Advanced Configuration and
Power Interface Specification

Hewlett-Packard Corporation
Intel Corporation

Microsoft Corporation
Phoenix Technologies Ltd.
Toshiba Corporation

Revision 4.0
June 16, 2009

Copyright © 1996-2009, Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix
Technologies Ltd., Toshiba Corporation
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DO
NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description

4.0 Major specification revision. Clock Domains, x2APIC Support, Logical Processor Idling,

June 2009 Corrected Platform Error Polling Table, Maximum System Characteristics Table, Power
Metering and Budgeting, IPMI Operation Region, USB3 Support in _PLD, Re-evaluation
of _PPC acknowledgement via _OST, Thermal Model Enhancements, _OSC at\ SB,
Wake Alarm Device, Battery Related Extensions, Memory Bandwidth Monitoring and
Reporting, ACPI Hardware Error Interfaces, D3hot.

3.0b Errata corrected and clarifications added.

Oct. 2006

3.0a Errata corrected and clarifications added.

Dec. 2005

3.0 Major specification revision. General configuration enhancements. Inter-Processor power,

Sept. 2004 performance, and throttling state dependency support added. Support for > 256 processors
added. NUMA Distancing support added. PCI Express support added. SATA support
added. Ambient Light Sensor and User Presence device support added. Thermal model
extended beyond processor-centric support.

2.0c Errata corrected and clarifications added.

Aug.. 2003

2.0b Errata corrected and clarifications added.

Oct. 2002

2.0a Errata corrected and clarifications added. ACPI 2.0 Errata Document Revision 1.0 through

Mar. 2002 1.5 integrated.

ACPI 2.0 Errata | Errata corrected and clarifications added.

Doc. Rev. 1.5

ACPI 2.0 Errata | Errata corrected and clarifications added.

Doc. Rev. 1.4

ACPI 2.0 Errata | Errata corrected and clarifications added.

Doc. Rev. 1.3

ACPI 2.0 Errata | Errata corrected and clarifications added.

Doc. Rev. 1.2

ACPI 2.0 Errata | Errata corrected and clarifications added.

Doc. Rev. 1.1

ACPI 2.0 Errata | Errata corrected and clarifications added.

Doc. Rev. 1.0

2.0 Major specification revision. 64-bit addressing support added. Processor and device

Aug. 2000 performance state support added. Numerous multiprocessor workstation and server-related
enhancements. Consistency and readability enhancements throughout.

1.0b Errata corrected and clarifications added. New interfaces added.

Feb. 1999

1.0a Errata corrected and clarifications added. New interfaces added.

Jul. 1998

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
1.0 Original Release.
Dec. 1996

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Contents

L INTRODUCTION ..ottt r et bt e e s s e s e s R e e sre e neenreennenneennee e
L. L PFINCIPAI GOAIS ...ttt sttt bttt st e et e st et e e bt eb e e be e b e seen e e s e eneebeebeebesteebe e eneaneeneenis
1.2 Power Management Rationale
I o = To YA TH]] o o] o AR STUP PP
1.4 OEM IMPIemMentation STEATEOYcccooeriiieeiieie ettt sttt ettt e e e e e eneebesbesbeseebe e eneereaneanas 21
1.5 POWET @Nd SIEEP BULLONScuiiiiiiiiticieieie ettt sttt ettt et ae ettt e s et e e e st teebe st e s te b e e ensereabeets 21
1.6 ACPI Specification and the Structure OF ACPI ... s 22
1.7 OS and Platform COMPIIANCEccviiiiieieeit ettt te e be st e re st e e e nseraabears 23

1.7.1 Platform Implementations of ACPI-defined INtErfaces ... 23
1.7.2 OSPM IMPIEMENTALIONSocviiviiviitiitiiteeee ettt sttt e b e bt e st e s e st e b e eaeebe st e st e s et esaeneerens
1.7.3 OS REGUITEIMENTSueviteietiiti e ettt st et et est et e teste st e st e s es s eseeseete e b e st e s s e b e s s esseteebesbesbe b e s enseseeaeabesbesbe s entesaenserens
I I I o 1= AN To [=T o= OSSPSR
1.9 DOCUMENT OFGANIZATIONeetieitiieteeiteic ettt sttt ettt e b et ettt ne b et e se e b e e ebe et ene st et e e ene e ene s
1.9.1 ACPI Introduction and Overview....
1.9.2 Programming Models
1.9.3 Implementation Details......
1.9.4 TeChNICAI RETEIEINCEvvtciiiis bbbkttt
1.10 REIAE DOCUMENTS......c.eiuietietieieetiitesteie et teste st st e e s e aseeteebeebestebe e ese e s e eseebeebesbeseenteseeneebeabesbessebeeensenannennas

2DEFINITION OF TERMS ...ttt ettt e e st e e e et e e e etbee e e sbbe e e eeatae e e eanes
2.1 General ACPI Terminology
2.2 Global System State Definitions
2.3 DeVICe POWET State DEfiNITIONS.ccviiiiiiiecie sttt st e st esae e sreste et e saeesresteebesaeesrenraens
2.4 Sleeping STAte DEFINITIONSc.iiiiiiiieeete ettt b et ettt nt st st eb ettt et s e nene
2.5 Processor POWeEr State DEfINITIONSc.cccoiiiiiiiiieesi ettt sttt neens
2.6 Device and Processor Performance State Definitions..........ccocvoiiiiiininniiee s 41

SACPI OVERVIEW. ...ttt ettt ettt b bbb s bt sbe e s be et e e nb e e st e sbeesbeenbeenbeenbenneeas 43
3.1 System POWET MANAGEIMENToiiiiiiiiiiie e b bbbt b et e bt e b e e sbenrn e 44
L2 POWEE STALES.......oouiiiiiiiii i bbb e 45

3.2 L POWET BULEOMN ...ttt ettt r e n e ettt b e r e nr e ens 46
3.2.2 Platform Power Management CharaCteriStiCS.eoueiiiriiiienieie e 46
3.3 DEVICE POWEE IMANAGEMENT ...ttt bbbt b et bbbt b e bt n e nn e
3.3.1 Power Management STANGAITASeoviueirieiriiiieieese et b bbbt
3.3.2 DIBVICE POWET STAIESc.viveiiireiiieciiiet ettt bbbt et
3.3.3 Device POwer State DefiNitiONScouiueiiieiiiiiesee e
3.4 CONrOlliNG DEVICE POWEc.oiiiiitiiiteitstei ettt bbbt bbb bt n e nn e
3.4.1 Getting Device Power Capabilities.....
3.4.2 Setting Device Power States.....
3.4.3 Getting Device Power Status....
3.4.4 WaKiNG the COMPULET........oouiiitiitet ettt bbbttt b e bbb e e e bt et e e bt b st e b e e en et e bt ens
3.4.5 Example: Modem Device POWEr IManagemMENtcoooiiiiiiiirieieieieieeie ettt
3.5 Processor POWEN MaNAQEIMENTccuiiiiiireiei ettt sttt b nr e e ere e
3.6 Device and Processor PErformance STALES ...
3.7 Configuration and “Plug and Play”
3.7.1 Device Configuration Example: Configuring the Modem
BT 2 NUMA NOUES. ...ttt st e bRt E et r e e bt r et n et n e nn e en s
3.8 SYSTBIM EVEINTS ...ttt e bttt b bbb e bt bt e bt b e b e Rt e R e R b bt e b e e Rt b e e r e e b e e benrae
3.9 Battery Management...............
3.9.1 Battery Communications
e A ST 1= gV OF: o To3 | OSSPSR
3.0.3 BALEIY GAS GAUJE......eeutiiuietieteete ittt sttt sttt sttt e bt ettt e e bt e b e e bt ek e e bt e he e bt e b e e bt eh b e b e ek e e b e abb et e e be e bt eneenbeereen

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Vi

3.9.4 LOW BALLEIY LEVEIS ...ttt sttt b ekt a et e et e s e e ne et e ebeebe st et e e aneereenea
3.9.5 BAttery CaliDIAtIONcoriieiiiieiiecc e
3.10 Thermal Man@QEMENT........c.cciiieiiiee ettt ettt e e e e teebe st e st e s be s esteseebeebe st e st e s esteseebeetesbesbesnensesaeneerens
3.10.1 Active and Passive Cooling Modes
3.10.2 Performance VS. ENergy CONSEIVATION..........cuiiierieieieiieiesie ettt ettt see st et tesbesbesneee e eneeneaneas 62
3.10.3 ACOUSEICS (INDISE) ...veuveveeuieteitiitiste st ettt et ettt st et s et e et e be e b e s b st e b e e e st e se e b e e be st e s b e saenbesseneeteebe st e ste b e e ensereanears 62
3.10.4 MUILIPIE THEIMAL ZONESocviviiiieiei ettt b ettt sa et e e beeteebe st et et e e enseraaaears 62

4 ACPI HARDWARE SPECIFICATION. .. .coii et 63
4.1 Fixed Hardware Programming MOGEIccuoiiiiiiiiiiic ettt 63
4.1.1 FUNCLIONAI FIXEA HAIAWAIEc.viiieieiieiee ettt sttt et b e bt e b e e eneeneaneenas 63
4.2 Generic Hardware Programming IMOElc.couiiiiiiiiiiiiicec e 64
7 A BT F- Yo = o =0 <] o OSSR URRR
4.4 ReQISTEr BIt INOTATION.........eiuiiiiieieei ettt ettt sttt et a et s b e b e s ene e s e e neebesbesbe st e e eneeneenene
4.5 The ACPI Hardware Model
4.5.1 Hardware Reserved Bits
4.5.2 Hardware [gNOTea BitS.......c.ieeriiieieieieisie sttt sttt ettt et sae e ne e
4.5.3 Hardware WITE-ONIY BitS.......oiiiiieiiieiieesee ettt ettt ettt
4.5.4 Cr0SS DEVICE DEPENUENCIEScviviietiiiieiiiteit sttt bbbt b bbbttt 71
4.6 ACPI HArAWare FEALUIES.......cueiiiiiitetet ittt bbbt b bbbttt 71
4.7 ACPI REGISTEN IMOTE ..ottt bbbt b bbbt b e bt 73
4.7.1 ACPI REJISIEN SUMIMAIYoveiiiitiieteieteiist ettt ettt ettt bbb bbbt bbbt b et nn e 76
4.7.2 FiXed HArGWAre FEALUIESc.cviititeiitiiiiie stttk 78
4.7.3 FiXed HardWare REGISETScerviuiieieiiteiitetiseet ettt bbbkt b bbbttt 87
4.7.4 GENETiC HardWare REGISETScueieieiiteiiitetiseet ettt se bbbttt 95

5 ACPI SOFTWARE PROGRAMMING MODELcccoooiiiiiiiiie ittt 103
5.1 Overview of the System Description Table ArchiteCture ... 103
5.1.1 Address SPace TranSIAtioNc.ceoiieirieiiieerceee ettt sttt eee s 105
5.2 ACPI System DeSCriPtionN TabIEScooeiiiiiiieiieieisiee sttt ettt et s 107
5.2.1 Reserved Bits and Fields
5.2.2 Compatibility.......cccoeerirrennn.
5.2.3 Address FOrmatccceevreiinieicnnenn,
5.2.4 Universal Uniform 1dentifiers (UUID) ..o s
5.2.5 Root System Description POINTEr (RSDP)cc.oiuiiiiiiiinieiieite ettt
5.2.6 System DesCription Table HEAGEKcviiiiiiieien ettt
5.2.7 Root System Description Table (RSDT) ...c.ccveiriiiriieiirieirieenieiesee e
5.2.8 Extended System Description Table (XSDT)...
5.2.9 Fixed ACPI Description Table (FADT)
5.2.10 Firmware ACPI Control Structure (FACS)
5.2.11 DEfINItION BIOCKS.cviieiiiiiieiiiecie skttt
5.2.12 Multiple APIC Description Table (MADT).....coiiiiiiiiieneie ettt
5.2.13 GIODal SYSEM INTEITUPLSc.vitiieeeeet ettt bbbttt b e b e b be b
5.2.14 Smart Battery Table (SBST) ..ottt s
5.2.15 Embedded Controller Boot Resources Table (ECDT)
5.2.16 System Resource Affinity Table (SRAT) ..c.cooeviniiiiiiniiieneee
5.2.17 System Locality Distance Information Table (SLIT)
5.2.18 Corrected Platform Error Polling Table (CEPT) ..ot s
5.2.19 Maximum System Characteristics Table (MSCT) ..o e
5.3 ACPT NAIMESPACE. ... ettt sttt ettt sttt sb et ekt ea b e s bt e s b e b e ea b e ehe e s e e bt em b e nb e e s e e b e e n b e nb e e s e e abeenbenbeenneabeennas
5.3.1 Predefined ROOt NAMESPACESc.viveiireririeiirietereeteiete ettt ettt sb bbbt b ettt nb et b bbb s
SR I o] =T £ OO URURP
5.4 Definition BIOCK ENCOOINGciuiitiiiieiiieei ettt sttt b ettt b e bbb et beene e
5.5 Using the ACPI Control Method SOUFCe LANGUAGEceiveviiiieiiieiriiiieie et
O.5. 1 ASL STAEIMEINTS ... e e e e
5.5.2 CoNtrol MethOt EXECULIONc.eiviiiiitiiiteiiieteset ettt
5.6 ACPI Event Programming MOGEIccooiiiiiiiiiiieieee bbb s

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

vii

5.6.1 ACPI Event Programming Model COMPONENTS.cc.oiiiiiiiiieriee ettt 171
5.6.2 Types of ACPI EVENtS.......cccoceviiiiiiieeicceeene
5.6.3 Fixed Event Handling........
5.6.4 General-Purpose Event Handling
5.6.5 Device ObJeCt NOLITICATIONSoouiiiiiieieeic ettt sttt ettt st ebe e e e ene e e
5.6.6 DeVvice Class-SPECITIC ODJECES.......cciiiiiiieiiiie sttt sttt b et s be st e et s neere e
5.6.7 Predefined ACPI Names for Objects, Methods, and RESOUICESccccvviiriiieiiericieieci e 184
5.7 PredefiNed ODJECTS ittt bbbt et et et e bt et e e b e e b e seen b e s e ene et e ebeebeste b e e eneeneeneanis
5.7.1_GL (GIobal LOCK MULEX).....ecviiviiiiieiiiee ettt ettt sttt b ettt sa et te b e besbe b e sn et eseeneate e
5.7.2_OSI (Operating SYStem INEITACES)coviviiriiiiirieietct ettt sb e e ae e
5.7.3_0OS (OS Name Object)cccoervrrrennns
5.7.4_REV (Revision Data Object) ...
5.8 System Configuration Objects..........
5.8.1 _PIC Methodccccovrvrurnnnnnn.

