UEFI Platform Initialization (Pl) Specification

Version 1.7 Errata A
April 2020

Platform Initialization Specification, Version 1.7 A

The material contained herein is not a license, either expressly or impliedly, to any intellectual property
owned or controlled by any of the authors or developers of this material or to any contribution thereto. The
material contained herein is provided on an "AS IS" basis and, to the maximum extent permitted by
applicable law, this information is provided AS IS AND WITH ALL FAULTS, and the authors and
developers of this material hereby disclaim all other warranties and conditions, either express, implied or
statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of
merchantability, of fithess for a particular purpose, of accuracy or completeness of responses, of results, of
workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material and any
contribution thereto. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or
instructions so marked for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION
OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR
NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION
THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION
THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,
CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT,
TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE
NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2020, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved. The
UEFI Forum is the owner of all rights and title in and to this work, including all copyright rights that may
exist, and all rights to use and reproduce this work. Further to such rights, permission is hereby granted to
any person implementing this specification to maintain an electronic version of this work accessible by its
internal personnel, and to print a copy of this specification in hard copy form, in whole or in part, in each
case solely for use by that person in connection with the implementation of this Specification, provided no
modification is made to the Specification.

UEFI Forum, Inc. April 2020 ii

Platform Initialization Specification, Version 1.7 A

Specification Organization

The Platform Initialization Specification is divided into volumes to enable logical organization, future
growth, and printing convenience. The current volumes are as follows:

“Volume 1: Pre-EFI Initialization Core Interface”
“Volume 2: Driver Execution Environment Core I nterface’
“Volume 3: Shared Architectural Elements’

“Volume 4: Management Mode Core I nterface’
“Volume5: Standards’

Each volume should be viewed in relation to al other volumes, and readers are strongly encouraged to
consult the entire specification when researching areas of interest. Recent versions of this specification are
issued as a single document containing all five volumes, for easier searching of the complete content.

UEFI Forum, Inc. April 2020 iii

Platform Initialization Specification, Version 1.7 A

Revision History

Revision

Mantis ID / Description

Date

1.7A

°

1663 SmmSxDispatch2->Register() is not clear
1736 Specification of EFI_BOOT_SCRIPT_WIDTH in Save State Write
1993 Allow MM CommBuffer to be passed as a VA

2017 EFI_RUNTIME_EVENT_ENTRY.Event should have type
EFI_EVENT, not (EFI_EVENT*)

2039 PI Configuration Tables Errata
2040 EFI_SECTION_FREEFORM_SUBTYPE_GUID Errata

2060 Add missing
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS definition

2063 Add Index to end of Pl Spec
2071 Extended cpu topology

April 2020

1.7

1848 PEI Core PEIM Migration Support Change
1856 SecCore/PeiCore BFV Requirement Change
1860 MM MP Protocol issues

1885 Add extended data for
EFl_SW_DXE_BS_EC_BOOT_OPTION_LOAD_ERROR

1889 New Status Codes
1891 PEI delayed dispatch
1892 new pi spec revision

1955 set (*Attributes) when EFI_PEI_GET_VARIABLE2 returns
EFI_BUFFER_TOO_SMALL and Attributes is non-NULL

1967 New architectural PPI for Pl PEI Core FV Location
1969 Incompatible Pci Ignore Option Rom

January
2019

1.6 Errata A

1828 Add decorator 'OPTIONAL' for Attributes parameter of
EFI_PE|_GET_VARIABLEZ.

1849 Issues in Pl Spec Vol. 5 Ch. 18

1857 Specifies how notifications are passed from SEC to PEI.

1884 Variadic API issue in S3 save API

1907 Clarification of the EFI_MM_COMMUNICATION_PROTOCOL
1940 Clarify EFI_MM_CONFIGURATION_PROTOCOL_GUID

December
2018

1.6

1567 Layered SPI bus
1648 PI Binding for RISC-V

1746 Add an FV Extended Header entry that contains the used size of the
FV

1763 MM Handler state notification protocol
1764 Add additional alignment

1768 Update the Pl Spec to 1.6

1777 Update Revision History

1778 Update front matter

April 2017

UEFI Forum, Inc.

April 2020

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

1.5 Errata A

1587 pre permanent memory page allocation

1665 Incorrect status code for an AP calling
EFI_MP_SERVICES_PROTOCOL.SwitchBSP()

1734 Outdated EFI spec reference in Save State Write
1735 Several copy & paste errors in Save State Write

1747 Clarify that MM_ACCESS_PROTOCOL should cover all MMRAM
region used by the platform

April 2017

15

1315 SMM Environment to Support Newer Architecture/Platform Designs
1317 additional I12C PPI's (vol5)

1321 ARM Extensions to Volume 4

1330 Add PPI to allow SEC pass HOBs into PEI

1336 Provide For Pre-DXE Initialization Of The SM Foundation

1369 Handling PEI PPI descriptor natifications from SEC

1387 Variable services errors not consistent

1390 SM stand-alone infrastructure

1396 Update SEC HOB Capabilities of 1330 with additional guidance
1413 Communicate protocol enhancements

1506 New MP protocol

1513 Need a way to propagate PEI-phase FV verification status to DXE
1563 Update MM PPIs to match existing implementations

1566 Pl.next - update the specification revisions

1568 Add SD/MMC GUID to DiskInfo protocol

1592 Add EFI_FV_FILETYPE_SMM_CORE_STANDALONE file type
1593 coalesce language enhancements

1594 Pei GetVaiable M1387 issue

1595 M1568 Disk Info issue

1596 M1489 GCD issue

1603 Minor erratas in Vol4 Pl 1.5 draft related to ECR 0001506

1607 Update MM guid def'n to match edkll impl

1626 Add new Status Code for BDS Attempting UEFI BootOrder entries
1628 Minor feedback for PI 1.5 Vol 4 SMM Draft

1666 Graphics Device Info Hob

4/26/16

UEFI Forum, Inc.

