Detect if the Super I/O device is present in the system. If necessary, it should open the aperture
required to access the configuration registers using the ISA Host Controller PPI. If the Super I/O
device is not detected, the driver should close the aperture and exit immediately.

• Install the EFI_SIO_PPI for the Super I/O. The Identifier field allows consumers of the PPI to
know which device’s register set can be accessed by using the PPI’s functions, in cases where
multiple Super I/Os are supported on a platform.

• Allocate I/O and memory resources. All I/O and memory resources are allocated using the
EFI_ISA_HC_PPI, which handles opening and closing bridge apertures.

The Super I/O PEIM should have the EFI_ISA_HC_PPI in its dependency expression.

14.1.2 ISA Bus
The ISA Bus is the logical device that manages the child devices attached to the ISA Host
Controller.

It consumes the ISA Host Controller protocol produced by the ISA Host Controller and installs the
ISA Host Controller Service Binding protocol on the ISA Host Controller’s handle.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 245

14.1.3 ISA Host Controller
The Host Controller is the device that translates the memory and I/O cycles from a parent device
(such as a PCI bus) into memory and I/O cycles for the target devices.

14.1.3.1 DXE
The ISA Host Controller driver creates a child handle for the ISA Host Controller and installs an
instance of the ISA Host Controller protocol and Device Path protocol on it. The Device Path
instance for the child handle will have an extra ACPI device path node for either PNP0A05 (standard
subtractive-decode ISA bus) or PNP0A06 (positive-decode extended I/O bus). If a bridge device can
support more than one of these simultaneously, the _UID field of the device path node must contain
a different value.

For PCI-ISA/LPC bridges, there are two classes of the ISA Host Controller Driver: generic and
chipset-specific. The generic ISA Bus driver connects to any standard subtractive-decode PCI-ISA
bridge device (class code:6, sub-class: 1, programming I/F 0).

Chipset-specific ISA Bus Drivers are used for PCI-ISA (or PCI-LPC) bridges that support positive
decode. These bridges have device-specific mechanisms for opening and closing the I/O and
memory apertures. These apertures determine which address ranges will be passed through to
devices attached to the ISA/LPC side of the bridge. In this case, the registration process includes
opening of apertures and guaranteeing that I/O access falls within the addresses that go the specified
bus.

The ISA Host Controller is responsible for reporting the actual address and size of the apertures
using the DXE GCD services.

14.1.3.2 PEI
The ISA Bus PEIM comes in two versions: generic and chipset-specific.

The generic version is used for subtractive-decode ISA (or LPC) buses. It implements the
EFI_ISA_HC_PPI with a device identifier of all zeroes. All of the aperture functions report
EFI_UNSUPPORTED.

The chipset-specific version implements the EFI_ISA_HC_PPI, which opens and close apertures
for ISA/LPC buses that are positive decode. The device identifier is filled in with the PCI PFA of the
PCI-ISA bridge device.

14.1.4 Logical Devices
Logical Device drivers are UEFI driver model drivers that support many of the standard PC/AT
peripherals. They are designed to connect to the device paths produced by the Super I/O DXE driver.
Each of these drivers produces the Driver Binding and related protocols used in implementing UEFI
driver model drivers.

Each of these drivers supports more than one instance of a specific device can be in a system. Calls
to Stop()and Start() will disable or enable the device and stop consumption of all system
resources. This allows Super I/O drivers to be loaded and unloaded. These drivers can use the SIO
Control protocol to enable consumption of system I/O and memory resources when they are started
or stopped.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

246 May 2017 Version 1.6

14.2 Code Definitions

14.2.1 EFI_SIO_PPI

Summary
Super I/O register access.

GUID
#define EFI_SIO_PPI_GUID \
 {0x23a464ad, 0xcb83, 0x48b8, \
 {0x94, 0xab, 0x1a, 0x6f, 0xef, 0xcf, 0xe5, 0x22}}

Protocol Interface Structure
typedef struct _EFI_SIO_PPI {
 EFI_PEI_SIO_REGISTER_READ Read;
 EFI_PEI_SIO_REGISTER_WRITE Write;
 EFI_PEI_SIO_REGISTER_MODIFY Modify;
 EFI_GUID SioGuid;
 PEFI_SIO_INFO Info;
} EFI_SIO_PPI, *PEFI_SIO_PPI;

Members
Read

This function reads a register's value from the Super I/O controller.

Write

This function writes a value to a register in the Super I/O controller.

Modify

This function modifies zero or more registers in the Super I/O controller using a table.

SioGuid

This GUID uniquely identifies the Super I/O controller.

Info

This pointer is to an array which maps EISA identifiers to logical devices numbers.

Description
This PPI provides low-level access to Super I/O registers using Read() and Write(). It also
uniquely identifies this Super I/O controller using a GUID and provides mappings between ACPI-
style PNP IDs and the logical device numbers. There is one instance of this PPI per Super I/O
device.

This PPI is produced by the Super I/O PEIM after the driver has determined that it is present in the
system.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 247

Related Definitions
typedef struct _EFI_SIO_INFO {
 EFI_ACPI_HID Hid;
 EFI_ACPI_UID Uid;
 UINT8 Ldn;
} EFI_SIO_INFO, *PEFI_SIO_INFO;
Hid

This is the EISA-style Plug-and-Play identifier for one of the devices on the super I/O controller.
The standard values are:

EFI_ACPI_PNP_HID_KBC - 101/102-key Keyboard

EFI_ACPI_PNP_HID_LPT - Standard parallel port

EFI_ACPI_PNP_HID_COM - Standard serial port

EFI_ACPI_PNP_HID_FDC - Standard floppy controller

EFI_ACPI_PNP_HID_MIDI - Standard MIDI controller

EFI_ACPI_PNP_HID_GAME - Standard joystick controller

EFI_ACPI_PNP_HID_END - Specifies the end of the information list.

Uid

This is the unique zero-based instance number for a device on the super I/O. For
example, if there are two serial ports, one of them would have a Uid of 0 and the other
would have a Uid of 1.

Ldn

This is the Logical Device Number for this logical device in the Super I/O. This value
can be used in the Read() and Write() functions. The logical device number of
EFI_SIO_LDN_GLOBAL indicates that global registers will be used.

typedef UINT32 EFI_ACPI_HID;
typedef UINT32 EFI_ACPI_UID;

#define EFI_ACPI_PNP_HID_KBC EFI_PNP_ID(0x0303)
#define EFI_ACPI_PNP_HID_LPT EFI_PNP_ID(0x0400)
#define EFI_ACPI_PNP_HID_COM EFI_PNP_ID(0x0500)
#define EFI_ACPI_PNP_HID_FDC EFI_PNP_ID(0x0700)
#define EFI_ACPI_PNP_HID_MIDI EFI_PNP_ID(0xB006)
#define EFI_ACPI_PNP_HID_END EFI_PNP_ID(0x0000)
#define EFI_ACPI_PNP_HID_GAME EFI_PNP_ID(0xB02F)

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

248 May 2017 Version 1.6

#pragma pack(1)
typedef struct _EFI_SIO_INFO {
 EFI_ACPI_HID Hid;
 EFI_ACPI_UID Uid;
 UINT8 Ldn;
} EFI_SIO_INFO, *PEFI_SIO_INFO;
#pragma pack()

14.2.1.1 EFI_SIO_PPI.Read()

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SIO_REGISTER_READ) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_SIO_PPI *This,
 IN BOOLEAN ExitCfgMode,
 IN EFI_SIO_REGISTER Register,
 OUT UINT8 *IoData
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services.

This

A pointer to this instance of the EFI_SIO_PPI.

ExitCfgMode

A boolean specifying whether the driver should turn on configuration mode (FALSE)
or turn off configuration mode (TRUE) after completing the read operation. The
driver must track the current state of the configuration mode (if any) and turn on
configuration mode (if necessary) prior to register access.

Register

A value specifying the logical device number (bits 15:8) and the register to read (bits
7:0). The logical device number of EFI_SIO_LDN_GLOBAL indicates that global
registers will be used.

IoData

A pointer to the returned register value.

Description
This function provides low-level read access to a device register. The register is specified as an 8-bit
logical device number and an 8-bit register value. The logical device numbers for specific SIO
devices can be determined using the Info member of the PPI structure.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 249

If this function completes successfully, it will return EFI_SUCCESS and IoData will point to the
returned Super I/O register value. If the register value was invalid for this device or IoData was
NULL, then it will return EFI_INVALID_PARAMETERS. If the register could not be read within
the correct amount of time, it will return EFI_TIMEOUT. If the device had some sort of fault or the
device was not present, it will return EFI_DEVICE_ERROR.

Return Values
This function returns standard EFI status codes.

Status Code Value Description

EFI_SUCCESS Success.

EFI_TIMEOUT The register could not be read in the a reasonable amount of time. The
exact time is device-specific.

EFI_INVALID_PARAMETERS Register was out of range for this device.

IoData was NULL

EFI_DEVICE_ERROR There was a device fault or the device was not present.

Related Definitions
typedef UINT16 EFI_SIO_REGISTER;

#define EFI_SIO_REG(ldn,reg) (EFI_SIO_REGISTER)(((ldn)<<8)|reg)

#define EFI_SIO_LDN_GLOBAL 0xFF

14.2.1.2 EFI_SIO_PPI.Write()
Write a Super I/O register.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SIO_REGISTER_WRITE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_SIO_PPI *This,
 IN BOOLEAN ExitCfgMode,
 IN EFI_SIO_REGISTER Register,
 IN UINT8 IoData
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services.

This

A pointer to this instance of the EFI_SIO_PPI.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

250 May 2017 Version 1.6

ExitCfgMode

A boolean specifying whether the device should turn on configuration mode (FALSE)
or turn off configuration mode (TRUE) after completing the write operation. The
driver must track the current state of the configuration mode (if any) and turn on
configuration mode (if necessary) prior to register access.

Register

A value specifying the logical device number and the register to read. The logical
device number can be determined by using the Super I/O chip specification or by
looking up the value in the Info field of the EFI_SIO_PPI. The logical device
number of EFI_SIO_LDN_GLOBAL indicates that global registers will be used.

IoData

An 8-bit register value.

Status Code Return

Status Code Value Description

EFI_SUCCESS Success.

EFI_TIMEOUT The register could not be read in the a reasonable amount
of time. The exact time is device-specific.

EFI_INVALID_PARAMETERS Register was out of range for this device.

IoData was NULL

EFI_DEVICE_ERROR There was a device fault or the device was not present.

Description
This function provides low-level write access to a Super I/O register.

The register is specified as an 8-bit logical device number and an 8-bit register value. The logical
device numbers for specific SIO devices can be determined using the Info member of the PPI
structure.

If this function completes successfully, it will return EFI_SUCCESS and IoData will point to the
returned Super I/O register value. If the register value was invalid for this device or IoData was
NULL, then it will return EFI_INVALID_PARAMETERS. If the register could not be read within
the correct amount of time, it will return EFI_TIMEOUT. If the device had some sort of fault or the
device was not present, it will return EFI_DEVICE_ERROR.

14.2.1.3 EFI_SIO_PPI.Modify()

Summary
Provides an interface for a table based programming of the Super I/O registers.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 251

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_MODIFY)(
 IN EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_SIO_PPI *This,
 IN CONST EFI_SIO_REGISTER_MODIFY *Command,
 IN UINTN NumberOfCommands
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services.

This

A pointer to this instance of the EFI_SIO_PPI.

Command

A pointer to an array of NumberOfCommands EFI_SIO_REGISTER_MODIFY
structures. Each structure specifies a single Super I/O register modify operation. Type
EFI_SIO_REGISTER_MODIFY is defined in EFI_SIO_PROTOCOL.Modify().

NumberOfCommands

The number of elements in the Command array.

Description
The Modify() function provides an interface for table based programming of the Super I/O
registers. This function can be used to perform programming of multiple Super I/O registers with a
single function call. For each table entry, the Register is read, its content is bitwise ANDed with
AndMask, and then ORed with OrMask before being written back to the Register. The Super I/
O driver must track the current state of the Super I/O and enable the configuration mode of Super I/
O if necessary prior to table processing. Once the table is processed, the Super I/O device must be
returned to the original state.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

252 May 2017 Version 1.6

Status Code Return

Status Code Value Description

EFI_SUCCESS The operation completed successfully

EFI_INVALID_PARAMETERS Command is NULL

14.2.2 EFI_ISA_HC_PPI

GUID
#define EFI_ISA_HC_PPI_GUID \
 {0x8d48bd70, 0xc8a3, 0x4c06, \
 {0x90, 0x1b, 0x74, 0x79, 0x46, 0xaa, 0xc3, 0x58}}

PPI Structure
typedef struct _EFI_ISA_HC_PPI {
 UINT32 Version;

 UINT32 Address;
 EFI_PEI_ISA_HC_OPEN_IO OpenIoAperture;
 EFI_PEI_ISA_HC_CLOSE_IO CloseIoAperture;
} EFI_ISA_HC_PPI, *PEFI_ISA_HC_PPI;

Members
Version

An unsigned integer that specifies the version of the PPI structure. Initialized to zero.

PciAddress

The address of the ISA/LPC Bridge device. For PCI, this is the segment, bus, device
and function of the a ISA/LPC Bridge device.

If bits 24-31 are 0, then the definition is:

Bits 0:2 – Function

Bits 3-7 – Device

Bits 8:15 – Bus

Bits 16-23 – Segment

Bits 24-31 – Bus Type

If bits 24-31 are 0xff, then the definition is platform-specific.

OpenIoAperture

Opens an aperture on a positive-decode ISA Host Controller.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 253

CloseIoAperture

Closes an aperture on a positive-decode ISA Host Controller.

14.2.2.1 EFI_ISA_HC_PPI.OpenIoAperture()
Open I/O aperture.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ISA_HC_OPEN_IO) (
 IN CONST EFI_ISA_HC_PPI *This,
 IN UINT16 IoAddress,
 IN UINT16 IoLength,
 OUT UINT64 *IoApertureHandle
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services Table.

This

A pointer to this instance of the EFI_ISA_HC_PPI.

IoAddress

An unsigned integer that specifies the first byte of the I/O space required.

IoLength

An unsigned integer that specifies the number of bytes of the I/O space required.

IoApertureHandle

A pointer to the returned I/O aperture handle. This value can be used on subsequent
calls to CloseIoAperture().

Description
This function opens an I/O aperture in a ISA Host Controller for the I/O addresses specified by
IoAddress to IoAddress + IoLength - 1. It is possible that more than one caller may be
assigned to the same aperture.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and doesa not close the
hardware aperture (via CloseIoAperture()) until there are no more references to it.

If this function completes successfully, then it returns EFI_SUCCESS. If there is no available I/O
aperture, then this function returns EFI_OUT_OF_RESOURCES.

14.2.2.2 EFI_ISA_HC_PPI.CloseIoAperture()
Close I/O aperture.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

254 May 2017 Version 1.6

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ISA_HC_CLOSE_IO) (
 IN CONST EFI_ISA_HC_PPI *This,
 IN UINT64 IoApertureHandle
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services Table.

This

A pointer to this instance of the EFI_ISA_HC_PPI.

IoApertureHandle

The I/O aperture handle previously returned from a call to OpenIoAperture().

Description
This function closes a previously opened I/O aperture handle. If there are no more I/O aperture
handles that refer to the hardware I/O aperture resource, then the hardware I/O aperture is closed.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and does not close the hardware
aperture (via CloseIoAperture()) until there are no more references to it.

14.2.3 EFI_ISA_HC_PROTOCOL

Summary
Provides registration and enumeration of ISA devices.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 255

GUID
#define EFI_ISA_HC_PROTOCOL_GUID \
 {0xbcdaf080, 0x1bde, 0x4e22, \
 {0xae, 0x6a, 0x43, 0x54, 0x1e, 0x12, 0x8e, 0xc4}}

Protocol Interface Structure
typedef struct _EFI_ISA_HC_PROTOCOL {
 UINT32 Version;

 EFI_ISA_HC_OPEN_IO OpenIoAperture;
 EFI_ISA_HC_CLOSE_IO CloseIoAperture;
} EFI_ISA_HC_PROTOCOL, *PEFI_ISA_HC_PROTOCOL;

Members
Version

The version of this protocol. Higher version numbers are backward compatible with
lower version numbers. The current version is 0.

OpenIoAperture

Open an I/O aperture.

CloseIoAperture

Close an I/O aperture.

Description
This protocol provides registration for ISA devices on a positive- or subtractive-decode ISA bus. It
allows devices to be registered and also handles opening and closing the apertures which are
positively-decoded.

14.2.3.1 EFI_ISA_HC_PROTOCOL.OpenIoAperture()
Open I/O aperture.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ISA_HC_OPEN_IO) (
 IN CONST EFI_ISA_HC_PROTOCOL *This,
 IN UINT16 IoAddress,
 IN UINT16 IoLength,
 OUT UINT64 *IoApertureHandle
);

Parameters
This

A pointer to this instance of the EFI_ISA_HC_PROTOCOL.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

256 May 2017 Version 1.6

IoAddress

An unsigned integer that specifies the first byte of the I/O space required.

IoLength

An unsigned integer that specifies the number of bytes of the I/O space required.

IoApertureHandle

A pointer to the returned I/O aperture handle. This value can be used on subsequent
calls to CloseIoAperture().

Description
This function opens an I/O aperture in a ISA Host Controller for the I/O addresses specified by
IoAddress to IoAddress + IoLength - 1.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and does not close the
hardware aperture (via CloseIoAperture()) until there are no more references to it.

If this function completes successfully, then it returns EFI_SUCCESS. If there is no available I/O
aperture, then this function returns EFI_OUT_OF_RESOURCES.

14.2.3.2 EFI_ISA_HC_PROTOCOL.CloseIoAperture()
Close I/O aperture.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ISA_HC_CLOSE_IO) (
 IN CONST EFI_ISA_HC_PROTOCOL *This,
 IN UINT64 IoApertureHandle
);

Parameters
PeiServices

A pointer to a pointer to the PEI Services Table.

This

A pointer to this instance of the EFI_ISA_HC_PROTOCOL.

IoApertureHandle

The I/O aperture handle previously returned from a call to OpenIoAperture().

Description
This function closes a previously opened I/O aperture handle. If there are no more I/O aperture
handles that refer to the hardware I/O aperture resource, then the hardware I/O aperture is closed.

It may be possible that a single hardware aperture may be used for more than one device. This
function tracks the number of times that each aperture is referenced, and does not close the
hardware aperture (via CloseIoAperture()) until there are no more references to it.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 257

14.2.4 EFI_ISA_HC_SERVICE_BINDING_PROTOCOL

Summary
Manages child devices for an ISA Host Controller.

GUID
#define EFI_ISA_HC_SERVICE_BINDING_PROTOCOL_GUID \
 {0xfad7933a, 0x6c21, 0x4234, \
 {0xa4, 0x34, 0x0a, 0x8a, 0x0d, 0x2b, 0x07, 0x81}}

Protocol Interface Structure
The protocol interface structure is the same for all service binding protocols and can be found in
Section 10.6 (“EFI Service Binding Protocol”).

Description
The ISA Host Controller Service Binding protocol permits multiple Super I/O devices to use the
services provide by an ISA Host Controller. The function CreateChild() installs an instance of
the ISA Host Controller protocol on each child handle created.

14.2.5 EFI_SIO_CONTROL_PROTOCOL

Summary
Provide low-level services for SIO devices that enable them to be used in the UEFI driver model.

GUID
#define EFI_SIO_CONTROL_PROTOCOL_GUID \
 {0xb91978df, 0x9fc1, 0x427d, \
 {0xbb, 0x5, 0x4c, 0x82, 0x84, 0x55, 0xca, 0x27}}

Protocol Interface Structure

typedef struct _EFI_SIO_CONTROL_PROTOCOL {
 UINT32 Version;

 EFI_SIO_CONTROL_ENABLE EnableDevice;
 EFI_SIO_CONTROL_DISABLE DisableDevice;
} EFI_SIO_CONTROL_PROTOCOL, PEFI_SIO_CONTROL_PROTOCOL;

Members
Version

 The version of this protocol. Higher version numbers are backward compatible with
lower version numbers. The current version is 0.

EnableDevice

Enable a device.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

258 May 2017 Version 1.6

DisableDevice

Disable a device.

Description
The EFI_SIO_CONTROL_PROTOCOL provides control over the decoding of Super I/O and
memory resources by a logical device within a Super I/O. While the logical devices often implement
industry standard interfaces (such as PS/2 keyboard or serial port), these standard interfaces do not
describe how to enable or disable the memory and I/O resources for those devices. Instead, this
control is usually implemented within the Super I/O device itself through proprietary means. The
industry standard drivers may utilize these functions in their implementations of the Driver Binding
protocol’s Start()and Stop()functions.

 The Super I/O driver installs this protocol on the same child handle as the EFI_SIO_PROTOCOL.

14.2.5.1 EFI_SIO_CONTROL_PROTOCOL.Enable()

Summary
Enable an ISA-style device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_CONTROL_ENABLE)(
 IN CONST EFI_SIO_CONTROL_PROTOCOL *This
);

Parameters
This

A pointer to this instance of the EFI_SIO_CONTROL_PROTOCOL.

Description
This function enables a logical ISA device and, if necessary, configures it to default settings,
including memory, I/O, DMA and IRQ resources.

If the function completed successfully, then this function returns EFI_SUCCESS.

If the device could not be enabled because there were insufficient resources either for the device
itself or for the records needed to track the device, then this function returns
EFI_OUT_OF_RESOURCES.

If this device is already enabled, then this function returns EFI_ALREADY_STARTED. If this
device cannot be enabled, then this function returns EFI_UNSUPPORTED.

14.2.5.2 EFI_SIO_CONTROL_PROTOCOL.Disable()

Summary
Disable a logical ISA device.

Platform Initialization Spec, Vol. 5 Super I/O and ISA Host Controller Interactions

Version 1.6 May 2017 259

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIO_CONTROL_DISABLE)(
 IN CONST EFI_SIO_CONTROL_PROTOCOL *This
);

Parameters
This

A pointer to this instance of the EFI_SIO_CONTROL_PROTOCOL.

Description
This function disables a logical ISA device so that it no longer consumes system resources, such as
memory, I/O, DMA and IRQ resources. Enough information must be available so that subsequent
Enable() calls would properly reconfigure the device.

If this function completed successfully, then it returns EFI_SUCCESS.

If the device could not be disabled because there were insufficient resources either for the device
itself or for the records needed to track the device, then this function returns
EFI_OUT_OF_RESOURCES.

If this device is already disabled, then this function returns EFI_ALREADY_STARTED. If this
device cannot be disabled, then this function returns EFI_UNSUPPORTED.

Super I/O and ISA Host Controller Interactions Platform Initialization Spec, Vol. 5

260 May 2017 Version 1.6

Platform Initialization Spec, Vol. 5 CPU I/O Protocol

Version 1.6 May 2017 261

15 CPU I/O Protocol

 This document describes the CPU I/O Protocol. This protocol provides an I/O abstraction for a
system processor. This protocol is used by a PCI root bridge I/O driver to perform memory-mapped
I/O and I/O transactions. The I/O or memory primitives can be used by the consumer of the protocol
to materialize bus-specific configuration cycles, such as the transitional configuration address and
data ports for PCI. Only drivers that require direct access to the entire system should use this
protocol. This is a boot-services only protocol.

15.1 CPU I/O Protocol Terms
The following are the terms that are used throughout this document to describe the CPU I/O
Protocol.

coherency domain

The address resources of a system as seen by a processor. It consists of both system memory
and I/O space.

CPU I/O Protocol

A software abstraction that provides access to the I/O and memory regions in a single
coherency domain.

SMP

Symmetric multiprocessing. A collection of processors that share a common view of I/O and
memory-mapped I/O.

15.2 CPU I/O Protocol2 Description
This section describes the CPU I/O Protocol. This protocol is used by code—typically PCI root
bridge I/O drivers and drivers that need I/O prior to the loading of the PCI root bridge I/O driver—
that is running in the EFI Boot Services environment to access memory and I/O.This protocol can be
also used by non-PC-AT* systems to abstract the I/O mechanism published by the processor and/or
integrated CPU-I/O complex.

See Code Definitions for the definition of EFI_CPU_IO_PROTOCOL2.

15.2.1 EFI CPU I/O Overview
The interfaces that are provided in the EFI_CPU_IO2_PROTOCOL are for performing basic
operations to memory and I/O. The system provides abstracted access to basic system resources to
allow a driver to have a programmatic method to access these basic system resources.

The EFI_CPU_IO2_PROTOCOL allows for future innovation of the platform. It abstracts
processor-device-specific code from the system memory map. This abstraction allows system
designers to make changes to the system memory map without impacting platform-independent code
that is consuming basic system resources.

CPU I/O Protocol Platform Initialization Spec, Vol. 5

262 May 2017 Version 1.6

Systems with one to many processors in a symmetric multiprocessing (SMP) configuration will
contain a single instance of the EFI_CPU_IO2_PROTOCOL. This protocol is an abstraction from a
software point of view. This protocol is attached to the device handle of a processor driver. The CPU
I/O Protocol is the parent to a set of PCI Root Bridge I/O Protocol instances that may contain many
PCI segments. A CPU I/O Protocol instance might also be the parent of a series of protocols that
abstract host-bus attached devices.

CPU I/O Protocol instances are either produced by the system firmware or an EFI driver. When a
CPU I/O Protocol is produced, it is placed on a device handle without an EFI Device Path Protocol
instance. The figure below shows a device handle that has the EFI_CPU_IO2_PROTOCOL
installed on it.

Figure 11. EFI CPU I/O2 Protocol

Other characteristics of the CPU I/O Protocol include the following:

• The protocol uses re-entrancy to enable possible use by a debugger agent that is outside of the
generic EFI Task Priority Level (TPL) priority mechanism.

See Code Definitions for the definition of EFI_CPU_IO2_PROTOCOL.

15.3 Code Definitions
This section contains the basic definitions of the CPU I/O Protocol (EFI_CPU_IO2_PROTOCOL).

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent protocol or function definition:

• EFI_CPU_IO_PROTOCOL_ACCESS

• EFI_CPU_IO_PROTOCOL_WIDTH

15.3.1 CPU I/O Protocol

EFI_CPU_IO2_PROTOCOL

Summary
Provides the basic memory and I/O interfaces that are used to abstract accesses to devices in a
system.

Platform Initialization Spec, Vol. 5 CPU I/O Protocol

Version 1.6 May 2017 263

GUID
#define EFI_CPU_IO2_PROTOCOL_GUID \
 {0xad61f191, 0xae5f, 0x4c0e, 0xb9, 0xfa, 0xe8, 0x69, 0xd2, \
 0x88, 0xc6, 0x4f}

Protocol Interface Structure
typedef struct _EFI_CPU_IO2_PROTOCOL {
 EFI_CPU_IO_PROTOCOL_ACCESS Mem;
 EFI_CPU_IO_PROTOCOL_ACCESS Io;
} EFI_CPU_IO2_PROTOCOL;

Parameters
Mem.Read

Allows reads from memory-mapped I/O space. See the Mem.Read() function
description. Type EFI_CPU_IO_PROTOCOL_ACCESS is defined in "Related
Definitions" below.

Mem.Write

Allows writes to memory-mapped I/O space. See the Mem.Write() function
description.

Io.Read

Allows reads from I/O space. See the Io.Read() function description. Type
EFI_CPU_IO_PROTOCOL_ACCESS is defined in "Related Definitions" below.

Io.Write

Allows writes to I/O space. See the Io.Write() function description.

Description
The EFI_CPU_IO2_PROTOCOL provides the basic memory and I/O interfaces that are used to
abstract accesses to platform hardware. This hardware can include PCI- or host-bus-attached
peripherals and buses. There is one EFI_CPU_IO2_PROTOCOL instance for each PI System.
Embedded systems, desktops, and workstations will typically have only one PI System. Non–
symmetric multiprocessing (non-SMP), high-end servers may have multiple PI Systems. A device
driver that wishes to make I/O transactions in a system will have to retrieve the
EFI_CPU_IO2_PROTOCOL instance. A device handle for an PI System will minimally contain an
EFI_CPU_IO2_PROTOCOL instance.

CPU I/O Protocol Platform Initialization Spec, Vol. 5

264 May 2017 Version 1.6

Related Definitions
//***
// EFI_CPU_IO2_PROTOCOL_ACCESS
//***
typedef struct {
 EFI_CPU_IO_PROTOCOL_IO_MEM Read;
 EFI_CPU_IO_PROTOCOL_IO_MEM Write;
} EFI_CPU_IO_PROTOCOL_ACCESS;

Read

This service provides the various modalities of memory and I/O read.

Write

This service provides the various modalities of memory and I/O write.

Platform Initialization Spec, Vol. 5 CPU I/O Protocol

Version 1.6 May 2017 265

EFI_CPU_IO2_PROTOCOL.Mem.Read() and Mem.Write()

Summary
Enables a driver to access memory-mapped registers in the PI System memory space.

Prototype
typedef
EFI_STATUS

(EFIAPI *EFI_CPU_IO_PROTOCOL_IO_MEM) (
 IN EFI_CPU_IO2_PROTOCOL *This,
 IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_CPU_IO2_PROTOCOL instance.

Width

Signifies the width of the memory operation. Type
EFI_CPU_IO_PROTOCOL_WIDTH is defined in "Related Definitions" below.

Address

The base address of the memory operation.

Count

The number of memory operations to perform. The number of bytes moved is Width
size * Count, starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations, the
source buffer from which to write data.

Description
The Mem.Read() and Mem.Write() functions enable a driver to access memory-mapped
registers in the PI System memory space.

The memory operations are carried out exactly as requested. The caller is responsible for satisfying
any alignment and memory width restrictions that a PI System on a platform might require. For
example, on some platforms, width requests of EfiCpuIoWidthUint64 do not work.
Misaligned buffers, on the other hand, will be handled by the driver.

If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations that is performed.

CPU I/O Protocol Platform Initialization Spec, Vol. 5

266 May 2017 Version 1.6

If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times from the first element of Buffer.

Related Definitions
//***
// EFI_CPU_IO_PROTOCOL_WIDTH
//***
typedef enum {
 EfiCpuIoWidthUint8,
 EfiCpuIoWidthUint16,
 EfiCpuIoWidthUint32,
 EfiCpuIoWidthUint64,
 EfiCpuIoWidthFifoUint8,
 EfiCpuIoWidthFifoUint16,
 EfiCpuIoWidthFifoUint32,
 EfiCpuIoWidthFifoUint64,
 EfiCpuIoWidthFillUint8,
 EfiCpuIoWidthFillUint16,
 EfiCpuIoWidthFillUint32,
 EfiCpuIoWidthFillUint64,
 EfiCpuIoWidthMaximum
} EFI_CPU_IO_PROTOCOL_WIDTH;

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PI System.

EFI_INVALID_PARAMETER Width is invalid for this PI System.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The Buffer is not aligned for the given Width.

EFI_UNSUPPORTED The address range specified by Address, Width, and Count is not

valid for this PI System.