6 DEVICE CONFIGURATIONoiiiiiieitee et nne s
6.1 Device 1dentifiCatioN ODJECTS.oiiiiiieeii ettt ettt b et se et e et besbesbesbe b e e eneeseeneanas
B.1.1 ADR (AGUIESS) .. .veveueeuiereatieieetestestesteseestereatestestesteseesseseaseatessesbessesteseeseaseaseabessebeseenteseaseatessesbeseenseseeneasees
6.1.2 _CID (COMPALIDIE ID)...ecvieeeiieieieieieie ettt sttt b et sttt s
6.1.3 _DDN (DOS DEVICE NAIME)cueeiteniiteririeiirietiseet ettt sb et b bbbt sb et r bbb s
6.1.4 _HID (HArAWAre ID)cctiiiuiieiiriiieieteestet etttk bbbt b bbbttt b
6.1.5 _MLS (Multiple Language StrNG)ccoveeirieiirieieeiesee ettt sttt sse e nes e seene s
6.1.6 _PLD (Physical DeVICE LOCAION)cueriieeeiieiireiiiieieesiec sttt sttt sttt sne e nee e ene s
6.1.7 _STR (String)
6.1.8 _SUN (Slot User Number)
6.1.9 _UID (UNIGUE ID) .tttk ettt ettt sttt bbbt et s e eb st b ettt ene s
6.2 Device Configuration Objects
6.2.1 _CDM (Clock Domain)ccccceenee.
6.2.2 _CRS (CUrrent RESOUICE SELEINGS)overerveriierireitiieteieeiee sttt ettt ssese et sesbe s tesesseseseeseseeseneene s
6.2.3 _DIS (DISADIE) ...ttt bbbttt ne et et neere e
6.2.4 _DMA (DireCt MEMOIY ACCESS) ...veuirereitiutietenteteiate sttt sb ettt eb et b et sb bbbt b et b et nb st bt nn e rene s
6.2.5 _FIX (Fixed Register RESOUICE PIOVIAET)coiiuirieieirieirieesisien ettt
6.2.6 _GSB (Global System Interrupt Base)...........
6.2.7 _HPP (Hot Plug Parameters)
6.2.8 _HPX (Hot Plug Parameter Extensions)....
6.2.9 _MAT (Multiple APIC Table ENTIY)coiiiiiieiiieeee et
6.2.10 _OSC (Operating System CapabilitIeS)cociriiiriiiirieirieeee s
6.2.11 _PRS (P0SSiDIE RESOUITE SEIHINGS).....e.eveuiietiriitiieteeste ettt s
6.2.12 _PRT (PCI ROULING TADIE) ...c.eitiiiiiiieei ettt
6.2.13 _PXM (ProxXimity)cccooeevrrvreninnenn
6.2.14 _SLI (System Locality Information).....
6.2.15 _SRS (Set Resource Settings).........ccccceevrennne
6.3 Device Insertion, Removal, and Status Objects
6.3.1 _EDL (Eject Device LiSt)c.cocooreivreiinienns
6.3.2 _EJD (Ejection Dependent DEVICE)ccuiiriririerieieieeiieie sttt sttt st ettt st sbenn e ene e
B.3.3 _EIX (BJBOL) vttt h et h bbb b b et h bbb b ettt
B.3.4 _LCIK (LOCK) ..ttt bbbt bbbt bbb bbb
6.3.5 _OST (OSPM Status INAICALION)c.coveirieiiieiiriitiietee ettt
6.3.6 _RMV (Remove)........ccccccevvrenennne
6.3.7 _STA (Status)cccervrervrerennnn
6.4 Resource Data Types for ACPI....................
6.4.1 ASL Macros for Resource Descriptors......
6.4.2 Small Resource Data TYpeccccvvvuenne
6.4.3 Large RESOUICE Data TYPEciviirirrireeeiieieit ittt b bt et b bt nr e en e e e e nr e
6.5 Other Objects and CONtrol IMETNOMScoiiiiiiiiee bbb anas
B.5.1 INT (INE) cvvvereeee ettt n et
(TSI 101 (B 1o g IO OSSPSR

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

viii

6.5.3 _BDN (BIOS DOCK NAIME)veiiieiiieteisietcsieiesesteiete et ses et et ae e saeseseesesaeseneesesesseneseesesessensaseses 275
6.5.4 _REG (Region)......cccoceevrenurnne.

6.5.5 _BBN (Base Bus Number)
6.5.6 _SEG (Segment)......ccccovevvennne.

6.5.7 _GLK (GIODAI LOCK) ...ttt ettt bbb bttt sbe et seeneere e

7 POWER AND PERFORMANCE MANAGEMENT ..ot s 281
7.1 Declaring a POWer ReSOUFCE ODJECTciiiiiiiieieeee ettt ans 281

7.1.1 Defined Child Objects for @ POWEr RESOUICEccveiveiiuiiieiieiiesicsieeee ettt ettt ns e 282
TL.2 OFF oottt ettt ettt ettt

7.2 Device Power Management Objects
7.2.1 _DSW (Device Sleep Wake)
7.2.2 _PSO (Power State 0)................
7.2.3 _PSL (POWET STAE 1) ...cuveuiiuiiieitiitiitiitei ettt sttt ettt et e bbb e e asete e b e s b e st et e e e st ete e b e ebesbe st e snenseseenearene
T.2.4 PS2 (POWEK STAE 2)ueeueiuieieitietesteste sttt sttt ettt tesbesbe st e e e e eneebe e b e ebesbebe e emteseeseabesbeabeseenteneaneareee
7.2.5 _PS3 (POWET STALE 3) ...veieeieiireieieiteni ettt bbbt bbbt bbbt b et b ettt nn s
7.2.6 _PSC (POWET STALE CUITEINT) ...veveriiienieteieieiesieie sttt sttt sttt se bbbt bt sbe s e st st b et e ne e et s
7.2.7 _PRO (POWer RESOUICES TOF DI0)......euiiveriieiiieiereitiieie sttt ettt ettt ettt sttt sttt s e neene s
7.2.8 _PR1 (POWEr RESOUICES FOF DL)....viuiieeiiiieiiiieiisiieiet ettt
7.2.9 _PR2 (Power Resources for D2).............

7.2.10 _PR3 (Power Resources for D3hot)......

7.2.11 _PRW (Power Resources for Wake)
7.2.12 _PSW (POWET STALE WEAKE)ceiuiiiinisteiiteiiitet ettt
7.2.13 _IRC (IN RUSH CUTTENL) ...ttt ettt ettt ettt sttt st b et s
7.2.14 _S1D (S1 DEVICE SEALE) ..e.veveverereetenieteertestsietesestestetesesteseste e sesse e ebe st atenesbeseseese e ete e be st abeseseesesbeseneeneneete s
7.2.15 _S2D (S2 DEVICE SEALE)vvevevereetenistesisteiisiet stttk b bbbttt bbbttt nn s
7.2.16 _S3D (S3 Device State)......
7.2.17 _SAD (S4 Device State)................
7.2.18 _SOW (SO Device Wake State)
7.2.19 _S1IW (S1 Device Wake State)
7.2.20 _S2W (S2 Device Wake State)
7.2.21 _S3W (S3 Device Wake State)
7.2.22 _SAW (S4 Device Wake State)

7.3 OEM-Supplied System-Level Control MEthods ..ot 294
7.3.1_BFS (BaCK FrOM SIBEP)....ccueitiitiiieieieieei sttt bbbt ettt bbb e

7.3.2_PTS (Prepare To Sleep).....
7.3.3_GTS (Going To Sleep)....
7.3.4 System _SX States.........cocceeeruenee
7.3.5 _SWS (SYSLEM WEKE SOUICE) ...ttt bbbttt 300
7.3.6 _TTS (TranSition TO STALE)......cerviueiireiiieiiiiet ettt ene s 301
7. 3.7 _WAK (SYSEEIM WAKE) ...ttt ettt bbbtk b e bbbttt b b et e b b 301
7.4 OSPM usage of _GTS, _PTS, _TTS, WAK, and _BFSccoiiiie e 302
8 PROCESSOR CONFIGURATION AND CONTROL ..oocoiiiiei et 305
8.1 PrOCESSON POWEE STALESciviii ittt ettt ettt e ettt e e et e e e et e e s ebbe e e e eab e e e sabaeeeabaeeeeeabeeesabeeeaasbaeeesbeeesabeeesansrs
8.1.1 ProcesSOr POWET StAte CO.........cciiueiiieiieiiee st et e sttt e te st e ste e a e e staesate e teesnseesaeesnbeestaeesseesnsesnteesrneenseeans
8.1.2 ProCesSOr POWET STALE ClL........ueiiiiiiiiiiiee ettt et et e et e e sttt e e et e e e st e e e s e bt e e e esbeeeesabeeesbaaeeesseeeesabeeessaeaeanes
8.1.3 ProCESSOr POWEE StALE C2.....ccuveiiieiiiieitie ettt s ettt ste e s te e st e e ste e st e e te e saa e e saeesabeenteessseesateenbeesrneenseeans
8.1.4 Processor Power State C3...................
8.1.5 Additional Processor Power States
8.2 FIUSNING CACNES......eeeeeiee bbbttt bbbt bbb e e bt et e b e b sb et et eneene et
8.3 Power, Performance, and Throttling State DEPENTENCIEScccerivieiiieiieie e 311
8.4 DECIATING PIOCESSOIS ...ttt ettt ettt sttt b ke b e b s b e b et e s e e b e bt ekt eb e b e nbem b e st e bt e bt e bt ebesbe b e e ene et e eneanis 311
8.4.1 _PDC (Processor Driver Capabilities)cciriirieiiiinieiniees e 312
8.4.2 ProcesSOr POWET State CONMIONc..civiiiieiiieeciie ittt ettt e ete e sate et e e rae e saeesbeeebeeebeesateenbeeenneesaeeans 313

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.4.3 Processor Throtthing CONTIOIS.......co.ouiiieiii ettt ettt sbeebe et e e ene e

8.4.4 Processor Performance Control

8.4.5 PPE (Polling for Platform Errors)
8.5 Processor Aggregator Device...................

8.5.1 LOGICal PrOCESSOI TAIINGeiiteeiiteiieite ettt ettt b et et ere bt besbeebe e e e eseaneere e

9 ACPI-DEFINED DEVICES AND DEVICE SPECIFIC OBJECTS.......cooiiiieieieee e 333
9.1\ _SI SYSTEM INAICATONSvcveeiiieieeeie ettt bt r et ne ettt b et n et ne s
0.1.1 _SST (SYSLEIM STALUS) ..euveveiviereitiitiitiitee et e ettt sttt te et eete et et e sb et e e e seete e b e s besbesbe e entebeebeabesbesbessenseseenearens
0.1.2 IMISG (IMIBSSAGE) ... nveneeneaneareateetestesteseestaseaueatestesseseemsese e st abeebeebeseenee e eneebeebeebesb et e e entabeeseabesbeabeneeneeseaneanene
9.1.3 _BLT (Battery Level ThreSNOI)cocoiiiiiiiiee et
9.2 AMDIENt Light SENSOT DEVICEcviiiiiiieieectt ettt sttt ettt st b e bt e st teebe st e sae b e e ensereeaeanas
0. 2.1 OVEIVIBW ...ttt ettt etttk b et e b e te e e m e Rt e R e e b e eb e e ke eeem e e R e eRe e b e e R e ebeeb et e e en s e b e ebeabesbeabeneente e eneaneane
9.2.2 _ALI (Ambient Light HIUMINGNCE)cviiiiiiiiieie ettt ettt e
9.2.3 _ALT (Ambient Light Temperature)................
9.2.4 _ALC (Ambient Light Color Chromaticity)
9.2.5 _ALR (Ambient Light Response).........c.cc.cc.....
9.2.6 _ALP (Ambient Light POIING)ceoiieiiieiieeiicsee e
9.2.7 AMDIENt LigNt SENSOT EVENESc.eiuiiiteiiiieiiiieie sttt ettt sttt sttt nee et es
9.2.8 Relationship to Backlight Control Methods
I ST 1 T A B LY ot SO TSRS
9.4 CoNtrol MEthOO Lid DEVICEcuviviiiiiiiisieieiee sttt bbbttt bbb
0141 _LID et b £ E b bRt E bbb R e bbbt b bbbt
9.5 Control Method Power and SIeep BUTLON DEVICES..........ccoirieiiriiieirieerieesie ettt s 341
9.6 EMbedded CONLIOIIET DEVICEc.cuiiiiieieicietises ettt bbbttt bbbt
9.7 Generic Container Device.......
9.8 ATA Controller DeVICES..........ccvvvivreeininiieiecienens
9.8.1 Objects for Both ATA and SATA Controllers.....
9.8.2 IDE Controller Device...........ccccevevririnrnrccierinnnnns
9.8.3 Serial ATA (SATA) CONIOIEr DEVICEcveiieieiieieieeieeie sttt ene s
9.9 Floppy Controller DEVICE ODJECTS......cciuiiiiirieiiiecieisiee sttt bbb b et ne s
9.9.1 _FDE (FIOPPY DiSK ENUMEIALE)cveueeuieteitiateniesiesieeeieeie st sttt sttt sbe bbb bbb b e e ebe e
9.9.2 _FDI (Floppy Disk INFOFMALION)oviuiiiiitiitiiieie ettt et
9.9.3 _FDM (FIoppy DisSK DIiVE IMOUE)eeiieuiietiriitiieteiste ettt
0.10 GPE BIOCK DBVICE.......ccuiiiiiuiaieite ettt bbbt b bbbt bbbttt e bt bbb et e s e ene et
9.10.1 Matching Control Methods for General-Purpose Events in a GPE Block DeVicecccoeevveirceninncnn 351
0. 11 IMOTUIE DBVICE ..ottt sttt b e b et et e e e s e b e bt be e be et et e n e s e e st e beebeebesbe b e e enseneanenns 351
9.11.1 Describing PCI Bus and Segment Group Numbers under Module DeViCeSccceoevirirenerenenecceiene 353
0.12 IMIBIMIONY DBVICES ..ottt sttt ettt st sttt s et e b e e be st et e e e s e st bt et e ebe e b e e en e s e e st abeebeebesbe b e e enseneeneans
9.12.1 AAUIESS DECOUINGeveveeeiteieeet ettt bbbt sb bbbt b et bbbttt b s
9.12.2 Memory Bandwidth Monitoring and REPOIINGcoviireiiiiriiieieeerese e e
9.12.3 _OSC Definition for Memory DeVICe............cccvrvernereneiineeiesiene
9.12.4 Example: Memory DEVICEccvvirririiiiieenece e
9.13 _UPC (USB Port Capabilities)ccceoeiiiiriiiiienieieieeescee e
9.13.1 USB 2.0 Host Controllers and _UPC and _PLD........ccccccecvrvireniennn.
9.14 Device Object Name ColliSIONccccoeiiriiriiiiieeeceeeese e
9.14.1 _DSM (Device Specific Method)cccoviriiiniiiieiieeiccee
9.15 PC/AT RTC/CMOS DEVICES......coevivenirieiirisiinieieiesieesieiesesnesisie e
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNPOBQ0)...........c.ccceueene
9.15.2 Intel P11X4-compatible RTC/CMOS Devices (PNP0OB01)
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNPOBO02)...........ccureiriinnieinieineeneeeneie s 369
9.16 User Presence DEteCtiON DBVICEcccoeiiiiirieiiiiiieisiee sttt ettt bt bt ene s 369
9.16.1 _UPD (USEr PreSENCE DELECE)evieieeiieieiiiete sttt sttt sttt b e sttt et b b e et 370
9.16.2 _UPP (USer Presence POIING)c.covieiiiiiieiiiistes et 370
0.16.3 USEr PreSenCe SENSOI EVENLS......cc.oiviiiieieiiitiiteste ettt ar e e 370
0.17 1/O APIC DBVICE ...ttt bbbt b bbb bbbttt b bt bbbttt 370

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.18 WAKE AIGITM DEBVICEc.viiiiiiiieieieieste ettt b bbbt b et bttt b ettt b et b ettt es
9.18.1 OVEIVIEW ...t
9.18.2 _STP (Set Expired Timer Wake Policy)
9.18.3 _STV (Set Timer Value).........c..cceevververnennn
9.18.4 _TIP (Expired Timer Wake POIICY)cuiiiiiiieieieee ettt ettt ene e
0.18.5 _TIV (THMEE VAIUES)cvvivieiecti ittt ettt sttt s h ettt e et b et st e b e e e st et e e b e e be st et e sn et eseeneare e
9.18.6 ACPI WaKeup AlGIrM EVENLS.........cciiiiieiiiti sttt sttt sttt b et st sbesa et e s ensene e
9.18.7 Relationship to Real Time CIOCK AIQIMoiiiiiiiiiiiee e e
0.18.8 EXAMPIE ASL COUBu ettt ettt sttt ettt et e e e e e e st et e b e ebe st e be e emteb e e bt ebeseeebeseeneeneaneareaee