April 2020

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

1.4 Errata A

1574 Fix artificial limitation in the PCD.SetSku support
1565 Update status code to include AArch64 exception error codes
1564 SMM Software Dispatch Protocol Errata

1562 Errata to remove statement from DXE vol about PEI dispatch
behavior

1561 Errata to provide Equivalent of DXE-CIS Mantis 247 for the PEI-CIS

1532 Allow S3 Resume without having installed permanent memory (via
InstallPeiMemory)

1530 errata on dxe report status code

1529 address space granularity errata

1525 PEI Services Table Retrieval for AArch64

1515 EFI_PEIM_NOTIFY_ENTRY_POINT return values are undefined
1497 Fixing language in SMMStartupThisAP

1489 GCD Conflict errata

1485 Minor Errata in SMM Vo2 description of SMMStartupThisAP
1397 PEI 1.4 specification revision errata

1394 Errata to Relax requirements on CPU rendez in SEC

1351 EndOfDxe and SmmReadyTolLock

1322 Minor Updates to handle Asynchronous CPU Entry Into SMM

3/15/16

1.4

1210 Adding persistence attribute to GCD

1235 PI.Next Feature - no execute support

1236 PI.Next feature - Graphics PPI

1237 Pl.Next feature - add reset2 PPI

1239 PI.Next feature - Disk Info Guid UFS

1240 PI.Next feature - Recovery Block IO PPI - UFS
1259 PI.Next feature - MP PPI

1273 Pl.Next feature - capsule PPI

1274 Recovery Block I/O PPl Update

1275 GetMemoryMap Update

1277 Pll.next feature - multiple CPU health info
1278 Pl1.next - Memory relative reliability definition
1305 PI1.next - specification number encoding

1331 Remove left-over Boot Firmware Volume references in the SEC
Platform Information PPI

1366 PI 1.4 draft - M1277 issue BIST / CPU. So health record needs to be
indexed / CPU.

2/20/15

UEFI Forum, Inc.

April 2020

vi

Platform Initialization Specification, Version 1.7 A

925 Errata on signed FV/Files

931 DXE Volume 2 - Clarify memory map construction from the GCD
936 Clarify memory usage in PEl on S3

937 SMM report protocol notify issue errata

951 Root Handler Processing by SmiManage

958 Omissions in P11.2.1 integration for M816 and M894

969Vol 1 errata: TE Header parameters

Revision Mantis ID / Description Date
1.3 Errata A ¢ 1041 typo in HOB Overview 2/19/15
e 1067 PI1.3 Errata for SetBootMode
« 1068 Updates to PEI Service table/M1006
* 1069 SIO Errata - pnp end node definition
e 1070 Typo in SIO chapter
e 1072 Errata — SMM register protocol notify clarification/errata
e 1093 Extended File Size Errata
« 1095 typos/errata
e 1097 Pl SMM GPI Errata
e 1098 Errata on 12C 10 status code
« 1099 12C Protocol stop behavior errata
« 1104 ACPI System Description Table Protocol Errata
e 1105 ACPI errata - supported table revision
e 1177 Pl errata - make CPU IO optional
¢ 1178 errata - allow PEI to report an additional memory type
« 1283 Errata - clarify sequencing of events
1.3 ¢ 945 Integrated Circuit (12C) Bus Protocol 3/29/13
* 998 PI Status Code additions
¢ 999 PCI enumeration complete GUID
« 1005 NVMe Disk Info guid
* 1006 Security Ppi Fixes
¢ 1025 PI table revisions
1.2.1Errata A | » 922 Add a "Boot with Manufacturing" boot mode setting 10/26/12
« 925 Errata on signed FV/Files
¢ 931 DXE Volume 2 - Clarify memory map construction from the GCD
« 936 Clarify memory usage in PEl on S3
e 937SMM report protocol notify issue errata
« 951 Root Handler Processing by SmiManage
e 958
e 969Vol 1 errata: TE Header parameters
1.2.1 Errata A | + 922 Add a "Boot with Manufacturing" boot mode setting 10/26/12

UEFI Forum, Inc.

April 2020

vii

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

121

« 527 Pl Volume 2 DXE Security Architecture Protocol (SAP) clarification
¢ 562 Add SetMemoryCapabilities to GCD interface

e 719 End of DXE event

e 731 Volume 4 SMM - clarify the meaning of NumberOfCpus

e 737 Remove SMM Communication ACPI Table definition .

e 753 SIO PEI and UEFI-Driver Model Architecture

e 769 Signed PI sections

« 813 Add a new EFI_GET_PCD_INFO_PROTOCOL and
EFI_GET_PCD_INFO_PPI instance.

* 818 New SAP2 return code

e 822 Method to disable Temporary RAM when Temp RAM Migration is not
required

* 833 Method to Reserve Interrupt and Exception Vectors

» 839 Add support for weakly aligned FVs

e 892 EFI_PCI_ENUMERATION_COMPLETE_GUID Protocol
* 894 SAP2 Update

e 895 Status Code Data Structures Errata

¢ 902 Errata on signed firmware volume/file

¢ 903 SmiManage Update

¢ 906 Volume 3 errata - Freeform type

e 916 Service table revisions

05/02/12

UEFI Forum, Inc.

April 2020

viii

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

1.2 Errata C

550 Naming conflicts w/ Pl SMM

571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume?2)
and SMM (volume 4)

654 UEFI PI specific handle for SMBIOS is now available

688 Status Code errata

690 Clarify agent in IDE Controller chapter

691 SMM a priori file and SOR support

692 Clarify the SMM SW Register API

694 PEI Temp RAM PPl ambiguity

703 End of PEI phase PPI publication for the S3 boot mode case
706 GetPeiServicesTablePointer () changes for the ARM architecture
714 Pl Service Table Versions

717 Pl Extended File Size Errata

718 Pl Extended Header cleanup / Errata

730 typo in EFI_SMM_CPU_PROTOCOL.ReadSaveState() return code
737 Remove SMM Communication ACPI Table definition .

738 Errata to Volume 2 of the PI1.2 specification

739 Errata for Pl SMM Volume 4 Control protocol

742 Errata for SMBUS chapter in Volume 5

743 Errata - PCD_PPI declaration

745 Errata — Pl Firmware Section declarations

746 Errata - Pl status code

747 Errata - Text for deprecated HOB

752 Binary Prefix change

753 SIO PEI and UEFI-Driver Model Architecture

764 Pl Volume 4 SMM naming errata

775 errata/typo in EFI_STATUS_CODE_EXCEP_SYSTEM_CONTEXT,
Volume 3

781 S3 Save State Protocol Errata

782 Format Insert(), Compare() and Label() as for Write()
783 TemporaryRamMigration Errata

784 Typos in status code definitions

787 S3 Save State Protocol Errata 2

810 Set Memory Attributes return code clarification

811 SMBIOS API Clarification

814 Pl SMBIOS Errata

821Location conflict for
EFI_RESOURCE_ATTRIBUTE_xxx_ PROTECTABLE #defines

823 Clarify max length of SMBIOS Strings in SMBIOS Protocol
824 EFI_SMM_SW_DISPATCH2_PROTOCOL.Register() Errata
837 ARM Vector table can not support arbitrary 32-bit address

838 Vol 3 EFI_FVB2_ALIGNMNET_512K should be
EFI_FVB2_ALIGNMENT_512K

840 Vol 3 Table 5 Supported FFS Alignments contains values not
supported by FFS

844 correct references to Platform Initialization Hand-Off Block
Specification

10/27/11

UEFI Forum, Inc.