Platform Initialization Spec, Vol. 5 CPU I/O Protocol

Version 1.6 May 2017 267

EFI_CPU_IO2_PROTOCOL.Io.Read() and Io.Write()

Summary
Enables a driver to access registers in the PI CPU I/O space.

Prototype
typedef
EFI_STATUS
 (EFIAPI *EFI_CPU_IO_PROTOCOL_IO_MEM) (
 IN EFI_CPU_IO2_PROTOCOL *This,
 IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_CPU_IO2_PROTOCOL instance.

Width

Signifies the width of the I/O operation. Type EFI_CPU_IO_PROTOCOL_WIDTH is
defined in EFI_CPU_IO2_PROTOCOL.Mem().

Address

The base address of the I/O operation. The caller is responsible for aligning the
Address if required.

Count

The number of I/O operations to perform. The number of bytes moved is Width size
* Count, starting at Address.

Buffer

For read operations, the destination buffer to store the results. For write operations, the
source buffer from which to write data.

Description
The Io.Read() and Io.Write() functions enable a driver to access PCI controller registers in
the PI CPU I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for satisfying any
alignment and I/O width restrictions that a PI System on a platform might require. For example on
some platforms, width requests of EfiCpuIoWidthUint64 do not work. Misaligned buffers, on
the other hand, will be handled by the driver.

If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for each of the
Count operations that is performed.

CPU I/O Protocol Platform Initialization Spec, Vol. 5

268 May 2017 Version 1.6

If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times on the same Address.

If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or write operation is
performed Count times from the first element of Buffer.

Status Codes Returned

EFI_SUCCESS The data was read from or written to the PI System.

EFI_INVALID_PARAMETER Width is invalid for this PI System.

EFI_INVALID_PARAMETER Buffer is NULL.

EFI_UNSUPPORTED The Buffer is not aligned for the given Width.

EFI_UNSUPPORTED The address range specified by Address, Width, and Count is not

valid for this PI System.

Platform Initialization Spec, Vol. 5 Legacy Region Protocol

Version 1.6 May 2017 269

16 Legacy Region Protocol

This section describes the legacy region protocol that abstracts the platform capability for the BIOS
memory region from 0xC0000 to 0xFFFFF. The Legacy Region Protocol is used to abstract the
hardware control of the Option ROM and Compatibility 16-bit code region shadowing.

16.1 Legacy Region Protocol
The Legacy Region Protocol controls the read, write and boot-lock attributes for the region 0xC0000
to 0xFFFFF. The table below lists the functions that are included in the Legacy Region Protocol. See
EFI_LEGACY_REGION2_PROTOCOL in Code Definitions for the definitions of these functions.

Table 24. Functions in Legacy Region Protocol

Function Description

Decode() Programs the chipset to decode or not decode regions in the 0xC0000 to
0xFFFFF range. Governs the read attribute.

Lock() Programs the chipset to lock (write protect) regions in the 0xC0000 to 0xFFFFF
range. Disables the write attribute.

BootLock() Programs the chipset to boot-lock regions in the 0xC0000 to 0xFFFFF range.
Enables the boot-lock attribute.

Unlock() Programs the chipset to unlock regions in the 0xC0000 to 0xFFFFF range.
Enables the write attribute.

GetInfo() Get information about the granularity of the regions for each attribute.

16.2 Code Definitions

16.2.1 Legacy Region Protocol

EFI_LEGACY_REGION2_PROTOCOL

Summary
Abstracts the hardware control of the physical address region 0xC0000–0xFFFFF.

Legacy Region Protocol Platform Initialization Spec, Vol. 5

270 May 2017 Version 1.6

GUID
#define EFI_LEGACY_REGION2_PROTOCOL_GUID \
 { 0x70101eaf, 0x85, 0x440c, 0xb3, 0x56, 0x8e, 0xe3, 0x6f,\
 0xef, 0x24, 0xf0 }

Protocol Interface Structure
typedef struct _EFI_LEGACY_REGION2_PROTOCOL {
 EFI_LEGACY_REGION2_DECODE Decode;
 EFI_LEGACY_REGION2_LOCK Lock;
 EFI_LEGACY_REGION2_BOOT_LOCK BootLock;
 EFI_LEGACY_REGION2_UNLOCK UnLock;
 EFI_LEGACY_REGION_GET_INFO GetInfo;
} EFI_LEGACY_REGION2_PROTOCOL;

Parameters
Decode

Modify the read attribute of a memory region. See the Decode() function
description.

Lock

Modify the write attribute of a memory region to prevent writes. See the Lock()
function description.

BootLock

Modify the boot-lock attribute of a memory region to prevent future changes to the
memory attributes for this region. See the BootLock() function description.

Unlock

Modify the write attribute of a memory region to allow writes. See the Unlock()
function description.

GetInfo

Modify the write attribute of a memory region to allow writes. See the GetInfo()
function description.

Description
The EFI_LEGACY_REGION2_PROTOCOL is used to abstract the hardware control of the memory
attributes of the Option ROM shadowing region, 0xC0000 to 0xFFFFF.

There are three memory attributes that can be modified through this protocol: read, write and boot-
lock. These protocols may be set in any combination.

Platform Initialization Spec, Vol. 5 Legacy Region Protocol

Version 1.6 May 2017 271

EFI_LEGACY_REGION2_PROTOCOL.Decode()

Summary
Modify the hardware to allow (decode) or disallow (not decode) memory reads in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_DECODE) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity ,
 IN BOOLEAN *On
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

On

Decode / Non-Decode flag.

Description
 If the On parameter evaluates to TRUE, this function enables memory reads in the address range
Start to (Start + Length - 1).

If the On parameter evaluates to FALSE, this function disables memory reads in the address range
Start to (Start + Length - 1).

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully modified.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the

Legacy Region.

Legacy Region Protocol Platform Initialization Spec, Vol. 5

272 May 2017 Version 1.6

EFI_LEGACY_REGION2_PROTOCOL.Lock()

Summary
Modify the hardware to disallow memory writes in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_LOCK) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

Description
This function changes the attributes of a memory range to not allow writes.

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully modified.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the

Legacy Region.

Platform Initialization Spec, Vol. 5 Legacy Region Protocol

Version 1.6 May 2017 273

EFI_LEGACY_REGION2_PROTOCOL.BootLock()

Summary
Modify the hardware to disallow memory attribute changes in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_BOOT_LOCK) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

Description
This function makes the attributes of a region read only. Once a region is boot-locked with this
function, the read and write attributes of that region cannot be changed until a power cycle has reset
the boot-lock attribute. Calls to Decode(), Lock() and Unlock() will have no effect.

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully locked.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the Legacy
Region.

EFI_UNSUPPORTED The chipset does not support locking the configuration
registers in a way that will not affect memory regions
outside the legacy memory region.

Legacy Region Protocol Platform Initialization Spec, Vol. 5

274 May 2017 Version 1.6

EFI_LEGACY_REGION2_PROTOCOL.UnLock()

Summary
Modify the hardware to allow memory writes in a region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION2_UNLOCK) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 IN UINT32 Start,
 IN UINT32 Length,
 OUT UINT32 *Granularity
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

Start

The beginning of the physical address of the region whose attributes should be
modified.

Length

The number of bytes of memory whose attributes should be modified. The actual
number of bytes modified may be greater than the number specified.

Granularity

The number of bytes in the last region affected. This may be less than the total number
of bytes affected if the starting address was not aligned to a region’s starting address
or if the length was greater than the number of bytes in the first region.

Description
This function changes the attributes of a memory range to allow writes.

Status Codes Returned

EFI_SUCCESS The region’s attributes were successfully modified.

EFI_INVALID_PARAMETER If Start or Length describe an address not in the

Legacy Region.

Platform Initialization Spec, Vol. 5 Legacy Region Protocol

Version 1.6 May 2017 275

EFI_LEGACY_REGION2_PROTOCOL.GetInfo()

Summary
Get region information for the attributes of the Legacy Region.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_REGION_GET_INFO) (
 IN EFI_LEGACY_REGION2_PROTOCOL *This,
 OUT UINT32 *DescriptorCount,
 OUT EFI_LEGACY_REGION_DESCRIPTOR **Descriptor
);

Parameters
This

Indicates the EFI_LEGACY_REGION2_PROTOCOL instance.

DescriptorCount

The number of region descriptor entries returned in the Descriptor buffer. Type
EFI_LEGACY_REGION_DESCRIPTOR is defined in the “Related Definitions”
section.

Descriptor

A pointer to a pointer used to return a buffer where the legacy region information is
deposited. This buffer will contain a list of DescriptorCount number of region
descriptors. This function will provide the memory for the buffer.

Description
This function is used to discover the granularity of the attributes for the memory in the legacy
region. Each attribute may have a different granularity and the granularity may not be the same for
all memory ranges in the legacy region.

Legacy Region Protocol Platform Initialization Spec, Vol. 5

276 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The information structure was returned.

EFI_UNSUPPORTED This function is not supported.

Related Definitions
typedef enum {
 LegacyRegionDecoded,
 LegacyRegionNotDecoded,
 LegacyRegionWriteEnabled,
 LegacyRegionWriteDisabled,
 LegacyRegionBootLocked,
 LegacyRegionNotLocked
} EFI_LEGACY_REGION_ATTRIBUTE;

LegacyRegionDecoded

This region is currently set to allow reads.

LegacyRegionNotDecoded

This region is currently set to not allow reads.

LegacyRegionWriteEnabled

This region is currently set to allow writes.

LegacyRegionWriteDisabled

This region is currently set to write protected.

LegacyRegionBootLocked

This region’s attributes are locked, cannot be modified until after a power cycle.

LegacyRegionNotLocked

This region’s attributes are not locked.

typedef struct {
 UINT32 Start;
 UINT32 Length;
 EFI_LEGACY_REGION_ATTRIBUTE Attribute;
 UINT32 Granularity;
} EFI_LEGACY_REGION_DESCRIPTOR;

Start

The beginning of the physical address of this region.

Length

The number of bytes in this region.

Platform Initialization Spec, Vol. 5 Legacy Region Protocol

Version 1.6 May 2017 277

Attribute

Attribute of the Legacy Region Descriptor that describes the capabilities for that
memory region.

Granularity

Describes the byte length programmability associated with the Start address and the
specified Attribute setting.

Legacy Region Protocol Platform Initialization Spec, Vol. 5

278 May 2017 Version 1.6

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 279

17 I2C Protocol Stack

17.1 Design Discussion

The Inter-Integrated Circuit (I2C) protocol stack enables third party silicon vendors to write UEFI

drivers for their products by decoupling the I2C chip details from the I2C controller and I2C bus
configuration details.

17.1.1 I2C Bus Overview

The Inter-Integrated Circuit (I2C) bus enables simple low speed communications between chips.

The following sections describe the attributes of the I2C bus configurations supported by the I2C

protocol stack and the I2C-bus specification and user manual.

17.1.1.1 Single Master

I2C Host

I2C Device
0x20

I2C Device
0x30

Figure 12. Simple 12C Bus

 Figure 12 shows a simple I2C bus configuration consisting of one host controller and two I2C

devices which use the same I2C clock frequency. In this configuration the I2C host controller gets

initialized with a single clock frequency and performs transactions to the I2C devices using their
slave addresses.

http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://www.acpi.info/spec.htm
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx

I2C Protocol Stack Platform Initialization Spec, Vol. 5

280 May 2017 Version 1.6

17.1.1.2 Multiple I2C Bus Frequencies

Figure 13. Multiple I2C Bus Frequencies

Two I2C bus configurations are shown in Figure 13, separated by a switch. This allows the I2C bus
to operate at two different frequencies depending on the state of the switch. Device requiring higher

bus frequencies are placed closer to the I2C host controller and are accessed when the switch is
turned off. Devices using lower bus frequencies are placed after the switch and may only be

accessed when the switch is on. Note that the I2C bus frequency needs to be set to a frequency

supported by all devices currently accessible by the I2C host controller.

17.1.1.3 Limited Address Space

I2C Host

I2C Device
0x20

I2C Device
0x30

Multiplexer

I2C Device
0x30

Figure 14. Limited address Space

I2C devices have a limited number of address settings, sometimes only one. When the hardware

design requires more I2C devices than the address space supports a multiplexer may be introduced to
create additional bus configurations (address spaces). Note that the host must first select the

appropriate bus configuration before communicating with the I2C device.

17.1.1.4 I2C Bus Configurations

A bus configuration is a concept introduced by the I2C protocol stack to configure the state of the

switches and multiplexers in the I2C bus. The I2C protocol stack calls into the platform code with a
value from zero (0) to N-1 to request the platform code enable a specific configuration of the
switches and multiplexers. The platform code then sets the requested state for the switches and

multiplexers and sets the I2C clock frequency for this I2C bus configuration. Upon return the I2C

protocol stack is able to access the I2C devices in this configuration.

http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/jj131711(v=vs.85).aspx
http://www.acpi.info/spec.htm

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 281

17.1.2 2C Protocol Stack Overview

The following is a representation of the I2C protocol stack and an I2C bus layout.
 +-----------------+
 | Application |
 +-----------------+
 |
 | Third Party or UEFI
 |
 V
 +-----------------+
 | Third Party |
 | I2C Device |
 | Driver |
 +-----------------+
 |
 |
 V
 +-----------------+
 | I2C IO Protocol |
 +-----------------+
 |
 |
 V
 +-----------------+ +------------------------+
 | I2C Bus Driver |-->| I2C Enumerate Protocol |
 +-----------------+ +------------------------+
 |
 |
 V
 +-------------------+
 | I2C Host Protocol |---------.
 +-------------------+ |
 | V
 | +-----------------------+
 | | I2C Bus Configuration |
 |<-----------| Management Protocol |
 V +-----------------------+
 +---------------------+ | |
 | I2C Master Protocol |
 +---------------------+ | |
 |
 Software | | |

 Hardware | | |
 |
 V | |
 +-----------------+
 | I2C Controller | | |

http://www.nxp.com/documents/user_manual/UM10204.pdf

I2C Protocol Stack Platform Initialization Spec, Vol. 5

282 May 2017 Version 1.6

 +-----------------+
 | | |

 I2C Bus | | |
 | +------------+
 +----| High speed | | |
 | | I2C device |
 | | 0x01 | | |
 | +------------+
 | | |
 +---------+ 0
 | Switch |<- - - - - - - - - ` |
 +---------+ 1
 | |
 | +------------+
 +----| Fast speed | |
 | | I2C device |
 | | 0x02 | |
 | +------------+
 | |
 +-------------+
 | Multiplexer |< - - - - - - - - - - - `
 +-------------+
 0 | | 1
 | |
 | |
 | | +-------------+
 | +----| Third Party | |
 | | | I2C Device |
 | | | 0x03, 0x04 |
 | | +-------------+
 | |
 |
 | +-------------+
 +------------| Third Party |
 | | I2C Device |
 | | 0x03, 0x04 |
 | +-------------+
 |

Figure 15. I2C Protocol Stack

The platform hardware designer chooses the bus layout based upon the platform, I2C chip and
software requirements. The design uses switches to truncate the bus to enable higher bus
frequencies for a subset of devices which are placed closer to the controller. When the switch is on,
the extended bus must operate at a lower bus frequency. The design uses multiplexer to create
separate address spaces enabling the use of multiple devices which would otherwise have conflicting

addresses. See the I2C-bus specification and user manual for more details.

http://www.nxp.com/documents/user_manual/UM10204.pdf

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 283

N.B. Some operating systems may prohibit the changing of switches and multiplexers in the I2C bus.

In this case the platform hardware and software designers must select a single I2C bus configuration

consisting of constant input values for the switches and multiplexers. The I2C subsystem must be

placed in the OS compatible I2C bus configuration upon successful completion of
ExitBootServices().

The platform hardware designer needs to provide the platform software designer the following data

for each I2C bus:

1. Which controller controls this bus

2. A list of logic blocks contained in one or more I2C devices:

• I2C device which contains this logic block

• Logic block I2C slave address

• Logic block description

3. For each configuration of the switches and multiplexers in the I2C bus

• What is the maximum frequency of operation for the I2C bus

• What I2C slave addresses are accessible

4. The settings for the switches and multiplexers when control is given to the operating system.

17.1.2.1 Handles

The I2C protocol stack uses two groups of handles:

• I2C controller handles

• I2C device handles

Some bus driver (PCI, USB, etc.) or the platform specific code may expose a handle for each of the

I2C controllers. The platform specific code installs the I2C bus configuration management and I2C

enumeration protocols on the controller handle. As the I2C stack is initialized, additional protocols

are placed on the I2C controller handle. When the I2C stack initialization is complete, the controller
handle contains:

I2C Controller Handle

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL

EFI_I2C_HOST_PROTOCOL

EFI_I2C_MASTER_PROTOCOL

EFI_I2C_ENUMERATE_PROTOCOL

EFI_DEVICE_PATH_PROTOCOL

I2C Protocol Stack Platform Initialization Spec, Vol. 5

284 May 2017 Version 1.6

The I2C Bus Driver uses the EFI_I2C_ENUMERATE_PROTOCOL to enumerate the set of I2C

devices connected to an I2C controller, and creates an I2C device handle for each I2C device
installing the following protocols on each:

I2C Device Handle

EFI_I2C_IO_PROTOCOL

EFI_DEVICE_PATH_PROTOCOL

It is possible for the SMBus Host Controller Protocol to be implemented using the services on an I2C
Controller Handle. The SMBus Host Controller Protocol does not support the concept of multiple

bus configurations, so the state of the I2C controller handle required for the SMBus Host Controller

Protocol to be produced on an I2C Controller Handle is as follows:

I2C Controller Handle

EFI_I2C_MASTER_PROTOCOL

EFI_DEVICE_PATH_PROTOCOL

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 285

17.1.2.2 Driver Loading Order
A race condition potentially exists between the platform specific code and a layered SMBus driver

when a driver for a PCI or USB I2C controller installs the EFI_I2C_MASTER_PROTOCOL on its
handle. The layered SMBus driver may start on this controller as soon as the
EFI_I2C_MASTER_PROTOCOL is installed as long as the
EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL is not installed on the controller
handle. However if the platform specific code wants to use this controller with the
EFI_I2C_HOST_PROTOCOL then the platform specific code needs to prevent the SMBus driver
from starting by installing the EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.

Note that the I2C host protocol opens the EFI_I2C_MASTER_PROTOCOL only if the handle
contains the EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.

Chapter 10 of the Universal Extensible Firmware Interface Specification describes several ways for
the platform specific code to adjust the driver load order. One possible way to eliminate this race
condition is to use the version number for the driver binding protocol. The platform specific code
implements the driver binding protocol’s Supported() and Start() routines and sets the
version field to a value in the range of 0xfffffff0 – 0xffffffff. The SMBus driver should
set the version field of the driver binding protocol to a value in the range of 0x00000010 –
0xffffffef. This selection delays the SMBus driver to execute its Supported() and
Start() routines after the platform specific code, enabling the platform specific code to install the
EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL and the
EFI_I2C_ENUMERATE_PROTOCOL on the controller’s handle.

17.1.2.3 Third Party I2C Drivers

Third party I2C drivers are I2C chip specific but platform and host controller independent.

Third party I2C driver writers, typically silicon vendors, need to provide:

• The vendor specific GUID that is used to select their driver.

• I2C slave address array guidance (described below) when the I2C device uses more than one I2C
slave address consisting of the order for the blocks of logic that get referenced by the entries in
the slave address array.

The hardware version of the I2C device, this value is passed to the third party I2C driver to enable it
to perform workarounds for the specific hardware version. It is recommended that value match the
value in the ACPI _HRV tag. See the Advanced Configuration and Power Interface Specification,
Revision 5.0 for the field format and the Plug and play support for I2C web-page for restriction on
values.

The third party I2C driver uses relative addressing to abstract the platform specific details of the I2C

device. Using an example I2C device containing an accelerometer and a magnetometer which

consumes two I2C slave addresses, one for each logic block. The third party I2C driver writer may
choose to write two drivers, one for each block of logic, in which case each driver refers to the single

I2C slave address using the relative value of zero (0). However if the third party I2C driver writer

chooses to write a single driver which consumes multiple I2C slave addresses then the third party

I2C Protocol Stack Platform Initialization Spec, Vol. 5

286 May 2017 Version 1.6

I2C driver writer needs to convey the order of the I2C slave address entries in the I2C slave address
array to the platform software designer. For the example:

 0: Accelerometer

 1: Magnetometer

The platform hardware designer picks the actual slave addresses from the I2C device's data sheet and
provides this information to the platform software designer. The platform software designer then

places the I2C slave addresses into the I2C slave address array in the

EFI_I2C_ENUMERATE_PROTOCL in the order specified by the third party I2C driver writer. The

third party I2C driver writer uses the index into the I2C slave address array as the relative I2C slave

address. The I2C IO protocol uses the I2C slave address array to translate the relative I2C slave

address into the platform specific I2C slave address. The relative value always starts at zero (0) and

its maximum value is the number of entries in I2C slave address array minus one.

Each I2C slave address entry is specified as a 32-bit integer to allow room for future I2C slave

address expansion. Only the I2C master protocol knows the maximum I2C slave address value. All
other drivers and applications must look for the EFI_NOT_FOUND status for the indication that a

reserve bit was set in the I2C slave address.

0 7‐bit Slave Address Reserved (Must Be Zero)

7 8 030 31

1 10‐bit Slave Address Reserved (Must Be Zero)

9 10 030 31

17.1.2.3.1 Driver Binding Protocol Supported() API

The driver binding protocol’s Supported() routine looks for controllers which declare the
EFI_I2C_IO_PROTOCOL and match the device path supplied by the silicon vendor or third party

I2C driver writer to the platform integrator.

The third party I2C device driver creates a GUID for a Vendor-Defined Hardware Device Path Node

when describing the I2C device. The third party I2C device driver writer provides this GUID to the

person writing the platform specific code to identify the type of I2C device.

The third party I2C driver which consumes the EFI_I2C_IO_PROTOCOL compares the known
GUID with the GUID pointed to by the DeviceGuid field.

An example algorithm for the driver binding protocol Supported() routine:

1. Open the EFI_I2C_IO_PROTOCOL using EFI_OPEN_PROTOCOL_BY_DRIVER

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 287

2. If OpenProtocol() fails return the error status

3. Get the vendor GUID from the EFI_I2C_IO_PROTOCOL

4. Close the EFI_I2C_IO_PROTOCOL

5. Compare the expected vendor GUID to the GUID from the EFI_I2C_IO_PROTOCOL
structure.

6. If the GUIDS don’t match then return EFI_NOT_SUPPORTED

7. Return EFI_SUCCESS

17.1.2.3.2 Supporting Multiple Hardware Versions

Note that package markings are important to allow the platform integrator to verify the hardware
revision after the part is integrated! The platform integrator includes the hardware revision

information into the EFI_I2C_ENUMERATE_PROTOCOL. The I2C bus driver gets this data

during the I2C device enumeration and makes it available to the third party I2C device driver via the
EFI_I2C_IO_PROTOCOL. There are a couple of ways in which the silicon vendor or third party

I2C driver writer may support multiple hardware versions of the I2C device:

• Provide a different GUID value to the platform integrator for each hardware revision

• Provide a different hardware version value to the platform integrator with the devices

Each of the above methods describes an interface to the I2C device. The interface specifies the

number of slave addresses as well as the features and software workarounds for the I2C device.

17.1.2.4 I2C IO Protocol

The I2C IO protocol is platform, host controller, and I2C chip independent.

The I2C bus driver creates a handle for each of the I2C devices returned by the I2C enumerate

protocol. The I2C controller's device path is extended with the vendor GUID and unique ID value

returned by the I2C enumerate protocol and attached to the handle. The vendor GUID is used to
extend the device path with a Vendor-define Hardware Device Path Node and the unique ID is used
to further extend the device path with a Controller Device Path Node. If the unique ID is 0, then the

Controller Device Path Node is optional. The third party I2C device driver uses the device GUID to
determine if it may connect.

When a third party I2C device driver or application calls QueueRequest(), the I2C IO protocol

validates the SlaveAddressIndex (relative I2C address) for the I2C device and then converts

the SlaveAddressIndex to a I2C slave address. The request is then passed to the I2C host

protocol along with the tuple BusConfiguration:I2C slave address.

17.1.2.5 I2C Host Protocol

The I2C host protocol is platform, host controller, and I2C chip independent.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

288 May 2017 Version 1.6

Note: For proper operation of the I2C bus, only the I2C IO protocol and I2C test applications connect to
the EFI_I2C_HOST_PROTOCOL.

The I2C host protocol may access any device on the I2C bus. The I2C host protocol has the
following responsibilities:

• Limits the number of requests to the I2C master protocol to one. The I2C host protocol holds on

to additional requests until the I2C master protocol is available to process the request. The I2C

requests are issued in FIFO order to the I2C master protocol.

• Enable the proper I2C bus configuration before starting the I2C request using the I2C master
protocol

I2C devices are addressed as the tuple: BusConfiguration:SlaveAddress. I2C bus configuration zero

(0) is the portion of the I2C bus that connects to the host controller. The bus configuration specifies

the control values for the switches and multiplexers in the I2C bus. After the switches and

multiplexers are properly configured, the I2C controller uses the slave address to access the

requested I2C device.

Since the I2C protocol stack supports asynchronous transactions the I2C host protocol maintains a

queue of I2C requests until the I2C controller is available them. When a request reaches the head of

the queue the necessary bus configuration is enabled and then the request is sent to the I2C master
protocol.

17.1.2.6 I2C Master Protocol
The I2C master protocol is I2C controller specific but platform independent.

This protocol is designed to allow the implementation to be built as a driver which may be delivered
in binary form as an EFI image.

The master protocol manipulates the I2C controller to perform a transaction on the I2C bus. The I2C
master protocol does not configure the I2C bus so it is up to the caller to ensure that the I2C bus is in

the proper configuration before issuing the I2C request.

The I2C master protocol typically needs the following information:

• Host controller address

• Controller's input clock frequency

Depending upon the I2C controller, more data may be necessary. This protocol may use any method
to get these values: hard coded values, PCD values, or may choose to communicate with the
platform specific code using an undefined mechanism to get these values.

If the I2C master protocol requires data from the platform specific code then the I2C master
protocol writer needs to provide the platform interface details to the platform software designer.

17.1.2.7 Platform Specific Code
The platform specific code installs the EFI_I2C_ENUMERATE_PROTOCOL to provide the I2C
device descriptions to the I2C bus driver using the EFI_I2C_DEVICE structure. These

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 289

descriptions include the bus configuration number required for the I2C device, the slave address
array, the vendor GUID and a unique ID value.

The EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL enables the I2C host
protocol to call into the platform specific code to enable a specific I2C bus configuration and set the
I2C bus frequency. This protocol is required to get the I2C host protocol to start for the I2C
controller’s handle.

The platform software designer collects the data requirements from third party I2C driver writers,
the vendor specific I2C master protocol writer, the
EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL and
EFI_I2C_ENUMERATE_PROTOCOL. The platform software designer gets the necessary data
from the platform hardware designer. The platform software designer then builds the data structures

and implements the necessary routines to construct the platform specific code for I2C.

17.1.2.8 Switches and Multiplexers
There are some I2C switches and I2C multiplexers where the control is done via I2C commands.

When the control inputs come via the same I2C bus that is being configured then the platform

specific code must use the EFI_I2C_MASTER_PROTOCOL. While the I2C host protocol makes

the call to EnableI2cBusConfiguration to configure the I2C bus, the I2C host protocol
keeps the I2C master protocol idle, enabling the platform specific code to perform the necessary I2C
configuration transactions.

If however the configuration control is done via an I2C device connected to a different I2C bus (host
controller), then the platform software designer may choose between the following:

• Call into a third party I2C driver to manipulate the I2C bus control device.

• Call into the EFI_I2C_IO_PROTOCOL if no third party I2C driver exists for the I2C bus
control device

• Call into the EFI_I2C_HOST_PROTOCOL if the platform does not expose the I2C bus control
device.

17.1.3 PCI Comparison
PCI provides several features to describe the device to the operating system as well decoupling the
driver from the specific platform.

17.1.3.1 Device Description
PCI uses the Vendor ID and Device ID fields in configuration space to identify the piece of
hardware. Where the Vendor ID is assigned by the PCI committee and the Device ID is assigned by
the hardware manufacture.

PCI also uses the Base Class, Sub Class and Programming Interface fields to help
identify the operating system driver.

The I2C protocol stack uses the vendor GUID associated with the I2C device to identify the UEFI

driver. This GUID is supplied by the silicon vendor or third party I2C driver writer to the platform

I2C Protocol Stack Platform Initialization Spec, Vol. 5

290 May 2017 Version 1.6

integrator and gets included in the I2C platform driver. The EFI_I2C_ENUMERATE_PROTOCOL

provides this GUID to the I2C bus driver during the I2C bus enumeration.

The driver binding protocol’s Supported() routine of the third party I2C device driver looks for
controllers which have the EFI_I2C_IO_PROTOCOL and have a match for the vendor GUID.

17.1.3.2 Hardware Features and Workarounds
PCI provides a Revision ID field to allow the driver to determine which version of hardware is
present and which features and software workarounds are necessary to support this device.

The I2C protocol stack uses the HardwareRevision field in the EFI_I2C_IO_PROTOCOL for
this same purpose. It is recommended that this value match the _HRV value in the DSDT for this

I2C device. See the Advanced Configuration and Power Interface Specification, Revision 5.0 for
the field format and the Plug and play support for I2C web-page for restriction on values.

17.1.3.3 Device Relative Addressing
PCI provides Base Address Registers (BARs) to decouple the device driver software from
the details of the platform’s PCI bus configuration. Typically, all device register references are fixed
offsets from one of the BAR addresses.

The I2C protocol stack provides a similar mechanism using an index into an array of slave addresses.
The silicon vendor or third party driver writer provides the structure of the array listing the major
functions to the platform integrator. An example is:

0: Accelerometer

1: Compass

The platform integrator works with the platform’s hardware designer to get the I2C slave addresses

of the I2C device and builds the array which is included in the platform specific code. During I2C

device enumeration, this array is passed to the I2C bus driver for use by the I2C IO protocol.

The third party I2C driver references the major components within the I2C device using the index

values, thus remaining platform independent. The I2C IO protocol performs the array lookup,

translating the index into an actual slave address on the I2C bus.

Most I2C devices only have a single I2C slave address and thus the third party I2C device driver will

only use index zero (0). Also depending upon the I2C device architecture, the silicon vendor or third

party I2C device writer may choose to write multiple drivers, each supporting a single I2C slave
address.

17.1.4 Hot Plug Support

I2C protocol stack enables the platform specific code to support hot-plug with the following
algorithm:

1. Describe all possible devices on all possible busses, including the hot-plug devices.

2. The platform specific code detects hot-plug events: Add and Remove

3. For a removal event:

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 291

• The platform specific code opens the EFI_I2C_IO_PROTOCOL on the hot-plug device’s
handle exclusively. This operation tears down any upper layer protocols on this handle.
Note that the open request may fail if I/O is pending in the lower protocols.

