
confidential

6 June 2007

UEFI Overview

Tim Lewis



January 30, 2006 V2

2

Agenda

• UEFI Organization
• How UEFI Changes BIOS
• UEFI Key Ideas
• Summary



January 30, 2006 V2

3

UEFI Board 
of Directors

UEFI Board 
of Directors

UEFI Spec Working 
Group (USWG)

UEFI Spec Working 
Group (USWG)

Platform 
Initialization Working 

Group (PIWG)

Platform 
Initialization Working 

Group (PIWG)
UEFI Test Working 

Group (UTWG)
UEFI Test Working 

Group (UTWG)
Industry 

Communication 
Working Group (ICWG)

Industry 
Communication 

Working Group (ICWG)

UEFI Configuration 
Sub-Team (UCST)

UEFI Configuration 
Sub-Team (UCST)

UEFI Security Sub-
Team (USST)

UEFI Security Sub-
Team (USST)

UEFI Networking 
Sub-Team (UNST)
UEFI Networking 

Sub-Team (UNST)

UEFI Forum Organization



January 30, 2006 V2

4

UEFI Goals

• Open (UEFI)
• Clear specification of the boot environment allows 3rd party 

drivers and 3rd party applications, as long as they followi the 
interface.

• Extensible (UEFI)
• New interfaces and capabilities can be added & prototyped, 

even w/o changing the UEFI specification.
• Industry Controlled (UEFI)

• Provides balance between OS vendors, OEMs, firmware 
providers and 3rd party developers

• Modular
• Can be created and delivered separately.

• Scalable
• Applicable to a wide variety of platforms, from embedded 

and special purpose, up through multi-node servers.



January 30, 2006 V2

5

Trend #1: Innovation Speeding Up

1999 20072002 20062005

EFI 1.0 
Released for 

Itanium.

EFI 1.10 
Released 
(Intel, 

HP, LSI, 
Phoenix, 

Microsoft)

Unified EFI (UEFI) 
forum created 

w/AMD, AMI, Dell, 
HP, IBM, Insyde, 
Intel, Microsoft, 

Phoenix.

UEFI 2.0 
Released

Apple, 
Lenovo 

added to 
board

UEFI PI 1.0 
Released

UEFI 2.1 
Released

BIOS and UEFI Coexist For A Long Time (Compatibility)



January 30, 2006 V2

6

UEFI Trend - Compatibility

PI 1.0
Standard 
model for 
firmware 
drivers

PI 1.0PI 1.0
Standard Standard 
model for model for 
firmware firmware 
driversdrivers

PEI
Platform 

Environment 
Initialization

PEIPEI
Platform Platform 

Environment Environment 
InitializationInitialization

DXE
Driver 

Execution 
Environment

DXEDXE
Driver Driver 

Execution Execution 
EnvironmentEnvironment

SecoreCore
Phoenix’s PC 

firmware

SecoreCoreSecoreCore
PhoenixPhoenix’’s PC s PC 

firmwarefirmware

Intel Kit Phoenix 
PSM

Intel Support 
Kit

Support 
Intel-only 

APIs and pre-
1.0 APIs 

Intel Support Intel Support 
KitKit

Support Support 
IntelIntel--only only 

APIs and preAPIs and pre--
1.0 APIs 1.0 APIs 

PSM
Makes 

Phoenix 
BIOS Appear 

As DXE 
Driver

PSMPSM
Makes Makes 

Phoenix Phoenix 
BIOS Appear BIOS Appear 

As DXE As DXE 
DriverDriver

UEFI 2.0UEFI 2.0

Today’s 
BIOS



January 30, 2006 V2

7

Trend #2: Monolithic To Modular

• BIOS will be a mix of drivers and applications 
provided by Phoenix, silicon vendors, OS vendors, 
3rd party ISVs, OEMs and ODMs.
• Tiano, UEFI 2.0, etc.

• Drivers and applications are delivered separately
rather than a single deliverable.

• Drivers and applications are installed separately
• Even after the system is shipped!

Many Pieces Plug Into BIOS (Integration)



January 30, 2006 V2

8

UEFI Trend - Integration

Memory
Controller

Driver

Architect-
ural

Protocols

Super I/O
Driver

Conven-
tional
BIOS

CPU
Driver

SATA
Driver

PCI Bus
Driver

SMBUS
Driver

Video
Driver

Do I have all of the Do I have all of the 
drivers I need?drivers I need?

Do I have the right Do I have the right 
versions?versions?

What if I want to What if I want to 
make a change?make a change?

Is it configured for Is it configured for 
my platform?my platform?

1.11.1

Arch Protocol Version >= 2.0Arch Protocol Version >= 2.0Super I/O
Driver



January 30, 2006 V2

9

Trend #3: Product To Platform

• Stable, standards-based platforms allow value-add 
development with assurance of longevity.
• Testing insures compatibility

• Every BIOS vendor and major system vendor either 
has or is planning UEFI-capable systems.

• Features and applications can be moved from 
platform to platform.

It’s Not How You Build Your BIOS 
But How You Build Your Feature (Development)



January 30, 2006 V2

10

UEFI Trend - Configuration

Memory
Controller

I/O Bridge

CPU text
DIMM

Driver for Driver for 
each of the each of the 

componentscomponents

But drivers But drivers 
need to be need to be 
configuredconfigured

SPD AddressSPD Address

IRQ RoutingIRQ Routing

Power Power 
ControlControl

Presence Presence 
DetectDetect

How to do it?How to do it?



January 30, 2006 V2

11

UEFI Specification 
Overview



January 30, 2006 V2

12

What Is The UEFI Specification?