April 2020

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

1.2 errata B

628 ACPI SDT protocol errata
629 Typos in PCD GetSize()
630EFI_SMM_PCI_ROOT_BRIDGE_IO_PROTOCOL service clarification

631 System Management System Table (SMST) MP-related field
clarification

5/27/10

1.2 errata A

363 Pl volume 1 errata

365 UEFI Capsule HOB

381 PI1.1 Errata on EFI_SMM_SAVE_STATE_IO_INFO

482 One other naming inconsistency in the PCD PPI declaration
483 PCD Protocol / PPI function name synchronization.....
496 Boot mode description

497 Status Code additions

548 Boot firmware volume clarification

551 Name conflicts w/ Legacy region

552 MP services

553 Update text to PEI

554 update return code from PEI AllocatePages

555 Inconsistency in the S3 protocol

561 Minor update to PCD->SetPointer

565 CANCEL_CALL_BACK should be CANCEL_CALLBACK

569 Recovery: EFI_PEI_GET_NUMBER_BLOCK_DEVICES decl has
EFI_STATUS w/o return code & errror on stage 3 recovery description

571 duplicate definition of EFI_AP_PROCEDURE in DXE MP (volume?2)
and SMM (volume 4)

581 EFI_HOB_TYPE_LOAD_PEIM ambiguity

591ACPI Protocol Name collision

592 More SMM name conflicts

593 A couple of ISA I/O clarifications

594 ATA/ATAPI clarification

595 SMM driver entry point clarification

596 Clarify ESAL return codes

602 SEC->PEI hand-off update

604 EFI_NOT_SUPPORTED versus EFI_UNSUPPORTED

2/24/10

1.2

407 Comment: additional change to LMA Pseudo-Register

441 Comment: Pl Volume 3, Incorrect Struct Declaration (esp PCD_PPI)
455 Comment: Errata - Clarification of InstallPeiMemory()

465 Comment: Errata on PMI interface

466 Comment: Vol 4 EXTENDED_SAL_PROC definition

467 Comments: PI1.1 errata

480 Comment: FIX to PCD_PROTOCOL and PCD_PPI

05/13/09

UEFI Forum, Inc.

April 2020

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

1.2

401 SMM Volume 4 issue

402 SMM PI spec issue w.r.t. CRC

407 Add LMA Pseudo-Register to SMM Save State Protocol
409 PCD_PROTOCOL Errata

411 Draft Errata, Volume 5, Section 8

412 Comment: PEI_S3_RESUME_PPI should be
EFI_PEI_S3_RESUME_PPI

414 Draft Chapter 7 Comments
415 Comment: Report Status Code Routers

416 EFI_CPU_IO_PROTOCOL2 Name should be
EFl_CPU_I02_PROTOCOL

417 Volume 5, Chapter 4 & 5 order is reversed

423 Comment: Section 15.2.1 Formatting Issues vol5

424 Comments: Volume 5, Appendix A.1 formatting issues
425 Comment: Formatting in Section 6.1 of Volume 3

426 Comments: Volume 2

427 Comment: Volume 3, Section 6

433 Editorial issues in PI 1.2 draft

02/23/09

1.2

271 Support For Large Firmware Files And Firmware File Sections
284 CPU I/O protocol update

286 Legacy Region protocol

289 Recovery API

292 PCD Specification Update

354 ACPI Manipulation Protocol

355 EFI_SIO_PROTOCOL Errata

365 UEFI Capsule HOB

382 IDE Controller Specification

385 Report Status Code Router Specification
386 Status Code Specification

01/19/09

UEFI Forum, Inc.

April 2020

Xi

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

1.2 errata

345 PI1.0 errata

468 Issues on proposed PI1.2 ACPI System Description Table Protocol
492 Add Resource HOB Protectability Attributes

494 Vol. 2 Appendix A Clean up

495 Vol 1: update HOB reference

380 PI1.1 errata from SMM development

501 Clean Up SetMemoryAttributes() language Per Mantis 489 (from
USWG)

502 Disk info

503 typo

504 remove support for fixed address resources

509 PCI errata — execution phase

510 PCI errata - platform policy

511 PIC TE Image clarification/errata

520 PI Errata

521Add help text for EFI_PCD_PROTOCOL for GetNextTokenSpace
525 Itanium ESAL, MCA/INIT/PMI errata

526 Pl SMM errata

529 PCD issues in Volume 3 of the PI11.2 Specification
541 Volume 5 Typo

543 Clarification around usage of FV Extended header
550 Naming conflicts w/ Pl SMM

12/16/09

1.1 Errata

247 Clarification regarding use of dependency expression section types
with firmware volume image files

399 SMBIOS Protocol Errata

405 PIWG Volume 5 incorrectly refers to
EFI_PCI_OVERRIDE_PROTOCOL

422 TEMPORARY_RAM_SUPPORT_PPI is misnamed
428 Volume 5 PCl issue
430 Clarify behavior w/ the FV extended header

02/23/09

UEFI Forum, Inc.

April 2020

Xii

Platform Initialization Specification, Version 1.7 A

Revision

Mantis ID / Description

Date

1.1 Errata

e 204 Stack HOB update 1.1errata

e 225 Correct references from EFI_FIRMWARE_VOLUME_PROTOCOL to
EFl_FIRMWARE_VOLUME2_PROTOCOL

* 226 Remove references to Framework

e 227 Correct protocol name
GUIDED_SECTION_EXTRACTION_PROTOCOL

e 228 insert"typedef" missing from some typedefs in Volume 3

e 243 Define interface "EFI_PEI_FV_PPI" declaration in P11.0
FfsFindNextVolume()

e 285 Time quality of service in S3 boot script poll operation

» 287 Correct MP spec, PIVOLUME 2:Chapter 13.3 and 13.4 - return error
language

e 290 PI Errata

* 305 Remove Datahub reference

¢ 336 SMM Control Protocol update

e 345 PI| Errata

* 353 Pl Errata

¢ 360 S3RestoreConfig description is missing

¢ 363 Pl Volume 1 Errata

e 367 PCI Hot Plug Init errata

¢ 369 Volume 4 Errata

e 380 SMM Development errata

e 381 Errata on EFI_SMM_SAVE_STATE_IO_INFO

01/13/09

1.1 Errata

Revises typographical errors and minor omissions--see Errata for details

04/25/08

1.1 correction

Restore (missing) MP protocol

03/12/08

11

Mantis tickets:

* M39 (Updates PCI Hostbridge & PCI Platform)

* MA41 (Duplicate 167)

* M42 Add the definition of theDXE CIS Capsule AP & Variable AP
* M43 (SMbios)

* M46 (SMM error codes)

* M163 (Add Volume 4--SMM

* M167 (Vol2: adds the DXE Boot Services Protocols--new Chapter 12)
* M179 (S3 boot script)

+ M180 (PMI ECR)

* M195 (Remove PMI references from SMM CIS)

» M196 (disposable-section type to the FFS)

11/05/07

UEFI Forum, Inc.

