
VOLUME 1: Platform Initialization
Specification

Pre-EFI Initialization
Core Interface

Version 1.3 Errata A

4/24/2015

Platform Initialization Specification VOLUME 1 PEI Core Interface

ii 4/24/2015 Version 1.3 Errata A

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR
SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY
WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH
PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2006-2015 Unified EFI, Inc. All Rights Reserved.

Version 1.3 Errata A 4/24/2015 iii

Revision History

Revision Revision History Date

1.0 Initial public release. 8/21/06

1.0 errata Mantis tickets:
• M47 dxe_dispatcher_load_image_behavior

• M48 Make spec more consistent GUID & filename.

• M155 FV_FILE and FV_ONLY: Change subtype number back to
th:e original one.

• M171Remove 10 us lower bound restriction for the TickPeriod in
the Metronome

• M178 Remove references to tail in file header and made file
checksum for the data

• M183 Vol 1-Vol 5: Make spec more consistent.

• M192 Change PAD files to have an undefined GUID file name and
update all FV

10/29/07

1.1 Mantis tickets:
• M39 (Updates PCI Hostbridge & PCI Platform)

• M41 (Duplicate 167)

• M42 Add the definition of theDXE CIS Capsule AP & Variable AP

• M43 (SMbios)

• M46 (SMM error codes)

• M163 (Add Volume 4--SMM

• M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter
12)

• M179 (S3 boot script)

• M180 (PMI ECR)

• M195 (Remove PMI references from SMM CIS)

• M196 (disposable-section type to the FFS)

11/05/07

1.1
correction

Restore (missing) MP protocol 03/12/08

1.1 Errata Revises typographical errors and minor omissions--see Errata for
details

04/25/08

Platform Initialization Specification VOLUME 1 PEI Core Interface

iv 4/24/2015 Version 1.3 Errata A

1.1 Errata Mantis tickets
• 204 Stack HOB update 1.1errata

• 225 Correct references from
EFI_FIRMWARE_VOLUME_PROTOCOL to
EFI_FIRMWARE_VOLUME2_PROTOCOL

• 226 Remove references to Framework

• 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

• 228 insert"typedef" missing from some typedefs in Volume 3

• 243 Define interface "EFI_PEI_FV_PPI" declaration in PI1.0
FfsFindNextVolume()

• 285 Time quality of service in S3 boot script poll operation

• 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 -
return error language

• 290 PI Errata

• 305 Remove Datahub reference

• 336 SMM Control Protocol update

• 345 PI Errata

• 353 PI Errata

• 360 S3RestoreConfig description is missing

• 363 PI Volume 1 Errata

• 367 PCI Hot Plug Init errata

• 369 Volume 4 Errata

• 380 SMM Development errata

• 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

•

01/13/09

1.1 Errata • 247 Clarification regarding use of dependency expression section
types with firmware volume image files

• 399 SMBIOS Protocol Errata

• 405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

• 422 TEMPORARY_RAM_SUPPORT_PPI is misnamed

• 428 Volume 5 PCI issue

• 430 Clarify behavior w/ the FV extended header

02/23/09

1.2 • 271 Support For Large Firmware Files And Firmware File
Sections

• 284 CPU I/O protocol update

• 286 Legacy Region protocol

• 289 Recovery API

• 292 PCD Specification Update

• 354 ACPI Manipulation Protocol

• 355 EFI_SIO_PROTOCOL Errata

• 365 UEFI Capsule HOB

• 382 IDE Controller Specification

• 385 Report Status Code Router Specification

• 386 Status Code Specification

01/19/09

Version 1.3 Errata A 4/24/2015 v

1.2 • 401 SMM Volume 4 issue

• 402 SMM PI spec issue w.r.t. CRC

• 407 Add LMA Pseudo-Register to SMM Save State Protocol

• 409 PCD_PROTOCOL Errata

• 411 Draft Errata, Volume 5, Section 8

• 412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

• 414 Draft Chapter 7 Comments

• 415 Comment: Report Status Code Routers

• 416 EFI_CPU_IO_PROTOCOL2 Name should be
EFI_CPU_IO2_PROTOCOL

• 417 Volume 5, Chapter 4 & 5 order is reversed

• 423 Comment: Section 15.2.1 Formatting Issues vol5

• 424 Comments: Volume 5, Appendix A.1 formatting issues

• 425 Comment: Formatting in Section 6.1 of Volume 3

• 426 Comments: Volume 2

• 427 Comment: Volume 3, Section 6

• 433 Editorial issues in PI 1.2 draft

02/23/09

1.2 • 407 Comment: additional change to LMA Pseudo-Register

• 441 Comment: PI Volume 3, Incorrect Struct Declaration (esp
PCD_PPI)

• 455 Comment: Errata - Clarification of InstallPeiMemory()

• 465 Comment: Errata on PMI interface

• 466 Comment: Vol 4 EXTENDED_SAL_PROC definition

• 467 Comments: PI1.1 errata

• 480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

Platform Initialization Specification VOLUME 1 PEI Core Interface

vi 4/24/2015 Version 1.3 Errata A

1.2 errata • 345 PI1.0 errata

• 468 Issues on proposed PI1.2 ACPI System Description Table
Protocol

• 492 Add Resource HOB Protectability Attributes

• 494 Vol. 2 Appendix A Clean up

• 495 Vol 1: update HOB reference

• 380 PI1.1 errata from SMM development

• 501 Clean Up SetMemoryAttributes() language Per Mantis 489
(from USWG)

• 502 Disk info

• 503 typo

• 504 remove support for fixed address resources

• 509 PCI errata – execution phase

• 510 PCI errata - platform policy

• 511 PIC TE Image clarification/errata

• 520 PI Errata

• 521Add help text for EFI_PCD_PROTOCOL for
GetNextTokenSpace

• 525 Itanium ESAL, MCA/INIT/PMI errata

• 526 PI SMM errata

• 529 PCD issues in Volume 3 of the PI1.2 Specification

• 541 Volume 5 Typo

• 543 Clarification around usage of FV Extended header

• 550 Naming conflicts w/ PI SMM

12/16/09

Version 1.3 Errata A 4/24/2015 vii

1.2 errata A • 363 PI volume 1 errata

• 365 UEFI Capsule HOB

• 381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

• 482 One other naming inconsistency in the PCD PPI declaration

• 483 PCD Protocol / PPI function name synchronization.....

• 496 Boot mode description

• 497 Status Code additions

• 548 Boot firmware volume clarification

• 551 Name conflicts w/ Legacy region

• 552 MP services

• 553 Update text to PEI

• 554 update return code from PEI AllocatePages

• 555 Inconsistency in the S3 protocol

• 561 Minor update to PCD->SetPointer

• 565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

• 569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl
has EFI_STATUS w/o return code & errror on stage 3 recovery
description

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

• 591ACPI Protocol Name collision

• 592 More SMM name conflicts

• 593 A couple of ISA I/O clarifications

• 594 ATA/ATAPI clarification

• 595 SMM driver entry point clarification

• 596 Clarify ESAL return codes

• 602 SEC->PEI hand-off update

• 604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2 errata B • 628 ACPI SDT protocol errata

• 629 Typos in PCD GetSize()
• 630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service

clarification
• 631 System Management System Table (SMST) MP-related field

clarification

5/27/10

Platform Initialization Specification VOLUME 1 PEI Core Interface

viii 4/24/2015 Version 1.3 Errata A

1.2 Errata C • 550 Naming conflicts w/ PI SMM

• 571 duplicate definition of EFI_AP_PROCEDURE in DXE MP
(volume2) and SMM (volume 4)

• 654 UEFI PI specific handle for SMBIOS is now available

• 688 Status Code errata

• 690 Clarify agent in IDE Controller chapter

• 691 SMM a priori file and SOR support

• 692 Clarify the SMM SW Register API

• 694 PEI Temp RAM PPI ambiguity

• 703 End of PEI phase PPI publication for the S3 boot mode case

• 706 GetPeiServicesTablePointer () changes for the ARM
architecture

• 714 PI Service Table Versions

• 717 PI Extended File Size Errata

• 718 PI Extended Header cleanup / Errata

• 730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState()
return code

• ERROR: listed by mistake:737

• 738 Errata to Volume 2 of the PI1.2 specification

• 739 Errata for PI SMM Volume 4 Control protocol

• 742 Errata for SMBUS chapter in Volume 5

• 743 Errata - PCD_PPI declaration

• 745 Errata – PI Firmware Section declarations

• 746 Errata - PI status code

• 747 Errata - Text for deprecated HOB

• 752 Binary Prefix change

• ERROR: listed by mistake: 753

• 764 PI Volume 4 SMM naming errata

• 775 errata/typo in
EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT, Volume 3

• 781 S3 Save State Protocol Errata

• 782 Format Insert(), Compare() and Label() as for Write()

• 783 TemporaryRamMigration Errata

• 784 Typos in status code definitions

• 787 S3 Save State Protocol Errata 2

• 810 Set Memory Attributes return code clarification

• 811 SMBIOS API Clarification

• 814 PI SMBIOS Errata

• 821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_PROTECTABLE #defines

• 823 Clarify max length of SMBIOS Strings in SMBIOS Protocol

• 824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata

• 837 ARM Vector table can not support arbitrary 32-bit address

• 838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

• 840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

• 844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

Version 1.3 Errata A 4/24/2015 ix

1.2.1 • 527 PI Volume 2 DXE Security Architecture Protocol (SAP)
clarification

• 562 Add SetMemoryCapabilities to GCD interface

• 719 End of DXE event

• 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

• 737 Remove SMM Communication ACPI Table definition .

• 753 SIO PEI and UEFI-Driver Model Architecture

• 769 Signed PI sections

• 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

• 818 New SAP2 return code

• 822 Method to disable Temporary RAM when Temp RAM
Migration is not required

• 833 Method to Reserve Interrupt and Exception Vectors

• 839 Add support for weakly aligned FVs

• 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol

• 894 SAP2 Update

• 895 Status Code Data Structures Errata

• 902 Errata on signed firmware volume/file

• 903 SmiManage Update

• 906 Volume 3 errata - Freeform type

• 916 Service table revisions

05/02/12

1.2.1 Errata
A

• 922 Add a "Boot with Manufacturing" boot mode setting

• 925 Errata on signed FV/Files

• 931 DXE Volume 2 - Clarify memory map construction from the
GCD

• 936 Clarify memory usage in PEI on S3

• 937 SMM report protocol notify issue errata

• 951 Root Handler Processing by SmiManage

• 958 Omissions in PI1.2.1 integration for M816 and M894

• 969Vol 1 errata: TE Header parameters

10/26/12

1.3 • 945 Integrated Circuit (I2C) Bus Protocol

• 998 PI Status Code additions

• 999 PCI enumeration complete GUID

• 1005 NVMe Disk Info guid

• 1006 Security Ppi Fixes

• 1025 PI table revisions

3/29/13

Platform Initialization Specification VOLUME 1 PEI Core Interface

x 4/24/2015 Version 1.3 Errata A

Specification Volumes
The Platform Initialization Specification is divided into volumes to enable logical organization, future growth, and
printing convenience. The Platform Initialization Specification consists of the following volumes:

VOLUME 1: Pre-EFI Initialization Core Interface

VOLUME 2: Driver Execution Environment Core Interface

VOLUME 3: Shared Architectural Elements

VOLUME 4: System Management Mode

VOLUME 5: Standards

Each volume should be viewed in the context of all other volumes, and readers are strongly encouraged to consult the
entire specification when researching areas of interest. Additionally, a single-file version of the Platform Initialization
Specification is available to aid search functions through the entire specification.

1.3 Errata • 1041 typo in HOB Overview

• 1067 PI1.3 Errata for SetBootMode

• 1068 Updates to PEI Service table/M1006

• 1069 SIO Errata - pnp end node definition

• 1070 Typo in SIO chapter

• 1072 Errata – SMM register protocol notify clarification/errata

• 1093 Extended File Size Errata

• 1095 typos/errata

• 1097 PI SMM GPI Errata

• 1098 Errata on I2C IO status code

• 1099 I2C Protocol stop behavior errata

• 1104 ACPI System Description Table Protocol Errata

• 1105 ACPI errata - supported table revision

• 1177 PI errata - make CPU IO optional

• 1178 errata - allow PEI to report an additional memory type

• 1283 Errata - clarify sequencing of events

• 1331 Remove left-over Boot Firmware Volume references in the
SEC Platform Information PPI

2/19/15

Version 1.3 Errata A 4/24/2015 xi

Platform Initialization Specification VOLUME 1 PEI Core Interface

xii 4/24/2015 Version 1.3 Errata A

Contents

1
Introduction... 1
1.1 Overview ... 1
1.2 Organization of the PEI CIS.. 1
1.3 Conventions Used in this Document... 2

1.3.1 Data Structure Descriptions .. 2
1.3.2 Procedure Descriptions... 2
1.3.3 Instruction Descriptions... 3
1.3.4 PPI Descriptions.. 3
1.3.5 Pseudo-Code Conventions ... 4
1.3.6 Typographic Conventions ... 4

1.4 Requirements.. 5
1.5 Conventions used in this document .. 6

1.5.1 Number formats .. 6
1.5.2 Binary prefixes .. 6

2
Overview.. 9
2.1 Introduction ... 9
2.2 Design Goals .. 9
2.3 Pre-EFI Initialization (PEI) Phase ... 10
2.4 PEI Services ... 11
2.5 PEI Foundation ... 12
2.6 PEI Dispatcher .. 12
2.7 Pre-EFI Initialization Modules (PEIMs) ... 13
2.8 PEIM-to-PEIM Interfaces (PPIs) ... 13
2.9 Firmware Volumes .. 14

3
PEI Services Table.. 15
3.1 Introduction ... 15
3.2 PEI Services Table ... 15

3.2.1 EFI_PEI_SERVICES... 15

4
Services - PEI.. 21
4.1 Introduction ... 21
4.2 PPI Services ... 21

InstallPpi() ... 22
ReinstallPpi() ... 23
LocatePpi() .. 24
NotifyPpi().. 26

4.3 Boot Mode Services.. 26
GetBootMode().. 27

Version 1.3 Errata A 4/24/2015 xiii

SetBootMode() .. 29
4.4 HOB Services ... 29

GetHobList() .. 30
CreateHob()... 31

4.5 Firmware Volume Services ... 32
FfsFindNextVolume() .. 33
FfsFindNextFile()... 34
FfsFindSectionData() .. 36
FfsFindFileByName() .. 38
FfsGetFileInfo() ... 39
FfsGetVolumeInfo() ... 41
RegisterForShadow() .. 43

4.6 PEI Memory Services ... 44
InstallPeiMemory() .. 44
AllocatePages() ... 46
AllocatePool() .. 48
CopyMem().. 49
SetMem()... 50

4.7 Status Code Service ... 51
ReportStatusCode() .. 52

4.8 Reset Services.. 56
ResetSystem()... 56

4.9 I/O and PCI Services .. 57

5
PEI Foundation ... 59
5.1 Introduction ... 59

5.1.1 Prerequisites ... 59
5.1.2 Processor Execution Mode ... 59

5.2 PEI Foundation Entry Point... 61
5.2.1 PEI Foundation Entry Point... 61

5.3 PEI Calling Convention Processor Binding... 64
5.4 PEI Services Table Retrieval .. 64

5.4.1 X86.. 64
5.4.2 x64 .. 64
5.4.3 Itanium Processor Family – Register Mechanism... 65
5.4.4 ARM Processor Family – Register Mechanism... 66

5.5 PEI Dispatcher Introduction .. 66
5.6 Ordering .. 67

5.6.1 Requirements.. 67
5.6.2 Requirement Representation and Notation... 67
5.6.3 PEI a priori File Overview.. 67

PEI_APRIORI_FILE_NAME_GUID... 69
5.6.4 PEIM Dependency Expressions.. 70
5.6.5 Types of Dependencies .. 70

5.7 Dependency Expressions ... 70
5.7.1 Introduction ... 70

Platform Initialization Specification VOLUME 1 PEI Core Interface

xiv 4/24/2015 Version 1.3 Errata A

PUSH .. 72
AND... 73
OR... 74
NOT... 75
TRUE... 76
FALSE... 77
END... 78

5.7.2 Dependency Expression with No Dependencies .. 79
5.7.3 Empty Dependency Expressions .. 79
5.7.4 Dependency Expression Reverse Polish Notation (RPN)................................... 79

5.8 Dispatch Algorithm.. 79
5.8.1 Overview ... 79
5.8.2 Requirements.. 80
5.8.3 Example Dispatch Algorithm ... 82
5.8.4 Dispatching When Memory Exists .. 83
5.8.5 PEIM Dispatching.. 83
5.8.6 PEIM Authentication.. 84

6
Architectural PPIs... 85
6.1 Introduction ... 85
6.2 Required Architectural PPIs.. 85

6.2.1 Master Boot Mode PPI (Required) .. 85
EFI_PEI_MASTER_BOOT_MODE_PPI (Required) ... 85

6.2.2 DXE IPL PPI (Required).. 86
EFI_DXE_IPL_PPI (Required) .. 86
EFI_DXE_IPL_PPI.Entry() .. 87

6.2.3 Memory Discovered PPI (Required) ... 89
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)..................... 89

6.3 Optional Architectural PPIs ... 90
6.3.1 Boot in Recovery Mode PPI (Optional) ... 90

EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)................................. 90
6.3.2 End of PEI Phase PPI (Optional) ... 91

EFI_PEI_END_OF_PEI_PHASE_PPI (Optional).. 91
6.3.3 PEI Reset PPI ... 92

EFI_PEI_RESET_PPI (Optional) .. 92
6.3.4 Status Code PPI (Optional)... 93

EFI_PEI_PROGRESS_CODE_PPI (Optional).. 93
6.3.5 Security PPI (Optional).. 94

EFI_PEI_SECURITY2_PPI (Optional) .. 94
EFI_PEI_SECURITY2_PPI.AuthenticationState() .. 95

6.3.6 Temporary RAM Support PPI (Optional)... 96
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional) 96
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI.TemporaryRamMigration()...... 98

6.3.7 Temporary RAM Done PPI (Optional)... 99
EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional) 99
EFI_PEI_TEMPORARY_RAM_DONE_PPI.TemporaryRamDone () 101

Version 1.3 Errata A 4/24/2015 xv

7
PEIMs... 103
7.1 Introduction ... 103
7.2 PEIM Structure.. 103

7.2.1 PEIM Structure Overview.. 103
7.2.2 Relocation Information .. 104
7.2.3 Authentication Information .. 105

7.3 PEIM Invocation Entry Point ... 106
7.3.1 EFI_PEIM_ENTRY_POINT2... 106

7.4 PEIM Descriptors .. 107
7.4.1 PEIM Descriptors Overview .. 107

EFI_PEI_DESCRIPTOR ... 108
EFI_PEI_NOTIFY_DESCRIPTOR .. 109
EFI_PEI_PPI_DESCRIPTOR.. 111

7.5 PEIM-to-PEIM Communication ... 112
7.5.1 Overview ... 112
7.5.2 Dynamic PPI Discovery... 113

8
Additional PPIs ... 115
8.1 Introduction ... 115
8.2 Required Additional PPIs .. 116

8.2.1 CPU I/O PPI (Required) .. 116
EFI_PEI_CPU_IO_PPI (Required).. 116
EFI_PEI_CPU_IO_PPI.Mem() .. 119
EFI_PEI_CPU_IO_PPI.Io() ... 121
EFI_PEI_CPU_IO_PPI.IoRead8()... 122
EFI_PEI_CPU_IO_PPI.IoRead16()... 123
EFI_PEI_CPU_IO_PPI.IoRead32()... 124
EFI_PEI_CPU_IO_PPI.IoRead64()... 125
EFI_PEI_CPU_IO_PPI.IoWrite8() ... 126
EFI_PEI_CPU_IO_PPI.IoWrite16() ... 127
EFI_PEI_CPU_IO_PPI.IoWrite32() ... 128
EFI_PEI_CPU_IO_PPI.IoWrite64() ... 129
EFI_PEI_CPU_IO_PPI.MemRead8().. 130
EFI_PEI_CPU_IO_PPI.MemRead16().. 131
EFI_PEI_CPU_IO_PPI.MemRead32().. 132
EFI_PEI_CPU_IO_PPI.MemRead64().. 133
EFI_PEI_CPU_IO_PPI.MemWrite8() .. 134
EFI_PEI_CPU_IO_PPI.MemWrite16() .. 135
EFI_PEI_CPU_IO_PPI.MemWrite32() .. 136
EFI_PEI_CPU_IO_PPI.MemWrite64() .. 137

8.2.2 PCI Configuration PPI (Required) ... 138
EFI_PEI_PCI_CFG2_PPI.. 139
EFI_PEI_PCI_CFG2_PPI.Read().. 141
EFI_PEI_PCI_CFG2_PPI.Write().. 143
EFI_PEI_PCI_CFG2_PPI.Modify().. 144

Platform Initialization Specification VOLUME 1 PEI Core Interface

xvi 4/24/2015 Version 1.3 Errata A

8.2.3 Stall PPI (Required) .. 145
EFI_PEI_STALL_PPI (Required) .. 145
EFI_PEI_STALL_PPI.Stall().. 146

8.2.4 Variable Services PPI (Required) ... 147
EFI_PEI_READ_ONLY_VARIABLE2_PPI.. 147
EFI_PEI_READ_ONLY_VARIABLE2_PPI.GetVariable.................................... 148
EFI_PEI_READ_ONLY_VARIABLE2_PPI.NextVariableName......................... 150

8.3 Optional Additional PPIs ... 152
8.3.1 SEC Platform Information PPI (Optional).. 152

EFI_SEC_PLATFORM_INFORMATION_PPI (Optional) 152
EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation() 153

8.3.2 Loaded Image PPI (Optional).. 157
EFI_PEI_LOADED_IMAGE_PPI... 157

8.3.3 Recovery .. 157
EFI_PEI_RECOVERY_MODULE_PPI.. 158
EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()...................... 160
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI .. 160
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.

GetNumberRecoveryCapsules() ... 162
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsuleInfo().. 163
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule() 165
EFI_PEI_RECOVERY_BLOCK_IO_PPI ... 166
EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()........... 167
EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo() 168
 EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks() 170
EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional) 171

9
PEI to DXE Handoff .. 175
9.1 Introduction ... 175
9.2 Discovery and Dispatch of the DXE Foundation... 175
9.3 Passing the Hand-Off Block (HOB) List .. 175
9.4 Handoff Processor State to the DXE IPL PPI ... 176

10
Boot Paths... 177
10.1 Introduction ... 177
10.2 Code Flow... 177

10.2.1 Reset Boot Paths .. 177
10.3 Normal Boot Paths... 178

10.3.1 Basic G0-to-S0 and S0 Variation Boot Paths... 178
10.3.2 S-State Boot Paths.. 179

10.4 Recovery Paths... 179
10.4.1 Discovery .. 180
10.4.2 General Recovery Architecture ... 180

10.5 Defined Boot Modes ... 180
10.6 Priority of Boot Paths .. 180
10.7 Assumptions ... 182

Version 1.3 Errata A 4/24/2015 xvii

10.8 Architectural Boot Mode PPIs ... 182
10.9 Recovery... 183

10.9.1 Scope .. 183
10.9.2 Discovery .. 183
10.9.3 General Recovery Architecture ... 183
10.9.4 Finding and Loading the Recovery DXE Image .. 184

11
PEI Physical Memory Usage.. 187
11.1 Introduction ... 187
11.2 Before Permanent Memory Is Installed... 187

11.2.1 Discovering Physical Memory ... 187
11.2.2 Using Physical Memory... 187

11.3 After Permanent Memory Is Installed.. 188
11.3.1 Allocating Physical Memory .. 188
11.3.2 Allocating Memory Using GUID Extension HOBs ... 188
11.3.3 Allocating Memory Using PEI Service... 188

12
Special Paths Unique to the
Itanium® Processor Family.. 189
12.1 Introduction ... 189
12.2 Unique Boot Paths for Itanium Architecture.. 189
12.3 Min-State Save Area... 190

EFI_PEI_MIN_STATE_DATA ... 192
12.4 Dispatching Itanium Processor Family PEIMs .. 194

13
Security (SEC) Phase Information .. 197
13.1 Introduction ... 197
13.2 Responsibilities ... 197

13.2.1 Handling All Platform Restart Events .. 197
13.2.2 Creating a Temporary Memory Store.. 197
13.2.3 Serving As the Root of Trust in the System .. 198
13.2.4 Passing Handoff Information to the PEI Foundation 198

13.3 SEC Platform Information PPI .. 198
13.4 Health Flag Bit Format .. 198

13.4.1 Self-Test State Parameter... 199
13.5 Processor-Specific Details .. 200

13.5.1 SEC Phase in IA-32 Intel Architecture .. 200
13.5.2 SEC Phase in the Itanium Processor Family .. 201

14
Dependency Expression Grammar... 203
14.1 Dependency Expression Grammar... 203

14.1.1 Example Dependency Expression BNF Grammar.. 203
14.1.2 Sample Dependency Expressions .. 204

Platform Initialization Specification VOLUME 1 PEI Core Interface

xviii 4/24/2015 Version 1.3 Errata A

15
TE Image.. 205
15.1 Introduction ... 205
15.2 PE32 Headers... 205

TE Header ... 207

16
TE Image Creation .. 209
16.1 Introduction ... 209
16.2 TE Image Utility Requirements ... 209
16.3 TE Image Relocations... 209

17
TE Image Loading... 211
17.1 Introduction ... 211
17.2 XIP Images ... 211
17.3 Relocated Images ... 211
17.4 PIC Images ... 211

Version 1.3 Errata A 4/24/2015 xix

Figures

Figure 1. PEI Operations Diagram.. 11
Figure 2. Typical PEIM Layout in a Firmware File .. 104
Figure 3. Itanium Processor Boot Path (INIT and MCHK) .. 190
Figure 4. Min-State Buffer Organization ... 191
Figure 5. Boot Path in Itanium Processors ... 195
Figure 6. Health Flag Bit Format... 199
Figure 7. PEI Initialization Steps in IA-32.. 201
Figure 8. Security (SEC) Phase in the Itanium Processor Family 201

Platform Initialization Specification VOLUME 1 PEI Core Interface

xx 4/24/2015 Version 1.3 Errata A

Tables

Table 1. Organization of the PEI CIS.. 1
Table 2. SI prefixes ... 7
Table 3. Binary prefixes ... 7
Table 4. PEI Foundation Classes of Service .. 12
Table 5. PEI Services ... 21
Table 6. Boot Mode Register .. 28
Table 7. Dependency Expression Opcode Summary ... 72
Table 8. PUSH Instruction Encoding .. 72
Table 9. AND Instruction Encoding... 73
Table 10. OR Instruction Encoding ... 74
Table 11. NOT Instruction Encoding... 75
Table 12. TRUE Instruction Encoding... 76
Table 13. FALSE Instruction Encoding ... 77
Table 14. END Instruction Encoding... 78
Table 15. Example Dispatch Map ... 82
Table 16. PEI PPI Services List Descriptors... 112
Table 17. Organization of the Code Definitions Section ... 158
Table 18. Required HOB Types in the HOB List... 175
Table 19. Handoff Processor State to the DXE IPL PPI ... 176
Table 20. Boot Path Assumptions... 182
Table 21. Architectural Boot Mode PPIs ... 183
Table 22. Device Recovery Module Functions ... 186
Table 23. Device Recovery Block I/O Functions... 186
Table 24. Health Flag Bit Field Description... 199
Table 25. Self-Test State Bit Values ... 200
Table 26. COFF Header Fields Required for TE Images.. 205
Table 27. Optional Header Fields Required for TE Images .. 205

Version 1.3 Errata A 4/24/2015 1

1
Introduction

1.1 Overview
This specification defines the core code and services that are required for an implementation of the
Pre-EFI Initialization (PEI) phase of the Platform Initialization (PI) specifications (hereafter referred
to as the “PI Architecture”). This PEI core interface specification (CIS) does the following:

• Describes the basic components of the PEI phase

• Provides code definitions for services and functions that are architecturally required by the UEFI
PI working group (PIWG)

• Describes the machine preparation that is required for subsequent phases of firmware execution

• Discusses state variables that describe the system restart type

See “Organization of the PEI CIS,” below, for more information.

1.2 Organization of the PEI CIS
This PEI core interface specification is organized as shown in Table 1. Because the PEI Foundation
is just one component of a PI Architecture-based firmware solution, there are a number of additional
specifications that are referred to throughout this document.

Table 1. Organization of the PEI CIS

Section Description

“Overview” on page 9 Describes the major components of PEI, including the PEI Services,
boot mode, PEI Dispatcher, and PEIMs.

“PEI Services Table” on page 15 Describes the data structure that maintains the PEI Services.

“Services - PEI” on page 21 Details each of the functions that comprise the PEI Services.

“PEI Foundation” on page 61 Describes the PEI Foundation and its methods of operation and the
PEI Dispatcher and its associated dependency expression
grammar..

“PEIMs” on page 105 Describes the format and use of the Pre-EFI Initialization Module
(PEIM).

“Architectural PPIs” on page 87 Contains PEIM-to-PEIM Interfaces (PPIs) that are used by the PEI
Foundation.

“Additional PPIs” on page 117 Contains PPIs that can exist on a platform.

“PEI to DXE Handoff” on page 175 Describes the state of the machine and memory when the PEI phase
invokes the DXE phase.

“Boot Paths” on page 177 Describes the restart modalities and behavior supported in the PEI
phase.

“PEI Physical Memory Usage” on
page 187

Describes the memory map and memory usage during the PEI
phase.

Platform Initialization Specification VOLUME 1 PEI Core Interface

2 4/24/2015 Version 1.3 Errata A

1.3 Conventions Used in this Document
This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions
Supported processors are “little endian” machines. This distinction means that the low-order byte of
a multibyte data item in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Procedure Descriptions
The procedures described in this document generally have the following format:

“Special Paths Unique to the

Itanium® Processor Family” on
page 189

Contains flow during PEI that is unique to the Itanium® processor
family.

“Security (SEC) Phase Information”
on page 197

Contains an overview of the phase of execution that occurs prior to
PEI.

“Dependency Expression Grammar”
on page 203

Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
PEIM stored in a firmware volume.

“TE Image” on page 205 Describes the format of the TE executable.

“TE Image Creation” on page 209 Describes how TE executables are created from PE32+ executables.

“TE Image Loading” on page 211 Describes how TE executables are loaded into memory.

Section Description

Introduction

Version 1.3 Errata A 4/24/2015 3

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.3 Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by a table that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.3.4 PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name: The formal name of the PPI.

Summary: A brief description of the PPI.

GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

Protocol Interface Structure:
A “C-style” procedure template defining the PPI calling structure.

Parameters: A brief description of each field in the PPI structure.

Platform Initialization Specification VOLUME 1 PEI Core Interface

4 4/24/2015 Version 1.3 Errata A

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
interface.

Status Codes Returned: A description of any codes returned by the interface. The PPI is
required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.5 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding to
the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0
specification).

1.3.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term
or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments
use a BOLD Monospace typeface with a dark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in a normal text paragraph.

Introduction

Version 1.3 Errata A 4/24/2015 5

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.4 Requirements
This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the PI Architecture is to present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In general, it is incumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it is incumbent on a developer of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the PI Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

As this document is an architectural specification, care has been taken to specify architecture in
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered a required facility.

Where parts of the specification are marked as “optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for a facility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and

Platform Initialization Specification VOLUME 1 PEI Core Interface

6 4/24/2015 Version 1.3 Errata A

exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the PI Architecture are conformant only if they depend only on facilities described in
this and related PI Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the PI Architecture specifications is
conformant. A modular component is not conformant if it relies for correct and complete operation
upon a reference to an interface or data structure that is neither part of its own image nor described in
any PI Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementations is explicitly out of scope for the PI Architecture and this
specification.

1.5 Conventions used in this document

1.5.1 Number formats
A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b).
Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 0 0101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by 0x preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between characters in
hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xB
FD8C FA23 or 0xB_FD8C_FA23).

 A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

• the decimal separator (i.e., separating the integer and fractional portions of the number) is a
period;

• the thousands separator (i.e., separating groups of three digits in a portion of the number) is a
comma;

• the thousands separator is used in the integer portion and is not used in the fraction portion of a
number.

1.5.2 Binary prefixes
This standard uses the prefixes defined in the International System of Units (SI) (see http://
www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Introduction

Version 1.3 Errata A 4/24/2015 7

Table 2. SI prefixes

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and IEEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Table 3. Binary prefixes

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

Factor Factor Name Symbol

103 1,000 kilo K

106 1,000,000 mega M

109 1,000,000,000 giga G

Factor Factor Name Symbol

210 1,024 kibi Ki

220 1,048,576 mebi Mi

230 1,073,741,824 gibi Gi

Platform Initialization Specification VOLUME 1 PEI Core Interface

8 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 9

2
Overview

2.1 Introduction
The Pre-EFI Initialization (PEI) phase of the PI Architecture specifications (hereafter referred to as
the “PI Architecture”) is invoked quite early in the boot flow. Specifically, after some preliminary
processing in the Security (SEC) phase, any machine restart event will invoke the PEI phase.

The PEI phase will initially operate with the platform in a nascent state, leveraging only on-
processor resources, such as the processor cache as a call stack, to dispatch Pre-EFI Initialization
Modules (PEIMs). These PEIMs are responsible for the following:

• Initializing some permanent memory complement

• Describing the memory in Hand-Off Blocks (HOBs)

• Describing the firmware volume locations in HOBs

• Passing control into the Driver Execution Environment (DXE) phase

Philosophically, the PEI phase is intended to be the thinnest amount of code to achieve the ends
listed above. As such, any more sophisticated algorithms or processing should be deferred to the
DXE phase of execution.

The PEI phase is also responsible for crisis recovery and resuming from the S3 sleep state. For crisis
recovery, the PEI phase should reside in some small, fault-tolerant block of the firmware store. As a
result, it is imperative to keep the footprint of the PEI phase as small as possible. In addition, for a
successful S3 resume, the speed of the resume is of utmost importance, so the code path through the
firmware should be minimized. These two boot flows also speak to the need to keep the processing
and code paths in the PEI phase to a minimum.

The implementation of the PEI phase is more dependent on the processor architecture than any other
phase. In particular, the more resources the processor provides at its initial or near initial state, the
richer the interface between the PEI Foundation and PEIMs. As such, there are several parts of the
following discussion that note requirements on the architecture but are otherwise left architecturally
dependent.

2.2 Design Goals
The PI Architecture requires the PEI phase to configure a system to meet the minimum prerequisites
for the Driver Execution Environment (DXE) phase of the PI Architecture architecture. In general,
the PEI phase is required to initialize a linear array of RAM large enough for the successful
execution of the DXE phase elements.