• When the step above fails, delay below TPL_NOTIFY to allow the current I

• 2C transaction complete and then retry until the open is successful

• After the open is successful, the platform specific code may use the I

• 2C IO protocol to perform I2C transactions for device probing.

4. For an add event:

• The platform specific code waits for completion any outstanding I/O that the platform
specific code initiated on the hot-plug I2C device.

• The platform specific code closes the EFI_I2C_IO_PROTOCOL

• The platform specific code issues a ConnectController() on the hot-plug device’s
handle. This causes the protocol stack which uses the hot-plug device to be reloaded.

17.2 DXE Code definitions

The I2C protocol stack consists of the following protocols:

• EFI_I2C_IO_PROTOCOL – Third party silicon vendors use this protocol to access their I2C

device. This protocol enables a driver or application to perform I/O transactions to a single I2C

device independent of the I2C bus configuration.

• EFI_I2C_HOST_PROTOCOL – The I2C bus driver uses this protocol to produce the

EFI_I2C_IO_PROTOCOL that provides access a device on the I2C bus.

• EFI_I2C_MASTER_PROTOCOL – The I2C host protocol uses this protocol to manipulate the

I2C host controller and perform transactions as a master on the I2C bus.

• EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL – The I2C host protocol

uses this protocol to request the proper state for the switches and multiplexers in the I2C bus and

set the I2C clock frequency.

• EFI_I2C_ENUMERATE_PROTOCOL – The I2C bus driver uses this protocol to enumerate the

devices on the I2C bus, getting the bus configuration and an array of slave addresses for each of

the I2C devices.

The following sections describe these protocols in detail.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

292 May 2017 Version 1.6

17.2.1 I2C Master Protocol

EFI_I2C_MASTER_PROTOCOL

Summary
This protocol manipulates the I2C host controller to perform transactions as a master on the I2C bus
using the current state of any switches or multiplexers in the I2C bus.

GUID
#define EFI_I2C_MASTER_PROTOCOL_GUID \
{ 0xcd72881f, 0x45b5, 0x4feb, { 0x98, 0xc8, 0x31, 0x3d, \
0xa8, 0x11, 0x74, 0x62 }}

Protocol Interface Structure

typedef struct _EFI_I2C_MASTER_PROTOCOL {
 EFI_I2C_MASTER_PROTOCOL_SET_BUS_FREQUENCY SetBusFrequency;
 EFI_I2C_MASTER_PROTOCOL_RESET Reset;
 EFI_I2C_MASTER_PROTOCOL_START_REQUEST StartRequest;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES
*I2cControllerCapabilities;
} EFI_I2C_MASTER_PROTOCOL;

Parameters
SetBusFrequency

Set the clock frequency for the I2C bus.

Reset

Reset the I2C host controller.

StartRequest

Start an I2C transaction in master mode on the host controller.

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Description

The EFI_I2C_MASTER_PROTOCOL is typically used by the I2C host protocol to perform

transactions on the I2C bus. This protocol may also be used to configure the I2C clock frequency

and use I2C transactions to set the state of switches and multiplexers in the I2C bus.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 293

Related Definitions

0 7‐bit Slave Address Reserved (Must Be Zero)

7 8 030 31

1 10‐bit Slave Address Reserved (Must Be Zero)

9 10 030 31

A 10-bit slave address is or’ed with the following value enabling the I2C protocol stack to address
the duplicated address space between 0 and 127 in 10-bit mode.

#define I2C_ADDRESSING_10_BIT 0x80000000

The I2C protocol stack uses the EFI_I2C_REQUEST_PACKET structure to describe I2C

transactions on the I2C bus. The EFI_I2C_OPERATION describes a portion of the I2C transaction.
The transaction starts with a start bit followed by the first operation in the operation array.
Subsequent operations are separated with repeated start bits and the last operation is followed by a
stop bit which concludes the transaction.

typedef struct {
 UINTN OperationCount;
 EFI_I2C_OPERATION Operation[];
} EFI_I2C_REQUEST_PACKET;

Parameters
OperationCount

Number of elements in the operation array.

Operation

Description of the I2C operation

Description
The EFI_I2C_REQUEST_PACKET describes a single I2C transaction. The transaction starts with
a start bit followed by the first operation in the operation array. Subsequent operations are separated
with repeated start bits and the last operation is followed by a stop bit which concludes the
transaction. Each operation is described by one of the elements in the Operation array.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

294 May 2017 Version 1.6

typedef struct {
 UINT32 Flags;
 UINT32 LengthInBytes;
 UINT8 *Buffer;
} EFI_I2C_OPERATION;

Parameters
Flags

Flag bits qualify the I2C operation.

Flag Bits:

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 295

///
/// Define the I2C flags
///
/// I2C read operation when set
#define I2C_FLAG_READ 0x00000001

///
/// Define the flags for SMBus operation
///
/// The following flags are also present in only the first I2C operation
/// and are ignored when present in other operations. These flags
/// describe a particular SMB transaction as shown in the following table.
///

/// SMBus operation
#define I2C_FLAG_SMBUS_OPERATION 0x00010000

/// SMBus block operation
/// The flag I2C_FLAG_SMBUS_BLOCK causes the I2C master protocol to update
/// the LengthInBytes field of the operation in the request packet with
/// the actual number of bytes read or written. These values are only
/// valid when the entire I2C transaction is successful.
/// This flag also changes the LengthInBytes meaning to be: A maximum
/// of LengthInBytes is to be read from the device. The first byte
/// read contains the number of bytes remaining to be read, plus an
/// optional PEC value.
#define I2C_FLAG_SMBUS_BLOCK 0x00020000

/// SMBus process call operation
#define I2C_FLAG_SMBUS_PROCESS_CALL 0x00040000

/// SMBus use packet error code (PEC)
/// Note that the I2C master protocol may clear the I2C_FLAG_SMBUS_PEC bit
/// to indicate that the PEC value was checked by the hardware and is
/// not appended to the returned read data.
///
#define I2C_FLAG_SMBUS_PEC 0x00080000

//--
///
/// QuickRead: OperationCount=1,
/// LengthInBytes=0, Flags=I2C_FLAG_READ
/// QuickWrite: OperationCount=1,
/// LengthInBytes=0, Flags=0
///
///
/// ReceiveByte: OperationCount=1,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_READ
/// ReceiveByte+PEC: OperationCount=1,
/// LengthInBytes=2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_READ
/// | I2C_FLAG_SMBUS_PEC
///
///

I2C Protocol Stack Platform Initialization Spec, Vol. 5

296 May 2017 Version 1.6

/// SendByte: OperationCount=1,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// SendByte+PEC: OperationCount=1,
/// LengthInBytes=2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ReadDataByte: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// LengthInBytes=1, Flags=I2C_FLAG_READ
/// ReadDataByte+PEC: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=2, Flags=I2C_FLAG_READ
///
///
/// WriteDataByte: OperationCount=1,
/// LengthInBytes=2, Flags=I2C_FLAG_SMBUS_OPERATION
/// WriteDataByte+PEC: OperationCount=1,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ReadDataWord: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// LengthInBytes=2, Flags=I2C_FLAG_READ
/// ReadDataWord+PEC: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=3, Flags=I2C_FLAG_READ
///
///
/// WriteDataWord: OperationCount=1,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// WriteDataWord+PEC: OperationCount=1,
/// LengthInBytes=4, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ReadBlock: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_BLOCK
/// LengthInBytes=33, Flags=I2C_FLAG_READ
/// ReadBlock+PEC: OperationCount=2,
/// LengthInBytes=1, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_BLOCK
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=34, Flags=I2C_FLAG_READ
///
///
/// WriteBlock: OperationCount=1,
/// LengthInBytes=N+2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_BLOCK
/// WriteBlock+PEC: OperationCount=1,
/// LengthInBytes=N+3, Flags=I2C_FLAG_SMBUS_OPERATION

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 297

/// | I2C_FLAG_SMBUS_BLOCK
/// | I2C_FLAG_SMBUS_PEC
///
///
/// ProcessCall: OperationCount=2,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// LengthInBytes=2, Flags=I2C_FLAG_READ
/// ProcessCall+PEC: OperationCount=2,
/// LengthInBytes=3, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=3, Flags=I2C_FLAG_READ
///
///
/// BlkProcessCall: OperationCount=2,
/// LengthInBytes=N+2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// | I2C_FLAG_SMBUS_BLOCK
/// LengthInBytes=33, Flags=I2C_FLAG_READ
/// BlkProcessCall+PEC: OperationCount=2,
/// LengthInBytes=N+2, Flags=I2C_FLAG_SMBUS_OPERATION
/// | I2C_FLAG_SMBUS_PROCESS_CALL
/// | I2C_FLAG_SMBUS_BLOCK
/// | I2C_FLAG_SMBUS_PEC
/// LengthInBytes=34, Flags=I2C_FLAG_READ
///
//--

LengthInBytes

Number of bytes to send to or receive from the I2C device. A ping (address only byte/
bytes) is indicated by setting the LengthInBytes to zero.

Buffer

Pointer to a buffer containing the data to send or to receive from the I2C device. The
Buffer must be at least LengthInBytes in size.

Description

The EFI_I2C_OPERATION describes a subset of an I2C transaction in which the I2C controller is
either sending or receiving bytes from the bus. Some transactions will consist of a single operation
while others will be two or more.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

298 May 2017 Version 1.6

Note: Some I2C controllers do not support read or write ping (address only) operation and will return
EFI_UNSUPPORTED status when these operations are requested.

Note: I2C controllers which do not support complex transactions requiring multiple repeated start bits
return EFI_UNSUPPORTED without processing any of the transaction.

typedef struct {
 UINT32 StructureSizeInBytes;
 UINT32 MaximumReceiveBytes;
 UINT32 MaximumTransmitBytes;
 UINT32 MaximumTotalBytes;
} EFI_I2C_CONTROLLER_CAPABILITIES;

Parameters
StructureSizeInBytes

Length of this data structure in bytes

MaximumReceiveBytes;

The maximum number of bytes the I2C host controller is able to receive from the I2C
bus.

MaximumTransmitBytes

The maximum number of bytes the I2C host controller is able to send on the I2C bus.

MaximumTotalBytes

The maximum number of bytes in the I2C bus transaction.

Description

The EFI_I2C_CONTROLLER_CAPABILITIES specifies the capabilities of the I2C host
controller. The StructureSizeInBytes enables variations of this structure to be identified if
there is need to extend this structure in the future.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 299

EFI_I2C_MASTER_PROTOCOL.SetBusFrequency()

Summary

Set the frequency for the I2C clock line.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_MASTER_PROTOCOL_SET_BUS_FREQUENCY) (
 IN CONST EFI_I2C_MASTER_PROTOCOL *This,
 IN OUT UINTN *BusClockHertz
);

Parameters
This

Pointer to an EFI_I2C_MASTER_PROTOCOL structure.

BusClockHertz

Pointer to the requested I2C bus clock frequency in Hertz. Upon return this value

contains the actual frequency in use by the I2C controller.

Description
This routine must be called at or below TPL_NOTIFY.

The software and controller do a best case effort of using the specified frequency for the I2C bus. If

the frequency does not match exactly then the I2C master protocol selects the next lower frequency

to avoid exceeding the operating conditions for any of the I2C devices on the bus. For example if
400 KHz was specified and the controller's divide network only supports 402 KHz or 398 KHz then

the I2C master protocol selects 398 KHz. If there are not lower frequencies available, then return
EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The bus frequency was set successfully.

EFI_ALREADY_STARTED The controller is busy with another transaction.

EFI_UNSUPPORTED The controller does not support this frequency.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

300 May 2017 Version 1.6

EFI_I2C_MASTER_PROTOCOL.Reset()

Summary

Reset the I2C controller and configure it for use.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_MASTER_PROTOCOL_RESET) (
 IN CONST EFI_I2C_MASTER_PROTOCOL *This
);

Parameters
This

Pointer to an EFI_I2C_MASTER_PROTOCOL structure.

Description
This routine must be called at or below TPL_NOTIFY.

The I2C controller is reset. The caller must call SetBusFrequency() after calling Reset().

Status Codes Returned

EFI_SUCCESS The reset completed successfully.

EFI_ALREADY_STARTED The controller is busy with another transaction.

EFI_DEVICE_ERROR The reset operation failed.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 301

EFI_I2C_MASTER_PROTOCOL.StartRequest()

Summary

Start an I2C transaction on the host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_MASTER_PROTOCOL_START_REQUEST) (
 IN CONST EFI_I2C_MASTER_PROTOCOL *This,
 IN UINTN SlaveAddress,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket,
 IN EFI_EVENT Event OPTIONAL,
 OUT EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_MASTER_PROTOCOL structure.

SlaveAddress

Address of the device on the I2C BUS. Set the I2C_ADDRESSING_10_BIT when
using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit

I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses.

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C
transaction.

Event

Event to signal for asynchronous transactions, NULL for synchronous transactions

I2cStatus

Optional buffer to receive the I2C transaction completion status

Description
This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

This function initiates an I2C transaction on the controller. To enable proper error handling by the

I2C protocol stack, the I2C master protocol does not support queuing but instead only manages one

I2C transaction at a time. This API requires that the I2C bus is in the correct configuration for the

I2C transaction.

The transaction is performed by sending a start-bit and selecting the I2C device with the specified

I2C slave address and then performing the specified I2C operations. When multiple operations are

I2C Protocol Stack Platform Initialization Spec, Vol. 5

302 May 2017 Version 1.6

requested they are separated with a repeated start bit and the slave address. The transaction is
terminated with a stop bit.

When Event is NULL, StartRequest operates synchronously and returns the I2C completion
status as its return value.

When Event is not NULL, StartRequest synchronously returns EFI_SUCCESS indicating that

the I2C transaction was started asynchronously. The transaction status value is returned in the buffer

pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL.
After the transaction status is returned the Event is signaled.

Note: The typical consumer of this API is the I2C host protocol. Extreme care must be taken by other
consumers of this API to prevent confusing the third party I2C drivers due to a state change at the
I2C device which the third party I2C drivers did not initiate. I2C platform specific code may use this
API within these guidelines.

Status Codes Returned

EFI_SUCCESS The asynchronous transaction was successfully started when

Event is not NULL.

EFI_SUCCESS The transaction completed successfully when Event is NULL.

EFI_ALREADY_STARTED The controller is busy with another transaction.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETE
R

RequestPacket is NULL

EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR will be returned if the controller cannot

distinguish when the NACK occurred.

EFI_OUT_OF_RESOURCE
S

Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

17.2.2 I2C Host Protocol

EFI_I2C_HOST_PROTOCOL

Summary

This protocol provides callers with the ability to do I/O transactions to all of the devices on the I2C
bus.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 303

GUID
#define EFI_I2C_HOST_PROTOCOL_GUID \
{ 0xa5aab9e3, 0xc727, 0x48cd, { 0x8b, 0xbf, 0x42, 0x72, \
0x33, 0x85, 0x49, 0x48 }}

Protocol Interface Structure

typedef struct _EFI_I2C_HOST_PROTOCOL {
 EFI_I2C_HOST_PROTOCOL_QUEUE_REQUEST QueueRequest;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES
*I2cControllerCapabilities;
} EFI_I2C_HOST_PROTOCOL;

Parameters
QueueRequest

Queue an transaction for execution on the I2C bus

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Description
The I2C bus driver uses the services of the EFI_I2C_HOST_PROTOCOL to produce an instance of

the EFI_I2C_IO_PROTOCOL for each I2C device on an I2C bus.

The EFI_I2C_HOST_PROTOCOL exposes an asynchronous interface to callers to perform

transactions to any device on the I2C bus. Internally, the I2C host protocol manages the flow of the

I2C transactions to the host controller, keeping them in FIFO order. Prior to each transaction, the

I2C host protocol ensures that the switches and multiplexers are properly configured. The I2C host
protocol then starts the transaction on the host controller using the
EFI_I2C_MASTER_PROTOCOL.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

304 May 2017 Version 1.6

EFI_I2C_HOST_PROTOCOL.QueueRequest()

Summary

Queue an I2C transaction for execution on the I2C controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_HOST_PROTOCOL_QUEUE_REQUEST) (
 IN CONST EFI_I2C_HOST_PROTOCOL *This,
 IN UINTN I2cBusConfiguration,
 IN UINTN SlaveAddress,
 IN EFI_EVENT Event OPTIONAL,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket,
 OUT EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_HOST_PROTOCOL structure.

I2cBusConfiguration

I2C bus configuration to access the I2C device

SlaveAddress

Address of the device on the I2C bus. Set the I2C_ADDRESSING_10_BIT when
using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit

I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses.

Event

Event to signal for asynchronous transactions, NULL for synchronous transactions

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C transaction

I2cStatus

Optional buffer to receive the I2C transaction completion status

Description

Queue an I2C transaction for execution on the I2C controller.

This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

The I2C host protocol uses the concept of I2C bus configurations to describe the I2C bus. An I2C bus

configuration is defined as a unique setting of the multiplexers and switches in the I2C bus which

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 305

enable access to one or more I2C devices. When using a switch to divide a bus, due to bus frequency

differences, the I2C bus configuration management protocol defines an I2C bus configuration for the

I2C devices on each side of the switch. When using a multiplexer, the I2C bus configuration

management defines an I2C bus configuration for each of the selector values required to control the

multiplexer. See Figure 1 in the I2C -bus specification and user manual for a complex I2C bus
configuration.

The I2C host protocol processes all transactions in FIFO order. Prior to performing the transaction,

the I2C host protocol calls EnableI2cBusConfiguration to reconfigure the switches and

multiplexers in the I2C bus enabling access to the specified I2C device. The

EnableI2cBusConfiguration also selects the I2C bus frequency for the I2C device. After the I2C bus

is configured, the I2C host protocol calls the I2C master protocol to start the I2C transaction.

When Event is NULL, QueueRequest() operates synchronously and returns the I2C completion
status as its return value.

When Event is not NULL, QueueRequest() synchronously returns EFI_SUCCESS indicating

that the asynchronously I2C transaction was queued. The values above are returned in the buffer

pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

306 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The asynchronous transaction was successfully queued when

Event is not NULL.

EFI_SUCCESS The transaction completed successfully when Event is NULL.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETE
R

RequestPacket is NULL

EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter

EFI_NO_MAPPING Invalid I2cBusConfiguration value

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR will be returned if the controller cannot

distinguish when the NACK occurred.

EFI_OUT_OF_RESOURCE
S

Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

17.2.3 I2C I/O Protocol

EFI_I2C_IO_PROTOCOL

Summary

The EFI I2C I/O protocol enables the user to manipulate a single I2C device independent of the host

controller and I2C design.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 307

GUID
#define EFI_I2C_IO_PROTOCOL_GUID \
{ 0xb60a3e6b, 0x18c4, 0x46e5, { 0xa2, 0x9a, 0xc9, 0xa1, \
0x06, 0x65, 0xa2, 0x8e }}

Protocol Interface Structure

typedef struct _EFI_I2C_IO_PROTOCOL {
 EFI_I2C_IO_PROTOCOL_QUEUE_REQUEST QueueRequest;
 CONST EFI_GUID *DeviceGuid;
 UINT32 DeviceIndex;
 UINT32 HardwareRevision;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES
*I2cControllerCapabilities;
} EFI_I2C_IO_PROTOCOL;

Parameters
QueueRequest

Queue an I2C transaction for execution on the I2C device.

DeviceGuid

Unique value assigned by the silicon manufacture or the third party I2C driver writer

for the I2C part. This value logically combines both the manufacture name and the

I2C part number into a single value specified as a GUID.

DeviceIndex

Unique ID of the I2C part within the system

HardwareRevision

Hardware revision - ACPI _HRV value. See the Advanced Configuration and Power
Interface Specification, Revision 5.0 for the field format and the Plug and play
support for I2C web-page for restriction on values.

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Description

• The I2C IO protocol enables access to a specific device on the I2C bus.

• Each I2C device is identified uniquely in the system by the tuple
DeviceGuid:DeviceIndex. The DeviceGuid represents the manufacture and part

number and is provided by the silicon vendor or the third party I2C device driver writer. The
DeviceIndex identifies the part within the system by using a unique number and is created by the
board designer or the writer of the EFI_I2C_ENUMERATE_PROTOCOL.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

308 May 2017 Version 1.6

I2C slave addressing is abstracted to validate addresses and limit operation to the specified I2C

device. The third party providing the I2C device support provides an ordered list of slave addresses

for the I2C device required to implement the EFI_I2C_ENUMERATE_PROTOCOL. The order of
the list must be preserved.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 309

 EFI_I2C_IO_PROTOCOL.QueueRequest()

Summary

Queue an I2C transaction for execution on the I2C device.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_I2C_IO_PROTOCOL_QUEUE_REQUEST) (
 IN CONST EFI_I2C_IO_PROTOCOL *This,
 IN UINTN SlaveAddressIndex,
 IN EFI_EVENT Event OPTIONAL,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket,
 OUT EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_IO_PROTOCOL structure.

SlaveAddressIndex

Index value into an array of slave addresses for the I2C device. The values in the array

are specified by the board designer, with the third party I2C device driver writer
providing the slave address order.

For devices that have a single slave address, this value must be zero. If the I2C device

uses more than one slave address then the third party (upper level) I2C driver writer
needs to specify the order of entries in the slave address array.

Event

Event to signal for asynchronous transactions, NULL for synchronous transactions

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C transaction

I2cStatus

Optional buffer to receive the I2C transaction completion status

Description
This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

This routine queues an I2C transaction to the I2C controller for execution on the I2C bus.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

310 May 2017 Version 1.6

When Event is NULL, QueueRequest() operates synchronously and returns the I2C
completion status as its return value.

When Event is not NULL, QueueRequest() synchronously returns EFI_SUCCESS indicating

that the asynchronous I2C transaction was queued. The values above are returned in the buffer

pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL.

Status Codes Returned

EFI_SUCCESS The asynchronous transaction was successfully queued when

Event is not NULL.

EFI_SUCCESS The transaction completed successfully when Event is NULL.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETE
R

RequestPacket is NULL

EFI_NO_MAPPING The EFI_I2C_HOST_PROTOCOL could not set the bus

configuration required to access this I2C device.

EFI_NO_RESPONSE The I2C device is not responding to the slave address selected by

SlaveAddressIndex. EFI_DEVICE_ERROR will be

returned if the controller cannot distinguish when the NACK
occurred.

EFI_OUT_OF_RESOURCE
S

Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

17.2.4 I2C Bus Configuration Management Protocol

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL

Summary

The EFI I2C bus configuration management protocol provides platform specific services that allow

the I2C host protocol to reconfigure the switches and multiplexers and set the clock frequency for the

I2C bus. This protocol also enables the I2C host protocol to reset an I2C device which may be

locking up the I2C bus by holding the clock or data line low.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 311

GUID
#define EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL_GUID \
{ 0x55b71fb5, 0x17c6, 0x410e, { 0xb5, 0xbd, 0x5f, 0xa2, \
0xe3, 0xd4, 0x46, 0x6b }}

Protocol Interface Structure
typedef struct _EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL {

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL_ENABLE_I2C_BUS_CON
FIGURATION EnableI2cBusConfiguration;
} EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL;

Parameters
EnableI2cBusConfiguration

Enable an I2C bus configuration for use.

Description

The I2C protocol stack uses the concept of an I2C bus configuration as a way to describe a particular

state of the switches and multiplexers in the I2C bus.

A simple I2C bus does not have any multiplexers or switches is described to the I2C protocol stack

with a single I2C bus configuration which specifies the I2C bus frequency.

An I2C bus with switches and multiplexers use an I2C bus configuration to describe each of the

unique settings for the switches and multiplexers and the I2C bus frequency. However the I2C bus

configuration management protocol only needs to define the I2C bus configurations that the software
uses, which may be a subset of the total.

The I2C bus configuration description includes a list of I2C devices which may be accessed when

this I2C bus configuration is enabled. I2C devices before a switch or multiplexer must be included in

one I2C bus configuration while I2C devices after a switch or multiplexer are on another I2C bus
configuration.

The I2C bus configuration management protocol is an optional protocol. When the I2C bus

configuration protocol is not defined the I2C host protocol does not start and the I2C master protocol

may be used for other purposes such as SMBus traffic. When the I2C bus configuration protocol is

available, the I2C host protocol uses the I2C bus configuration protocol to call into the platform

specific code to set the switches and multiplexers and set the maximum I2C bus frequency.

The platform designers determine the maximum I2C bus frequency by selecting a frequency which

supports all of the I2C devices on the I2C bus for the setting of switches and multiplexers. The

platform designers must validate this against the I2C device data sheets and any limits of the I2C
controller or bus length.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

312 May 2017 Version 1.6

During I2C device enumeration, the I2C bus driver retrieves the I2C bus configuration that must be

used to perform I2C transactions to each I2C device. This I2C bus configuration value is passed into

the I2C host protocol to identify the I2C bus configuration required to access a specific I2C device.

The I2C host protocol calls EnableBusConfiguration() to set the switches and multiplexers

in the I2C bus and the I2C clock frequency. The I2C host protocol may optimize calls to

EnableBusConfiguration() by only making the call when the I2C bus configuration value

changes between I2C requests.

When I2C transactions are required on the same I2C bus to change the state of multiplexers or

switches, the I2C master protocol must be used to perform the necessary I2C transactions.

It is up to the platform specific code to choose the proper I2C bus configuration when

ExitBootServices() is called. Some operating systems are not able to manage the I2C bus

configurations and must use the I2C bus configuration that is established by the platform firmware
before ExitBootServices() returns.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 313

EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL.
EnableI2cBusConfiguration()

Summary

Enable access to an I2C bus configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL_ENABLE_I2C_BUS_CO
NFIGURATION) (
 IN CONST EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL *This,
 IN UINTN I2cBusConfiguration,
 IN EFI_EVENT Event OPTIONAL,
 IN EFI_STATUS *I2cStatus OPTIONAL
);

Parameters
This

Pointer to an EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL
structure.

I2cBusConfiguration

Index of an I2C bus configuration. All values in the range of zero to N-1 are valid

where N is the total number of I2C bus configurations for an I2C bus.

Event

Event to signal when the transaction is complete

I2cStatus

Buffer to receive the transaction status.

Description
This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must
be called at or below TPL_CALLBACK.

Reconfigure the switches and multiplexers in the I2C bus to enable access to a specific I2C bus

configuration. Also select the maximum clock frequency for this I2C bus configuration.

This routine uses the I2C Master protocol to perform I2C transactions on the local bus. This

eliminates any recursion in the I2C stack for configuration transactions on the same I2C bus. This

works because the local I2C bus is idle while the I2C bus configuration is being enabled.

If I2C transactions must be performed on other I2C busses, then the EFI_I2C_HOST_PROTOCOL,

the EFI_I2C_IO_PROTCOL, or a third party I2C driver interface for a specific device must be

I2C Protocol Stack Platform Initialization Spec, Vol. 5

314 May 2017 Version 1.6

used. This requirement is because the I2C host protocol controls the flow of requests to the I2C

controller. Use the EFI_I2C_HOST_PROTOCOL when the I2C device is not enumerated by the
EFI_I2C_ENUMERATE_PROTOCOL. Use a protocol produced by a third party driver when it is
available or the EFI_I2C_IO_PROTOCOL when the third party driver is not available but the
device is enumerated with the EFI_I2C_ENUMERATE_PROTOCOL.

When Event is NULL, EnableI2cBusConfiguration operates synchronously and returns the

I2C completion status as its return value. The values returned from
EnableI2cBusConfiguration are:

Status Codes Returned

EFI_SUCCESS The asynchronous bus configuration request was successfully

started when Event is not NULL.

EFI_SUCCESS The bus configuration request completed successfully when

Event is NULL.

EFI_DEVICE_ERROR The bus configuration failed.

EFI_NO_MAPPING Invalid I2cBusConfiguration value

17.2.5 I2C Enumerate Protocol

EFI_I2C_ENUMERATE_PROTOCOL

Summary

Support the enumeration of the I2C devices.

GUID
#define EFI_I2C_ENUMERATE_PROTOCOL_GUID \
{ 0xda8cd7c4, 0x1c00, 0x49e2, { 0x80, 0x3e, 0x52, 0x14, \
0xe7, 0x01, 0x89, 0x4c }}

Protocol Interface Structure
typedef struct _EFI_I2C_ENUMERATE_PROTOCOL {
 EFI_I2C_ENUMERATE_PROTOCOL_ENUMERATE Enumerate;
 EFI_I2C_ENUMERATE_PROTOCOL_GET_BUS_FREQUENCY GetBusFrequency;
} EFI_I2C_ENUMERATE_PROTOCOL;

Parameters
Enumerate

Traverse the set of I2C devices on an I2C bus. This routine returns the next I2C device

on an I2C bus.

GetBusFrequency

Get the requested I2C bus frequency for a specified bus configuration.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 315

Description

The I2C bus driver uses this protocol to enumerate the devices on the I2C bus.

Related Definitions
typedef struct {
 CONST EFI_GUID *DeviceGuid;
 UINT32 DeviceIndex;
 UINT32 HardwareRevision;
 UINT32 I2cBusConfiguration;
 UINT32 SlaveAddressCount;
 CONST UINT32 *SlaveAddressArray;
} EFI_I2C_DEVICE;

Parameters
DeviceGuid

Unique value assigned by the silicon manufacture or the third party I2C driver writer

for the I2C part. This value logically combines both the manufacture name and the

I2C part number into a single value specified as a GUID.

DeviceIndex

Unique ID of the I2C part within the system

HardwareRevision

Hardware revision - ACPI _HRV value. See the Advanced Configuration and Power
Interface Specification, Revision 5.0 for the field format and the Plug and play
support for I2C web-page for restriction on values.

I2cBusConfiguration

I2C bus configuration for the I2C device

SlaveAddressCount

Number of slave addresses for the I2C device.

SlaveAddressArray

Pointer to the array of slave addresses for the I2C device.

Description
The EFI_I2C_ENUMERATE_PROTOCOL uses the EFI_I2C_DEVICE to describe the platform

specific details associated with an I2C device. This description is passed to the I2C bus driver during

enumeration where it is made available to the third party I2C device driver via the
EFI_I2C_IO_PROTOCOL.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

316 May 2017 Version 1.6

EFI_I2C_ENUMERATE_PROTOCOL.Enumerate()

Summary

Enumerate the I2C devices

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_ENUMERATE_PROTOCOL_ENUMERATE) (
 IN CONST EFI_I2C_ENUMERATE_PROTOCOL *This,
 IN OUT CONST EFI_I2C_DEVICE **Device
);

Parameters
This

Pointer to an EFI_I2C_ENUMERATE_PROTOCOL structure.

Device

Pointer to a buffer containing an EFI_I2C_DEVICE structure. Enumeration is
started by setting the initial EFI_I2C_DEVICE structure pointer to NULL. The

buffer receives an EFI_I2C_DEVICE structure pointer to the next I2C device.

Description

This function enables the caller to traverse the set of I2C devices on an I2C bus.

Status Codes Returned

EFI_SUCCESS The platform data for the next device on the I2C bus was returned
successfully.