April 2020

Xiii

Platform Initialization Specification, Version 1.7 A

Revision Mantis ID / Description Date
1.0 errata Mantis tickets: 10/29/07
» MA47 dxe_dispatcher_load_image_behavior
* M48 Make spec more consistent GUID & filename.
e M155 FV_FILE and FV_ONLY: Change subtype number back to th:e
original one.
* M171Remove 10 us lower bound restriction for the TickPeriod in the
Metronome
» M178 Remove references to tail in file header and made file checksum for
the data
» M183 Vol 1-Vol 5: Make spec more consistent.
* M192 Change PAD files to have an undefined GUID file name and update
all Fv
1.0 Initial public release. 8/21/06
UEFI Forum, Inc. April 2020 Xiv

UEFI Platform Initialization (Pl) Specification

Volume 1: Pre-EFI Initialization Core Interface

Version 1.7 Errata A
April 2020

Platform Initialization Specification, Vol. 1

The material contained herein is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by any of the authors or developers of this material or to any
contribution thereto. The material contained herein is provided on an "AS IS" basis and, to the
maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties
and conditions, either express, implied or statutory, including, but not limited to, any (if any)
implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses and
of lack of negligence, all with regard to this material and any contribution thereto. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined."” The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION
OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY
CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY
CONTRIBUTION THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS
OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING
IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright © 2020, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved.
The UEFI Forum is the owner of all rights and title in and to this work, including all copyright
rights that may exist, and all rights to use and reproduce this work. Further to such rights,
permission is hereby granted to any person implementing this specification to maintain an
electronic version of this work accessible by its internal personnel, and to print a copy of this
specification in hard copy form, in whole or in part, in each case solely for use by that person in
connection with the implementation of this Specification, provided no modification is made to the
Specification.

UEFI Forum, Inc. April 2020 1-ii

Platform Initialization Specification, Vol. 1

Specification Organization

The Platform Initialization Specification is divided into volumes to enable logical organization, future
growth, and printing convenience. The current volumes are as follows:

e “Volumel: Pre-EFI Initialization Core Interface’

* “Volume 2: Driver Execution Environment Core I nterface’
e “Volume 3: Shared Architectural Elements”

* “Volume4: Management Mode Core I nterface’

e “Volume5: Standards’

Each volume should be viewed in relation to all other volumes, and readers are strongly encouraged to
consult the entire specification when researching areas of interest. Recent versions of this specification

are issued as a single document containing all five volumes, for easier searching of the complete

content.

Changes in this Release

Revision

Mantis ID / Description

Date

1.7A

1663 SmmSxDispatch2->Register() is not clear
1736 Specification of EFI_BOOT_SCRIPT_WIDTH in Save State Write
1993 Allow MM CommBuffer to be passed as a VA

2017 EFI_RUNTIME_EVENT_ENTRY.Event should have type EFI_EVENT,
not (EFI_EVENT¥)

2039 PI Configuration Tables Errata
2040 EFI_SECTION_FREEFORM_SUBTYPE_GUID Errata

2060 Add missing
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS definition

2063 Add Index to end of Pl Spec
2071 Extended cpu topology

April 2020

For a complete change history for this specification, see the master Revision History at the beginning of
the consolidated five-volume document.

UEFI Forum, Inc.

April 2020

1-iii

Platform Initialization Specification, Vol. 1

Table of Contents

Table Of CONTENTS ... 1-iv
LISEOF TADIES e e e e e e e e e e e 1-xi
LIST OF FIQUIES ...t e e e e e e e e e 1-xii
O 1 1o T [0 o 4 o o 1P 1-1
R I 1Y =T YT 1-1
1.2 Organization of the PEI CIS ..., 1-1
1.3 Conventions Used in this DOCUMENL...........uuiiiiiiiiceieeecc e 1-2
1.3.1 Data StruCture DESCIPLIONScoiiuiiiiriiieeeee ittt e e e e ee e e e e e 1-2

1.3.2 Procedure DESCIIPLIONSuuuuuiiiiiiiiiriieriiesrrrsseesressreeeseeresreereeereerrreerrerrrrereereeee 1-2

1.3.3 INSIrUCtION DESCIIPLIONSuuiiiieiei e i e e e e e e e e e e e e e e e e e 1-3

1.3.4 PPl DESCIIPLONS.....cciiiiiiiiiei e e et e et e e e e e e e e e e e e e e e e e e eeaen e e e e e s 1-3

1.3.5 Pseudo-Code CONVENLIONSccoviiiiiiiie e eee e s e e e e e eeatn e e e e s e e e et e 1-4

1.3.6 TypographiC CONVENTIONScoiiiuiiiiiiiieeee ittt e et e e e e e 1-4

1.4 REQUITEIMEIES ...ceiiiieiiiitt ettt e ettt e e e e e s skt et et e e e e e s e e et e e e e e e e bbb e e e e eaeeaas 1-5
1.5 Conventions used in this dOCUMENLccooiiiiii i, 1-6
N VW 0] 01T g {0 1 = L 1-6

T = T F= gV o] (=] [(L PP 1-6

JZ O AV VAT PP 1-8
P20 R 10117 To [T 1o o ISR 1-8
A B 1T o | o N €T = | 1-8
2.3 Pre-EFI Initialization (PEI) PhaSecooviiiiiiii 1-9
A e oy I Y= oo Y R 1-10
Y d = W o TU T F= 1 To] o [P RSRPPPPIIIN 1-11
A o L B TS o7 (o] = SRR 1-11
2.7 Pre-EFI Initialization Modules (PEIMS)c.covviiiiiiiiiiee 1-12
2.8 PEIM-10-PEIM INterfaces (PPIS)ccov i 1-12
2.9 FIrMWArE VOIUMESot s e e e e e e e et r s e e e e e e e eeatran e eeaeaeeeaes 1-13

3 PEIServices Table...... e 1-14
G700 I 11170 [Tox 1o) o ISP PPPPRP 1-14
3.2 PEI SEIVICES TADIE ... e e e e e e e e e e e e aeaaeeae 1-14

3. 2. L EFL_PEI_SERVICES.....cii ittt e e e e e e e e e e nnennees 1-14

A SEIVICES = PEl .. e 1-20
g T 1 1 0T [T 10 PO 1-20
e e IS T VT =P 1-20
INSTAIPPI() <o eeeeeeeeeee s 1-21