The PEI phase provides a framework to allow vendors to supply separate initialization modules for
each functionally distinct piece of system hardware that must be initialized prior to the DXE phase
of execution in the PI Architecture. The PEI phase provides a common framework through which
the separate initialization modules can be independently designed, developed, and updated. The PEI
phase was developed to meet the following goals in the PI architecture:

Platform Initialization Specification VOLUME 1 PEI Core Interface

10 4/24/2015 Version 1.3 Errata A

• Enable maintenance of the “chain of trust.” This includes protection against unauthorized
updates to the PEI phase or its modules, as well as a form of authentication of the PEI
Foundation and its modules during the PEI phase.

• Provide a core PEI module (the PEI Foundation) that will remain more or less constant for a
particular processor architecture but that will support add-in modules from various vendors,
particular for processors, chipsets, RAM initialization, and so on.

• Allow independent development of early initialization modules.

2.3 Pre-EFI Initialization (PEI) Phase
The design for the Pre-EFI Initialization (PEI) phase of a PI Architecture-compliant boot is as an
essentially miniature version of the DXE phase of the PI Architecture and addresses many of the
same issues. The PEI phase is designed to be developed in several parts. The PEI phase consists of
the following:

• Some core code known as the PEI Foundation

• Specialized plug-ins known as Pre-EFI Initialization Modules (PEIMs)

Unlike DXE, the PEI phase cannot assume the availability of reasonable amounts of RAM, so the
richness of the features in DXE does not exist in PEI. The PEI phase limits its support to the
following actions:

• Locating, validating, and dispatching PEIMs

• Facilitating communication between PEIMs

• Providing handoff data to subsequent phases

Figure 1 below shows a diagram of the process completed during the PEI phase.

Overview

Version 1.3 Errata A 4/24/2015 11

Figure 1. PEI Operations Diagram

2.4 PEI Services
The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
Pre-EFI Initialization Modules (PEIMs) in the system. A PEI Service is defined as a function,
command, or other capability manifested by the PEI Foundation when that service’s initialization
requirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM’s entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

The PEI Foundation provides the classes of services listed in Table 4.

Platform Initialization Specification VOLUME 1 PEI Core Interface

12 4/24/2015 Version 1.3 Errata A

Table 4. PEI Foundation Classes of Service

2.5 PEI Foundation
The PEI Foundation is the entity that is responsible for the following:

• Successfully dispatching Pre-EFI Initialization Modules (PEIMs)

• Maintaining the boot mode

• Initializing permanent memory

• Invoking the Driver Execution Environment (DXE) loader

The PEI Foundation is written to be portable across all platforms of a given instruction-set

architecture. As such, a binary for 32-bit Intel® architecture (IA-32) should work across all

Pentium® processors, from the Pentium II processor with MMX™ technology through the latest

Pentium 4 processors. Similarly, the PEI Foundation binary for the Itanium® processor family
should work across all Itanium processors.

Regardless of the processor microarchitecture, the set of services exposed by the PEI Foundation
should be the same. This uniform surface area around the PEI Foundation allows PEIMs to be
written in the C programming language and compiled across any microarchitecture.

2.6 PEI Dispatcher
The PEI Dispatcher is essentially a state machine that is implemented in the PEI Foundation. The
PEI Dispatcher evaluates the dependency expressions in Pre-EFI Initialization Modules (PEIMs)
that are in the firmware volume(s) being examined.

The dependency expressions are logical combinations of PEIM-to-PEIM Interfaces (PPIs). These
expressions describe the PPIs that must be available before a given PEIM can be invoked. To
evaluate the dependency expression for the PEIM, the PEI Dispatcher references the PPI database in
the PEI Foundation to determine which PPIs have been installed. If the PPI has been installed, the

PPI Services: Manages PPIs to facilitate intermodule calls between PEIMs.
Interfaces are installed and tracked on a database maintained in
temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, etc.) of the
system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that are used
to pass information to the next phase of the PI Architecture.

Firmware Volume Services: Finds PEIMs and other firmware files in the firmware volumes.

PEI Memory Services: Provides a collection of memory management services for use both
before and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services (for
example, port 080h or a serial port for simple text output for debug).

Reset Services: Provides a common means by which to initiate a warm or cold restart
of the system.

Overview

Version 1.3 Errata A 4/24/2015 13

dependency expression will evaluate to TRUE, which tells the PEI Dispatcher it can run the PEIM.
At this point, the PEI Foundation passes control to the PEIM with a true dependency expression.

Once the PEI Dispatcher has evaluated all of the PEIMs in all of the exposed firmware volumes and
no more PEIMs can be dispatched (i.e., the dependency expressions do not evaluate from FALSE to
TRUE), the PEI Dispatcher will exit. It is at this point that the PEI Dispatcher cannot invoke any
additional PEIMs. The PEI Foundation then reassumes control from the PEI Dispatcher and invokes
the DXE IPL PPI to pass control to the DXE phase of execution.

2.7 Pre-EFI Initialization Modules (PEIMs)
Pre-EFI Initialization Modules (PEIMs) are specialized drivers that personalize the PEI Foundation
to the platform. They are analogous to DXE drivers and generally correspond to the components
being initialized. It is the responsibility of the PEI Foundation code to dispatch the PEIMs in a
sequenced order and provide basic services. The PEIMs are intended to mirror the components
being initialized.

Communication between PEIMs is not easy in a “memory poor” environment. Nonetheless, PEIMs
cannot be coded without some interaction between one another and, even if they could, it would be
inefficient to do so. The PEI phase provides mechanisms for PEIMs to locate and invoke interfaces
from other PEIMs.

Because the PEI phase exists in an environment where minimal hardware resources are available and
execution is performed from the boot firmware device, it is strongly recommended that PEIMs do
the minimum necessary work to initialize the system to a state that meets the prerequisites of the
DXE phase.

It is expected that, in the future, common practice will be that the vendor of a software or hardware
component will provide the PEIM (possibly in source form) so the customer can debug integration
problems quickly.

2.8 PEIM-to-PEIM Interfaces (PPIs)
PEIMs communicate with each other using a structure called a PEIM-to-PEIM Interface (PPI). PPIs
are contained in a EFI_PEI_PPI_DESCRIPTOR data structure, which is composed of a GUID/
pointer pair. The GUID “names” the interface and the associated pointer provides the associated
data structure and/or service set for that PPI. A consumer of a PPI must use the PEI Service
LocatePpi() to discover the PPI of interest. The producer of a PPI publishes the available PPIs
in its PEIM using the PEI Services InstallPpi() or ReinstallPpi().

All PEIMs are registered and located in the same fashion, namely through the PEI Services listed
above. Within this name space of PPIs, there are two classes of PPIs:

• Architectural PPIs

• Additional PPIs

An architectural PPI is a PPI whose GUID is described in the PEI CIS and is a GUID known to the
PEI Foundation. These architectural PPIs typically provide a common interface to the PEI
Foundation of a service that has a platform-specific implementation, such as the PEI Service
ReportStatusCode().

Platform Initialization Specification VOLUME 1 PEI Core Interface

14 4/24/2015 Version 1.3 Errata A

Additional PPIs are PPIs that are important for interoperability but are not depended upon by the PEI
Foundation. They can be classified as mandatory or optional. Specifically, to have a large class of
interoperable PEIMs, it would be good to signal that the final boot mode was installed in some
standard fashion so that PEIMs could use this PPI in their dependency expressions. The alternative
to defining these additional PPIs in the PEI CIS would be to have a proliferation of similar services
under different names.

2.9 Firmware Volumes
Pre-EFI Initialization Modules (PEIMs) reside in firmware volumes (FVs). The PEI Foundation,
defined here, must reside in the Boot Firmware Volume (BFV). The PEI phase supports the ability
for PEIMs to reside in multiple firmware volumes.. Other PEIMs can expose firmware volumes for
use by the PEI Foundation.

Version 1.3 Errata A 4/24/2015 15

3
PEI Services Table

3.1 Introduction
The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
Pre-EFI Initialization Modules (PEIMs) in the system. A PEI Service is defined as a function,
command, or other capability manifested by the PEI Foundation when that service’s initialization
requirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM's entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

Note: In the PEI Foundation use of the EFI_TABLE_HEADER for the PEI Services Table, there is
special treatment of the CRC32 field. This value is ignorable for PEI and should be set to zero.

3.2 PEI Services Table

3.2.1 EFI_PEI_SERVICES

Summary
The PEI Services Table includes a list of function pointers in a table. The table is located in the
temporary or permanent memory, depending upon the capabilities and phase of execution of PEI.
The functions in this table are defined in “Services - PEI” on page 21.

Related Definitions
//
// PEI Specification Revision information
//
#define PEI_SPECIFICATION_MAJOR_REVISION 1
#define PEI_SPECIFICATION_MINOR_REVISION 30

//
// UEFI PEI Services Table
//
#define PEI_SERVICES_SIGNATURE 0x5652455320494550
#define ((PEI_SPECIFICATION_MAJOR_REVISION<<16) |
(PEI_SPECIFICATION_MINOR_REVISION))

typedef EFI_PEI_SERVICES {
 EFI_TABLE_HEADER Hdr;

Platform Initialization Specification VOLUME 1 PEI Core Interface

16 4/24/2015 Version 1.3 Errata A

 //
 // PPI Functions
 //
 EFI_PEI_INSTALL_PPI InstallPpi;
 EFI_PEI_REINSTALL_PPI ReInstallPpi;
 EFI_PEI_LOCATE_PPI LocatePpi;
 EFI_PEI_NOTIFY_PPI NotifyPpi;

 //
 // Boot Mode Functions
 //
 EFI_PEI_GET_BOOT_MODE GetBootMode;
 EFI_PEI_SET_BOOT_MODE SetBootMode;

 //
 // HOB Functions
 //
 EFI_PEI_GET_HOB_LIST GetHobList;
 EFI_PEI_CREATE_HOB CreateHob;

 //
 // Firmware Volume Functions
 //
 EFI_PEI_FFS_FIND_NEXT_VOLUME2 FfsFindNextVolume;
 EFI_PEI_FFS_FIND_NEXT_FILE2 FfsFindNextFile;
 EFI_PEI_FFS_FIND_SECTION_DATA2 FfsFindSectionData;

 //
 // PEI Memory Functions
 //
 EFI_PEI_INSTALL_PEI_MEMORY InstallPeiMemory;
 EFI_PEI_ALLOCATE_PAGES AllocatePages;
 EFI_PEI_ALLOCATE_POOL AllocatePool;
 EFI_PEI_COPY_MEM CopyMem;
 EFI_PEI_SET_MEM SetMem;

 //
 // Status Code
 EFI_PEI_REPORT_STATUS_CODE ReportStatusCode;

 //
 // Reset
 //
 EFI_PEI_RESET_SYSTEM ResetSystem;

 //

PEI Services Table

Version 1.3 Errata A 4/24/2015 17

 // (the following interfaces are installed by publishing PEIM)
 //
 // I/O Abstractions
 //
 EFI_PEI_CPU_IO_PPI *CpuIo;
 EFI_PEI_PCI_CFG2_PPI *PciCfg;

 //
 // Additional File System-Related Services
 //
 EFI_PEI_FFS_FIND_BY_NAME FfsFindFileByName;
 EFI_PEI_FFS_GET_FILE_INFO FfsGetFileInfo;
 EFI_PEI_FFS_GET_VOLUME_INFO FfsGetVolumeInfo;
 EFI_PEI_REGISTER_FOR_SHADOW RegisterForShadow;

 EFI_PEI_FFS_FIND_SECTION_DATA3 FindSectionData3;
 EFI_PEI_FFS_GET_FILE_INFO2 FfsGetFileInfo2;
} EFI_PEI_SERVICES;

Parameters
Hdr

The table header for the PEI Services Table. This header contains the
PEI_SERVICES_SIGNATURE and PEI_SERVICES_REVISION values along
with the size of the EFI_PEI_SERVICES structure and a 32-bit CRC to verify that
the contents of the PEI Foundation Services Table are valid.

InstallPpi

Installs an interface in the PEI PEIM-to-PEIM Interface (PPI) database by GUID. See
the InstallPpi() function description in this document.

ReInstallPpi

Reinstalls an interface in the PEI PPI database by GUID. See the
ReinstallPpi() function description in this document.

LocatePpi

Locates an interface in the PEI PPI database by GUID. See the LocatePpi()
function description in this document.

NotifyPpi

Installs the notification service to be called back upon the installation or reinstallation
of a given interface. See the NotifyPpi() function description in this document.

GetBootMode

Returns the present value of the boot mode. See the GetBootMode() function
description in this document.

SetBootMode

Sets the value of the boot mode. See the SetBootMode() function description in
this document.

Platform Initialization Specification VOLUME 1 PEI Core Interface

18 4/24/2015 Version 1.3 Errata A

GetHobList

Returns the pointer to the list of Hand-Off Blocks (HOBs) in memory. See the
GetHobList() function description in this document.

CreateHob

Abstracts the creation of HOB headers. See the CreateHob() function description
in this document.

FfsFindNextVolume

Discovers instances of firmware volumes in the system. See the
FfsFindNextVolume() function description in this document.

FfsFindNextFile

Discovers instances of firmware files in the system. See the FfsFindNextFile()
function description in this document.

FfsFindSectionData

Searches for a section in a firmware file. See the FfsFindSectionData()
function description in this document.

InstallPeiMemory

Registers the found memory configuration with the PEI Foundation. See the
InstallPeiMemory() function description in this document.

AllocatePages

Allocates memory ranges that are managed by the PEI Foundation. See the
AllocatePages() function description in this document.

AllocatePool

Frees memory ranges that are managed by the PEI Foundation. See the
AllocatePool() function description in this document.

CopyMem

Copies the contents of one buffer to another buffer. See the CopyMem() function
description in this document.

SetMem

Fills a buffer with a specified value. See the SetMem() function description in this
document.

ReportStatusCode

Provides an interface that a PEIM can call to report a status code. See the
ReportStatusCode() function description in this document. This is installed by
provider PEIM by copying the interface into the PEI Service table.

ResetSystem

Resets the entire platform. See the ResetSystem() function description in this
document. This is installed by provider PEIM by copying the interface into the PEI
Service table.

PEI Services Table

Version 1.3 Errata A 4/24/2015 19

CpuIo

Provides an interface that a PEIM can call to execute an I/O transaction. This
interface is installed by provider PEIM by copying the interface into the PEI Service
table.

PciCfg

Provides an interface that a PEIM can call to execute PCI Configuration transactions.
This interface is installed by provider PEIM by copying the interface into the
EFI_PEI_SERVICES table.

FfsFindFileByName

Discovers firmware files within a volume by name. See FfsFindFileByName()
in this document.

FfsGetFileInfo

Return information about a particular file. See FfsGetFileInfo() in this
document.

FfsGetVolumeInfo

Return information about a particular volume. See FfsGetVolumeInfo() in this
document.

RegisterForShadow

Register a driver to be re-loaded when memory is available. See
RegisterForShadow() in this document.

FindSectionData3

Searches for a section in a firmware file. See the FfsFindSectionData3()

function description in this document.

Description
EFI_PEI_SERVICES is a collection of functions whose implementation is provided by the PEI
Foundation. These services fall into various classes, including the following:

• Managing the boot mode

• Allocating both early and permanent memory

• Supporting the Firmware File System (FFS)

• Abstracting the PPI database abstraction

• Creating Hand-Off Blocks (HOBs)

A pointer to the EFI_PEI_SERVICES table is passed into each PEIM when the PEIM is invoked
by the PEI Foundation. As such, every PEIM has access to these services. Unlike the UEFI Boot
Services, the PEI Services have no calling restrictions, such as the UEFI 2.0 Task Priority Level
(TPL) limitations. Specifically, a service can be called from a PEIM or notification service.

Some of the services are also a proxy to platform-provided services, such as the Reset Services,
Status Code Services, and I/O abstractions. This partitioning has been designed to provide a
consistent interface to all PEIMs without encumbering a PEI Foundation implementation with
platform-specific knowledge. Any callable services beyond the set in this table should be invoked

Platform Initialization Specification VOLUME 1 PEI Core Interface

20 4/24/2015 Version 1.3 Errata A

using a PPI. The latter PEIM-installed services will return EFI_NOT_AVAILABLE_YET until a
PEIM copies an instance of the interface into the EFI_PEI_SERVICES table.

Version 1.3 Errata A 4/24/2015 21

4
Services - PEI

4.1 Introduction
A PEI Service is defined as a function, command, or other capability created by the PEI Foundation
during a phase that remains available after the phase is complete. Because the PEI phase has no
permanent memory available until nearly the end of the phase, the range of PEI Foundation Services
created during the PEI phase cannot be as rich as those created during later phases.

Table 5 shows the PEI Services described in this section:

Table 5. PEI Services

The calling convention for PEI Services is similar to PPIs. See “PEIM-to-PEIM Communication”
on page 114 for more details on PPIs.

The means by which to bind a service call into a service involves a dispatch table,
EFI_PEI_SERVICES. A pointer to the table is passed into the PEIM entry point.

4.2 PPI Services
The following services provide the interface set for abstracting the PPI database:

• InstallPpi()

• ReinstallPpi()

• LocatePpi()

• NotifyPpi()

PPI Services: Manages PEIM-to-PEIM Interface (PPIs) to facilitate intermodule calls
between PEIMs. Interfaces are installed and tracked on a database
maintained in temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, etc.) of the
system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that are used to
pass information to the next phase of the PI Architecture.

Firmware Volume Services Walks the Firmware File Systems (FFS) in firmware volumes to find PEIMs
and other firmware files in the flash device.

PEI Memory Services: Provides a collection of memory management services for use both before
and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services (for
example, port 080h or a serial port for simple text output for debug).

Reset Services: Provides a common means by which to initiate a warm or cold restart of
the system.

Platform Initialization Specification VOLUME 1 PEI Core Interface

22 4/24/2015 Version 1.3 Errata A

InstallPpi()

Summary
This service is the first one provided by the PEI Foundation. This function installs an interface in the
PEI PPI database by GUID. The purpose of the service is to publish an interface that other parties
can use to call additional PEIMs.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_INSTALL_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

PpiList

A pointer to the list of interfaces that the caller shall install. Type
EFI_PEI_PPI_DESCRIPTOR is defined in “PEIM Descriptors” on page 109.

Description
This service enables a given PEIM to register an interface with the PEI Foundation. The interface
takes a pointer to a list of records that adhere to the format of a EFI_PEI_PPI_DESCRIPTOR.
Since the PEI Foundation maintains a pointer to the list rather than copying the list, the list must
either be in the body of the PEIM or else allocated from temporary or permanent RAM.

The length of the list of described by the EFI_PEI_PPI_DESCRIPTOR that has the
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST flag set in its Flags field. There shall be at
least one EFI_PEI_PPI_DESCRIPTOR in the list.

There are two types of EFI_PEI_PPI_DESCRIPTORs that can be installed, including the
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH and
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK.

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The PpiList pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have the

EFI_PEI_PPI_DESCRIPTOR_PPI bit set in the

Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

Services - PEI

Version 1.3 Errata A 4/24/2015 23

ReinstallPpi()

Summary
This function reinstalls an interface in the PEI PPI database by GUID. The purpose of the service is
to publish an interface that other parties can use to replace an interface of the same name in the
protocol database with a different interface.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REINSTALL_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *OldPpi,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *NewPpi
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

OldPpi

A pointer to the former PPI in the database. Type EFI_PEI_PPI_DESCRIPTOR is
defined in “PEIM Descriptors” on page 109.

NewPpi

A pointer to the new interfaces that the caller shall install.

Description
This service enables PEIMs to replace an entry in the PPI database with an alternate entry.

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The OldPpi or NewPpi pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have the
EFI_PEI_PPI_DESCRIPTOR_PPI bit set in the

Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

EFI_NOT_FOUND The PPI for which the reinstallation was requested has not
been installed.

Platform Initialization Specification VOLUME 1 PEI Core Interface

24 4/24/2015 Version 1.3 Errata A

LocatePpi()

Summary
This function locates an interface in the PEI PPI database by GUID.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOCATE_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_GUID *Guid,
 IN UINTN Instance,
 IN OUT EFI_PEI_PPI_DESCRIPTOR **PpiDescriptor OPTIONAL,
 IN OUT VOID **Ppi
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES published by the PEI Foundation.

Guid

A pointer to the GUID whose corresponding interface needs to be found.

Instance

The N-th instance of the interface that is required.

PpiDescriptor

A pointer to instance of the EFI_PEI_PPI_DESCRIPTOR.

Ppi

A pointer to the instance of the interface.

Description
This service enables PEIMs to discover a given instance of an interface. This interface differs from
the interface discovery mechanism in the UEFI 2.0 specification, namely HandleProtocol(), in
that the PEI PPI database does not expose the handle's name space. Instead, PEI manages the
interface set by maintaining a partial order on the interfaces such that the Instance of the
interface, among others, can be traversed.

LocatePpi() provides the ability to traverse all of the installed instances of a given GUID-named
PPI. For example, there can be multiple instances of a PPI named Foo in the PPI database. An
Instance value of 0 will provide the first instance of the PPI that is installed. Correspondingly, an
Instance value of 2 will provide the second, 3 the third, and so on. The Instance value
designates when a PPI was installed. For an implementation that must reference all possible
manifestations of a given GUID-named PPI, the code should invoke LocatePpi() with a
monotonically increasing Instance number until EFI_NOT_FOUND is returned.

Services - PEI

Version 1.3 Errata A 4/24/2015 25

Status Codes Returned

EFI_SUCCESS The interface was successfully returned.

EFI_NOT_FOUND The PPI descriptor is not found in the database.

Platform Initialization Specification VOLUME 1 PEI Core Interface

26 4/24/2015 Version 1.3 Errata A

NotifyPpi()

Summary
This function installs a notification service to be called back when a given interface is installed or
reinstalled. The purpose of the service is to publish an interface that other parties can use to call
additional PPIs that may materialize later.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_NOTIFY_PPI) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_NOTIFY_DESCRIPTOR *NotifyList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

NotifyList

A pointer to the list of notification interfaces that the caller shall install. Type
EFI_PEI_NOTIFY_DESCRIPTOR is defined in “PEIM Descriptors” on page 109.

Description
This service enables PEIMs to register a given service to be invoked when another service is
installed or reinstalled. This service will fire notifications on PPIs installed prior to this service
invocation. This is different behavior than the RegisterProtocolNotify of UEFI2.0, for example
EFI_PEI_NOTIFY_DESCRIPTOR is defined in “PEIM Descriptors” on page 109.

In addition, the PPI pointer is passed back to the agent that registered for the notification so that it
can deference private data, if so needed.

Status Codes Returned

4.3 Boot Mode Services
These services provide abstraction for ascertaining and updating the boot mode:

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The NotifyList pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI notify descriptors in the list do not have the

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES bit

set in the Flags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

Services - PEI

Version 1.3 Errata A 4/24/2015 27

• GetBootMode()

• SetBootMode()

See “Boot Paths” on page 177 for additional information on the boot mode.

GetBootMode()

Summary
This function returns the present value of the boot mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_BOOT_MODE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 OUT EFI_BOOT_MODE *BootMode
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

BootMode

A pointer to contain the value of the boot mode. Type EFI_BOOT_MODE is defined
in “Related Definitions” below.

Description
This service enables PEIMs to ascertain the present value of the boot mode. The list of possible boot
modes is described in “Related Definitions” below.

Related Definitions
//**
// EFI_BOOT_MODE
//**
typedef UINT32 EFI_BOOT_MODE;

#define BOOT_WITH_FULL_CONFIGURATION 0x00
#define BOOT_WITH_MINIMAL_CONFIGURATION 0x01
#define BOOT_ASSUMING_NO_CONFIGURATION_CHANGES 0x02
#define BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS 0x03
#define BOOT_WITH_DEFAULT_SETTINGS 0x04
#define BOOT_ON_S4_RESUME 0x05
#define BOOT_ON_S5_RESUME 0x06
#define BOOT_WITH_MFG_MODE_SETTINGS 0x07
#define BOOT_ON_S2_RESUME 0x10

Platform Initialization Specification VOLUME 1 PEI Core Interface

28 4/24/2015 Version 1.3 Errata A

#define BOOT_ON_S3_RESUME 0x11
#define BOOT_ON_FLASH_UPDATE 0x12
#define BOOT_IN_RECOVERY_MODE 0x20
0x21 – 0xF..F Reserved Encodings

Table 6 describes the bit values in the Boot Mode Register.

Table 6. Boot Mode Register

Status Codes Returned

Register Bits Values Descriptions

MSBit-0 000000b Boot with full configuration

000001b Boot with minimal configuration

000010b Boot assuming no configuration changes from last boot

000011b Boot with full configuration plus diagnostics

000100b Boot with default settings

000101b Boot on S4 resume

000110b Boot in S5 resume

000111b Boot with manufacturing mode settings

000111b-001111b Reserved for boot paths that configure memory

010000b Boot on S2 resume

010001b Boot on S3 resume

010010b Boot on flash update restart

010011c-011111b Reserved for boot paths that preserve memory context

100000b Boot in recovery mode

100001b-111111b Reserved for special boots

EFI_SUCCESS The boot mode was returned successfully.

Services - PEI

Version 1.3 Errata A 4/24/2015 29

SetBootMode()

Summary
This function sets the value of the boot mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SET_BOOT_MODE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_BOOT_MODE BootMode
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

BootMode

The value of the boot mode to set. Type EFI_BOOT_MODE is defined in
GetBootMode().

Description
This service enables PEIMs to update the boot mode variable. This would be used by either the boot
mode PPIs described in “Architectural PPIs” on page 87 or by a PEIM that needs to engender a
recovery condition. It is permissible to change the boot mode at any point during the PEI phase.

Status Codes Returned

4.4 HOB Services
The following services describe the capabilities in the PEI Foundation for providing Hand-Off Block
(HOB) manipulation:

• GetHobList()

• CreateHob()

The purpose of the abstraction is to automate the common case of HOB creation and manipulation.
See the Volume 3 for details on HOBs and their type definitions.

EFI_SUCCESS The value was successfully updated.

Platform Initialization Specification VOLUME 1 PEI Core Interface

30 4/24/2015 Version 1.3 Errata A

GetHobList()

Summary
This function returns the pointer to the list of Hand-Off Blocks (HOBs) in memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_HOB_LIST) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN OUT VOID **HobList
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

HobList

A pointer to the list of HOBs that the PEI Foundation will initialize.

Description
This service enables a PEIM to ascertain the address of the list of HOBs in memory. This service
should not be required by many modules in that the creation of HOBs is provided by the PEI Service
CreateHob().

Status Codes Returned

EFI_SUCCESS The list was successfully returned.

EFI_NOT_AVAILABLE_YET The HOB list is not yet published.

Services - PEI

Version 1.3 Errata A 4/24/2015 31

CreateHob()

Summary
This service published by the PEI Foundation abstracts the creation of a Hand-Off Block's (HOB’s)
headers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CREATE_HOB) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN UINT16 Type,
 IN UINT16 Length,
 IN OUT VOID **Hob
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Type

The type of HOB to be installed. See the Volume 3 for a definition of this type.

Length

The length of the HOB to be added.

Hob

The address of a pointer that will contain the HOB header.

Description
This service enables PEIMs to create various types of HOBs. This service handles the common
work of allocating memory on the HOB list, filling in the type and length fields, and building the end
of the HOB list. The final aspect of this service is to return a pointer to the newly allocated HOB.
At this point, the caller can fill in the type-specific data. This service is always available because the
HOBs can also be created on temporary memory.

There will be no error checking on the Length input argument. Instead, the PI Architecture
implementation of this service will round up the allocation size that is specified in the Length field
to be a multiple of 8 bytes in length. This rounding is consistent with the requirement that all of the
HOBs, including the PHIT HOB, begin on an 8-byte boundary. See the PHIT HOB definition in the
Platform Initialization Specification, Volume 3, for more information.

Status Codes Returned

EFI_SUCCESS The HOB was successfully created.

EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

Platform Initialization Specification VOLUME 1 PEI Core Interface

32 4/24/2015 Version 1.3 Errata A

4.5 Firmware Volume Services
The following services abstract traversing the Firmware File System (FFS):

• FfsFindNextVolume()

• FfsFindNextFile()

• FfsFindSectionData()

• FfsFindFileByName()

• FfsGetFileInfo()

• FfsGetVolumeInfo()

The description of the FFS can be found in the Platform Initialization Specification, Volume 3.

Services - PEI

Version 1.3 Errata A 4/24/2015 33

FfsFindNextVolume()

Summary
The purpose of the service is to abstract the capability of the PEI Foundation to discover instances of
firmware volumes in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_NEXT_VOLUME2) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN UINTN Instance,
 OUT EFI_PEI_FV_HANDLE *VolumeHandle
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Instance

This instance of the firmware volume to find. The value 0 is the Boot Firmware
Volume (BFV).

VolumeHandle

On exit, points to the next volume handle or NULL if it does not exist.

Description
This service enables PEIMs to discover additional firmware volumes. The core uses
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI to discover these volumes. The service returns a
volume handle of type EFI_PEI_FV_HANDLE, which must be unique within the system.

Related Definitions
typedef VOID *EFI_PEI_FV_HANDLE;

Status Codes Returned

EFI_SUCCESS The volume was found.

EFI_NOT_FOUND The volume was not found.

EFI_INVALID_PARAMETER VolumeHandle is NULL

Platform Initialization Specification VOLUME 1 PEI Core Interface

34 4/24/2015 Version 1.3 Errata A

FfsFindNextFile()

Summary
Searches for the next matching file in the firmware volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_NEXT_FILE2) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_FV_FILETYPE SearchType,
 IN CONST EFI_PEI_FV_HANDLE FvHandle,
 IN OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

SearchType

A filter to find files only of this type. Type EFI_FV_FILETYPE is defined in the
Platform Initialization Specification, Volume 3. Type EFI_FV_FILETYPE_ALL
causes no filtering to be done.

FvHandle

Handle of firmware volume in which to search. The type EFI_PEI_FV_HANDLE is
defined in the PEI Services FfsFindNextVolume().

FileHandle

On entry, points to the current handle from which to begin searching or NULL to start
at the beginning of the firmware volume. On exit, points the file handle of the next file
in the volume or NULL if there are no more files. The type
EFI_PEI_FILE_HANDLE is defined in “Related Defintions” below.

Description
This service enables PEIMs to discover firmware files within a specified volume. To find the first
instance of a firmware file, pass a FileHandle value of NULL into the service.

The service returns a file handle of type EFI_PEI_FILE_HANDLE, which must be unique within
the system.

The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Services - PEI

Version 1.3 Errata A 4/24/2015 35

Related Definitions
typedef VOID *EFI_PEI_FILE_HANDLE;

Status Codes Returned

EFI_SUCCESS The file was found.

EFI_NOT_FOUND The file was not found.

EFI_NOT_FOUND The header checksum was not zero.

Platform Initialization Specification VOLUME 1 PEI Core Interface

36 4/24/2015 Version 1.3 Errata A

FfsFindSectionData3()

Summary
Searches for the next matching section within the specified file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_SECTION_DATA3) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_SECTION_TYPE SectionType,
 In UINTN SectionInstance
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT VOID **SectionData
 OUT UINT32 *AuthenticationStatus
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

SectionType

The value of the section type to find. Type EFI_SECTION_TYPE is defined in the
Platform Initialization Specification, Volume 3.

SectionInstance

Section instance to find.

FileHandle

Handle of the firmware file to search. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile(), “Related Definitions.” A pointer to the file header that
contains the set of sections to be searched.

SectionData

A pointer to the discovered section, if successful.

AuthenticationStatus

A pointer to the authentication status for this section.

Description
This service enables PEI modules to discover the ection of a given type within a valid file. This
service will search within encapsulation sections (compression and GUIDed) as well. It will search
inside of a GUIDed section or a compressed section, but may not, for example, search a GUIDed
section inside a GUIDes section.

This service will not search within compression sections or GUIDed sections which require
extraction if memory is not present.

Services - PEI

Version 1.3 Errata A 4/24/2015 37

Status Codes Returned

EFI_SUCCESS The section was found.

EFI_NOT_FOUND The section was not found.

Platform Initialization Specification VOLUME 1 PEI Core Interface

38 4/24/2015 Version 1.3 Errata A

FfsFindFileByName()

Summary
Find a file within a volume by its name.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_FIND_BY_NAME) (
 IN CONST EFI_GUID *FileName,
 IN EFI_PEI_FV_HANDLE VolumeHandle,
 OUT EFI_PEI_FILE_HANDLE *FileHandle
);

Parameters
FileName

A pointer to the name of the file to find within the firmware volume.

VolumeHandle

The firmware volume to search

FileHandle

Upon exit, points to the found file’s handle or NULL if it could not be found.

Description
This service searches for files with a specific name, within either the specified firmware volume or
all firmware volumes.

The service returns a file handle of type EFI_PEI_FILE_HANDLE, which must be unique within
the system.

The behavior of files with file types EFI_FV_FILETYPE_FFS_MIN and
EFI_FV_FILETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard PI firmware file system, see section 1.1.4.1.6 of the PI
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS File was found.

EFI_NOT_FOUND File was not found.

EFI_INVALID_PARAMETER VolumeHandle or FileHandle or FileName was

NULL.

Services - PEI

Version 1.3 Errata A 4/24/2015 39

FfsGetFileInfo()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_GET_FILE_INFO) (
 IN EFI_PEI_FILE_HANDLE FileHandle,
 OUT EFI_FV_FILE_INFO *FileInfo
);

Parameters
FileHandle

Handle of the file.

FileInfo

Upon exit, points to the file’s information.

Description
This function returns information about a specific file, including its file name, type, attributes,
starting address and size. If the firmware volume is not memory mapped then the Buffer member
will be NULL.

Related Definitions
typedef struct {
 EFI_GUID FileName;
 EFI_FV_FILETYPE FileType;
 EFI_FV_FILE_ATTRIBUTES FileAttributes;
 VOID *Buffer;
 UINT32 BufferSize;
 } EFI_FV_FILE_INFO;

FileName

Name of the file.

FileType

File type. See EFI_FV_FILETYPE, which is defined in the Platform Initialization
Firmware Storage Specification.

FileAttributes

Attributes of the file. Type EFI_FV_FILE_ATTRIBUTES is defined in the Platform
Initialization Firmware Storage Specification.

Platform Initialization Specification VOLUME 1 PEI Core Interface

40 4/24/2015 Version 1.3 Errata A

Buffer

Points to the file’s data (not the header). Not valid if
EFI_FV_FILE_ATTRIB_MEMORY_MAPPED is zero.

BufferSize

Size of the file’s data.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo is NULL

Services - PEI

Version 1.3 Errata A 4/24/2015 41

FfsGetFileInfo2()

Summary
Returns information about a specific file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_GET_FILE_INFO2) (
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT EFI_FV_FILE_INFO2 *FileInfo
);

Parameters
FileHandle

Handle of the file.