10 POWER SOURCE AND POWER METER DEVICES........ccoooii e
10.1 SMANt BAttery SUDSYSIEMSeiui ittt ettt sttt et et sbe et e e es s e s e e neebesbesbeseebeseeneereaneas
10.1.1 ACPI Smart Battery Status Change Notification Requirements
10.1.2 SMart BAttery ODJECES.......c.ciiiiiiiritieiiii ettt
10.1.3 _SBS (Smart Battery SUDSYSLEIM)ceiuieieiuieieiterieiieieeeie et ste sttt sttt st e be e s eseebesbesbesbeseeneeseeneanas
10.2 Control Method Batteries
10.2.1 Battery Eventsccccceueee
10.2.2 Battery CONtrol IMELNOGSc.coveiriiiiieiiiet ettt
10.3 AC Adapters and POWET SOUFCE ODJECES..........ciiriiiririeirieiitee ettt ettt ene s
10.3.1 _PSR (POWEF SOUITE)eveueteuiterentesesieteneebesc st st st eb e as sttt sb et bk ne bt b ettt b b ne bbbt b et nn s nnene s
10.3.2 _PCL (POWET CONSUMET LLISE)cvtviiiietiiitiisteest ettt ettt et
10.3.3 _PIF (Power Source INFOMMALION).ciiiiiirieirieiee ettt et snene e
10.3.4 _PRL (Power Source REAUNAANCY LISE)c.civueirieiieirieieisie ettt
10.4 POWEE IMIBERTS ...ttt sttt b bkt h e b bt e ke h e e bt e bt ekt e R b e b e e b e ekt e hb e e b e e b e et e e heenb e st e e ebeenbenbeereens
10.4.1 _PMC (Power Meter CapabilitIES)ccoouiuiiiueiirieiiee ettt et snene e
10.4.2 _PTP (Power Trip Points)
10.4.3 _PMM (Power Meter IMEASUIEIMIENT)cueirrerirriiirietireeteisre ettt sb et b et sn e nnene e
10.4.4 _PAI (Power AVeraging INtEIVAL)ccoouiuiiieiiiiiiee ettt et nnene s
10.4.5 _GAI (Get AVEraging INTEIVAL)ccoooiriiiiieiiiei ettt et be e saene s
10.4.6 _SHL (Set Hardware LIMIL)coooeiieiiiiiieieieeeers et
10.4.7 _GHL (Get Hardware LIMIt)ccooeiieiriiiiiireisi ettt
10.4.8 _PMD (POWET MELEIEA DEVICES).....ueuveteretinieterereeieietesesteseetesestesessetesestesestesestenessesesessensebesesbeneasesessenennas
10.5 Example: POWEF SOUFCE NAME SPACEceueiuiitirteitereeiieteeii ettt sttt ettt be sttt se et s bttt sb et see b e e eneebeanea

11 THERMAL MANAGEMENT ..ottt nr e sb e e e b e
11,1 THEFMAL CONTIOL.....iiiiitieiee bbbt b bbbt bbbt bt bt r bbb
11.1.1 Active, Passive, and Critical POLICIESccccovvveiieiiieiieecee e
11.1.2 Dynamically Changing Cooling Temperature Trip Points
11.1.3 Detecting Temperature Changes..........cccvvernerneiinereneeneesesee
O A £ Y= O 113 o SRRSO
11.1.5 PASSIVE COOIING ...ttt stttk b bbbt b bbbt h e bt e bt e bt nb et e e e et e neens
11.1.6 CritiCal SRHUIHOWNccviiiiiiiiiite e et
11.2 COOIING PreEIENCES.ottt bbbt bbb bbbt n bbb n s
11.2.1 Evaluating Thermal DEVICE LSSc.ciiiiiiiiirieieieeeic ettt s
11.2.2 Evaluating Device Thermal Relationship INformation ...
11.2.3 Fan DeViCe NOTIFICAIONScviveiriiiietiie ettt
LL.3 FAN DBVICE ...ttt bbb E R R r s
R T I - T 1 o] 1=t £ OSSOSO SPRUR
I I o 1o g 0P o =Tt OSSR RUTSRSSRPRN
11.4.1 _ACx (Active Cooling)....
11.4.2 _ALX (AcCtive LiSt) ..cocooveeiiiiiierccec
11.4.3 _ART (Active Cooling Relationship Table)...
11.4.4 _CRT (CritiCal TEMPEIALUIE)ccveruiteieuieieitieie sttt ettt sttt ettt b et sbe b e e e st et e bt abesbeebeseeneeseeneenas
11.4.5 _DTI (Device Temperature INAICALION)coceiiriiriiieiiieese et s
11.4.6 _HOT (HOL TEMPEIALUIE)veuiteiieetiieteeetesi sttt ettt ettt bbbkttt bbbttt bbb nn b
11.4.7 _NTT (Notification Temperature ThreShold)cccoeiriiriiiiniie e
11.4.8 PSL (PASSIVE LISL) ..ueiuieueeuieteitiitesieie ettt sttt ettt b e bttt b bbbt e st b e bt et sb et e eneeb e b enas

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Xi

I B AV (T 1V OSSPSR
11.4.10 _RTV (Relative Temperature Values)...
11.4.11 SCP (Set Cooling Policy)cccceevenee
11.4.12 _TC1 (Thermal Constant 1).....
11.4.13 _TC2 (Thermal CONSLANT 2)......cueiuiieieiieieeieeie sttt sttt ettt e besbeseebe e eneereaseebeseesbesneneeseeneanas
11.4.14 TMP (TEMPEIATUIE) .. .evvivieveitiitesteteiett e ete s e st et e e esseseeaestesbesae st e b e e esseteebesbesae b e s enseteebesbesbesbesnenseseerearas
11.4.15 TPT (Trip POINt TEMPEIALUIE)oveviivieieciiciestecte ettt te st b et e et tesbe st st b e sn et eseeneenas
11.4.16 _TRT (Thermal Relationship Table)ccooiiiiiiie e
11.4.17 _TSP (Thermal Sampling Period)..............
11.4.18 _TST (Temperature Sensor Threshold)
11.4.19 _TZD (Thermal Zone Devices)
11.4.20 _TZM (Thermal ZONe IMEIMDET)cviuiiiiiiieeiteeieeeee ettt sttt sttt e beebesbesbe e e e eseeneenas
11.4.21 _TZP (Thermal Zone POIING)ccoiviiiieeiicectectee ettt st st neens
11.5 Native OS Device Driver Thermal INTErTACEScoviiiiiiriiicci e
11.6 Thermal Zone Interface REQUITEMENTSciiiiiiiiieiei ettt ettt neenea
11.7 Thermal Zone Examples.........c..cccceveurnenn.
11.7.1 Example: The Basic Thermal Zone
11.7.2 Example: MUIEIPIE-SPEEU FaNS......c.iuiiiiiiiiiteer ettt
11.7.3 Example: Thermal Zone with Multiple Devices

12 ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATIONccccooviiiiiiieiieeeee 441
12.1 Embedded Controller Interface DESCrIPLION.........ccvriiiiiiirieie et
12.2 Embedded Controller RegiSter DESCIIPTIONScoiiviiiiiiieinieiesei et

12.2.1 Embedded Controller Status, EC_SC (R)ccvoeitrrririeirieieieie sttt et sesnenas
12.2.2 Embedded Controller Command, EC_SC (W) ...cc.oiiririiieeienieesiee sttt
12.2.3 Embedded Controller Data, EC_DATA (RIW) ..cooiiiiiiiieiesieinee e
12.3 Embedded Controller COMMANG SELccooviiiiiiiiiie e
12.3.1 Read Embedded Controller, RD_EC (0x80)......
12.3.2 Write Embedded Controller, WR_EC (0x81)
12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
12.3.4 Burst Disable Embedded Controller, BD_EC (0X83)ccouvirirueirieirieienieieresieesieesesesiesesestenesseeseesennas 447
12.3.5 Query Embedded Controller, QR_EC (0X84)ccurieiriiirieierieisee et 447
12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVTc..ccccoiinnirniiineincenenes 448
12.5 Embedded Controller Firmware
12.6 Interrupt Model...........ccccoevvrnrnene.
12.6.1 Event Interrupt Model
12.6.2 Command INEErrUPt MOGENouoiiiiiiiiee bbb e
12.7 Embedded Controller Interfacing AlGOrithmS............cooviiiieiinii s
12.8 Embedded Controller Description Information
12.9 SMBus Host Controller Interface via Embedded Controller
12.9.1 Register Description
12.9.2 Protocol Description
12.9.3 SMBus Register Set

12.10 SIMIBUS DBVICESccuvveitiietee ettt ettt e ettt e e e et e ettt e st e s be s e tte e sbeesabeaebesesteesbteeabeseteeesbessabeabasasteesbtesnbesaneeesreeans
12.10.1 SMBUS DEVICE ACCESS RESIICHIONS.......iiivieiieiitieiie ettt ebe e re e st e s e sbe e s beesaeeebeesreeesreesabeennes
12.10.2 SMBus Device Command ACCESS RESIIICHION.........cccviiiiiiieiie e

12.11 Defining an Embedded Controller Device in ACPI NamMESPACE..........ccccirerereriiieeiieiesie e 460
12.11.1 Example: EC Definition ASL COUE.cuiiiiiirieiiieeicse ettt s 461

12.12 Defining an EC SMBus Host Controller in ACPI NamEeSPACEcovcveiieirieinieinsieisiee s 461
12.12.1 Example: EC SMBuUS HoSt CONtroller ASL-COE........ccuriiiriiiiieeeieiese st 462

13 ACPI SYSTEM MANAGEMENT BUS INTERFACE SPECIFICATIONcoooveeeeieeeeee e, 463

13,1 SIMIBUS OVEIVIBWoeevveetee ettt ettt et ete e et e e te e et e s be e e tee e sbeesabeeabeeesbeesatesabeseteeesbeesabeebaeesseesasesnbesanneesreeans 463
13.1.1 SIMBUS SIAVE AGUIESSESvevveveiteiiteitteiteeeeire st e ste s e e sbestsestesteebesaeesbeets e besabesbesssesbesasesbeereesbesatesbeereestesnees 463
R] Y1 = WIS = 0] 0 Toc o SR 463
13.1.3 SIMBUS STALUS COUESuveiiveiiiieieie it e ettt cte e ettt et ete e s te e e te e e sbeesabeebeeasseesbsesabeeabesasseesbeesnbeesreeebeesareenres 464
13.1.4 SMBUS COMMANG VAIUEScvveiuiiireiitie ettt ettt ettt e e ete e sat e e ebe e e re e e saeesabeesbeserseesaeesbeesreeesreesateenres 464

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Xii

13.2 Accessing the SMBUS from ASL COOE........ociiiiiiiieieiei ettt sttt a e s eraanea 465
13.2.1 Declaring SMBuUS HOSt CONtrOlEr ODJECES.ccviiieiiieieiceie st 465
13.2.2 DECIAring SIMIBUS DBVICES.cuviviiiiieiitieiectis ettt ettt sttt ettt st et st e b e s st eteabesbesbe st et ensereeaeeras 465
13.2.3 Declaring SMBUS OPEration REGJIONS..........ccuiiiiiiiriiieeiti ettt sttt re st sre e ns e eneens 466
13.2.4 Declaring SIMBUS FIEIUS.........oiui ittt ettt see st se e ereeneenas 467
13.2.5 Declaring and Using an SMBUS Data BUTTEr..........cc.covoiiiiiiiiic e 469

13.3 USING the SIMBUS PrOTOCOISc.ccuiiiiiiiiiceiic sttt sttt b et sttt s e ae et sbe st e sn et e e enseraarea 470
13.3.1 Read/Write QUICK (SMBQUICK)cuviviiiiiiiiiieiiteie e 470
13.3.2 Send/Receive Byte (SMBSENURECEIVE)cuviviiiiiiiiiieeiit ettt st aeens 470
13.3.3 Read/Write BYte (SMBBYLE)......cciiiieiiiieieitiee ettt sttt sttt b et e st besr b eseeneens 471
13.3.4 Read/Write WOrd (SMBWOKT)........curviiiiiiireieiticree et 471
13.3.5 Read/Write BIOCK (SMBBIOCK)c.coviiiiiiireiseci e 472
13.3.6 Word Process Call (SMBPTIOCESSCall).........ccociiiiiiiiiiciiiiese ettt e 473
13.3.7 Block Process Call (SMBBIOCKPIOCESSCaAll).......cc.cvviieiiiiiiiiiieiicsieeete e 473

14 SYSTEM ADDRESS MAP INTERFACESot 475

14.1 INT 15H, E820H - Query System AdAreSS IMAPccciviiiieiieiiiieiei ettt a e te e et a e raanea 475

14.2 E820 AsSUMPLIONS ANd LIMITATIONScveviviiiieiiriieisiesei et 477

14.3 UEFI GetMemoryMap() BOOt SErvices FUNCLIONcoiiueiiiiieerces e s 478

14.4 UEFI Assumptions and LIMITALIONScoiieiiiiieisieiee et 479

14.5 EXAMPIE AQUAIESS IMBPcveieeitiieieete ettt ettt ettt se e bbbt et et e s e et st st et e e b et et s 479

14.6 Example: Operating SYSIEM USBJEciviuiirreiriiiiieteesietst ettt ne s 481

15 WAKING AND SLEEPINGottt st sttt sbeeste e 483

15,1 SIEEPING STALESveitiieieiietieii ettt sttt ettt st et et e s e s e e st e teebesbe st es e st ese e b e ebeebesbebe e en s e s e eneeteabesbeseenbeseensereaneas 484
15.1.1 S1 SIEEPING SEALE ... eveueieteietenirte sttt ettt se et se ettt se et s bt ese et e e et e et e ne et et e neeRe s et et ene et r e e nenan 485
15.1.2 S2 SIEEPING SEALEe.veueeeteietenieteese et ettt ettt ettt se bt ne et et et e et e Rt et et R et ettt ne et r e e nenran 486
15.1.3 S3 SIEEPING SEALEc.vveeeieeitei ettt bbb bbbt b bt 486
15.1.4 S4 SIEEPING SEALE ...c.vcveeeteeiteii ittt b bbb bbbkt e bbbt n et 487
15.1.5 S5 SOt OFf SAE......c.vvieeeeiitiiieset ettt bbbttt 488
15.1.6 Transitioning from the Working to the SIEeping StAtecccveiiieiriinneisi e 488
15.1.7 Transitioning from the Working to the Soft Off Stateccoviiiieiiiinnc e 489

15.2 FIUSNING CACRES....c..oiiiiie bttt b bbb bbbt bbbt e et ebe b 489

TR Lo T LT 1142 o] OO STTUTTTUSSPRN 489
15.3.1 Placing the System in ACPI IMOGEc.ooiiiiiiiiieee bbb 491
15.3.2 BIOS INitialization OF IMEIMOIYc..couiiiiiiiiieieesie ettt bbbttt b e bbb enas 492
TR TR J @ 1S I T Vo 14 o SO RR SRR 494
15.3.4 EXItING ACPT IMIOUEecviieiiiiirieitetee ettt bbbt bbbttt bbbt bbs 495

16 NON-UNIFORM MEMORY ACCESS (NUMA) ARCHITECTURE PLATFORMS 496

168.1 NUIMA NOGE ...ttt bbbttt b bbbk bt e bbbttt b bbbttt b kb ettt b b b 496

16.2 SYSEEIM LLOCAITYeveeeeieeieet ettt bbbt b bt bbb et et e bt bt et e s bt b e b et e et ebe b 496
16.2.1 System Resource Affinity Table Definition...........cccoviriiiiiiiic e 496

16.3 System Locality Distance INFOrMELION ..o s 497

17 ACPI PLATFORM ERROR INTERFACES (APEI) ..ottt 499

17.1 Hardware Errors and EFTOF SOUFCEScociiieiiiiee et eee e stee st ste e e eveestvesbeestaessbaesabeesbeessseesaeesbesssneesreeans 499

17.2 Relationship between OSPM and SyStem FiFMWAKE...........ccccoiiririiiiineiie e 500

17.3 EXTOF SOUICE DISCOVETYeeuiiiiiietiieteei sttt etttk b ket b e bbbt b bbbt b bbb 500
17.3.1 BOOE EITON SOUICE.....ueiiietiieiet ettt bbbt bt e et a e s bt et e bt e s e e bt e be e bt e nbeeneenbeanras 500
17.3.2 ACPT EITON SOUICE ...ttt ettt b bbbt bttt se bbbt n e et b et nns 502

A g o] Y=Y g T L= o] o TR 514
17.4.1 Serialization ACHON TaBIEcc.ii ittt et et e e s e s be e be e e be e saeeebeeereeesbeesareenres 515
17.4.2 OPEIALIONS ..vvviteitetetestestett e e s teste st ebeeastetesbestestesbeseesseseeb e e teebesbe s es s e s e ese e b e e beabesbe b et enteteebeebeabe b e seenseneeneenn 521