ReINSLAIIPPI() ..o e 1-22

[oTo= 11=] o o PO TP PP PUPPPPPPPPPPPPPPP 1-23

NOTYPPI() . ce e e, 1-25

I = To To 1 a1 1Y [o o (SIS =T oY o= PSPPI 1-25
(1] 4 =Te 01117/ =T () PPN 1-26
SEtBOOIMOUE() .. veeeeeee e ettt 1-28

UEFI Forum, Inc. April 2020 1-iv

Platform Initialization Specification, Vol. 1

.4 HOB SEIVICES ...ttt ettt e e e e e s sttt e e e e e s s bbbt e e e e e e s e nnnbeneees 1-28
[T 0] o N £) I 1-29
CreateHOD (). ..o e e e e aean 1-30
4.5 Firmware VOIUME SEIVICESuuuuuuuuuuuuuiiutiuutiueeuetetatenteaeaeeeeeeeeesseesesesssesssssenessesnneenneeeees 1-31
FISFINANEXIVOIUME() ...ttt e e 1-32
FISFINANEXIFIIE() e e ee ettt e e e 1-33
FfsFindSectionData()ccooeeeeiiie e, 1-35
FISFINASECtONDALA3() ..evvvvvvrniiieeeeieeeiiiiis e e e et e e e e e e e e e e e e e eeeeeanans 1-36
FISFINAFIEBYNAME() .oeveveiiiii e e e e e e e e e e e eaaa s 1-38
FISGELFIIRINTO() oo 1-39
FISGEtFIRINTOZ() «oeeeeiiieei et e e 1-41
FISGEtVOIUMEINTO() ... e 1-43
RegisterFOrShadow()coooeeeiii e 1-45
G o Y BV =T 4 Lo VST =T Y/ o = R 1-45
LBy ez L o oY \Y 1= T o g T Y () 1-46
F Y[Tor= = =T =] T 1-47
AIOCAIEPOOI() ..ttt 1-49
(070] 0111V [=T 0 1 T TSP PPPPPPP R PPPP 1-50
FreePages() ..o, 1-51
ST 117, =T 0 T PPN 1-53
o A = LU [@ Lo SIS oV o PP 1-53
REPOrSIAtUSCOUE() ...uvveeeieeeeeiiiiiie ittt e e 1-54
.8 RESEE SEIVICES ...uuuuuuutiuuuiuitiiuueeuueattetaeeeaeeeeeeeteeeaesseeesseesaeessessseesesessesseeesseessneseneeeneeeneeeees 1-57
RESEISYSIEM()..cccieeieeeeieee e, 1-57
4.9 1/O QN PCl SEIVICESoiuiiiiiiiiiie ettt ettt e e et e e e s e e e e e e e e e s abeeeees 1-57
I =Y o T 1 o =4 o 1 o [PPSR 1-58
Lo 00 I 11 0o [o 1o) o I PP 1-58
o0 I A T =T U1 (=S 1-58
5.1.2 Processor EXECULION MOGEccooiiiiiiiiiiiiieeiiiiiiie e 1-58

5.2 PEI Foundation ENtrY POINT........ccooiiiiieis st e e e e e e e 1-60

5.2.1 PEI Foundation ENtry POINt..........oooiiiiiiiii e 1-60

5.3 PEI Calling Convention Processor BindiNgcouvviiiiiiiiiiiiiiieeeeeeeeeee 1-63
5.4 PEI Services Table REtHEVAIcuuviiiiiiiiiiiiiiieie et 1-63
S € TP PPPPP 1-63
BUA.2 XBA ..ttt e e e e a e e s 1-64
5.4.3 Itanium Processor Family — Register Mechanism..........cccccceevvieeviieeeiiiiennneenn, 1-64
5.4.4 ARM Processor Family — Register Mechanism...........cccoooiiiiiiiiiiiiiiiiiins 1-65
5.4.5 AArch64 Processor Family — Register Mechanism.............ccccooeiiiiiiiiiinninnnes 1-66
5.4.6 RISC-V Processor Family — Register Mechanismcccccovveeiiiniiiiiiinneen, 1-66

5.5 PEI DispatCher INtrOAUCTIONcovviiiiiiiiiiieeeeeeeeee ettt ettt e e 1-67
I IO (o 1= ooV PP PPPRSRR 1-67
I T A =T o [1T =] 0 T=] €SP 1-67
5.6.2 Requirement Representation and Notation.............ccoooooieiiiieiiiiieiices 1-67
5.6.3 PEIl @ priori File OVEIVIEW........coooiiiiiiieeeeeeeeee e 1-68
PEI_APRIORI_FILE_NAME_GUIDccciiiiiiiiiiiiiiee et 1-69

5.6.4 Firmware Volume IMage FilESuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiserisvsesreessressessseesreeeee. 1-70

UEFI Forum, Inc. April 2020 1-v

Platform Initialization Specification, Vol. 1

5.6.5 PEIM Dependency EXPreSSIiONS.........cccccuuuuuuuriuuiiiiiiiiiiiniinniinnennnernnennnennnenn. 1-70
5.6.6 Types Of DEPENUENCIESccceviieeiiiiie e e e e e e e e 1-70

5.7 DependenCy EXPIrESSIONSuuuiiiiieeeiieeeiiiias e e e eeeeeeettutas s e e eeeeeeeaaaaa e eeeeseeeesnsnnnaaeeaeeeennes 1-70
B.7. 1 INtrOAUCLION ... 1-70
PUSH et e e et e e e e e e e e e e e e e e raaaaaeeaaann 1-72

AN i e e e e e e e e e e a e ——aaee e e e anrrrraaaaeeeaaann 1-74

L@ TP PPRPPP PP 1-75

N PP EPPR 1-76

TRUE . ettt e e e e ettt e e e e e e st e e e e e e e e e s nreneeeeeeeeaannne 1-77

FALSE ...ttt a e e e e e e et ra e e e e e e arrrteeeaaeeaaannes 1-78

EN D ettt et — e e e e e e e ————a e e e e e e aaarrrrraaaeeaaann 1-79

5.7.2 Dependency Expression with No Dependenciesooccvvrveeeeeniiiiiiiieeeeenn. 1-80
5.7.3 Empty Dependency EXPreSSIONSuuuuuuiumiriuiiiiiiniirriinrinnrnesrnnssreereeerre.. 1-80
5.7.4 Dependency Expression Reverse Polish Notation (RPN)..........ccccevvvvviennennnn. 1-80