EFI_INVALID_PARAMETER Device is NULL

EFI_NO_MAPPING *Device does not point to a valid EFI_I2C_DEVICE

structure returned in a previous call Enumerate().

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 317

EFI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency()

Summary

Get the requested I2C bus frequency for a specified bus configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_ENUMERATE_PROTOCOL_GET_BUS_FREQUENCY) (
 IN CONST EFI_I2C_ENUMERATE_PROTOCOL *This,
 IN UINTN I2cBusConfiguration,
 OUT UINTN *BusClockHertz
);

Parameters
This

Pointer to an EFI_I2C_ENUMERATE_PROTOCOL structure.

I2cBusConfiguration

I2C bus configuration to access the I2C device

BusClockHertz

Pointer to a buffer to receive the I2C bus clock frequency in Hertz

Description

This function returns the requested I2C bus clock frequency for the I2cBusConfiguration.
This routine is provided for diagnostic purposes and is meant to be called after calling Enumerate
to get the I2cBusConfiguration value.

Status Codes Returned

EFI_SUCCESS The I2C bus frequency was returned successfully.

EFI_INVALID_PARAMETER BusClockHertz was NULL

EFI_NO_MAPPING Invalid I2cBusConfiguration value

17.3 PEI Code definitions

For the Pre-EFI Initialization environment a subset of the I2C stack is defined to support basic
hardware initialization in the PEI phase. The EFI_PEI_I2C_MASTER PPI is defined to

standardize access to the I2C controller.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

318 May 2017 Version 1.6

17.3.1 I2C Master PPI

EFI_PEI_I2C_MASTER

Summary
This PPI manipulates the I2C host controller to perform transactions as a master on the I2C bus
using the current state of any switches or multiplexers in the I2C bus.

GUID
#define EFI_PEI_I2C_MASTER_PPI_GUID \
{ 0xb3bfab9b, 0x9f9c, 0x4e8b, { 0xad, 0x37, 0x7f, 0x8c, \
0x51, 0xfc, 0x62, 0x80 }}

PEIM-to-PEIM Interface Structure
typedef struct _EFI_PEI_I2C_MASTER_PPI {
 EFI_PEI_I2C_MASTER_PPI_SET_BUS_FREQUENCY SetBusFrequency;
 EFI_PEI_I2C_MASTER_PPI_RESET Reset;
 EFI_PEI_I2C_MASTER_PPI_START_REQUEST StartRequest;
 CONST EFI_PEI_I2C_CONTROLLER_CAPABILITIES *
I2cControllerCapabilities;
 EFI_GUID Identifier;
} EFI_PEI_I2C_MASTER_PPI;

Parameters
SetBusFrequency

Set the clock frequency in Hertz for the I2C bus.

Reset

Reset the I2C host controller.

StartRequest

Start an I2C transaction in master mode on the host controller.

I2cControllerCapabilities

Pointer to an EFI_I2C_CONTROLLER_CAPABILITIES data structure containing

the capabilities of the I2C host controller.

Identifier

Identifier which uniquely identifies thisI2C controller in the system.

Description

The EFI_PEI_I2C_MASTER PPI enables the platform code to perform transactions on the I2C
bus.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 319

EFI_PEI_I2C_MASTER_PPI.SetBusFrequency()

Summary

Set the frequency for the I2C clock line.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_MASTER_PPI_SET_BUS_FREQUENCY) (
 IN EFI_PEI_I2C_MASTER *This,
 IN UINTN *BusClockHertz
);

Parameters
This

Pointer to an EFI_PEI_I2C_MASTER_PPI structure.

BusClockHertz

Pointer to the requested I2C bus clock frequency in Hertz. Upon return this value

contains the actual frequency in use by the I2C controller.

Description
The software and controller do a best case effort of using the specified frequency for the I2C bus. If
the frequency does not match exactly then the I2C master protocol selects the next lower frequency
to avoid exceeding the operating conditions for any of the I2C devices on the bus. For example if
400 KHz was specified and the controller's divide network only supports 402 KHz or 398 KHz then
the controller would be set to 398 KHz. If there are no lower frequencies available, then return
EFI_UNSUPPORTED.

Status Codes Returned

EFI_SUCCESS The bus frequency was set successfully.

EFI_INVALID_PARAMETE
R

BusClockHertz is NULL

EFI_UNSUPPORTED The controller does not support this frequency.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

320 May 2017 Version 1.6

EFI_PEI_I2C_MASTER_PPI.Reset()

Summary

Reset the I2C controller and configure it for use.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_MASTER_PPI_RESET) (
 IN CONST EFI_PEI_I2C_MASTER *This
);

Parameters
This

Pointer to an EFI_PEI_I2C_MASTER_PPI structure.

Description

The I2C controller is reset. The caller must call SetBusFrequency() after calling Reset().

Status Codes Returned

EFI_SUCCESS The reset completed successfully.

EFI_DEVICE_ERROR The reset operation failed.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 321

EFI_PEI_I2C_MASTER_PPI.StartRequest()

Summary

Start an I2C transaction on the host controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_MASTER_PPI_START_REQUEST) (
 IN CONST EFI_PEI_I2C_MASTER *This,
 IN UINTN SlaveAddress,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket
);

Parameters
This

Pointer to an EFI_PEI_I2C_MASTER_PPI structure.

SlaveAddress

Address of the device on the I2C bus. Set the I2C_ADDRESSING_10_BIT when
using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit

I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses.

RequestPacket

Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C
transaction.

Description

This function initiates an I2C transaction on the controller.

The transaction is performed by sending a start-bit and selecting the I2C device with the specified

I2C slave address and then performing the specified I2C operations. When multiple operations are
requested they are separated with a repeated start bit and the slave address. The transaction is
terminated with a stop bit. When the transaction completes, the status value is returned.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

322 May 2017 Version 1.6

Status Codes Returned

EFI_SUCCESS The transaction completed successfully.

EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too

large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction.

EFI_INVALID_PARAMETER RequestPacket is NULL

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR will be returned if the controller cannot

distinguish when the NACK occurred.

EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter

EFI_OUT_OF_RESOURCES Insufficient memory for I2C transaction

EFI_UNSUPPORTED The controller does not support the requested transaction.

17.3.2 I2C Host PPI

EFI_PEI_I2C_HOST

Summary
This PPI provides callers with the ability to do I/O transactions to all of the devices on the I2C bus.

GUID
#define EFI_PEI_I2C_HOST_GUID \
{ 0x3a12e52d, 0x3bd2, 0x482c, 0xa6, 0x80, 0x0f, 0xeb, \
0x61, 0x9a, 0xeb, 0xef }

PEIM-to-PEIM Interface Structure
typedef struct _EFI_I2C_HOST_PPI {
 EFI_I2C_HOST_START_REQUEST StartRequest;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES *
I2cControllerCapabilities;
 UINTN ControllerNumber;
};

Parameters
QueueRequest

Queue a transaction for execution on the I2C bus

I2cControllerCapabilities

The address of an EFI_I2C_CONTROLLER_CAPABILITIES data structure
containing the capabilities of the I2C host controller.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 323

ControllerNumber

Unique number identifying the I2C controller in the system

Description

Please use EFI_PEI_I2C_IO as EFI_PEI_I2C_HOST is only intended to be used by the I2C
bus driver. The EFI_PEI_I2C_HOST requires the tuple
ControllerNumber:BusConfiguration:SlaveAddress which is platform specific data

to identify the I2C device. EFI_PEI_I2C_IO eliminates the platform specific details.

The upper layer driver locates the correct EFI_PEI_I2C_HOST interface (I2cHost) by comparing
the following field:

• I2cHostControllerNumber with the system unique value for the I2C ControllerNumber

Prior to each transaction, the I2C host driver ensures that the switches and multiplexers are properly

configured. The I2C host driver then starts the transaction on the I2C controller calling the I2C port
driver interface (EFI_PEI_I2C_MASTER).

Related Definitions
The I2C platform driver installs the following GUID after installing EFI_PEI_I2C_ENUMERATE

and EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT PPIs for the necessary I2C

controllers. The following GUID resolves the dependency expressions for the I2C port and host
drivers enabling them to load and start their configuration.

Lack of EFI_PEI_I2C_BUS_CONFIGURATION prevents the I2C host driver from loading,

reserving the I2C port driver for SMBus transactions.

GUID
#define EFI_PEI_I2C_BUS_CONFIGURED_GUID \
{ 0x9eade134, 0x6bb1, 0x421d, 0xac, 0xaf, 0x59, 0x0a, \
0x5d, 0x2e, 0xa6, 0x3a }

I2C Protocol Stack Platform Initialization Spec, Vol. 5

324 May 2017 Version 1.6

EFI_PEI_I2C_HOST.StartRequest()

Summary

Start a transaction on the I2C controller.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_HOST_START_REQUEST) (
 IN EFI_PEI_I2C_HOST *This,
 IN UINTN I2cBusConfiguration,
 IN UINTN SlaveAddress,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket
);

Parameters
This

Address of an EFI_PEI_I2C_HOST structure.

I2cBusConfiguration

I2C bus configuration to access the I2C device

SlaveAddress

Address of the device on the I2C bus. Or in the value I2C_ADDRESSING_10_BIT
when using 10-bit addresses.

RequestPacket

Address of an EFI_I2C_REQUEST_PACKET structure describing the I2C
transaction

Description
Start an I2C transaction on the I2C controller.

N.B. The typical consumers of this API are the I2C bus driver and on rare occasions I2C test
applications. Extreme care must be taken by other consumers of this API to prevent confusing the

third party I2C drivers due to a state change at the I2C device which the third party I2C drivers did

not initiate. I2C platform drivers may use this API within these guidelines.

This layer uses the concept of I2C bus configurations to describe the I2C bus. An I2C bus

configuration is defined as a unique setting of the multiplexers and switches in the I2C bus which

enable access to one or more I2C devices. When using a switch to divide a bus, due to speed

differences, the I2C platform layer would define an I2C bus configuration for the I2C devices on each

side of the switch. When using a multiplexer, the I2C platform layer defines an I2C bus configuration

http://www.nxp.com/documents/user_manual/UM10204.pdf

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 325

for each of the selector values required to control the multiplexer. See Figure 1 in the I2C -bus

specification and user manual for a complex I2C bus configuration.

The I2C host driver calls the I2C platform driver to reconfigure the switches and multiplexers in the

I2C bus enabling access to the specified I2C device. The I2C platform driver also selects the

maximum bus speed for the device. After the I2C bus is configured, the I2C host driver calls the I2C

port driver to initialize the I2C controller and start the I2C transaction.

In event of timeout, the I2C host driver calls the I2C platform driver in an attempt to reset the host
controller and the I2C device.

Status Codes Returned
The values returned from StartRequest are:

EFI_SUCCESS The transaction completed successfully.

EFI_BAD_BUFFER_SIZE The LengthInBytes value is too large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction. One possible
cause is that the slave device is not present.

EFI_INVALID_PARAMETER RequestPacket is NULL

EFI_NOT_FOUND I2C slave address exceeds maximum address

EFI_NO_MAPPING Invalid I2cBusConfiguration value

EFI_NO_MEDIA State was lost because more than one device was reset!

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR may also be returned if the controller

cannot distinguish when the NACK occurred.

EFI_OUT_OF_RESOURCES Insufficient memory for I2C transaction

EFI_TIMEOUT The transaction did not complete within the specified timeout period.

EFI_UNSUPPORTED The controller does not support the requested transaction.

17.3.3 I2C I/O PPI

EFI_PEI_I2C_IO

Summary

The EFI I2C I/O PPI enables the user to manipulate a single I2C device independent of the host

controller and I2C bus design.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

326 May 2017 Version 1.6

GUID
#define EFI_PEI_I2C_IO_GUID \
{ 0x42179ed0, 0x2fa2, 0x47c0, 0x85, 0x7e, 0x8b, 0xc0, \
0x18, 0x81, 0xea, 0x97 }

PEIM-to-PEIM Interface Structure

typedef struct {
 EFI_PEI_I2C_IO_GET_DEVICE_INFO GetDeviceInfo;
 EFI_PEI_I2C_IO_GET_DEVICE_INFO_ID_LIST GetDeviceInfoIdList;
 EFI_PEI_I2C_IO_START_REQUEST StartRequest;
 EFI_I2C_DEVICE *I2cDevice;
 CONST EFI_I2C_CONTROLLER_CAPABILITIES *
I2cControllerCapabilities;
} EFI_PEI_I2C_IO;

Parameters
GetDeviceInfo

Get a blob of data identified by a GUID.

GetDeviceInfoIdList

Get a list of the GUIDs associated with this I2C device.

StartRequest

Start a transaction on the I2C device.

I2cDevice

A pointer to the EFI_I2C_DEVICE structure contained within the I2C platform
driver.

I2cControllerCapabilities

The address of an EFI_I2C_CONTROLLER_CAPABILITIES data structure
containing the capabilities of the I2C host controller.

Description

The I2C I/O PPI enables access to a specific device on the I2C bus.

Each I2C device is identified uniquely in the system by the tuple DeviceGuid:DeviceIndex.
The DeviceGuid combines the manufacture and part number and is provided by the silicon

vendor or the third party I2C device driver writer. The DeviceIndex identifies the part within the

system by using a unique number and is created by the board designer or the I2C platform driver
writer.

The upper layer I2C driver writer provides the following to the platform vendor:

• Vendor specific GUID for the I2C part that is used to connect the upper layer driver to the
device.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 327

• Slave address array guidance when the I2C device uses more than one slave address. This is

used to access the blocks of hardware within the I2C device.

The upper layer driver locates the correct EFI_PEI_I2C_IO interface (I2cIo) by comparing the
following fields:

• I2cIoDevice.DeviceGuid with the vendor supplied GUID

• I2cIoDeviceIndex with the system wide unique number assigned to the specific I2C part.

I2C slave addressing is abstracted to validate addresses and limit operation to the specified I2C

device. The third party providing the I2C device support provides an ordered list of slave addresses

for the I2C device to the team building the platform layer. The platform team must preserve the order
of the supplied list. SlaveAddressCount is the number of entries in this list or array within the
platform layer. The third party device support references a slave address using an index into the list
or array in the range of zero to SlaveAddressCount - 1.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

328 May 2017 Version 1.6

EFI_I2C_IO_PROTOCOL.GetDeviceInfo()

Summary
Get a data blob associated with the I2C device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_IO_GET_DEVICE_INFO) (
 IN EFI_PEI_I2C_IO *This,
 IN EFI_GUID *DataGuid,
 IN OUT UINT32 *LengthInBytes,
 OUT VOID *Buffer
);

Parameters
This

Address of an EFI_PEI_I2C_IO structure.

DataGuid

Address of the GUID associated with the data

LengthInBytes

Address of a value containing the length of the buffer in bytes on input and receiving
the length of the data on output. If the input length was too small, the output length
specifies the data length.

Buffer

Buffer address to receive the data

Description

This routine locates the specified data blob associated with the I2C device.

Status Codes Returned
The values returned from GetDeviceInfo are:

EFI_SUCCESS The data was returned successfully

EFI_BUFFER_TOO_SMALL The specified buffer length is too small

EFI_INVALID_PARAMETER Buffer is NULL

EFI_INVALID_PARAMETER DataGuid is NULL

EFI_INVALID_PARAMETER LengthInBytes is NULL

EFI_NOT_FOUND Data blob was not found

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 329

EFI_I2C_IO_PROTOCOL.GetDeviceInfoIdList()

Summary
Get the list of data associated with the I2C device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_I2C_IO_GET_DEVICE_INFO_ID_LIST) (
 IN EFI_PEI_I2C_IO *This,
 IN CONST EFI_GUID ***GuidArray,
 IN UINTN *GuidEntries
);

Parameters
This

Address of an EFI_PEI_I2C_IO structure.

GuidArray

Address to receive the list of GUIDs

GuidEntries

Address to receive the number of entries in the GUID array

Description
This routine must be called at or below TPL_NOTIFY.

This routine returns an array of GUIDs identifying data associated with the I2C device. When the
caller is done with the GUID array, the caller must call FreePool to return the GUID array to the
heap.

Status Codes Returned
The values returned from GetDeviceInfoIdList are:

EFI_SUCCESS The GUID array was returned successfully

EFI_INVALID_PARAMETER GuidArray is NULL

EFI_INVALID_PARAMETER GuidEntries is NULL

EFI_OUT_OF_RESOURCES Memory allocation failure

I2C Protocol Stack Platform Initialization Spec, Vol. 5

330 May 2017 Version 1.6

EFI_PEI_I2C_IO.StartRequest()

Summary

Start an I2C transaction on the I2C device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_BUS_START_REQUEST) (
 IN EFI_PEI_I2C_IO *This,
 IN UINTN SlaveAddressIndex,
 IN EFI_I2C_REQUEST_PACKET *RequestPacket
);

Parameters
This

Address of an EFI_PEI_I2C_IO structure.

SlaveAddressIndex

Index value into an array of slave addresses for the I2C device. The values in the array

are specified by the board designer, with the I2C device driver writer providing the
slave address order.

For devices that have a single slave address, this value must be zero. If the I2C device

uses more than one slave address then the third party (upper level) I2C driver writer
needs to specify the order of entries in the slave address array.

RequestPacket

Address of an EFI_I2C_REQUEST_PACKET structure describing the I2C
transaction

Description

N.B. The typical consumers of this API are the third party I2C drivers. Extreme care must be taken

by other consumers of this API to prevent confusing the third party I2C drivers due to a state change

at the I2C device which the third party I2C drivers did not initiate. I2C platform drivers may use this
API within these guidelines.

This routine starts a transaction on the I2C device.

Status Codes Returned
The values returned from StartRequest are:

EFI_SUCCESS The transaction completed successfully.

EFI_BAD_BUFFER_SIZE The LengthInBytes value is too large.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 331

17.3.4 I2C Bus Configuration Management PPI

EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT

Summary

The EFI I2C bus configuration management PPI enables the host driver to interact with the platform

layer to reconfigure the switches and multiplexers and set the clock speed for the I2C bus. This PPI

also enables the I2C host driver to reset an I2C device which may be locking up the I2C bus by
holding the clock or data line low.

GUID
#define EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT_GUID \
{ 0xe721de6f, 0x145b, 0x4532, 0xbd, 0x78, 0x9b, 0x40, \
0x95, 0xc7, 0x46, 0x97 }

PEIM-to-PEIM Interface Structure
typedef struct {

EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT_ENABLE_I2C_BUS_CONFIGUR
ATION EnableI2cBusConfiguration;
 EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT_I2C_DEVICE_RESET
I2cDeviceReset;
} EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT;

Parameters
EnableI2cBusConfiguration

Enable an I2C bus configuration for use.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction. One possible
cause is that the slave device is not present.

EFI_INVALID_PARAMETER RequestPacket is NULL

EFI_NOT_FOUND I2C slave address exceeds maximum address

EFI_NO_MAPPING Invalid I2cBusConfiguration value due to invalid platform

data.

EFI_NO_MEDIA State was lost because more than one device was reset!

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR may also be returned if the controller

cannot distinguish when the NACK occurred.

EFI_OUT_OF_RESOURCES Insufficient memory for I2C transaction

EFI_TIMEOUT The transaction did not complete within the specified timeout period.

EFI_UNSUPPORTED The controller does not support the requested transaction.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

332 May 2017 Version 1.6

I2cDeviceReset

Perform a platform specific reset for the specified I2C part and the I2C controller.

ControllerNumber

Unique number identifying the I2C controller in the system.

Description

The I2C driver stack uses the concept of an I2C bus configuration as a way to describe a particular

state of the switches and multiplexers in the I2C bus.

A simple I2C bus does not have any multiplexers or switches is described to the I2C driver stack with

a single I2C bus configuration.

An I2C bus with switches and multiplexers use an I2C bus configuration to describe each of the

unique settings for the switches and multiplexers. However the I2C platform driver only needs to

define the I2C bus configurations that the software uses, which is a subset of the total.

The upper layer driver locates the correct
EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT interface (I2cBusConfig) by comparing
the following field:

• I2cBusConfigControllerNumber with the system unique value for the I2C ControllerNumber

The I2C bus configuration description includes a list of I2C devices which may be accessed when

this I2C bus configuration is enabled. I2C devices before a switch or multiplexer must be included in

one I2C bus configuration while I2C devices after a switch or multiplexer are on another I2C bus
configuration.

The I2C bus configuration management PPI is an optional PPI provided by the I2C platform driver.

The I2C host driver only starts for this I2C controller if the I2C bus configuration management PPI is

present. The I2C host driver uses the I2C bus configuration management PPI to call into the I2C

platform driver to set the switches and multiplexers and set the maximum I2C bus frequency.

The platform designers determine the maximum I2C bus frequency by selecting a frequency which

supports all of the I2C devices on the I2C bus for the setting of switches and multiplexers. The

platform designers must validate this against the I2C device data sheets and any limits of the I2C
controller or bus length.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 333

EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT.
EnableI2cBusConfiguration()

Summary

Enable access to an I2C bus configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT_ENABLE_I2C_BUS_CONFIGU
RATION) (
 IN EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT *This,
 IN UINTN I2cBusConfiguration
);

Parameters
This

Address of an EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT structure.

I2cBusConfiguration

Index into a list or array of I2C bus configurations

Description

Reconfigure the switches and multiplexers in the I2C bus to enable access to a specific I2C bus

configuration. Also select the maximum clock frequency for this I2C bus configuration.

This routine uses the I2C Master PPI when the platform routine needs to perform I2C transactions on

the local bus. This eliminates any recursion in the I2C stack for configuration transactions on the
local bus.

The platform layer must perform I2C transactions on other I2C busses by using the
EFI_PEI_I2C_HOST PPI or third party driver interface for the specific device. Use the

EFI_PEI_I2C_HOST PPI when the device is not defined by the I2C platform driver. Use the third
party driver when it is available or EFI_PEI_I2C_IO when the third party driver is not available

but the device is defined in the I2C platform driver.

Status Codes Returned
The values returned from EnableI2cBusConfiguration are:

EFI_SUCCESS The transaction completed successfully.

EFI_BAD_BUFFER_SIZE The LengthInBytes value is too large.

EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction. One possible
cause is that the slave device is not present.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

334 May 2017 Version 1.6

EFI_INVALID_PARAMETER RequestPacket is NULL

EFI_NOT_FOUND I2C slave address exceeds maximum address

EFI_NO_MAPPING Invalid I2cBusConfiguration value due to invalid platform

data.

EFI_NO_MEDIA State was lost because more than one device was reset!

EFI_NO_RESPONSE The I2C device is not responding to the slave address.

EFI_DEVICE_ERROR may also be returned if the controller

cannot distinguish when the NACK occurred.

EFI_OUT_OF_RESOURCES Insufficient memory for I2C transaction

EFI_TIMEOUT The transaction did not complete within the specified timeout period.

EFI_UNSUPPORTED The controller does not support the requested transaction.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 335

EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT.I2cDeviceReset ()

Summary

Perform a platform specific reset for the specified I2C part and the I2C controller.

Prototype
typedef
EFI_STATUS
(EFIAPI
*EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT_I2C_DEVICE_RESET) (
 IN CONST EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT *This,
 IN UINTN I2cBusConfiguration,
 IN UINTN SlaveAddress
);

Parameters
This

Address of an EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT structure.

I2cBusConfiguration

Index into a list or array of I2C bus configurations

SlaveAddress

Address of the device on the I2C bus.

Description

This error handling routine is called by the I2C host driver when EFI_TIMEOUT status is returned

by the I2C port driver for an EFI_I2C_REQUEST_PACKET. This routine attempts to reset the

failing I2C device and the I2C controller.

Status Codes Returned
The values returned from I2cDeviceReset are:

EFI_SUCCESS The transaction completed successfully. Only the requested I2C

device and the I2C controller were reset.

EFI_NO_MAPPING Invalid I2cBusConfiguration value due to invalid platform

data.

EFI_NO_MEDIA State was lost because more than one device was reset! The host
driver needs to return errors for the queue of pending

EFI_I2C_REQUEST_PACKETs.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

336 May 2017 Version 1.6

17.3.5 I2C Enumerate PPI

EFI_PEI_I2C_ENUMERATE

Summary

Support the enumeration of the I2C devices listed in the I2C platform driver.

GUID
#define EFI_PEI_I2C_ENUMERATE_GUID \
{ 0xbe83f6f4, 0xe286, 0x4e70, 0xb4, 0x51, 0x1a, 0x2e, \
0x42, 0xdf, 0x31, 0x03 }

Protocol Interface Structure
typedef struct {
 EFI_PEI_I2C_ENUMERATE_ENUMERATE Enumerate;
 EFI_PEI_I2C_ENUMERATE_GET_BUS_FREQUENCY GetBusFrequency;
} EFI_PEI_I2C_ENUMERATE;

Parameters
Enumerate

Walk the platform's list of I2C devices on the bus. This routine returns the next I2C

device in the platform's list for this I2C bus.

GetBusFrequency

Get the I2C bus frequency for the bus configuration.

Description

The I2C bus driver uses this PPI to enumerate the devices on the I2C bus listed in the platform layer.

The upper layer driver locates the correct EFI_PEI_I2C_ENUMERATE interface (I2cEnumerate)
by comparing the following field:

• I2cEnumerateControllerNumber with the system unique value for the I2C
ControllerNumber.

Platform Initialization Spec, Vol. 5 I2C Protocol Stack

Version 1.6 May 2017 337

EFI_PEI_I2C_ENUMERATE_PROTOCOL.Enumerate()

Summary

Enumerate the I2C devices

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_ENUMERATE_ENUMERATE) (
 IN EFI_PEI_I2C_ENUMERATE *This,
 IN OUT CONST EFI_I2C_DEVICE **Device
);

Parameters
This

Address of an EFI_PEI_I2C_ENUMERATE structure.

Device

Address of a buffer containing an EFI_I2C_DEVICE structure. Enumeration is
started by setting the initial EFI_I2C_DEVICE structure address to NULL. The

buffer receives an EFI_I2C_DEVICE structure address for the next I2C device.

Description

This function walks the platform specific data to enumerate the I2C devices on an I2C bus.

Status Codes Returned
The values returned from Enumerate are:

EFI_SUCCESS The platform data for the next device on the I2C bus was returned
successfully.

EFI_INVALID_PARAMETER Device was NULL

EFI_NO_MAPPING Device does not point to a valid EFI_I2C_DEVICE structure.

I2C Protocol Stack Platform Initialization Spec, Vol. 5

338 May 2017 Version 1.6

EFI_PEI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency()

Summary

Get the I2C bus frequency for the bus configuration.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_I2C_ENUMERATE_GET_BUS_FREQUENCY) (
 IN EFI_PEI_I2C_ENUMERATE *This,
 IN UNITN I2cBusConfiguration,
 IN OUT UINTN *BusClockHertz
);

Parameters
This

Address of an EFI_PEI_I2C_ENUMERATE structure.

I2cBusConfiguration

I2C bus configuration to access the I2C device

BusClockHertz

Address to receive the I2C bus clock frequency in Hertz

Description

This function returns the I2C bus clock frequency for the specified I2C bus configuration.

Status Codes Returned
The values returned from GetBusFrequency are:

EFI_SUCCESS The I2C bus frequency was returned successfully.

EFI_INVALID_PARAMETER BusClockHertz was NULL

EFI_NO_MAPPING Invalid I2cBusConfiguration value

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 339

18 SPI Protocol Stack

18.1 Design Discussion
The SPI protocol stack enables third party silicon vendors to write UEFI drivers for their products by
decoupling the SPI chip details from the SPI controller and SPI bus configuration details.

18.1.1 SPI Bus Overview
Each peripheral on the SPI bus share the clock, data out and data in lines. The peripheral is addressed
by using a unique chip select line. Communications with the peripheral must be done at or below the
maximum clock rate which the peripheral supports and must use the proper clock polarity and phase.

Figure 16. SPI Bus

The SPI controller must contain the data shift register and clock gating logic which honors clock
phase, clock polarity and only presents clock pulses when valid data is on the SPI bus. The SPI
controller must pause the clock while waiting for more data.

Independent logic blocks may provide the clock frequency used by the SPI controller as well as
the GPIOs used for the SPI chip selects.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

340 May 2017 Version 1.6

18.1.2 SPI Protocol Stack Overview
The SPI driver stack is being split on functional lines. Most of the complexity ends up in the SPI bus
layer, simplifying the SPI peripheral, SPI controller and board layers.

Figure 17. SPI Layers

The SPI protocol layers are:

• Application Layer - Applications using the SPI chips

• SPI Peripheral Layer - Converts a SPI chip request into one or more transactions on the SPI bus

• SPI Bus Layer - Handles:

• SPI Peripheral Device Enumeration

• SPI Transaction Management

• SPI Controller Management

• SPI Host Controller Layer - Handles details of the SPI controller

• Board Layer - Contains:

• SPI bus descriptions

• SPI part descriptions

• Alternative SPI bus clock support

• Alternative SPI chip select support

• SPI Board Layer

The SPI bus layer provides a data connection point with an EFI_SPI_IO_PROTOCOL data structure for
each SPI peripheral. This data connection point exports the SpiPeripheralDriverGuid from the
EFI_SPI_PART data structure. The SPI peripheral drivers connect to the connection points with the
corresponding GUID.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 341

An example: A generic SPI flash driver is written and provides the GUID {5993C862-5D3F-4ae8-804D-

8C89AD962C31} for use by SPI flash peripherals that meet the criteria specified by the developer of
the SPI flash driver. The board developer chooses a SPI flash part, let's say a WinBond W25Q64FV.
Ideally the SPI chip vendor would provide a header file containing the EFI_SPI_PART definition.
When that is not available, the board developer could create an EFI_SPI_PART data structure and fill it
with data from the datasheet as follows:

CONST EFI_SPI_PART Winbond_W25Q64FV = {
 L"Winbond",
 L"W25Q64FV",
 0,
 MHz(104), // Page 75, 3.0V - 3.6V
 FALSE // Page 6, Section 3.1
};

When the SPI bus layer creates the EFI_SPI_IO_PROTOCOL data structure for this device, the generic
SPI flash driver is able to find and connect to it by calling OpenProtocoL with the GUID specified
above.

Some SPI chip examples:

• Maxim MAX3111E - UART and RS232 transceiver

• Maxim MAX6950 - Seven segment numeric LED controller

• Serial SPI NOR flash, one of:

• Atmel AT25DF321 - 4 MiB SPI NOR flash

• Winbond W2SQ80DV - 1 MiB SPI NOR flash

• Winbond W25Q16DV - 2 MiB SPI NOR flash

• Winbond W25Q32FV - 4 MiB SPI NOR flash

• Winbond W25Q64FV - 8 MiB SPI NOR flash

• Spansion S25FL164K - 16 MiB SPI NOR flash

• Micron N2SQ128A - 32 MiB SPI NOR flash

• Winbond W2SQ128FV - 32 MiB SPI NOR flash

The board vendor may provide example code which describes the SPI busses and SPI peripherals to
simplify the configuration process. The example code may be modified by the board consumer to
adjust for added SPI devices or SPI busses.

