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Agenda

• UEFI Organization
• How UEFI Changes BIOS
• UEFI Key Ideas
• Summary
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UEFI Goals

• Open (UEFI)
• Clear specification of the boot environment allows 3rd party 

drivers and 3rd party applications, as long as they followi the 
interface.

• Extensible (UEFI)
• New interfaces and capabilities can be added & prototyped, 

even w/o changing the UEFI specification.
• Industry Controlled (UEFI)

• Provides balance between OS vendors, OEMs, firmware 
providers and 3rd party developers

• Modular
• Can be created and delivered separately.

• Scalable
• Applicable to a wide variety of platforms, from embedded 

and special purpose, up through multi-node servers.
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Trend #1: Innovation Speeding Up

1999 20072002 20062005
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Itanium.

EFI 1.10 
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HP, LSI, 
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Microsoft)
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w/AMD, AMI, Dell, 
HP, IBM, Insyde, 
Intel, Microsoft, 
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UEFI 2.0 
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UEFI PI 1.0 
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UEFI 2.1 
Released

BIOS and UEFI Coexist For A Long Time (Compatibility)
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UEFI Trend - Compatibility
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Trend #2: Monolithic To Modular

• BIOS will be a mix of drivers and applications 
provided by Phoenix, silicon vendors, OS vendors, 
3rd party ISVs, OEMs and ODMs.
• Tiano, UEFI 2.0, etc.

• Drivers and applications are delivered separately
rather than a single deliverable.

• Drivers and applications are installed separately
• Even after the system is shipped!

Many Pieces Plug Into BIOS (Integration)
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UEFI Trend - Integration
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drivers I need?drivers I need?
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Driver
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Trend #3: Product To Platform

• Stable, standards-based platforms allow value-add 
development with assurance of longevity.
• Testing insures compatibility

• Every BIOS vendor and major system vendor either 
has or is planning UEFI-capable systems.

• Features and applications can be moved from 
platform to platform.

It’s Not How You Build Your BIOS 
But How You Build Your Feature (Development)
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UEFI Trend - Configuration
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UEFI Specification 
Overview
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What Is The UEFI Specification?

• Standard boot process
• Method for finding drivers
• Method for finding an OS loader
• Method for launching an OS loader
• Standard boot and runtime services

• On PC/AT systems, replaces BIOS real-mode 
interface
• Works alongside of ACPI and SMBIOS

• Manages initial program load (IPL) devices
• Boot devices, video devices and input devices

• Managed by the UEFI Specification Working Group
• Current Version Is 2.1
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Key Idea #1: In UEFI, Everything Is An EXE

• UEFI Drivers, Applications, OS Loaders Are EXEs
• Called images in UEFI
• Same file format used by Windows (PE32+)
• Three new subsystem types:

• EFI RUNTIME, EFI BOOT SERVICE, EFI APPLICATION

• UEFI Images Can Be 32-Bit or 64-Bit
• Flat mode. If paged, then 1-to-1 linear/virtual mapping

• UEFI Images Can Be For EBC, x86-32, Itanium & 
x86-64
• EFI Byte Code (EBC) is interpreted assembly language

• UEFI Images Have A Single Entry Point (Not Many)
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Key Idea #2: Globally Unique Identifier (GUID)

• GUIDs are identifiers
• Sometimes called UUIDs
• UEFI uses for interfaces and data structures

• GUIDs are unique
• Extremely difficult to generate two duplicate GUIDs

• Easy to create your own GUID
• Run UUIDGEN or GUIDGEN from Microsoft or Linux

• If you create your own GUID, you can create your own interface 
or data structure in UEFI.
• GUID1 = UEFI Specification
• GUID2 = Phoenix Specification
• GUID3 = OEM Defined
• GUID4 = ODM Defined
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Key Idea #3: Drivers Communicate Using Protocols

• Protocols consist of an interface data structure and a GUID
• If you know the GUID, you know the data structure
• Interface data structures contain data or function pointers

• Drivers can produce an interface 
• Using InstallProtocolInterface()

• Maximum: one of each type per handle
• Drivers can consume an interface 

• Using HandleProtocol() or OpenProtocol()

• Drivers can be notified when a new interface is produced 
• Using RegisterProtocolNotify()
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Key Idea #4: Protocols Are Installed On Handles

• UEFI supports an object model with runtime binding
• Each object is called a handle (EFI_HANDLE)
• Each handle can have up to one of each interface
• Handles can be created in two ways:

• LoadImage() creates a new handle for the image and 
installs EFI_LOADED_IMAGE_PROTOCOL on it.

• Called an image handle
• InstallProtocolInterface() creates a new 

handle if it is passed a NULL handle as an input 
parameter.

• Protocols can be installed on a handle by the UEFI 
core, a parent driver or by the driver itself.
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Where Do Protocols Come From?

EFI_
HANDLE

EFI_LOADED_IMAGE_PROTOCOL

EFI_PCI_IO_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_DIAGNOSTIC_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

EFI_BLOCK_IO_PROTOCOL

Installed By 
UEFI Core

Installed By 
Parent Driver

Installed By 
Driver During 
Initialization

Installed By 
Driver Once 

Started
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Key Idea #5: Device Paths Match Hardware With Handles

• Device paths are variable-length binary data 
structures which describe how to get to a device 
(software perspective)

• Consists of one or more device nodes
• Hardware – PCI, Memory Mapped
• ACPI – HID/CID, UID
• Messaging – ATAPI, SCSI, USB, IPv4, UART
• Media – Partition, File Path
• BIOS Boot Specification 

• Installed on a handle as 
(EFI_DEVICE_PATH_PROTOCOL)

• There are GUIDed device nodes for vendor usage
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Device Path Examples

• Example #1: IDE Hard Drive
• /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)

• Example #2: Legacy Floppy
• /Floppy(0)

• Example #3: Partition On IDE Hard Drive
• /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)/Mbr(Ef

iGuid,guid)

• Example #4: File On IDE Hard Drive Partition
• /PciRootBridge(0)/Pci(0x1F,1)/Ata(Primary,Master)/Mbr(Ef

iGuid,guid)/EfiLoader.efi

• Example #5: iSCSI
• /PciRootBridge(0)/PCI(2,0)/MAC(…)/IPv4(…)/iSCSI(iSCSITar

getName,PortalGroupTag,LUN)
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Summary

• UEFI Forum Controls The UEFI Specification
• There Are 5 Key Ideas For Understanding UEFI

• EXEs
• GUIDs
• Protocols
• Handles
• Device Paths

• UEFI Driver Model Creates Robust, Re-usable 
Drivers
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Where To Find More Information…

• Phoenix’s BIOS Developer Blog
• http://blogs.phoenix.com

• UEFI Site
• www.uefi.org

http://blogs.phoenix.com/
http://www.uefi.org/
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