5.8 DispatCh AlQOItNMo e e e e e e e aeae 1-80
B5.8.1 OVEBIVIBW ... 1-80
5.8.2 REQUINEIMENTS ...ttt e e e e e s 1-81
5.8.3 Example Dispatch AlQOrthmcoooiiiiiiiiiii e 1-83
5.8.4 Dispatching When Memory EXISESuuuuuiiuiiiiiiiiiiiiiiiiiiiiiiisisriersieeseessree.. 1-84
5.8.5 PEIM DIiSPACNING....ccuvuiiiiii it e e e e e e e e e e e e e e eenes 1-85
5.8.6 PEIM AUthEeNntiCatioN..........cooi i 1-85

6 ArChiteCtUral PPIS.....cooiiiiiiiiiiiiii e 1-86
L A [1 e Yo [1 Tox 1o o OO PP PRI 1-86
6.2 Required ArchiteCtural PPIS........cccoiiiiiie e 1-86
6.2.1 Master Boot Mode PPl (ReqUIred)uuuueeuuieuieiiiiiiiieriiiieeeeeeeeeeeeeeeeeeeeeeeeee. 1-86
EFI_PEI_MASTER_BOOT_MODE_PPI (Required)ccccccveeeeiiiiiiiiieneeeeaanns 1-86

6.2.2 DXE IPL PPI (REQUITE).......utiiiiieeeeiiiiiiiie ettt 1-87
EFI_DXE_IPL_PPI (ReQUIrEd)cuutiiiiieeeiiiiiiiiiee et 1-87
EFI_DXE_IPL_PPLENINY() +erttiieiiiiiiiiiiieee ettt ee e e 1-88

6.2.3 Memory Discovered PPl (Required)couuuiiiiiiiiiiiieeiies e 1-90
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required).................. 1-90

6.3 Optional ArchiteCtUIal PPISiiiiiiiiieiieeeeeeeeet et 1-91
6.3.1 Boot in Recovery Mode PPl (OptioNal)cooiiiiiiiiiiieiiiiiiieeeeee e 1-91
EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)...........ccuvvveeeeernnnne 1-91

6.3.2 End of PEI Phase PPl (OptioNal)cc.uuvuuiiiiiiiiiiiiiiiiiiiiieiinsiiesiieseessssesreee. 1-92
EFI_PEI_END_OF_PEI_PHASE_PPI (Optional).........ccccuvuiiieeeeiiiiiiiiieee e 1-92

B.3.3 PEIRESEL PPl ...ttt e e e e e e e eeeas 1-93
EFI_PEI_RESET_PPI (OPtioNal)uuvviiiieeeiiiiiiiiiiieee et e e eieneeee e e 1-93

6.3.4 PEI RESEI2 PPl ...ttt e e 1-93
EFI_PEI_RESET2_PPI (OPtioNaAl)cveiiiiiiiiiiiiiiiiiie et 1-93
RESEISYSIEM() oo ——— 1-95

6.3.5 Status Code PPI (Optional)...........uoiiiiiieiiieiie e 1-97
EFI_PEI_PROGRESS_CODE_PPI (Optional)........ccceiuuriiiiieeeeeiiiiiiiiieeeeeeeenns 1-97

6.3.6 Security PPl (OPtioNal).........uuiiiiiiiiiiiieie e 1-98
EFI_PEI_SECURITY2_PPI (OptioNal)cccouiiiiiiieeeiiiiiieee e 1-98
EFI_PEI_SECURITY2_PPIl.AuthenticationState()uvvvveeeiriiiiiiiiiiieeeennnne 1-99

UEFI Forum, Inc. April 2020 1-vi

Platform Initialization Specification, Vol. 1

6.3.7 Temporary RAM Support PPI (Optional)..........c.ccuvvveviiiiiiiiiiiiiiiieiiineieeeeennennee. 1-100
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional)ccccvvveeeeenne 1-100
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPIl.TemporaryRamMigration(). 1-102

6.3.8 Temporary RAM Done PPI (Optional).......ccoooooooiiiiieeeieeeees 1-103
EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional)c.cccccvvvrvereeerinns 1-103
EFI_PEI_TEMPORARY_RAM_DONE_PPIl.TemporaryRamDaone () 1-105

6.3.9 EFI_PEI_CORE_FV_LOCATION_PPl...ccciiiiiiiiiiiiiieei e 1-105

A e = 1Y PP 1-107
% R 11 (o To [U T 1o o KPR 1-107
7 o = 1S 1 Cox (| 1-107

7.2.1 PEIM StrUCIUIE OVEIVIEWeiiiieiiiiiiiiieieee e e e e sttt ee e e s et e e e e e s e ssnnnbaeeeeee s 1-107

7.2.2 Relocation INfOrmationcoooooiiiiii e 1-108

7.2.3 Authentication INfOrMatioNccooiiiii e 1-109

7.3 PEIM Invocation ENtry POINtoooiiiiiiiiiii 1-109

7.3.1 EFI_PEIM_ENTRY _POINTZ...ciii ittt e e aa e 1-109

7.4 PEIM DESCIIPIONS ..ceeeeiiiiittteee e ettt e ettt e e e e et et e e e e s e e e e e e e e e e nnnnnnees 1-110

7.4.1 PEIM DeSCriptors OVEIVIEWcccoeeiiieiieiieeeeeeiee s eanaeanneaneannennnnnnnes 1-110
EFI_PEI_DESCRIPTOR ...oooiiiiiiiiiiiiiee ettt e e e e e sniaeeeeeeeeeaane 1-112
EFI_PEI_NOTIFY_DESCRIPTORootiiiiiiiiiiiiiie et e e e e 1-113
EFI_PEI_PPI_DESCRIPTOR. ...ttt eeieeee e e sieeeeee e e e e e 1-115

7.5 PEIM-t0-PEIM COMMUNICALIONcoiiiiiiiiiiieeeee et 1-116

T.5.1 OVEIVIBW .ottt ettt e e e e ettt e e e e e e e a bbbt e e e e e e s e b bneeeeees 1-116

7.5.2 DYNamiC PPl DISCOVEIYcccoiiiieeiiee e eee e 1-117

8 AdAItIONAl PPIS ... 1-118
S 70 R (o To [U T 1o o KPS PTTORSR 1-118
8.2 Required AdItioNal PPIScouviiiiiiiiieiieeeeeeee e, 1-118

8.2.1 PCI Configuration PPI (Required)ooooeiiiieiiies e 1-118
EFI_PE]_PCI_CFG2_ PPl e e 1-120
EFI_PEI_PCI_CFG2_PPLREAA(). .. trtteeeaiiiiiiiiiieaeeesiiiiiiiieeeeesssniieeeeeeeesannes 1-122
EFI_PEI_PCI_CFG2_PPLWIIE() .tutttetteeeeiiiiiiieeeeeeesiiiieeeeeeessssneeeeeeeeeesannnes 1-124
EFI_PEI_PCI_CFG2_PPLMOIfY()..uuuetieeeiiiiiiiiiiee e eiiiiieiee e e e e e 1-125