• Standard boot process
• Method for finding drivers
• Method for finding an OS loader
• Method for launching an OS loader
• Standard boot and runtime services

• On PC/AT systems, replaces BIOS real-mode 
interface
• Works alongside of ACPI and SMBIOS

• Manages initial program load (IPL) devices
• Boot devices, video devices and input devices

• Managed by the UEFI Specification Working Group
• Current Version Is 2.1



January 30, 2006 V2

13

Key Idea #1: In UEFI, Everything Is An EXE

• UEFI Drivers, Applications, OS Loaders Are EXEs
• Called images in UEFI
• Same file format used by Windows (PE32+)
• Three new subsystem types:

• EFI RUNTIME, EFI BOOT SERVICE, EFI APPLICATION

• UEFI Images Can Be 32-Bit or 64-Bit
• Flat mode. If paged, then 1-to-1 linear/virtual mapping

• UEFI Images Can Be For EBC, x86-32, Itanium & 
x86-64
• EFI Byte Code (EBC) is interpreted assembly language

• UEFI Images Have A Single Entry Point (Not Many)



January 30, 2006 V2

14

Key Idea #2: Globally Unique Identifier (GUID)

• GUIDs are identifiers
• Sometimes called UUIDs
• UEFI uses for interfaces and data structures

• GUIDs are unique
• Extremely difficult to generate two duplicate GUIDs

• Easy to create your own GUID
• Run UUIDGEN or GUIDGEN from Microsoft or Linux

• If you create your own GUID, you can create your own interface 
or data structure in UEFI.
• GUID1 = UEFI Specification
• GUID2 = Phoenix Specification
• GUID3 = OEM Defined
• GUID4 = ODM Defined



January 30, 2006 V2

15

Key Idea #3: Drivers Communicate Using Protocols

• Protocols consist of an interface data structure and a GUID
• If you know the GUID, you know the data structure
• Interface data structures contain data or function pointers

• Drivers can produce an interface 
• Using InstallProtocolInterface()

• Maximum: one of each type per handle
• Drivers can consume an interface 

• Using HandleProtocol() or OpenProtocol()

• Drivers can be notified when a new interface is produced 
• Using RegisterProtocolNotify()



January 30, 2006 V2

16

Key Idea #4: Protocols Are Installed On Handles

• UEFI supports an object model with runtime binding
• Each object is called a handle (EFI_HANDLE)
• Each handle can have up to one of each interface
• Handles can be created in two ways:

• LoadImage() creates a new handle for the image and 
installs EFI_LOADED_IMAGE_PROTOCOL on it.

• Called an image handle
• InstallProtocolInterface() creates a new 

handle if it is passed a NULL handle as an input 
parameter.

• Protocols can be installed on a handle by the UEFI 
core, a parent driver or by the driver itself.



January 30, 2006 V2

17

Where Do Protocols Come From?

EFI_
HANDLE

EFI_LOADED_IMAGE_PROTOCOL

EFI_PCI_IO_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_DIAGNOSTIC_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

EFI_BLOCK_IO_PROTOCOL

Installed By 
UEFI Core

Installed By 
Parent Driver

Installed By 
Driver During 
Initialization

Installed By 
Driver Once 

Started



January 30, 2006 V2

18

Key Idea #5: Device Paths Match Hardware With Handles

• Device paths are variable-length binary data 
structures which describe how to get to a device 
(software perspective)

• Consists of one or more device nodes
• Hardware – PCI, Memory Mapped
• ACPI – HID/CID, UID
• Messaging – ATAPI, SCSI, USB, IPv4, UART
• Media – Partition, File Path
• BIOS Boot Specification 

• Installed on a handle as 
(EFI_DEVICE_PATH_PROTOCOL)

• There are GUIDed device nodes for vendor usage



January 30, 2006 V2

19

Device Path Examples

• Example #1: IDE Hard Drive
• /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)

• Example #2: Legacy Floppy
• /Floppy(0)

• Example #3: Partition On IDE Hard Drive
• /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)/Mbr(Ef

iGuid,guid)

• Example #4: File On IDE Hard Drive Partition
• /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)/Mbr(Ef

iGuid,guid)/EfiLoader.efi

• Example #5: iSCSI
• /PciRootBridge(0)/PCI(2,0)/MAC(…)/IPv4(…)/iSCSI(iSCSITar

getName,PortalGroupTag,LUN)



January 30, 2006 V2

20

Summary

• UEFI Forum Controls The UEFI Specification
• There Are 5 Key Ideas For Understanding UEFI

• EXEs
• GUIDs
• Protocols
• Handles
• Device Paths

• UEFI Driver Model Creates Robust, Re-usable 
Drivers



January 30, 2006 V2

21

Where To Find More Information…

• Phoenix’s BIOS Developer Blog
• http://blogs.phoenix.com

• UEFI Site
• www.uefi.org

http://blogs.phoenix.com/
http://www.uefi.org/

	UEFI Overview
	Agenda
	UEFI Forum Organization
	UEFI Goals
	Trend #1: Innovation Speeding Up
	UEFI Trend - Compatibility
	Trend #2: Monolithic To Modular
	UEFI Trend - Integration
	Trend #3: Product To Platform
	UEFI Trend - Configuration
	What Is The UEFI Specification?
	Key Idea #1: In UEFI, Everything Is An EXE
	Key Idea #2: Globally Unique Identifier (GUID)
	Key Idea #3: Drivers Communicate Using Protocols
	Key Idea #4: Protocols Are Installed On Handles
	Where Do Protocols Come From?
	Key Idea #5: Device Paths Match Hardware With Handles
	Device Path Examples
	Summary
	Where To Find More Information…