18.1.3 Application Layer
The application layer interacts with various chip specific drivers using vendor specific
protocols.

Example applications are:

• A background application which reads gets the system time once per second and uses the
MAX6950 driver to display the time on a four seven-segment displa ys.

• A background application which uses the Texas Instruments ADC108S102 driver to read a 10-bit
voltage value from the analog-to-digital converter and displays the result on seven-segment
displays driven by the MAX6950.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

342 May 2017 Version 1.6

18.1.4 SPI Peripheral Layer
This layer provides vendor specific interfaces to the SPI chips. The upper interface to the SPI
peripheral layer is chip specific and determined by the UEFI or Pl specifications where there is a
standard or by the chip vendor when a standard does not exist.

The lower interface of the SPI peripheral layer connects to one or more of the SPI peripherals exposed
by the SPI bus layer as an EFI_SPI_IO_PROTOCOL instance. The SPI peripheral driver interacts with the
SPI chip by issuing data transactions to the SPI bus layer. These transactions make their way to the
SPI controller layer where they are placed onto the SPI bus and data is exchanged with the SPI chip.

18.1.5 SPI 10 Interface
The SPI bus layer creates an II EFI_SPI_IO_PROTOCOL II instance for each SPI chip listed in the board
layer. However unlike other protocols, the EFI_SPI_IO_PROTOCOL instance is identified by a GUID
that is unique to the SPI chip driver to which it should connect. This differs from other bus protocols
which produce a bus specific GUID.

The rational behind this is decision is based upon:

1. No common device support

2. Performance and code size

3. SPI device enumeration performed infrequently

18.1.5.1 No Common Device Support
With other protocols such as PCI and USB, even though the devices differ, there is a common
hardware support layer for peripheral identity, resource allocation and attaching the device to the
bus. SPI chips differ in this respect because there is no hardware standards! Bus attachment is done
by the board developer at a hardware level. From a software viewpoint as soon as chip select is
asserted, the SPI chip is on the bus. Also with SPI there are no common commands that may be
issued to identify or enable the chip. As such there is no advantage exposing a the
EFI_SPI_IO_PROTOCOL with a generic GUID.

18.1.5.2 Performance and Code Size
Times have changed since UEFI was originally architected and implemented. In todays world, the
firmware engineers are being asked for sub-one-second boot times and a smaller firmware footprint
with more functionallity. Using a generic GUID for the EFI_SPI_IO_PROTOCOL requires that each
SPI peripheral driver implement more code to verify some other identifier to determine if the driver
should use this device. This additional check adds cost and complexity to the SPI peripheral driver.
The costs are the development time to implement and debug the code as well as the CPU time to
execute the code. This code also has a multiplicitive effect on the firmware footprint.

18.1.5.3 SPI Device Enumeration Performed Infrequently
The claim is that SPI device enumeration will be performed infrequently.

• How often is SPI device enumeration a necessary operation?

• Is it a requirement that this operation be done using a generic GUID for
EFI_SPI_IO_PROTOCOL?

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 343

• What are the use cases for this operation?

Eliminating the generic GUID for EFI_SPI_IO_PROTOCOL removes one way of doing SPI device
enumeration. However SPI device enumeration is still possible.

SPI device enumeration is easiest done using the EFI_SPI_CONFIGURATION_PROTOCOL. From
this protocol is possible to determine the SPI busses in the system and the devices which are attached
to these busses. With a little extra work, calling LocateHandLeBuffer it is possible to identify the
handles which use the SPI driver GUID and match the EFI_SPI_IO_PROTOCOL interface.

Device paths may also be used to find handles which are attached to a specific SPI host controller. Each
SPI peripheral attaches a HW_CONTROLLER node to the device path.

18.1.5.4 Synchronous Operation
All SPI 10 layer transactions are synchronous. No support is provided for asynchronous transactions.

18.1.5.5 SPI Transaction Management
The SPI 10 layer allocates a EFI_SPI_BUS_ TRANSACTION data structure which contains the parameters
that will be passed to the SPI host controller as part of this SPI transaction. The SPI bus layer uses
this structure to control and complete the SPI transaction.

Synchronizing with the SPI bus layer schedules the SPI transaction on a free SPI host controller.

18.1.6 SPI Bus Layer
The SPI bus layer manages the SPI transactions for each of the host's SPI controllers. SPI peripheral
drivers submit SPI transactions to the SPI bus layer which in turn submits them to the host's SPI
controller.

The SPI transaction consists of:

1. Adjusting the clock speed, polarity and phase for a SPI peripheral

2. Use the chip select to enable the SPI peripheral, signaling the transaction start to the chip

3. Transfer the data in one or both directions simultaneously

4. Remove the chip select from the SPI peripheral signaling the transaction end to the chip

5. Optionally, shutdown the SPI controller's internal clock to reduce power

The SPI bus layer is responsible setting up the SPI clock and chip select. This ensures that the chip
set up is done properly across all SPI controller drivers. The SPI bus layer uses the SPI chip data
from the board layer to determine the clock phase and polarity. The clock frequency is the lowest
frequency specified by:

• Maximum SPI controller clock frequency

• Supported SPI controller clock frequency < = SPI chip maximum clock frequency

• Supported SPI controller clock frequency < = non-zero CLockHz

After setting up the clock, the SPI bus layer asserts the appropriate chip select and then passes the
SPI transaction to the SPI controller to start the data flow in both directions. Upon completion, the
SPI bus layer deasserts the chip select and completes the SPI transaction to the SPI peripheral layer.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

344 May 2017 Version 1.6

18.1.6.1 Half Duplex SPI controllers
Various SPI controllers support a half-duplex operation in addition to the full-duplex operation. The
benefits of the half- duplex operation on the system are that less physical memory tied up during the
operation and the memory bandwidth is cut in half for the operation.

It is beneficial to the system for the SPI architecture to support the half duplex operations of the SPI
controller. Additionally it reduces code size and memory footprint by eliminating unnecessary
buffers in the SPI peripheral drivers when half-duplex operations are performed on the SPI chip.

Write Then Read Operations
SPI flash chips and some SPI UARTs support write then read operations using SPI. The NXP
SC161$750/760 is an example of a UART designed for 12(and SPI which performs half-duplex
operations which are a mix of transmit and receive.

SPI NOR flash chips such as the Winbond W25Q64FV also perform half-duplex operations which are
a mix of transmit and receive. These operation consist of writing a command byte and possibly an
address and then immediately reading data either from the status register or memory.

SPI Controller Support
Since SPI is inherently a full-duplex,the SPI host controller should support full-duplex operation.
Not all SPI controllers however are able to support half-duplex or write -then -read operation. In this
case, the SPI bus layer converts the SPI transaction into a full - duplex transaction by allocating the
necessary buffers and if necessary coping any write data into the new buffer. The SPI bus layer then
hands the full-duplex transaction to the SPI host controller for processing. Upon completion, the SPI
bus driver copies any necessary data from the full-duplex buffers into the SPI peripheral layer's
receive buffer and then frees the allocated full-duplex buffers. This conversion allows the SPI
peripheral drivers to choose transaction types which optimize system resources and performance in
the general case.

SPI Controller To SPI Bus Connection
For DXE, the SPI host controller is identified by the device path. The SPI board layer includes copy
of this device path in the ControllerPath field of the EFI_SPI_BUS structure. When the DXE version
of the SPI bus layer locates a SPI host controller , the SPI bus layer matches the device path for the
SPI host controller to the device field in the ControllerPath of the EFI_SPI_BUS structure in the
board layer. Once this connection is made, the SPI bus layer can create the necessary SPI 10
interfaces.

18.1.7 SPI Host Controller Layer
The SPI host controller layer provides a simple interface to the SPI controller. This layer only handles
SPI controller details for a single transaction.

The support at this layer is broken into three primary routines:

• Clock set up

• Chip selection

• Data movement

The SPI bus layer calls these routines to initiate and complete the SPI transaction.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 345

18.1.7.1 Legacy SPI Flash Controller
The legacy SPI flash controller is designed to handle SPI NOR flash devices. This controller has
several limitations and several security enhancements that impact the design of the SPI bus 10 layers
and the SPI NOR flash peripheral driver. The security enhancements include:

• BIOS base address

• Protect range registers

• Controller configuration lock

• Prefix type table

• Opcode menu table

• Opcode type table

• BIOS base address

• Protect range registers

The security enhancements are handled by the EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.
This protocol provides the functions support the security features of the legacy SPI flash controller
as well as functions to work around the flash targeted design of the controller.

The limitations of the legacy SPI flash controller include:

• 8-bit frames only

• Fixed clock rate

• No full-duplex transaction support

• No read-only transaction support

• Reads: 64-byte maximum transfer length

• Writes: 67-byte maximum transfer length

• Prefix opcode table

• Opcode menu table

These limitations are handled by:

• Setting frame size support to 8-bit only

• Using the legacy SPI flash controller's clock routine to validate the requested clock frequency

• Letting the legacy SPI flash controller's transaction routine fail the full-duplex and read-only
transactions

• Setting the maximum transfer size to 64 bytes

• Adding a couple of flags to indicate that the opcode and 3 address bytes are included in the
maximum transfer size

• Using the EFI_LEGACY_SPI_CONTROLLER_PROTOCOL to set the erase block opcode

• Using the EFI_LEGACY_SPI_CONTROLLER_PROTOCOL to set the write status prefix opcode

SPI Protocol Stack Platform Initialization Spec, Vol. 5

346 May 2017 Version 1.6

18.2 DXE Code Definitions
The SPI protocol stack consists of the following protocols:

• EFI_LEGACY_SPI_FLASH_PROTOCOL - The upper layers use this protocol as a replacement for the
EDK2 specific EFI_SPI_PROTOCOL.

• EFI_SPI_NOR_FLASH_PROTOCOL - The upper layers use this protocol to interact with SPI NOR
flash devices.

• EFI_SPI_IO_PROTOCOL - The SPI peripheral drivers use this to interact with chips on the SPI bus.

• EFI_SPI_HC_PROTOCOL - The SPI bus layer uses this to interact with the host's SPI controller.

• EFI_LEGACY_SPI_CONTROLLER_PROTOCOL - The flash layer uses this protocol to invoke the
additional functions provided by the legacy SPI controller.

• EFI_SPI_CONFIGURATION_PROTOCOL - The SPI bus layer uses this to interact with the board
layer database and additional logic blocks for clock and GPIO controllers.

EFI_SPI_CONFIGURATION_PROTOCOL

Summary
Describe the details of the board's SPI busses to the SPI driver stack.

GUID
// {85a6d3e6-b65b-4afc-b38f-c6d54af6ddc8}
#define EFI_SPI_CONFIGURATION_GUID \
{ 0x85a6d3e6, 0xb65b, 0x4afc, { 0xb3, 0x8f, 0xc6, 0xd5, \ 0x4a, 0xf6,
0xdd, 0xc8 }}

Protocol Interface Structure
typedef struct _EFI_SPI_CONFIGURATION_PROTOCOL {
 UINT32 BusCount;
 CONST EFI_SPI_BUS *CONST *CONST Buslist;
} EFI_SPI_CONFIGURATION_PROTOCOL;

Parameters
BusCount

The number of SPI busses on the board.

Buslist

The address of an array of EFI_SPI_BUS data structure addresses.

Description
The board layer uses the EFI_SPI_CONFIGURATION_PROTOCOL to expose the data tables which
describe the board's SPI busses, The SPI bus layer uses these tables to configure the clock, chip
select and manage the SPI transactions on the SPI controllers.

The configuration tables describe:

• The number of SPI busses on the board

• Which SPI chips are connected to each SPI bus

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 347

For each SPI chip the configuration describes:

• The maximum clock frequency for the SPI part

• The clock polarity needed for the SPI part

• Whether the SPI controller is a separate clock generator needs to be set up

• The chip select polarity

• Whether the SPI controller or a GPIO pin is used for the chip select

• The data sampling edge for the SPI part

Related Definitions
The EFI_SPI_PERIPHERAL and EFI_SPI_BUS data structures are defined later in this section.

EFI_SPI_CHIP_SELECT

Summary
Manipulate the chip select for a SPI device.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_SPI_CHIP_SELECT) (
 IN CONST EFI_SPI_PERIPHERAL *SpiPeripheral,
 IN BOOLEAN PinValue
);

Parameters
SpiPeripheral

The address of an EFI_SPI_PERIPHERAL data structure describing the SPI peripheral whose chip select
pin is to be manipulated. The routine may access the ChipSelectParameter field to gain sufficient
context to complete the operation.

PinValue

The value to be applied to the chip select line of the SPI peripheral.

Description
This routine must be called at or below TPL_NOTIFY.

Update the value of the chip select line for a SPI peripheral. The SPI bus layer calls this routine either
in the board layer or in the SPI controller to manipulate the chip select pin at the start and end of a SPI
transaction.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The chip select was set successfully

EFI_NOT_READY Support for the chip select is not properly initialized

EFI_INVALID_PARAMETER The SpiPeripheral->ChipSelectParameter value is invalid

SPI Protocol Stack Platform Initialization Spec, Vol. 5

348 May 2017 Version 1.6

EFI_SPI_PART

Summary
Describe the properties of a SPI chip.

Prototype
typedef struct _EFI_SPI_PART
{
 CONST CHAR16 *Vendor; CONST CHAR16 *PartNumber;
 UINT32 MinClockHz;
 UINT32 MaxClockHz;
 BOOLEAN ChipSelectPolarity;
} EFI_SPI_PART;

Parameters
Vendor

A Unicode string specifying the SPI chip vendor.

PartNumber

A Unicode string specifying the SPI chip part number.

MinClockHz

The minimum SPI bus clock frequency used to access this chip. This value may be specified in the
chip's datasheet. If not, use the value of zero.

MaxClockHz

The maximum SPI bus clock frequency used to access this chip. This value is found in the chip's
datasheet.

ChipSelectPolarity

Specify the polarity of the chip select pin. This value can be found in the SPI chip's datasheet.
Specify TRUE when a one asserts the chip select and FALSE when a zero asserts the chip select.

Description
The EFI_SPI_PART data structure provides a description of a SPI part which is independent of the use
on the board. This data is available directly from the part's datasheet and may be provided by the
vendor.

EFI_SPI_PERIPHERAL

Summary
Describe the board specific properties associated with a specific SPI chip.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 349

Prototype
typedef struct _EFI_SPI_PERIPHERAL
{
 CONST EFI_SPI_PERIPHERAL *NextSpiPeripheral;
 CONST CHAR16 *FriendlyName;
 CONST GUID *SpiPeripheralDriverGuid;
 CONST EFI_SPI_PART *SpiPart;
 UINT32 MaxClockHz;
 BOOLEAN ClockPolarity;
 BOOLEAN ClockPhase;
 UINT32 Attributes;
 CONST VOID *ConfigurationData;
 CONST EFI_SPI_BUS *SpiBus;
 EFI_SPI_CHIP_SELECT ChipSelect;
 VOID *ChipSelectParameter;
} EFI_SPI_PERIPHERAL;

Parameters
NextSpiPeripheral

Address of the next EFI_SPI_PERIPHERAL data structure. Specify NULL if the current data structure is
the last one on the SPI bus.

FriendlyName

A unicode string describing the function of the SPI pa rt .

SpiPeripheralDriverGuid

Address of a GUID provided by the vendor of the SPI peripheral driver. Instead of using a "
EFI_SPI_IO_PROTOCOL" GUID, the SPI bus driver uses this GUID to identify an
EFI_SPI_IO_PROTOCOL data structure and to provide the connection points for the SPI peripheral
drivers. This reduces the comparison logic in the SPI peripheral driver Driversupported routine.

SpiPart

The address of an EFI_SPI_PART data structure which describes this chip.

MaxClockHz

The maximum clock frequency is specified in the EFI_SPI_P ART. When this this value is non-zero
and less than the value in the EFI_SPI_PART then this value is used for the maximum clock
frequency for the SPI part.

ClockPolarity

Specify the idle value of the clock as found in the datasheet. Use zero (0) if the clock'S idle value is
low or one (1) if the the clock's idle value is high.

ClockPhase

Specify the clock delay after chip select. Specify zero (0) to delay an entire clock cycle or one (1) to
delay only half a clock cycle.

Attributes

SPI peripheral attributes, select zero or more of:

SPI Protocol Stack Platform Initialization Spec, Vol. 5

350 May 2017 Version 1.6

• SPI_PART_SUPPORTS_2_B1T_DATA_BUS_W1DTH - The SPI peripheral is wired to support a
2- bit data bus

• SPI_PART_SUPPORTS_4_B1T_DATA_BUS_W1DTH - The SPI peripheral is wired to support a
4-bit data bus

ConfigurationData

Address of a vendor specific data structure containing additional board configuration details related
to the SPI chip. The SPI peripheral layer uses this data structure when configuring the chip.

SpiBus

The address of an EFI_SPI_BUS data structure which describes the SPI bus to which this chip is
connected.

ChipSelect

Address of the routine which controls the chip select pin for this SPI peripheral. Call the SPI host
controller's chip select routine when this value is set to NULL.

ChipSelectParameter

Address of a data structure containing the additional values which describe the necessary control for the
chip select. When ChipSelect is NULL, the declaration for this data structure is provided by the vendor of
the host's SPI controller driver. The vendor's documentation specifies the necessary values to use for the
chip select pin selection and control.

When Chipselect is not NULL, the declaration for this data structure is provided by the board layer.

Description
The EFI_SPI_PERIPHERAL data structure describes how a specific block of logic which is connected to
the SPI bus. This data structure also selects which upper level driver is used to manipulate this SPI
device. The SpiPeripheraLDriverGuid is available from the vendor of the SPI peripheral driver.

EFI_SPI_CLOCK

Summary
Set up the clock generator to produce the correct clock frequency, phase and polarity for a SPI chip.

Prototype
typedef EFI_STATUS
 (EFIAPI *EFI_SPI_CLOCK) (
 IN CONST EFI_SPI_PERIPHERAL *SpiPeripheral,
 IN UINT32 *ClockHz
);

Parameters
SpiPeripheral

Pointer to a EFI_SPI_PERIPHERAL data structure from which the routine can access the ClockParameter ,

ClockPhase and ClockPolarity fields. The routine also has access to the names for the SPI bus and chip
which can be used during debugging.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 351

ClockHz

Pointer to the requested clock frequency. The clock generator will choose a supported clock
frequency which is less then or equal to this value. Specify zero to turn the clock generator off. The
actual clock frequency supported by the clock generator will be returned.

Description
This routine must be called at or below TPL_NOTIFY.

This routine updates the clock generator to generate the correct frequency and polarity for the SPI
clock.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The clock was set up successfully

EFI_UNSUPPORTED The SPI controller was not able to support the
frequency requested by CLockHz

EFI_SPI_BUS

Summary
Describe the board specific details associated with a SPI bus.

Prototype
typedef struct _EFI_SPI_BUS {
 CONST CHAR16 *FriendlyName;
 CONST EFI_SPI_PERIPHERAL *Peripherallist;
 CONST EFI_DEVICE_PATH_PROTOCOL *ControllerPath;
 EFI_SPI_CLOCK Clock;
 VOID *ClockParameter;
} EFI_SPI_BUS;

Parameters
FriendlyName

A Unicode string describing the SPI bus

Peripheral List

Address of the first EFI_SPI_PERIPHERAL data structure connected to this bus. Specify NULL if there
are no SPI peripherals connected to this bus.

ControllerPath

Address of an EFI_DEVICE_PATH_PROTOCOL data structure which uniquely describes the SPI
controller.

Clock

Address of the routine which controls the clock used by the SPI bus for this SPI peripheral. The SPI
host co ntroller's clock routine is called when this value is set to NULL.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

352 May 2017 Version 1.6

ClockParameter

Address of a data structure containing the additional values which describe the necessary control for
the clock. When Clock is NULL, the declaration for this data structure is provided by the vendor of
the host's SPI controller driver. When Clock is not NULL, the declaration for this data structure is
provided by the board layer.

Description
The EFI_SPI_BUS data structure provides the connection details between the physical SPI bus and the
EFI_SPI_HC_PROTOCOL instance which controls that SPI bus. This data structure also describes the
details of how the clock is generated for that SPI bus. Finally this data structure provides the list of
physical SPI devices which are attached to the SPI bus.

Support Macros

Summary
Macros to easily specify frequencies in hertz, kilohertz and megahertz.

Prototype
#define Hz(Frequency) (Frequency)
#define KHz(Frequency) (1000 * Hz(Frequency))
#define MHz(Frequency) (1000 * KHz(Frequency))

EFI_SPI_NOR_FLASH_PROTOCOL

Summary
The EFI_SPI_NOR_FLASH_PROTOCOL exists in the SPI peripheral layer. This protocol
manipulates the SPI NOR flash parts using a common set of commands. The board layer provides the
interconnection and configuration details for the SPI NOR flash part. The SPI NOR flash driver uses
this configuration data to expose a generic interface which provides the following APls:

• Read manufacture and device ID

• Read data

• Read data using low frequency

• Read status

• Write data

• Erase 4 KiB blocks

• Erase 32 or 64 KiB blocks

• Write status

The EFI_SPI_NOR_FLASH_PROTOCOL also exposes some APls to set the security features on
the legacy SPI flash controller.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 353

GUID
// {b57ec3fe-f833-4ba6-8578-2a7d6a87444b}
#define EFI_SPI_NOR_FLASH_PROTOCOL_GUID \
{ 0xb57ec3fe, 0xf833, 0x4ba6, { 0x85, 0x78, 0x2a, 0x7d, \ 0x6a, 0x87,
0x44, 0x4b }}

Protocol Interface Structure
struct _EFI_SPI_NOR_FLASH_PROTOCOL {
 CONST EFI_SPI_PERIPHERAL *SpiPeripheral;
 UINT32 FlashSize;
 UINT8 Deviceid [3]; UINT32 EraseBlockBytes;
 EFI_SPI_NOR_FLASH_PROTOCOL_GET_FLASH_ID GetFlashid;
 EFI_SPI_NOR_FLASH_PROTOCOL_READ_DATA ReadData;
 EFI_SPI_NOR_FLASH_PROTOCOL_READ_DATA LfReadData;
 EFI_SPI_NOR_FLASH_PROTOCOL_READ_STATUS ReadStatus;
 EFI_SPI_NOR_FLASH_PROTOCOL_WRITE_STATUS WriteStatus;
 EFI_SPI_NOR_FLASH_PROTOCOL_WRITE_DATA WriteData;
 EFI_SPI_NOR_FLASH_PROTOCOL_ERASE Erase;
};

Parameters
SpiPeripheral

Pointer to an EFI_SPI_PERIPHERAL data structure

FlashSize

Flash size in bytes

Deviceid

Manufacture and Device ID

EraseBlockBytes

Erase block size in bytes

18.2.0.1 SPI Flash Driver GUID
Use a pointer to gEfiSpiNorFlashDriverGuid in the EFI_SPI_PERIPHERAL structure to connect a SPI
NOR flash part to the SPI flash driver.

EFI_SPI_NOR_FLASH_PROTOCOL.GetFlashld()

Summary
Read the 3 byte manufacture and device ID from the SPI flash.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

354 May 2017 Version 1.6

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_SPI_NOR_FLASH_PROTOCOL_GET_FLASH_ID) (
 IN CONST EFI_SPI_NOR_FLASH_PROTOCOL *This,
 OUT UINT8 *Buffer
);

Parameters
This

Pointer to an EFI_SPI_NOR_FLASH_PROTOCOL data structure.

Buffer

Pointer to a 3 byte buffer to receive the manufacture and device ID.

Description
This routine must be called at or below TPL_NOTIFY.

This routine reads the 3 byte manufacture and device ID from the flash part filling the buffer
provided.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The manufacture and device ID was read
successfully.

EFI_INVALID_PARAMETER Buffer is NULL

EFI_DEVICE_ERROR Invalid data received from SPI flash part.

EFI_SPI_NOR_FLASH_PROTOCOL.ReadData()

Summary
Read data from the SPI flash.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SPI_NOR_FLASH_PROTOCOL_READ_DATA) (
 IN CONST EFI_SPI_NOR_FLASH_PROTOCOL *This,
 IN UINT32 FlashAddress,
 IN UINT32 LengthinBytes, OUT UINT8 *Buffer
);

Parameters
This

Pointer to an EFI_SPI_NOR_FLASH_PROTOCOL data structure.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 355

FlashAddress

Address in the flash to start reading

LengthInBytes

Read length in bytes

Buffer

Address of a buffer to receive the data

Description
This routine must be called at or below TPL_NOTIFY.

This routine reads data from the SPI part in the buffer provided.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The data was read successfully.

EFI_INVALID_PARAMETER Buffer is NULL

EFI_INVALID_PARAMETER FLashAddress > = This->FLashSize

EFI_INVALID_PARAMETER LengthinBytes > This->FLashSize - FLashAddress

EFI_SPI_NOR_FLASH_PROTOCOL.LfReadData()

Summary
Low frequency read data from the SPI flash.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_SPI_NOR_FLASH_PROTOCOL_READ_DATA) (
 IN CONST EFI_SPI_NOR_FLASH_PROTOCOL *This,
 IN UINT32 FlashAddress,
 IN UINT32 LengthinBytes,
 OUT UINTS *Buffer
);

Parameters
This

Pointer to an EFI_SPI_NOR_FLASH_PROTOCOL data structure.

FlashAddress

Address in the flash to start reading

LengthInBytes

Read length in bytes

Buffer

Address of a buffer to receive the data

SPI Protocol Stack Platform Initialization Spec, Vol. 5

356 May 2017 Version 1.6

Description
This routine must be called at or below TPL_NOTIFY.

This routine reads data from the SPI part in the buffer provided.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The data was read successfully.

EFI_INVALID_PARAMETER Buffer is NULL

EFI_INVALID_PARAMETER FLashAddress > = This->FLashSize

EFI_INVALID_PARAMETER LengthinBytes > This->FLashSize - FLashAddress

EFIEFI_SPI_NOR_FLASH_PROTOCOL.ReadStatus()

Summary
Read the flash status register.

Prototype
typedef
EFI STATUS
(EFIAPI *EFI_SPI_NOR_FLASH_PROTOCOL_READ_STATUS) (
 IN CONST EFI_SPI_NOR_FLASH_PROTOCOL *This,
 IN UINT32 LengthinBytes,
 OUT UINT8 *FlashStatus
);

Parameters
This

Pointer to an EFI_SPI_NOR_FLASH_PROTOCOL data structure.

LengthInBytes

Number of status bytes to read.

FlashStatus

Pointer to a buffer to receive the flash status.

Description
This routine must be called at or below TPL_NOTIFY. This routine reads the flash part status register.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The status register was read successfully.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 357

EFI_SPI_NOR_FLASH_PROTOCOL.WriteStatus()

Summary
Write the flash status register.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SPI_NOR_FLASH_PROTOCOL_WRITE_STATUS) (
 IN CONST EFI_SPI_NOR_FLASH_PROTOCOL *This,
 IN UINT32 LengthInBytes,
 In UINT8 *FlashStatus
);

Parameters
This

Pointer to an EFI_SPI_NOR_FLASH_PROTOCOL data structure.

LengthInBytes

Number of status bytes to write.

FlashStatus

Pointer to a buffer containing the new status.

Description
This routine must be called at or below TPL_N OTIFY. This routine writes the flash part status
register.

Status Codes Returned

EFI_STATUS Description0

EFI_SUCCESS The status write was successful.

EFI_OUT_OF_RESOURCES Failed to allocate the write buffer.

EFI_SPI_NOR_FLASH_PROTOCOL.WriteData()

Summary
Write data to the SPI flash.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

358 May 2017 Version 1.6

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SPI_NOR_FLASH_PROTOCOL_WRITE_DATA) (
 IN CONST EFI_SPI_NOR_FLASH_PROTOCOL *This,
 IN UINT32 FlashAddress, IN UINT32 LengthinBytes,
 IN UINT8 *Buffer
);

Parameters
This

Pointer to an EFI_SPI_NOR_FLASH_PROTOCOL data structure.

FlashAddress

Address in the flash to start writing

LengthInBytes

Write length in bytes

Buffer

Address of a buffer containing the data

Description
This routine must be called at or below TPL_NOTIFY.

This routine breaks up the write operation as necessary to write the data to the SPI part.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The data was written successfully.

EFI_INVALID_PARAMETER Buffer is NULL

EFI_INVALID_PARAMETER FLashAddress > = This->FLashSize

EFI_INVALID_PARAMETER LengthinBytes > Thi s->FLashSi ze - FLashAddress

EFI_OUT_OF_RESOURCES Insufficient memory to copy buffer.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 359

EFI_SPI_NOR_FLASH_PROTOCOL.Erase()

Summary
Efficiently erases one or more 4KiB regions in the SPI flash.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SPI_NOR_FLASH_PROTOCOL_ERASE) (
 IN CONST EFI_SPI_NOR_FLASH_PROTOCOL *This,
 IN UINT32 FlashAddress, IN UINT32 BlockCount
);

Parameters
This

Pointer to an EFI_SPI_NOR_FLASH_PROTOCOL data structure.

FlashAddress

Address within a 4 KiB block to start erasing

BlockCount

Number of 4 KiB blocks to erase

Description
This routine must be called at or below TPL_NOTIFY.

This routine uses a combination of 4 KiB and larger blocks to erase the specified area.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The erase was completed successfully.

EFI_INVALID_PARAMETER FLashAddress >= This->FLashSize

EFI_INVALID_PARAMETER BLockCount * 4 KiB > This->FLashSize -

FLashAddress

SPI Protocol Stack Platform Initialization Spec, Vol. 5

360 May 2017 Version 1.6

EFI_LEGACY_SPI_FLASH_PROTOCOL

Summary
The EFI_LEGACY _SPI_FLASH_PROTOCOL extends the EFI_SPI_NOR_FLASH_PROTOCOL with
APls to support the legacy SPI flash controller.

GUID
// {f01bed57-04bc-4f3f-9660-d6f2ea228259}
#define EFI_LEGACY_SPI_FLASH_PROTOCOL_GUID \
{ 0xf01bed57, 0x04bc, 0x4f3f, { 0x96, 0x60, 0xd6, 0xf2, \ 0xea, 0x22,
0x82, 0x59 }}

Protocol Interface Structure
struct _EFI_LEGACY_SPI_FLASH_PROTOCOL {
 EFI_SPI_NOR_FLASH_PROTOCOL FlashProtocol;
 ///
 /// Legacy flash (SP! host) controller support
 ///
 EFI_LEGACY_SPI_FLASH_PROTOCOL_BIOS_BASE_ADDRESS BiosBaseAddress;
 EFI_LEGACY_SPI_FLASH_PROTOCOL_CLEAR_SPI_PROTECT ClearSpiProtect;
 EFI_LEGACY_SPI_FLASH_PROTOCOL_IS_RANGE_PROTECTED IsRangeProtected;
 EFI_LEGACY_SPI_FLASH_PROTOCOL_PROTECT_NEXT_RANGE ProtectNextRange;
 EFI_LEGACY_SPI_FLASH_PROTOCOL_LOCK_CONTROLLER LockController;
};

EFI_LEGACY _SPI_FLASH_PROTOCOL.BiosBaseAddress()

Summary
Set the BIOS base address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_FLASH_PROTOCOL_BIOS_BASE_ADDRESS) (
 IN CONST EFI_LEGACY_SPI_FLASH_PROTOCOL *This,
 IN UINT32 BiosBaseAddress
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_FLASH_PROTOCOL data structure.