FileInfo

Upon exit, points to the file's information.

Description
This function returns information about a specific file, including its file name, type, attributes,

starting address, size and authentication status. If the firmware volume is not memory mapped then
the Buffer member will be NULL.

Related Definitions
typedef struct {
 EFI_GUID FileName;
 EFI_FV_FILETYPE FileType;
 EFI_FV_FILE_ATTRIBUTES FileAttributes;
 VOID *Buffer;
 UINT32 BufferSize;
 UINT32 AuthenticationStatus;
} EFI_FV_FILE_INFO2;

FileName

Name of the file.

FileType

File type. See EFI_FV_FILETYPE, which is defined in the Platform Initialization
Firmware Storage Specification.

FileAttributes

Attributes of the file. Type EFI_FV_FILE_ATTRIBUTES is defined in the Platform
Initialization Firmware Storage Specification.

Platform Initialization Specification VOLUME 1 PEI Core Interface

42 4/24/2015 Version 1.3 Errata A

Buffer

Points to the file's data (not the header). Not valid if
EFI_FV_FILE_ATTRIB_MEMORY_MAPPED is zero.

BufferSize

Size of the file's data.

AuthenticationStatus

Authentication status for this file.

Status Codes Returned

EFI_SUCCESS File information returned.

EFI_INVALID_PARAMETER If FileHandle does not represent a valid file.

EFI_INVALID_PARAMETER If FileInfo is NULL

Services - PEI

Version 1.3 Errata A 4/24/2015 43

FfsGetVolumeInfo()

Summary
Returns information about the specified volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_FFS_GET_VOLUME_INFO) (
 IN EFI_PEI_FV_HANDLE VolumeHandle,
 OUT EFI_FV_INFO *VolumeInfo
);

Parameters
VolumeHandle

Handle of the volume.

VolumeInfo

Upon exit, points to the volume’s information.

Related Definitions
typedef struct {
 EFI_FVB_ATTRIBUTES_2 FvAttributes;
 EFI_GUID FvFormat;
 EFI_GUID FvName;
 VOID* FvStart;
 UINT64 FvSize;
} EFI_FV_INFO;

FvAttributes

Attributes of the firmware volume. Type EFI_FVB_ATTRIBUTES_2 is defined in
the Platform Initialization Firmware Storage Specficiation.

FvFormat

Format of the firmware volume. For PI Architecture Firmware Volumes, this can be
copied from FileSystemGuid in EFI_FIRMWARE_VOLUME_HEADER.

FvName

Name of the firmware volume. For PI Architecture Firmware Volumes, this can be
copied from VolumeName in the extended header of
EFI_FIRMWARE_VOLUME_HEADER.

FvStart

Points to the first byte of the firmware volume, if bit EFI_FVB_MEMORY_MAPPED
is set in FvAttributes.

Platform Initialization Specification VOLUME 1 PEI Core Interface

44 4/24/2015 Version 1.3 Errata A

FvSize

Size of the firmware volume.

 Description
This function returns information about a specific firmware volume, including its name, type,
attributes, starting address and size.

Status Codes Returned

EFI_SUCCESS Volume information returned.

EFI_INVALID_PARAMETER If VolumeHandle does not represent a valid volume.

EFI_INVALID_PARAMETER If VolumeInfo is NULL.

EFI_SUCCESS Information successfully returned

EFI_INVALID_PARAMETER The volume designated by the VolumeHandle is not available

Services - PEI

Version 1.3 Errata A 4/24/2015 45

RegisterForShadow()

Summary
Register a PEIM so that it will be shadowed and called again.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REGISTER_FOR_SHADOW) (
 IN EFI_PEI_FILE_HANDLE FileHandle
);

Parameters
FileHandle

PEIM’s file handle. Must be the currently executing PEIM.

Description
This service registers a file handle so that after memory is available, the PEIM will be re-loaded into
permanent memory and re-initialized. The PEIM registered this way will always be initialized twice.
The first time, this function call will return EFI_SUCCESS. The second time, this function call will
return EFI_ALREADY_STARTED.

Depending on the order in which PEIMs are dispatched, the PEIM making this call may be
initialized after permanent memory is installed, even the first time.

Status Codes Returned

EFI_SUCCESS The PEIM was successfully registered for shadowing.

EFI_ALREADY_STARTED The PEIM was previously registered for shadowing.

EFI_NOT_FOUND The FileHandle does not refer to a valid file handle.

Platform Initialization Specification VOLUME 1 PEI Core Interface

46 4/24/2015 Version 1.3 Errata A

4.6 PEI Memory Services
The following services are a collection of memory management services for use both before and
after permanent memory has been discovered:

• InstallPeiMemory()

• AllocatePages()

• AllocatePool()

• CopyMem()

• SetMem()

InstallPeiMemory()

Summary
This function registers the found memory configuration with the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_INSTALL_PEI_MEMORY) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_PHYSICAL_ADDRESS MemoryBegin,
 IN UINT64 MemoryLength
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

MemoryBegin

The value of a region of installed memory.

MemoryLength

The corresponding length of a region of installed memory.

Description
This service enables PEIMs to register the permanent memory configuration that has been initialized
with the PEI Foundation. The result of this call-set is the creation of the appropriate Hand-Off Block
(HOB) describing the physical memory.

The usage model is that the PEIM that discovers the permanent memory shall invoke this service.
The memory reported is a single contiguous run. It should be enough to allocate a PEI stack and
some HOB list. The full memory map will be reported using the appropriate memory HOBs. The
PEI Foundation will follow up with an installation of
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI.

Services - PEI

Version 1.3 Errata A 4/24/2015 47

Any invocations of this service after the first invocation which returns EFI_SUCCESS will be
ignored.

Status Codes Returned

EFI_SUCCESS The region was successfully installed in a HOB or this service
was successfully invoked earlier and no HOB modification will
occur.

EFI_INVALID_PARAMETER MemoryBegin and MemoryLength are illegal for this

system.

EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

Platform Initialization Specification VOLUME 1 PEI Core Interface

48 4/24/2015 Version 1.3 Errata A

AllocatePages()

Summary
The purpose of the service is to publish an interface that allows PEIMs to allocate memory ranges
that are managed by the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ALLOCATE_PAGES) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_MEMORY_TYPE MemoryType,
 IN UINTN Pages,
 OUT EFI_PHYSICAL_ADDRESS *Memory,
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

MemoryType

The type of memory to allocate. The only types allowed are EfiLoaderCode,
EfiLoaderData, EfiRuntimeServicesCode,
EfiRuntimeServicesData, EfiBootServicesCode,
EfiBootServicesData, EfiACPIReclaimMemory,
EfiReservedMemoryType, and EfiACPIMemoryNVS.

Pages

The number of contiguous 4 KiB pages to allocate. Type
EFI_PHYSICAL_ADDRESS is defined in AllocatePages() in the UEFI 2.0
specification.

Memory

Pointer to a physical address. On output, the address is set to the base of the page
range that was allocated.

Description
This service enables PEIMs to allocate memory after the permanent memory has been installed by a
PEIM. The purpose of this service is to allow more state-ful, later PEIMs to have a single set of
memory allocation services upon which to rely. This is especially of interest for services like the
recovery PEIMs that might have to allocate large buffers for disk transactions and file system
metadata. The memory regions that the memory allocation primitives manage will be described in
the appropriate HOB type from the Platform Initialization Specification, Volume 3.

This service is not usable prior to the installation of main memory. There is no free memory.

Services - PEI

Version 1.3 Errata A 4/24/2015 49

The expectation is that the implementation of this service will automate the creation of the Memory
Allocation HOB types. As such, this is in the same spirit as the PEI Services to create the FV HOB,
for example.
As opposed to the UEFI memory allocation service, there is no allocate “type” field; this field
dictates location information in UEFI (i.e., allocate below a given address, at a given address, etc).
Instead, PEI will allocate pages within the region of memory provided by InstallPeiMemory()
service in a best-effort fashion. Location-specific allocations are not managed by the PEI foundation
code.

The service also supports the creation of Memory Allocation HOBs that describe the stack, boot-
strap processor (BSP) BSPStore (“Backing Store Pointer Store”), and the DXE Foundation
allocation. This additional information is conveyed through the final two arguments in this API and
the description of the appropriate HOB types can be found in the Platform Initialization
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS The memory range was successfully allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not equal to EfiLoaderCode,

EfiLoaderData, EfiRuntimeServicesCode,

EfiRuntimeServicesData,

EfiBootServicesCode,

EfiBootServicesData,

EfiACPIReclaimMemory,
EfiReservedMemoryType, or

EfiACPIMemoryNVS.

Platform Initialization Specification VOLUME 1 PEI Core Interface

50 4/24/2015 Version 1.3 Errata A

AllocatePool()

Summary
The purpose of this service is to publish an interface that allows PEIMs to allocate memory ranges
that are managed by the PEI Foundation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_ALLOCATE_POOL) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN UINTN Size,
 OUT VOID **Buffer
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Size

The number of bytes to allocate from the pool.

Buffer

If the call succeeds, a pointer to a pointer to the allocated buffer; undefined otherwise.

Description
This service allocates memory from the Hand-Off Block (HOB) heap. Because HOBs can be
allocated from either temporary or permanent memory, this service is available throughout the entire
PEI phase.

This service allocates memory in multiples of eight bytes to maintain the required HOB alignment.
The early allocations from temporary memory will be migrated to permanent memory when
permanent main memory is installed; this migration shall occur when the HOB list is migrated to
permanent memory.

Status Codes Returned

EFI_SUCCESS The allocation was successful.

EFI_OUT_OF_RESOURCES There is not enough heap to allocate the requested size.

Services - PEI

Version 1.3 Errata A 4/24/2015 51

CopyMem()

Summary
This service copies the contents of one buffer to another buffer.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_COPY_MEM) (
 IN VOID *Destination,
 IN VOID *Source,
 IN UINTN Length
);

Parameters
Destination

Pointer to the destination buffer of the memory copy.

Source

Pointer to the source buffer of the memory copy.

Length

Number of bytes to copy from Source to Destination.

Description
This function copies Length bytes from the buffer Source to the buffer Destination.

Status Codes Returned
None.

Platform Initialization Specification VOLUME 1 PEI Core Interface

52 4/24/2015 Version 1.3 Errata A

SetMem()

Summary
The service fills a buffer with a specified value.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_SET_MEM) (
 IN VOID *Buffer,
 IN UINTN Size,
 IN UINT8 Value
);

Parameters
Buffer

Pointer to the buffer to fill.

Size

Number of bytes in Buffer to fill.

Value

Value to fill Buffer with.

Description
This function fills Size bytes of Buffer with Value.

Status Codes Returned
None.

Services - PEI

Version 1.3 Errata A 4/24/2015 53

4.7 Status Code Service
The PEI Foundation publishes the following status code service:

• ReportStatusCode()

This service will report EFI_NOT_AVAILABLE_YET until a PEIM publishes the services for other
modules. For the GUID of the PPI, see EFI_PEI_PROGRESS_CODE_PPI.

Platform Initialization Specification VOLUME 1 PEI Core Interface

54 4/24/2015 Version 1.3 Errata A

ReportStatusCode()

Summary
This service publishes an interface that allows PEIMs to report status codes.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_REPORT_STATUS_CODE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_STATUS_CODE_TYPE Type,
 IN EFI_STATUS_CODE_VALUE Value,
 IN UINT32 Instance,
 IN CONST EFI_GUID *CallerId OPTIONAL,
 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Type

Indicates the type of status code being reported. The type
EFI_STATUS_CODE_TYPE is defined in “Related Definitions” below.

Value

Describes the current status of a hardware or software entity. This includes
information about the class and subclass that is used to classify the entity as well as an
operation. For progress codes, the operation is the current activity. For error codes, it
is the exception. For debug codes, it is not defined at this time. Type
EFI_STATUS_CODE_VALUE is defined in “Related Definitions” below.

Instance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

CallerId

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different callers.

Data

This optional parameter may be used to pass additional data. Type
EFI_STATUS_CODE_DATA is defined in “Related Definitions“ below. The
contents of this data type may have additional GUID-specific data.

Services - PEI

Version 1.3 Errata A 4/24/2015 55

Description
ReportStatusCode() is called by PEIMs that wish to report status information on their
progress. The principal use model is for a PEIM to emit one of the standard 32-bit error codes. This
will allow a platform owner to ascertain the state of the system, especially under conditions where
the full consoles might not have been installed.

This is the entry point that PEIMs shall use. This service can use all platform PEI Services, and
when main memory is available, it can even construct a GUIDed HOB that conveys the pre-DXE
data. This service can also publish an interface that is usable only from the DXE phase. This entry
point should not be the same as that published to the PEIMs, and the implementation of this code
path should not do the following:

• Use any PEI Services or PPIs from other modules.

• Make any presumptions about global memory allocation.

It can only operate on its local stack activation frame and must be careful about using I/O and
memory-mapped I/O resources. These concerns, including the latter warning, arise because this
service could be used during the “blackout” period between the termination of PEI and the beginning
of DXE, prior to the loading of the DXE progress code driver. As such, the ownership of the
memory map and platform resource allocation is indeterminate at this point in the platform
evolution.

Related Definitions
//
// Status Code Type Definition
//
typedef UINT32 EFI_STATUS_CODE_TYPE;

//
// A Status Code Type is made up of the code type and severity
// All values masked by EFI_STATUS_CODE_RESERVED_MASK are
// reserved for use by this specification.
//
#define EFI_STATUS_CODE_TYPE_MASK 0x000000FF
#define EFI_STATUS_CODE_SEVERITY_MASK 0xFF000000
#define EFI_STATUS_CODE_RESERVED_MASK 0x00FFFF00

//
// Definition of code types, all other values masked by
// EFI_STATUS_CODE_TYPE_MASK are reserved for use by
// this specification.
//
#define EFI_PROGRESS_CODE 0x00000001
#define EFI_ERROR_CODE 0x00000002
#define EFI_DEBUG_CODE 0x00000003

//
// Definitions of severities, all other values masked by

Platform Initialization Specification VOLUME 1 PEI Core Interface

56 4/24/2015 Version 1.3 Errata A

// EFI_STATUS_CODE_SEVERITY_MASK are reserved for use by
// this specification.
// Uncontained errors are major errors that could not contained
// to the specific component that is reporting the error
// For example, if a memory error was not detected early enough,
// the bad data could be consumed by other drivers.
//
#define EFI_ERROR_MINOR 0x40000000
#define EFI_ERROR_MAJOR 0x80000000
#define EFI_ERROR_UNRECOVERED 0x90000000
#define EFI_ERROR_UNCONTAINED 0xa0000000

//
// Status Code Value Definition
//
typedef UINT32 EFI_STATUS_CODE_VALUE;

//
// A Status Code Value is made up of the class, subclass, and
// an operation.
//
#define EFI_STATUS_CODE_CLASS_MASK 0xFF000000
#define EFI_STATUS_CODE_SUBCLASS_MASK 0x00FF0000
#define EFI_STATUS_CODE_OPERATION_MASK 0x0000FFFF

//
// Definition of Status Code extended data header.
// The data will follow HeaderSize bytes from the beginning of
// the structure and is Size bytes long.
//
typedef struct {
 UINT16 HeaderSize;
 UINT16 Size;
 EFI_GUID Type;
} EFI_STATUS_CODE_DATA;

HeaderSize

The size of the structure. This is specified to enable future expansion.

Size

The size of the data in bytes. This does not include the size of the header structure.

Type

The GUID defining the type of the data.

Services - PEI

Version 1.3 Errata A 4/24/2015 57

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_AVAILABLE_YET No progress code provider has installed an interface in the
system.

Platform Initialization Specification VOLUME 1 PEI Core Interface

58 4/24/2015 Version 1.3 Errata A

4.8 Reset Services
The PEI Foundation publishes the following reset service:

• ResetSystem()

ResetSystem()

Summary
Resets the entire platform.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_RESET_SYSTEM) (
 IN CONST EFI_PEI_SERVICES **PeiServices
);

Parameters
PeiServices

An indirect pointer to the EFI_PEI_SERVICES table published by the PEI
Foundation.

Description
This service resets the entire platform, including all processors and devices, and reboots the system.
It is important to have a standard variant of this function for cases such as the following:

• Resetting the processor to change frequency settings

• Restarting hardware to complete chipset initialization

• Responding to exceptions from a catastrophic errorReturned Status Codes

Status Codes Returned

EFI_NOT_AVAILABLE_YET The service has not been installed yet.

Services - PEI

Version 1.3 Errata A 4/24/2015 59

4.9 I/O and PCI Services
• The PEI Foundation publishes CPU I/O and PCI Configuration services.

Platform Initialization Specification VOLUME 1 PEI Core Interface

60 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 61

5
PEI Foundation

5.1 Introduction
The PEI Foundation centers around the PEI Dispatcher. The dispatcher’s job is to hand control to
the PEIMs in an orderly manner. The PEI Foundation also assists in PEIM-to-PEIM
communication. The central resource for the module-to-module communication involves the PPI.
The marshalling of references to PPIs can occur using the installable or notification interface.

The PEI Foundation is constructed as an autonomous binary image that is of file type
EFI_FV_FILETYPE_PEI_CORE and is composed of the following:

• An authentication section

• A code image that is possibly PE32+

See the Platform Initialization Specification, Volume 3, for information on section and file types. If
the code that comprises the PEI Foundation is not a PE32+ image, then it is a raw binary whose
lowest address is the entry point to the PEI Foundation. The PEI Foundation is discovered and
authenticated by the Security (SEC) phase.

5.1.1 Prerequisites
The PEI phase is handed control from the Security (SEC) phase of the PI Architecture-compliant
boot process. The PEI phase must satisfy the following minimum prerequisites before it can begin
execution:

• Processor execution mode

• Access to the Boot Firmware Volume (BFV) that contains the PEI Foundation

It is expected that the SEC infrastructure code and PEI Foundation are not linked together as a single
ROMable executable image. The entry point from SEC into PEI is not architecturally fixed but is
instead dependent on the PEI Foundation location within FV0, or the Boot Firmware Volume.

5.1.2 Processor Execution Mode

5.1.2.1 Processor Execution Mode in IA-32 Intel® Architecture
In IA-32 Intel architecture, the Security (SEC) phase of the PI Architecture is responsible for placing
the processor in a native linear address mode by which the full address range of the processor is
accessible for code, data, and stack. For example, “flat 32” is the IA-32 processor generation mode
in which the PEI phase will execute. The processor must be in its most privileged “ring 0” mode, or
equivalent, and be able to access all memory and I/O space.

This prerequisite is strictly dependent on the processor generation architecture.

Platform Initialization Specification VOLUME 1 PEI Core Interface

62 4/24/2015 Version 1.3 Errata A

5.1.2.2 Processor Execution Mode in Itanium® Processor Family
The PEI Foundation will begin executing after the Security (SEC) phase has completed. The SEC
phase subsumed the System Abstraction Layer entry point (SALE_ENTRY) in Itanium®
architecture. In addition, the SEC phase makes the appropriate Processor Abstraction Layer (PAL)
calls or platform services to enable the temporary memory store. The SEC passes its handoff state to
the PEI Foundation in physical mode with some configured memory stack, such as the processor
cache configured as memory.

5.1.2.3 Access to the Boot Firmware Volume
The program that the Security (SEC) phase hands control to is known as the PEI Foundation. The
firmware volume (FV) in which the PEI Foundation resides is known as the Boot Firmware Volume
(BFV). PEIMs may reside in the BFV or other FVs. A “special” PEIM must be resident in the BFV
to provide information about the location of the other FVs.

Each file contained in the BFV that is required to boot must be able to be discovered and validated
by the PEI phase. This allows the PEI phase to determine if the FV has been corrupted.

The PEI Foundation and the PEIMs are expected to be stored in some reasonably tamper-proof
(albeit not necessarily in the strict security-based definition of the term) nonvolatile storage (NVS).
The storage is expected to be fairly analogous to a flat file system with the unique IDs substituting
for names. Rules for using the particular NVS might affect certain storage considerations, but a
standard data-only mechanism for locating PEIMs by ID is required. The PI Architecture
architecture describes the PI Firmware Volume format and PI Firmware File System format, with
the GUID convention of naming files. These standards are architectural for PEI inasmuch as the PEI
phase needs to directly support this file system.

The BFV can only be constructed of type EFI_FIRMWARE_FILE_SYSTEM2_GUID.

The PEI Foundation and some PEIMs required for recovery must be either locked into a
nonupdateable BFV or must be able to be updated via a “fault-tolerant” mechanism. The fault-
tolerant mechanism is designed such that, if the system halts at any point, either the old (preupdate)
PEIM or the newly updated PEIM is entirely valid and that the PEI phase can determine which is
valid.

5.1.2.4 Access to the Boot Firmware Volume in IA-32 Intel Architecture
In IA-32 Intel architecture, the Security (SEC) file is at the top of the Boot Firmware Volume (BFV).
This SEC file will have the 16-byte entry point for IA-32 and restarts at address 0xFFFFFFF0.

5.1.2.5 Access to the Boot Firmware Volume in Itanium Processor Family
In the Itanium processor family, the microcode starts up the Processor Abstraction Layer A (PAL-A)
code, which is the first layer of PAL code and is provided by the processor vendor, that resides in the
Boot Firmware Volume (BFV). This code minimally initializes the processor and then finds and
authenticates the second layer of PAL code, called PAL-B. The location of both PAL-A and PAL-B
can be found by consulting either of the following:

• The architected pointers in the ROM (near the 4 GiB region)

• The Firmware Interface Table (FIT) pointer in the ROM

PEI Foundation

Version 1.3 Errata A 4/24/2015 63

The PAL layer communicates with the OEM boot firmware using a single entry point called the
System Abstraction Layer entry point (SALE_ENTRY). The PEI Foundation will be located at the
SALE_ENTRY point on the boot firmware device for an Itanium-based system. The Itanium
processor family PEIMs, like other PEIMs, may reside in the BFV or other firmware volumes. A
“special” PEIM must be resident in the BFV to provide information about the location of the other
firmware volumes; this will be described in the context of the EFI_PEI_FIND_FV_PPI
description. It must also be noted that in an Itanium-based system, all the processors in each node
start up and execute the PAL code and subsequently enter the PEI Foundation. The BFV of a
particular node must be accessible by all the processors running in that node. This also means that
some of the PEIMs in the Itanium® architecture boot path will be multiprocessor (MP) aware.

In an Itanium-based system, it is also imperative that the organization of firmware modules in the
BFV must be such that at least the PAL-A is contained in the fault-tolerant regions. This processor-
specific PAL-A code authenticates the PAL-B code, which is usually contained in the non-fault-
tolerant regions of the firmware system. The PAL-A and PAL-B binary components are always
visible to all the processors in a node at the time of power-on; the system fabric should not need to be
initialized.

5.2 PEI Foundation Entry Point

5.2.1 PEI Foundation Entry Point
The Security (SEC) phase calls the entry point to the PEI Foundation with the following
information:

• A set of PPIs

• Size and location of the the Boot Firmware Volume (BFV)

• Size and location of the temporary RAM

• Size and location of the temporary RAM available for use by the PEI Foundation

• Size and location of the stack

The entry point is described in “Code Definitions” below.

Prototype
typedef
VOID
EFIAPI
(*EFI_PEI_CORE_ENTRY_POINT)(
 IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
 IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList
);

Parameters
SecCoreData

Points to a data structure containing information about the PEI core’s operating
environment, such as the size and location of temporary RAM, the stack location and

Platform Initialization Specification VOLUME 1 PEI Core Interface

64 4/24/2015 Version 1.3 Errata A

the BFV location. The type EFI_SEC_PEI_HAND_OFF is defined in “Related
Definitions” below.

PpiList

Points to a list of one or more PPI descriptors to be installed initially by the PEI core.
An empty PPI list consists of a single descriptor with the end-tag
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST. As part of its initialization
phase, the PEI Foundation will add these SEC-hosted PPIs to its PPI database such
that both the PEI Foundation and any modules can leverage the associated service
calls and/or code in these early PPIs.

Description
This function is the entry point for the PEI Foundation, which allows the SEC phase to pass
information about the stack, temporary RAM and the Boot Firmware Volume. In addition, it also
allows the SEC phase to pass services and data forward for use during the PEI phase in the form of
one or more PPIs.

There is no limit to the number of additional PPIs that can be passed from SEC into the PEI
Foundation. As part of its initialization phase, the PEI Foundation will add these SEC-hosted PPIs
to its PPI database such that both the PEI Foundation and any modules can leverage the associated
service calls and/or code in these early PPIs.

Related Definitions
typedef struct _EFI_SEC_PEI_HAND_OFF {
 UINT16 DataSize;
 VOID *BootFirmwareVolumeBase;
 UINTN BootFirmwareVolumeSize;
 VOID *TemporaryRamBase;
 UINTN TemporaryRamSize;
 VOID *PeiTemporaryRamBase;
 UINTN PeiTemporaryRamSize;
 VOID *StackBase;
 UINTN StackSize;
} EFI_SEC_PEI_HAND_OFF;

DataSize

Size of the data structure.

BootFirmwareVolumeBase

Points to the first byte of the boot firmware volume, which the PEI Dispatcher should
search for PEI modules.

BootFirmwareVolumeSize

Size of the boot firmware volume, in bytes.

TemporaryRamBase

Points to the first byte of the temporary RAM.

PEI Foundation

Version 1.3 Errata A 4/24/2015 65

TemporaryRamSize

Size of the temporary RAM, in bytes.

PeiTemporaryRamBase

Points to the first byte of the temporary RAM available for use by the PEI Foundation.
The area described by PeiTemporaryRamBase and PeiTemporaryRamSize
must not extend outside beyond the area described by TemporaryRamBase &
TemporaryRamSize. This area should not overlap with the area reported by
StackBase and StackSize.

PeiTemporaryRamSize

Size of the available temporary RAM available for use by the PEI Foundation, in
bytes.

StackBase

Points to the first byte of the stack. This are may be part of the memory described by
TemporaryRamBase and TemporaryRamSize or may be an entirely separate
area.

StackSize

Size of the stack, in bytes.

The information from SEC is mandatory information that is placed on the stack by the SEC phase to
invoke the PEI Foundation.

The SEC phase provides the required processor and/or platform initialization such that there is a
temporary RAM region available to the PEI phase. This temporary RAM could be a particular
configuration of the processor cache, SRAM, or other source. What is important with respect to this
handoff is that the PEI ascertain the available amount of cache as RAM from this data structure.

Similarly, the PEI Foundation needs to receive a priori information about where to commence the
dispatch of PEIMs. A platform can have various size BFVs. As such, the
BootFirmwareVolume value tells the PEI Foundation where it can expect to discover a firmware
volume header data structure, and it is this firmware volume that contains the PEIMs necessary to
perform the basic system initialization.

Finally, later phases of platform evolution might need many of the features and data that the SEC
phase might possibly have. Health Flag Bit Format describes the health and self-test information for
certain processors. To support this, the SEC phase can construct a EFI_PEI_PPI_DESCRIPTOR
and pass its address into the PEI Foundation as the final argument. The SEC can also pass an
optional PPI, SEC_PLATFORM_INFORMATION_PPI, as part of the PPI list that is included as the
final argument of EFI_PEI_STARTUP_DESCRIPTOR. This PPI abstracts platform-specific
information that the PEI Foundation needs to discover where to begin dispatching PEIMs. Other
possible values to pass into the PEI Foundation would include any security or verification services,
such as the Trusted Computing Group (TCG) access services, because the SEC would constitute the
Core Root-of-Trust Module (CRTM) in a TCG-conformant system.

There is no limit to the number of additional PPIs that can be passed from SEC into the PEI
Foundation. As part of its initialization phase, the PEI Foundation will add these SEC-hosted PPIs
to its PPI database such that both the PEI Foundation and any modules can leverage the associated
service calls and/or code in these early PPIs.

Platform Initialization Specification VOLUME 1 PEI Core Interface

66 4/24/2015 Version 1.3 Errata A

5.3 PEI Calling Convention Processor Binding
Unless otherwise specified, the calling convention used for PEI functions is the same as the one
specified in the UEFI specification. However, for certain processors, an alternate calling convention
is recommended for new PPI definitions.

5.4 PEI Services Table Retrieval
This section describes processor-specific mechanisms for retrieving a pointer to a pointer to the PEI
Services Table (EFI_PEI_SERVICES**) such as is commonly used in PEIMs. The means of
storage and retrieval are processor specific.

5.4.1 X86
For X86 processors, the EFI_PEI_SERVICES** is stored in the 4 bytes immediately preceding
the Interrupt Descriptor Table.

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which should be
placed in a library routine for portability between architectures:

IDTR32 STRUCT
Limit DW 1 DUP (?)
BaseAddress DD 1 DUP (?)
IDTR32 ENDS

sub esp, SIZEOF IDTR32
sidt FWORD PTR ss:[esp]
mov eax, [esp].IDTR32.BaseAddress
mov eax, DWORD PTR [eax – 4]
add esp, SIZEOF IDTR32

5.4.1.1 Interrupt Descriptor Table Initialization and Ownership Rules.
1. The SEC Core must initialize the IDT using the lidt command and ensure that the four-bytes

field immediately preceding the IDT base address resides within temporary memory.

2. The PEI Foundation initializes or updates the four-byte field immediately preceding the
currently loaded IDT base address.

3. Any PEIM can reinitialize the IDT with the following restrictions:

• The four-bytes field immediately prior to new IDT base address must reside within the
temporary or permanent memory.

• The four-byte field immediately preceding the old IDT base address must be copied to the
four-byte field immediately preceding the new IDT base address.

5.4.2 x64
For x64 processors, the EFI_PEI_SERVICES** is stored in eight bytes immediately preceding
the Interrupt Descriptor Table

PEI Foundation

Version 1.3 Errata A 4/24/2015 67

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which should be
placed in a library routine for portability between architectures:

IDTR64 STRUCT
Limit DW 1 DUP (?)
BaseAddress DQ 1 DUP (?)
IDTR64 ENDS

sub rsp, SIZEOF IDTR64
sidt [rsp]
mov rax, [rsp].IDTR64.BaseAddress
mov rax, QWORD PTR [rax – 8]
add rsp, SIZEOF IDTR64

5.4.2.1 Interrupt Descriptor Table Initialization and Ownership Rules.
1. The SEC Core must initialize the IDT using the lidt command and ensure that the eight-bytes

field immediately preceding the IDT base address resides within temporary memory.

2. The PEI initializes or updates the eight-byte field immediately preceding the currently loaded
IDT base address.

3. Any PEIM can reinitialize the IDT with the following restrictions:

• The eight-bytes field immediately prior to new IDT base address must reside within the
temporary or permanent memory

• The eight-byte field immediately preceding the old IDT base address must be copied to the
eight-byte field immediately preceding the new IDT base address.

5.4.3 Itanium Processor Family – Register Mechanism
For Itanium Processor Family processors, the EFI_PEI_SERVICES** is stored in kernel register
7 (ar.kr7). Information on the kernel registers for IPF can be found at http://www.intel.com/design/
itanium/downloads/245358.htm.

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which may be
placed in a library routine for portability between architectures:

AsmReadKr7
 mov r8, ar.kr7;;
 br.ret b0;;

EFI_PEI_SERVICES **
GetPeiServicesTablePointer (
 VOID
)
{
 return (EFI_PEI_SERVICES **)(UINTN)AsmReadKr7 ();
}

http://www.intel.com/design/itanium/downloads/245358.htm
http://www.intel.com/design/itanium/downloads/245358.htm

Platform Initialization Specification VOLUME 1 PEI Core Interface

68 4/24/2015 Version 1.3 Errata A

Note: Compilers should not be using KRs, they are reserved for OS use (i.e.,this is the overlap w/ the
Software Development Manual). Also, priv. level 3 code can only read KRs and not write them
anyway, only PL0 code can write these.

5.4.4 ARM Processor Family – Register Mechanism
For the ARM Processor Family processors, the EFI_PEI_SERVICES** is stored in a the
TPIDRURW read/write Software Thread ID register defined in the ARMv7-A Architectural
Reference Manual.

The EFI_PEI_SERVICES** can be retrieved with the following code fragment, which may be
placed in a library routine for portability between architectures:

CpuReadTPIDRURW:
 MRC p15, 0, r0, c13, c0, 2
 bx lr

EFI_PEI_SERVICES **
GetPeiServicesTablePointer (
 VOID
)
{
 return (EFI_PEI_SERVICES **)(UINTN)CpuReadTPIDRURW ();
}

5.4.4.1 ARM Vector Table
For ARM processors the vector table entries are instructions, and thus are limited to 24-bit relative
offset of a branch instruction. The PI specification requires that the 8 defined vectors contain the
following instruction LDR pc, [pc, #0x20]. This means the 32-bit address of the handler is contained
at a 32-byte offset from the address of the vector. When PI code hooks into the vector table it must
ensure that the 32-bit absolute address offset 32-bytes from the vector is what is updated. The first
code in the platform that initializes the vector table must fill it with 8 LDR pc, [pc, #0x20]
instructions.

5.5 PEI Dispatcher Introduction
The PEI Dispatcher’s job is to hand control to the PEIMs in an orderly manner. The PEI Dispatcher
consists of a single phase. It is during this phase that the PEI Foundation will examine each file in
the firmware volumes that contain files of type EFI_FV_FILETYPE_PEIM or
EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER (see the Platform Initialization Specification,
Volume 3, for file type definitions). It will examine the dependency expression (depex) and the
optional a priori file within each firmware file to decide when a PEIM is eligible to be dispatched.
The binary encoding of the depex will be the same as that of a depex associated with a PEIM.

PEI Foundation

Version 1.3 Errata A 4/24/2015 69

5.6 Ordering

5.6.1 Requirements
Except for the order imposed by an a priori file, it is not reasonable to expect PEIMs to be executed
in any order. A chipset initialization PEIM usually requires processor initialization and a memory
initialization PEIM usually requires chipset initialization. On the other hand, the PEIMs that satisfy
these requirements might have been authored by different organizations and might reside in different
FVs. The requirement is thus to, without memory, create a mechanism to allow for the definition of
ordering among the different PEIMs so that, by the time a PEIM executes, all of the requirements for
it to execute have been met.

Although the update and build processes assist in resolving ordering issues, they cannot be relied
upon completely. Consider a system with a removable processor card containing a processor and
firmware volume that plugs into a main system board. If the processor card is upgraded, it is entirely
reasonable that the user should expect the system to work even though no update program was
executed.

5.6.2 Requirement Representation and Notation
Requirements are represented by GUIDs, with each GUID representing a particular requirement.
The requirements are represented by two sets of data structures:

• The dependency expression (depex) of a given PEIM

• The installed set of PPIs maintained by the PEI Foundation in the PPI database

This mechanism provides for a “weak ordering” among PEIMs. If PEIMs A and B consume X
(written AcX and BcX), once a PEIM (C) that produces X (CpX) is executed, A and B can be
executed. There is no definition about the order in which A and B are executed.