8.2.2 Stall PPI (REQUIrEd)cce oot 1-126
EFI_PEI_STALL_PPI (REQUIIE)eeeeeeeiiiiiiiiiiiiiee et 1-126
EFI_PEI_STALL_PPLSTAl()..eeeiiiiiiiiiiiee e 1-127

8.2.3 Variable Services PPl (Required)coooiiiiioioiiii e 1-128
EFI_PEI_READ_ONLY_VARIABLE2 _PPl.....c.cuviiiiiiiiiiiiiiiieee e 1-128
EFI_PEI_READ_ONLY_VARIABLE2_PPl.GetVariable..............c.ccccvvvveeeennnn. 1-129
EFI_PEI_READ_ONLY_VARIABLE2_PPIl.NextVariableName...................... 1-131

8.3 Optional AdditioNal PPISovveiiiiieeeeeeee e, 1-133

8.3.1 SEC Platform Information PPI (Optional)ccovvviiiiiiiiiie i 1-133
EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)ccccvvveveeeeennns 1-133
EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation() 1-134
EFI_SEC_PLATFORM_INFORMATION2_PPI (Optional).........ccccvvvveeeerennnns 1-138
EFI_SEC_PLATFORM_INFORMATIONZ2_PPI.Platforminformation2()......... 1-139

8.3.2 Loaded Image PPI (Optional)..........coooooiiiii i 1-141
EFI_PEI_LOADED _IMAGE_PPl....ooitiiiiiiiiiiiiiee ettt 1-141

UEFI Forum, Inc. April 2020 1-vii

Platform Initialization Specification, Vol. 1

8.3.3SEC HOB PPl ...ttt 1-141
EFI_SEC_HOB_DATA PPl ..o 1-141
EFI_SEC_HOB_DATA_PPLGetHODS()........ccvrviiiieeiiiiiieiee e 1-143

8.3.4 RECOVEIY ..ottt e e e e e et et bbb e e e e e e eeaaae 1-143
EFI_PEI_RECOVERY_MODULE_PPl.......ccctiiiiiiiiiiiiiiiieeee e 1-144
EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()................... 1-146
EFI_PEI_DEVICE_RECOVERY_MODULE_PPIcccccoiiiiiiiiiiiiiiiiieeee 1-146
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.

GetNumberRecoveryCapsules() «..oooevvvveeeriiiii e e 1-148
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsulelnfo()..... 1-

149
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule() .. 1-151
EFI_PEI_RECOVERY_BLOCK_IO_PPI ... 1-152
EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()........ 1-153
EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMedialnfo() 1-154
EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBIOCKS() ... vvveeeeriiiiiiirieieeenne 1-156

8.3.5 EFI PEI Recovery BIOCK IO2 PPlc.oooiiiiiiiieeee e 1-157
EFI_PEI_RECOVERY_BLOCK_IO2_PPI ...t 1-158
EFI_PEI_RECOVERY_BLOCK_IO02_PPIl.GetNumberOfBlockDevices()....... 1-159
EFI_PEI_RECOVERY_BLOCK_IO2_PPI.GetBlockDeviceMedialnfo() 1-160
EFI_PEI_RECOVERY_BLOCK_IO2_PPI.ReadBIOCKS() ... veeeerriiirrieeeeeennne 1-163

8.3.6 EFI PEI Vector Handoff INfO PPlcouiiiiiiiiiecc e 1-164
EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional)ccccceeuvirreeeeennnnns 1-165

8.3.7 CPU 1/O PPI (OPLIONAI) ...eeeiiiiiieeiiiiiie et 1-166
EFI_PEI_CPU_IO_PPI (Optional)cccuriiiiiiiiieiiiiie e 1-166
EFI_PEI_CPU_IO_PPLMEM() ...ceitrieiiee et 1-170
EFI_PEI_CPU_IO_PPLIO() «tetteiiiiiieieieee et 1-172
EFI_PEI_CPU_IO_PPLIOREAUS() ... e eeeeeeiiiiiriiieieeeeeiiiiiieeee e 1-173
EFI_PEI_CPU_IO_PPLIOREAULE() .. e eeeeeaiiiiriiiiiieeeeiiiiiiiiie e e e e 1-174
EFI_PEI_CPU_IO_PPLIOREAAS2()....cciiurriieiiiiiiieiiiiii et 1-175
EFI_PEI_CPU_IO_PPLIOREAABA().....cccuvriieiiiiiiieiiiiiee et 1-176
EFI_PEI_CPU_IO_PPLIOWIEES() ...vvveeeeeiiiiiiiiiiiee et 1-177
EFI_PEI_CPU_IO_PPLIOWIELE() ..vvvreeeeiiiiriieiieeeeeiiiieeiee e e e e 1-178
EFI_PEI_CPU_IO_PPLIOWIE32() ..eeeeeeeiiiiiiiiiiiee et 1-179
EFI_PEI_CPU_IO_PPLIOWIEBA() ...veveeeiiiiiiiiiiieee et 1-180
EFI_PEI_CPU_IO_PPILMemReEad8()........cccerurriieiiiiiieiiiiiee e 1-181
EFI_PEI_CPU_IO_PPIL.MemMREAdLE()......ccerrurrriaiiiiiieiiiiiiee it 1-182
EFI_PEI_CPU_IO_PPLMemMREAd32()........cccurrririieeiiiiiiiiieeee e 1-183
EFI_PEI_CPU_IO_PPILMeMREAUBA()........eeuerreeeieeeiieiiiiiieie e 1-184
EFI_PEI_CPU_IO_PPLMEMWIIE() . eeeeeieiiriiieieeeee it 1-185
EFI_PEI_CPU_IO_PPLMEMWIIELO() ...cceeuvvrrieiieeeeeiiiiieee e e 1-186
EFI_PEI_CPU_IO_PPLMEMWITE32()vvveeiiiiiieeiiiiee it 1-187
EFI_PEI_CPU_IO_PPLMEMWITEBA()vvveeiiiiiiieiiiiiee et 1-188

8.3.8 EFI Pei Capsule PP ... 1-188
EFI_PEI_CAPSULE_PPI (OPtioNal).......ccoiiiiiiiiiiieeeiiiiiieee e 1-189
EFI_PEI_CAPSULE_PPLCOAIESCEcceiiiiiiiiiiiiee e 1-190

UEFI Forum, Inc.