BiosBaseAddress

The BIOS base address.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 361

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS base address works with the protect range registers to protect portions of the SPI NOR
flash from erase and write operat ions . The BIOS calls this API prior to passing control to the OS
loader.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The BIOS base address was properly set

EFI_ACCESS_ERROR The SPI controller is locked

EFI_INVALID_PARAMETER BiosBaseAddress > This->MaximumOffset

EFI_UNSUPPORTED The BIOS base address was already set

EFI_UNSUPPORTED Not a legacy SPI host controller

EFI_LEGACY _SPI_FLASH_PROTOCOL.ClearSpiProtect()

Summary
Clear the SPI protect range regist ers.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_FLASH_PROTOCOL_CLEAR_SPI_PROTECT) (
 IN CONST EFI- LEGACY- SPI- FLASH- PROTOCOL *This
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_FLASH_PROTOCOL data structure.

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS uses this routine to set an initial condition on the SPI protect range registers.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The registers were successfully cleared

EFI_ACCESS_ERROR The SPI controller is locked

EFI_UNSUPPORTED Not a legacy SPI host controller

SPI Protocol Stack Platform Initialization Spec, Vol. 5

362 May 2017 Version 1.6

EFI_LEGACY _SPI_FLASH_PROTOCOL.lsRangeProtected()

Summary
Determine if the SPI range is protected.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_LEGACY_SPI_FLASH_PROTOCOL_IS_RANGE_PROTECTED) (
 IN CONST EFI_LEGACY_SPI_FLASH_PROTOCOL *This,
 IN UINT32 BiosAddress,
 IN UINT32 BlocksToProtect
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_FLASH_PROTOCOL data structure.

BiosAddress

Address within a 4 KiB block to start protecting.

BlocksToProtect

The number of 4 KiB blocks to protect.

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS uses this routine to verify a range in the SPI is protected.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 363

Return Value

Value Description

TRUE The range is protected

FALSE The range is not protected

EFI_LEGACY_SPI_FLASH_PROTOCOL.ProtectNextRange()

Summary
Set the next protect range register.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_FLASH_PROTOCOL_PROTECT_NEXT_RANGE) (
 IN CONST EFI_LEGACY_SPI_FLASH_PROTOCOL *This,
 IN UINT32 BiosAddress,
 IN UINT32 BlocksToProtect
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_FLASH_PROTOCOL data structure.

BiosAddress

Address within a 4 KiB block to start protecting.

BlocksToProtect

The number of 4 KiB blocks to protect.

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS sets the protect range register to prevent write and erase operations to a portion of the SPI
NOR flash device.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

364 May 2017 Version 1.6

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The register was successfully updated

EFI_ACCESS_ERROR The SPI controller is locked

EFI_INVALID_PARAMETER BiosAddress < This->BiosBaseAddress

EFI_INVALID_PARAMETER BLocksToProtect * 4 KiB > This-

>MaximumRangeBytes

EFI_INVALID_PARAMETER BiosAddress - This->BiosBaseAddress + (
BLocksToProtect * 4 KiB) > This-
>MaximumRangeBytes

EFI_OUT_OF_RESOURCES No protect range register available

EFI_UNSUPPORTED Call This->SetBaseAddress because the
BIOS base address is not set Not a legacy
SPI host controller

EFI_UNSUPPORTED

EFI_LEGACY _SPI_FLASH_PROTOCOL.LockController()

Summary
Lock the SPI controller configuration.

Prototype
typedef
FI STATUS
(EFIAPI *EFI_LEGACY_SPI_FLASH_PROTOCOL_LOCK_CONTROLLER) (
 IN CONST EFI- LEGACY- SPI- FLASH- PROTOCOL *This
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_FLASH_PROTOCOL data structure.

Description
This routine must be called at or below TPL_NOTIFY.

This routine locks the SPI controller's configuration so that the software is no longer able to update:

• Prefix table

• Opcode menu

• Opcode type table

• BIOS base address

• Protect range registers

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 365

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The SPI controller was successfully locked

EFI_ALREADY_STARTED The SPI controller was already locked

EFI_UNSUPPORTED Not a legacy SPI host controller

EFI_SPI_IO_PROTOCOL

Summary
Support managed SPI data transactions between the SPI controller and a SPI chip.

GUID
The SPI peripheral layer provides the GUID for this interface!

Protocol Interface Structure
typedef struct _EFI_SPI_IO_PROTOCOL {
 CONST EFI_SPI_PERIPHERAL *SpiPeripheral;
 CONST EFI_SPI_PERIPHERAL *OriginalSpiPeripheral;
 UINT32 FrameSizeSupportMask;
 UINT32 MaximumTransferBytes;
 UINT32 Attributes;
 CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *LegacySpiProtocol;
 EFI_SPI_IO_PROTOCOL_TRANSACTION Transaction;
 EFI_SPI_IO_PROTOCOL_UPDATE_SPI_PERIPHERAL UpdateSpiPeripheral;
} EFI_SPI_IO_PROTOCOL;

Parameters
SpiPeripheral

Address of an EFI_SPI_PERIPHERAL data structure associated with this protocol instance.

OriginalSpiPeripheral

Address of the original EFI_SPI_PERIPHERAL data structure associated with this protocol instance.

FrameSizeSupportMask

Mask of frame sizes which the SPI 10 layer supports. Frame size of N-bits is supported when bit N-
1 is set. The host controller must support a frame size of 8-bits. Frame sizes of 16, 24 and 32-bits are
converted to 8-bit frame sizes by the SPI bus layer if the frame size is not supported by the SPI host
controller.

MaximumTransferBytes

Maximum transfer size in bytes: 1 - Oxffffffff

SPI Protocol Stack Platform Initialization Spec, Vol. 5

366 May 2017 Version 1.6

Attributes

Transaction attributes: One or more from:

• SPl_10_SUPPORTS_2_B1T_DATA_BUS_W1DTH - The SPI host and peripheral supports a
2-bit data bus

• SPI_IO_SUPPORTS_4_BIT_DATA_BUS_W1DTH - The SPI host and peripheral supports a 4-bit
data bus

• SPI_IO_TRANSFER_SIZE_INCLUDES_OPCODE - Transfer size includes the opcode byte

• SPI_IO_TRANSFER_SIZE_INCLUDES_ADDRESS - Transfer size includes the 3 address
bytes

LegacySpiProtocol;

Pointer to legacy SPI controller protocol

EFI_SPI_BUS_ TRANSACTION

The EFI_SPI_BUS_ TRANSACTION data structure contains the description of the SPI transaction to
perform on the host controller.

Prototype
typedef struct _EFI_SPI_BUS_TRANSACTION
{
 CONST EFI_SPI_PERIPHERAL *SpiPeripheral;
 EFI_SPI_TRANSACTION_TYPE TransactionType;
 BOOLEAN DebugTransaction;
 UINT32 BusWidth; UINT32 FrameSize;
 UINT32 WriteBytes; UINT8 *WriteBuffer;
 UINT32 ReadBytes; UINT8 *ReadBuffer;
} EFI_SPI_BUS_TRANSACTION;

Parameters
SpiPeripheral

Pointer to the SPI peripheral being manipulated.

TransactionType

Type of transaction specified by one of the EFI_SPI_ TRANSACTION_ TYPE values.

DebugTransaction

TRUE if the transaction is being debugged. Debugging may be turned on for a single SPI
transaction. Only this transaction will display debugging messages. All other transactions with this
value set to FALSE will not display any debugging messages.

BusWidth

SPI bus width in bits: 1, 2, 4

FrameSize

Frame size in bits, range: 1 - 32

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 367

WriteBytes

Length of the write buffer in bytes

WriteBuffer

Buffer containing data to send to the SPI peripheral

Frame sizes 1-8 bits: UINT8 (one byte) per frame

Frame sizes 7-16 bits: UINT16 (two bytes) per frame

Frame sizes

17-32 bits: UINT32 (four bytes) per frame

Read Bytes

Length of the read buffer in bytes

Read Buffer

Buffer to receive the data from the SPI peripheral

• Frame sizes 1-8 bits: UINT8 (one byte) per frame

• Frame sizes 7-16 bits: UINT16 (two bytes) per frame

• Frame sizes 17-32 bits: UINT32 (four bytes) per frame

EFI_SPI_IO_PROTOCOL.Transaction()

Summary
Initiate a SPI transaction between the host and a SPI peripheral.

Prototype
typedef
EFI STATUS
(EFIAPI *EFI_SPI_IO_PROTOCOL_TRANSACTION) (
 IN CONST EFI_SPI_IO_PROTOCOL *This,
 IN EFI_SPI_TRANSACTION_TYPE TransactionType,
 IN BOOLEAN DebugTransaction,
 IN UINT32 ClockHz OPTIONAL,
 IN UINT32 BusWidth,
 IN UINT32 FrameSize,
 IN UINT32 WriteBytes,
 IN UINT8 *WriteBuffer,
 IN UINT32 ReadBytes,
 OUT UINT8 *ReadBuffer
);

SPI Protocol Stack Platform Initialization Spec, Vol. 5

368 May 2017 Version 1.6

Parameters
This

Pointer to an EFI_SPI_IO_PROTOCOL structure.

TransactionType

Type of SPI transaction specified by one of the EFI_SPI_TRANSACTION_ TYPE values:

• SPI_TRANSACTION_FULL_DUPLEX - Data flowing in both direction between the host and SPI
peripheral. ReadBytes must equal WriteBytes and both ReadBuffer and WriteBuffer must be
provided.

• SPI_TRANSACTION_WRITE_ONLY - Data flowing from the host to the SPI peripheral.
ReadBytes must be zero. WriteBytes must be non-zero and WriteBuffer must be provided.

• SPI_TRANSACTION_READ_ONLY - Data flowing from the SPI peripheral to the host.
WriteBytes must be zero. ReadBytes must be non-zero and ReadBuffer must be provided.

• SPI_TRANSACTION_WRITE_THEN_READ - Data first flowing from the host to the SPI
peripheral and then data flows from the SPI peripheral to the host. These types of operations get
used for SPI flash devices when control data (opcode, address) must be passed to the SPI
peripheral to specify the data to be read.

DebugTransaction

Set TRUE only when debugging is desired. Debugging may be turned on for a single SPI
transaction. Only this transaction will display debugging messages. All other transactions with this
value set to FALSE will not display any debugging messages.

ClockHz

Specify the ClockHz value as zero (0) to use the maximum clock frequency supported by the SPI
controller and part. Specify a non-zero value only when a specific SPI transaction requires a reduced
clock rate.

BusWidth

Width of the SPI bus in bits: 1, 2, 4

FrameSize

Frame size in bits, range: 1 - 32

WriteBytes

The length of the WriteBuffer in bytes. Specify zero for read-only operations.

WriteBuffer

The buffer containing data to be sent from the host to the SPI chip. Specify NULL for read only
operations.

• Frame sizes 1-8 bits: UINT8 (one byte) per frame

• Frame sizes 7-16 bits: UINT16 (two bytes) per frame

• Frame sizes 17-32 bits: UINT32 (four bytes) per frame The transmit frame is in the least
significant N bits.

Read Bytes

The length of the ReadBuffer in bytes. Specify zero for write-only operations.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 369

Read Buffer

The buffer to receeive data from the SPI chip during the transaction. Specify NULL for write only
operations.

• Frame sizes 1-8 bits: UINT8 (one byte) per frame

• Frame sizes 7-16 bits: UINT16 (two bytes) per frame

• Frame sizes 17-32 bits: UINT32 (four bytes) per frame The received frame is in the least
significant N bits.

Description
This routine must be called at or below TPL_NOTIFY.

This routine works with the SPI bus layer to pass the SPI transaction to the SPI controller for
execution on the SPI bus. There are four types of supported transactions supported by this routine:

• Full Duplex: WriteBuffer and ReadBuffer are the same size.

• Write Only: WriteBuffer contains data for SPI peripheral, ReadBytes = 0

• Read Only: ReadBuffer to receive data from SPI peripheral, WriteBytes = 0

• Write Then Read: WriteBuffer contains control data to write to SPI peripheral before data is
placed into the ReadBuffer. Both WriteBytes and ReadBytes must be non-zero.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The SPI transaction completed successfully

EFI_BAD_BUFFER_SIZE The writeBytes value was invalid

EFI_BAD_BUFFER_SIZE The ReadBytes value was invalid

EFI_INVALID_PARAMETER TransactionType is not valid

EFI_INVALID_PARAMETER BusWidth not supported by SPI peripheral or SPI
host controller

EFI_INVALID_PARAMETER WriteBytes non-zero and WriteBuffer is NULL

EFI_INVALID_PARAMETER ReadBytes non-zero and ReadBuffer is NULL

EFI_INVALID_PARAMETER ReadBuffer != WriteBuffer for full-duplex type

EFI_INVALID_PARAMETER WriteBuffer was NULL

EFI_INVALID_PARAMETER TPL is too high

EFI_OUT_OF_RESOURCES Insufficient memory for SPI transaction

EFI_UNSUPPORTED The FrameSize is not supported by the SPI bus
layer or the SPI host controller

EFI_UNSUPPORTED The SPI controller was not able to support the
frequency requested by CLockHz

SPI Protocol Stack Platform Initialization Spec, Vol. 5

370 May 2017 Version 1.6

EFI_SPI_IO_PROTOCOL.UpdateSpiPeripheral()

Summary
Update the SPI peripheral associated with this SPI 10 instance.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_SPI_IO_PROTOCOL_UPDATE_SPI_PERIPHERAL) (
 IN CONST EFI_SPI_IO_PROTOCOL *This,
 IN CONST EFI_SPI_PERIPHERAL *SpiPeripheral
);

Parameters
This

Pointer to an EFI_SPI_IO_PROTOCOL structure.

SpiPeripheral

Pointer to an EFI_SPI_PERIPHERAL st ructure .

Description
Support socketed SPI parts by allowing the SPI peripheral driver to replace the SPI peripheral after
the connection is made. An example use is socketed SPI NOR flash parts, where the size and
parameters change depending upon device is in the socket.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The SPI peripheral was updated successfully

EFI_INVALID_PARAMETER The SpiPeripheral value is NULL

EFI_INVALID_PARAMETER The SpiPeripheral->SpiBus is NULL

EFI_INVALID_PARAMETER The SpiP eripheral - >SpiBus pointing at wrong bus

EFI_INVALID_PARAMETER The SpiP eripheral - >SpiPart is NULL

EFI_SPI_HC_PROTOCOL

Summary
Support a SPI data transaction between the SPI controller and a SPI chip.

GUID
// {C74E5DB2-FA96-4ae2-B399-15977FE3002D}
#define EFI_SPI_HOST_GUID \
{ 0xc74e5db2, 0xfa96, 0x4ae2, { 0xb3, 0x99, 0x15, 0x97, \
0x7f, 0xe3, 0x0, 0x2d }}

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 371

Protocol Interface Structure
typedef struct _EFI_SPI_HC_PROTOCOL {
 UINT32 Attributes;
 UINT32 FrameSizeSupportMask;
 UINT32 MaximumTransferBytes;
 EFI_SPI_HC_PROTOCOL_CHIP_SELECT ChipSelect;
 EFI_SPI_HC_PROTOCOL_CLOCK Clock;
 EFI_SPI_HC_PROTOCOL_TRANSACTION Transaction;
} EFI_SPI_HC_PROTOCOL;

Parameters
Attributes

Host control attributes, may have zero or more of the following set:

• HC_SUPPORTS_WRITE_ONLY_OPERATIONS

• HC_SUPPORTS_READ_ONLY_OPERATIONS

• HC_SUPPORTS_WRITE_THEN_READ_OPERATIONS

• HC_TX_FRAME_IN_MOST_SIGNIFICANT_BITS - The SPI host controller requires the
transmit frame to be in most significant bits instead of least significant bits. The host driver will
adjust the frames if necessary.

• HC_RX_FRAME_IN_MOST_SIGNIFICANT_BITS - The SPI host controller places the
receive frame to be in most significant bits instead of least significant bits. The host driver will
adjust the frames to be in the least significant bits if necessary.

• HC_SUPPORTS_2_BIT_DATA_BUS_W1DTH - The SPI controller supports a 2-bit data bus

• HC_SUPPORTS_4_B1T_DATA_BUS_WIDTH - The SPI controller supports a 4 - bit data bus

• HC_TRANSFER_SIZE_INCLUDES_OPCODE - Transfer size includes the opcode byte

• HC_TRANSFER_SIZE_INCLUDES_ADDRESS - Transfer size includes the 3 address bytes

The SPI host controller must support full-duplex (receive while sending) operation. The SPI host
controller must support a 1- bit bus width.

FrameSizeSupportMask

Mask of frame sizes which the SPI host controller supports. Frame size of N-bits is supported when bit
N-1 is set. The host controller must support a frame size of 8-bits.

MaximumTransferBytes

Maximum transfer size in bytes: 1 - Oxffffffff

SPI Protocol Stack Platform Initialization Spec, Vol. 5

372 May 2017 Version 1.6

EFI_SPI_HC_PROTOCOL.ChipSelect()

Summary
Assert or deassert the SPI chip select.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_SPI_HC_PROTOCOL_CHIP_SELECT) (
 IN CONST EFI_SPI_HC_PROTOCOL *This,
 IN CONST EFI_SPI_PERIPHERAL *SpiPeripheral,
 IN BOOLEAN PinValue
);

Parameters
This

Pointer to an EFI_SPI_HC_PROTOCOL structure.

SpiPeripheral

The address of an EFI_SPI_PERIPHERAL data structure describing the SPI peripheral whose chip select
pin is to be manipulated. The routine may access the ChipSelectParameter field to gain sufficient
context to complete the operati on.

PinValue

The value to be applied to the chip select line of the SPI peripheral.

Description
This routine is called at TPL_NOTIFY.

Update the value of the chip select line for a SPI peripheral. The SPI bus layer calls this routine either
in the board layer or in the SPI controller to manipulate the chip select pin at the start and end of a SPI
transaction.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The chip select was set as requested

EFI_NOT_READY Support for the chip select is not properly initialized

EFI_INVALID_PARAMETER The ChipSeLect value or its contents are
invalid

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 373

EFI_SPI_HC_PROTOCOL.Clock()

Summary
Set up the clock generator to produce the correct clock frequency, phase and polarity for a SPI chip.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_SPI_HC_PROTOCOL_CLOCK) (
 IN CONST EFI_SPI_HC_PROTOCOL *This,
 IN CONST EFI_SPI_PERIPHERAL *SpiPeripheral, IN UINT32 *ClockHz
);

Parameters
This

Pointer to an EFI_SPI_HC_PROTOCOL structure.

SpiPeripheral

Pointer to a EFI_SPI_PERIPHERAL data structure from which the routine can access the CLockParameter ,

CLockPhase and

CLockPolarity fields. The routine also has access to the names for the SPI bus and chip which can be
used during debugging.

ClockHz

Pointer to the requested clock frequency. The SPI host controller will choose a supported clock
frequency which is less then or equal to this value. Specify zero to turn the clock generator off. The
actual clock frequency supported by the SPI host controller will be returned.

Description
This routine is called at TPL_NOTIFY.

This routine updates the clock generator to generate the correct frequency and polarity for the SPI
clock.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The clock was set up successfully

EFI_UNSUPPORTED The SPI controller was not able to support the
frequency requested by CLockHz

SPI Protocol Stack Platform Initialization Spec, Vol. 5

374 May 2017 Version 1.6

EFI_SPI_HC_PROTOCOL.Transaction()

Summary
Perform the SPI transaction on the SPI peripheral using the SPI host co ntroller.

Prototype
typedef EFI STATUS
(EFIAPI *EFI_SPI_HC_PROTOCOL_TRANSACTION) (
 IN CONST EFI_SPI_HC_PROTOCOL *This,
 IN EFI_SPI_BUS_TRANSACTION *BusTransaction
);

Parameters
This

Pointer to an EFI_SPI_HC_PROTOCOL structure.

BusTransaction

Pointer to a EFI_SPI_BUS_ TRANSACTION containing the description of the SPI transaction to
perform.

Description
This routine is called at TPL_NOTIFY.

This routine synchronously returns EFI_SUCCESS indicating that the asynchronous SPI transaction
was started. The routine then waits for completion of the SPI transaction prior to returning the final
transaction status.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The transaction completed successfully

EFI_BAD_BUFFER_SIZE The BusTransaction->WriteBytes value is invalid

EFI_BAD_BUFFER_SIZE The BusTransaction->ReadinBytes value is invalid

EFI_UNSUPPORTED The BusTransaction-> Transaction Type is
unsupported

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 375

EFI_LEGACY_SPI_CONTROLLER_PROTOCOL

Summary
Support the extra features of the legacy SPI flash controller.

GUID
// {39136fc7-lall-49de-bf35-0e78ddb524fc}
#define EFI_LEGACY_SPI_CONTROLLER_GUID \
{ 0x39136fc7, 0xlall, 0x49de, { 0xbf, 0x35, 0x0e, 0x78, \
0xdd, 0xb5, 0x24, 0xfc }}

Protocol Interface Structure
typedef struct _EFI_LEGACY_SPI_CONTROLLER_PROTOCOL {
 UINT32 MaximumOffset; UINT32 MaximumRangeBytes;
 UINT32 RangeRegisterCount;
 EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_ERASE_BLOCK_OPCODE
EraseBlockOpcode;
 EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_WRITE_STATUS_PREFIX
WriteStatusPrefix;
 EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_BIOS_BASE_ADDRESS
BiosBaseAddress;
 EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_CLEAR_SPI_PROTECT
ClearSpiProtect;
 EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_IS_RANGE_PROTECTED
IsRangeProtected;
 EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_PROTECT_NEXT_RANGE
ProtectNextRange;
 EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_LOCK_CONTROLLER
LockController;
} EFI_LEGACY_SPI_CONTROLLER_PROTOCOL;

Parameters
MaximumOffset

Maximum offset from the BIOS base address that is able to be protected.

MaximumRangeBytes

Maximum number of bytes that can be protected by one range register .

RangeRegisterCount

The number of registers available for protecting the BIOS.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

376 May 2017 Version 1.6

EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.EraseB1ock0pcode()

Summary
Set the erase block opcode.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_ERASE_BLOCK_OPCODE)
(
 IN CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *This,
 IN UINT8 EraseBlockOpcode
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_CONTROLLER_PROTOCOL structure.

EraseBlockOpcode

Erase block opcode to be placed into the opcode menu table.

Description
This routine must be called at or below TPL_NOTIFY.

The menu table contains SPI transaction opcodes which are accessible after the legacy SPI flash
controller's configuration is locked. The board layer specifies the erase block size for the SPI NOR
flash part. The SPI NOR flash peripheral driver selects the erase block opcode which matches the
erase block size and uses this API to load the opcode into the opcode menu table.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The opcode menu table was updated

EFI_ACCESS_ERROR The SPI controller is locked

EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.WriteStatusPrefix()

Summary
Set the write status prefix opcode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_WRITE_STATUS_PREFIX)
(
 IN CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *This,
 IN UINT8 WriteStatusPrefix
);

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 377

Parameters
This

Pointer to an EFI_LEGACY_SPI_CONTROLLER_PROTOCOL structure.

WriteStatusPrefix

Prefix opcode for the write status command.

Description
This routine must be called at or below TPL_NOTIFY.

The prefix table contains SPI transaction write prefix opcodes which are accessible after the legacy
SPI flash controller's configuration is locked . The board layer specifies the write status prefix
opcode for the SPI NOR flash part. The SPI NOR flash peripheral driver uses this API to load the
opcode into the prefix table.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The prefix table was updated

EFI_ACCESS_ERROR The SPI controller is locked

EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.BiosBaseAddress()

Summary
Set the BIOS base address.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_BIOS_BASE_ADDRESS) (
 IN CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *This,
 IN UINT32 BiosBaseAddress
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_CONTROLLER_PROTOCOL structure.

BiosBaseAddress

The BIOS base address .

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS base address works with the protect range registers to protect portions of the SPI NOR
flash from erase and write operat ions . The BIOS calls this API prior to passing control to the OS
loader.

SPI Protocol Stack Platform Initialization Spec, Vol. 5

378 May 2017 Version 1.6

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The BIOS base address was properly set

EFI_ACCESS_ERROR The SPI controller is locked

EFI_INVALID_PARAMETER The BIOS base address is greater than This-
>Maxi.mumOffset

EFI_UNSUPPORTED The BIOS base address was already set

EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.ClearSpiProtect()

Summary
Clear the SPI protect range registers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_CLEAR_SPI_PROTECT) (
 IN CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *This
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_CONTROLLER_PROTOCOL structure.

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS uses this routine to set an initial condition on the SPI protect range registers.

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The registers were successfully cleared

EFI_ACCESS_ERROR The SPI controller is locked

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 379

EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.lsRangeProtected()

Summary
Determine if the SPI range is protected.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_IS_RANGE_PROTECTED)
(
 IN CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *This,
 IN UINT32 BiosAddress,
 IN UINT32 BlocksToProtect
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_CONTROLLER_PROTOCOL structure.

BiosAddress

Address within a 4 KiB block to start protecting.

BytesToProtect

The number of 4 KiB blocks to protect.

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS uses this routine to verify a range in the SPI is protected.

Return Value

Value Description

TRUE The range is protected

FALSE The range is not protected

SPI Protocol Stack Platform Initialization Spec, Vol. 5

380 May 2017 Version 1.6

EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.ProtectNextRange()

Summary
Set the next protect range register.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_PROTECT_NEXT_RANGE)
(
 IN CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *This,
 IN UINT32 BiosAddress,
 IN UINT32 BlocksToProtect
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_CONTROLLER_PROTOCOL structure.

BiosAddress

Address within a 4 KiB block to start protecting.

BlocksToProtect

The number of 4 KiB blocks to protect.

Description
This routine must be called at or below TPL_NOTIFY.

The BIOS sets the protect range register to prevent write and erase operations to a portion of the SPI
NOR flash device.

Platform Initialization Spec, Vol. 5 SPI Protocol Stack

Version 1.6 May 2017 381

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The register was successfully updated

EFI_ACCESS_ERROR The SPI controller is locked

EFI_INVALID_PARAMETER BiosAddress < This->BiosBaseAddress

EFI_INVALID_PARAMETER BLocksToProtect * 4 KiB > This-

>MaximumRangeBytes

EFI_INVALID_PARAMETER BiosAddress - This->BiosBaseAddress + (
BLocksToProtect * 4 KiB) > This-

>MaximumRangeBytes

EFI_OUT_OF_RESOURCES No protect range register available

EFI_UNSUPPORTED Call This->SetBaseAddress because the BIOS
base address is not set

EFI_LEGACY _SPI_CONTROLLER_PROTOCOL.LockController()

Summary
Lock the SPI controller configuration.

Prototype
typedef EFI_STATUS
(EFIAPI *EFI_LEGACY_SPI_CONTROLLER_PROTOCOL_LOCK_CONTROLLER) (
 IN CONST EFI_LEGACY_SPI_CONTROLLER_PROTOCOL *This
);

Parameters
This

Pointer to an EFI_LEGACY_SPI_CONTROLLER_PROTOCOL structure.

Description
This routine must be called at or below TPL_NOTIFY.