5.6.3 PEI a priori File Overview
The PEI a priori file is a special file that may optionally be present in a firmware volume, and its
main purpose is to provide a greater degree of flexibility in the firmware design of a platform.
Specifically, the a priori file complements the dependency expression mechanism of PEI by
stipulating a series of modules which need be dispatched in a prescribed order.

There may be at most one PEI a priori file per firmware volume present in a platform. The a priori
file has a known GUID file name PEI_APRIORI_FILE_NAME_GUID, enabling the PEI
Foundation dispatch behavior to find the a priori file if it is present. The contents of the file shall
contain data of the format PEI_APRIORI_FILE_CONTENTS, with possibly zero entries. Every
time the PEI Dispatcher discovers a firmware volume, it first looks for the a priori file. The PEIM’s
enumerated in a an a priori file must exist in the same firmware volume as the a priori file iteself; no
cross-volume mapping is allowed. The PEI Foundation will invoke the PEIM’s listed in the
PEI_APRIORI_FILE_CONTENTS in the order found in this file.

Without the a priori file, PEIMs executed solely because of their dependency expressions are
weakly ordered. This means that the execution order is not completely deterministic between boots
or between platforms. In some cases a deterministic execution order is required. The PEI a priori file

Platform Initialization Specification VOLUME 1 PEI Core Interface

70 4/24/2015 Version 1.3 Errata A

provides a deterministic execution order of PEIMs using the following two implementation
methods.

The a priori model must be supported by all PEI Foundation implementations, but it does not
preclude additional a priori dispatch methodologies, as long as the latter models use a different
mechanism and/or file name GUID for the alternate a priori module listing. The a priori file format
follows below.

PEI Foundation

Version 1.3 Errata A 4/24/2015 71

PEI_APRIORI_FILE_NAME_GUID

Summary
The GUID PEI_APRIORI_FILE_NAME_GUID definition is the file name of the PEI a priori file
that is stored in a firmware volume.

GUID
#define PEI_APRIORI_FILE_NAME_GUID \
 {0x1b45cc0a,0x156a,0x428a,0xaf62,0x49,0x86,\
 0x4d,0xa0,0xe6,0xe6}

typedef struct {
EFI_GUID FileNamesWithinVolume[NumberOfModulesInVolume];
 // Optional list of file-names
} PEI_APRIORI_FILE_CONTENTS;

Parameters
FileNamesWithinVolume[]

An array of zero or more EFI_GUID type entries that match the file names of PEIM
modules in the same Firmware Volume. The maximum number of entries
NumberOfModulesInVolume is determined by the number of modules in the FV.

Description
This file must be of type EFI_FV_FILETYPE_FREEFORM and must contain a single section of
type EFI_SECTION_RAW. For details on firmware volumes, firmware file types, and firmware file
section types, see the Platform Initialization Specification, Volume 3.

5.6.3.1 Dispatch Behavior
The a priori file can contain a list of the EFI_GUIDs, which are the names of the PEIM files within
the same firmware volume. Herein, the PEI Foundation dispatch logic reads the list of names from
the a priori file and invokes the appropriately named module in the order enumerated in the a priori
file. This value can be calculated by means of the size of PEI_APRIORI_FILE_CONTENTS.
This shall be an integral number of GUID sizes.

If there is a file name within PEI_APRIORI_FILE_CONTENTS which is in the deleted state or
does not exist, the specific file name shall be ignored by the PEI Foundation dispatch logic and the
successive entry invoked.

During dispatch of PEIM’s in the a priori file, any PEIMs in newly published firmware volumes will
be ignored until completion of the a priori file dispatch. These interfaces would be assessed during
subsequent module dispatch, though.

In addition to ignoring any additional volumes published during a priori dispatch, any dependency
expressions associated with PEIMs listed within PEI_APRIORI_FILE_CONTENTS are ignored.

During dispatch of the a priori PEIM list, the PEI Dispatcher shall invoke the
EFI_PEI_SECURITY2_PPI AuthenticationState service, if it exists, to qualify the
dispatch of each module. This is the same behavior as the normal dependency-based dispatch. For

Platform Initialization Specification VOLUME 1 PEI Core Interface

72 4/24/2015 Version 1.3 Errata A

the a priori file in the boot firmware volume, for example, the EFI_PEI_SECURITY2_PPI could
be passed by the SEC into the PEI Foundation via the optional EFI_PEI_PPI_DESCRIPTOR list.
This latter scenario allows authentication of PEIMs in the a priori file.

After executing all of the PEIMs specified in the a priori file, the PEI Dispatcher searches the
firmware volume for any additional PEIMs and executes them according to their dependency
expressions.

5.6.4 PEIM Dependency Expressions
The sequencing of PEIMs is determined by evaluating a dependency expression associated with each
PEIM. This expression describes the requirements necessary for that PEIM to run, which imposes a
weak ordering on the PEIMs. Within this weak ordering, the PEIMs may be initialized in any order.

5.6.5 Types of Dependencies
The base unit of the dependency expression is a dependency. A representative syntax (used in this
document for descriptive purposes) for each dependency is shown in the following section. The
syntax is case-insensitive and mnemonics are used in place of non-human-readable data such as
GUIDs. White space is optional.

The operands are GUIDs of PPIs. The operand becomes “true” when a PPI with the GUID is
registered.

5.7 Dependency Expressions

5.7.1 Introduction
A PEIM is stored in a firmware volume as a file with one or more sections. One of the sections must
be a PE32+ image. If a PEIM has a dependency expression, then it is stored in a dependency
section. A PEIM may contain additional sections for compression and security wrappers. The PEI
Dispatcher can identify the PEIMs by their file type. In addition, the PEI Dispatcher can look up the
dependency expression for a PEIM by looking for a dependency section in a PEIM file. The
dependency section contains a section header followed by the actual dependency expression that is
composed of a packed byte stream of opcodes and operands.

Dependency expressions stored in dependency sections are designed to meet the following goals:

• Be small to conserve space.

• Be simple and quick to evaluate to reduce execution overhead.

These two goals are met by designing a small, stack-based instruction set to encode the dependency
expressions. The PEI Dispatcher must implement an interpreter for this instruction set to evaluate
dependency expressions. The instruction set is defined in the following topics.

See “Dependency Expression Grammar” on page 203 for an example BNF grammar for a
dependency expression compiler. There are many possible methods of specifying the dependency
expression for a PEIM. This example grammar demonstrates one possible design for a tool that can
be used to help build PEIM images.

PEI Foundation

Version 1.3 Errata A 4/24/2015 73

5.7.1.1 Dependency Expression Instruction Set
The following topics describe each of the dependency expression (depex) opcodes in detail.
Information includes a description of the instruction functionality, binary encoding, and any
limitations or unique behaviors of the instruction.

Several of the opcodes require a GUID operand. The GUID operand is a 16-byte value that matches
the type EFI_GUID that is described in Chapter 2 of the UEFI 2.0 specification. These GUIDs
represent PPIs that are produced by PEIMs and the file names of PEIMs stored in firmware volumes.
A dependency expression is a packed byte stream of opcodes and operands. As a result, some of the
GUID operands will not be aligned on natural boundaries. Care must be taken on processor
architectures that do allow unaligned accesses.

The dependency expression is stored in a packed byte stream using postfix notation. As a
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped off
the stack to perform an operation. After the last operation is performed, the value on the top of the
stack represents the evaluation of the entire dependency expression. If a push operation causes a
stack overflow, then the entire dependency expression evaluates to FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluates to FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions about
the maximum stack size it will support. Instead, it should be designed to grow the dependency
expression stack as required. In addition, PEIMs that contain dependency expressions should make
an effort to keep their dependency expressions as small as possible to help reduce the size of the
PEIM.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

If an END opcode is not present in a dependency expression, then the entire dependency expression
evaluates to FALSE.

The final evaluation of the dependency expression results in either a TRUE or FALSE result.

Note: NoteThe PEI Foundation will only support the evaluation of dependency expressions that are less
than or equal to 256 terms.

Table 7 is a summary of the opcodes that are used to build dependency expressions. The following
sections describe each of these instructions in detail.

Platform Initialization Specification VOLUME 1 PEI Core Interface

74 4/24/2015 Version 1.3 Errata A

Table 7. Dependency Expression Opcode Summary

PUSH

Syntax
PUSH <PPI GUID>

Description
Pushes a Boolean value onto the stack. If the GUID is present in the handle database, then a TRUE is
pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service LocatePpi().

Operation
Status = (*PeiServices)->LocatePpi (PeiServices, GUID, 0, NULL,
&Interface);
if (EFI_ERROR (Status)) {
 PUSH FALSE;
} Else {
 PUSH TRUE;
}

The following table defines the PUSH instruction encoding.

Table 8. PUSH Instruction Encoding

Behaviors and Restrictions
None.

Opcode Description

0x02 PUSH <PPI GUID>

0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

Byte Description

0 0x02

1..16 A 16-byte GUID that represents a protocol that is
produced by a different PEIM. The format is the same

at type EFI_GUID.

PEI Foundation

Version 1.3 Errata A 4/24/2015 75

AND

Syntax
AND

Description
Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 AND Operand2
PUSH Result

Table 9 defines the AND instruction encoding.

Table 9. AND Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x03

Platform Initialization Specification VOLUME 1 PEI Core Interface

76 4/24/2015 Version 1.3 Errata A

OR

Syntax
OR

Description
Pops two Boolean operands off the stack, performs a Boolean OR operation between the two
operands, and pushes the result back onto the stack.

Operation
Operand1 <= POP Boolean stack element
Operand2 <= POP Boolean stack element
Result <= Operand1 OR Operand2
PUSH Result

Table 10 defines the OR instruction encoding.

Table 10. OR Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x04

PEI Foundation

Version 1.3 Errata A 4/24/2015 77

NOT

Syntax
NOT

Description
Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

Operation
Operand <= POP Boolean stack element
Result <= NOT Operand
PUSH Result

Table 11 defines the NOT instruction encoding.

Table 11. NOT Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x05

Platform Initialization Specification VOLUME 1 PEI Core Interface

78 4/24/2015 Version 1.3 Errata A

TRUE

Syntax
TRUE

Description
Pushes a Boolean TRUE onto the stack.

Operation
PUSH TRUE

Table 12 defines the TRUE instruction encoding.

Table 12. TRUE Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x06

PEI Foundation

Version 1.3 Errata A 4/24/2015 79

FALSE

Syntax
FALSE

Description
Pushes a Boolean FALSE onto the stack.

Operation
PUSH FALSE

Table 13 defines the FALSE instruction encoding.

Table 13. FALSE Instruction Encoding

Behaviors and Restrictions
None.

Byte Description

0 0x07

Platform Initialization Specification VOLUME 1 PEI Core Interface

80 4/24/2015 Version 1.3 Errata A

END

Syntax
END

Description
Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

Operation
POP Result
RETURN Result

Table 14 defines the END instruction encoding.

Table 14. END Instruction Encoding

Behaviors and Restrictions
This opcode must be the last one in a dependency expression.

Byte Description

0 0x08

PEI Foundation

Version 1.3 Errata A 4/24/2015 81

5.7.2 Dependency Expression with No Dependencies
A PEIM that does not have any dependencies will have a dependency expression that evaluates to
TRUE with no dependencies on any PPI GUIDs.

5.7.3 Empty Dependency Expressions
If a PEIM file does not contain a dependency section, then the PEIM has an empty dependency
expression.

5.7.4 Dependency Expression Reverse Polish Notation (RPN)
The actual equations will be presented by the PEIM in a simple-to-evaluate form, namely postfix.

The following is a BNF encoding of this grammar. See “Dependency Expression Instruction Set” on
page 73 for definitions of the dependency expressions.
<statement> ::= <expression> END

<expression> ::= PUSH <guid> |
 TRUE |
 FALSE |
 <expression> NOT |
 <expression> <expression> OR |

 <expression> <expression> AND

5.8 Dispatch Algorithm

5.8.1 Overview

5.8.1.1 Ordering Algorithm
The dispatch algorithm repeatedly scans through the PEIMs to find those that have not been
dispatched. For each PEIM that is found, it scans through the PPI database of PPIs that have been
published, searching for elements in the yet-to-be-dispatched PEIM's depex. If all of the elements in
the depex are in the PEI Foundation's PPI database, the PEIM is dispatched. The phase terminates
when all PEIMs are scanned and none dispatched.

Note: The PEIM may be dispatched without a search if its depex is NULL.

5.8.1.2 Multiple Firmware Volume Support
In order to expose a new firmware volume, a PEIM should install an instance of
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI containing the firmware volume format GUID, the
starting address and the size of the firmware volume’s window. PEIMs exposing firmware volumes
which have a firmware volume format other than the PI Architecture Firmware Volume format
should include the firmware volume format GUID in their dependency expression.

PEIMs exposing memory-mapped firmware volumes should create a memory resource descriptor
HOB for the memory occupied by the firmware volume if it is outside of the PEI memory.

Platform Initialization Specification VOLUME 1 PEI Core Interface

82 4/24/2015 Version 1.3 Errata A

For each new exposed firmware volume, the PEI Foundation will take the following steps:

1. Create a new firmware volume handle. The firmware volume handle may be created by the PEI
Foundation or by the optional EFI_PEI_FIRMWARE_VOLUME_PPI.

2. Create a new firmware volume HOB.

3. If the firmware volume’s format (identified by its GUID) is not supported directly by the PEI
Foundation and it is not supported by any installed EFI_PEI_FIRMWARE_VOLUME_PPI, the
firmware volume is skipped.

4. Otherwise, all PEIMs in the firmware volume are scheduled for dispatching.

5. Find the a priori file, if it exists, and dispatch any PEIMs listed in it.

5.8.2 Requirements

5.8.2.1 Requirements of a Dispatching Algorithm
The dispatching algorithm must meet the following requirements:

1. Preserve the dispatch weak ordering.

2. Prevent an infinite loop.

3. Control processor resources.

4. Preserve proper dispatch order.

5. Make use of available memory.

6. Invoke each PEIM’s entry point.

7. Know when the PEI Dispatcher tasks are finished.

5.8.2.2 Preserving Weak Ordering
The algorithm must preserve the weak ordering implied by the depex.

5.8.2.3 Preventing Infinite Loops
It is illegal for AcXpY (A consumes X and produces Y) and BcYpX. This is known as a cycle and is
unresolvable even if memory is available. At a minimum, the dispatching algorithm must not end up
in an infinite loop in such a scenario. With the algorithm described above, neither PEIM would be
executed.

5.8.2.4 Controlling Processor Register Resources
The algorithm must require that a minimum of the processor's register resources be preserved while
PEIMs are dispatched.

5.8.2.5 Preserving Proper Dispatch Order
The algorithm must preserve proper dispatch order in cases such as the following:

 AcQpZ BcLpR CpL DcRpQ

The issue with the above scenario is that A and B are not obviously related until D is processed. If A
and B were in one firmware volume and C and D were in another, the ordering could not be resolved
until execution. The proper dispatch order in this case is CBDA. The algorithm must resolve this
type of case.

PEI Foundation

Version 1.3 Errata A 4/24/2015 83

5.8.2.6 Using Available Memory
The PEI Foundation begins operation using a temporary memory store that contains the initial call
stack from the Security (SEC) phase. The SEC phase must pass the size and location of the stack
and the size and location of the temporary memory store.

The PEI stack will be available for subsequent PEIM invocations, and the PEI heap will be used for
PEIM memory allocations and Hand-Off Block (HOB) creation.

There can be no memory writes to the address space beyond this initial temporary memory until a
PEIM registers a permanent memory range using the PEI Service InstallPeiMemory(). When
permanent memory is installed, the PEI Foundation will copy the call stack that is located in
temporary memory into a segment of permanent memory. If necessary, the size of the call stack can
be expanded to to support the subsequent transition into DXE.

In addition to the call stack, the PEI Foundation will copy the following from temporary to
permanent memory:

• PEI Foundation private data

• PEI Foundation heap

• HOB list

Any permanent memory consumed in this fashion by the PEI Foundation will be described in a
HOB, which the PEI Foundation will create.

In addition, if there were any EFI_PEI_PPI_DESCRIPTORs created in the temporary memory
heap, their respective locations have been translated by an offset equal to the difference between the
original heap location in temporary memory and the destination location in permanent memory. In
addition to this heap copy, the PEI Foundation will traverse the PEI PPI database. Any references to
EFI_PEI_PPI_DESCRIPTORs that are in temporary memory will be fixed up by the PEI
Foundation to reflect the location of the EFI_PEI_PPI_DESCRIPTORs destination in permanent
memory.

The PEI Foundation will invoke the DXE IPL PPI after dispatching all candidate PEIMs. The
DXE IPL PPI may have to allocate additional regions from permanent memory to be able to load
and relocate the DXE Foundation from its firmware store. The DXE IPL PPI will describe these
memory allocations in the appropriate HOB such that when control is passed to DXE, an accurate
record of the memory usage will be known to the DXE Foundation.

5.8.2.7 Invoking the PEIM's Entry Point
The entry point of a PEIM uses the calling conventions specified in the UEFI 2.0 specification,
which detail how parameters are passed to a function. After assessing a PEIM's dependency
expression to see if it can be invoked, the PEI Foundation will pass control to the PEIM's entry point.
This entry point is a value described in the PEIM's image header.

The PEI Foundation will pass an indirect pointer to the PEI Services Table and the handle of the
firmware file when it invokes the PEIM.

In the entry point of the PEIM, the PEIM has the opportunity do the following:

• Locate other PPIs

• Install PPIs that reference services within the body of this PEIM

• Register for a notification

Platform Initialization Specification VOLUME 1 PEI Core Interface

84 4/24/2015 Version 1.3 Errata A

• Upon return from the PEIM’s entry point, it returns back to the PEI Foundation.

• See the Microsoft Portable Executable and Common Object File Format Specification for
information on PE/COFF images; see “TE Image” on page 205 for information on TE images.

5.8.2.8 Knowing When Dispatcher Tasks Are Finished
The PEI Dispatcher is finished with a pass when it has finished dispatching all the PEIMs that it can.
During a pass, some PEIMs might not have been dispatched if they had requirements that no other
PEIM has met.

However, with the weak ordering defined in previous requirements, system RAM could possibly be
initialized before all PEIMs are given a chance to run. This situation can occur because the system
RAM initialization PEIM is not required to consume all resources provided by all other PEIMs. The
PEI Dispatcher must recognize that its tasks are not complete until all PEIMs have been given an
opportunity to run.

5.8.2.9 Reporting PEI Core Location
If the EFI_PEI_LOADED_IMAGE_PPI is supported by the PEI Dispatcher, then the PEI
Foundation must first report its own location by using the PEI Service InstallPpi() and the
EFI_PEI_LOADED_IMAGE_PPI. If the FileHandle is unknown, then NULL can be used. PEI
Foundation must also report the location of the PEIM loaded by creating the
EFI_PEI_LOADED_IMAGE_PPI and call the PEI Service ReinstallPpi().

5.8.3 Example Dispatch Algorithm
The following pseudo code is an example of an algorithm that uses few registers and implements the
requirements listed in the previous section. The pseudo code uses simple C-like statements but more
assembly-like flow-of-control primitives.

The dispatch algorithm’s main data structure is the DispatchedBitMap as described in Table 15.

Table 15. Example Dispatch Map

Table 15 is an example of a dispatch in a given set of firmware volumes (FVs). Following are the
steps in this dispatch:

1. The algorithm scans through the PEIMs that it knows about.

PEIM# Item PEIM# Item

FV0 4 FV1

PEI Foundation <non PEIM>

<non PEIM> <non PEIM>

0 PEIM <non PEIM>

1 PEIM 5 PEIM

2 PEIM with

EFI_PEI_FIRMWARE_VOLUME_PPI
<non PEIM>

<non PEIM> 6 PEIM

3 PEIM 7 PEIM

PEI Foundation

Version 1.3 Errata A 4/24/2015 85

2. When it comes to a PEIM that has not been dispatched, it verifies that all of the required PPIs
listed in the dependency expression (depex) are in the PPI database.

3. If all of the GUIDed interfaces listed in the depex are available, the PEIM is invoked.

4. Create the EFI_PEI_LOADED_IMAGE_PPI and call the PEI Service ReinstallPpi()

5. Iterations continue through all known PEIMs in all known FVs until a pass is made with no
PEIMs dispatched, thus signifying completion.

6. After the dispatch completes, the PEI Foundation locates and invokes the GUID for the
DXE IPL PPI, passing in the HOB address and a valid stack. Failing to discover the GUID for
the DXE IPL PPI shall be an error.

5.8.4 Dispatching When Memory Exists
The purpose of the PEI phase of execution is to discover and initialize main memory. As such, a
large number of the modules execute from the nonvolatile firmware store and cannot be shadowed.
However, there are several circumstances in which the shadowing of a PEIM and the relocation of
this image into memory are of interest. This can include but is not limited to compressing PEIMs,
such as the DXE IPL PPI, and those modules that are required for crisis recovery.

The PEI architecture shall not dictate what compression mechanism is to be used, but there will be a
Decompress service that is published by some PEIM that the PEI Foundation will discover and use
when it becomes available. In addition, loading images also requires a full image-relocation service
and the ability to flush the cache. The former will allow the PEIM that was relocated into RAM to
have its relocations adjust pursuant to the new load address. The latter service will be invoked by
the PEI Foundation so that this relocated code can be run, especially on Itanium-based platforms that
do not have a coherent data and code cache.

A compressed section shall have an implied dependency on permanent memory having been
installed. To speed up boot time, however, there can be an explicit annotation of this dependency.

5.8.5 PEIM Dispatching
When the PEI Dispatcher has decided to invoke a PEIM, the following steps are taken:

1. If any instances of EFI_PEI_LOAD_FILE_PPI are installed, they are called, one at a time,
until one reports EFI_SUCCESS.

2. If no instance reports EFI_SUCCESS or there are no instances installed, then the built-in
support for (at least) the PE32+/TE XIP image formats is used.

3. If any instances of EFI_PEI_SECURITY2_PPI are installed, they are called, one at a time, as
long as none returns an EFI_SECURITY_VIOLATION error. If such an error is returned, then
the PEIM is marked as dispatched, but is never invoked.

4. The PEIM’s entry point is invoked with the file’s handle and the PEI Services Table pointer.

5. The PEIM is marked as dispatched.

The PEI Core may decide, because of memory constraints or performance reasons, to dispatch XIP
instead of shadowing into memory.

Platform Initialization Specification VOLUME 1 PEI Core Interface

86 4/24/2015 Version 1.3 Errata A

5.8.6 PEIM Authentication
The PEI specification provides three methods which the PEI Foundation can use to authenticate a
PEIM:

1. The authentication information could be encoded as part of a GUIDed section. In this case, the
provider of the EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI (see the Platform
Initialization Specification, Volume 3) can check the authentication data and return the results
in AttestationState.

2. The authentication information can be checked by the provider of the
EFI_PEI_LOAD_FILE_PPI (see the Platform Initialization Specification, Volume 3) and
the results returned in AttestationState.

3. The PEI Foundation may implement the digital signing as described in the UEFI 2.0
specification.

In all cases, the result of the authentication must be passed to any instances of the
EFI_PEI_SECURITY2_PPI.

Version 1.3 Errata A 4/24/2015 87

6
Architectural PPIs

6.1 Introduction
The PEI Foundation and PEI Dispatcher rely on the following PEIM-to-PEIM Interfaces (PPIs) to
perform its work. The abstraction provided by these interfaces allows dispatcher algorithms to be
improved over time or have some platform variability without affecting the rest of PEI.

The key to these PPIs is that they are architecturally defined interfaces consumed by the PEI
Foundation, but they may not be published by the PEI Foundation.

6.2 Required Architectural PPIs

6.2.1 Master Boot Mode PPI (Required)

EFI_PEI_MASTER_BOOT_MODE_PPI (Required)

Summary
The Master Boot Mode PPI is installed by a PEIM to signal that a final boot has been determined and
set. This signal is useful in that PEIMs with boot-mode-specific behavior (for example, S3 versus
normal) can put this PPI in their dependency expression.

GUID
#define EFI_PEI_MASTER_BOOT_MODE_PEIM_PPI \
 {0x7408d748, 0xfc8c, 0x4ee6, 0x92, 0x88, 0xc4, 0xbe, \
 0xc0, 0x92, 0xa4, 0x10}

PPI Interface Structure
None.

Description
The Master Boot Mode PPI is a PPI GUID and must be in the dependency expression of every PEIM
that modifies the basic hardware. The dispatch, or entry point, of the module that installs the Master
Boot Mode PPI modifies the boot path value in the following ways:

• Directly, through the PEI Service SetBootMode()

• Indirectly through its optional subordinate boot path modules

The PEIM that publishes the Master Boot Mode PPI has a non-null dependency expression if there
are subsidiary modules that publish alternate boot path PPIs. The primary reason for this PPI is to be
the root of dependencies for any child boot mode provider PPIs.

Platform Initialization Specification VOLUME 1 PEI Core Interface

88 4/24/2015 Version 1.3 Errata A

Status Codes Returned
None.

6.2.2 DXE IPL PPI (Required)

EFI_DXE_IPL_PPI (Required)

Summary
Final service to be invoked by the PEI Foundation.

GUID
#define EFI_DXE_IPL_PPI_GUID \
 { 0xae8ce5d, 0xe448, 0x4437, 0xa8, 0xd7, 0xeb, 0xf5, \
 0xf1, 0x94, 0xf7, 0x31 }

PPI Interface Structure
typedef struct _EFI_DXE_IPL_PPI {
 EFI_DXE_IPL_ENTRY Entry;
} EFI_DXE_IPL_PPI;

Parameters
Entry

The entry point to the DXE IPL PPI. See the Entry() function description.

Description
After completing the dispatch of all available PEIMs, the PEI Foundation will invoke this PPI
through its entry point using the same handoff state used to invoke other PEIMs. This special
treatment by the PEI Foundation effectively makes the DXE IPL PPI the last PPI to execute during
PEI. When this PPI is invoked, the system state should be as follows:

• Single thread of execution

• Interrupts disabled

• Processor mode as defined for PEI

The DXE IPL PPI is responsible for locating and loading the DXE Foundation. The DXE IPL PPI
may use PEI services to locate and load the DXE Foundation. As long as the DXE IPL PPI is using
PEI Services, it must obey all PEI interoperability rules of memory allocation, HOB list usage, and
PEIM-to-PEIM communication mechanisms.

Architectural PPIs

Version 1.3 Errata A 4/24/2015 89

EFI_DXE_IPL_PPI.Entry()

Summary
The architectural PPI that the PEI Foundation invokes when there are no additional PEIMs to
invoke.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DXE_IPL_ENTRY) (
 IN CONST EFI_DXE_IPL_PPI *This,
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_HOB_POINTERS HobList
);

Parameters
This

Pointer to the DXE IPL PPI instance.

PeiServices

Pointer to the PEI Services Table.

HobList

Pointer to the list of Hand-Off Block (HOB) entries.

Related Definitions

//
// Union of all the possible HOB Types
//
typedef union {
 EFI_HOB_GENERIC_HEADER *Header;
 EFI_HOB_HANDOFF_INFO_TABLE *HandoffInformationTable;
 EFI_HOB_MEMORY_ALLOCATION *MemoryAllocation;
 EFI_HOB_MEMORY_ALLOCATION_BSP_STORE *MemoryAllocationBspStore;
 EFI_HOB_MEMORY_ALLOCATION_STACK *MemoryAllocationStack;
 EFI_HOB_MEMORY_ALLOCATION_MODULE *MemoryAllocationModule;
 EFI_HOB_RESOURCE_DESCRIPTOR *ResourceDescriptor;
 EFI_HOB_GUID_TYPE *Guid;
 EFI_HOB_FIRMWARE_VOLUME *FirmwareVolume;
 EFI_HOB_CPU *Cpu;
 EFI_HOB_MEMORY_POOL *Pool;
 UINT8 *Raw;
} EFI_PEI_HOB_POINTERS;

Platform Initialization Specification VOLUME 1 PEI Core Interface

90 4/24/2015 Version 1.3 Errata A

Description
This function is invoked by the PEI Foundation. The PEI Foundation will invoke this service when
there are no additional PEIMs to invoke in the system. If this PPI does not exist, it is an error
condition and an ill-formed firmware set. The DXE IPL PPI should never return after having been
invoked by the PEI Foundation. The DXE IPL PPI can do many things internally, including the
following:

• Invoke the DXE entry point from a firmware volume.

• Invoke the recovery processing modules.

• Invoke the S3 resume modules.

Status Codes Returned

EFI_SUCCESS Upon this return code, the PEI Foundation should enter some
exception handling. Under normal circumstances, the DXE IPL
PPI should not return.

Architectural PPIs

Version 1.3 Errata A 4/24/2015 91

6.2.3 Memory Discovered PPI (Required)

EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)

Summary
This PPI is published by the PEI Foundation when the main memory is installed. It is essentially a
PPI with no associated interface. Its purpose is to be used as a signal for other PEIMs who can
register for a notification on its installation.

GUID
#define EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI_GUID \
 {0xf894643d, 0xc449, 0x42d1, 0x8e, 0xa8, 0x85, 0xbd, \
 0xd8, 0xc6, 0x5b, 0xde}

PPI Interface Structure
None.

Description
This PPI is installed by the PEI Foundation at the point of system evolution when the permanent
memory size has been registered and waiting PEIMs can use the main memory store. Using this
GUID allows PEIMs to do the following:

• Be notified when this PPI is installed.

• Include this PPI's GUID in the EFI_DEPEX.

The expectation is that a compressed PEIM would depend on this PPI, for example. The PEI
Foundation will relocate the temporary cache to permanent memory prior to this installation.

Status Codes Returned
None.

Platform Initialization Specification VOLUME 1 PEI Core Interface

92 4/24/2015 Version 1.3 Errata A

6.3 Optional Architectural PPIs

6.3.1 Boot in Recovery Mode PPI (Optional)

EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)

Summary
This PPI is installed by the platform PEIM to designate that a recovery boot is in progress.

GUID
#define EFI_PEI_BOOT_IN_RECOVERY_MODE_PEIM_PPI \
 {0x17ee496a, 0xd8e4, 0x4b9a, 0x94, 0xd1, 0xce, 0x82, \
 0x72, 0x30, 0x8, 0x50}

PPI Interface Structure
None.

Description
This optional PPI is installed by the platform PEIM to designate that a recovery boot is in progress.
Its purpose is to allow certain PEIMs that wish to be dispatched only during a recovery boot to
include this PPI in their dependency expression (depex). Including this PPI in the depex allows the
PEI Dispatcher to skip recovery-specific PEIMs during normal restarts and thus save on boot time.
This PEIM has no associated PPI and is used only to designate the system state as being “in a crisis
recovery dispatch.”

Status Codes Returned
None.

Architectural PPIs

Version 1.3 Errata A 4/24/2015 93

6.3.2 End of PEI Phase PPI (Optional)

EFI_PEI_END_OF_PEI_PHASE_PPI (Optional)

Summary
This PPI will be installed at the end of PEI for all boot paths, including normal, recovery, and S3. It
allows for PEIMs to possibly quiesce hardware, build handoff information for the next phase of
execution, or provide some terminal processing behavior.

GUID
#define EFI_PEI_END_OF_PEI_PHASE_PPI_GUID \
 {0x605EA650, 0xC65C, 0x42e1, 0xBA, 0x80, 0x91, 0xA5, \
 0x2A, 0xB6,0x18, 0xC6}

PPI Interface Structure
None.

Description
This PPI is installed by the DXE IPL PPI to indicate the end of the PEI usage of memory and
ownership of memory allocation by the DXE phase.

For the BOOT_ON_S3_RESUME boot mode, this PPI is installed by the
EFI_PEI_S3_RESUME_PPI.S3RestoreConfig() (Section 8.6 of the PI1.2 Specification,
Volume 5) just before jump to OS waking vector.

The intended use model is for any agent that needs to do cleanup, such as memory services to
convert internal metadata for tracking memory allocation into HOBs, to have some distinguished
point in which to do so. The PEI Memory Services would register for a callback on the installation
of this PPI.

Status Codes Returned
None.

Platform Initialization Specification VOLUME 1 PEI Core Interface

94 4/24/2015 Version 1.3 Errata A

6.3.3 PEI Reset PPI

EFI_PEI_RESET_PPI (Optional)

Summary
This PPI is installed by some platform- or chipset-specific PEIM that abstracts the Reset Service to
other agents.

GUID
#define EFI_PEI_RESET_PPI_GUID \
 {0xef398d58, 0x9dfd, 0x4103, 0xbf, 0x94, 0x78, 0xc6, \
 0xf4, 0xfe, 0x71, 0x2f}

PPI Interface Structure
typedef struct _EFI_PEI_RESET_PPI {
 EFI_PEI_RESET_SYSTEM ResetSystem;
} EFI_PEI_RESET_PPI;

Parameters
ResetSystem

A service to reset the platform. See the ResetSystem() function description in
“Reset Services” on page 58.

Description
These services provide a simple reset service. See the ResetSystem() function description for a
description of this service.

Architectural PPIs

Version 1.3 Errata A 4/24/2015 95

6.3.4 Status Code PPI (Optional)

EFI_PEI_PROGRESS_CODE_PPI (Optional)

Summary
This service is published by a PEIM. There can be only one instance of this service in the system. If
there are multiple variable access services, this PEIM must multiplex these alternate accessors and
provide this single, read-only service to the other PEIMs and the PEI Foundation. This singleton
nature is important because the PEI Foundation will notify when this service is installed.

GUID
#define EFI_PEI_REPORT_PROGRESS_CODE_PPI_GUID \
 {0x229832d3, 0x7a30, 0x4b36, 0xb8, 0x27, 0xf4, 0xc, \
 0xb7, 0xd4, 0x54, 0x36);

PPI Interface Structure
typedef struct _EFI_PEI_PROGRESS_CODE_PPI {
 EFI_PEI_REPORT_STATUS_CODE ReportStatusCode;
} EFI_PEI_PROGRESS_CODE_PPI;

Parameters
ReportStatusCode

Service that allows PEIMs to report status codes. See the ReportStatusCode()
function description in “Status Code Service” on page 53.

Description
See the ReportStatusCode() function description for a description of this service.

Platform Initialization Specification VOLUME 1 PEI Core Interface

96 4/24/2015 Version 1.3 Errata A

6.3.5 Security PPI (Optional)

EFI_PEI_SECURITY2_PPI (Optional)

Summary
This PPI is installed by some platform PEIM that abstracts the security policy to the PEI Foundation,
namely the case of a PEIM’s authentication state being returned during the PEI section extraction
process.