SN g o] gl 1] 1=To1 o] o OSSR UUUTSRRSRPRN 524
17.5.1 Error INjection Table (EINJ) ...ttt bbb e 525
17.5.2 Injection INSErUCTION ENIIESveiiiiiietiiitetee ettt 527
17.5.3 INJECHION INSEIUCTIONSveeieteite ittt bttt b bbbttt b et sb et e e et e b e 528

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.5.4 Trigger ACHION TADIE ..ottt b e b et et e me e b e bt ebesb e b e e eneereeneenas 529
17.5.5 Error INJECION OPEIALION.e i iiieiieieie ettt ettt sttt sttt be b e sbesee b e e eneebeabeebesbeebe e ensaseeneenas 529

18 ACPI SOURCE LANGUAGE (ASL) REFERENCEccccooiiiiiieeese s 532
18.1 ASL Language Grammar
18.1.1 ASL Grammar Notation
18.1.2 ASL Name and Pathname TEIMS. ... ettt
18.1.3 ASL ROOt aNd SECONTANY TEIMSc.eeiieieieiteeie ettt sttt et e et et e st ere b e ebesbesbeseeneeseeneenas
18.1.4 ASL Data and CONSIANT TEIMSeuiuiiiiireieieiire sttt enenes
18.1.5 ASL OPCOUE TEIMSveuveviitieteitiitestetetett e ete e st et e e e st et e e bt s te e be st e s et e seeseebeebe st e sa et e s enseteebesbesbesbessensereenears
18.1.6 ASL Primary (Terminal) Terms
18.1.7 ASL Parameter Keyword Terms....
18.1.8 ASL ReSOUrCce TEMPIALE TEIMS.....c.iuiiiiiiieieieiire sttt et
RS NS I o] o] o £ RSP URPRRN
18.2.1 ASL Names
18.2.2 ASL Literal CONSLANTScueviriiieitieiiiii ittt bbbttt
18.2.3 ASL RESOUICE TEMPIALESveitiitiitiieieiie ettt ettt et see et e st e be e b e ebesbeebe e eneareeneenas
18.2.4 ASL IMIBCIOS ...ttt etttk h e r e ettt b R et R e n e n e enn
18.2.5 ASL DALA TYPES ...ttt sttt ettt ebe st b e bt s bbbtk h e b e e e e s e e Rt e bt e bt e bt nb et e e e Rt e bt btk e b b e et e neens
18.3 ASL OPEIAtOr SUMIMATYiiuiitiitirieieeeiteie ettt ste sttt e ettt abeabe st e b e e ese et e ebeabesb e b e e es b e st eheabesbesbene et e e eneebeanea
18.4 ASL Operator SUMMANY BY TYPE ..ot ene
18.5 ASL OPEratOr RETEIENCEooueitiitiiteieeei ettt ettt sttt bt bbb e et b e bttt sb et e et e e e st ebeane
18.5.1 ACQUITE (ACUITE 8 IMIUIEX)veiieeiiieteeet sttt sttt b et n e
SR Ao [0 I (L1 =T T=T Ao [0) OO PTRSRSTON
18.5.3 Alias (DEeCIare NAME ALTAS)eiruiirieierieiiieie sttt ettt sttt sttt e st et ebe st benesbesenaenennas
18.5.4 And (Integer Bitwise And)cccoovveevrienne
18.5.5 Argx (Method Argument Data Objects)
18.5.6 BankField (Declare Bank/Data Field)
18.5.7 Break (Break from WHILE)ciiuiiieiiieeie ettt et
18.5.8 BreakPoint (EXECUtiON Break POINT).........cioiiriiiriiiieirciese st
18.5.9 Buffer (Declare BUTfer ODJECL)oiirieiiiiiiiieieriec ettt et nnene s
18.5.10 Case (Expression for Conditional EXECUTION)...........coiriiuiirieiinieiiee et 578
18.5.11 Concatenate (CONCAENALE DALA).........cerviriirreiriiiiieie sttt 579
18.5.12 ConcatenateResTemplate (Concatenate Resource TEMPIALES)cccoverreririeiineiineeee e 579
18.5.13 CondRefOf (Create Object Reference Conditionally)
18.5.14 Continue (Continue Innermost Enclosing While)...........cc.cocoovvennn.
18.5.15 CopyObiject (Copy and Store ODJeCt)ccvevvrerererieieiieesese s
18.5.16 CreateBitField (Create 1-Bit Buffer FIeld)ccoooiiiiiiiiieeee s
18.5.17 CreateByteField (Create 8-Bit BUffer FIeld)ccooieiiiiiiiieieeee s
18.5.18 CreateDWordField (Create 32-Bit Buffer Field) ..o
18.5.19 CreateField (Create Arbitrary Length Buffer Field) ...
18.5.20 CreateQWordField (Create 64-Bit Buffer Field)cc.ccccevenee.
18.5.21 CreateWordField (Create 16-Bit Buffer Field).........cc.cccovvririennn.
18.5.22 DataTableRegion (Create Data Table Operation Region)
18.5.23 Debug (DebugOer OULPUL)ooeiiieeeeiee ettt bbbttt ens
18.5.24 Decrement (INtEGEr DECIEMENT)oviuiiiiitiiieiterie ettt bbbttt b b et enas
18.5.25 Default (Default Execution Path in SWILCh)cccceiiiiiiiiinicicee e
18.5.26 DefinitionBlock (Declare Definition BIOCK)............coiriviriiiiiniiiieiiseseesie e
18.5.27 DerefOf (Dereference an Object Reference) ...
18.5.28 Device (Declare Bus/Device Package)
18.5.29 Divide (Integer Divide)cccoecvrverireennnn
18.5.30 DMA (DMA Resource DeSCriPtOr MACIO)cc.couiiiuieiiiiiniesiesie ettt s e
18.5.31 DWordIO (DWord 10 Resource DeSCriptOr IMACIO).........ceieruerierieieiieieniesieseesie et see e e enas
18.5.32 DWordMemory (DWord Memory Resource DesCriptor IMACI0).........curuueririeirreirisensieresieisnee s 588
18.5.33 DWordSpace (DWord Space Resource DeSCriptor MACIO)coveuvruirerinierinieinieieneeesieie s 590
18.5.34 EISAID (EISA ID String To Integer Conversion Macro)
18.5.35 EISe (AIErNAte EXECULION)......ueuiriiiiietiiiteeistet sttt ettt ettt bbbttt b e nnene e

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Xiv

18.5.36 Elself (Alternate/Conditional EXECULION)cc.couiiiiiiiiiiiie e 592
18.5.37 EndDependentFn (End Dependent Function Resource Descriptor Macro)cccvveveereneicnreieneennas 593
18.5.38 Event (Declare Event Synchronization OBJECE)c.coviiiiiiiiiiiieicice e 593
18.5.39 ExtendedlO (Extended 10 Resource DesCriptor MaCr0)ccceveieieeiiiieieniesieiee et enas 593
18.5.40 ExtendedMemory (Extended Memory Resource Descriptor Macro)........ccoeverereeieenenenese e 595
18.5.41 ExtendedSpace (Extended Address Space Resource Descriptor Macro)ccccvevveeiviesesesiesiereeneenes 596
18.5.42 External (Declare EXternal OBJECLS)cviiiiiiiiiiiiieeit ettt st ens
18.5.43 Fatal (Fatal Error ChECK)iii ettt sttt ettt sae b se e ereeneenas
18.5.44 Field (Declare Field Objects)........cc.ccveuee
18.5.45 FindSetLeftBit (Find First Set Left Bit)........
18.5.46 FindSetRightBit (Find First Set Right Bit)
18.5.47 FixedlO (Fixed 10 Resource DeSCrPLOr IMACIO)cviuirieriereerieieieeieiesiesteseesieseeneere et see e seeeeseeneenas
18.5.48 FromBCD (ConVvert BCD TO INTEGET)cviviiiiiiiiieieieectt sttt sttt st sre et raeneens
18.5.49 Function (Declare Control Method).........c.cviiiiiiiiiiieeis et s ens
18.5.50 If (CoNditional EXECULION)ciuiiiiieieiieiectc ettt sttt ettt sbeebe e eneeneenas
18.5.51 Include (Include Additional ASL File)......
18.5.52 Increment (Integer InCrement)cccocevvevervreenns
18.5.53 Index (Indexed Reference To Member Object) ...
18.5.54 IndexField (Declare INdex/Data FIeldS).........coviiriiriinnieiesicsee e
18.5.55 Interrupt (Interrupt Resource DeSCIIPtOr IMACTO)cooviuiirueirieririeeneeienie e sesiee et st seenennas
18.5.56 10 (10 ResoUrce DESCHPIOr IMACTD)o.viveuieieierieiiieiereeteiete ettt ettt ettt sberesnene e
18.5.57 IRQ (Interrupt Resource DeSCrPLOr IMCTO)vouvveririiriisteesieiesie sttt
18.5.58 IRQNoFlags (Interrupt Resource Descriptor Macro)
18.5.59 LANd (Logical And).........
18.5.60 LEqual (Logical Equal)
18.5.61 LGreater (LOGICAl GIBALET)evrviuiietiietieieteest ettt ettt ettt bbbttt b et n e nn e
18.5.62 LGreaterEqual (Logical Greater Than Or EQUA)ccccerireiirieiieienceee e
18.5.63 LLESS (LOGICAI LESS) ...vveuevenieerireeieietesestescete e stenes et seebeseste e ssesesbe s seebe e s be et ese b ebeneese s ebe e beneaneneseanennas
18.5.64 LLessEqual (Logical Less Than Or EQUAL).........ccoureiriiiieineie e
18.5.65 LINOT (LOGICAI INOL) ...ttt bbbttt n e
18.5.66 LNOtEqual (LOgical NOt EQUAL)) ...eveeieeiiieieisieic ettt et
18.5.67 Load (Load Definition Block)
18.5.68 LoadTable (Load Definition BIOCK From XSDT)ccccciriiiiriiiieinieniniessieesree e
18.5.69 Localx (Method Local Data ODJECES)........ccuriririiiiieieiieiesie et
18.5.70 LOF (LOGICAI OF) ...ttt sttt bbbt b bbbttt b et et bt ebeeneens
18.5.71 Match (FiNd ODJECE IMALCN)vevieiiiicieie bt
18.5.72 Memory24 (Memory Resource DeSCIIPtOr IMACIO)cueirveiriiirieienicienisrese st
18.5.73 Memory32 (Memory Resource DeSCIPLOr IMACIO)c.cueriruerieieieiirienieste ettt
18.5.74 Memory32Fixed (Memory Resource Descriptor Macro)
18.5.75 Method (Declare Control Method)cccoverviiiineiniiineccee
18.5.76 Mid (Extract Portion of Buffer or String)
18.5.77 MOd (INtEGET MOUUID) ...ttt bbbttt b bbbt nnas
18.5.78 Multiply (INteger MUIIPIY)veiiriiieie e
18.5.79 Mutex (Declare Synchronization/MuteX OBJECL)couiuiriieiiriiinieincisesee e
18.5.80 Name (Declare Named OBJECL)......cueuiuieeiirierieiterieieee ettt b e ens
18.5.81 NAnd (Integer Bitwise Nand)
18.5.82 NoOp Code (No Operation)........
18.5.83 NOr (Integer Bitwise Nor).......
18.5.84 NOt (INtEGEr BItWISE INOL)ecuiitiiiiiiiieeic ettt ettt bbb ne e
18.5.85 Notify (NOtify ODJECt OF EVENL).....c.ciiiiiiiiiecice e
18.5.86 ObjectTYPe (Gt ODJECE TYPE) ...erveviieriiitiieietst ettt ettt ettt ettt b e nnene e
18.5.87 ONne (CONSLANT ONE ODJECL)ueviiiieieiieieitirte ettt ettt sttt b e bbbttt b et st b e e eseeneenis
18.5.88 Ones (Constant Ones ODJect)ccooverereririenens

18.5.89 OperationRegion (Declare Operation Region)
18.5.90 Or (Integer Bitwise OF)........ccccererrireienirenenieens

18.5.91 Package (Declare Package ODJECL)ciiiiiiiiiieeese et
18.5.92 PowerResource (Declare POWET RESOUITE)cuiveiiriireiriiinieiisieie sttt

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

XV

18.5.93 ProcesSOr (DECIAIE PIOCESSON)c.cueeeuieieiteriestesieseeseeseatestesteseeseeseesesseasessesaeseesseeeneesessesseseesseseeneaseeneanas
18.5.94 QWordIO (QWord 10 Resource Descriptor Macro)...........c.cc.ue.e...

18.5.95 QWordMemory (QWord Memory Resource Descriptor Macro)
18.5.96 QWordSpace (QWord Space Resource Descriptor Macro).............

18.5.97 RefOf (Create ODJECt REFEIEINCE)o.eiuieieiiieeieee ettt sttt neenas
18.5.98 Register (Generic Register Resource DesCriptor MaCro)..........ccceeieiceiiiisiesiesiciee e enas
18.5.99 Release (Release a Mutex Synchronization ODJECT)cccveiiriiieiiiiceie e
18.5.100 Reset (Reset an Event Synchronization ODJECE)ccoiiiieriieiieieese e
18.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)
18.5.102 Return (Return from Method Execution)
18.5.103 Revision (Constant Revision Object)..........

18.5.104 Scope (OPen NAMEA SCOPE)veveeeeeuieieitieiestestereeieeeteetestesteseeeeseeseatessesteseesbeeensesesseasessesseseenseseaneasas
18.5.105 ShiftLeft (Integer SRIft LEft)ociiiiiiceccc e
18.5.106 ShiftRight (Integer Shift RIght)c.coioiiiiiic e e
18.5.107 Signal (Signal a Synchronization EVENL) ..o
18.5.108 SizeOf (Get Data Object Size)
18.5.109 Sleep (Milliseconds Sleep)
18.5.110 Stall (Stall for @ ShOrt TIME)........ceovieirririee e

18.5.111 StartDependentFn (Start Dependent Function Resource Descriptor Macro)ccoveeervieinieeneennas 636
18.5.112 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro)ccceevveevveeennas 637
18.5.113 StOre (StOre @n ODJECL)veuiiuerireeiirieierieteiete sttt ettt ettt et e sttt et e st s e s ebe et eneenereseenennas
18.5.114 Subtract (INTEGEN SUDTFACE)c.tiviuiietiriitecstee sttt n e
18.5.115 Switch (Select Code To Execute Based On Expression)
18.5.116 ThermalZone (Declare Thermal Zone)cc.ccceovveiereereereniencnns

18.5.117 Timer (Get 64-Bit Timer Value)........cccccvrverererineiereenee e

18.5.118 ToBCD (Convert INteger t0 BCD)........uciiiieiriiiiieiineeieiete ettt
18.5.119 ToBuffer (Convert Data t0 BUFFEr)c.ooiiiiiiiiieece e e
18.5.120 ToDecimalString (Convert Data to Decimal String)........ccccoueueireiiriinnereneesee s
18.5.121 ToHexString (Convert Data to Hexadecimal String)ccoveoiieiniinneineiee e
18.5.122 Tolnteger (ConVert Data t0 INTEYET)c.ei ettt
18.5.123 ToString (Convert BUFfer TO SIFNG)c.evieiriiiieereeee ettt
18.5.124 ToUUID (Convert String to UUID Macro)
18.5.125 Unicode (String To Unicode CONVErSion IMACIO)c.eoviuiiriiirieiniiiinisresesieesreie e
18.5.126 Unload (Unload Definition BIOCK)ccooiiiiiiiiiiiiee e
18.5.127 VendorLong (Long Vendor ReSOUrce DESCHIPLOI).......c.cuiririerieieieiisiesieste ettt
18.5.128 VendorShort (Short Vendor ReSOUrce DESCIIPLON)c.eovrveiriiirieirieiinisiesesieesreie e
18.5.129 Wait (Wait for a Synchronization EVENL)ccoeiiriiiiiiieeeeseeee e
18.5.130 While (CONAItIONal LOOP)......ccuertiteieiieieitisiesteste ettt sttt bbbt ens
18.5.131 WordBusNumber (Word Bus Number Resource Descriptor Macro)coeeveeieenesenesesieneeeenns 646
18.5.132 WordIO (Word 10 Resource DeSCriptor MECI0)cerirueiirieirieiniiiinisresesieisreie s 647
18.5.133 WordSpace (Word Space Resource DesCriptor IMACI0))c..eoververieireninienienie et 648
18.5.134 XOr (INTEGET BILWISE XOI)uiitititeieiieieitinte sttt ettt sttt sttt b e sb e bttt e bttt st b e e eseene e 650
18.5.135 Zero (ConStant Zero ODJECL)oveuuiveririiieiireieri ettt 650