This routine locks the SPI controller's configuration so that the software is no longer able to update:

• Prefix table

• Opcode menu

• Opcode type table

• BIOS base address

• Protect range registers

SPI Protocol Stack Platform Initialization Spec, Vol. 5

382 May 2017 Version 1.6

Status Codes Returned

EFI_STATUS Description

EFI_SUCCESS The SPI controller was successfully locked

EFI_ALREADY_STARTED The SPI controller was already locked

Platform Initialization Spec, Vol. 5

Version 1.6 May 2017 383

Appendix A Error Codes

A.1 Error Code Definitions
For 32-bit architecture:

#define EFI_INTERRUPT_PENDING 0xa0000000
#define EFI_WARN_INTERRUPT_SOURCE_PENDING 0x20000000
#define EFI_WARN_INTERRUPT_SOURCE_QUIESCED 0x20000001

For 64-bit architecture:
#define EFI_INTERRUPT_PENDING 0xa000000000000000
#define EFI_WARN_INTERRUPT_SOURCE_PENDING 0x2000000000000000
#define EFI_WARN_INTERRUPT_SOURCE_QUIESCED 0x2000000000000001

Platform Initialization Spec, Vol. 5

384 May 2017 Version 1.6

	PI_1_6_Vol1_PEI
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Organization of the PEI CIS
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Procedure Descriptions
	1.3.3 Instruction Descriptions
	1.3.4 PPI Descriptions
	1.3.5 Pseudo-Code Conventions
	1.3.6 Typographic Conventions

	1.4 Requirements
	1.5 Conventions used in this document
	1.5.1 Number formats
	1.5.2 Binary prefixes

	2 Overview
	2.1 Introduction
	2.2 Design Goals
	2.3 Pre-EFI Initialization (PEI) Phase
	2.4 PEI Services
	2.5 PEI Foundation
	2.6 PEI Dispatcher
	2.7 Pre-EFI Initialization Modules (PEIMs)
	2.8 PEIM-to-PEIM Interfaces (PPIs)
	2.9 Firmware Volumes

	3 PEI Services Table
	3.1 Introduction
	3.2 PEI Services Table
	3.2.1 EFI_PEI_SERVICES

	4 Services - PEI
	4.1 Introduction
	4.2 PPI Services
	InstallPpi()
	ReinstallPpi()
	LocatePpi()
	NotifyPpi()

	4.3 Boot Mode Services
	GetBootMode()
	SetBootMode()

	4.4 HOB Services
	GetHobList()
	CreateHob()

	4.5 Firmware Volume Services
	FfsFindNextVolume()
	FfsFindNextFile()
	FfsFindSectionData()
	FfsFindSectionData3()
	FfsFindFileByName()
	FfsGetFileInfo()
	FfsGetFileInfo2()
	FfsGetVolumeInfo()
	RegisterForShadow()

	4.6 PEI Memory Services
	InstallPeiMemory()
	AllocatePages()
	AllocatePool()
	CopyMem()
	FreePages()
	SetMem()

	4.7 Status Code Service
	ReportStatusCode()

	4.8 Reset Services
	ResetSystem()

	4.9 I/O and PCI Services

	5 PEI Foundation
	5.1 Introduction
	5.1.1 Prerequisites
	5.1.2 Processor Execution Mode

	5.2 PEI Foundation Entry Point
	5.2.1 PEI Foundation Entry Point

	5.3 PEI Calling Convention Processor Binding
	5.4 PEI Services Table Retrieval
	5.4.1 X86
	5.4.2 x64
	5.4.3 Itanium Processor Family – Register Mechanism
	5.4.4 ARM Processor Family – Register Mechanism
	5.4.5 AArch64 Processor Family – Register Mechanism
	5.4.6 RISC-V Processor Family – Register Mechanism

	5.5 PEI Dispatcher Introduction
	5.6 Ordering
	5.6.1 Requirements
	5.6.2 Requirement Representation and Notation
	5.6.3 PEI a priori File Overview
	PEI_APRIORI_FILE_NAME_GUID
	5.6.4 Firmware Volume Image Files
	5.6.5 PEIM Dependency Expressions
	5.6.6 Types of Dependencies

	5.7 Dependency Expressions
	5.7.1 Introduction
	PUSH
	AND
	OR
	NOT
	TRUE
	FALSE
	END
	5.7.2 Dependency Expression with No Dependencies
	5.7.3 Empty Dependency Expressions
	5.7.4 Dependency Expression Reverse Polish Notation (RPN)

	5.8 Dispatch Algorithm
	5.8.1 Overview
	5.8.2 Requirements
	5.8.3 Example Dispatch Algorithm
	5.8.4 Dispatching When Memory Exists
	5.8.5 PEIM Dispatching
	5.8.6 PEIM Authentication

	6 Architectural PPIs
	6.1 Introduction
	6.2 Required Architectural PPIs
	6.2.1 Master Boot Mode PPI (Required)
	EFI_PEI_MASTER_BOOT_MODE_PPI (Required)
	6.2.2 DXE IPL PPI (Required)
	EFI_DXE_IPL_PPI (Required)
	EFI_DXE_IPL_PPI.Entry()
	6.2.3 Memory Discovered PPI (Required)
	EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)

	6.3 Optional Architectural PPIs
	6.3.1 Boot in Recovery Mode PPI (Optional)
	EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)
	6.3.2 End of PEI Phase PPI (Optional)
	EFI_PEI_END_OF_PEI_PHASE_PPI (Optional)
	6.3.3 PEI Reset PPI
	EFI_PEI_RESET_PPI (Optional)
	6.3.4 PEI Reset2 PPI
	EFI_PEI_RESET2_PPI (Optional)
	ResetSystem()
	6.3.5 Status Code PPI (Optional)
	EFI_PEI_PROGRESS_CODE_PPI (Optional)
	6.3.6 Security PPI (Optional)
	EFI_PEI_SECURITY2_PPI (Optional)
	EFI_PEI_SECURITY2_PPI.AuthenticationState()
	6.3.7 Temporary RAM Support PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI.TemporaryRamMigration ()
	6.3.8 Temporary RAM Done PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_DONE_PPI.TemporaryRamDone ()

	7 PEIMs
	7.1 Introduction
	7.2 PEIM Structure
	7.2.1 PEIM Structure Overview
	7.2.2 Relocation Information
	7.2.3 Authentication Information

	7.3 PEIM Invocation Entry Point
	7.3.1 EFI_PEIM_ENTRY_POINT2

	7.4 PEIM Descriptors
	7.4.1 PEIM Descriptors Overview
	EFI_PEI_DESCRIPTOR
	EFI_PEI_NOTIFY_DESCRIPTOR
	EFI_PEI_PPI_DESCRIPTOR

	7.5 PEIM-to-PEIM Communication
	7.5.1 Overview
	7.5.2 Dynamic PPI Discovery

	8 Additional PPIs
	8.1 Introduction
	8.2 Required Additional PPIs
	8.2.1 PCI Configuration PPI (Required)
	EFI_PEI_PCI_CFG2_PPI
	EFI_PEI_PCI_CFG2_PPI.Read()
	EFI_PEI_PCI_CFG2_PPI.Write()
	EFI_PEI_PCI_CFG2_PPI.Modify()
	8.2.2 Stall PPI (Required)
	EFI_PEI_STALL_PPI (Required)
	EFI_PEI_STALL_PPI.Stall()
	8.2.3 Variable Services PPI (Required)
	EFI_PEI_READ_ONLY_VARIABLE2_PPI
	EFI_PEI_READ_ONLY_VARIABLE2_PPI.GetVariable
	EFI_PEI_READ_ONLY_VARIABLE2_PPI.NextVariableName

	8.3 Optional Additional PPIs
	8.3.1 SEC Platform Information PPI (Optional)
	EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)
	EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation()
	EFI_SEC_PLATFORM_INFORMATION2_PPI (Optional)
	EFI_SEC_PLATFORM_INFORMATION2_PPI.PlatformInformation2()
	8.3.2 Loaded Image PPI (Optional)
	EFI_PEI_LOADED_IMAGE_PPI
	8.3.3 SEC HOB PPI
	EFI_SEC_HOB_DATA_PPI
	EFI_SEC_HOB_DATA_PPI.GetHobs()
	8.3.4 Recovery
	EFI_PEI_RECOVERY_MODULE_PPI
	EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetNumberRecoveryCapsules()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsuleInfo()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI
	EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks()
	8.3.5 EFI PEI Recovery Block IO2 PPI
	EFI_PEI_RECOVERY_BLOCK_IO2_PPI
	EFI_PEI_RECOVERY_BLOCK_IO2_PPI.GetNumberOfBlockDevices()
	EFI_PEI_RECOVERY_BLOCK_IO2_PPI.GetBlockDeviceMediaInfo()
	EFI_PEI_RECOVERY_BLOCK_IO2_PPI.ReadBlocks()
	8.3.6 EFI PEI Vector Handoff Info PPI
	EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional)
	8.3.7 CPU I/O PPI (Optional)
	EFI_PEI_CPU_IO_PPI (Optional)
	EFI_PEI_CPU_IO_PPI.Mem()
	EFI_PEI_CPU_IO_PPI.Io()
	EFI_PEI_CPU_IO_PPI.IoRead8()
	EFI_PEI_CPU_IO_PPI.IoRead16()
	EFI_PEI_CPU_IO_PPI.IoRead32()
	EFI_PEI_CPU_IO_PPI.IoRead64()
	EFI_PEI_CPU_IO_PPI.IoWrite8()
	EFI_PEI_CPU_IO_PPI.IoWrite16()
	EFI_PEI_CPU_IO_PPI.IoWrite32()
	EFI_PEI_CPU_IO_PPI.IoWrite64()
	EFI_PEI_CPU_IO_PPI.MemRead8()
	EFI_PEI_CPU_IO_PPI.MemRead16()
	EFI_PEI_CPU_IO_PPI.MemRead32()
	EFI_PEI_CPU_IO_PPI.MemRead64()
	EFI_PEI_CPU_IO_PPI.MemWrite8()
	EFI_PEI_CPU_IO_PPI.MemWrite16()
	EFI_PEI_CPU_IO_PPI.MemWrite32()
	EFI_PEI_CPU_IO_PPI.MemWrite64()
	8.3.8 EFI Pei Capsule PPI
	EFI_PEI_CAPSULE_PPI (Optional)
	EFI_PEI_CAPSULE_PPI.Coalesce
	EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CheckCapsuleUpdat e()
	EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CapsuleCreateState()
	8.3.9 EFI MP Services PPI
	EFI_MP_SERVICES_PPI (Optional)
	EFI_MP_SERVICES_PPI.GetNumberOfProcessors()
	EFI_MP_SERVICES_PPI.GetProcessorInfo()
	EFI_MP_SERVICES_PPI.StartupAllAPs ()
	EFI_MP_SERVICES_PPI.StartupThisAP ()
	EFI_MP_SERVICES_PPI.SwitchBSP ()
	EFI_MP_SERVICES_PPI.WhoAmI ()

	8.4 Graphics PEIM Interfaces
	8.4.1 Pei Graphics PPI
	GraphicsPpiInit
	GraphicsPpiGetMode
	8.4.2 EFI PEI Graphics INFO HOB
	EFI_PEI_GRAPHICS_INFO_HOB

	9 PEI to DXE Handoff
	9.1 Introduction
	9.2 Discovery and Dispatch of the DXE Foundation
	9.3 Passing the Hand-Off Block (HOB) List
	9.4 Handoff Processor State to the DXE IPL PPI

	10 Boot Paths
	10.1 Introduction
	10.2 Code Flow
	10.2.1 Reset Boot Paths

	10.3 Normal Boot Paths
	10.3.1 Basic G0-to-S0 and S0 Variation Boot Paths
	10.3.2 S-State Boot Paths

	10.4 Recovery Paths
	10.4.1 Discovery
	10.4.2 General Recovery Architecture

	10.5 Defined Boot Modes
	10.6 Priority of Boot Paths
	10.7 Assumptions
	10.8 Architectural Boot Mode PPIs
	10.9 Recovery
	10.9.1 Scope
	10.9.2 Discovery
	10.9.3 General Recovery Architecture
	10.9.4 Finding and Loading the Recovery DXE Image

	11 PEI Physical Memory Usage
	11.1 Introduction
	11.2 Before Permanent Memory Is Installed
	11.2.1 Discovering Physical Memory
	11.2.2 Using Physical Memory

	11.3 After Permanent Memory Is Installed
	11.3.1 Allocating Physical Memory
	11.3.2 Allocating Memory Using GUID Extension HOBs
	11.3.3 Allocating Memory Using PEI Service

	12 Special Paths Unique to the Itanium® Processor Family
	12.1 Introduction
	12.2 Unique Boot Paths for Itanium Architecture
	12.3 Min-State Save Area
	EFI_PEI_MIN_STATE_DATA

	12.4 Dispatching Itanium Processor Family PEIMs

	13 Security (SEC) Phase Information
	13.1 Introduction
	13.2 Responsibilities
	13.2.1 Handling All Platform Restart Events
	13.2.2 Creating a Temporary Memory Store
	13.2.3 Serving As the Root of Trust in the System
	13.2.4 Passing Handoff Information to the PEI Foundation

	13.3 SEC Platform Information PPI
	13.4 SEC HOB Data PPI
	13.5 Health Flag Bit Format
	13.5.1 Self-Test State Parameter

	13.6 Processor-Specific Details
	13.6.1 SEC Phase in IA-32 Intel Architecture
	13.6.2 SEC Phase in the Itanium Processor Family

	14 Dependency Expression Grammar
	14.1 Dependency Expression Grammar
	14.1.1 Example Dependency Expression BNF Grammar
	14.1.2 Sample Dependency Expressions

	15 TE Image
	15.1 Introduction
	15.2 PE32 Headers
	TE Header

	16 TE Image Creation
	16.1 Introduction
	16.2 TE Image Utility Requirements
	16.3 TE Image Relocations

	17 TE Image Loading
	17.1 Introduction
	17.2 XIP Images
	17.3 Relocated Images
	17.4 PIC Images

	PI_1_6_Vol2_DXE
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Organization of the DXE CIS
	1.3 Target Audience
	1.4 Conventions Used in this Document
	1.4.1 Data Structure Descriptions
	1.4.2 Protocol Descriptions
	1.4.3 Procedure Descriptions
	1.4.4 Instruction Descriptions
	1.4.5 Pseudo-Code Conventions
	1.4.6 Typographic Conventions

	1.5 Requirements
	1.6 Conventions used in this document
	1.6.1 Number formats
	1.6.2 Binary prefixes

	2 Overview
	2.1 Driver Execution Environment (DXE) Phase
	2.2 UEFI System Table
	2.2.1 Overview
	2.2.2 UEFI Boot Services Table
	2.2.3 UEFI Runtime Services Table
	2.2.4 DXE Services Table

	2.3 DXE Foundation
	2.4 DXE Dispatcher
	2.5 DXE Drivers
	2.6 DXE Architectural Protocols
	2.7 Runtime Protocol

	3 Boot Manager
	3.1 Boot Manager

	4 UEFI System Table
	4.1 DXE Services Table
	DXE_SERVICES

	4.2 UEFI Image Entry Point Examples
	4.2.1 UEFI Application Example
	4.2.2 Non-UEFI Driver Model Example (Resident in Memory)
	4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)
	4.2.4 UEFI Driver Model Example
	4.2.5 UEFI Driver Model Example (Unloadable)
	4.2.6 UEFI Driver Model Example (Multiple Instances)

	5 Services - Boot Services
	5.1 Extensions to UEFI Boot Service Event Usage
	5.1.1 CreateEvent
	5.1.2 Pre-Defined Event Groups
	5.1.3 Additions to LoadImage()

	6 Runtime Capabilities
	6.1 Additional Runtime Protocol
	6.1.1 Status Code Services

	7 Services - DXE Services
	7.1 Introduction
	7.2 Global Coherency Domain Services
	7.2.1 Global Coherency Domain (GCD) Services Overview
	7.2.2 GCD Memory Resources
	7.2.3 GCD I/O Resources
	7.2.4 Global Coherency Domain Services
	AddMemorySpace()
	AllocateMemorySpace()
	FreeMemorySpace()
	RemoveMemorySpace()
	GetMemorySpaceDescriptor()
	SetMemorySpaceAttributes()
	SetMemorySpaceCapabilities()
	GetMemorySpaceMap()
	AddIoSpace()
	AllocateIoSpace()
	FreeIoSpace()
	RemoveIoSpace()
	GetIoSpaceDescriptor()
	GetIoSpaceMap()

	7.3 Dispatcher Services
	Dispatch()
	Schedule()
	Trust()
	ProcessFirmwareVolume()

	8 Protocols - Device Path Protocol
	8.1 Introduction
	8.2 Firmware Volume Media Device Path
	8.3 Firmware File Media Device Path

	9 DXE Foundation
	9.1 Introduction
	9.2 Hand-Off Block (HOB) List
	9.3 DXE Foundation Data Structures
	9.4 Required DXE Foundation Components
	9.5 Handing Control to DXE Dispatcher
	9.6 DXE Foundation Entry Point
	9.6.1 DXE_ENTRY_POINT
	DXE_ENTRY_POINT

	9.7 Dependencies
	9.7.1 UEFI Boot Services Dependencies
	9.7.2 UEFI Runtime Services Dependencies
	9.7.3 DXE Services Dependencies

	9.8 HOB Translations
	9.8.1 HOB Translations Overview
	9.8.2 PHIT HOB
	9.8.3 CPU HOB
	9.8.4 Resource Descriptor HOBs
	9.8.5 Firmware Volume HOBs
	9.8.6 Memory Allocation HOBs
	9.8.7 GUID Extension HOBs

	10 DXE Dispatcher
	10.1 Introduction
	10.2 Requirements
	10.3 The A Priori File
	EFI_APRIORI_GUID

	10.4 Firmware Volume Image Files
	10.5 Dependency Expressions
	10.6 Dependency Expressions Overview
	10.7 Dependency Expression Instruction Set
	BEFORE
	AFTER
	PUSH
	AND
	OR
	NOT
	TRUE
	FALSE
	END
	SOR

	10.8 Dependency Expression with No Dependencies
	10.9 Empty Dependency Expressions
	10.10 Dependency Expression Reverse Polish Notation (RPN)
	10.11 DXE Dispatcher State Machine
	10.12 Example Orderings
	10.13 Security Considerations

	11 DXE Drivers
	11.1 Introduction
	11.2 Classes of DXE Drivers
	11.2.1 Early DXE Drivers
	11.2.2 DXE Drivers that Follow the UEFI Driver Model
	11.2.3 Additional Classifications

	12 DXE Architectural Protocols
	12.1 Introduction
	12.2 Boot Device Selection (BDS) Architectural Protocol
	EFI_BDS_ARCH_PROTOCOL
	EFI_BDS_ARCH_PROTOCOL.Entry()

	12.3 CPU Architectural Protocol
	EFI_CPU_ARCH_PROTOCOL
	EFI_CPU_ARCH_PROTOCOL.FlushDataCache()
	EFI_CPU_ARCH_PROTOCOL.EnableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.DisableInterrupt()
	EFI_CPU_ARCH_PROTOCOL.GetInterruptState()
	EFI_CPU_ARCH_PROTOCOL.Init()
	EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler()
	EFI_CPU_ARCH_PROTOCOL.GetTimerValue()
	EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes()

	12.4 Metronome Architectural Protocol
	EFI_METRONOME_ARCH_PROTOCOL
	EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()

	12.5 Monotonic Counter Architectural Protocol
	EFI_MONOTONIC_COUNTER_ARCH_PROTOCOL

	12.6 Real Time Clock Architectural Protocol
	EFI_REAL_TIME_CLOCK_ARCH_PROTOCOL

	12.7 Reset Architectural Protocol
	EFI_RESET_ARCH_PROTOCOL

	12.8 Runtime Architectural Protocol
	EFI_RUNTIME_ARCH_PROTOCOL

	12.9 Security Architectural Protocols
	12.9.1 Security Architectural Protocol
	EFI_SECURITY_ARCH_PROTOCOL
	EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()
	12.9.2 Security2 Architectural Protocol
	EFI_SECURITY2_ARCH_PROTOCOL.FileAuthentication()

	12.10 Timer Architectural Protocol
	EFI_TIMER_ARCH_PROTOCOL
	EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
	EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()
	EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt()

	12.11 Variable Architectural Protocol
	EFI_VARIABLE_ARCH_PROTOCOL

	12.12 Variable Write Architectural Protocol
	EFI_VARIABLE_WRITE_ARCH_PROTOCOL

	12.13 EFI Capsule Architectural Protocol
	EFI_CAPSULE_ARCH_PROTOCOL

	12.14 Watchdog Timer Architectural Protocol
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod()
	EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod()

	13 DXE Boot Services Protocol
	13.1 Overview
	13.2 Conventions and Abbreviations
	13.3 MP Services Protocol Overview
	13.4 MP Services Protocol
	EFI_MP_SERVICES_PROTOCOL
	EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors()
	EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo()
	EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
	EFI_MP_SERVICES_PROTOCOL.StartupThisAP()
	EFI_MP_SERVICES_PROTOCOL.SwitchBSP()
	EFI_MP_SERVICES_PROTOCOL.EnableDisableAP()
	EFI_MP_SERVICES_PROTOCOL.WhoAmI()

	14 DXE Runtime Protocols
	14.1 Introduction
	14.2 Status Code Runtime Protocol
	EFI_STATUS_CODE_ PROTOCOL
	EFI_STATUS_CODE_PROTOCOL.ReportStatusCode()

	15 Dependency Expression Grammar
	15.1 Dependency Expression Grammar
	15.2 Example Dependency Expression BNF Grammar
	15.3 Sample Dependency Expressions

	Appendix A Error Codes
	Appendix B GUID Definitions

	PI_1_6_Vol3_Firmware
	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1 Shared Architectural Elements
	1.1 Overview
	1.2 Target Audience
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Pseudo-Code Conventions
	1.3.3 Typographic Conventions

	1.4 Conventions used in this document
	1.4.1 Number formats
	1.4.2 Binary prefixes

	2 Firmware Storage Design Discussion
	2.1 Firmware Storage Introduction
	2.1.1 Firmware Devices
	2.1.2 Firmware Volumes
	2.1.3 Firmware File System
	2.1.4 Firmware Files
	2.1.5 Firmware File Sections

	2.2 PI Architecture Firmware File System Format
	2.2.1 Firmware Volume Format
	2.2.2 Firmware File System Format
	2.2.3 Firmware File Format
	2.2.4 Firmware File Section Format
	2.2.5 File System Initialization
	2.2.6 Traversal and Access to Files
	2.2.7 File Integrity and State
	2.2.8 File State Transitions

	3 Firmware Storage Code Definitions
	3.1 Firmware Storage Code Definitions Introduction
	3.2 Firmware Storage Formats
	3.2.1 Firmware Volume
	EFI_FIRMWARE_VOLUME_HEADER
	3.2.2 Firmware File System
	EFI_FIRMWARE_FILE_SYSTEM2_GUID
	EFI_FIRMWARE_FILE_SYSTEM3_GUID
	EFI_FFS_VOLUME_TOP_FILE_GUID
	3.2.3 Firmware File
	EFI_FFS_FILE_HEADER
	3.2.4 Firmware File Section
	EFI_COMMON_SECTION_HEADER
	3.2.5 Firmware File Section Types
	EFI_SECTION_COMPATIBILITY16
	EFI_SECTION_COMPRESSION
	EFI_SECTION_DISPOSABLE
	EFI_SECTION_DXE_DEPEX
	EFI_SECTION_FIRMWARE_VOLUME_IMAGE
	EFI_SECTION_FREEFORM_SUBTYPE_GUID
	EFI_SECTION_GUID_DEFINED
	EFI Signed Sections
	EFI_SECTION_PE32
	EFI_SECTION_PEI_DEPEX
	EFI_SECTION_PIC
	EFI_SECTION_RAW
	EFI_SECTION_MM_DEPEX
	EFI_SECTION_TE
	EFI_SECTION_USER_INTERFACE
	EFI_SECTION_VERSION

	3.3 PEI
	EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
	EFI_PEI_FIRMWARE_VOLUME_INFO2_PPI
	3.3.1 PEI Firmware Volume PPI
	EFI_PEI_FIRMWARE_VOLUME_PPI
	EFI_PEI_FIRMWARE_VOLUME_PPI.ProcessVolume()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByType()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindFileByName()
	EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo()
	EFI_PEI_FIRMWARE_VOLUME_PPI.GetFileInfo2()
	EFI_PEI_FIRMWARE_VOLUME_PPI.GetVolumeInfo()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType()
	EFI_PEI_FIRMWARE_VOLUME_PPI.FindSectionByType2()
	3.3.2 PEI Load File PPI
	EFI_PEI_LOAD_FILE_PPI
	EFI_PEI_LOAD_FILE_PPI.LoadFile()
	3.3.3 PEI Guided Section Extraction PPI
	EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI
	EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI.ExtractSection()
	3.3.4 PEI Decompress PPI
	EFI_PEI_DECOMPRESS_PPI
	EFI_PEI_DECOMPRESS_PPI.Decompress()

	3.4 DXE
	3.4.1 Firmware Volume2 Protocol
	EFI_FIRMWARE_VOLUME2_PROTOCOL
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetVolumeAttributes()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.SetVolumeAttributes()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.ReadSection()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.WriteFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetNextFile()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.GetInfo()
	EFI_FIRMWARE_VOLUME2_PROTOCOL.SetInfo()
	3.4.2 Firmware Volume Block2 Protocol
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.SetAttributes()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetPhysicalAddress ()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.GetBlockSize()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Read()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.Write()
	EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL.EraseBlocks()
	3.4.3 Guided Section Extraction Protocol
	EFI_GUIDED_SECTION_EXTRACTION_PROTOCOL
	EFI_GUIDED_SECTION_EXTRACTION_PROCOCOL.ExtractSection()

	3.5 SMM
	3.5.1 SMM Firmware Volume Protocol
	EFI_SMM_FIRMWARE_VOLUME_PROTOCOL
	3.5.2 SMM Firmware Volume Block Protocol
	EFI_SMM_FIRMWARE_VOLUME_BLOCK_PROTOCOL

	4 HOB Design Discussion
	4.1 Explanation of HOB Terms
	4.2 HOB Overview
	4.3 Example HOB Producer Phase Memory Map and Usage
	4.4 HOB List
	4.5 Constructing the HOB List
	4.5.1 Constructing the Initial HOB List
	4.5.2 HOB Construction Rules
	4.5.3 Adding to the HOB List

	5 HOB Code Definitions
	5.1 HOB Introduction
	5.2 HOB Generic Header
	EFI_HOB_GENERIC_HEADER

	5.3 PHIT HOB
	EFI_HOB_HANDOFF_INFO_TABLE (PHIT HOB)

	5.4 Memory Allocation HOB
	5.4.1 Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION
	5.4.2 Boot-Strap Processor (BSP) Stack Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_STACK
	5.4.3 Boot-Strap Processor (BSP) BSPSTORE Memory Allocation HOB
	EFI_HOB_MEMORY_ALLOCATION_BSP_STORE
	5.4.4 Memory Allocation Module HOB
	EFI_HOB_MEMORY_ALLOCATION_MODULE

	5.5 Resource Descriptor HOB
	EFI_HOB_RESOURCE_DESCRIPTOR

	5.6 GUID Extension HOB
	EFI_HOB_GUID_TYPE

	5.7 Firmware Volume HOB
	EFI_HOB_FIRMWARE_VOLUME
	EFI_HOB_FIRMWARE_VOLUME2
	EFI_HOB_FIRMWARE_VOLUME3

	5.8 CPU HOB
	EFI_HOB_CPU

	5.9 Memory Pool HOB
	EFI_HOB_MEMORY_POOL

	5.10 UEFI Capsule HOB
	EFI_HOB_UEFI_ CAPSULE

	5.11 Unused HOB
	EFI_HOB_TYPE_UNUSED

	5.12 End of HOB List HOB
	EFI_HOB_TYPE_END_OF_HOB_LIST

	5.13 SMRAM Memory Hob
	EFI_SMRAM_HOB_DESCRIPTOR_BLOCK

	6 Status Codes
	6.1 Status Codes Overview
	6.1.1 Organization of the Status Codes Specification

	6.2 Terms
	6.3 Types of Status Codes
	6.3.1 Status Code Classes
	6.3.2 Instance Number

	6.4 Hardware Classes
	6.4.1 Computing Unit Class
	6.4.2 User-Accessible Peripheral Class
	6.4.3 Subclasses

	6.5 Software Classes
	6.5.1 Host Software Class
	6.5.2 Instance Number
	6.5.3 Progress Code Operations
	6.5.4 Error Code Operations
	6.5.5 Subclasses
	6.5.6 Runtime (RT) Subclass

	6.6 Code Definitions
	6.6.1 Data Structures
	6.6.2 Extended Data Header
	EFI_STATUS_CODE_DATA
	EFI_STATUS_CODE_DATA_TYPE_STRING_GUID
	EFI_STATUS_CODE_SPECIFIC_DATA_GUID
	6.6.3 Enumeration Schemes
	6.6.4 Common Extended Data Formats
	EFI_DEVICE_PATH_EXTENDED_DATA
	EFI_DEVICE_HANDLE_EXTENDED_DATA
	EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA

	6.7 Class Definitions
	6.7.1 Computing Unit Class
	EFI_COMPUTING_UNIT_VOLTAGE_ERROR_DATA
	EFI_COMPUTING_UNIT_MICROCODE_UPDATE_ERROR_DATA
	EFI_COMPUTING_UNIT_TIMER_EXPIRED_ERROR_DATA
	EFI_HOST_PROCESSOR_MISMATCH_ERROR_DATA
	EFI_COMPUTING_UNIT_THERMAL_ERROR_DATA
	EFI_CACHE_INIT_DATA
	EFI_COMPUTING_UNIT_CPU_DISABLED_ERROR_DATA
	EFI_MEMORY_EXTENDED_ERROR_DATA
	EFI_STATUS_CODE_DIMM_NUMBER
	EFI_MEMORY_MODULE_MISMATCH_ERROR_DATA
	EFI_MEMORY_RANGE_EXTENDED_DATA
	6.7.2 User-Accessible Peripherals Class
	6.7.3 I/O Bus Class
	6.7.4 Software Classes
	EFI_DEBUG_ASSERT_DATA
	EFI_STATUS_CODE_EXCEP_EXTENDED_DATA
	EFI_STATUS_CODE_START_EXTENDED_DATA
	EFI_LEGACY_OPROM_EXTENDED_DATA

	7 Report Status Code Routers
	7.1 Overview
	7.2 Code Definitions
	7.2.1 Report Status Code Handler Protocol
	EFI_RSC_HANDLER_PROTOCOL
	EFI_RSC_HANDLER_PROTOCOL.Register()
	EFI_RSC_HANDLER_PROTOCOL.Unregister()
	7.2.2 Report Status Code Handler PPI
	EFI_PEI_RSC_HANDLER_PPI
	EFI_PEI_RSC_HANDLER_PPI.Register()
	EFI_PEI_RSC_HANDLER_PPI.Unregister()
	7.2.3 SMM Report Status Code Handler Protocol
	EFI_SMM_RSC_HANDLER_PROTOCOL
	EFI_SMM_RSC_HANDLER_PROTOCOL.Register()
	EFI_SMM_RSC_HANDLER_PROTOCOL.Unregister()

	8 PCD
	8.1 PCD Protocol Definitions
	8.1.1 PCD Protocol
	EFI_PCD_PROTOCOL
	EFI_PCD_PROTOCOL.SetSku ()
	EFI_PCD_PROTOCOL.Get8 ()
	EFI_PCD_PROTOCOL.Get16 ()
	EFI_PCD_PROTOCOL.Get32 ()
	EFI_PCD_PROTOCOL.Get64 ()
	EFI_PCD_PROTOCOL.GetPtr ()
	EFI_PCD_PROTOCOL.GetBool ()
	EFI_PCD_PROTOCOL.GetSize ()
	EFI_PCD_PROTOCOL.Set8 ()
	EFI_PCD_PROTOCOL.Set16 ()
	EFI_PCD_PROTOCOL.Set32 ()
	EFI_PCD_PROTOCOL.Set64 ()
	EFI_PCD_PROTOCOL.SetPtr ()
	EFI_PCD_PROTOCOL.SetBool ()
	EFI_PCD_PROTOCOL.CallbackOnSet ()
	EFI_PCD_PROTOCOL.CancelCallback ()
	EFI_PCD_PROTOCOL.GetNextToken ()
	EFI_PCD_PROTOCOL.GetNextTokenSpace ()
	8.1.2 Get PCD Information Protocol
	EFI_GET_PCD_INFO_PROTOCOL
	EFI_GET_PCD_INFO_PROTOCOL.GetInfo ()
	EFI_GET_PCD_INFO_PROTOCOL.GetSku ()

	8.2 PCD PPI Definitions
	8.2.1 PCD PPI
	EFI_PEI_PCD_PPI
	EFI_PEI_PCD_PPI.SetSku ()
	EFI_PEI_PCD_PPI.Get8 ()
	EFI_PEI_PCD_PPI.Get16 ()
	EFI_PEI_PCD_PPI.Get32 ()
	EFI_PEI_PCD_PPI.Get64 ()
	EFI_PEI_PCD_PPI.GetPtr ()
	EFI_PEI_PCD_PPI.GetBool ()
	EFI_PEI_PCD_PPI.GetSize ()
	EFI_PEI_PCD_PPI.Set8 ()
	EFI_PEI_PCD_PPI.Set16 ()
	EFI_PEI_PCD_PPI.Set32 ()
	EFI_PEI_PCD_PPI.Set64 ()
	EFI_PEI_PCD_PPI.SetPtr ()
	EFI_PEI_PCD_PPI.SetBool()
	EFI_PEI_PCD_PPI.CallbackOnSet ()
	EFI_PEI_PCD_PPI.CancelCallback ()
	EFI_PEI_PCD_PPI.GetNextToken ()
	EFI_PEI_PCD_PPI.GetNextTokenSpace ()
	8.2.2 Get PCD Information PPI
	EFI_GET_PCD_INFO_PPI
	EFI_GET_PCD_INFO_PPI.GetInfo ()
	EFI_GET_PCD_INFO_PPI.GetSku ()