GUID
#define EFI_PEI_SECURITY2_PPI_GUID \
 { 0xdcd0be23, 0x9586, 0x40f4, 0xb6, 0x43, 0x6, 0x52, \
 0x2c, 0xed, 0x4e, 0xde }

PPI Interface Structure
typedef struct _EFI_PEI_SECURITY2_PPI {
 EFI_PEI_SECURITY_AUTHENTICATION_STATE AuthenticationState;
} EFI_PEI_SECURITY2_PPI;

Parameters
AuthenticationState

Allows the platform builder to implement a security policy in response to varying file
authentication states. See the AuthenticationState() function description.

Description
This PPI is a means by which the platform builder can indicate a response to a PEIM's authentication
state. This can be in the form of a requirement for the PEI Foundation to skip a module using the
DeferExecution Boolean output in the AuthenticationState() member function.
Alternately, the Security PPI can invoke something like a cryptographic PPI that hashes the PEIM
contents to log attestations, for which the FileHandle parameter in
AuthenticationState() will be useful. If this PPI does not exist, PEIMs will be considered
trusted.

Architectural PPIs

Version 1.3 Errata A 4/24/2015 97

EFI_PEI_SECURITY2_PPI.AuthenticationState()

Summary
Allows the platform builder to implement a security policy in response to varying file authentication
states.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SECURITY_AUTHENTICATION_STATE) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_SECURITY2_PPI *This,
 IN UINT32 AuthenticationStatus,
 IN EFI_PEI_FV_HANDLE FvHandle,
 IN EFI_PEI_FILE_HANDLE FileHandle,
 IN OUT BOOLEAN *DeferExecution
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Interface pointer that implements the particular EFI_PEI_SECURITY2_PPI
instance.

AuthenticationStatus

Authentication status of the file.

FvHandle

Handle of the volume in which the file resides. Type EFI_PEI_FV_HANDLE is
defined in FfsFindNextVolume. This allows different policies depending on
different firmware volumes.

FileHandle

Handle of the file under review. Type EFI_PEI FILE HANDLE is defined in
FfsFindNextFile.

DeferExecution

Pointer to a variable that alerts the PEI Foundation to defer execution of a PEIM.

Description
This service is published by some platform PEIM. The purpose of this service is to expose a given
platform's policy-based response to the PEI Foundation. For example, if there is a PEIM in a
GUIDed encapsulation section and the extraction of the PEI file section yields an authentication
failure, there is no a priori policy in the PEI Foundation. Specifically, this situation leads to the

Platform Initialization Specification VOLUME 1 PEI Core Interface

98 4/24/2015 Version 1.3 Errata A

question whether PEIMs that are either not in GUIDed sections or are in sections whose
authentication fails should still be executed.

In fact, it is the responsibility of the platform builder to make this decision. This platform-scoped
policy is a result that a desktop system might not be able to skip or not execute PEIMs because the
skipped PEIM could be the agent that initializes main memory. Alternately, a system may require
that unsigned PEIMs not be executed under any circumstances. In either case, the PEI Foundation
simply multiplexes access to the Section Extraction PPI and the Security PPI. The Section
Extraction PPI determines the contents of a section, and the Security PPI tells the PEI Foundation
whether or not to invoke the PEIM.

The PEIM that publishes the AuthenticationState() service uses its parameters in the
following ways:

• AuthenticationStatus conveys the source information upon which the PEIM acts.

• The DeferExecution value tells the PEI Foundation whether or not to dispatch the PEIM.

In addition, between receiving the AuthenticationState() from the PEI Foundation and
returning with the DeferExecution value, the PEIM that publishes
AuthenticationState() can do the following:

• Log the file state.

• Lock the firmware hubs in response to an unsigned PEIM being discovered.

These latter behaviors are platform- and market-specific and thus outside the scope of the PEI CIS.

Status Codes Returned

6.3.6 Temporary RAM Support PPI (Optional)

EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional)

Summary
This service allows for migrating from some contents of Temporary RAM store, which is
instantiated during the SEC phase, into permanent RAM. The latter store will persist unmodified
into the subsequent phase of execution, such as DXE. This service may be published by the SEC as
part of the SEC-to-PEI handoff or published by any other PEIM.

EFI_SUCCESS The service performed its action successfully.

EFI_SECURITY_VIOLATION The object cannot be trusted

Architectural PPIs

Version 1.3 Errata A 4/24/2015 99

GUID
#define EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI_GUID \
 {0xdbe23aa9, 0xa345, 0x4b97,\
 0x85, 0xb6, 0xb2, 0x26, 0xf1, 0x61, 0x73, 0x89}

Prototype
typedef struct _EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI {
 TEMPORARY_RAM_MIGRATION TemporaryRamMigration;
} EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI;

Parameters
TemporaryRamMigration

Perform the migration of contents of Temporary RAM to Permanent RAM. This
service may terminate the Temporary RAM, for example, if it cannot coexist with the
Permanent RAM. See the TemporaryRamMigration() function description.

Description
This service abstracts the ability to migrate contents of the platform early memory store. This is an
optional PPI that is only required for platforms that may have side effects when both Temporary
RAM and Permanent RAM are enabled. This PPI provides a service that orchestrates the complete
transition from Temporary RAM to Permanent RAM that avoids side effects. This includes the
migration of all data, a stack switch action, and possibly the disabling of Temporary RAM.

If a platform does not have any side effects when both Temporary RAM and Permanent RAM are
enabled, and the platform is required to disable the use of Temporary RAM, then
EFI_PEI_TEMPORARY_RAM_DONE should be produced.

If a platform does not have any side effects when both Temporary RAM and Permanent RAM are
enabled, and the platform is not required to disable the use of Temporary RAM, then neither
EFI_PEI_TEMPORARY_RAM_DONE nor EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI should
be produced.

Platform Initialization Specification VOLUME 1 PEI Core Interface

100 4/24/2015 Version 1.3 Errata A

EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI.TemporaryRamMigration
()

Summary
This service of the EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI that migrates temporary RAM
into permanent memory.

Prototype
typedef
EFI_STATUS
(EFIAPI * TEMPORARY_RAM_MIGRATION) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
 IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
 IN UINTN CopySize
);

Parameters
PeiServices

Pointer to the PEI Services Table.

TemporaryMemoryBase

Source Address in temporary memory from which the SEC or PEIM will copy the
Temporary RAM contents.

PermanentMemoryBase

Destination Address in permanent memory into which the SEC or PEIM will copy the
Temporary RAM contents.

CopySize

Amount of memory to migrate from temporary to permanent memory.

Description
This service is published by the SEC module or a PEIM. It migrates the Temporary RAM contents
into Permanent RAMRAM and performs all actions required to switch the active stack from
Temporary RAM to Permanent RAM. The address range from PermanentMemoryBase to
PermanentMemoryBase + CopySize should fix within the range of memory provided to the
PEI Foundation as part of the InstallPeiMemory()core services. Also, since the SEC may
have sequestered some of the Temporary RAM for its own data storage and PPI’s, the SEC handoff
now includes addresses and sizes of both the "available" (PeiTemporaryRamBase/
PeiTemporaryRamSize) and "total" (TemporaryRamBase/TemporaryRamSize)
Temporary RAM as separate numbers.

PeiTemporaryRamBase is used by the PEI foundation for its resource management;
TemporaryRamBase is used by the foundation as an input to this
TemporaryRamMigration() service call. As such, the PEI foundation is the only agent who
knows the full extent of the Temporary RAM store that needs migration to Permanent RAM. It will

Architectural PPIs

Version 1.3 Errata A 4/24/2015 101

use this full extent as the CopySize argument in this PPI invocation. At minimum, the CopySize
must include the portion of the Temporary RAM used by the SEC.

The PEI Foundation implementation will invoke this PPI service TemporaryRamMigration(),
if present, after InstallPeiMemory() is invoked.
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI is installed after the PPI service
TemporaryRamMigration()is invoked, providing a signal to PEIMs that permanent memory
is available.

If the EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI service is not available, a PEI foundation
implementation shall copy the contents of the Temporary RAM to Permanent RAM directly and
perform the stack switch action. The lack of this PPI is not an error condition.

The stack switch action, namely the beginning of usage of the permanent RAM as stack in lieu of the
temporary RAM stack, is an integral capability of any PEI foundation implementation and need not
have an API in this PPI or any other to externally-installed abstraction.

Status Codes Returned

6.3.7 Temporary RAM Done PPI (Optional)

EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional)

Summary
The PPI that provides a service to disable the use of Temporary RAM.

GUID
#define EFI_PEI_TEMPORARY_RAM_DONE_PPI_GUID \
 { 0xceab683c, 0xec56, 0x4a2d, \
 { 0xa9, 0x6, 0x40, 0x53, 0xfa, 0x4e, 0x9c, 0x16 } }

Protocol Interface Structure
typedef struct _EFI_PEI_TEMPORARY_RAM_DONE_PPI {
 EFI_PEI_TEMPORARY_RAM_DONE TemporaryRamDone;
} EFI_PEI_TEMPORARY_RAM_DONE_PPI;

Parameters
TemporaryRamDone

Disable the use of Temporary RAM.

EFI_SUCCESS The data was successfully returned.

EFI_INVALID_PARAMETER PermanentMemoryBase + CopySize >
TemporaryMemoryBase when TemporaryMemoryBase >
PermanentMemoryBase.

Platform Initialization Specification VOLUME 1 PEI Core Interface

102 4/24/2015 Version 1.3 Errata A

Description
This is an optional PPI that may be produced by SEC or a PEIM. If present, it provide a service to
disable the use of Temporary RAM. This service may only be called by the PEI Foundation after the
transition from Temporary RAM to Permanent RAM is complete. This PPI provides an alternative
to the Temporary RAM Migration PPI for system architectures that allow Temporary RAM and
Permanent RAM to be enabled and accessed at the same time with no side effects.

Architectural PPIs

Version 1.3 Errata A 4/24/2015 103

EFI_PEI_TEMPORARY_RAM_DONE_PPI.TemporaryRamDone ()

Summary
Disable the use of Temporary RAM.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_PEI_TEMPORARY_RAM_DONE) (
 VOID
);

Description
TemporaryRamDone() disables the use of Temporary RAM. If present, this service is invoked
by the PEI Foundation after the EFI_PEI_PERMANANT_MEMORY_INSTALLED_PPI is
installed.

Status Codes Returned

EFI_SUCCESS Use of Temporary RAM was disabled.

EFI_DEVICE_ERROR Temporary RAM could not be disabled.

Platform Initialization Specification VOLUME 1 PEI Core Interface

104 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 105

7
PEIMs

7.1 Introduction
A Pre-EFI Initialization Module (PEIM) represents a unit of code and/or data. It abstracts domain-
specific logic and is analogous to a DXE driver. As such, a given group of PEIMs for a platform
deployment might include a set of the following:

• Platform-specific PEIMs

• Processor-specific PEIMs

• Chipset-specific PEIMs

• PEI CIS–prescribed architectural PEIMs

• Miscellaneous PEIMs

The PEIM encapsulation allows for a platform builder to use services for a given hardware
technology without having to build the source of this technology or necessarily understand its
implementation. A PEIM-to-PEIM Interface (PPI) is the means by which to abstract hardware-
specific complexities to a platform builder's PEIM. As such, PEIMs can work in concert with other
PEIMs using PPIs.

In addition, PEIMs can ascertain a fixed set of services that are always available through the PEI
Services Table.

Finally, because the PEIM represents the basic unit of execution beyond the Security (SEC) phase
and the PEI Foundation, there will always be some non-zero-sized collection of PEIMs in a
platform.

7.2 PEIM Structure

7.2.1 PEIM Structure Overview
Each PEI Module (PEIM) is stored in a file. It consists of the following:

• Standard header

• Execute-in-place code/data section

• Optional relocation information

• Authentication information, if present

The PEIM binary image can be executed in place from its location in the firmware volume (FV) or
from a compressed component that will be shadowed after permanent memory has been installed.
The executable section of the PEIM may be either position-dependent or position-independent code.
If the executable section of the PEIM is position-dependent code, relocation information must be
provided in the PEIM image to allow FV store software to relocate the image to a different location
than it is compiled.

Platform Initialization Specification VOLUME 1 PEI Core Interface

106 4/24/2015 Version 1.3 Errata A

Figure 2 depicts the typical layout of a PEIM.

Figure 2. Typical PEIM Layout in a Firmware File

7.2.2 Relocation Information

7.2.2.1 Position-Dependent Code
PEIMs that are developed using position-dependent code require relocation information. When an
image in a firmware volume (FV) is updated, the update software will use the relocation information
to fix the code image according to the module’s location in the FV. The relocation is done on the
authenticated image; therefore, software verifying the integrity of the image must undo the
relocation during the verification process.

There is no explicit pointer to this data. Instead, the update and verification tool will know that the
image is actually stored as PE32 if the Pe32Image bit is set in the header
EFI_COMMON_SECTION_HEADER or EFI_COMMON_SECTION_HEADER2; types
EFI_COMMON_SECTION_HEADER and EFI_COMMON_SECTION_HEADER2 are defined in the
Platform Initialization Specification, Volume 3. The PE32 specification, in turn, will be used to
ascertain the relocation records.

7.2.2.2 Position-Independent Code
If the PEIM is written in position-independent code, then its entry point shall be at the lowest
address in the section. This method is useful for creating PEIMs for the Itanium® processor family.

PEIMs

Version 1.3 Errata A 4/24/2015 107

7.2.2.3 Relocation Information Format
The relocations will be contained in a TE or PE32+ image. See the Microsoft Portable Executable
and Common Object File Format Specification for more information. The determination of whether
the image subscribes to the PE32 image format or is position-independent assembly language is
provided by the firmware volume section type. The PEIM that is formatted as PE/COFF will always
be linked against a base address of zero. This allows for support of signature checking.

The section may also be compressed if there is a compression encapsulation section.

7.2.3 Authentication Information
This section describes in more detail, the means by which authentication information could be
contained in a section of type EFI_SECTION_GUID_DEFINED (see the Platform Initialization
Specification, Volume 3, for more information on section types). The information contained in this
section could be one of the following:

• A cryptographic-quality hash computed across the PEIM image

• A simple checksum

• A CRC

The GUID defines the meaning of the associated encapsulated data. The relocation section is
needed to undo the fix-ups done on the image so the hash that was computed at build time can be
confirmed. In other words, the build of a PEIM image is linked against zero, but the update tool will
relocate the PEIM image for its execute-in-place address (at least for images that are not position-
independent code). Any signing information is calculated on the image after the image has been
linked against an address of zero. The relocations on the image will have to be “undone” to
determine if the image has been modified.

The image must be linked against address zero by the PEIM provider. The build or update tool will
apply the appropriate relocations. The linkage against address zero is key because it allows a
subsequent undoing of the relocations.

Platform Initialization Specification VOLUME 1 PEI Core Interface

108 4/24/2015 Version 1.3 Errata A

7.3 PEIM Invocation Entry Point

7.3.1 EFI_PEIM_ENTRY_POINT2

Summary
The PEI Dispatcher will invoke each PEIM one time.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEIM_ENTRY_POINT2) (
 IN EFI_PEI_FILE_HANDLE FileHandle,
 IN CONST EFI_PEI_SERVICES **PeiServices
);

Parameters
FileHandle

Handle of the file being invoked. Type EFI_PEI_FILE_HANDLE is defined in
FfsFindNextFile().

PeiServices

Describes the list of possible PEI Services.

Description
This function is the entry point for a PEIM. EFI_IMAGE_ENTRY_POINT2 is the equivalent of
this state in the UEFI/DXE environment; see the DXE CIS for its definition.

The motivation behind this definition is that the firmware file system has the provision to mark a file
as being both a PEIM and DXE driver. The result of this name would be that both the PEI
Dispatcher and the DXE Dispatcher would attempt to execute the module. In doing so, it is
incumbent upon the code in the entry point of the driver to decide what services are exposed, namely
whether to make boot service and runtime calls into the UEFI System Table or to make calls into the
PEI Services Table. The means by which to make this decision entail examining the second
argument on entry, which is a pointer to the respective foundation's exported service-call table. Both
PEI and UEFI/DXE have a common header, EFI_TABLE_HEADER, for the table. The code in the
PEIM or DXE driver will examine the Arg2->Hdr->Signature. If it is
EFI_SYSTEM_TABLE_SIGNATURE, the code will assume DXE driver behavior; if it is
PEI_SERVICES_SIGNATURE, the code will assume PEIM behavior.

Status Codes Returned

EFI_SUCCESS The service completed successfully

< 0 There was an error

PEIMs

Version 1.3 Errata A 4/24/2015 109

7.4 PEIM Descriptors

7.4.1 PEIM Descriptors Overview
A PEIM descriptor is the data structure used by PEIMs to export service entry points and data. The
descriptor contains the following:

• Flags

• A pointer to a GUID

• A pointer to data

The latter data can include a list of pointers to functions and/or data. It is the function pointers that
are commonly referred to as PEIM-to-PEIM Interfaces (PPIs), and the PPI is the unit of software
across which PEIMs can invoke services from other PEIMs.

A PEIM also uses a PEIM descriptor to export a service to the PEI Foundation into which the PEI
Foundation will pass control in response to an event, namely “notifying” the callback when a PPI is
installed or reinstalled. As such, PEIM descriptors serve the dual role of exposing the following:

• A callable interface/data for other PEIMs

• A callback interface from the perspective of the PEI Foundation

Platform Initialization Specification VOLUME 1 PEI Core Interface

110 4/24/2015 Version 1.3 Errata A

EFI_PEI_DESCRIPTOR

Summary
This data structure is the means by which callable services are installed and notifications are
registered in the PEI phase.

Prototype
typedef union {
 EFI_PEI_NOTIFY_DESCRIPTOR Notify;
 EFI_PEI_PPI_DESCRIPTOR Ppi;
} EFI_PEI_DESCRIPTOR;

Parameters
Notify

The typedef structure of the notification descriptor. See the
EFI_PEI_NOTIFY_DESCRIPTOR type definition.

Ppi

The typedef structure of the PPI descriptor. See the EFI_PEI_PPI_DESCRIPTOR
type definition.

Description
EFI_PEI_DESCRIPTOR is a data structure that can be either a PPI descriptor or a notification
descriptor. A PPI descriptor is used to expose callable services to other PEIMs. A notification
descriptor is used to register for a notification or callback when a given PPI is installed.

PEIMs

Version 1.3 Errata A 4/24/2015 111

EFI_PEI_NOTIFY_DESCRIPTOR

Summary
The data structure in a given PEIM that tells the PEI Foundation where to invoke the notification
service.

Prototype
typedef struct _EFI_PEI_NOTIFY_DESCRIPTOR {
 UINTN Flags;
 EFI_GUID *Guid;
 EFI_PEIM_NOTIFY_ENTRY_POINT Notify;
} EFI_PEI_NOTIFY_DESCRIPTOR;

Parameters
Flags

Details if the type of notification is callback or dispatch.

Guid

The address of the EFI_GUID that names the interface.

Notify

Address of the notification callback function itself within the PEIM. Type
EFI_PEIM_NOTIFY_ENTRY_POINT is defined in “Related Definitions” below.

Description
EFI_PEI_NOTIFY_DESCRIPTOR is a data structure that is used by a PEIM that needs to be
called back when a PPI is installed or reinstalled. The notification is similar to the
RegisterProtocolNotify() function in the UEFI 2.0 Specification. The use model is
complementary to the dependency expression (depex) and is as follows:

• A PEIM expresses the PPIs that it must have to execute in its depex list.

• A PEIM expresses any other PEIMs that it needs, perhaps at some later time, in
EFI_PEI_NOTIFY_DESCRIPTOR.

The latter data structure includes the GUID of the PPI for which the PEIM publishing the
notification would like to be reinvoked.

Following is an example of the notification use model for
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI. In this example, a PEIM called
SamplePeim executes early in the PEI phase before main memory is available. However,
SamplePeim also needs to create some large data structure later in the PEI phase. As such,
SamplePeim has a NULL depex, but after its entry point is processed, it needs to call
NotifyPpi() with a EFI_PEI_NOTIFY_DESCRIPTOR, where the notification descriptor
includes the following:

• A reference to EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI

• A reference to a function within this same PEIM called SampleCallback

Platform Initialization Specification VOLUME 1 PEI Core Interface

112 4/24/2015 Version 1.3 Errata A

When the PEI Foundation finally migrates the system from temporary to permanent memory and
installs the EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI, the PEI Foundation assesses if
there are any pending notifications on this PPI. After the PEI Foundation discovers the descriptor
from SamplePeim, the PEI Foundation invokes SampleCallback.

With respect to the Flags parameter, the difference between callback and dispatch mode is as
follows:

• Callback mode: Invokes all of the agents that are registered for notification immediately after
the PPI is installed.

• Dispatch mode: Calls the agents that are registered for notification only after the PEIM that
installs the PPI in question has returned to the PEI Foundation.

The callback mechanism will give a better quality of service, but it has the downside of possibly
deepening the use of the stack (i.e., the agent that installed the PPI that engenders the notification is
a PEIM itself that has used the stack already). The dispatcher mode, however, is better from a stack-
usage perspective in that when the PEI Foundation invokes the agents that want notification, the
stack has returned to the minimum stack usage of just the PEI Foundation.

Related Definitions
typedef
EFI_STATUS
(EFIAPI *EFI_PEIM_NOTIFY_ENTRY_POINT) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor,
 IN VOID *Ppi
);

PeiServices

Indirect reference to the PEI Services Table.

NotifyDescriptor

Address of the notification descriptor data structure. Type
EFI_PEI_NOTIFY_DESCRIPTOR is defined above.

Ppi

Address of the PPI that was installed.

PEIMs

Version 1.3 Errata A 4/24/2015 113

EFI_PEI_PPI_DESCRIPTOR

Summary
The data structure through which a PEIM describes available services to the PEI Foundation.

Prototype
typedef struct {
 UINTN Flags;
 EFI_GUID *Guid;
 VOID *Ppi;
} EFI_PEI_PPI_DESCRIPTOR;

Parameters
Flags

This field is a set of flags describing the characteristics of this imported table entry.
See “Related Definitions” below for possible flag values.

Guid

The address of the EFI_GUID that names the interface.

Ppi

A pointer to the PPI. It contains the information necessary to install a service.

Description
EFI_PEI_PPI_DESCRIPTOR is a data structure that is within the body of a PEIM or created by a
PEIM. It includes the following:

• Information about the nature of the service

• A reference to a GUID naming the service

• An associated pointer to either a function or data related to the service

There can be a catenation of one or more of these EFI_PEI_PPI_DESCRIPTORs. The final
descriptor will have the EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST flag set to indicate
to the PEI Foundation how many of the descriptors need to be added to the PPI database within the
PEI Foundation. The PEI Services that references this data structure include InstallPpi(),
ReinstallPpi(), and LocatePpi().

Related Definitions
//
// PEI PPI Services List Descriptors
//

#define EFI_PEI_PPI_DESCRIPTOR_PIC 0x00000001
#define EFI_PEI_PPI_DESCRIPTOR_PPI 0x00000010
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK 0x00000020
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH 0x00000040
#define EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES 0x00000060

Platform Initialization Specification VOLUME 1 PEI Core Interface

114 4/24/2015 Version 1.3 Errata A

#define EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST 0x80000000

Table 16 provides descriptions of the fields in the above definition:

Table 16. PEI PPI Services List Descriptors

7.5 PEIM-to-PEIM Communication

7.5.1 Overview
PEIMs may invoke other PEIMs. The interfaces themselves are named using GUIDs. Because the
PEIMs may be authored by different organizations at different times and updated at different times,
references to these interfaces cannot be resolved during their execution by referring to the PEI PPI
database. The database is loaded and queried using PEI Services such as InstallPpi() and
LocatePpi().

Descriptor Description

EFI_PEI_PPI_DESCRIPTOR_PIC When set to 1, this designates that the PPI
described by the structure is position-independent
code (PIC).

EFI_PEI_PPI_DESCRIPTOR_PPI When set to 1, this designates that the PPI
described by this structure is a normal PPI. As
such, it should be callable by the conventional PEI
infrastructure.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
callback. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be immediately invoked. The
danger herein is that the callback will inherit
whatever depth had been traversed up to and
including this call.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
dispatch. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be deferred until the PEIM
calling context returns to the PEI Foundation. Prior
to invocation of the next PEIM, the notifications will
be dispatched. The advantage herein is that the
callback will have the maximum available stack
depth as any other PEIM.

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES When set to 1, this flag designates that this is a
notification-style PPI.

EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST This flag is set to 1 in the last structure entry in the
list of PEI PPI descriptors. This flag is used by the
PEI Foundation Services to know that there are no
additional interfaces to install.

PEIMs

Version 1.3 Errata A 4/24/2015 115

7.5.2 Dynamic PPI Discovery

7.5.2.1 PPI Database
The PPI database is a data structure that PEIMs can use to discover what interfaces are available or
to manage a specific interface. The actual layout of the PPI database is opaque to a PEIM but its
contents can be queried and manipulated using the following PEI Services:

• InstallPpi()

• ReinstallPpi()

• LocatePpi()

• NotifyPpi()

7.5.2.2 Invoking a PPI
When the PEI Foundation examines a PEIM for dispatch eligibility, it examines the dependency
expression section of the firmware file. If there are non-NULL contents, the Reverse Polish
Notation (RPN) expression is evaluated. Any requested PPI GUIDs in this data structure are queried
in the PPI database. The existence in the database of the particular PUSH_GUID depex opcode
leads to this expression evaluating to true.

7.5.2.3 Address Resolution
When a PEIM needs to leverage a PPI, it uses the PEI Foundation Service LocatePpi() to
discover if an instance of the interface exists. The PEIM could do either of the following:

• Install the PPI in its depex to ensure that its entry point will not be invoked until the needed PPI
is already installed

• Have a very thin set of code in its entry point that simply registers a notification on the desired
PPI.

In the case of either the depex or the notification, the LocatePpi() call will then succeed and the
pointer returned on this call references the EFI_PEI_PPI_DESCRIPTOR. It is through this data
structure that the actual code entry point can be discovered. If this PEIM is being loaded before
permanent memory is available, it will not have resources to cache this discovered interface and will
have to search for this interface every time it needs to invoke the service.

It should also be noted that you cannot uninstall a PPI, so the services will be left in the database. If
a PPI needs to be shrouded, a version can be “reinstalled” that just returns failure.

Also, there is peril in caching a PPI. For example, if you cache a PPI and the producer of the PPI
“reinstalls” it to be something else (i.e., shadows to memory), then you have the possibility that the
agent who cached the data will have “stale” or “illegal” data. For example, imagine the Stall PPI,
EFI_PEI_STALL_PPI, relocating itself to memory using the Load File PPI,
EFI_PEI_LOAD_FILE_PPI, and reinstalling the interface for performance considerations. A
way to solve the latter issue, as a platform builder, is by having a different stall PPI for the memory-
based one versus that of the Execute In Place (XIP) one.

Platform Initialization Specification VOLUME 1 PEI Core Interface

116 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 117

8
Additional PPIs

8.1 Introduction
Architectural PPIs described a collection of architecturally required PPIs. These were interfaces
consumed by the PEI Foundation and are not intended to be consumed by other PEIMs.

In addition to these architectural PPIs, however, there is another name space of PPIs that are optional
or mandatory for a given platform. This section describes these additional PPIs:

• Required PPIs:
— CPU I/O PPI
— PCI Configuration PPI
— Stall PPI
— PEI Variable Services

• Optional PPIs:
— Security (SEC) Platform Information PPI

These shall be referred to as first-class PEIMs in some contexts.

8.2 Required Additional PPIs

8.2.1 PCI Configuration PPI (Required)
The PEI phase provides limited support for initializing and configuring PCI devices through the
EFI_PEI_PCI_CFG2_PPI. The PEI module which supports a PCI root bridge may install this PPI to
allow access to the PCI configuration space for a particular PCI segment. The PEI module
responsible for the PCI root bridge representing segment 0 should also install a pointer to the PPI in
the PEI Services Table.

The PEI modules which control devices on segment 0 may use the pointer provided in the PEI
Services Table. The PEI modules for devices residing on other segments may find the correct PPI by
iterating through PPI instances using the LocatePpi() function. For example:

Platform Initialization Specification VOLUME 1 PEI Core Interface

118 4/24/2015 Version 1.3 Errata A

EFI_STATUS Status;
UINTN Instance = 0;
EFI_PEI_PPI_DESCRIPTOR *PciCfgDescriptor = NULL;
EFI_PEI_PCI_CFG2_PPI *PciCfg = NULL;

/* Loop through all instances of the PPI */
for (;;) {
 Status = PeiServices->LocatePpi(PeiServices,
 &gPeiPciCfg2PpiGuid,
 Instance,
 &PciCfgDescriptor,
 (VOID**) &PciCfg
);
 if (Status != EFI_SUCCESS ||
 PciCfg->Segment == MySegment) {
 break;
 }
 Instance++;
}
if (Status == EFI_SUCCESS) {
 ...PciCfg contains pointer…
}

Additional PPIs

Version 1.3 Errata A 4/24/2015 119

EFI_PEI_PCI_CFG2_PPI

Summary
Provides platform or chipset-specific access to the PCI configuration space for a specific PCI
segment.

Guid
static const EFI_GUID EFI_PEI_PCI_CFG2_PPI_GUID = \
{ 0x57a449a, 0x1fdc, 0x4c06, \
{ 0xbf, 0xc9, 0xf5, 0x3f, 0x6a, 0x99, 0xbb, 0x92 }}

Prototype
typedef struct _EFI_PEI_PCI_CFG2_PPI {

EFI_PEI_PCI_CFG2_PPI_IO Read;
EFI_PEI_PCI_CFG2_PPI_IO Write;
EFI_PEI_PCI_CFG2_PPI_RW Modify;
UINT16 Segment;

} EFI_PEI_PCI_CFG2_PPI

Parameters
Read

PCI read services. See the Read() function description.

Write

PCI write services. See the Write() function description.

Modify

PCI read-modify-write services. See the Modify() function description.

Segment

The PCI bus segment which the specified functions will access.

Description
The EFI_PEI_PCI_CFG2_PPI interfaces are used to abstract accesses to the configuration
space of PCI controllers behind a PCI root bridge controller. There can be multiple instances of this
PPI in the system, one for each segment. The pointer to the instance which describes segment 0 is
installed in the PEI Services Table.

The assignment of segment numbers is implementation specific.

The Modify() service allows for space-efficient implementation of the following common
operations:

• Reading a register

• Changing some bit fields within the register

• Writing the register value back into the hardware

The Modify() service is a composite of the Read() and Write() services.

Platform Initialization Specification VOLUME 1 PEI Core Interface

120 4/24/2015 Version 1.3 Errata A

Parameters
Register

Register number in PCI configuration space.

Function

Function number in the PCI device (0-7).

Device

Device number in the PCI device (0-31).

Bus

PCI bus number (0-255).

ExtendedRegister

Register number in PCI configuration space. If this field is zero, then Register is used
for the register number. If this field is non-zero, then Register is ignored and this field
is used for the register number.

Additional PPIs

Version 1.3 Errata A 4/24/2015 121

EFI_PEI_PCI_CFG2_PPI.Read()

Summary
PCI read operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_IO) (

IN CONST EFI_PEI_SERVICES **PeiServices,
IN CONST EFI_PEI_PCI_CFG2_PPI *This,
IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
IN UINT64 Address,
IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in “Related Definitions” below.

Address

The physical address of the access. The format of the address is described by
EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS, which is defined in “Related
Definitions” below.

Buffer

A pointer to the buffer of data.

Description
The Read() function reads from a given location in the PCI configuration space.

Related Definitions
//**
// EFI_PEI_PCI_CFG_PPI_WIDTH
//**
typedef enum {

EfiPeiPciCfgWidthUint8 = 0,
EfiPeiPciCfgWidthUint16 = 1,
EfiPeiPciCfgWidthUint32 = 2,
EfiPeiPciCfgWidthUint64 = 3,

Platform Initialization Specification VOLUME 1 PEI Core Interface

122 4/24/2015 Version 1.3 Errata A

EfiPeiPciCfgWidthMaximum
} EFI_PEI_PCI_CFG_PPI_WIDTH;

//**
// EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS
//**
typedef struct {

UINT8 Register;
UINT8 Function;
UINT8 Device;
UINT8 Bus;
UINT32 ExtendedRegister;

} EFI_PEI_PCI_CFG_PPI_PCI_ADDRESS;

Register

8-bit register offset within the PCI configuration space for a given device's function
space.

Function

Only the 3 least-significant bits are used to encode one of 8 possible functions within a
given device.

Device

Only the 5 least-significant bits are used to encode one of 32 possible devices.

Bus

8-bit value to encode between 0 and 255 buses.

ExtendedRegister

Register number in PCI configuration space. If this field is zero, then Register is used
for the register number. If this field is non-zero, then Register is ignored and this field
is used for the register number.

#define EFI_PEI_PCI_CFG_ADDRESS(bus,dev,func,reg) \
 (((bus) << 24) | \
 ((dev) << 16) | \
 ((func) << 8) | \
 ((reg) < 256 ? (reg) : ((UINT64) (reg) << 32)))

Status Codes Returned

EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

Additional PPIs

Version 1.3 Errata A 4/24/2015 123

EFI_PEI_PCI_CFG2_PPI.Write()

Summary
PCI write operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_IO) (

IN CONST EFI_PEI_SERVICES **PeiServices,
IN CONST EFI_PEI_PCI_CFG2_PPI *This,
IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
IN UINT64 Address,
IN OUT VOID *Buffer

);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in Read().

Address

The physical address of the access.

Buffer

A pointer to the buffer of data.

Description
The Write() function writes to a given location in the PCI configuration space.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

Platform Initialization Specification VOLUME 1 PEI Core Interface

124 4/24/2015 Version 1.3 Errata A

EFI_PEI_PCI_CFG2_PPI.Modify()

Summary
PCI read-modify-write Operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_PCI_CFG_PPI_RW) (

IN CONST EFI_PEI_SERVICES **PeiServices,
IN CONST EFI_PEI_PCI_CFG_PPI *This,
IN EFI_PEI_PCI_CFG_PPI_WIDTH Width,
IN UINT64 Address,
IN VOID *SetBits,
IN VOID *ClearBits

);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_PCI_CFG_PPI_WIDTH is defined in Read().

Address

The physical address of the access.

SetBits

Points to value to bitwise-OR with the read configuration value. The size of the value
is determined by Width.

ClearBits

Points to the value to negate and bitwise-AND with the read configuration value. The
size of the value is determined by Width.

Description
The Modify() function performs a read-modify-write operation on the contents from a given
location in the PCI configuration space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 125

Status Codes Returned

8.2.2 Stall PPI (Required)

EFI_PEI_STALL_PPI (Required)

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts the blocking stall
service to other agents.

GUID
#define EFI_PEI_STALL_PPI_GUID \
 { 0x1f4c6f90, 0xb06b, 0x48d8, {0xa2, 0x01, 0xba, 0xe5, \
 0xf1, 0xcd, 0x7d, 0x56} }

PPI Interface Structure
typedef
struct _EFI_PEI_STALL_PPI {
 UINTN Resolution;
 EFI_PEI_STALL Stall;
} EFI_PEI_STALL_PPI;

Parameters
Resolution

The resolution in microseconds of the stall services.