19 ACPI MACHINE LANGUAGE (AML) SPECIFICATIONccoiiiiiiieieneeseeeeee s 651
19.1 NOTATION CONVENTIONS ...ttt bbb bbbt bbbt bbbt b e eb et r et nn et b s 651
19.2 AML Grammar DefiNitioN ..o s 652

19.2.1 Table and Table Header ENCOUING.........c.oiiiiiriieieieeecsie ettt s 652
19.2.2 Name ODJECES ENCOUINGvveuiieiirieiiietiist ettt sttt bbbttt b bbb 652
19.2.3 Data ODjJECES ENCOGING ... eeueeteitiiterieie ettt sttt st sttt b e bbb et e st et e e bt ebesbe b e e eneebeeneenas 653
19.2.4 Package Length ENCOOINGccuieruirieieiieieitieie sttt sttt sttt sb ettt e bt sb e b e et e ene e 654
19.2.5 Term Objects Encoding
19.2.6 Miscellaneous ODJECtS ENCOUING.......ccvuiriiiiiiieiriiiieie ettt
19.3 AML Byte Stream BYLe VAlUBSc.coviiiiiiiiiese ettt bbb b et neene
19.4 AML Encoding of Names in the NamMESPACEcuriiiiiiiiieirieeseie sttt s

A DEVICE CLASS PM SPECIFICATIONS
A A O 1T V1Y AR

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

XVi

A2 DEVICE POWEE STALES.......ceiviviiiiiiiiiiiite ettt bbbkttt
A.2.1 Bus Power Management...........
A.2.2 Display Power Management
A.2.3 PCMCIA/PCCARD/CardBus Power Management
A.2.4 PCl POWEN MANAGERITIENTottt ettt sttt sttt sbe e e bt e se et e eseesbeeb e e nbeeseesbeebe e beaneenbenreens
A.2.5 USB POWEN IMANAGEIMENTeviiiiitieie ettt ste e se et e e be s e saesseesbesseesbeese e besssesbesreebesnaesaenreens
AL2.8 DEVICE CIASSESvviiiiiiiestetet ettt bbbt
A3 DETAUIT DEVICE CIASS ... e eieenieiieiieieite ettt sttt b et b et e e et et e e bt besb et e s e e ne e s e neebeebesbesteneeneaneanene
A.3.1 Default Power State DEfiNITIONSc.cviviiririiiiieicei e
A.3.2 Default Power Management POLICYc.cccoiiiiiiiioiiice ettt
A.3.3 Default Wake Events..........ccoceeveenee
A.3.4 Minimum Power Capabilities.......
A.4 Audio Device Class.........ccerrnnnnee.
A.4.1 Power State Definitions.....
A.4.2 Power Management Policy
AL.3 WEKE EVENES ...ttt
Ad4 Minimum POWEr Capabilitiesooiiiieiieiie e
A5 COM POIT DEVICE CIASS ...vouviueeriieieieiteiiesieie ettt sttt ettt te bt tesbe s eseese e st e besbesbeseentese e st ebesbesbestenseseenearenes
A5.1 Power State DEfiNItIONScciiiiiiiiiiiiieicii e
A5.2 Power Management POLICYciriiieiiiiie et
ALD.3 WWEKE EVENTS ...ttt sttt sttt b et e et e bttt e ket et e et e Rt e b e e b et et et et et eneeneens
A5.4 Minimum POwer Capabilitiescoiiiiiiiiieieiese e
A6 DiISPIAY DEVICE CIASS.......cuieeiiiitiieieieieii ettt ettt b e e bbbttt b b e se b et ebe et neeberennene e
A.6.1 Power State Definitionsccccooeveiieiiiieiereceree e
A.6.2 Power Management Policy for the Display Class
AB.3 WEKE EVENLS ...t
A.6.4 Minimum POWEr CapabilitieSsooiviriiiiiiiie e
A.6.5 Performance States for Display Class DEVICEScc.ceireirieieniienieeiesieesiee e
AT INPUE DEVICE CIASS ...ttt sttt ettt ettt s bt ese e s et et et et e ne et e bt se e b et ebe e benesbereneenennas
A7.1 POWeEr State DEFINITIONSeiviieiieicieiie ettt ettt sttt e reaneanas
A7.2 Power Management POLICYciiiiiiieiiei ettt ettt
ALT.3 WWEKE EVENTS ...ttt bbbt b bbbt bt e bttt b bbb e bt
A7.4 Minimum POWer Capabilitiesooiiriiiiiiiie e
A8 IMOUEM DEVICE CIASS ...o.viviienieiiiiieie sttt ettt st b ettt e bt et e s b et et e st ese e st ebeebesbeste st eseeneanene
A.8.1 Technology Overview
A.8.2 Power State Definitions.........
A.8.3 Power Management Policy
ALB.A WWEKE EVENTS ...ttt bbbt bbbt b et h bbbt b e ne et
A.8.5 Minimum POWer Capabilitiesccoiriiiiiiiiie e
A9 NEIWOIK DEVICE ClASS ... e viiiuieriiuieiesieitesteies et e e sttt esteee e te s bt etestesbe e eseeseaseebesbesbeseenseseeseebeabesbestenseseanearens
A9.1 Power State DEFINITIONSccuiiiiiiiicii ettt b bt b et ene e
A9.2 Power Management POLICYciriiieiiieiier ettt
ALO.3 WWAKE EVENTS ...ttt sttt sttt bt e e e st et e bttt e ke be e e et e Rt e b e b ettt e e et e reeneens
A.9.4 Minimum Power Capabilitiesoiiiiiiiiiie e s
A.10 PC Card Controller DEVICE ClaSS.......c..cuiiiiiiiiiieniesie ettt sttt bbbt sbe st et
A.10.1 Power State Definitions...............
A.10.2 Power Management Policy
A.10.3 Wake Events........ccoceevvenerneenne.
A.10.4 Minimum POWer Capabilitiescovieiiiiiiiiiiese s
ALLL SEOrage DEVICE CIASSoviiiieiieiieieite ettt bbb bbbt ekt s b b e e e b e b e bt et e et e be st e e e s e st ebe e
ALL1 POWer State DEfiNITIONSoouiiiiiiiiiiie ettt et
A11.2 Power Management POLICYceiiiiiiiiiiiiiiiiee s bbbt
ALLL3 WWEKE EVENES ...ttt ettt bbb et bt bbb e b b et et e bt e bt e bt ke st et et et eneeneens
A11.4 Minimum POWer Capabilitiescouiiiiiiiiiie et e

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

B ACPI EXTENSIONS FOR DISPLAY ADAPTERS........o ot 691
0 R V4o T [Tod £ o o ISR
B.2 DEIINITIONS ...cviitiitiiieice ettt b e bt te e b e st e st e st e st e st et e e b e e b e e b et e b en b e s e e Rt e teebeebenae et e b e e eraarea
B.3 ACPI NAIMESPACEcoueiitiiiieiti ettt ettt ekt b bt e he ekt e R b e sb e e b e e bt ebb e ab e e b e e bt esbenb e st e e beanbenbearneas

B.4 Display-specific Methods
B.4.1 _DOS (Enable/Disable Output Switching)

B.4.2 _DOD (Enumerate All Devices Attached to the Display AdApLer)ccocvierereieiieieneie e 694
B.4.3 _ROM (Get ROM DALA)c.evireivirieiiiiiiiiteieieiere sttt bbbttt bbbttt 697
B.4.4 _GPD (GEt POST DEBVICE) ..cveiuiitiiiieietieie sttt sttt ettt sttt ettt b ettt stete e b e be st et e s et ereeaeers 698
B.4.5 _SPD (St POST DEVICE) ...cuieiiieieiiniiiitete ettt sttt ettt b et ettt abenas 698
B.4.6 VPO (Vide0 POST OPLIONS)....uiiuiieiiuieieitieiestesteseesieieatestestesteseeseeseeseasessesaeseesbeseeneesessessessesseseenseseaneans 699
B.5 Notifications fOr DISPIay DEVICESc.ccviiiiiiiiiiiiteietet ettt st eeaeetesbesbesaesbesse s eraanea 699
B.6 Output Device-SPeCifiC MEINOUS.........cviiiiii ettt reenea 699
B.6.1 _ADR (Return the Unique ID for thisS DEVICE)ccccveiiiiiiiieiicieeet e 700
B.6.2 _BCL (Query List of Brightness Control Levels SUpported).........ccccovviiviiiiiiineiiiice e 700
B.6.3 _BCM (Set the Brightness LEVEI) ..ot 700
B.6.4 _BQC (Brightness QUEry CUITENT IEVEL)eiiiiiiiiriiiisieiest e 701
B.6.5 _DDC (Return the EDID fOr thiS DEVICE)........covruiuirieiriiiiieieiesieisie ettt et sesne e 701
B.6.6 _DCS (Return the Status 0f QULPUL DEVICE)cc.eviveiiriiiiiiieiesicisee s 701
B.6.7 _DGS (QUENY GraphiCs STAIE)......ccveuirreriiitiiireirt ittt sttt eb et n e 702
B.6.8 _DSS (DEVICE SEL STAIE) ...eveuieerireeiiieieseetecete sttt et sttt ettt st et ettt e b e ne e bt ebe et et bereneene s 702
B.7 Notifications SPeCific t0 OULPUL DEVICESciiriiiririiiiieiiiee ettt sttt eene s 703
B.8 INOES ON STALE CRANGEScvevieiietiect ettt bbbt b ekt b bbbt n bbb 704
LN | = G TP TP PPP R PPPUPP PPN 706

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

XViii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 19

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration and
power management of both devices and entire systems. ACPI is the key element in Operating System-
directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APls, PNPBIOS APIs, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration interface
specification. ACPI provides the means for an orderly transition from existing (legacy) hardware to ACPI
hardware, and it allows for both ACPI and legacy mechanisms to exist in a single machine and to be used
as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more efficient
manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of computers
including (but not limited to) desktop, mobile, workstation, and server machines. From a power
management perspective, OSPM/ACPI promotes the concept that systems should conserve energy by
transitioning unused devices into lower power states including placing the entire system in a low-power
state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPIl and OSPM are to:
1. Enable all computer systems to implement motherboard configuration and power management
functions, using appropriate cost/function tradeoffs.

e Computer systems include (but are not limited to) desktop, mobile, workstation, and server
machines.

e Machine implementers have the freedom to implement a wide range of solutions, from the very
simple to the very aggressive, while still maintaining full OS support.

o Wide implementation of power management will make it practical and compelling for applications
to support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.

e Power management policies too complicated to implement in a ROM BIOS can be implemented
and supported in the OS, allowing inexpensive power managed hardware to support very elaborate
power management policies.

e Gathering power management information from users, applications, and the hardware together
into the OS will enable better power management decisions and execution.

e Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

3. Facilitate and accelerate industry-wide implementation of power management.

e OSPM and ACPI reduces the amount of redundant investment in power management throughout
the industry, as this investment and function will be gathered into the OS. This will allow industry
participants to focus their efforts and investments on innovation rather than simple parity.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

20 Advanced Configuration and Power Interface Specification

e The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to
gain the benefits of OS improvements and innovations.
4. Create a robust interface for configuring motherboard devices.
e Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the
OS and the hardware to achieve the principal goals set forth above.
e Minimal support for power management inhibits application vendors from supporting or
exploiting it.
Moving power management functionality into the OS makes it available on every
machine on which the OS is installed. The level of functionality (power savings, and so
on) varies from machine to machine, but users and applications will see the same power
interfaces and semantics on all OSPM machines.
This will enable application vendors to invest in adding power management functionality
to their products.
e Legacy power management algorithms were restricted by the information available to the BIOS
that implemented them. This limited the functionality that could be implemented.
Centralizing power management information and directives from the user, applications,
and hardware in the OS allows the implementation of more powerful functionality. For
example, an OS can have a policy of dividing I/O operations into normal and lazy. Lazy
1/0 operations (such as a word processor saving files in the background) would be
gathered up into clumps and done only when the required 1/O device is powered up for
some other reason. A non-lazy 1/O request made when the required device was powered
down would cause the device to be powered up immediately, the non-lazy 1/O request to
be carried out, and any pending lazy 1/0O operations to be done. Such a policy requires
knowing when 1/O devices are powered up, knowing which application 1/0 requests are
lazy, and being able to assure that such lazy I/O operations do not starve.
Appliance functions, such as answering machines, require globally coherent power
decisions. For example, a telephone-answering application could call the OS and assert,
“I am waiting for incoming phone calls; any sleep state the system enters must allow me
to wake and answer the telephone in 1 second.” Then, when the user presses the “off”
button, the system would pick the deepest sleep state consistent with the needs of the
phone answering service.
e BIOS code has become very complex to deal with power management. It is difficult to make work
with an OS and is limited to static configurations of the hardware.
There is much less state information for the BIOS to retain and manage (because the OS
manages it).
Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.
Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.
Because the BIOS has fewer functions and they are simpler, it is much easier (and
therefore cheaper) to implement and support.
e The existing structure of the PC platform constrains OS and hardware designs.
e Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the
hardware from the OS.
e ACPI is by nature more portable across operating systems and processors. ACPI control methods
allow for very flexible implementations of particular features.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 21

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware\OS Legacy OS ACPI OS with OSPM
Legacy hardware A legacy OS on legacy hardware | If the OS lacks legacy support, legacy
does what it always did. support is completely contained within
the hardware functions.
Legacy and ACPI It works just like a legacy OS on | During boot, the OS tells the hardware
hardware support in legacy hardware. to switch from legacy to OSPM/ACPI
machine mode and from then on, the system has

full OSPM/ACPI support.