	PI_1_6_Vol4_SMM
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	1 Overview
	1.1 Definition of Terms
	1.2 Management Mode (MM)
	1.3 MM Driver Execution Environment
	1.4 Initializing Management Mode in MM Traditional Mode
	1.4.1 SEC Initialization
	1.4.2 PEI Initialization
	1.4.3 DXE Initialization

	1.5 Initializing Management Mode in MM Standalone Mode
	1.5.1 Initializing MM Standalone Mode in PEI phase
	1.5.2 Initializing MM Standalone Mode in SEC phase

	1.6 Entering & Exiting MM
	1.7 MM Traditional Drivers
	1.7.1 MM Drivers
	1.7.2 Combination MM/DXE Drivers
	1.7.3 MM Standalone Drivers
	1.7.4 MM_IMAGE_ENTRY_POINT
	1.7.5 SOR and Dependency Expressions for SM

	1.8 MM Traditional Driver Initialization
	1.9 MM Standalone Driver Initialization
	1.10 MM Traditional Driver Runtime
	1.11 MM Standalone Driver Runtime
	1.12 Dispatching MMI Handlers
	1.13 MM Services
	1.13.1 MM Driver Model
	1.13.2 MM Protocols

	1.14 MM UEFI Protocols
	1.14.1 UEFI Protocols
	1.14.2 MM Protocols

	2 MM Foundation Entry Point
	2.1 EFI_MM_ENTRY_POINT
	2.2 MM_FOUNDATION_ENTRY_POINT

	3 Management Mode System Table (MMST)
	3.1 MMST Introduction
	3.2 EFI_MM_SYSTEM_TABLE
	MmInstallConfigurationTable()
	MmAllocatePool()
	MmFreePool()
	MmAllocatePages()
	MmFreePages()
	MmStartupThisAp()
	MmInstallProtocolInterface()
	MmUninstallProtocolInterface()
	MmHandleProtocol()
	MmRegisterProtocolNotify()
	MmLocateHandle()
	MmLocateProtocol()
	MmiManage()
	MmiHandlerRegister()
	MmiHandlerUnRegister()

	4 MM Protocols
	4.1 Introduction
	4.2 Status Codes Services
	EFI_MM_STATUS_CODE_PROTOCOL
	EFI_MM_STATUS_CODE_PROTOCOL.ReportStatusCode()

	4.3 CPU Save State Access Services
	EFI_MM_CPU_PROTOCOL
	EFI_MM_CPU_PROTOCOL.ReadSaveState()
	AARCH32/AARCH64 REGISTER AVAILABILITY
	EFI_MM_SAVE_STATE_ARM_CSR, EFI_MM_SAVE_STATE_AARCH64_CSR
	EFI_MM_SAVE_STATE_REGISTER_PROCESSOR_ID
	EFI_MM_SAVE_STATE_REGISTER_LMA
	EFI_MM_CPU_PROTOCOL.WriteSaveState()
	4.3.1 MM Save State IO Info
	EFI_MM_SAVE_STATE_IO_INFO

	4.4 MM CPU I/O Protocol
	EFI_MM_CPU_IO_PROTOCOL
	EFI_MM_CPU_IO_PROTOCOL.Mem()
	EFI_MM_CPU_IO_PROTOCOL.Io()

	4.5 MM PCI I/O Protocol
	EFI_MM_PCI_ROOT_BRIDGE_IO_PROTOCOL

	4.6 MM Ready to Lock Protocol
	EFI_MM_READY_TO_LOCK_PROTOCOL

	4.7 MM MP protocol
	EFI_MM_MP_PROTOCOL
	EFI_MM_MP_PROTOCOL.Revision
	EFI_MM_MP_PROTOCOL.Attributes
	EFI_MM_MP_PROTOCOL.GetNumberOfProcessors()
	EFI_MM_MP_PROTOCOL.DispatchProcedure()
	EFI_MM_MP_PROTOCOL.BroadcastProcedure()
	EFI_MM_MP_PROTOCOL.SetStartupProcedure()
	EFI_MM_MP_PROTOCOL.CheckOnProcedure()
	EFI_MM_MP_PROTOCOL.WaitForProcedure()

	4.8 MM Configuration Protocol
	EFI_MM_CONFIGURATION_PROTOCOL
	EFI_MM_CONFIGURATION_PROTOCOL.RegisterMmFoundationEntry()

	4.9 MM End Of PEI Protocol
	EFI_MM_END_OF_PEI_PROTOCOL

	4.10 MM UEFI Ready Protocol
	EFI_MM_UEFI_READY_PROTOCOL

	4.11 MM Ready To Boot Protocol
	EFI_MM_READY_TO_BOOT_PROTOCOL

	4.12 MM Exit Boot Services Protocol
	EFI_MM_EXIT_BOOT_SERVICES_PROTOCOL

	4.13 MM Security Architecture Protocol
	EFI_MM_SECURITY_ARCHITECTURE_PROTOCOL

	4.14 MM End of DXE Protocol
	EFI_MM_END_OF_DXE_PROTOCOL

	4.15 MM Handler State Notification Protocol
	EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL
	EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL. HandlerStateNotifierRegister
	EFI_MM_HANDLER_STATE_NOTIFICATION_PROTOCOL. HandlerStateNotifierUnregister

	5 UEFI Protocols
	5.1 Introduction
	5.2 EFI MM Base Protocol
	EFI_MM_BASE_PROTOCOL
	EFI_MM_BASE_PROTOCOL.InMm()
	EFI_MM_BASE_PROTOCOL.GetMmstLocation()

	5.3 MM Access Protocol
	EFI_MM_ACCESS_PROTOCOL
	EFI_MM_ACCESS_PROTOCOL.Open()
	EFI_MM_ACCESS_PROTOCOL.Close()
	EFI_MM_ACCESS_PROTOCOL.Lock()
	EFI_MM_ACCESS_PROTOCOL.GetCapabilities()

	5.4 MM Control Protocol
	EFI_MM_CONTROL_PROTOCOL
	EFI_MM_CONTROL_PROTOCOL.Trigger()
	EFI_MM_CONTROL_PROTOCOL.Clear()

	5.5 MM Configuration Protocol
	EFI_MM_CONFIGURATION_PROTOCOL
	EFI_MM_CONFIGURATION_PROTOCOL.RegisterMmEntry()

	5.6 DXE MM Ready to Lock Protocol
	EFI_DXE_MM_READY_TO_LOCK_PROTOCOL

	5.7 MM Communication Protocol
	EFI_MM_COMMUNICATION_PROTOCOL
	EFI_MM_COMMUNICATION_PROTOCOL.Communicate()

	6 PI PEI PPIs
	6.1 MM Access PPI
	EFI_PEI_MM_ACCESS_PPI
	EFI_PEI_MM_ACCESS_PPI.Open()
	EFI_PEI_MM_ACCESS_PPI.Close()
	EFI_PEI_MM_ACCESS_PPI.Lock()
	EFI_PEI_MM_ACCESS_PPI.GetCapabilities()

	6.2 MM Control PPI
	EFI_PEI_MM_CONTROL_PPI.Trigger()
	EFI_PEI_MM_CONTROL_PPI.Clear()

	6.3 MM Configuration PPI
	EFI_PEI_MM_CONFIGURATION_PPI
	EFI_PEI_MM_CONFIGURATION_PPI.RegisterMmEntry()

	6.4 MM Communication PPI
	EFI_PEI_MM_COMMUNICATION_PPI
	EFI_PEI_MM_COMMUNICATION_PPI.Communicate()

	7 MM Child Dispatch Protocols
	7.1 Introduction
	7.2 MM Software Dispatch Protocol
	EFI_MM_SW_DISPATCH_PROTOCOL
	EFI_MM_SW_DISPATCH_PROTOCOL.Register()
	EFI_MM_SW_DISPATCH_PROTOCOL.UnRegister()

	7.3 MM Sx Dispatch Protocol
	EFI_MM_SX_DISPATCH_PROTOCOL
	EFI_MM_SX_DISPATCH_PROTOCOL.Register()
	EFI_MM_SX_DISPATCH_PROTOCOL.UnRegister()

	7.4 MM Periodic Timer Dispatch Protocol
	EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL
	EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.Register()
	EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL.UnRegister()
	EFI_MM_PERIODIC_TIMER_DISPATCH_PROTOCOL. GetNextShorterInterval()

	7.5 MM USB Dispatch Protocol
	EFI_MM_USB_DISPATCH_PROTOCOL
	EFI_MM_USB_DISPATCH_PROTOCOL.Register()
	EFI_MM_USB_DISPATCH_PROTOCOL.UnRegister()

	7.6 MM General Purpose Input (GPI) Dispatch Protocol
	EFI_MM_GPI_DISPATCH_PROTOCOL
	EFI_MM_GPI_DISPATCH_PROTOCOL.Register()
	EFI_MM_GPI_DISPATCH_PROTOCOL.UnRegister()

	7.7 MM Standby Button Dispatch Protocol
	EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL
	EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL.Register()
	EFI_MM_STANDBY_BUTTON_DISPATCH_PROTOCOL.UnRegister()

	7.8 MM Power Button Dispatch Protocol
	EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL
	EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL. Register()
	EFI_MM_POWER_BUTTON_DISPATCH_PROTOCOL.UnRegister()

	7.9 MM IO Trap Dispatch Protocol
	EFI_MM_IO_TRAP_DISPATCH_PROTOCOL
	EFI_MM_IO_TRAP_DISPATCH_PROTOCOL.Register ()
	EFI_MM_IO_TRAP_DISPATCH_PROTOCOL.UnRegister ()

	7.10 HOBs
	EFI_PEI_MM_CORE_GUID

	8 Interactions with PEI, DXE, and BDS
	8.1 Introduction
	8.2 MM and DXE
	8.2.1 Software MMI Communication Interface (Method #1)
	8.2.2 Software MMI Communication Interface (Method #2)

	8.3 MM and PEI
	8.3.1 Software MMI Communication Interface (Method #1)

	9 Other Related Notes For Support Of MM Drivers
	9.1 File Types
	9.1.1 File Type EFI_FV_FILETYPE_MM
	9.1.2 File Type EFI_FV_FILETYPE_COMBINED_MM_DXE

	9.2 File Type EFI_FV_FILETYPE_MM_STANDALONE
	9.3 File Section Types
	9.3.1 File Section Type EFI_SECTION_MM_DEPEX

	10 MCA/INIT/PMI Protocol
	10.1 Machine Check and INIT
	10.2 MCA Handling
	10.3 INIT Handling
	10.4 PMI
	10.5 Event Handlers
	10.5.1 MCA Handlers
	MCA Handler
	10.5.2 INIT Handlers
	INIT Handler
	10.5.3 PMI Handlers
	PMI Handler

	10.6 MCA PMI INIT Protocol
	EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterMcaHandler ()
	EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterInitHandler ()
	EFI_SAL_MCA_INIT_PMI_PROTOCOL. RegisterPmiHandler ()

	11 Extended SAL Services
	11.1 SAL Overview
	11.2 Extended SAL Boot Service Protocol
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableIn fo()
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddSalSystemTableE ntry()
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.AddExtendedSalProc()
	EXTENDED_SAL_BOOT_SERVICE_PROTOCOL.ExtendedSalProc()

	11.3 Extended SAL Service Classes
	11.3.1 Extended SAL Base I/O Services Class
	ExtendedSalIoRead
	ExtendedSalIoWrite
	ExtendedSalMemRead
	ExtendedSalMemWrite

	11.4 Extended SAL Stall Services Class
	ExtendedSalStall
	11.4.1 Extended SAL Real Time Clock Services Class
	ExtendedSalGetTime
	ExtendedSalSetTime
	ExtendedSalGetWakeupTime
	ExtendedSalSetWakeupTime
	11.4.2 Extended SAL Reset Services Class
	ExtendedSalResetSystem
	11.4.3 Extended SAL PCI Services Class
	ExtendedSalPciRead
	ExtendedSalPciWrite
	11.4.4 Extended SAL Cache Services Class
	ExtendedSalCacheInit
	ExtendedSalCacheFlush
	11.4.5 Extended SAL PAL Services Class
	ExtendedSalPalProc
	ExtendedSalSetNewPalEntry
	ExtendedSalGetNewPalEntry
	ExtendedSalUpdatePal
	11.4.6 Extended SAL Status Code Services Class
	ExtendedSalReportStatusCode
	11.4.7 Extended SAL Monotonic Counter Services Class
	ExtendedSalGetNextHighMtc
	11.4.8 Extended SAL Variable Services Class
	ExtendedSalGetVariable
	ExtendedSalGetNextVariableName
	ExtendedSalSetVariable
	ExtendedSalQueryVariableInfo
	11.4.9 Extended SAL Firmware Volume Block Services Class
	ExtendedSalRead
	ExtendedSalWrite
	ExtendedSalEraseBlock
	ExtendedSalGetAttributes
	ExtendedSalSetAttributes
	ExtendedSalGetPhysicalAddress
	ExtendedSalGetBlockSize
	ExtendedSalEraseCustomBlockRange
	11.4.10 Extended SAL MCA Log Services Class
	ExtendedSalGetStateInfo
	ExtendedSalGetStateInfoSize
	ExtendedSalClearStateInfo
	ExtendedSalGetStateBuffer
	ExtendedSalSaveStateBuffer
	11.4.11 Extended SAL Base Services Class
	ExtendedSalSetVectors
	ExtendedSalMcRendez
	ExtendedSalMcSetParams
	ExtendedSalGetVectors
	ExtendedSalMcGetParams
	ExtendedSalMcGetMcParams
	ExtendedSalGetMcCheckinFlags
	ExtendedSalGetPlatformBaseFreq
	ExtendedSalRegisterPhysicalAddr
	11.4.12 Extended SAL MP Services Class
	ExtendedSalAddCpuData
	ExtendedSalRemoveCpuData
	ExtendedSalModifyCpuData
	ExtendedSalGetCpuDataById
	ExtendedSalGetCpuDataByIndex
	ExtendedSalWhoiAmI
	ExtendedSalNumProcessors
	ExtendedSalSetMinState
	ExtendedSalGetMinState
	ExtendedSalPhysicalIdInfo
	11.4.13 Extended SAL MCA Services Class
	ExtendedSalMcaGetStateInfo
	ExtendedSalMcaRegisterCpu

	12 SMM SPI Protocol Stack
	12.1 Design
	12.2 SMM SPI Protocols
	EFI_LEGACY _SPI_SMM_FLASH_PROTOCOL GUID
	EFI_SPI_SMM_NOR_FLASH_PROTOCOL GUID
	EFI- SPI- SMM- CONFIGURATION PROTOCOL GUID
	EFI- SPI- SMM HC- PROTOCOL GUID
	EFI LEGACY- SPI- SMM- CONTROLLER- PROTOCOL GUID

	Appendix A Management Mode Backward Compatibility Types
	EFI_SMM_CONFIGURATION_PROTOCOL
	EFI_SMM_CAPABILITIES2
	EFI_SMM_INSIDE_OUT2
	EFI_SMM_SW_CONTEXT
	EFI_SMM_SW_REGISTER_CONTEXT
	EFI_SMM_PERIODIC_TIMER_REGISTER_CONTEXT
	EFI_SMM_SAVE_STATE_IO_WIDTH
	EFI_SMM_IO_WIDTH

	PI_Vol5_SMBUS
	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview
	1.2 Terms Used in this Document
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Protocol Descriptions
	1.3.3 Procedure Descriptions
	1.3.4 Pseudo-Code Conventions
	1.3.5 Typographic Conventions

	1.4 Requirements

	2 SMBus Host Controller Design Discussion
	2.1 SMBus Host Controller Overview
	2.2 Related Information
	2.3 SMBus Host Controller Protocol Terms
	2.4 SMBus Host Controller Protocol Overview

	3 SMBus Host Controller Code Definitions
	3.1 Introduction
	3.2 SMBus Host Controller Protocol
	EFI_SMBUS_HC_PROTOCOL
	EFI_SMBUS_HC_PROTOCOL.Execute()
	EFI_SMBUS_HC_PROTOCOL.ArpDevice()
	EFI_SMBUS_HC_PROTOCOL.GetArpMap()
	EFI_SMBUS_HC_PROTOCOL.Notify()

	4 SMBus Design Discussion
	4.1 Introduction
	4.2 Target Audience
	4.3 Related Information
	4.4 PEI SMBus PPI Overview

	5 SMBus PPI Code Definitions
	5.1 Introduction
	5.2 PEI SMBus PPI
	EFI_PEI_SMBUS2_PPI
	EFI_PEI_SMBUS2_PPI.Execute()
	EFI_PEI_SMBUS2_PPI.ArpDevice()
	EFI_PEI_SMBUS2_PPI.GetArpMap()
	EFI_PEI_SMBUS2_PPI.Notify()

	6 SMBIOS Protocol
	EFI_SMBIOS_PROTOCOL
	EFI_SMBIOS_PROTOCOL.Add()
	EFI_SMBIOS_PROTOCOL.UpdateString()
	EFI_SMBIOS_PROTOCOL.Remove()
	EFI_SMBIOS_PROTOCOL.GetNext()

	7 IDE Controller
	7.1 IDE Controller Overview
	7.2 Design Discussion
	7.2.1 IDE Controller Initialization Protocol Overview
	7.2.2 IDE Controller Initialization Protocol References
	7.2.3 Background
	7.2.4 Simplifying the Design of IDE Drivers
	7.2.5 Configuring Devices on the IDE Bus
	7.2.6 Sample Implementation for a Simple PCI IDE Controller

	7.3 Code Definitions
	EFI_IDE_CONTROLLER_INIT_PROTOCOL
	EFI_IDE_CONTROLLER_INIT_PROTOCOL
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()
	7.3.1 IDE Disk Information Protocol
	EFI_DISK_INFO_PROTOCOL
	EFI_DISK_INFO_PROTOCOL.Interface
	EFI_DISK_INFO_PROTOCOL.Inquiry()
	EFI_DISK_INFO_PROTOCOL.Identify()
	EFI_DISK_INFO_PROTOCOL.SenseData()
	EFI_DISK_INFO_PROTOCOL.WhichIde()

	8 S3 Resume
	8.1 S3 Overview
	8.2 Goals
	8.3 Requirements
	8.4 Assumptions
	8.4.1 Multiple Phases of Platform Initialization
	8.4.2 Process of Platform Initialization

	8.5 Restoring the Platform
	8.5.1 Phases in the S3 Resume Boot Path

	8.6 PEI Boot Script Executer PPI
	EFI_PEI_S3_RESUME2_PPI
	EFI_PEI_S3_RESUME_PPI. S3RestoreConfig()

	8.7 S3 Save State Protocol
	EFI_S3_SAVE_STATE_PROTOCOL
	8.7.1 Save State Write
	EFI_S3_SAVE_STATE_PROTOCOL.Write()
	EFI_BOOT_SCRIPT_IO_WRITE_OPCODE
	EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_IO_POLL_OPCODE
	EFI_BOOT_SCRIPT_MEM_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_MEM_POLL_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG_POLL_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_READ_WRITE_OPCODE
	EFI_BOOT_SCRIPT_PCI_CONFIG2_POLL_OPCODE
	EFI_BOOT_SCRIPT_SMBUS_EXECUTE_OPCODE
	EFI_BOOT_SCRIPT_STALL_OPCODE
	EFI_BOOT_SCRIPT_DISPATCH_OPCODE
	EFI_BOOT_SCRIPT_DISPATCH_2_OPCODE
	EFI_BOOT_SCRIPT_INFORMATION_OPCODE
	8.7.2 Save State Insert
	EFI_S3_SAVE_STATE_PROTOCOL.Insert()
	8.7.3 Save State Label
	EFI_S3_SAVE_STATE_PROTOCOL.Label()
	8.7.4 Save State Compare
	EFI_S3_SAVE_STATE_PROTOCOL.Compare()

	8.8 S3 SMM Save State Protocol
	EFI_S3_SMM_SAVE_STATE_PROTOCOL

	9 ACPI System Description Table Protocol
	9.1 EFI_ACPI_SDT_PROTOCOL
	EFI_ACPI_SDT_PROTOCOL.GetAcpiTable()
	EFI_ACPI_SDT_PROTOCOL.RegisterNotify()
	EFI_ACPI_SDT_PROTOCOL.Open()
	EFI_ACPI_SDT_PROTOCOL.OpenSdt()
	EFI_ACPI_SDT_PROTOCOL.Close()
	EFI_ACPI_SDT_PROTOCOL.GetChild()
	EFI_ACPI_SDT_PROTOCOL.GetOption()
	EFI_ACPI_SDT_PROTOCOL.SetOption()
	EFI_ACPI_SDT_PROTOCOL.FindPath()

	10 PCI Host Bridge
	10.1 PCI Host Bridge Overview
	10.2 PCI Host Bridge Design Discussion
	10.3 PCI Host Bridge Resource Allocation Protocol
	10.3.1 PCI Host Bridge Resource Allocation Protocol Overview
	10.3.2 Host Bus Controllers
	10.3.3 Producing the PCI Host Bridge Resource Allocation Protocol
	10.3.4 Required PCI Protocols
	10.3.5 Relationship with EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL

	10.4 Sample PCI Architectures
	10.4.1 Sample PCI Architectures Overview
	10.4.2 Desktop System with 1 PCI Root Bridge
	10.4.3 Server System with 4 PCI Root Bridges
	10.4.4 Server System with 2 PCI Segments
	10.4.5 Server System with 2 PCI Host Buses

	10.5 ISA Aliasing Considerations
	10.6 Programming of Standard PCI Configuration Registers
	10.7 Sample Implementation
	10.7.1 PCI enumeration process
	10.7.2 Sample Enumeration Implementation

	10.8 PCI HostBridge Code Definitions
	10.8.1 Introduction
	10.8.2 PCI Host Bridge Resource Allocation Protocol
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Noti fyPhase()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get NextRootBridge()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get AllocAttributes()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Star tBusEnumeration()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Set BusNumbers()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Sub mitResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Get ProposedResources()
	EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.Pre processController()

	10.9 End of PCI Enumeration Overview
	10.9.1 End of PCI Enumeration Protocol

	11 PCI Platform
	11.1 Introduction
	11.2 PCI Platform Overview
	11.3 PCI Platform Support Related Information
	11.3.1 Industry Specifications
	11.3.2 PCI Specifications

	11.4 PCI Platform Protocol
	11.4.1 PCI Platform Protocol Overview

	11.5 Incompatible PCI Device Support Protocol
	11.5.1 Incompatible PCI Device Support Protocol Overview
	11.5.2 Usage Model for the Incompatible PCI Device Support Protocol

	11.6 PCI Code Definitions
	11.6.1 PCI Platform Protocol
	EFI_PCI_PLATFORM_PROTOCOL
	EFI_PCI_PLATFORM_PROTOCOL.PlatformNotify()
	EFI_PCI_PLATFORM_PROTOCOL.PlatformPrepController()
	EFI_PCI_PLATFORM_PROTOCOL.GetPlatformPolicy()
	EFI_PCI_PLATFORM_PROTOCOL.GetPciRom()
	11.6.2 PCI Override Protocol
	EFI_PCI_OVERRIDE_PROTOCOL
	11.6.3 Incompatible PCI Device Support Protocol
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
	EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL.CheckDevi ce()

	12 Hot Plug PCI
	12.1 HOT PLUG PCI Overview
	12.2 Hot Plug PCI Initialization Protocol Introduction
	12.3 Hot Plug PCI Initialization Protocol Related Information
	12.4 Requirements
	12.5 Sample Implementation for a Platform Containing PCI Hot Plug* Slots
	12.6 PCI Hot Plug PCI Initialization Protocol
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()

	12.7 PCI Hot Plug Request Protocol
	EFI_PCI_HOTPLUG_REQUEST_PROTOCOL.Notify()

	12.8 Sample Implementation for a Platform Containing PCI Hot Plug* Slots

	13 Super I/O Protocol
	13.1 Super I/O Protocol
	EFI_SIO_PROTOCOL
	EFI_SIO_PROTOCOL.RegisterAccess()
	EFI_SIO_PROTOCOL.GetResources()
	EFI_SIO_PROTOCOL.SetResources()
	EFI_SIO_PROTOCOL.PossibleResources()
	EFI_SIO_PROTOCOL.Modify()

	14 Super I/O and ISA Host Controller Interactions
	14.1 Design Descriptions
	14.1.1 Super I/O
	14.1.2 ISA Bus
	14.1.3 ISA Host Controller
	14.1.4 Logical Devices

	14.2 Code Definitions
	14.2.1 EFI_SIO_PPI
	14.2.2 EFI_ISA_HC_PPI
	14.2.3 EFI_ISA_HC_PROTOCOL
	14.2.4 EFI_ISA_HC_SERVICE_BINDING_PROTOCOL
	14.2.5 EFI_SIO_CONTROL_PROTOCOL

	15 CPU I/O Protocol
	15.1 CPU I/O Protocol Terms
	15.2 CPU I/O Protocol2 Description
	15.2.1 EFI CPU I/O Overview

	15.3 Code Definitions
	15.3.1 CPU I/O Protocol
	EFI_CPU_IO2_PROTOCOL
	EFI_CPU_IO2_PROTOCOL.Mem.Read() and Mem.Write()
	EFI_CPU_IO2_PROTOCOL.Io.Read() and Io.Write()

	16 Legacy Region Protocol
	16.1 Legacy Region Protocol
	16.2 Code Definitions
	16.2.1 Legacy Region Protocol
	EFI_LEGACY_REGION2_PROTOCOL
	EFI_LEGACY_REGION2_PROTOCOL.Decode()
	EFI_LEGACY_REGION2_PROTOCOL.Lock()
	EFI_LEGACY_REGION2_PROTOCOL.BootLock()
	EFI_LEGACY_REGION2_PROTOCOL.UnLock()
	EFI_LEGACY_REGION2_PROTOCOL.GetInfo()

	17 I2C Protocol Stack
	17.1 Design Discussion
	17.1.1 I2C Bus Overview
	17.1.2 2C Protocol Stack Overview
	17.1.3 PCI Comparison
	17.1.4 Hot Plug Support

	17.2 DXE Code definitions
	17.2.1 I2C Master Protocol
	EFI_I2C_MASTER_PROTOCOL
	EFI_I2C_MASTER_PROTOCOL.SetBusFrequency()
	EFI_I2C_MASTER_PROTOCOL.Reset()
	EFI_I2C_MASTER_PROTOCOL.StartRequest()
	17.2.2 I2C Host Protocol
	EFI_I2C_HOST_PROTOCOL
	EFI_I2C_HOST_PROTOCOL.QueueRequest()
	17.2.3 I2C I/O Protocol
	EFI_I2C_IO_PROTOCOL
	EFI_I2C_IO_PROTOCOL.QueueRequest()
	17.2.4 I2C Bus Configuration Management Protocol
	EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL
	EFI_I2C_BUS_CONFIGURATION_MANAGEMENT_PROTOCOL. EnableI2cBusConfiguration()
	17.2.5 I2C Enumerate Protocol
	EFI_I2C_ENUMERATE_PROTOCOL
	EFI_I2C_ENUMERATE_PROTOCOL.Enumerate()
	EFI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency()

	17.3 PEI Code definitions
	17.3.1 I2C Master PPI
	EFI_PEI_I2C_MASTER
	EFI_PEI_I2C_MASTER_PPI.SetBusFrequency()
	EFI_PEI_I2C_MASTER_PPI.Reset()
	EFI_PEI_I2C_MASTER_PPI.StartRequest()
	17.3.2 I2C Host PPI
	EFI_PEI_I2C_HOST
	EFI_PEI_I2C_HOST.StartRequest()
	17.3.3 I2C I/O PPI
	EFI_PEI_I2C_IO
	EFI_I2C_IO_PROTOCOL.GetDeviceInfo()
	EFI_I2C_IO_PROTOCOL.GetDeviceInfoIdList()
	EFI_PEI_I2C_IO.StartRequest()
	17.3.4 I2C Bus Configuration Management PPI
	EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT
	EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT. EnableI2cBusConfiguration()
	EFI_PEI_I2C_BUS_CONFIGURATION_MANAGEMENT.I2cDeviceReset ()
	17.3.5 I2C Enumerate PPI
	EFI_PEI_I2C_ENUMERATE
	EFI_PEI_I2C_ENUMERATE_PROTOCOL.Enumerate()
	EFI_PEI_I2C_ENUMERATE_PROTOCOL.GetBusFrequency()

	18 SPI Protocol Stack
	18.1 Design Discussion
	18.1.1 SPI Bus Overview
	18.1.2 SPI Protocol Stack Overview
	18.1.3 Application Layer
	18.1.4 SPI Peripheral Layer
	18.1.5 SPI 10 Interface
	18.1.6 SPI Bus Layer
	18.1.7 SPI Host Controller Layer

	18.2 DXE Code Definitions
	EFI_SPI_CONFIGURATION_PROTOCOL
	EFI_SPI_CHIP_SELECT
	EFI_SPI_PART
	EFI_SPI_PERIPHERAL
	EFI_SPI_CLOCK
	EFI_SPI_BUS
	EFI_SPI_NOR_FLASH_PROTOCOL
	EFI_SPI_NOR_FLASH_PROTOCOL.GetFlashld()
	EFI_SPI_NOR_FLASH_PROTOCOL.ReadData()
	EFI_SPI_NOR_FLASH_PROTOCOL.LfReadData()
	EFIEFI_SPI_NOR_FLASH_PROTOCOL.ReadStatus()
	EFI_SPI_NOR_FLASH_PROTOCOL.WriteStatus()
	EFI_SPI_NOR_FLASH_PROTOCOL.WriteData()
	EFI_SPI_NOR_FLASH_PROTOCOL.Erase()
	EFI_LEGACY_SPI_FLASH_PROTOCOL
	EFI_LEGACY _SPI_FLASH_PROTOCOL.BiosBaseAddress()
	EFI_LEGACY _SPI_FLASH_PROTOCOL.ClearSpiProtect()
	EFI_LEGACY _SPI_FLASH_PROTOCOL.lsRangeProtected()
	EFI_LEGACY_SPI_FLASH_PROTOCOL.ProtectNextRange()
	EFI_LEGACY _SPI_FLASH_PROTOCOL.LockController()
	EFI_SPI_IO_PROTOCOL
	EFI_SPI_BUS_ TRANSACTION
	EFI_SPI_IO_PROTOCOL.Transaction()
	EFI_SPI_IO_PROTOCOL.UpdateSpiPeripheral()
	EFI_SPI_HC_PROTOCOL
	EFI_SPI_HC_PROTOCOL.ChipSelect()
	EFI_SPI_HC_PROTOCOL.Clock()
	EFI_SPI_HC_PROTOCOL.Transaction()
	EFI_LEGACY_SPI_CONTROLLER_PROTOCOL
	EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.EraseB1ock0pcode()
	EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.WriteStatusPrefix()
	EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.BiosBaseAddress()
	EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.ClearSpiProtect()
	EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.lsRangeProtected()
	EFI_LEGACY_SPI_CONTROLLER_PROTOCOL.ProtectNextRange()
	EFI_LEGACY _SPI_CONTROLLER_PROTOCOL.LockController()

	Appendix A Error Codes