Stall

The actual stall procedure call. See the Stall() function description.

Description
This service provides a simple, blocking stall with platform-specific resolution.

EFI_SUCCESS The function completed successfully.

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

Platform Initialization Specification VOLUME 1 PEI Core Interface

126 4/24/2015 Version 1.3 Errata A

EFI_PEI_STALL_PPI.Stall()

Summary
Blocking stall.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_STALL) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_STALL_PPI *This,
 IN UINTN Microseconds
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to the local data for the interface.

Microseconds

Number of microseconds for which to stall.

Description
The Stall() function provides a blocking stall for at least the number of microseconds stipulated
in the final argument of the API.

Status Codes Returned

EFI_SUCCESS The service provided at least the required delay.

Additional PPIs

Version 1.3 Errata A 4/24/2015 127

8.2.3 Variable Services PPI (Required)

EFI_PEI_READ_ONLY_VARIABLE2_PPI

Summary
Permits read-only access to the UEFI variable store during the PEI phase.

GUID
#define EFI_PEI_READ_ONLY_VARIABLE2_PPI_GUID \
 { 0x2ab86ef5, 0xecb5, 0x4134, \
 0xb5, 0x56, 0x38, 0x54, 0xca, 0x1f, 0xe1, 0xb4 }

Prototype
typedef struct _EFI_PEI_READ_ONLY_VARIABLE2_PPI {
 EFI_PEI_GET_VARIABLE2 GetVariable;
 EFI_PEI_GET_NEXT_VARIABLE_NAME2 NextVariableName;
} EFI_PEI_READ_ONLY_VARIABLE2_PPI;

Parameters
GetVariable

A service to read the value of a particular variable using its name.

NextVariableName

Find the next variable name in the variable store.

Description
These services provide a light-weight, read-only variant of the full UEFI variable services.

Platform Initialization Specification VOLUME 1 PEI Core Interface

128 4/24/2015 Version 1.3 Errata A

EFI_PEI_READ_ONLY_VARIABLE2_PPI.GetVariable

Summary
This service retrieves a variable’s value using its name and GUID.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_VARIABLE2)(
 IN CONST EFI_PEI_READ_ONLY_VARIABLE2_PPI *This,
 IN CONST CHAR16 *VariableName,
 IN CONST EFI_GUID *VariableGuid,
 OUT UINT32 *Attributes,
 IN OUT UINTN *DataSize,
 OUT VOID *Data
);

Parameters
This

A pointer to this instance of the EFI_PEI_READ_ONLY_VARIABLE2_PPI.

VariableName

A pointer to a null-terminated string that is the variable’s name.

VariableGuid

A pointer to an EFI_GUID that is the variable’s GUID. The combination of
VariableGuid and VariableName must be unique.

Attributes

If non-NULL, on return, points to the variable’s attributes. See “Related Definitons”
below for possible attribute values.

DataSize

On entry, points to the size in bytes of the Data buffer. On return, points to the size of
the data returned in Data.

Data

Points to the buffer which will hold the returned variable value.

Description
Read the specified variable from the UEFI variable store. If the Data buffer is too small to hold the
contents of the variable, the error EFI_BUFFER_TOO_SMALL is returned and DataSize is set to the
required buffer size to obtain the data.

Additional PPIs

Version 1.3 Errata A 4/24/2015 129

Status Codes Returned

EFI_SUCCESS The variable was read successfully.

EFI_NOT_FOUND The variable could not be found.

EFI_BUFFER_TOO_SMALL The DataSize is too small for the resulting data.

DataSize is updated with the size required for the specified

variable.

EFI_INVALID_PARAMETER VariableName, VariableGuid, DataSize or

Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.

Platform Initialization Specification VOLUME 1 PEI Core Interface

130 4/24/2015 Version 1.3 Errata A

EFI_PEI_READ_ONLY_VARIABLE2_PPI.NextVariableName

Summary
Return the next variable name and GUID.

Prototype
typedef
EFI_STATUS
(EFIAPI EFI_PEI_GET_NEXT_VARIABLE_NAME2) (
 IN CONST EFI_PEI_READ_ONLY_VARIABLE2_PPI *This,
 IN OUT UINTN *VariableNameSize,
 IN OUT CHAR16 *VariableName,
 IN OUT EFI_GUID *VariableGuid
);

Parameters
This

A pointer to this instance of the EFI_PEI_READ_ONLY_VARIABLE2_PPI.

VariableNameSize

On entry, points to the size of the buffer pointed to by VariableName. On return,
the size of the variable name buffer

VariableName

On entry, a pointer to a null-terminated string that is the variable’s name. On return,
points to the next variable’s null-terminated name string.

VariableGuid

On entry, a pointer to an EFI_GUID that is the variable’s GUID. On return, a pointer
to the next variable’s GUID.

Description
This function is called multiple times to retrieve the VariableName and VariableGuid of all
variables currently available in the system. On each call, the previous results are passed into the
interface, and, on return, the interface returns the data for the next interface. When the entire variable
list has been returned, EFI_NOT_FOUND is returned.

Note: If EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small for the
name of the next variable. When such an error occurs, VariableNameSize is updated to
reflect the size of the buffer needed. In all cases when calling GetNextVariableName() the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

To start the search, a null-terminated string is passed in VariableName; that is, VariableName
is a pointer to a null Unicode character. This is always done on the initial call. When
VariableName is a pointer to a null Unicode character, VariableGuid is ignored.

Additional PPIs

Version 1.3 Errata A 4/24/2015 131

Status Codes Returned

EFI_SUCCESS The variable was read successfully.

EFI_NOT_FOUND The variable could not be found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the resulting

data. VariableNameSize is updated with the size

required for the specified variable.

EFI_INVALID_PARAMETER VariableName, VariableGuid or

VariableNameSize is NULL

EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.

Platform Initialization Specification VOLUME 1 PEI Core Interface

132 4/24/2015 Version 1.3 Errata A

8.3 Optional Additional PPIs

8.3.1 SEC Platform Information PPI (Optional)

EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)

Summary
This service is the platform information for the PEI Foundation.

GUID
#define EFI_SEC_PLATFORM_INFORMATION_GUID \
 {0x6f8c2b35, 0xfef4, 0x448d, 0x82, 0x56, 0xe1, \
 0x1b, 0x19, 0xd6, 0x10, 0x77}

Prototype
typedef struct _EFI_SEC_PLATFORM_INFORMATION_PPI {
 EFI_SEC_PLATFORM_INFORMATION PlatformInformation;
} EFI_SEC_PLATFORM_INFORMATION_PPI;

Parameters
PlatformInformation

Conveys state information out of the SEC phase into PEI. See the
PlatformInformation() function description.

Description
This service abstracts platform-specific information.

Additional PPIs

Version 1.3 Errata A 4/24/2015 133

EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation()

Summary
This service is the single member of the EFI_SEC_PLATFORM_INFORMATION_PPI that
conveys state information out of the Security (SEC) phase into PEI.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SEC_PLATFORM_INFORMATION) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN OUT UINT64 *StructureSize,
 OUT EFI_SEC_PLATFORM_INFORMATION_RECORD
 *PlatformInformationRecord
);

Parameters
PeiServices

Pointer to the PEI Services Table.

StructureSize

Pointer to the variable describing size of the input buffer.

PlatformInformationRecord

Pointer to the EFI_SEC_PLATFORM_INFORMATION_RECORD. Type
EFI_SEC_PLATFORM_INFORMATION_RECORD is defined in “Related
Definitions” below.

Description
This service is published by the SEC phase. The SEC phase handoff has an optional
EFI_PEI_PPI_DESCRIPTOR list as its final argument when control is passed from SEC into the
PEI Foundation. As such, if the platform supports the built-in self test (BIST) on IA-32 Intel

architecture or the PAL-A handoff state for Itanium® architecture, this information is encapsulated
into the data structure abstracted by this service. This information is collected for the boot-strap
processor (BSP) on IA-32, and for Itanium architecture, it is available on all processors that execute
the PEI Foundation.

The motivation for this service is that a specific processor register contains this information for each
microarchitecture, but the PEI CIS avoids using specific processor registers. Instead, the PEI CIS
describes callable interfaces across which data is conveyed. As such, this processor state
information that is collected at the reset of the machine is mapped into a common interface. The
expectation is that a manageability agent, such as a platform PEIM that logs information for the
platform, would use this interface to determine the viability of the BSP and possibly select an
alternate BSP if there are significant errors.

Platform Initialization Specification VOLUME 1 PEI Core Interface

134 4/24/2015 Version 1.3 Errata A

Related Definitions
//**
// EFI_SEC_PLATFORM_INFORMATION_RECORD
//**
typedef union {
 IA32_HANDOFF_STATUS IA32HealthFlags;
 X64_HANDOFF_STATUS x64HealthFlags;
 ITANIUM_HANDOFF_STATUS ItaniumHealthFlags;
} EFI_SEC_PLATFORM_INFORMATION_RECORD;

HealthFlags

Contains information generated by microcode, or hardware, about the state of the
processor upon reset. Type EFI_HEALTH_FLAGS is defined below.

//**
// EFI_HEALTH_FLAGS
//**
typedef union {
 struct {
 UINT32 Status : 2;
 UINT32 Tested : 1;
 UINT32 Reserved1 :13;
 UINT32 VirtualMemoryUnavailable : 1;
 UINT32 Ia32ExecutionUnavailable : 1;
 UINT32 FloatingPointUnavailable : 1;
 UINT32 MiscFeaturesUnavailable : 1;
 UINT32 Reserved2 :12;
 } Bits;
 UINT32 Uint32;
} EFI_HEALTH_FLAGS;

IA-32 and X64 have the BIST. See “Health Flag Bit Format” on page 198 for more information on
EFI_HEALTH_FLAGS.

The following two structures are for IA32 and x64.

typedef EFI_HEALTH_FLAGS X64_HANDOFF_STATUS;
typedef EFI_HEALTH_FLAGS IA32_HANDOFF_STATUS;

There is no instance of an EFI_SEC_PLATFORM_INFORMATION_RECORD for the ARM PI
binding.

For Itanium, the structure is as follows:

For details, see the Itanium Software Developers Manual, Volume 2, Rev 2.2, Document Number:
245318-005 (SwDevMan) Section 11.2.2.1 "Definition of SALE_ENTRY State Parameter" as
indicated below.

Additional PPIs

Version 1.3 Errata A 4/24/2015 135

typedef struct {
 UINT8 BootPhase; // SALE_ENTRY state : 3 = Recovery_Check
 // and 0 = RESET or Normal_Boot phase.
 // See 'function' in SwDevMan Fig 11-8 and
 // Table 11-3.
 UINT8 FWStatus; // Firmware status on entry to SALE.
 // See 'Status' in SwDevMan Fig 11-8 and
 // Table 11-4.
 UINT16 Reserved1;
 UINT32 Reserved2;
 UINT16 ProcId; // Geographically significant unique
 // processor ID assigned by PAL.
 // See 'proc_id' in SwDevMan Fig 11-9
 // and Table 11-5.
 UINT16 Reserved3;
 UINT8 IdMask; // See 'id_mask' in SwDevMan
 // Fig 11-9 and Table 11-5.
 UINT8 EidMask; // See 'eid_mask' in SwDevMan
 // Fig 11-9 and Table 11-5
 UINT16 Reserved4;
 UINT64 PalCallAddress; // Address to make PAL calls.
 UINT64 PalSpecialAddress; // If the entry state is
 // RECOVERY_CHECK, this
 // contains the PAL_RESET
 // return address, and if entry
 // state is RESET, this contains
 // address for PAL_authentication
 // call.
 UINT64 SelfTestStatus; // GR35 from PALE_EXIT state,
 // See 'Self Test State' in
 // SwDevMan Fig 11-10 and
 // Table 11-6.
 UINT64 SelfTestControl; // GR37 from PALE_EXIT state:
 // See 'Self Test Control' in
 // SwDevMan Fig 11-11.
 UINT64 MemoryBufferRequired; // See GR38 Reset Layout
 // in SwDevMan Table 11-2.
} ITANIUM_HANDOFF_STATUS;

Consult the PALE_RESET Exit State in Software Development Manual for Itanium regarding an
interpretation of these fields.

Status Codes Returned

EFI_SUCCESS The data was successfully returned.

EFI_BUFFER_TOO_SMALL The buffer was too small. The current buffer size needed to

hold the record is returned in StructureSize.

Platform Initialization Specification VOLUME 1 PEI Core Interface

136 4/24/2015 Version 1.3 Errata A

8.3.2 Loaded Image PPI (Optional)

EFI_PEI_LOADED_IMAGE_PPI

Summary
Notifies other drivers of the PEIM being initialized by the PEI Dispatcher.

GUID
#define EFI_PEI_LOADED_IMAGE_PPI_GUID \
 { 0xc1fcd448, 0x6300, 0x4458, \
 0xb8, 0x64, 0x28, 0xdf, 0x1, 0x53, 0x64, 0xbc }

Prototype
typedef struct _EFI_PEI_LOADED_IMAGE_PPI {
 EFI_PHYSICAL_ADDRESS ImageAddress,
 UINT64 ImageSize,
 EFI_PEI_FILE_HANDLE FileHandle
} EFI_PEI_LOADED_IMAGE_PPI;

Parameters
ImageAddress

Address of the image at the address where it will be executed.

ImageSize

Size of the image as it will be executed.

FileHandle

File handle from which the image was loaded. Can be NULL, indicating the image
was not loaded from a handle.

Description
This interface is installed by the PEI Dispatcher after the image has been loaded and after all security
checks have been performed, to notify other PEIMs of the files which are being loaded.

Note: The same PEIM may be initialized twice.

8.3.3 Recovery
This section contains the definitions of the PPIs that are required on platforms that support firmware
recovery. The table below explains the organization of this section and lists the PPIs that are defined
in this section.

Additional PPIs

Version 1.3 Errata A 4/24/2015 137

Table 17. Organization of the Code Definitions Section

This section also contains the definitions for additional data types and structures that are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent protocol or function definition:

• EFI_PEI_BLOCK_IO_MEDIA

• EFI_PEI_BLOCK_DEVICE_TYPE

• EFI_PEI_LBA

8.3.3.1 Recovery Module PPI

EFI_PEI_RECOVERY_MODULE_PPI

Summary
Finds and loads the recovery files.

GUID
#define EFI_PEI_RECOVERY_MODULE_PPI_GUID \
 {0xFB6D9542, 0x612D, 0x4f45, 0x87, 0x2F, 0x5C, \
 0xFF, 0x52, 0xE9, 0x3D, 0xCF}

PPI Interface Structure
typedef struct _EFI_PEI_RECOVERY_MODULE_PPI {
 EFI_PEI_LOAD_RECOVERY_CAPSULE LoadRecoveryCapsule;
} EFI_PEI_RECOVERY_MODULE_PPI;

Parameters
LoadRecoveryCapsule

Loads a DXE binary capsule into memory.

Section Summary PPI Definition

Recovery Module
PPI

Describes the main Recovery
Module PPI.

EFI_PEI_RECOVERY_MODULE_PPI

Device Recovery
Module PPI

Describes the Device Recovery
Module PPI.

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI

Device Recovery
Block I/O PPI

Describes the Device Recovery
Block I/O PPI. This section is
device specific and addresses the
most common form of recovery
media—block I/O devices such
as legacy floppy, CD-ROM, or
IDE devices.

EFI_PEI_RECOVERY_BLOCK_IO_PPI

Platform Initialization Specification VOLUME 1 PEI Core Interface

138 4/24/2015 Version 1.3 Errata A

Description
This module has many roles and is responsible for the following:

1. Calling the driver recovery PPI
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetNumberRecoveryCapsules() to
determine if one or more DXE recovery entities exist.

2. If no capsules exist, then performing appropriate error handling.

3. Allocating a buffer of MaxRecoveryCapsuleSize as determined by
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetRecoveryCapsuleInfo() or
larger.

4. Determining the policy in which DXE recovery capsules are loaded.

5. Calling the driver recovery PPI
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() for capsule
number x.

6. If the load failed, performing appropriate error handling.

7. Performing security checks for a loaded DXE recovery capsule.

8. If the security checks failed, then logging the failure in a data HOB.

9. If the security checks failed, then determining the next
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()capsule
number; otherwise, go to step 11.

10. If more DXE recovery capsules exist, then go to step 5; otherwise, perform error handling.

11. Decomposing the capsule loaded by
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() into its
components. It is assumed that the path parameters are redundant for recovery and Setup
parameters are either redundant or canned.

12. Invalidating all HOB entries for updateable firmware volume entries. This invalidation prevents
possible errant drivers from being executed.

13. Updating the HOB table with the recovery DXE firmware volume information generated from
the capsule decomposition.

14. Returning to the PEI Dispatcher.

Additional PPIs

Version 1.3 Errata A 4/24/2015 139

EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()

Summary
Loads a DXE capsule from some media into memory and updates the HOB table with the DXE
firmware volume information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOAD_RECOVERY_CAPSULE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_MODULE_PPI *This
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_MODULE_PPI instance.

Description

This function, by whatever mechanism, retrieves a DXE capsule from some device
and loads it into memory. Note that the published interface is device neutral.

Status Codes Returned

8.3.3.2 Device Recovery Module PPI

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI

Summary
Presents a standard interface to EFI_PEI_RECOVERY_MODULE_PPI, regardless of the
underlying device(s).

EFI_SUCCESS The capsule was loaded correctly.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.

Platform Initialization Specification VOLUME 1 PEI Core Interface

140 4/24/2015 Version 1.3 Errata A

GUID
#define EFI_PEI_DEVICE_RECOVERY_MODULE_PPI_GUID \
 { 0x0DE2CE25, 0x446A, 0x45a7, 0xBF, 0xC9, 0x37, 0xDA, \
 0x26, 0x34, 0x4B, 0x37}

PPI Interface Structure
typedef struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI {
 EFI_PEI_DEVICE_GET_NUMBER_RECOVERY_CAPSULE
 GetNumberRecoveryCapsules;
 EFI_PEI_DEVICE_GET_RECOVERY_CAPSULE_INFO
 GetRecoveryCapsuleInfo;
 EFI_PEI_DEVICE_LOAD_RECOVERY_CAPSULE
 LoadRecoveryCapsule;
} EFI_PEI_DEVICE_RECOVERY_MODULE_PPI;

Parameters
GetNumberRecoveryCapsules

Returns the number of DXE capsules that were found. See the
GetNumberRecoveryCapsules() function description.

GetRecoveryCapsuleInfo

Returns the capsule image type and the size of a given image. See the
GetRecoveryCapsuleInfo() function description.

LoadRecoveryCapsule

Loads a DXE capsule into memory. See the LoadRecoveryCapsule() function
description.

Description
The role of this module is to present a standard interface to
EFI_PEI_RECOVERY_MODULE_PPI, regardless of the underlying device(s). The interface does
the following:

• Reports the number of recovery DXE capsules that exist on the associated device(s)

• Finds the requested firmware binary capsule

• Loads that capsule into memory

A device can be either a group of devices, such as a block device, or an individual device. The
module determines the internal search order, with capsule number 1 as the highest load priority and
number N as the lowest priority.

Additional PPIs

Version 1.3 Errata A 4/24/2015 141

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.
GetNumberRecoveryCapsules()

Summary
Returns the number of DXE capsules residing on the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_GET_NUMBER_RECOVERY_CAPSULE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
 OUT UINTN *NumberRecoveryCapsules
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

NumberRecoveryCapsules

Pointer to a caller-allocated UINTN. On output, *NumberRecoveryCapsules
contains the number of recovery capsule images available for retrieval from this PEIM
instance.

Description
This function, by whatever mechanism, searches for DXE capsules from the associated device and
returns the number and maximum size in bytes of the capsules discovered. Entry 1 is assumed to be
the highest load priority and entry N is assumed to be the lowest priority.

Status Codes Returned

EFI_SUCCESS One or more capsules were discovered.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.

Platform Initialization Specification VOLUME 1 PEI Core Interface

142 4/24/2015 Version 1.3 Errata A

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.
GetRecoveryCapsuleInfo()

Summary
Returns the size and type of the requested recovery capsule.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_GET_RECOVERY_CAPSULE_INFO) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
 IN UINTN CapsuleInstance,
 OUT UINTN *Size,
 OUT EFI_GUID *CapsuleType
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

CapsuleInstance

Specifies for which capsule instance to retrieve the information. This parameter must
be between one and the value returned by GetNumberRecoveryCapsules() in
NumberRecoveryCapsules.

Size

A pointer to a caller-allocated UINTN in which the size of the requested recovery
module is returned.

CapsuleType

A pointer to a caller-allocated EFI_GUID in which the type of the requested recovery
capsule is returned. The semantic meaning of the value returned is defined by the
implementation. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

Description
This function returns the size and type of the capsule specified by CapsuleInstance.

Additional PPIs

Version 1.3 Errata A 4/24/2015 143

Status Codes Returned

EFI_SUCCESS One or more capsules were discovered.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.

Platform Initialization Specification VOLUME 1 PEI Core Interface

144 4/24/2015 Version 1.3 Errata A

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule()

Summary
Loads a DXE capsule from some media into memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_LOAD_RECOVERY_CAPSULE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
 IN UINTN CapsuleInstance,
 OUT VOID *Buffer
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

CapsuleInstance

Specifies which capsule instance to retrieve.

Buffer

Specifies a caller-allocated buffer in which the requested recovery capsule will be
returned.

Description
This function, by whatever mechanism, retrieves a DXE capsule from some device and loads it into
memory. Note that the published interface is device neutral.

Status Codes Returned

8.3.3.3 Device Recovery Block I/O PPI
The Recovery Module PPI and the Device Recovery Module PPI subsections earlier in Code
Definitions are device neutral. This section is device specific and addresses the most common form
of recovery media-block I/O devices such as legacy floppy, CD-ROM, or IDE devices.

EFI_SUCCESS The capsule was loaded correctly.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND The requested recovery DXE capsule cannot be found.

Additional PPIs

Version 1.3 Errata A 4/24/2015 145

The Recovery Block I/O PPI is used to access block devices. Because the Recovery Block I/O PPIs
that are provided by the PEI ATAPI driver and PEI legacy floppy driver are the same, here we define
a set of general PPIs for both drivers to use.

EFI_PEI_RECOVERY_BLOCK_IO_PPI

Summary
Provides the services required to access a block I/O device during PEI recovery boot mode.

GUID
#define EFI_PEI_RECOVERY_BLOCK_IO_PPI_GUID \
 { 0x695d8aa1, 0x42ee, 0x4c46, 0x80, 0x5c,0x6e, 0xa6, \
 0xbc, 0xe7, 0x99, 0xe3 }

PPI Interface Structure
typedef struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI {
 EFI_PEI_GET_NUMBER_BLOCK_DEVICES GetNumberOfBlockDevices;
 EFI_PEI_GET_DEVICE_MEDIA_INFORMATION
 GetBlockDeviceMediaInfo;
 EFI_PEI_READ_BLOCKS ReadBlocks;
} EFI_PEI_RECOVERY_BLOCK_IO_PPI;

Parameters
GetNumberOfBlockDevices

Gets the number of block I/O devices that the specific block driver manages. See the
GetNumberOfBlockDevices()function description.

GetBlockDeviceMediaInfo

Gets the specified media information. See the GetBlockDeviceMediaInfo() function
description.

ReadBlocks

Reads the requested number of blocks from the specified block device. See the
ReadBlocks() function description.

Description
This function provides the services that are required to access a block I/O device during PEI
recovery boot mode.

Platform Initialization Specification VOLUME 1 PEI Core Interface

146 4/24/2015 Version 1.3 Errata A

EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()

Summary
Gets the count of block I/O devices that one specific block driver detects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_NUMBER_BLOCK_DEVICES) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
 OUT UINTN *NumberBlockDevices
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

NumberBlockDevices

The number of block I/O devices discovered.

Description
This function is used for getting the count of block I/O devices that one specific block driver detects.
To the PEI ATAPI driver, it returns the number of all the detected ATAPI devices it detects during
the enumeration process. To the PEI legacy floppy driver, it returns the number of all the legacy
devices it finds during its enumeration process. If no device is detected, then the function will return
zero.

Status Codes Returned

EFI_SUCCESS Operation performed successfully

Additional PPIs

Version 1.3 Errata A 4/24/2015 147

EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo()

Summary
Gets a block device's media information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_DEVICE_MEDIA_INFORMATION) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
 IN UINTN DeviceIndex,
 OUT EFI_PEI_BLOCK_IO_MEDIA *MediaInfo
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

MediaInfo

The media information of the specified block media. Type
EFI_PEI_BLOCK_IO_MEDIA is defined in "Related Definitions" below. The caller
is responsible for the ownership of this data structure.

Note: This structure describes an enumeration of possible block device types. This enumeration exists
because no device paths are actually passed across interfaces that describe the type or class of
hardware that is publishing the block I/O interface. This enumeration will allow for policy decisions
in the Recovery PEIM, such as "Try to recover from legacy floppy first, LS-120 second, CD-ROM
third." If there are multiple partitions abstracted by a given device type, they should be reported in
ascending order; this order also applies to nested partitions, such as legacy MBR, where the
outermost partitions would have precedence in the reporting order. The same logic applies to
systems such as IDE that have precedence relationships like "Master/Slave" or "Primary/
Secondary"; the master device should be reported first, the slave second.

Description
This function will provide the caller with the specified block device's media information. If the
media changes, calling this function will update the media information accordingly.

Platform Initialization Specification VOLUME 1 PEI Core Interface

148 4/24/2015 Version 1.3 Errata A

Related Definitions
//***
// EFI_PEI_BLOCK_IO_MEDIA
//***

typedef struct {
 EFI_PEI_BLOCK_DEVICE_TYPE DeviceType;
 BOOLEAN MediaPresent;
 UINTN LastBlock;
 UINTN BlockSize;
} PEI_BLOCK_IO_MEDIA;

DevType

The type of media device being referenced by DeviceIndex. Type
EFI_PEI_BLOCK_DEVICE_TYPE is defined below.

MediaPresent

A flag that indicates if media is present. This flag is always set for nonremovable
media devices.

LastBlock

The last logical block that the device supports.

BlockSize

The size of a logical block in bytes.

//***
// EFI_PEI_BLOCK_DEVICE_TYPE
//***
typedef enum {
 LegacyFloppy = 0,
 IdeCDROM = 1,
 IdeLS120 = 2,
 UsbMassStorage = 3,
 MaxDeviceType
} EFI_PEI_BLOCK_DEVICE_TYPE;

Status Codes Returned

EFI_SUCCESS Media information about the specified block device was obtained
successfully.

EFI_DEVICE_ERROR Cannot get the media information due to a hardware error.

Additional PPIs

Version 1.3 Errata A 4/24/2015 149

 EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks()

Summary
Reads the requested number of blocks from the specified block device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_READ_BLOCKS) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
 IN UINTN DeviceIndex,
 IN EFI_PEI_LBA StartLBA,
 IN UINTN BufferSize,
 OUT VOID *Buffer
);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in section 3.2.1.

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

StartLBA

The starting logical block address (LBA) to read from on the device. Type
EFI_PEI_LBA is defined in "Related Definitions" below.

BufferSize

The size of the Buffer in bytes. This number must be a multiple of the intrinsic
block size of the device.

Buffer
A pointer to the destination buffer for the data. The caller is responsible for the ownership of the
buffer.

Description
The function reads the requested number of blocks from the device. All the blocks are read, or an
error is returned. If there is no media in the device, the function returns EFI_NO_MEDIA.

Platform Initialization Specification VOLUME 1 PEI Core Interface

150 4/24/2015 Version 1.3 Errata A

Related Definitions
//***
// EFI_PEI_LBA
//***

typedef UINT64 EFI_PEI_LBA;

EFI_PEI_LBA is the UINT64 LBA number.

Status Codes Returned

EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional)

Summary
The PPI that describes an array of interrupt and/or exception vectors that are in use and need to
persist.

GUID
#define EFI_PEI_VECTOR_HANDOFF_INFO_PPI_GUID \
 { 0x3cd652b4, 0x6d33, 0x4dce, \
 { 0x89, 0xdb, 0x83, 0xdf, 0x97, 0x66, 0xfc, 0xca } }

Protocol Interface Structure
typedef struct _EFI_PEI_VECTOR_HANDOFF_INFO_PPI {
 EFI_VECTOR_HANDOFF_INFO *Info;
} EFI_PEI_VECTOR_HANDOFF_INFO_PPI;

Parameters
Info

Pointer to an array of interrupt and /or exception vectors.

Description
This is an optional PPI that may be produced by SEC. If present, it provides a description of the
interrupt and/or exception vectors that were established in the SEC Phase and need to persist into

EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
properly aligned.

EFI_NO_MEDIA There is no media in the device.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of
the device.

Additional PPIs

Version 1.3 Errata A 4/24/2015 151

PEI and DXE. This PPI is an array of entries that is terminated by an entry whose Attribute is
set to EFI_VECTOR_HANDOFF_LAST_ENTRY.

If Attribute is set to EFI_VECTOR_HANDOFF_DO_NOT_HOOK, then the associated handler
for VectorNumber must be preserved in PEI and DXE.

If Attribute is set to EFI_VECTOR_HANDOFF_HOOK_BEFORE, then VectorNumber may
be used in PEI and DXE, but new handlers must be invoked prior to when the existing handler is
called.

If Attribute is set to EFI_VECTOR_HANDOFF_HOOK_AFTER, then the associated
VectorNumber may be used in PEI and DXE, but new handlers must be called after the existing
handler is called.

EFI_PEI_VECTOR_HANDOFF_INFO_PPI_GUID can also be used in the PEI Phase to build a
GUIDed HOB that contains an array of EFI_VECTOR_HANDOFF_INFO entries that describes the
interrupt and/or exception vectors in use in the PEI Phase. This may be identical to the array passed
up from SEC, or it could be an array that is augmented with additional vectors used in PEI Phase.

Related Definitions
//
// System configuration table entry that points to the table
// in case an entity in DXE wishes to update/change the vector
// table contents.
//
#define EFI_VECTOR_HANDOFF_TABLE_GUID \
{0x996ec11c, 0x5397, 0x4e73, 0xb5, 0x8f, 0x82, 0x7e, 0x52, 0x90,
0x6d, 0xef}

typedef struct {
 UINT32 VectorNumber;
 UINT32 Attribute;
 EFI_GUID Owner;
} EFI_VECTOR_HANDOFF_INFO;

Parameters
VectorNumber

The interrupt or exception vector that is in use and must be preserved.

Attribute

A bitmask that describes the attributes of the interrupt or exception vector.

Owner

The GUID identifies the party who created the entry. For the
EFI_VECTOR_HANDOFF_DO_NOT_HOOK case, this establishes the single owner.

Platform Initialization Specification VOLUME 1 PEI Core Interface

152 4/24/2015 Version 1.3 Errata A

8.3.4 CPU I/O PPI (Optional)

EFI_PEI_CPU_IO_PPI (Optional)

If the service is not available, the PEI Core service EFI_PEI_CPU_IO_PPI *CpuIo member
functions will have a dummy function that return EFI_NOT_AVAILABLE_YET;

Summary
This PPI is installed by some platform or chipset-specific PEIM that abstracts the processor-visible
I/O operations.

GUID
#define EFI_PEI_CPU_IO_PPI_INSTALLED_GUID \
 {0xe6af1f7b, 0xfc3f, 0x46da, 0xa8, 0x28, 0xa3, 0xb4, \
 0x57, 0xa4, 0x42, 0x82}

This is an indicator GUID without any data. It represents the fact that a PEIM has written the
address of the EFI_PEI_CPU_IO_PPI into the EFI_PEI_SERVICES table.

PPI Interface Structure
typedef
struct _EFI_PEI_CPU_IO_PPI {
 EFI_PEI_CPU_IO_PPI_ACCESS Mem;
 EFI_PEI_CPU_IO_PPI_ACCESS Io;
 EFI_PEI_CPU_IO_PPI_IO_READ8 IoRead8;
 EFI_PEI_CPU_IO_PPI_IO_READ16 IoRead16;
 EFI_PEI_CPU_IO_PPI_IO_READ32 IoRead32;
 EFI_PEI_CPU_IO_PPI_IO_READ64 IoRead64;
 EFI_PEI_CPU_IO_PPI_IO_WRITE8 IoWrite8;
 EFI_PEI_CPU_IO_PPI_IO_WRITE16 IoWrite16;
 EFI_PEI_CPU_IO_PPI_IO_WRITE32 IoWrite32;
 EFI_PEI_CPU_IO_PPI_IO_WRITE64 IoWrite64;
 EFI_PEI_CPU_IO_PPI_MEM_READ8 MemRead8;
 EFI_PEI_CPU_IO_PPI_MEM_READ16 MemRead16;
 EFI_PEI_CPU_IO_PPI_MEM_READ32 MemRead32;
 EFI_PEI_CPU_IO_PPI_MEM_READ64 MemRead64;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE8 MemWrite8;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE16 MemWrite16;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE32 MemWrite32;
 EFI_PEI_CPU_IO_PPI_MEM_WRITE64 MemWrite64;
} EFI_PEI_CPU_IO_PPI;

Parameters
Mem

Collection of memory-access services. See the Mem() function description. Type
EFI_PEI_CPU_IO_PPI_ACCESS is defined in “Related Definitions” below.

Additional PPIs

Version 1.3 Errata A 4/24/2015 153

Io

Collection of I/O-access services. See the Io() function description. Type
EFI_PEI_CPU_IO_PPI_ACCESS is defined in “Related Definitions” below.

IoRead8

8-bit read service. See the IoRead8() function description.

IoRead16

16-bit read service. See the IoRead16() function description.

IoRead32

32-bit read service. See the IoRead32() function description.

IoRead64

64-bit read service. See the IoRead64() function description.

IoWrite8

8-bit write service. See the IoWrite8() function description.

IoWrite16

16-bit write service. See the IoWrite16() function description.

IoWrite32

32-bit write service. See the IoWrite32() function description.

IoWrite64

64-bit write service. See the IoWrite64() function description.

MemRead8

8-bit read service. See the MemRead8() function description.

MemRead16

16-bit read service. See the MemRead16() function description.

MemRead32

32-bit read service. See the MemRead32() function description.

MemRead64

64-bit read service. See the MemRead64() function description.

MemWrite8

8-bit write service. See the MemWrite8() function description.

MemWrite16

16-bit write service. See the MemWrite16() function description.

MemWrite32

32-bit write service. See the MemWrite32() function description.

MemWrite64

64-bit write service. See the MemWrite64() function description.

Platform Initialization Specification VOLUME 1 PEI Core Interface

154 4/24/2015 Version 1.3 Errata A

Description
This PPI provides a set of memory- and I/O-based services. The perspective of the services is that of
the processor, not the bus or system.