ACPI-only hardware There is no power management. | There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI

specification, two general implementation strategies are possible:

e An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM software
and implement the hardware part of the ACPI specification (for a given platform) in one of many
possible ways.

e An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens up
even more hardware implementation possibilities. However, OEMs who implement hardware that is
OSPM-compatible but not ACPIl-compatible will bear the cost of developing, testing, and distributing
drivers for their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep
and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

22 Advanced Configuration and Power Interface Specification

1.6 ACPI Specification and the Structure Of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate to
each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both software
and hardware and how they must behave. ACPI is, instead, an interface specification comprised of both
software and hardware elements.

o OoS
Application
APIs

Kernel OSPM System Code

OS Specific
Device ACPI Driver/ ~ technologies,
Driver AML Interpreter interfaces, and code
(0K
I ACPI ACPI Table
Register Interface Independent I
I face technologies,
I ntertacs interfaces,
ACPI BIOS code, and |
isti Interface hardware
Existing
industry
standard I
register . ACPI BIOS ACPI Tables
interfaces to: .
CMOS, PIC,
PITs, ... —_— I

Platform Hardware <4+— BIOS

- ACPI Spec Covers this area
- OS specific technology, not part of ACPI
- Hardware/Platform specific technology, not part of ACPI

Figure 1-1 OSPM/ACPI Global System

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 23

There are three run-time components to ACPI:

e ACPI System Description Tables. Describe the interfaces to the hardware. Some descriptions limit
what can be built (for example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be built in
arbitrary ways and can describe arbitrary operation sequences needed to make the hardware function.
ACPI Tables containing “Definition Blocks” can make use of a pseudo-code type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter that
executes procedures encoded in the pseudo-code language and stored in the ACPI tables containing
“Definition Blocks.” The pseudo-code language, known as ACPI Machine Language (AML), is a
compact, tokenized, abstract type of machine language.

e ACPI Registers. The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.

e ACPI System Firmware. Refers to the portion of the firmware that is compatible with the ACPI
specifications. Typically, this is the code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely, compared to a
legacy BIOS. The ACPI Description Tables are also provided by the ACPI System Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design
Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces specified
below are generally spread throughout the ACPI specification. The ACPI specification defines:

System address map reporting interfaces (Section 14)
ACPI System Description Tables (Section 5.2):

Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

24 Advanced Configuration and Power Interface Specification

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)

Differentiated System Description Table (DSDT)

Secondary System Description Table (SSDT)

Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)

Embedded Controller Boot Resources Table

System Resource Affinity Table (SRAT)

System Locality Information Table (SLIT)
ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):
Power management timer control/status
Power or sleep button with S5 override (also possible in generic space)
Real time clock wakeup alarm control/status
SCI /SMI routing control/status for Power Management and General-purpose events
System power state controls (sleeping/wake control) (Section 7)
Processor power state control (c states) (Section 8)
Processor throttling control/status (Section 8)
Processor performance state control/status (Section 8)
General-purpose event control/status
Global Lock control/status
System Reset control (Section 4.7.3.6)
Embedded Controller control/status (Section 12)
SMBus Host Controller (HC) control/status (Section 13)
Smart Battery Subsystem (Section 10.1)

ACPI-defined Generic Register Interfaces and object definitions in the ACP1 Namespace (Section 4.2,
Section 5.6.5):
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 11)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 9.1)
Devices and device controls (Section 9):
Processor (Section 8)
Control Method Battery (Section 10)
Smart Battery Subsystem (Section 10)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 12)
Fan
Generic Bus Bridge
ATA Controller
Floppy Controller
GPE Block
Module
Memory
Global Lock related interfaces

ACPI Event programming model (Section 5.6)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 25

ACPI-defined System BIOS Responsibilities (Section 15)

ACPI-defined State Definitions (Section 2):
Global system power states (G-states, SO, S5)
System sleeping states (S-states S1-S4) (Section 15)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following provides an example of how a client platform design guide, whose goal is to require robust
configuration and power management for the system class, could use the recommended terminology to
define ACPI requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features, concepts, and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)
Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

o ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
Devices and device controls:
Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register space)
Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments
e ACPI Event programming model (Section 5.6)
e ACPI-defined System BIOS Responsibilities (Section 15)
o ACPI-defined State Definitions:
System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
Device power states (D-states must be implemented in accordance with device class
specifications)
Processor power states (All processors must support the C1 Power State)

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

26 Advanced Configuration and Power Interface Specification

The following provides an example of how a design guide for systems that execute multiple OS instances,
whose goal is to require robust configuration and continuous availability for the system class, could use the
recommended terminology to define ACPI related requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

o ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
System indicators
Devices and device controls:
Processor

Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

e ACPI Event programming model (Section 5.6)

o ACPI-defined System BIOS Responsibilities (Section 15)

e ACPI-defined State Definitions:
Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with their
associated event models appropriate to the system platform class upon which the OS executes. This is the
implementation of OSPM. The following outlines the OS enhancements and elements necessary to support
all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs to be
modified to:
e Use system address map reporting interfaces.
Find and consume the ACPI System Description Tables.
Interpret ACPI machine language (AML).
Enumerate and configure motherboard devices described in the ACPI Namespace.
Interface with the power management timer.
Interface with the real-time clock wake alarm.
Enter ACPI mode (on legacy hardware systems).
Implement device power management policy.
Implement power resource management.
Implement processor power states in the scheduler idle handlers.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 27

e Control processor and device performance states.

e Implement the ACPI thermal model.

Support the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.
Support acquisition and release of the Global Lock.

Use the reset register to reset the system.

Provide APIs to influence power management policy.

Implement driver support for ACPI-defined devices.

Implement APIs supporting the system indicators.

Support all system states S1-S5.

1.7.3 OS Requirements

The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:

Use system address map reporting interfaces to get the system address map on Intel Architecture (1A)

platforms:

e INT 15H, E820H - Query System Address Map interface (see section 14, “System Address Map
Interfaces™)

e EFI GetMemoryMap() Boot Services Function (see section 14, “System Address Map Interfaces”)

Find and consume the ACPI System Description Tables (see section 5, “ACPI Software Programming

Model”).

Implementation of an AML interpreter supporting all defined AML grammar elements (see section 19,

ACPI Machine Language Specification™).

Support for the ACPI Event programming model including handling SCI interrupts, managing fixed

events, general-purpose events, embedded controller interrupts, and dynamic device support.

Enumerate and configure motherboard devices described in the ACPl Namespace.

Implement support for the following ACPI devices defined within this specification:

o Embedded Controller Device (see section 12, “ACPI Embedded Controller Interface
Specification™)

e GPE Block Device (see section 9.10, “GPE Block Device”)

e Module Device (see section 9.11, “Module Device™)

Implementation of the ACPI thermal model (see section 11, “Thermal Management”).

Support acquisition and release of the Global Lock.

OS-directed power management support (device drivers are responsible for maintaining device context

as described by the Device Power Management Class Specifications described in Appendix A).

1.8 Target Audience

This specification is intended for the following users:

OEM s building hardware containing ACPl-compatible interfaces
Operating system and device driver developers

BIOS and ACPI system firmware developers

CPU and chip set vendors

Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

The first part of the specification (sections 1 through 3) introduces ACPI and provides an executive
overview.

The second part (sections 4 and 5) defines the ACPI hardware and software programming models.
The third part (sections 6 through 17) specifies the ACPI implementation details; this part of the
specification is primarily for developers.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

28 Advanced Configuration and Power Interface Specification

e The fourth part (sections 18 and 19) is technical reference material; section 18 is the ACPI Source
Language (ASL) reference, parts of which are referred to by most of the other sections in the
document.

e Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

1.9.1 ACPI Introduction and Overview

The first three sections of the specification provide an executive overview of ACPI.

Section 1: Introduction. Discusses the purpose and goals of the specification, presents an overview of the
ACPI-compatible system architecture, specifies the minimum requirements for an ACPI-compatible
system, and provides references to related specifications.

Section 2: Definition of Terms. Defines the key terminology used in this specification. In particular, the
global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in
this section, along with the device power state definitions: Off (D3), D3hot, D2, D1, and Fully-On (DO0).
Device and processor performance states (PO, P1, ...Pn) are also discussed.

Section 3: ACPI Overview. Gives an overview of the ACPI specification in terms of the functional areas

covered by the specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and 5.
These sections are the heart of the ACPI specification. There are extensive cross-references between the
two sections.

Section 4: ACPI Hardware Specification. Defines a set of hardware interfaces that meet the goals of this
specification.

Section 5: ACPI Software Programming Model. Defines a set of software interfaces that meet the goals
of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily for
developers.

Section 6: Configuration. Defines the reserved Plug and Play objects used to configure and assign
resources to devices, and share resources and the reserved objects used to track device insertion and
removal. Also defines the format of ACPI-compatible resource descriptors.

Section 7: Power and Performance Management. Defines the reserved device power-management
objects and the reserved-system power-management objects.

Section 8: Processor Configuration and Control. Defines how the OS manages the processors’ power
consumption and other controls while the system is in the working state.

Section 9: ACPI-Specific Device Objects. Lists the integrated devices that need support for some device-
specific ACPI controls, along with the device-specific ACPI controls that can be provided. Most device
objects are controlled through generic objects and control methods and have generic device IDs; this
section discusses the exceptions.

Section 10: Power Source Devices. Defines the reserved battery device and AC adapter objects.

Section 11: Thermal Management. Defines the reserved thermal management objects.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 29

Section 12: ACPI Embedded Controller Interface Specification. Defines the interfaces between an
ACPI-compatible OS and an embedded controller.

Section 13: ACPI System Management Bus Interface Specification. Defines the interfaces between an
ACPI-compatible OS and a System Management Bus (SMBus) host controller.

Section 14: System Address Map Interfaces. Explains the special INT 15 call for use in ISA/EISA/PCI
bus-based systems. This call supplies the OS with a clean memory map indicating address ranges that are
reserved and ranges that are available on the motherboard. UEFI-based memory address map reporting
interfaces are also described.

Section 15: Waking and Sleeping. Defines in detail the transitions between system working and sleeping
states and their relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and 8.

Section 16: Non-Uniform Memory Access (NUMA) Architecture Platforms. Discusses in detail how
ACPI define interfaces can be used to describe a NUMA architecture platform. Refers to the reserved
objects defined in sections 5, 6, 8, and 9.

Section 17: ACPI Platform Error Interfaces. Defines interfaces that enable OSPM to processes different
types of hardware error events that are detected by platform-based error detection hardware.

1.9.4 Technical Reference
The fourth part of the specification contains reference material for developers.

Section 18: ACPI Source Language Reference. Defines the syntax of all the ASL statements that can be
used to write ACPI control methods, along with example syntax usage.

Section 19: ACPI Machine Language Specification. Defines the grammar of the language of the ACPI
virtual machine language. An ASL translator (compiler) outputs AML.

Appendix A: Device class specifications. Describes device-specific power management behavior on a per
device-class basis.

Appendix B: Video Extensions. Contains video device class-specific ACPI interfaces.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from http://www.microsoft.com/whdc/resources/respec/specs/default.mspx:

e Advanced Power Management (APM) BIOS Specification, Revision 1.2.

¢ Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

Intel® Itanium™ Architecture Software Developer’s Manual, Volumes 1-4, Revision 2.1, Intel Corporation,
October 2002.

Itanium™ Processor Family System Abstraction Layer Specification, Intel Corporation, December 2003
(June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:
Unified Extensible Firmware Interface Specification, Version 2.3, May 2009.

Documentation and specifications for the Smart Battery System components and the SMBus are available

from http://www.sbs-forum.org:

e Smart Battery Charger Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

e Smart Battery Data Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

30

Advanced Configuration and Power Interface Specification

Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

System Management Bus Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 31

2 Definition of Terms
This specification uses a particular set of terminology, defined in this section. This section has three parts:
General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI)
As defined in this document, ACPI is a method for describing hardware interfaces in terms abstract
enough to allow flexible and innovative hardware implementations and concrete enough to allow
shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware
Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace
A hierarchical tree structure in OS-controlled memory that contains named objects. These objects may
be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading and/or unloading definition blocks from
the ACPI Tables that reside in the ACPI BIOS. All the information in the ACPI Namespace comes
from the Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)
Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which ACPI control
methods and objects are written. The AML encoding definition is provided in section 19, “ACPI
Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)
An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC systems.
The APIC architecture supports multiprocessor interrupt management (with symmetric interrupt
distribution across all processors), multiple 1/0 subsystem support, 8259A compatibility, and inter-
processor interrupt support. The architecture consists of local APICs commonly attached directly to
processors and 1/0 APICs commonly in chip sets.

ACPI Source Language (ASL)
The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

Control Method
A control method is a definition of how the OS can perform a simple hardware task. For example, the
OS invokes control methods to read the temperature of a thermal zone. Control methods are written in
an encoded language called AML that can be interpreted and executed by the ACPl-compatible OS.
An ACPI-compatible system must provide a minimal set of control methods in the ACPI tables. The
OS provides a set of well-defined control methods that ACPI table developers can reference in their
control methods. OEMs can support different revisions of chip sets with one BIOS by either including
control methods in the BIOS that test configurations and respond as needed or including a different set
of control methods for each chip set revision.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

32 Advanced Configuration and Power Interface Specification

Central Processing Unit (CPU) or Processor
The part of a platform that executes the instructions that do the work. An ACPI-compatible OS can
balance processor performance against power consumption and thermal states by manipulating the
processor performance controls. The ACPI specification defines a working state, labeled GO (S0), in
which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the sleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. The ACPI specification also defines processor
performance states, where the processor (while in C0) executes instructions, but with lower
performance and (potentially) lower power consumption and operating temperature. For more
information, see section 8, “Processor Configuration and Control.”

Definition Block
A definition block contains information about hardware implementation and configuration details in
the form of data and control methods, encoded in AML. An OEM can provide one or more definition
blocks in the ACPI Tables. One definition block must be provided: the Differentiated Definition Block,
which describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the
contents of the Differentiated Definition Block into the ACPI1 Namespace. Other definition blocks,
which the OS can dynamically insert and remove from the active ACPI Namespace, can contain
references to the Differentiated Definition Block. For more information, see section 5.2.11, “Definition
Blocks.”

Device
Hardware component outside the core chip set of a platform. Examples of devices are liquid crystal
display (LCD) panels, video adapters, Integrated Drive Electronics (IDE) CD-ROM and hard disk
controllers, COM ports, and so on. In the ACPI scheme of power management, buses are devices. For
more information, see section 3.3.2, “Device Power States.”

Device Context
The variable data held by the device; it is usually volatile. The device might forget this information
when entering or leaving certain states (for more information, see section 2.3, “Device Power State
Definitions.”), in which case the OS software is responsible for saving and restoring the information.
Device Context refers to small amounts of information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)
An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the base
system. The OS always inserts the DSDT information into the ACPI Namespace at system boot time
and never removes it.

Unified Extensible Firmware Interface (UEFI)
An interface between the OS and the platform firmware. The interface is in the form of data tables that
contain platform related information, and boot and run-time service calls that are available to the OS
and loader. Together, these provide a standard environment for booting an OS.

Embedded Controller
The general class of microcontrollers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform design,
as long as the microcontroller conforms to one of the models described in this section. The embedded
controller performs complex low-level functions through a simple interface to the host
microprocessor(s).

Embedded Controller Interface
A standard hardware and software communications interface between an OS driver and an embedded
controller. This allows any OS to provide a standard driver that can directly communicate with an
embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code).
This in turn enables the OEM to provide platform features that the OS and applications can use.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 33

Firmware ACPI Control Structure (FACS)
A structure in read/write memory that the BIOS uses for handshaking between the firmware and the
OS. The FACS is passed to an ACPI-compatible OS via the Fixed ACPI Description Table (FADT).
The FACS contains the system’s hardware signature at last boot, the firmware waking vector, and the
Global Lock.

Fixed ACPI Description Table (FADT)
A table that contains the ACPI Hardware Register Block implementation and configuration details that
the OS needs to directly manage the ACPI Hardware Register Blocks, as well as the physical address
of the DSDT, which contains other platform implementation and configuration details. An OEM must
provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removes it.

Fixed Features
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events
A set of events that occur at the ACPI interface when a paired set of status and event bits in the fixed
feature registers are set at the same time. When a fixed feature event occurs, a system control interrupt
(SCl is raised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver) acts as the event
handler.

Fixed Feature Registers
A set of hardware registers in fixed feature register space at specific address locations in system 1/0
address space. ACPI defines register blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers
The general-purpose event registers contain the event programming model for generic features. All
general-purpose events generate SCls.

Generic Feature
A generic feature of a platform is value-added hardware implemented through control methods and
general-purpose events.

Global System States
Global system states apply to the entire system, and are visible to the user. The various global system
states are labeled GO through G3 in the ACPI specification. For more information, see section 2.2,
“Global System State Definitions.”

Ignored Bits
Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return
zero). Software ignores ignored bits in ACPI hardware registers on reads and preserves ignored bits on
writes.

Intel Architecture-Personal Computer (1A-PC)
A general descriptive term for computers built with processors conforming to the architecture defined
by the Intel processor family based on the Intel Architecture instruction set and having an industry-
standard PC architecture.

1/0 APIC
An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to the
processor’s local APIC.

1/0 SAPIC
An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from
devices to the processor’s local APIC.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

34 Advanced Configuration and Power Interface Specification

Legacy
A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in today’s
systems are used to support power management in a system that uses a legacy OS that does not support
the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPI or OSPM power management support.

Legacy OS
An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the 1/0 APIC.

Local SAPIC
A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the 1/0
SAPIC.

Multiple APIC Description Table (MADT)
The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Object
The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in
the system definition tables. These objects can be data objects, package objects, control method
objects, and so on. Package objects refer to other objects. Objects also have type, size, and relative
name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM)
A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Package
An array of objects.

Power Button
A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working
state.

Power Management
Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power consumption.
Power management is required for some system functions, such as appliance (for example, answering
machine, furnace control) operations.

Power Resources
Resources (for example, power planes and clock sources) that a device requires to operate in a given
power state.

Power Sources
The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to a platform.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 35

Register Grouping
Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows the
bits within a register grouping to be split between two chips.