Related Definitions
//***
// EFI_PEI_CPU_IO_PPI_ACCESS
//***

typedef
struct {
 EFI_PEI_CPU_IO_PPI_IO_MEM Read;
 EFI_PEI_CPU_IO_PPI_IO_MEM Write;
} EFI_PEI_CPU_IO_PPI_ACCESS;

Read

This service provides the various modalities of memory and I/O read.

Write

This service provides the various modalities of memory and I/O write.

Additional PPIs

Version 1.3 Errata A 4/24/2015 155

EFI_PEI_CPU_IO_PPI.Mem()

Summary
Memory-based access services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_CPU_IO_PPI_WIDTH is defined in “Related Definitions” below.

Address

The physical address of the access.

Count

The number of accesses to perform.

Buffer

A pointer to the buffer of data.

Description
The Mem() function provides a list of memory-based accesses.

Platform Initialization Specification VOLUME 1 PEI Core Interface

156 4/24/2015 Version 1.3 Errata A

Related Definitions
//***
// EFI_PEI_CPU_IO_PPI_WIDTH
//***

typedef enum {
 EfiPeiCpuIoWidthUint8,
 EfiPeiCpuIoWidthUint16,
 EfiPeiCpuIoWidthUint32,
 EfiPeiCpuIoWidthUint64,
 EfiPeiCpuIoWidthFifoUint8,
 EfiPeiCpuIoWidthFifoUint16,
 EfiPeiCpuIoWidthFifoUint32,
 EfiPeiCpuIoWidthFifoUint64,
 EfiPeiCpuIoWidthFillUint8,
 EfiPeiCpuIoWidthFillUint16,
 EfiPeiCpuIoWidthFillUint32,
 EfiPeiCpuIoWidthFillUint64,
 EfiPeiCpuIoWidthMaximum
} EFI_PEI_CPU_IO_PPI_WIDTH;

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

Additional PPIs

Version 1.3 Errata A 4/24/2015 157

EFI_PEI_CPU_IO_PPI.Io()

Summary
I/O-based access services.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_MEM) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN EFI_PEI_CPU_IO_PPI_WIDTH Width,
 IN UINT64 Address,
 IN UINTN Count,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Width

The width of the access. Enumerated in bytes. Type
EFI_PEI_CPU_IO_PPI_WIDTH is defined in Mem().

Address

The physical address of the access.

Count

The number of accesses to perform.

Buffer

A pointer to the buffer of data.

Description
The Io() function provides a list of I/O-based accesses. Input or output data can be found in the
last argument.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_NOT_YET_AVAILABLE The service has not been installed.

Platform Initialization Specification VOLUME 1 PEI Core Interface

158 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.IoRead8()

Summary
8-bit I/O read operations.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead8() function returns an 8-bit value from the I/O space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 159

EFI_PEI_CPU_IO_PPI.IoRead16()

Summary
16-bit I/O read operations.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead16() function returns a 16-bit value from the I/O space.

Platform Initialization Specification VOLUME 1 PEI Core Interface

160 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.IoRead32()

Summary
32-bit I/O read operations.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead32() function returns a 32-bit value from the I/O space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 161

EFI_PEI_CPU_IO_PPI.IoRead64()

Summary
64-bit I/O read operations.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_READ64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST_EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The IoRead64() function returns a 64-bit value from the I/O space.

Platform Initialization Specification VOLUME 1 PEI Core Interface

162 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.IoWrite8()

Summary
8-bit I/O write operations.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST_EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT8 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite8() function writes an 8-bit value to the I/O space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 163

EFI_PEI_CPU_IO_PPI.IoWrite16()

Summary
16-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT16 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite16() function writes a 16-bit value to the I/O space.

Platform Initialization Specification VOLUME 1 PEI Core Interface

164 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.IoWrite32()

Summary
32-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT32 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite32() function writes a 32-bit value to the I/O space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 165

EFI_PEI_CPU_IO_PPI.IoWrite64()

Summary
64-bit I/O write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT64 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The IoWrite64() function writes a 64-bit value to the I/O space.

Platform Initialization Specification VOLUME 1 PEI Core Interface

166 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.MemRead8()

Summary
8-bit memory read operations.

Prototype
typedef
UINT8
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead8() function returns an 8-bit value from the memory space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 167

EFI_PEI_CPU_IO_PPI.MemRead16()

Summary
16-bit memory read operations.

Prototype
typedef
UINT16
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead16() function returns a 16-bit value from the memory space.

Platform Initialization Specification VOLUME 1 PEI Core Interface

168 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.MemRead32()

Summary
32-bit memory read operations.

Prototype
typedef
UINT32
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead32() function returns a 32-bit value from the memory space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 169

EFI_PEI_CPU_IO_PPI.MemRead64()

Summary
64-bit memory read operations.

Prototype
typedef
UINT64
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_READ64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Description
The MemRead64() function returns a 64-bit value from the memory space.

Platform Initialization Specification VOLUME 1 PEI Core Interface

170 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.MemWrite8()

Summary
8-bit memory write operations.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE8) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT8 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite8() function writes an 8-bit value to the memory space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 171

EFI_PEI_CPU_IO_PPI.MemWrite16()

Summary
16-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE16) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT16 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite16() function writes a 16-bit value to the memory space.

Platform Initialization Specification VOLUME 1 PEI Core Interface

172 4/24/2015 Version 1.3 Errata A

EFI_PEI_CPU_IO_PPI.MemWrite32()

Summary
32-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_MEM_WRITE32) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT32 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite32() function writes a 32-bit value to the memory space.

Additional PPIs

Version 1.3 Errata A 4/24/2015 173

EFI_PEI_CPU_IO_PPI.MemWrite64()

Summary
64-bit memory write operation.

Prototype
typedef
VOID
(EFIAPI *EFI_PEI_CPU_IO_PPI_IO_WRITE64) (
 IN CONST EFI_PEI_SERVICES **PeiServices,
 IN CONST EFI_PEI_CPU_IO_PPI *This,
 IN UINT64 Address,
 IN UINT64 Data
);

Parameters
PeiServices

An indirect pointer to the PEI Services Table published by the PEI Foundation.

This

Pointer to local data for the interface.

Address

The physical address of the access.

Data

The data to write.

Description
The MemWrite64() function writes a 64-bit value to the memory space.

//
// Vector Handoff Info Attributes
//
#define EFI_VECTOR_HANDOFF_DO_NOT_HOOK 0x00000000
#define EFI_VECTOR_HANDOFF_HOOK_BEFORE 0x00000001
#define EFI_VECTOR_HANDOFF_HOOK_AFTER 0x00000002
#define EFI_VECTOR_HANDOFF_LAST_ENTRY 0x80000000

Platform Initialization Specification VOLUME 1 PEI Core Interface

174 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 175

9
PEI to DXE Handoff

9.1 Introduction
The PEI phase of the system firmware boot process performs rudimentary initialization of the
system to meet specific minimum system state requirements of the DXE Foundation. The PEI
Foundation must have a mechanism of locating and passing off control of the system to the DXE
Foundation. PEI must also provide a mechanism for components of DXE and the DXE Foundation
to discover the state of the system when the DXE Foundation is invoked. Certain aspects of the
system state at handoff are architectural, while other system state information may vary and hence
must be described to DXE components.

9.2 Discovery and Dispatch of the DXE Foundation
The PEI Foundation uses a special PPI named the DXE Initial Program Load (IPL) PPI to discover
and dispatch the DXE Foundation and components that are needed to run the DXE Foundation

The final action of the PEI Foundation is to locate and pass control to the DXE IPL PPI. To
accomplish this, the PEI Foundation scans all PPIs by GUID for the GUID matching the DXE IPL
PPI. The GUID for this PPI is defined in EFI_DXE_IPL_PPI.

9.3 Passing the Hand-Off Block (HOB) List
The DXE IPL PPI passes the Hand-Off Block (HOB) list from PEI to the DXE Foundation when it
invokes the DXE Foundation. The handoff state is described in the form of HOBs in the HOB list.
The HOB list must contain at least the HOBs listed in Table 18.

Table 18. Required HOB Types in the HOB List

Required HOB Type Usage

Phase Handoff Information Table (PHIT) HOB This HOB is required.

One or more Resource Descriptor HOB(s)
describing physical system memory

The DXE Foundation will use this physical system
memory for DXE.

Boot-strap processor (BSP) Stack HOB The DXE Foundation needs to know the current stack
location so that it can move it if necessary, based upon
its desired memory address map. This HOB will be of
type EfiConventionalMemory

BSP BSPStore (“Backing Store Pointer Store”)
HOB
Note: Itanium processor family only

The DXE Foundation needs to know the current store
location so that it can move it if necessary, based upon
its desired memory address map.

One or more Resource Descriptor HOB(s)
describing firmware devices

The DXE Foundation will place this into the GCD.

Platform Initialization Specification VOLUME 1 PEI Core Interface

176 4/24/2015 Version 1.3 Errata A

The above HOB types are defined in volume 3 of this specification.

9.4 Handoff Processor State to the DXE IPL PPI
Table 19 defines the state that processors must be in at handoff to the DXE IPL PPI, for the
following processors:

• IA-32 processors

• Itanium processor family

• Intel® processors using Intel® XScale™ technology

Table 19. Handoff Processor State to the DXE IPL PPI

One or more Firmware Volume HOB(s) The DXE Foundation needs this information to begin
loading other drivers in the platform.

A Memory Allocation Module HOB This HOB tells the DXE Foundation where it is when
allocating memory into the initial system address map.

Processor State at Handoff

IA-32 In 32-bit flat mode

Itanium In Itanium processor family physical mode

Intel XScale In SuperVisor Mode with a one-to-one virtual-to-physical mapping if
there is a memory management unit (MMU) in the system

Version 1.3 Errata A 4/24/2015 177

10
Boot Paths

10.1 Introduction
The PEI Foundation is unaware of the boot path required by the system. It relies on the PEIMs to
determine the boot mode (e.g. R0, R1, S3, etc.) and take appropriate action depending on the mode.

To implement this, each PEIM has the ability to manipulate the boot mode using the PEI Service
SetBootMode() described in Services - PEI.

The PEIM does not change the order in which PEIMs are dispatched depending on the boot mode.

10.2 Code Flow
The normal code flow in PI firmware passes through a succession of phases, in the following order:

1. SEC

2. PEI

3. DXE

4. BDS

5. Runtime

6. Afterlife

This section describes alternatives to this ordering.

10.2.1 Reset Boot Paths
The following sections describe the boot paths that are followed when a system encounters several
different types of reset.

10.2.1.1 Intel Itanium Processor Reset
Itanium architecture contains enough hooks to authenticate PAL-A and PAL-B code that is
distributed by the processor vendor. The internal microcode on the processor silicon, which starts up
on a PowerGood reset, finds the first layer of processor abstraction code (called PAL-A) that is
located in the boot firmware volume (BFV), or the volume that has SEC and the PEI core, using
architecturally defined pointers in the BFV. It is the responsibility of this microcode to authenticate
that the PAL-A code layer from the processor vendor has not been tampered. If the authentication of
the PAL-A layer passes, control then passes to the PAL-A layer, which then authenticates the next
layer of processor abstraction code (called PAL-B) before passing control to it. In addition to this
microarchitecture-specific authentication, the SEC phase of UEFI is still responsible for locating the
PEI Foundation and verifying its authenticity.

In an Itanium-based system, it is also imperative that the firmware modules in the BFV be organized
such that at least the PAL-A is contained in the fault-tolerant regions. This processor-specific PAL-
A authenticates the PAL-B code, which usually is contained in the non-fault-tolerant regions of the

Platform Initialization Specification VOLUME 1 PEI Core Interface

178 4/24/2015 Version 1.3 Errata A

firmware system. The PAL A and PAL B binary components are always visible to all the processors
in a node at the time of power-on; the system fabric should not need to be initialized.

10.2.1.2 Non-Power-on Resets
Non-power-on resets can occur for many reasons. There are PEI and DXE system services that reset
and reboot the entire platform, including all processors and devices. It is important to have a
standard variant of this boot path for cases such as the following:

• Resetting the processor to change frequency settings

• Restarting hardware to complete chipset initialization

• Responding to an exception from a catastrophic error

This reset is also used for Configuration Values Driven through Reset (CVDR) configuration.

10.3 Normal Boot Paths
A traditional BIOS executes POST from a cold boot (G3 to S0 state), on resumes, or in special cases
like INIT. UEFI covers all those cases but provides a richer and more standardized operating
environment

The basic code flow of the system needs to be changeable due to different circumstances. The boot
path variable satisfies this need. The initial value of the boot mode is defined by some early PEIMs,
but it can be altered by other, later PEIM(s). All systems must support a basic S0 boot path.
Typically a system has a more rich set of boot paths, including S0 variations, S-state boot paths, and
one or more special boot paths.

The architecture for multiple boot paths presented here has several benefits, as follows:

• The PEI Foundation is not required to be aware of system-specific requirements such as MP and
various power states. This lack of awareness allows for scalability and headroom for future
expansion.

• Supporting the various paths only minimally impacts the size of the PEI Foundation.

• The PEIMs that are required to support the paths scale with the complexity of the system.

Note that the Boot Mode Register becomes a variable upon transition to the DXE phase. The DXE
phase can have additional modifiers that affect the boot path more than the PEI phase.

These additional modifiers can indicate if the system is in manufacturing mode, chassis intrusion, or
AC power loss or if silent boot is enabled.

10.3.1 Basic G0-to-S0 and S0 Variation Boot Paths
The basic S0 boot path is "boot with full configuration." This path setting informs all PEIMs to do a
full configuration. The basic S0 boot path must be supported.

The Framework architecture also defines several optional variations to the basic S0 boot path. The
variations that are supported depend on the following:

• Richness of supported features

• If the platform is open or closed

• Platform hardware

Boot Paths

Version 1.3 Errata A 4/24/2015 179

For example, a closed system or one that has detected a chassis intrusion could support a boot path
that assumes no configuration changes from last boot option, thus allowing a very rapid boot time.
Unsupported variations default to basic S0 operation. The following are the defined variations to the
basic boot path:

• Boot with minimal configuration:

This path is for configuring the minimal amount of hardware to boot the system.

• Boot assuming no configuration changes:

This path uses the last configuration data.

• Boot with full configuration plus diagnostics:

This path also causes any diagnostics to be executed.

• Boot with default settings: This path uses a known set of safe values for programming hardware.

10.3.2 S-State Boot Paths
The following optional boot paths allow for different operation for a resume from S3, S4, and S5:

• S3 (Save to RAM Resume): Platforms that support S3 resume must take special care to
preserve/restore memory and critical hardware.

• S4 (Save to Disk): Some platforms may want to perform an abbreviated PEI and DXE phase on
a S4 resume.

• S5 (Soft Off): Some platforms may want an S5 system state boot to be differentiated from a
normal boot-for example, if buttons other than the power button can wake the system.

An S3 resume needs to be explained in more detail because it requires cooperation between a G0-to-
S0 boot path and an S3 resume boot path. The G0-to-S0 boot path needs to save hardware
programming information that the S3 resume path needs to retrieve.

This information is saved in the Hardware Save Table using predefined data structures to perform I/
O or memory writes. The data is stored in an UEFI equivalent of the INT15 E820 type 4 (firmware
reserved memory) area or a firmware device area that is reserved for use by UEFI. The S3 resume
boot path code can access this region after memory has been restored.

10.4 Recovery Paths
All of the above boot paths can be modified or aborted if the system detects that recovery is needed.
Recovery is the process of reconstituting a system's firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes on
nonvolatile storage devices (flash, disk) are managed as blocks. If the system loses power while a
block, or semantically bound blocks, are being updated, the storage might become invalid. On the
other hand, the device might become corrupted by an errant program or by errant hardware. The
system designers must determine the level of support for recovery based on their perceptions of the
probabilities of these events occurring and their consequences.

The following are some reasons why system designers may choose to not support recovery:

• A system's firmware volume storage media might not support modification after being
manufactured. It might be the functional equivalent of a ROM.

Platform Initialization Specification VOLUME 1 PEI Core Interface

180 4/24/2015 Version 1.3 Errata A

• Most mechanisms of implementing recovery require additional firmware volume space, which
might be too expensive for a particular application.

• A system may have enough firmware volume space and hardware features that the firmware
volume can be made sufficiently fault tolerant to make recovery unnecessary.

10.4.1 Discovery
Discovering that recovery is done using a PEIM (for example, by checking a "force recovery"
jumper).

10.4.2 General Recovery Architecture
The concept behind recovery is to preserve enough of the system firmware so that the system can
boot to a point where it can do the following:

• Read a copy of the data that was lost from chosen peripherals.

• Reprogram the firmware volume with that data.

Preserving the recovery firmware is a function of the way the firmware volume store is managed,
which is generally beyond the scope of this document.

The PI recovery architecture allows for one or many PEIMs to be built to handle the portion of the
recovery that would initialize the recovery peripherals (and the buses they reside on) and then to read
the new images from the peripherals and update the firmware volumes.

It is considered far more likely that the PEI will transition to DXE because DXE is designed to
handle access to peripherals. This transition has the additional benefit that, if DXE then discovers
that a device has become corrupted, it may institute recovery without transferring control back to the
PEI.

10.5 Defined Boot Modes
The list of possible boot modes is described in the GetBootMode() function description. PI
architecture specifically does not define an upgrade path if new boot modes are defined. This is
necessary as the nature of those additional boot modes may work in conjunction with or may conflict
with the previously defined boot modes.

10.6 Priority of Boot Paths
Within a given PEIM, the priority ordering of the sources of boot mode should be as follows (from
highest priority to lowest):

1. BOOT_IN_RECOVERY_MODE

2. BOOT_ON_FLASH_UPDATE

3. BOOT_ON_S3_RESUME

4. BOOT_WITH_MINIMAL_CONFIGURATION

5. BOOT_WITH_FULL_CONFIGURATION

6. BOOT_ASSUMING_NO_CONFIGURATION_CHANGES

Boot Paths

Version 1.3 Errata A 4/24/2015 181

7. BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS

8. BOOT_WITH_DEFAULT_SETTINGS

9. BOOT_ON_S4_RESUME

10. BOOT_ON_S5_RESUME

11. BOOT_ON_S2_RESUME

The boot modes listed above are defined in the PEI Service SetBootMode().

Platform Initialization Specification VOLUME 1 PEI Core Interface

182 4/24/2015 Version 1.3 Errata A

10.7 Assumptions
Table 20 lists the assumptions that can be made about the system for each sleep state.

Table 20. Boot Path Assumptions

10.8 Architectural Boot Mode PPIs
There is a possible hierarchy of boot mode PPIs that abstracts the various producers of this variable.
It is a hierarchy in that there should be an order of precedence in which each mode can be set. The
PPIs and their respective GUIDs are described in “Required Architectural PPIs” on page 87 and
“Optional Architectural PPIs” on page 92. The hierarchy includes the master PPI, which publishes a
PPI that will be depended upon by the appropriate PEIMs, and some subsidiary PPI. For PEIMs that
require that the boot mode is finally known, the Master Boot Mode PPI can be used as a dependency.

System State Description Assumptions

R0 Cold Boot Cannot assume that the previously stored configuration data
is valid.

R1 Warm Boot May assume that the previously stored configuration data is
valid.

S3 ACPI Save to RAM
Resume

The previously stored configuration data is valid and RAM is
valid. RAM configuration must be restored from nonvolatile
storage (NVS) before RAM may be used. The firmware may
only modify previously reserved RAM. There are two types
of reserved memory. One is the equivalent of the BIOS
INT15h, E820 type-4 memory and indicates that the RAM is
reserved for use by the firmware. The suggestion is to add
another type of memory that allows the OS to corrupt the
memory during runtime but that may be overwritten during
resume.

S4,
S5

Save to Disk Resume,
“Soft Off”

S4 and S5 are identical from a PEIM's point of view. The two
are distinguished to support follow-on phases. The entire
system must be reinitialized but the PEIMs may assume that
the previous configuration is still valid.

Boot on Flash
Update

This boot mode can be either an INIT, S3, or other means by
which to restart the machine. If it is an S3, for example, the
flash update cause will supersede the S3 restart. It is
incumbent upon platform code, such as the Memory
Initialization PEIM, to determine the exact cause and perform
correct behavior (i.e., S3 state restoration versus INIT
behavior).

Boot with
Manufacturing
Mode settings

PEIM's and/or DXE drivers may parameterize based upon
actions that should only occur in the factory or a
manufacturer approved setting.

Boot Paths

Version 1.3 Errata A 4/24/2015 183

Table 21 lists the architectural boot mode PPIs.

Table 21. Architectural Boot Mode PPIs

10.9 Recovery

10.9.1 Scope
Recovery is the process of reconstituting a system’s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes (FVs) in
nonvolatile storage (NVS) devices (flash or disk, for example) are managed as blocks. If the system
loses power while a block, or semantically bound blocks, are being updated, the storage might
become invalid. On the other hand, an errant program or hardware could corrupt the device. The
system designers must determine the level of support for recovery based on their perceptions of the
probabilities of these events occurring and the consequences.

The designers of a system may choose not to support recovery for the following reasons:

• A system’s FV storage media might not support modification after being manufactured. It might
be the functional equivalent of a ROM.

• Most mechanisms of implementing recovery require additional FV space that might be too
expensive for a particular application.

• A system may have enough FV space and hardware features that the FV can be made
sufficiently fault tolerant to make recovery unnecessary.

10.9.2 Discovery
Discovering that recovery is required may be done using a PEIM (for example, by checking a “force
recovery” jumper) or the PEI Foundation itself. The PEI Foundation might discover that a particular
PEIM has not validated correctly or that an entire firmware has become corrupted.

10.9.3 General Recovery Architecture
The concept behind recovery is to preserve enough of the system firmware so that the system can
boot to a point where it can do the following:

• Read a copy of the data that was lost from chosen peripherals.

• Reprogram the firmware volume (FV) with that data.

Preserving the recovery firmware is a function of the way the FV store is managed, which is
generally beyond the scope of this document.

PPI Name Required or Optional? PPI Definition in Section...

Master Boot Mode PPI Required Architectural PPIs: Required Architectural
PPIs

Boot in Recovery Mode PPI Optional Architectural PPIs: Optional Architectural
PPIs

Platform Initialization Specification VOLUME 1 PEI Core Interface

184 4/24/2015 Version 1.3 Errata A

If the PEI Dispatcher encounters PEIMs that have been corrupted (for example, by receiving an
incorrect hash value), it must change the boot mode to “recovery.” Once set to recovery, other
PEIMs must not change it to one of the other states.

A PEIM can also detect a catastrophic condition or a forced-recovery event and alert the PEI 10.6.4
Finding and Loading the Recovery DXE Image.

10.9.4 Finding and Loading the Recovery DXE Image

10.9.4.1 Finding the Recovery DXE Image: Overview
The PEI Dispatcher specifically invokes the DXE Initial Program Load (IPL) PEIM, regardless of
normal or recovery mode. The DXE IPL PEIM detects that a recovery is in process and invokes a
recovery-specific PPI, the Recovery Module PPI. The Recovery Module PPI,
EFI_PEI_RECOVERY_MODULE_PPI, does the following:

• Loads a binary capsule that includes a recovery DXE image into memory

• Updates the Hand-Off Block (HOB) table with the DXE firmware volume

• Installs or Reinstalls instance of the Firmware Volume Info PPI
(EFI_PEI_FIRMWARE_VOLUME_INFO_PPI) for the DXE firmware volume

See Section 8.6.3 for the PPIs that are needed to load the DXE image.

Note: The Recovery Module PPI is device and content neutral. The DXE IPL PEIM uses the Recovery
Module PPI to load a DXE image and invokes the DXE image normally. The DXE IPL PEIM does
not know or care about the capsule's internal structure or from which device the capsule was
loaded.

The internals of the recovery PEIM normally fall within four phases:

• Searching the supported devices for recovery capsules

• Deciding which capsule to load

• Loading the capsule into memory

• Loading the resulting DXE firmware volume

The Recovery Module PPI encompasses the first three phases and the DXE IPL PEIM encompasses
the last phase. See the next topic, Recovery Sequence: Detailed Steps, for the details of these four
phases.

10.9.4.2 Recovery Sequence
The normal, non-recovery sequence is that after completion of the PEI phase, the PEI Dispatcher
specifically invokes the DXE Initial Program Load (IPL) PEIM. The recovery sequence is identical
to the non-recovery sequence in that the PEI Dispatcher also specifically invokes the DXE IPL
PEIM. After invoking the DXE IPL PEIM, the recovery sequence is as follows:

1. The DXE IPL PEIM detects that a recovery is in process, searches for the Recovery Module PPI,
and invokes the recovery function
EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule().

2. EFI_PEI_RECOVERY_MODULE_PPI searches for one or more instances of the Device
Recovery Module PPI, EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. For each instance
found, the

Boot Paths

Version 1.3 Errata A 4/24/2015 185

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetNumberRecoveryCapsules()
function is invoked to determine the following:

• The number of recovery DXE capsules detected by the specified device

• The maximum buffer size required to load a capsule

3. EFI_PEI_RECOVERY_MODULE_PPI then decides the following:

• The device search order, if more than one Device Recovery Module PPI was discovered

• The individual search order, if the device reported more than one recovery DXE capsule was
found generating a search order list

4. EFI_PEI_RECOVERY_MODULE_PPI invokes the device recovery function
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() to load a
capsule that includes a recovery DXE image into memory. The capsule that is returned from the
device recovery module is a capsule that contains the recovery DXE image.

5. The EFI_PEI_RECOVERY_MODULE_PPI security does the following:

• Verifies the capsule

• Generates a data Hand-Off Block (HOB) entry for a security failure

• Tries the next entry in the search order list

6. Once a valid capsule has been loaded, EFI_PEI_RECOVERY_MODULE_PPI does the
following:

• Decomposes the capsule and updates the HOB table with the recovery DXE firmware
volume information. The path parameters are assumed to be redundant for recovery. The
Setup parameters are either redundant or fixed.

• Invalidates all HOB entries for updateable firmware volume entries.

The DXE capsule that is loaded by the Device Recovery Module PPI makes no assumptions about
contents or format other than assuming that the recovery DXE image is somewhere in the returned
capsule.

The following subsections describe the different recovery PPIs.

10.9.4.3 Recovery PPIs: Recovery Module PPI
The Recovery Module PPI, EFI_PEI_RECOVERY_MODULE_PPI, invokes the Device Recovery
Module PPI EFI_PEI_DEVICE_RECOVERY_MODULE_PPI to do the following:

• Determine the number of DXE recovery capsules found by each device

• Determine capsule information

• Load a specific DXE recovery capsule from the indicated device

• Determine the device load order

The capsule is security verified and decomposed and the HOB table is updated with the DXE
recovery firmware volume.

There are two general categories of recovery PPIs:

• Device recovery PPI

• Device recovery block I/O PPI

Platform Initialization Specification VOLUME 1 PEI Core Interface

186 4/24/2015 Version 1.3 Errata A

The Device Recovery Module PPI is device neutral. The Device Recovery Block I/O PPI is device
specific and used to access the physical media. The following subsections describe the PPI
associated with each category. See Code Definitions for the definitions of these PPIs.

10.9.4.3.1 Device Recovery Module PPI

The table below lists the device recovery functions in the Device Recovery Module PPI,
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.

Table 22. Device Recovery Module Functions

10.9.4.3.2 Device Recovery Block I/O PPI

The Device Recovery Block I/O PPI, EFI_PEI_RECOVERY_BLOCK_IO_PPI, differs from the
Device Recovery Module PPI in that the Device Recovery Block I/O PPI is used for physical media
access. The Device Recovery Module PPI uses this PPI to search for capsules. This PPI is included
with the recovery PEIMs because a block I/O is the most common recovery media.

The table below lists the functions in the Device Recovery Block I/O PPI.

Table 23. Device Recovery Block I/O Functions

Function Description

GetNumberRecoveryCapsules() Scans the devices that are supported by the PPI for DXE recovery
capsules and reports the number found. The internal ordering should
reflect the priority in the load order, with the highest priority capsule
number set to one and the lowest priority number set to N.

GetRecoveryCapsuleInfo() Provides the size of the indicated capsule and a CapsuleType

Globally Unique Identifier (GUID). The recovery module uses this
information to allow an alternate priority scheme based on the

CapsuleType information.

LoadRecoveryCapsule() Loads the indicated DXE recovery capsule instance and returns a
capsule with the actual number of bytes loaded.

Function Description

GetNumberOfBlockDevices() Returns the number of block I/O devices supported. There is no ordering
priority.

GetBlockDeviceMediaInfo() Indicates the type of block I/O device found, such as a legacy floppy or CD-
ROM. The block size and last block number are also returned.

ReadBlocks() Reads the indicated block I/O device starting at the given logical block
address (LBA) and for buffer size/block size.

Version 1.3 Errata A 4/24/2015 187

11
PEI Physical Memory Usage

11.1 Introduction
This section describes how physical system memory is used during PEI. The rules for using
physical system memory are different before and after permanent memory registration within the
PEI execution.

11.2 Before Permanent Memory Is Installed

11.2.1 Discovering Physical Memory
Before permanent memory is installed, the minimum exit condition for the PEI phase is that it has
enough physical system memory to run PEIMs and the DXE IPL PPI that require permanent
memory. These memory-aware PEIMs may discover and initialize additional system memory, but
in doing so they must not cause loss of data in the physical system memory initialized during the
earlier phase. The required amount of memory initialized and tested by PEIMs in these two phases
is platform dependent.

Before permanent memory is installed, a PEIM may not assume any area of physical memory is
present and initialized. During this early phase, a PEIM—usually one specific to the chipset
memory controller—will initialize and test physical memory. When this PEIM has initialized and
tested the physical memory, it will register the memory using the PEI Memory Service
InstallPeiMemory(), which in turn will cause the PEI Foundation to create an initial Hand-
Off Block (HOB) list and describe the memory. The memory that is present, initialized, and tested
will reside in resource descriptor HOBs in the initial HOB list (see Volume 3 for more information).
This memory allocation PEIM may also choose to allocate some of this physical memory by doing
the following:

• Creating memory allocation HOBs, as described in “Allocating Memory Using GUID Extension
HOBs” on page 188.

• Using the memory allocation services AllocatePages() and AllocatePool()

Once permanent memory has been installed, the resources described in the HOB list are considered
permanent system memory.

11.2.2 Using Physical Memory
A PEIM that requires permanent, fixed memory allocation must schedule itself to run after
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI is installed. To schedule itself, the PEIM
can do one of the following:

• Put this PPI's GUID into the depex of the PEIM.

• Register for a notification.

Platform Initialization Specification VOLUME 1 PEI Core Interface

188 4/24/2015 Version 1.3 Errata A

The PEIM can then allocate Hand-Off Blocks (HOBs) and other memory using the same
mechanisms described in “Allocating Physical Memory” on page 188.

The AllocatePool() service can be invoked at any time during the boot phase to discover
temporary memory that will have its location translated, even before permanent memory is installed.

11.3 After Permanent Memory Is Installed

11.3.1 Allocating Physical Memory
After permanent memory is installed, PEIMs may allocate memory in four ways:

• Using a GUID Extension HOB

• Within the PEI free memory space

11.3.2 Allocating Memory Using GUID Extension HOBs
A PEIM may allocate memory for its private use by constructing a GUID Extension HOB and using
the private data area defined by the GUIDed name of the HOB for private data storage.

See Volume 3 for HOB construction rules.

11.3.3 Allocating Memory Using PEI Service
A PEIM may allocate memory using the PEI Service AllocatePages(). Use the
EFI_MEMORY_TYPE values to specify the type of memory to allocate; type EFI_MEMORY_TYPE
is defined is defined in AllocatePages() in the UEFI 2.0 specification.

Version 1.3 Errata A 4/24/2015 189

12
Special Paths Unique to the

Itanium®
 Processor Family

12.1 Introduction
The Itanium processor family supports the full complement of boot modes listed in the PEI CIS. In
addition, however, Itanium® architecture requires an augmented flow. This flow includes a
“recovery check call” in which all processors execute the PEI Foundation when an Itanium platform
restarts. Each processor has its own version of temporary memory such that there are as many
concurrent instances of PEI execution as there are Itanium processors.

There is a point in the multiprocessor flow, however, when all processors have to call back into the
Processor Abstraction Layer A (PAL-A) component to assess whether the processor revisions and
PAL-B binaries are compatible. This callback into the PAL-A does not preserve the state of the
temporary memory, however. When the PAL-A returns control back to the various processors, the
PEI Foundation and its associated data structures have to be reinstantiated.

At this point, however, the flow of the PEI phase is the same as for IA-32 Intel architecture in that all
processors make forward progress up through invoking the DXE IPL PPI.

12.2 Unique Boot Paths for Itanium Architecture

Intel® Itanium processors possess two unique boot paths that also invoke the dispatcher located at
the System Abstraction Layer entry point (SALE_ENTRY):

• Processor INIT

• Machine Check (MCHK)

INIT and MCHK are two asynchronous events that start up the Security (SEC) code/dispatcher in an
Itanium®-based system. The PI Architecture security module is transparent during all the code paths
except for the recovery check call that happens during a cold boot. The PEIMs that handle these
events are architecture aware and do not return control to the PEI Dispatcher. They call their
respective architectural handlers in the operating system.

Figure 3 shows the boot path for INIT and MCHK events.

Platform Initialization Specification VOLUME 1 PEI Core Interface

190 4/24/2015 Version 1.3 Errata A

Figure 3. Itanium Processor Boot Path (INIT and MCHK)

12.3 Min-State Save Area
When the Processor Abstraction Layer (PAL) hands control to the dispatcher, it will supply the
following:

• Unique handoff state in the registers

• A pointer, called the min-state pointer, to the minimum-state saved buffer area

This buffer is a unique per-processor save area that is registered to each processor during the normal
OS boot path. The PI Architecture defines a unique, PI Architecture-specific data pointer,
EFI_PEI_MIN_STATE_DATA, that is attached to this min-state pointer. This data structure is
defined in the next topic.

Figure 4 shows a typical organization of a min-state buffer. The PEI Data Pointer references
EFI_PEI_MIN_STATE_DATA.

INIT Event MCHK Event

All Processors Run PAL-A

PAL Handoff State (Regs + Min)

Dispatcher invokes PEI
INIT or MCHK Code

INIT Code MCHK CodeOS_Int OS_MCA

Special Paths Unique to the Itanium® Processor Family

Version 1.3 Errata A 4/24/2015 191

Figure 4. Min-State Buffer Organization

P E I D a ta P o in te r

M in S ta te A re a 2 K iB

P ro c e s s o r’s M in S ta te B u ffe r

Platform Initialization Specification VOLUME 1 PEI Core Interface

192 4/24/2015 Version 1.3 Errata A

EFI_PEI_MIN_STATE_DATA

Note: This data structure is for the Itanium® processor family only.

Summary
A structure that encapsulates the Processor Abstraction Layer (PAL) min-state data structure for
purposes of firmware state storage and reference.

Prototype
typedef struct {
 UINT64 OsInitHandlerPointer;
 UINT64 OsInitHandlerGP;
 UINT64 OsInitHandlerChecksum;
 UINT64 OSMchkHandlerPointer;
 UINT64 OSMchkHandlerGP;
 UINT64 OSMchkHandlerChecksum;
 UINT64 PeimInitHandlerPointer;
 UINT64 PeimInitHandlerGP;
 UINT64 PeimInitHandlerChecksum;
 UINT64 PeimMchkHandlerPointer;
 UINT64 PeimMchkHandlerGP;
 UINT64 PeimMckhHandlerChecksum;
 UINT64 TypeOfOSBooted;
 UINT8 MinStateReserved[0x400];
 UINT8 OEMReserved[0x400];
} EFI_PEI_MIN_STATE_DATA;

Parameters
OsInitHandlerPointer

The address of the operating system's INIT handler. The INIT is a restart type for the
Itanium processor family.

OsInitHandlerGP

The value of the operating system's INIT handler's General Purpose (GP) register. Per
the calling conventions for the Itanium processor family, the GP must be set before
invoking the function.

OsInitHandlerChecksum

A 64-bit checksum across the contents of the operating system's INIT handler. This
can be used by the PEI firmware to corroborate the integrity of the INIT handler prior
to invocation.

OSMchkHandlerPointer

The address of the operating system's Machine Check (MCHK) handler. MCHK is a
restart type for the Itanium processor family.

Special Paths Unique to the Itanium® Processor Family

Version 1.3 Errata A 4/24/2015 193

OSMchkHandlerGP

The value of the operating system's MCHK handler's GP register. Per the calling
conventions for the Itanium processor family, the GP must be set before invoking the
function.

OSMchkHandlerChecksum

A 64-bit checksum across the contents of the operating system's MCHK handler. This
can be used by the PEI firmware to corroborate the integrity of the MCHK handler
prior to invocation.

PeimInitHandlerPointer

The address of the PEIM's INIT handler.

PeimInitHandlerGP

The value of the PEIM's INIT handler's GP register. Per the calling conventions for
the Itanium processor family, the GP must be set before invoking the function.

PeimInitHandlerChecksum

A 64-bit checksum across the contents of the PEIM's INIT handler. This can be used
by the PEI firmware to corroborate the integrity of the INIT handler prior to
invocation.

PeimMchkHandlerPointer

The address of the PEIM's MCHK handler.

PeimMchkHandlerGP

The value of the PEIM's MCHK handler's GP register. Per the calling conventions for
the Itanium processor family, the GP must be set before invoking the function.

PeimMckhHandlerChecksum

A 64-bit checksum across the contents of the PEIM's MCHK handler. This can be
used by the PEI firmware to corroborate the integrity of the MCHK handler prior to
invocation.

TypeOfOSBooted

Details the type of operating system that was originally booted. This allows for
different preliminary processing in firmware based upon the target OS.

MinStateReserved

Reserved bytes that must not be interpreted by OEM firmware. Future versions of PEI
may choose to expand in this range.

OEMReserved

Reserved bytes for the OEM. PEI core components should not attempt to interpret the
contents of this region.

Description
A 64-bit PEI data pointer is defined at the beginning of the Itanium processor family min-state data
structure. This data pointer references an EFI_PEI_MIN_STATE_DATA structure that is defined
above. This latter structure contains the entry points of INIT and MCHK code blocks. The pointers

Platform Initialization Specification VOLUME 1 PEI Core Interface

194 4/24/2015 Version 1.3 Errata A

are defined such that the INIT and MCHK code can be either written as ROM-based PEIMs or as
DXE drivers. The distinction between PEIM and DXE driver are at the OEM's discretion.

In Itanium® architecture, the PEI firmware must register a min-state with the PAL. This min-state is
memory when the PAL code can deposit processor-specific information upon various restart events
(INIT, RESET, Machine Check). Upon receipt of INIT or MCHK, the PEI firmware shall first
invoke the PEIM INIT or MCHK handlers, respectively, and then the OS INIT or MCHK handler.
The min-state data structure is a natural location from which to reference the PEI data structure that
contains these latter entry points.

12.4 Dispatching Itanium Processor Family PEIMs
The Itanium processor family dispatcher starts dispatching all the PEIMs as it resolves the
dependency grammar contained within their headers. Because all Itanium processors enter into
SALE_ENTRY for a recovery check, some of the PEIMs will contain multiprocessor (MP) code and
will work on all processors. The behavior of a particular PEIM that is dispatched depends on the
following:

• Handoff state given by the Processor Abstraction Layer (PAL)

• The boot mode flag

Once the processor runs some code and one of the recovery check PEIM determines that the
firmware needs to be recovered, it flips the boot flag to recovery and invokes the dispatcher again in
recovery mode.

If it is a nonrecovery situation (normal boot), then the recovery check PEIM wakes up all the
processors and returns them to PAL-A for further initialization. Note that when control for a normal
boot returns back to the PAL to run PAL-B code, all of the register contents are lost. When control
returns to the dispatcher, the PEIMs gain control in the dispatched order and can determine the
memory topology (if needed in a platform implementation) by reading the memory controller
registers of the chipset. The PEIMs can then build Hand-Off Blocks (HOBs).

When the first phase is done, there will be coherent memory on the system that all the node
processors can see. The system then begins to execute the dispatcher in a second phase, during
which it builds HOBs. On a multinode system with many processors, the configuration of memory
may take several steps and therefore quite a bit of code.

When the second phase is done, the last PEIM will build DXE as described in “PEI to DXE
Handoff” on page 175 and hand control to the PI Architecture DXE phase for further initialization of
the platform.

Figure 5 depicts the initial flow between PAL-A , PAL-B, and the PEI Foundation located at
SALE_ENTRY point.

Special Paths Unique to the Itanium® Processor Family

Version 1.3 Errata A 4/24/2015 195

Figure 5. Boot Path in Itanium Processors

Platform Initialization Specification VOLUME 1 PEI Core Interface

196 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 197

13
Security (SEC) Phase Information

13.1 Introduction
The Security (SEC) phase is the first phase in the PI Architecture architecture and is responsible for
the following:

• Handling all platform restart events

• Creating a temporary memory store

• Serving as the root of trust in the system

• Passing handoff information to the PEI Foundation

In addition to the minimum architecturally required handoff information, the SEC phase can pass
optional information to the PEI Foundation, such as the SEC Platform Information PPI or
information about the health of the processor.

The tasks listed above are common to all processor microarchitectures. However, there are some
additions or differences between IA-32 and Itanium processors, which are discussed in “Processor-
Specific Details” on page 200.

13.2 Responsibilities

13.2.1 Handling All Platform Restart Events
The Security (SEC) phase is the unit of processing that handles all platform restart events, including
the following:

• Applying power to the system from an unpowered state

• Restarting the system from an active state

• Receiving various exception conditions

The SEC phase is responsible for aggregating any state information so that some PEIM can deduce
the health of the processor upon the respective restart.

13.2.2 Creating a Temporary Memory Store
The Security (SEC) phase is also responsible for creating some temporary memory store. This
temporary memory store can include but is not limited to programming the processor cache to
behave as a linear store of memory. This cache behavior is referred to as “no evictions mode” in that
access to the cache should always represent a hit and not engender an eviction to the main memory
backing store; this “no eviction” is important in that during this early phase of platform evolution,
the main memory has not been configured and such as eviction could engender a platform failure.

Platform Initialization Specification VOLUME 1 PEI Core Interface

198 4/24/2015 Version 1.3 Errata A

13.2.3 Serving As the Root of Trust in the System
Finally, the Security (SEC) phase represents the root of trust in the system. Any inductive security
design in which the integrity of the subsequent module to gain control is corroborated by the caller
must have a root, or “first,” component. For any PI Architecture deployment, the SEC phase
represents the initial code that takes control of the system. As such, a platform or technology
deployment may choose to authenticate the PEI Foundation from the SEC phase before invoking the
PEI Foundation.

13.2.4 Passing Handoff Information to the PEI Foundation
Regardless of the other responsibilities listed in this section, the Security (SEC) phase's final
responsibility is to convey the following handoff information to the PEI:

• State of the platform

• Location and size of the Boot Firmware Volume (BFV)

• Location and size of the temporary RAM

• Location and size of the stack

This handoff information listed above is passed to the PEI as arguments to the PEI Foundation entry
point described in section 5.2.

13.3 SEC Platform Information PPI
Handoff information is passed from the Security (SEC) phase to the PEI Foundation using the data
structure EFI_PEI_STARTUP_DESCRIPTOR. It is a mandatory data structure that provides the
minimum amount of information from the SEC phase that is required to initialize the PEI
Foundation and PEI operational environment.

In addition, however, an optional PPI, EFI_SEC_PLATFORM_INFORMATION_PPI, can be used
to pass handoff information from SEC to the PEI Foundation. This PPI abstracts platform-specific
information that the PEI Foundation needs to discover where to begin dispatching PEIMs. It can be
part of the PPI list that is included as the final argument of the
EFI_PEI_STARTUP_DESCRIPTOR data structure.

13.4 Health Flag Bit Format
The Health flag contains information that is generated by microcode, hardware, and/or the Itanium
processor Processor Abstraction Layer (PAL) code about the state of the processor upon reset. Type
EFI_HEALTH_FLAGS is defined in
SEC_PLATFORM_INFORMATION_PPI.PlatformInformation().

In an Itanium®-based system, the Health flag is passed from PAL-A after restarting. It is the means
by which the PAL conveys the state of the processor to the firmware, such as PI. The handoff state
is separated between the PAL and PI because the code is provided by different vendors; Intel
provides the PAL and various OEMs design the PI firmware.

The Health flag is used by both IA-32 and Itanium architectures, but Tested (Te) is the only
common bit. IA-32 has the built-in self-test (BIST), but none of the other capabilities.

Security (SEC) Phase Information

Version 1.3 Errata A 4/24/2015 199

Figure 6 depicts the bit format in the Health flag.

Figure 6. Health Flag Bit Format

Table 24 explains the bit fields in the Health flag. IA-32 ignores all bits except Tested (Te).

Table 24. Health Flag Bit Field Description

13.4.1 Self-Test State Parameter
Self-test state parameters are defined in the same format for IA-32 Intel® processors and the Intel®
Itanium® processor family. Some of the test status bits may not be relevant to IA-32 processors. In
that case, these bits will read NULL on IA-32 processors.

Field Parameter Name in

EFI_HEALTH_FLAGS
Bit # Description

State Status 0:1 A 2-bit field indicating self-test state after
reset. For more information, see “Self-
Test State Parameter” on page 199.

Te Tested 2 A 1-bit field indicating whether testing has
occurred. If this field is zero, the processor
has not been tested, and no further fields
in the self-test State parameter are valid.

Vm VirtualMemoryUnavailable 16 A 1-bit field. If set to 1, indicates that
virtual memory features are not available.

Ia Ia32ExecutionUnavailable 17 A 1-bit field. If set to 1, indicates that IA-32
execution is not available.

Fp FloatingPointUnavailable 18 A 1-bit field. If set to 1, indicates that the
floating point unit is not available.

Mf MiscFeaturesUnavailable 19 A 1-bit field. If set to 1, indicates
miscellaneous functional failure other than
vm, ia, or fp. The test status field provides
additional information on test failures
when the State field returns a value of
performance restricted or functionally
restricted. The value returned is
implementation dependent.

Platform Initialization Specification VOLUME 1 PEI Core Interface

200 4/24/2015 Version 1.3 Errata A

Table 25 indicates the meanings for various values of the self-test State parameter (bits 0:1) of the
Health flag.

Table 25. Self-Test State Bit Values

If the state field indicates that the processor is functionally restricted, then the vm, ia, and fp fields in
the Health flag specify additional information about the functional failure. See Table 24 for a
description of these fields.

To further qualify “Functionally Restricted,” the following requirements will be met:

• The processor or PAL (for the Itanium processor family) has detected and isolated the failing
component so that it will not be used.

• The processor must have at least one functioning memory unit, arithmetic logic unit (ALU),
shifter, and branch unit.

• The floating-point unit may be disabled.

• For the Itanium processor family, the Register Stack Engine (RSE) is not required to work, but
register renaming logic must work properly.

• The paths between the processor-controlled caches and the register files must work during the
tests.

• Loads from the firmware address space must work correctly.

13.5 Processor-Specific Details

13.5.1 SEC Phase in IA-32 Intel Architecture
In 32-bit Intel® architecture (IA-32), the Security (SEC) phase of the PI Architecture is responsible
for several activities:

• Locating the PEI Foundation

• Passing control directly to PEI using an architecturally defined handoff state

• Initializing processor-controlled memory resources, such as the processor data cache, that can be
used as a linear extent of memory for a call stack (if supported)

Figure 7 below shows the steps completed during PEI initialization for IA-32.

State Value Description

Catastrophic Failure N/A Processor is not executing.

Healthy 00 No failure in functionality or performance.

Performance Restricted 01 No failure in functionality but performance is restricted.

Functionally Restricted 10 Some code may run but functionality is restricted and
performance may also be affected.

Security (SEC) Phase Information

Version 1.3 Errata A 4/24/2015 201

Figure 7. PEI Initialization Steps in IA-32

13.5.2 SEC Phase in the Itanium Processor Family
Itanium architecture contains enough hooks to authenticate the PAL-A and PAL-B code distributed
by the processor vendor.

The internal microcode on the processor silicon that starts up on a power-good reset finds the first
layer of processor abstraction code (called PAL-A) located in the Boot Firmware Volume (BFV)
using architecturally defined pointers in the BFV. It is the responsibility of this microcode to
authenticate that the PAL-A code layer from the processor vendor has not been tampered.

If the authentication of the PAL-A layer passes, then control passes on to the PAL-A layer. The
PAL-A layer then authenticates the next layer of processor abstraction code (called PAL-B) before
passing control to it.

In addition, the SEC phase of the PI Architecture is also responsible for locating the PEI Foundation
and verifying its authenticity.

Figure 8 summarizes the SEC phase in the Itanium® processor family.

Figure 8. Security (SEC) Phase in the Itanium Processor Family

Platform Initialization Specification VOLUME 1 PEI Core Interface

202 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 203

14
Dependency Expression Grammar

14.1 Dependency Expression Grammar
This topic contains an example BNF grammar for a PEIM dependency expression compiler that
converts a dependency expression source file into a dependency section of a PEIM stored in a
firmware volume.

14.1.1 Example Dependency Expression BNF Grammar
 <depex> ::= <bool>
 <bool> ::= <bool> AND <term>
 | <bool> OR <term>
 | <term>
 <term> ::= NOT <factor>
 | <factor>
 <factor> ::= <bool>
 | TRUE
 | FALSE
 | GUID
 | END
 <guid> ::= ‘{‘ <hex32> ‘,’ <hex16> ‘,’ <hex16> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’
 <hex8> ‘,’ <hex8> ‘,’ <hex8> ‘,’ <hex8> ’}’
 <hex32> ::= <hexprefix> <hexvalue>
 <hex16> ::= <hexprefix> <hexvalue>
 <hex8> ::= <hexprefix> <hexvalue>
 <hexprefix>::= ‘0’ ‘x’
 | ‘0’ ‘X’
 <hexvalue> ::= <hexdigit> <hexvalue>
 | <hexdigit>
 <hexdigit> ::= [0-9]
 | [a-f]
 | [A-F]

Platform Initialization Specification VOLUME 1 PEI Core Interface

204 4/24/2015 Version 1.3 Errata A

14.1.2 Sample Dependency Expressions
The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

//
// Source
//
EFI_PEI_CPU_IO_PPI_GUID AND EFI_PEI_READ_ONLY_VARIABLE_ACCESS_PPI_GUID
END

//
// Opcodes, Operands, and Binary Encoding
//
ADDR BINARY MNEMONIC
==== ======================= =======================
0x00 : 02 PUSH
0x01 : 26 25 73 b0 c8 38 40 4b EFI_PEI_CPU_IO_PPI_GUID
 88 77 61 c7 b0 6a ac 45
0x11 : 02 PUSH
0x12 : b1 cc ba 26 42 6f d4 11
EFI_PEI_READ_ONLY_VARIABLE_ACCESS_PPI_GUID
 bc e7 00 80 c7 3c 88 81
0x22 : 03 AND
0x23 : 08 END

Version 1.3 Errata A 4/24/2015 205

15
TE Image

15.1 Introduction
The Terse Executable (TE) image format was created as a mechanism to reduce the overhead of the
PE/COFF headers in PE32/PE32+ images, resulting in a corresponding reduction of image sizes for
executables running in the PI Architecture environment. Reducing image size provides an
opportunity for use of a smaller system flash part.

TE images, both drivers and applications, are created as PE32 (or PE32+) executables. PE32 is a
generic executable image format that is intended to support multiple target systems, processors, and
operating systems. As a result, the headers in the image contain information that is not necessarily
applicable to all target systems. In an effort to reduce image size, a new executable image header
(TE) was created that includes only those fields from the PE/COFF headers required for execution
under the PI Architecture. Since this header contains the information required for execution of the
image, it can replace the PE/COFF headers from the original image. This specification defines the
TE header, the fields in the header, and how they are used in the PI Architecture’s execution
environment.

15.2 PE32 Headers
A PE file header, as described in the Microsoft Portable Executable and Common Object File
Format Specification, contains an MS-DOS* stub, a PE signature, a COFF header, an optional
header, and section headers. For successful execution, PEIMs in the PI Architecture require very
little of the data from these headers, and in fact the MS-DOS stub and PE signature are not required
at all.

See Table 26 and Table 27 for the necessary fields and their descriptions.

Table 26. COFF Header Fields Required for TE Images

Table 27. Optional Header Fields Required for TE Images

COFF Header Description

Machine Target machine identifier. 2 bytes in both COFF header and TE header

NumberOfSections Number of sections/section headers. 2 bytes in COFF header, 1 byte in TE
header

OPTIONAL Header Description

AddressOfEntryPoint Address of entry point relative to image base. 4 bytes in both optional header
and TE header

BaseOfCode Offset from image base to the start of the code section. 4 bytes in both
optional header and TE header

Platform Initialization Specification VOLUME 1 PEI Core Interface

206 4/24/2015 Version 1.3 Errata A

ImageBase Image’s linked address. 4 bytes in OptionalHeader32, 8 bytes in
OptionalHeader64, and 8 bytes in TE header

Subsystem Subsystem required to run the image. 2 bytes in optional header, 1 byte in TE
header

TE Image

Version 1.3 Errata A 4/24/2015 207

TE Header

Summary
To reduce the overhead of PE/COFF headers in the PI Architecture's environment, a minimal (TE)
header can be defined that includes only those fields required for execution in the PI Architecture.
This header can then be used to replace the original headers at the start of the original image.

Prototype
typedef struct {
 UINT16 Signature;
 UINT16 Machine;
 UINT8 NumberOfSections;
 UINT8 Subsystem;
 UINT16 StrippedSize;
 UINT32 AddressOfEntryPoint;
 UINT32 BaseOfCode;
 UINT64 ImageBase;
 EFI_IMAGE_DATA_DIRECTORY DataDirectory[2];
} EFI_TE_IMAGE_HEADER;

Parameters
Signature

TE image signature

Machine

Target machine, as specified in the original image’s file header

NumberOfSections

Number of sections, as specified in the original image’s file header

Subsystem

Target subsystem, as specified in the original optional header

StrippedSize

Number of bytes removed from the base of the original image

AddressOfEntryPoint

Address of the entry point to the driver, as specified in the original image’s optional
header

BaseOfCode

Base of the code, as specified in the original image’s optional header

ImageBase

Image base, as specified in the original image’s optional header (0-extended to 64-bits
for PE32 images)

Platform Initialization Specification VOLUME 1 PEI Core Interface

208 4/24/2015 Version 1.3 Errata A

DataDirectory

Directory entries for base relocations and the debug directory from the original
image’s corresponding directory entries. See “Related Definitions” below.

Field Descriptions
In the EFI_TE_IMAGE HEADER, the Machine, NumberOfSections, Subsystem,
AddressOfEntryPoint, BaseOfCode, and ImageBase all come directly from the original
PE headers to enable partial reconstitution of the original headers if necessary.

The 2-byte Signature should be set to EFI_TE_IMAGE_HEADER_SIGNATURE to designate
the image as TE, as opposed to the “MZ” signature at the start of standard PE/COFF images.

The StrippedSize should be set to the number of bytes removed from the start of the original
image, which will typically include the MS-DOS, COFF, and optional headers, as well as the section
headers. This size can be used by image loaders and tools to make appropriate adjustments to the
other fields in the TE image header. Note that StrippedSize does not take into account the size
of the TE image header that will be added to the image. That is to say, the delta in the total image
size when converted to TE is StrippedSize – sizeof (EFI_TE_IMAGE_HEADER). This will
typically need to be taken into account by tools using the fields in the TE header.

The DataDirectory array contents are copied directly from the base relocations and debug
directory entries in the original optional header data directories. This image format also assumes that
file alignment is equal to section alignment.

Related Definitions
//***
//EFI_IMAGE_DATA_DIRECTORY
//***
typedef struct {
 UINT32 VirtualAddress;
 UINT32 Size;
} EFI_IMAGE_DATA_DIRECTORY;
#define EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC 0
#define EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG 1

#define EFI_TE_IMAGE_HEADER_SIGNATURE 0x5A56 // “VZ”

Version 1.3 Errata A 4/24/2015 209

16
TE Image Creation

16.1 Introduction
This section describes the tool requirements to create a TE image.

16.2 TE Image Utility Requirements
A utility that creates TE images from standard PE/COFF images must be able to do the following:

• Create an EFI_TE_IMAGE_HEADER in memory

• Parse the PE/COFF headers in an existing image and extract the necessary fields to fill in the
EFI_TE_IMAGE_HEADER

• Fill in the signature and stripped size fields in the EFI_TE_IMAGE_HEADER

• Write out the EFI_TE_IMAGE_HEADER to a new binary file

• Write out the contents of the original image, less the stripped headers, to the output file

Since some fields from the PE/COFF headers have a smaller corresponding field in the TE image
header, the utility must be able to recognize if the original value from the PE/COFF header does not
fit in the TE header. In this case, the original image is not a candidate for conversion to TE image
format.

16.3 TE Image Relocations
Relocation fix ups in TE images are not modified by the TE image creation process. Therefore, if a
TE image is to be relocated, the loader/relocator must take into consideration the stripped size and
size of a TE image header when applying fix ups.

Platform Initialization Specification VOLUME 1 PEI Core Interface

210 4/24/2015 Version 1.3 Errata A

Version 1.3 Errata A 4/24/2015 211

17
TE Image Loading

17.1 Introduction
This section describes the use of the TE image and how embedded, execute-in-place environments
can invoke these images.

17.2 XIP Images
For execute-in-place (XIP) images that do not require relocations, loading a TE image simply
requires that the loader adjust the image’s entry point from the value specified in the
EFI_TE_IMAGE_HEADER. For example, if the image (and thus the TE header) resides at memory
location LoadedImageAddress, then the actual entry for the driver is computed as follows:

EntryPoint = LoadedImageAddress + sizeof (EFI_TE_IMAGE_HEADER)
+

 ((EFI_TE_IMAGE_HEADER *)LoadedImageAddress)–>

 AddressOfEntryPoint – ((EFI_TE_IMAGE_HEADER *)

 LoadedImageAddress)–>StrippedSize;

17.3 Relocated Images
To successfully load and relocate a TE image requires the same operations as required for XIP code.
However, for images that can be relocated, the image loader must make adjustments for all the
relocation fix ups performed. Details on this operation are beyond the scope of this document, but
suffice it to say that the adjustments will be computed in a manner similar to the EntryPoint
adjustment made in XIP Images.

17.4 PIC Images
A TE Image is Position Independent Code (PIC) if it can be executed in flash and shadowed to
memory without any fix ups. In this case, the TE Image Relocation Data Directory Entry Virtual
Address is non-zero, but the Relocation Data Directory Size is zero.

Platform Initialization Specification VOLUME 1 PEI Core Interface

212 4/24/2015 Version 1.3 Errata A

	Revision History
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Overview
	1.2 Organization of the PEI CIS
	1.3 Conventions Used in this Document
	1.3.1 Data Structure Descriptions
	1.3.2 Procedure Descriptions
	1.3.3 Instruction Descriptions
	1.3.4 PPI Descriptions
	1.3.5 Pseudo-Code Conventions
	1.3.6 Typographic Conventions

	1.4 Requirements
	1.5 Conventions used in this document
	1.5.1 Number formats
	1.5.2 Binary prefixes

	2 Overview
	2.1 Introduction
	2.2 Design Goals
	2.3 Pre-EFI Initialization (PEI) Phase
	2.4 PEI Services
	2.5 PEI Foundation
	2.6 PEI Dispatcher
	2.7 Pre-EFI Initialization Modules (PEIMs)
	2.8 PEIM-to-PEIM Interfaces (PPIs)
	2.9 Firmware Volumes

	3 PEI Services Table
	3.1 Introduction
	3.2 PEI Services Table
	3.2.1 EFI_PEI_SERVICES

	4 Services - PEI
	4.1 Introduction
	4.2 PPI Services
	InstallPpi()
	ReinstallPpi()
	LocatePpi()
	NotifyPpi()

	4.3 Boot Mode Services
	GetBootMode()
	SetBootMode()

	4.4 HOB Services
	GetHobList()
	CreateHob()

	4.5 Firmware Volume Services
	FfsFindNextVolume()
	FfsFindNextFile()
	FfsFindSectionData3()
	FfsFindFileByName()
	FfsGetFileInfo()
	FfsGetFileInfo2()
	FfsGetVolumeInfo()
	RegisterForShadow()

	4.6 PEI Memory Services
	InstallPeiMemory()
	AllocatePages()
	AllocatePool()
	CopyMem()
	SetMem()

	4.7 Status Code Service
	ReportStatusCode()

	4.8 Reset Services
	ResetSystem()

	4.9 I/O and PCI Services

	5 PEI Foundation
	5.1 Introduction
	5.1.1 Prerequisites
	5.1.2 Processor Execution Mode

	5.2 PEI Foundation Entry Point
	5.2.1 PEI Foundation Entry Point

	5.3 PEI Calling Convention Processor Binding
	5.4 PEI Services Table Retrieval
	5.4.1 X86
	5.4.2 x64
	5.4.3 Itanium Processor Family – Register Mechanism
	5.4.4 ARM Processor Family – Register Mechanism

	5.5 PEI Dispatcher Introduction
	5.6 Ordering
	5.6.1 Requirements
	5.6.2 Requirement Representation and Notation
	5.6.3 PEI a priori File Overview
	PEI_APRIORI_FILE_NAME_GUID

	5.6.4 PEIM Dependency Expressions
	5.6.5 Types of Dependencies

	5.7 Dependency Expressions
	5.7.1 Introduction
	PUSH
	AND
	OR
	NOT
	TRUE
	FALSE
	END

	5.7.2 Dependency Expression with No Dependencies
	5.7.3 Empty Dependency Expressions
	5.7.4 Dependency Expression Reverse Polish Notation (RPN)

	5.8 Dispatch Algorithm
	5.8.1 Overview
	5.8.2 Requirements
	5.8.3 Example Dispatch Algorithm
	5.8.4 Dispatching When Memory Exists
	5.8.5 PEIM Dispatching
	5.8.6 PEIM Authentication

	6 Architectural PPIs
	6.1 Introduction
	6.2 Required Architectural PPIs
	6.2.1 Master Boot Mode PPI (Required)
	EFI_PEI_MASTER_BOOT_MODE_PPI (Required)

	6.2.2 DXE IPL PPI (Required)
	EFI_DXE_IPL_PPI (Required)
	EFI_DXE_IPL_PPI.Entry()

	6.2.3 Memory Discovered PPI (Required)
	EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)

	6.3 Optional Architectural PPIs
	6.3.1 Boot in Recovery Mode PPI (Optional)
	EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)

	6.3.2 End of PEI Phase PPI (Optional)
	EFI_PEI_END_OF_PEI_PHASE_PPI (Optional)

	6.3.3 PEI Reset PPI
	EFI_PEI_RESET_PPI (Optional)

	6.3.4 Status Code PPI (Optional)
	EFI_PEI_PROGRESS_CODE_PPI (Optional)

	6.3.5 Security PPI (Optional)
	EFI_PEI_SECURITY2_PPI (Optional)
	EFI_PEI_SECURITY2_PPI.AuthenticationState()

	6.3.6 Temporary RAM Support PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI.TemporaryRamMigration ()

	6.3.7 Temporary RAM Done PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional)
	EFI_PEI_TEMPORARY_RAM_DONE_PPI.TemporaryRamDone ()

	7 PEIMs
	7.1 Introduction
	7.2 PEIM Structure
	7.2.1 PEIM Structure Overview
	7.2.2 Relocation Information
	7.2.3 Authentication Information

	7.3 PEIM Invocation Entry Point
	7.3.1 EFI_PEIM_ENTRY_POINT2

	7.4 PEIM Descriptors
	7.4.1 PEIM Descriptors Overview
	EFI_PEI_DESCRIPTOR
	EFI_PEI_NOTIFY_DESCRIPTOR
	EFI_PEI_PPI_DESCRIPTOR

	7.5 PEIM-to-PEIM Communication
	7.5.1 Overview
	7.5.2 Dynamic PPI Discovery

	8 Additional PPIs
	8.1 Introduction
	8.2 Required Additional PPIs
	8.2.1 PCI Configuration PPI (Required)
	EFI_PEI_PCI_CFG2_PPI
	EFI_PEI_PCI_CFG2_PPI.Read()
	EFI_PEI_PCI_CFG2_PPI.Write()
	EFI_PEI_PCI_CFG2_PPI.Modify()

	8.2.2 Stall PPI (Required)
	EFI_PEI_STALL_PPI (Required)
	EFI_PEI_STALL_PPI.Stall()

	8.2.3 Variable Services PPI (Required)
	EFI_PEI_READ_ONLY_VARIABLE2_PPI
	EFI_PEI_READ_ONLY_VARIABLE2_PPI.GetVariable
	EFI_PEI_READ_ONLY_VARIABLE2_PPI.NextVariableName

	8.3 Optional Additional PPIs
	8.3.1 SEC Platform Information PPI (Optional)
	EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)
	EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation()

	8.3.2 Loaded Image PPI (Optional)
	EFI_PEI_LOADED_IMAGE_PPI

	8.3.3 Recovery
	EFI_PEI_RECOVERY_MODULE_PPI
	EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetNumberRecoveryCapsules()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsuleInfo()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI
	EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks()
	EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional)

	8.3.4 CPU I/O PPI (Optional)
	EFI_PEI_CPU_IO_PPI (Optional)
	EFI_PEI_CPU_IO_PPI.Mem()
	EFI_PEI_CPU_IO_PPI.Io()
	EFI_PEI_CPU_IO_PPI.IoRead8()
	EFI_PEI_CPU_IO_PPI.IoRead16()
	EFI_PEI_CPU_IO_PPI.IoRead32()
	EFI_PEI_CPU_IO_PPI.IoRead64()
	EFI_PEI_CPU_IO_PPI.IoWrite8()
	EFI_PEI_CPU_IO_PPI.IoWrite16()
	EFI_PEI_CPU_IO_PPI.IoWrite32()
	EFI_PEI_CPU_IO_PPI.IoWrite64()
	EFI_PEI_CPU_IO_PPI.MemRead8()
	EFI_PEI_CPU_IO_PPI.MemRead16()
	EFI_PEI_CPU_IO_PPI.MemRead32()
	EFI_PEI_CPU_IO_PPI.MemRead64()
	EFI_PEI_CPU_IO_PPI.MemWrite8()
	EFI_PEI_CPU_IO_PPI.MemWrite16()
	EFI_PEI_CPU_IO_PPI.MemWrite32()
	EFI_PEI_CPU_IO_PPI.MemWrite64()

	9 PEI to DXE Handoff
	9.1 Introduction
	9.2 Discovery and Dispatch of the DXE Foundation
	9.3 Passing the Hand-Off Block (HOB) List
	9.4 Handoff Processor State to the DXE IPL PPI

	10 Boot Paths
	10.1 Introduction
	10.2 Code Flow
	10.2.1 Reset Boot Paths

	10.3 Normal Boot Paths
	10.3.1 Basic G0-to-S0 and S0 Variation Boot Paths
	10.3.2 S-State Boot Paths

	10.4 Recovery Paths
	10.4.1 Discovery
	10.4.2 General Recovery Architecture

	10.5 Defined Boot Modes
	10.6 Priority of Boot Paths
	10.7 Assumptions
	10.8 Architectural Boot Mode PPIs
	10.9 Recovery
	10.9.1 Scope
	10.9.2 Discovery
	10.9.3 General Recovery Architecture
	10.9.4 Finding and Loading the Recovery DXE Image

	11 PEI Physical Memory Usage
	11.1 Introduction
	11.2 Before Permanent Memory Is Installed
	11.2.1 Discovering Physical Memory
	11.2.2 Using Physical Memory

	11.3 After Permanent Memory Is Installed
	11.3.1 Allocating Physical Memory
	11.3.2 Allocating Memory Using GUID Extension HOBs
	11.3.3 Allocating Memory Using PEI Service

	12 Special Paths Unique to the Itanium® Processor Family
	12.1 Introduction
	12.2 Unique Boot Paths for Itanium Architecture
	12.3 Min-State Save Area
	EFI_PEI_MIN_STATE_DATA

	12.4 Dispatching Itanium Processor Family PEIMs

	13 Security (SEC) Phase Information
	13.1 Introduction
	13.2 Responsibilities
	13.2.1 Handling All Platform Restart Events
	13.2.2 Creating a Temporary Memory Store
	13.2.3 Serving As the Root of Trust in the System
	13.2.4 Passing Handoff Information to the PEI Foundation

	13.3 SEC Platform Information PPI
	13.4 Health Flag Bit Format
	13.4.1 Self-Test State Parameter

	13.5 Processor-Specific Details
	13.5.1 SEC Phase in IA-32 Intel Architecture
	13.5.2 SEC Phase in the Itanium Processor Family

	14 Dependency Expression Grammar
	14.1 Dependency Expression Grammar
	14.1.1 Example Dependency Expression BNF Grammar
	14.1.2 Sample Dependency Expressions

	15 TE Image
	15.1 Introduction
	15.2 PE32 Headers
	TE Header

	16 TE Image Creation
	16.1 Introduction
	16.2 TE Image Utility Requirements
	16.3 TE Image Relocations

	17 TE Image Loading
	17.1 Introduction
	17.2 XIP Images
	17.3 Relocated Images
	17.4 PIC Images