Reserved Bits
Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them
have no side effects. OSPM implementations must write zeros to all reserved bits in enable and status
registers and preserve bits in control registers.

Root System Description Pointer (RSDP)
An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)
A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Secondary System Description Table (SSDT)
SSDTs are a continuation of the DSDT. Multiple SSDTSs can be used as part of a platform description.
After the DSDT is loaded into the ACPI Namespace, each secondary description table listed in the
RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide the base
support in one table, while adding smaller system options in other tables.
Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button
A user push button that switches the system from the sleeping/soft off state to the working state, and
signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem
A battery subsystem that conforms to the following specifications: Smart Battery and either Smart
Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Smart Battery Table
An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the energy-
level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

System Management Bus (SMBus)
A two-wire interface based upon the 12C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface
A standard hardware and software communications interface between an OS bus driver and an SMBus
controller.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)
An advanced APIC commonly found on Intel Itanium™ Processor Family-based 64-bit systems.

System Context
The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)
A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an active, low,
shareable, level interrupt.

System Management Interrupt (SMI)
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will
not work). Hardware platforms that want to support both legacy operating systems and ACPI systems

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

36 Advanced Configuration and Power Interface Specification

must support a way of re-mapping the interrupt events between SMIs and SCIs when switching
between ACPI and legacy models.

Thermal States
Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space
around a particular temperature-sensing device. The transitions from one thermal state to another are
marked by trip points, which are implemented to generate an SCI when the temperature in a thermal
zone moves above or below the trip point temperature.

Extended Root System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERSs that are larger than 32-bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms

2.2 Global System State Definitions
Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:

Does application software run?

What is the latency from external events to application response?
What is the power consumption?

Is an OS reboot required to return to a working state?

Is it safe to disassemble the computer?

Can the state be entered and exited electronically?

ouprwdE

Following is a list of the system states:
G3 Mechanical Off

37

A computer state that is entered and left by a mechanical means (for example, turning off the system’s
power through the movement of a large red switch). Various government agencies and countries

require this operating mode. It is implied by the entry of this off state through a mechanical means that
no electrical current is running through the circuitry and that it can be worked on without damaging the

hardware or endangering service personnel. The OS must be restarted to return to the Working state.
No hardware context is retained. Except for the real-time clock, power consumption is zero.

G2/S5 Soft Off

A computer state where the computer consumes a minimal amount of power. No user mode or system

mode code is run. This state requires a large latency in order to return to the Working state. The
system’s context will not be preserved by the hardware. The system must be restarted to return to the
Working state. It is not safe to disassemble the machine in this state.

G1 Sleeping
A computer state where the computer consumes a small amount of power, user mode threads are not

being executed, and the system “appears” to be off (from an end user’s perspective, the display is off,

and so on). Latency for returning to the Working state varies on the wake environment selected prior

to

entry of this state (for example, whether the system should answer phone calls). Work can be resumed
without rebooting the OS because large elements of system context are saved by the hardware and the

rest by system software. It is not safe to disassemble the machine in this state.
GO0 Working

A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can

select, through some UI, various performance/power characteristics of the system to have the softwar
optimize for performance or battery life. The system responds to external events in real time. It is not
safe to disassemble the machine in this state.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

e

38 Advanced Configuration and Power Interface Specification

S4 Non-Volatile Sleep

A special global system state that allows system context to be saved and restored (relatively slowly)
when power is lost to the motherboard. If the system has been commanded to enter S4, the OS will
write all system context to a file on non-volatile storage media and leave appropriate context markers.
The machine will then enter the S4 state. When the system leaves the Soft Off or Mechanical Off state,
transitioning to Working (GO0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid non-volatile sleep data set is found, certain aspects of the configuration of the
machine have not changed, and the user has not manually aborted the restore. If all these conditions are
met, as part of the OS restarting, it will reload the system context and activate it. The net effect for the
user is what looks like a resume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and memory size. It
might be possible for the user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that

the OS or BIOS can save the system context takes too long from the user’s point of view. The
transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Safe to

Global Software Power OS restart | disassemble | Exit state
system state | runs Latency consumption | required computer electronically
GO Working | Yes 0 Large No No Yes
G1 Sleeping | No >0, varies with | Smaller No No Yes

sleep state
G2/S5 Soft No Long Very near 0 Yes No Yes
Off
G3 No Long RTC battery | Yes Yes No
Mechanical
Off

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This implies
that a platform designed to give the user the appearance of “instant-on,” similar to a home appliance device,
will use the GO and G1 states almost exclusively (the G3 state may be used for moving the machine or

repairing it).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 39

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:

e Power consumption. How much power the device uses.

e Device context. How much of the context of the device is retained by the hardware. The OS is
responsible for restoring any lost device context (this may be done by resetting the device).

o Device driver. What the device driver must do to restore the device to full on.

e Restore time. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference between the modes, only the lowest power mode will be used. The Device Class
Power Management Specifications, included in Appendix A of this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of each power state
for that device class. For a list of the available Device Class Power Management Specifications, see
“Appendix A: Device Class Specifications.”

D3 (Off)
Power has been fully removed from the device. The device context is lost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
are lost, devices in this state do not decode their address lines. Devices in this state have the longest
restore times. All classes of devices define this state.

D3hot
The meaning of the D3hot State is defined by each device class. Devices in the D3hot State are
required to be software enumerable. In general, D3hot is expected to save more power and optionally
preserve device context. If device context is lost when this state is entered, the OS software will
reinitialize the device when transitioning to DO. Devices in this state can have long restore times. All
classes of devices define this state.

NOTE: The D3hot state differs from the D3 state in two distinct parameters; the main power rail is
present and software can access a device in D3hot. For devices that support both D3hot and D3
exposed to OSPM via PR3, device software/drivers must always assume OSPM will target D3and
must assume device context will be lost.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
DO0. Buses in D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

DO (Fully-On)
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

40 Advanced Configuration and Power Interface Specification

Table 2-2 Summary of Device Power States

Device State | Power Consumption Device Context Retained | Driver Restoration

DO - Fully-On | As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization
and load

D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rules for the current Dx state the device is in. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

2.4 Sleeping State Definitions

Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section
7.3.4, “System _Sx States.” For a detailed definition of the transitions between each of the Sx states, see
section 15.1, “Sleeping States.”

S1 Sleeping State
The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping state
except that the CPU and system cache context is lost (the OS is responsible for maintaining the caches
and CPU context). Control starts from the processor’s reset vector after the wake event.

S3 Sleeping State
The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory
context and restores some CPU and L2 configuration context. Control starts from the processor’s reset
vector after the wake event.

S4 Sleeping State
The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Platform context is maintained.

S5 Soft Off State
The S5 state is similar to the S4 state except that the OS does not save any context. The system is in
the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the S4 state to allow for initial boot operations within the BIOS to
distinguish whether or not the boot is going to wake from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states within
the global working state, GO. The Cx states possess specific entry and exit semantics and are briefly defined
below. For a more detailed definition of each Cx state, see section 8.1, “Processor Power States.”

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Definition of Terms 41

CO0 Processor Power State
While the processor is in this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency. The hardware latency in this state must be low
enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no
other software-visible effects.

C2 Processor Power State
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for
this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting
the processor in a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State
The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. While in the C3
state, the processor’s caches maintain state but ignore any snoops. The operating software is
responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within the
active/executing states, CO for processors and DO for devices. The Px states are briefly defined below. For a
more detailed definition of each Px state from a processor perspective, see section 8.4.4, “Processor
Performance Control.” For a more detailed definition of each Px state from a device perspective see section
3.6, “Device and Processor Performance States,” and the device class specifications in Appendix A.

PO Performance State
While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.

P1 Performance State
In this performance power state, the performance capability of a device or processor is limited below
its maximum and consumes less than maximum power.

Pn Performance State
In this performance state, the performance capability of a device or processor is at its minimum level
and consumes minimal power while remaining in an active state. State n is a maximum number and is
processor or device dependent. Processors and devices may define support for an arbitrary number of
performance states not to exceed 16.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

42 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 43

3 ACPI Overview

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the
power management and motherboard device configuration functions of a computer. During OS
initialization, OSPM takes over these functions from legacy implementations such as the APM BIOS,
SMM-based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM is responsible for
handling motherboard device configuration events as well as for controlling the power, performance, and
thermal status of the system based on user preference, application requests and OS imposed Quality of
Service (QOS) / usability goals. ACPI provides low-level interfaces that allow OSPM to perform these
functions. The functional areas covered by the ACPI specification are:

e System power management. ACPI defines mechanisms for putting the computer as a whole in and
out of system sleeping states. It also provides a general mechanism for any device to wake the
computer.

o Device power management. ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

e Processor power management. While the OS is idle but not sleeping, it will use commands described
by ACPI to put processors in low-power states.

o Device and processor performance management. While the system is active, OSPM will transition
devices and processors into different performance states, defined by ACPI, to achieve a desirable
balance between performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).

e Configuration / Plug and Play. ACPI specifies information used to enumerate and configure
motherboard devices. This information is arranged hierarchically so when events such as docking and
undocking take place, the OS has precise, a priori knowledge of which devices are affected by the
event.

e System Events. ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the core logic
chip set.

e Battery management. Battery management policy moves from the APM BIOS to the ACPI OS. An
ACPI-compatible battery device needs either a Smart Battery subsystem interface, which is controlled
by the OS directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an OEM to
choose any type of the battery and any kind of communication interface supported by ACPI. The
battery must comply with the requirements of its interface, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by adjusting
the Low Battery or Battery Warning trip point. When there are multiple batteries present, the battery
subsystem is not required to perform any synthesis of a “composite battery” from the data of the
separate batteries. In cases where the battery subsystem does not synthesize a “composite battery”
from the separate battery’s data, the OS must provide that synthesis.

¢ Thermal management. Since the OS controls the power and performance states of devices and
processors, ACPI also addresses system thermal management. It provides a simple, scalable model that
allows OEMs to define thermal zones, thermal indicators, and methods for cooling thermal zones.

e Embedded Controller. ACPI defines a standard hardware and software communications interface
between an OS bus enumerator and an embedded controller. This allows any OS to provide a standard
bus enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. This in turn enables the OEM to provide platform features that the OS and
applications can use.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

44 Advanced Configuration and Power Interface Specification

e SMBus Controller. ACPI defines a standard hardware and software communications interface
between an OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus devices in the system. This in turn enables the OEM
to provide platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s power,
performance, and thermal status given the user’s preferences and while supporting OS imposed Quality of
Service (QOS) / usability goals. To achieve these goals, ACPI requires that once an ACPI compliant
platform is in ACPIl mode, the platform’s hardware, firmware, or other non-OS software must not
manipulate the platform’s configuration, power, performance, and thermal control interfaces independently
of OSPM. OSPM alone is responsible for coordinating the configuration, power management, performance
management, and thermal control policy of the system. Manipulation of these interfaces independently of
OSPM undermines the purpose of OSPM/ACPI and may adversely impact the system’s configuration,
power, performance, and thermal policy goals. There are two exceptions to this requirement. The first is in
the case of the possibility of damage to a system from an excessive thermal conditions where an ACPI
compatible OS is present and OSPM latency is insufficient to remedy an adverse thermal condition. In this
case, the platform may exercise a failsafe thermal control mechanism that reduces the performance of a
system component to avoid damage. If this occurs, the platform must notify OSPM of the performance
reduction if the reduction is of significant duration (in other words, if the duration of reduced performance
could adversely impact OSPM’s power or performance control policy - operating system vendors can
provide guidance in this area). The second exception is the case where the platform contains Active cooling
devices but does not contain Passive cooling temperature trip points or controls,. In this case, a hardware
based Active cooling mechanism may be implemented without impacting OSPM’s goals. Any platform that
requires both active and passive cooling must allow OSPM to manage the platform thermals via ACPI
defined active and passive cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences and
knowledge of how devices are being used by applications, the OS puts devices in and out of low-power
states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into a low- power state. The OS uses ACPI to
control power state transitions in hardware.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 45

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:
Power

Failure/
Power Off

BIOS
Routine

GO (S0) -
Working

Performance .
Throttling

CO0

G2 (S5) -

Soft Off

Figure 3-1 Global System Power States and Transitions
See section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual devices
can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not being used.
Any device the system turns off because it is not actively in use can be turned on with short latency. (What
“short” means depends on the device. An LCD display needs to come on in sub-second times, while it is
generally acceptable to wait a few seconds for a printer to wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into one
of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states
differ in what events can arouse the system to a Working state, and how long this takes. When the machine
must awaken to all possible events or do so very quickly, it can enter only the sub-states that achieve a
partial reduction of system power consumption. However, if the only event of interest is a user pushing on
a switch and a latency of minutes is allowed, the OS could save all system context into an NVS file and
transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero power and
retains system context for an arbitrary period of time (years or decades if needed).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

46 Advanced Configuration and Power Interface Specification

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Users typically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off or,
on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user wants
the machine to “come on” in less than 1 second with all context as it was when the user turned the machine
“off”), system alert functions (such as the system being used as an answering machine or fax machine), or
application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This is in some obvious place (for example,
beside the keyboard on a laptop). Unlike legacy on/off buttons, all it does is send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see section
11, “Thermal Management”) and the embedded controller interface (see section 12, “ACPI Embedded
Controller Interface Specification”).

3.2.2.2 Desktop PCs
Power-managed desktops will be of two types, though the first type will migrate to the second over time.

e Ordinary “Green PC.” Here, new appliance functions are not the issue. The machine is really only
used for productivity computations. At least initially, such machines can get by with very minimal
function. In particular, they need the normal ACPI timers and controls, but don’t need to support
elaborate sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as possible (to
allow for maximum compute speed with minimum power wasted on unused devices). Such PCs will
also need to support wake from the sleeping state by means of a timer, because this allows
administrators to force them to turn on just before people are to show up for work.

e Home PC. Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking
and lid events (and need not have any legacy power management). Note that there is also a thermal
management aspect to a home PC, as a home PC user wants the system to run as quietly as possible,
often in a thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 47

o Day Mode. In day mode, servers are power-managed much like a corporate ordinary green PC, staying
in the Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power management can
result in large savings. OSPM allows careful tuning of when to do this, thus making it workable.

e Night Mode. In night mode, servers look like home PCs. They sleep as deeply as they can and are still
able to wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a print job
at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and then goes back to
sleep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state is
described, and an example of ACPI-compatible device management using a modem is given.

3.3.1 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending commands
to a device. These standards define the operations used to manage power of devices on a particular 1/0
interconnect and the power states that devices can be put into. Defining these standards for each 1/0
interconnect creates a baseline level of power management support the OS can utilize. Independent
Hardware Vendors (IHVs) do not have to spend extra time writing software to manage power of their
hardware, because simply adhering to the standard gains them direct OS support. For OS vendors, the 1/0
interconnect standards allow the power management code to be centralized in the driver for each 1/0
interconnect. Finally, 1/O interconnect-driven power management allows the OS to track the states of all
devices on a given /O interconnect. When all the devices are in a given state (or example, D3 - off), the OS
can put the entire 1/O interconnect into the power supply mode appropriate for that state (for example, D3 -

off).

I/0 interconnect-level power management specifications are written for a number of buses including:
e PCI

PCI Express

CardBus

usB

IEEE 1394

3.3.2 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generally, these states are defined in terms of the following criteria:

e Power consumption. How much power the device uses.

e Device context How much of the context of the device is retained by the hardware.
e Device driver. What the device driver must do to restore the device to fully on.

e Restore latency. How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See section 2.3, “Device Power State Definitions,” for the detailed description of the general device
power states (D0-D3).

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

48 Advanced Configuration and Power Interface Specification

3.3.3 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support

some consistent set of power-related characteristics. For example, when the bus-specific mechanism to set

the device power state to a given level is invoked, the actions a device might take and the specific sorts of
behaviors the OS can assume while the device is in that state will vary from device type to device type. For

a fully integrated device power management system, these class-specific power characteristics must also be

standardized:

e Device Power State Characteristics. Each class of device has a standard definition of target power
consumption levels, state-change latencies, and context loss.

e Minimum Device Power Capabilities. Each class of device has a minimum standard set of power
capabilities.

e Device Functional Characteristics. Each class of device has a standard definition of what subset of
device functionality or features is available in each power state (for example, the net card can receive,
but cannot transmit; the sound card is fully functional except that the power amps are off, and so on).

o Device Wakeup Characteristics. Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state characteristics for
each class of device.

3.4 Controlling Device Power

ACPI interfaces provides control and information needed to perform device power management. ACPI
interfaces describe to OSPM the capabilities of all the devices it controls. It also gives the OS the control
methods used to set the power state or get the power status for each device. Finally, it has a general scheme
for devices to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. Power management of these devices is handled
through their own bus specification (in this case, PCI). All other devices on the main board are handled
through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported through their own
bus specification, the root of each bus in the system, and devices that have additional power management or
configuration options not covered by their own bus specification.

For more detailed information see section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management features that
the device supports. The Differentiated Definition Block given to the OS by the BIOS describes every
device handled by ACPI. This description contains the following information:

e Adescription of what power resources (power planes and clock sources) the device needs in each
power state that the device supports. For example, a device might need a high power bus and a clock in
the DO state but only a low-power bus and no clock in the D2 state.

e Adescription of what power resources a device needs in order to wake the machine (or none to
indicate that the device does not support wake). The OS can use this information to infer what device
and system power states from which the device can support wake.

e The optional control method the OS can use to set the power state of the device and to get and set
resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States

OSPM uses the Set Power State operation to put a device into one of the four power states.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 49

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state based
on the current device requirements on that bus. For example, if all devices on a bus are in the D3 state, the
OS will send a command to the bus control chip set to remove power from the bus (thus putting the bus in
the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus in that state if all
devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be able to issue a Set
Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device before
it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in section 7, “Power and Performance Management.”).

When a device is to be set in a particular power state using the ACPI interface, the OS first decides which
power resources will be used and which can be turned off. The OS tracks all the devices on a given power
resource. When all the devices on a resource have been turned off, the OS turns off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needs to
be turned on, the OS first turns on the power resource using a control method and then signals the device to
turn on. The time that the OS must wait for the power resource to stabilize after turning it on or off is
described in the description table. The OS uses the time base provided by the Power Management Timer to
measure these time intervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the
device in that power state. Notice that this might not mean that power is removed from the device. If other
active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS via the SCI interrupt. An SCI interrupt status bit is set to
indicate the event to the OS. The OS runs the control method associated with the event. This control
method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining capacity),
the OS uses control methods from the battery’s description table to read this information. To read status
information for Smart Batteries, the OS can use a standard Smart Battery driver that directly interfaces to
Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer

The wake operation enables devices to wake the computer from a sleeping power state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the machine, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake
the machine based on application requests, and then enables wake on those devices in a device and bus
specific manner.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

50 Advanced Configuration and Power Interface Specification

The OS enables the wake feature on devices by setting that device’s SCI Enable bit. The location of this bit
is listed in the device’s entry in the description table. Only devices that have their wake feature enabled can
wake the machine. The OS keeps track of the power states that the wake devices support, and keeps the
machine in a power state in which the wake can still wake the machine® (based on capabilities reported in
the description table).

When the computer is in the Sleeping state and a wake device decides to wake the machineg, it signals to the
ACPI chip set. The SCI status bit corresponding to the device waking the machine is set, and the ACPI chip
set resumes the machine. After the OS is running again, it clears the bit and handles the event that caused
the wake. The control method for this event then uses the Notify command to tell the OS which device
caused the wake.

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from certain
states (such as the S4 state), it may start out in non-ACPI mode. In this case, the SCI status bit may be
cleared when ACPI mode is re-entered. However the platform must still attempt to record the wake source
for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device can
also be put into a low power state during the SO system state, and that this device may generate a wake
signal in the SO state as the following example illustrates.

! Some OS policies may require the OS to put the machine into a global system state for which the device
can no longer wake the system. Such as when a system has very low battery power.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 51

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem.
(This example is greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

DO Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer

D1 Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook

D2 Same as D3

D3 Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook
The power policy for the modem is defined as follows:
D3 [DO COM port opened
DO,D1 11 D3 COM port closed
DO [D1 Modem put in answer mode
D111 DO Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

52 Advanced Configuration and Power Interface Specification

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware
as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is not
intended to describe how OEMs should build hardware.

PWR1 PWR2
2 g8 28
PWRLEN ———
PWR2_EN | ﬁ
MDM_D3
MDM D1
COM_D3 ¢ ! v
110
ACPI core
chip set Vo COM port /o Modem ¢ Controll Phone Phone
(UART) controller interface line
— RI
N |
WAKE |«

Figure 3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s
entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports D0, D1, and D3:

DO requires PWR1 and PWR2 as power resources
D1 requires PWRL1 as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine from DO,
D1, and D3)

Control methods for setting power state and resources

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 53

3.4.5.2 Setting the Modem Power State

While the OS is running (GO state), it switches the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state. Then if
the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In
this case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use
of the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _ OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop asserting the

PWR2 _EN line. Then, OSPM runs a control method (_PS1) provided in the modem’s entry to put the
device in the D1 state. This control method asserts the MDM_D1 signal that tells the modem controller to
go into a low-power mode.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM checks to see which power resources are no longer
needed. Because the LPT port is still active, PWRL1 is in use. OSPM does not turn off the PWRL1 resource.
It continues the state transition process by running the modem’s control method to switch the device to the
D3 power state. The control method causes the MDM_D3 line to be asserted. The modem controller now
turns off all its major functions so that it draws little power, if any, from the PWR1 line. Because the COM
port is closed, the same sequence of events will take place to put it in the D3 state. Notice that these
registers might not be in the device itself. For example, the control method could read the register that
controls MDM_D3.

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power state of
the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control method (_PSC)
supplied in the modem’s entry in the Differentiated Definition Block. This control method reads from the
necessary registers to determine the modem’s power state.

3.4.5.4 Waking the Computer

As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the computer in a sleep state, the OS enables wake on any devices that applications have
requested to be able to wake the machine. Then, it chooses the lowest sleeping state that can still provide
the power resources necessary to allow all enabled wake devices to wake the machine. Next, the OS puts
each of those devices in the appropriate power state, and puts all other devices in the D3 state. In this case,
the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS saves a
resume vector and puts the machine into a sleep state through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core chip set to generate a wake
event. The chip set then wakes the system and the hardware will eventually passes control back to the OS
(the wake mechanism differs depending on the sleeping state). After the OS is running, it puts the device in
the DO state and begins handling interrupts from the modem to process the event.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

54 Advanced Configuration and Power Interface Specification

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when an
interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, CO for processors and DO for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest impact
when the states invoke different device and processor efficiency levels as opposed to a linear scaling of
performance and energy consumption. Since performance state transitions occur in the active/executing
device states, care must be taken to ensure that performance state transitions do not adversely impact the
system.

Examples of device performance states include:

e A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.

e An LCD panel that supports multiple brightness levels that correspond to levels of power consumption.

e A graphics component that scales performance between 2D and 3D drawing modes that corresponds to
levels of power consumption.

e Anaudio subsystem that provides multiple levels of maximum volume that correspond to levels of
maximum power consumption.

e A Direct-RDRAM™ controller that provides multiple levels of memory throughput performance,
corresponding to multiple levels of power consumption, by adjusting the maximum bandwidth
throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM to
configure the required resources of motherboard devices along with their dynamic insertion and removal.
ACPI Definition Blocks, including the Differentiated System Description Table (DSDT) and Secondary
System Description Tables (SSDTSs), describe motherboard devices in a hierarchical format called the
ACPI namespace. The OS enumerates motherboard devices simply by reading through the ACPI
Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report the
hardware resources that the device could occupy, an object that reports the resources that are currently used
by the device, and objects for configuring those resources. The information is used by the Plug and Play OS
(OSPM) to configure the devices.

ACPI is used primarily to enumerate and configure motherboard devices that do not have other hardware
standards for enumeration and configuration. For example, PCI devices on the motherboard need not be
enumerated by ACPI; Plug and Play information for these devices need not be included in the APCI
Namespace. However, power management information and insertion/removal control for these devices can
still appear in the namespace if the devices’ power management and/or insertion/removal is to be controlled
by OSPM via ACPI-defined interfaces.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI| Overview 55

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes
boot devices described in the ACPI system description tables as well as devices that are controlled through
other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OS finds it in the DSDT. This table will have control methods that give the OS the following
information:

e The device can use IRQ 3, 1/0 3F8-3FF or IRQ 4, 1/0 2E8-2EF

e The device is currently using IRQ 3, 1/0 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the device
for those resources by running a control method supplied in the modem’s section of the Differentiated
Definition Block. This control method will write to any I/O ports or memory addresses necessary to
configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA\) architecture contain collections of hardware
resources including processors, memory, and 1/O buses, that comprise what is commonly known as a
“NUMA node”. Processor accesses to memory or I/O resources within the local NUMA node is generally
faster than processor accesses to memory or 1/O resources outside of the local NUMA node. ACPI defines
interfaces that allow the platform to convey NUMA node topology information to OSPM both statically at
boot time and dynamically at run time as resources are added or removed from the system.

3.8 System Events

ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives this interrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one bit each: the bit corresponding to the event pin.

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the
status bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three status
bits (and three enable bits). Yet another design might have every individual event wired to its own pin and
status bit. This design, at the opposite extreme from the single pin design, allows very complex hardware,
yet very simple control methods. Countless variations in wiring up events are possible. However, note that
care must be taken to ensure that if events share a signal that the event that generated the signal can be
determined in the corresponding event handling control method allowing the proper device notification to
be sent.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

56 Advanced Configuration and Power Interface Specification

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem is
not required to perform any synthesis of a “composite battery” from the data of the separate batteries. In
cases where the battery subsystem does not synthesize a “composite battery” from the separate battery's
data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method
Battery interface.

e Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see section 12.9, “SMBus Host
Controller Interface via Embedded Controller.” For additional information about the Smart Battery
subsystem interface, see section 10.1, “Smart Battery Subsystems.”

e Control Method Battery is completely accessed by AML code control methods, allowing the OEM to
choose any type of battery and any kind of communication interface supported by ACPI. For more
information about the Control Method Battery Interface, see section 10.2, “Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’s condition. All battery system
types must provide notification to the OS when there is a change such as inserting or removing a battery, or
when a battery starts or stops discharging. Smart Batteries and some Control Method Batteries are also able
to give notifications based on changes in capacity. Smart batteries provide extra information such as
estimated run-time, information about how much power the battery is able to provide, and what the run-
time would be at a predetermined rate of consumption.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 57

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining capacity.
Remaining capacity decreases during usage, and it also changes depending on the environment. Therefore,
the OS must use latest full-charged capacity to calculate the battery percentage. In addition the battery
system must report warning and low battery levels at which the user must be notified and the system
transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mMA/mAh] or power and energy [mMW/mWh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

< Designed capacity
e Last full charged capacity
""" 41— Presentremaining capacity
| OEM designed initial capacity for warning
= _ o e OEM designed initial capacity for low

Figure 3-3 Reporting Battery Capacity

3.9.3 Battery Gas Gauge

At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

Battery Remaining Capacity [mAh/mWh
Remaining Battery Percentage[%)] = y g Capacity [] * 100

Last Full Charged Capacity [mAh/mWh]

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mMA/mW]

Remaining Battery Life [h]=

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed by
the system to take certain actions. The critical battery level or flag is used to indicate when the batteries in
the system are completely drained. OSPM can determine independent warning and low battery capacity
values based on the OEM-designed levels, but cannot set these values lower than the OEM-designed
values, as shown in the figure below

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

58 Advanced Configuration and Power Interface Specification

Full — :
. Last full charged capacity

OSPM-selected low battery warning capacity

... Warning

OEM-designed initial capacity for warning (minimum)

OSPM-selected low battery

$4480a

OEM-designed initial capacity for low (minimum)

Critical | OEM-defined Battery Critical flag

Figure 3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well as a flag to report when that battery has reached or is below its critical
energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one particular
machine type, so the OEM-designed warning, low, and critical levels are reported separately in a Smart
Battery Table described in section 5.2.13.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 59

The table below describes how these values should be set by the OEM and interpreted by the OS.
Table 3-1 Low Battery Levels

Level Description

Warning | When the total available energy (mWh) or capacity (mAh) in the batteries falls below this
level, the OS will notify the user through the Ul. This value should allow for a few minutes
of run-time before the “Low” level is encountered so the user has time to wrap up any
important work, change the battery, or find a power outlet to plug the system in.

Low This value is an estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity is less than this value, it will transition the system to a user
defined system state (S1-S5). In most situations this should be S4 so that system state is not
lost if the battery eventually becomes completely empty. The design of the OS should
consider that users of a multiple battery system may remove one or more of the batteries in
an attempt replace or charge it. This might result in the remaining capacity falling below
the “Low” level not leaving sufficient battery capacity for the OS to safely transition the
system into the sleeping state. Therefore, if the batteries are discharging simultaneously,
the action might need to be initiated at the point when both batteries reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the OS
must attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of
0, but an OEM may choose to put a larger value in the Smart Battery Table to provide an
extra margin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per
battery. If any battery in the system is in a critically low state and is still providing power
to the system (in other words, the battery is discharging), the system is considered to be in
a critical energy state. The _BST control method is required to return the Critical flag on a
discharging battery only when all batteries have reached a critical state; the ACPI BIOS is
otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteries in a system are critical is not a situation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this does
occur, the OS should take steps to minimize any damage to system integrity. The emergency shutdown
procedure should be designed to minimize bad effects based on the assumption that power may be lost at
any time. For example, if a hard disk is spun down, the OS should not try to spin it up to write any data,
since spinning up the disk and attempting to write data could potentially corrupt files if the write were not
completed. Even if a disk is spun up, the decision to attempt to save even system settings data before
shutting down would have to be evaluated since reverting to previous settings might be less harmful than
having the potential to corrupt the settings if power was lost halfway through the write operation.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

60 Advanced Configuration and Power Interface Specification

3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the user.
However, it is possible with many battery systems to provide more useable runtime on an old battery if a
calibration or conditioning cycle is run occasionally. The user has typically been able to perform a
calibration cycle either by going into the BIOS setup menu, or by running a custom driver and calibration
application provided by the OEM. The calibration process typically takes several hours, and the laptop
must be plugged in during this time. Ideally the application that controls this should make this as good of a
user experience as possible, for example allowing the user to schedule the system to wake up and perform
the calibration at some time when the system will not be in use. Since the calibration user experience does
not need to be different from system to system it makes sense for this service to be provided by the OSPM.
.In this way OSPM can provide a common experience for end users and eliminate the need for OEMs to
develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in section 10.2.2.5 and 10.2.2.6. First, there
is a means to detect when it would be beneficial to calibrate the battery. Second there is a means to perform
that calibration cycle. Both of those functions may be implemented by dedicated hardware such as a battery
controller chip, by firmware in the embedded controller, by the BIOS, or by OSPM. From here on any
function implemented through AML, whether or not the AML code relies on hardware, will be referred to
as “AML controlled” since the interface is the same whether the AML passes control to the hardware or
not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be reported
through the _BMD method. Alternately, the BMD method may simply report the number of cycles before
calibration should be performed and let the OS attempt to count the cycles. A counter implemented by the
hardware or the BIOS will generally be more accurate since the batteries can be used without the OS
running, but in some cases, a system designer may opt to simplify the hardware or BIOS implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle can
be AML controlled or OSPM controlled. OSPM can only implement a very simple algorithm since it
doesn’t have knowledge of the specifics of the battery system. It will simply discharge the battery until it
quits discharging, then charge it until it quits charging. In the case where the AC adapter cannot be
controlled through the _BMC, it will prompt the user to unplug the AC adapter and reattach it after the
system powers off. If the calibration cycle is controlled by AML, the OS will initiate the calibration cycle
by calling _BMC. That method will either give control to the hardware, or will control the calibration cycle
itself. If the control of the calibration cycle is implemented entirely in AML code, the BIOS may avoid
continuously running AML code by having the initial call to _BMC start the cycle, set some state flags, and
then exit. Control of later parts of the cycle can be accomplished by putting code that checks these state
flags in the battery event handler (_Qxx, _Lxx, or _ExXx).

Details of the control methods for this interface are defined in section 10.2.

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 61

3.10 Thermal Management

ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can a