April 2020 1-viii

Platform Initialization Specification, Vol. 1

EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CheckCapsuleUpdate()..... 1-

191
EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CapsuleCreateState() . 1-192
8.3.9 EFI MP SEIVICES PPl...cciiiiiiiiiiiiee ettt e e e 1-192
EFI_MP_SERVICES_PPI (OptioNal).........cccciuiiiiieeeeeiiiiiiiiieee e esiireeee e 1-193
EFI_MP_SERVICES_PPIl.GetNumberOfProcessors()........cccccceerrvrvvrreeeeennn 1-195
EFI_MP_SERVICES_ PPI.GetProcessorinfo()........cceeeeveeeiuvnmiiieiiniiinniiniinnnns 1-197
EFI_MP_SERVICES_PPLStartupAlAPS () .. .uueeeieeeeiiiiiiieeee e 1-198
EFI_MP_SERVICES_PPLStartupThiSAP ()ucuuieeeiiiiiiiiieee e eiiiiiieeeee e 1-200
EFI_MP_SERVICES_PPLSWItChBSP () ...cccueviiiiieeee et 1-202
EFI_MP_SERVICES _PPLWHhOAMI () .eeeeiiiiiiiiiieee et 1-205
8.4 GraphiCs PEIM INTEITACESoeiiiiiiiiiieiiie ettt 1-206
8.4.1 Pei GraphiCs PPl ... 1-206
L€ =T 0] a1 ot = o1 1]| (P 1-207
GraphiCSPPIGEIMOAEo e e 1-208
8.4.2 EFI PEI GraphiCS INFO HOBccooiiiiiiiiiiiie ettt 1-212
EFI_PEI_GRAPHICS INFO _HOB.......ccciiiiiitiiiiiee et 1-213
9 PEIt0 DXE HandOff ..o 1-215
LS 00 I 1010 To [o o) o I PP 1-215
9.2 Discovery and Dispatch of the DXE Foundation...............ccccoo e, 1-215
9.3 Passing the Hand-Off BIOCK (HOB) LIStccoiuuiiiiiieeieiiiiiieeee e 1-215
9.4 Handoff Processor State to the DXE IPL PPl ... 1-216
10 BOOt PAtNS ..o anaaaa 1-217
0 I 1 o o 13 o 1 o T o SRR 1-217
02 @ To [N (o 1 SRR 1-217
10.2.1 ReSEt BOOt PAtNS ... 1-217
10.3 NOIMAal BOOt PAtNSeiiiiiiiiiiiiiiiiiie et 1-218
10.3.1 Basic G0-to-S0 and SO Variation Boot Paths...........ccccccviiiiiiiiiiiiininnn. 1-218
10.3.2 S-State BOOt PAthS...........uuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiieeieee et eeeeeeeeeeeeeeeeees 1-219
10.4 RECOVEIY PathS...ccciiiiiiiiiiiieeee 1-219
10.4.1 DISCOVETY ...ueuiitieeeeee ettt ettt e e e e e et e e e e e e e e e e e e e e annab e eeeeas 1-220
10.4.2 General Recovery ArChitECIUIEuuuuvveiiiiiieeiieeiieeeeeeeeeeeee e ee e eeeeeeeeeeeees 1-220
10.5 Defined BOOt MOAESccoiiiiiiiiiiiiiiieee et e 1-220
10.6 Priority of BOOt PathScooviiiiie e 1-220
O NS 0 o1 o] (o o PSR 1-221
10.8 Architectural Boot MOde PPIScooiiiiiiii 1-221
L0.9 RECOVEIY .ottt 1-222
O N TR A oo o1 PSPPI 1-222
O T2 B T 1Yo 0 1= o PP 1-222
10.9.3 General Recovery ArchiteClureceviiieiiieieeiees e 1-222
10.9.4 Finding and Loading the Recovery DXE Imageccovvvvveeiiiiiiiiiieniiennen.. 1-223
11 PEI Physical Memory USage........cooieiiiiiiiiieeie e 1-226
300 1 To [F o3 1T o PP PPPP PRI 1-226
11.2 Before Permanent Memory Is Installed................ooooriiiiii e, 1-226
11.2.1 Discovering PhySiCal MEMOIYuueiiiiiiiiiiiiiiiiiiieeieeeeeeeee e 1-226

UEFI Forum, Inc. April 2020 1-ix

Platform Initialization Specification, Vol. 1

11.2.2 UsIiNg PhySICal MEMOIY.......uuuuiiiiiiiiiiiiiiiiiiiiiiieeerersieesressssssreseeeeeeeeeereeereeeereen 1-226
11.3 After Permanent Memory Is Installed................oooorririiii e, 1-227
11.3.1 Allocating Physical MEMOIYcoouuiiiiiii e e e e e e 1-227
11.3.2 Allocating Memory Using GUID Extension HOBScccccvviiiiiieiiieeeneen. 1-227
11.3.3 Allocating Memory Using PEI SErviCe..........ccccuviiiiieiiiiiiiiieeeeeeiieeee 1-227

12 Special Paths Unique to the
1taniumM® ProcesSOr FAMIYc.oovovovoeeeeeeeeeeeee et 1-228
D20 R o (o To [F o3 1T o P PPPP PRI 1-228
12.2 Unique Boot Paths for Itanium ArchiteCture............cooevviiiiiii e, 1-228
12.3 MiN-State SAVE AFCa.......cciiiiiiiiiieee e 1-229
EFL_PEIL_MIN_STATE _DATA ittt a e e e e nsaaaee e e e e e aanes 1-231
12.4 Dispatching Itanium Processor Family PEIMS ... 1-233
13 Security (SEC) Phase Informationccoueiiiiiiiiii e 1-235
131 INEFOAUCTION ettt 1-235
13.2 ReSPONSIDITIES ..coeeeeieeeeeeeeeeeeeee e 1-235
13.2.1 Handling All Platform Restart EVENISccuvviiiiiiiiiiiieee e 1-235
13.2.2 Creating a Temporary MemOry STOI€........cc.uuvviriieeiiiiiiiiiiieee e seiinneeeeee e 1-235
13.2.3 Serving As the Root of Trust in the SyStemcovvvvvvivviiviiiiiiiiiieeeeeee 1-236
13.2.4 Passing Handoff Information to the PEI Foundation............ccccooooeeevieivinnnnnn. 1-236
13.3 SEC Platform Information PPloooiiiiiiii 1-236
13.4 SEC HOB DAta PPleeiiiiiieiiiciiiieee ettt a e et e e e e e e e e nnnnnneeeeeeas 1-236
13.5 Health Flag Bit FOMMALooiiiiiiiiiieeeeii e 1-236
13.5.1 Self-Test State Parameter.........uuuuuuuiiuiiiiiiiiiiieeiiieiieeeeeeeeeeeeeeeereeeeeereeeereeeeeees 1-238
13.6 Processor-Specific DetailS ... 1-239
13.6.1 SEC Phase in 1A-32 Intel ArchiteCturecevvviiiiiiiiiiii 1-239
13.6.2 SEC Phase in the Itanium Processor Familyccccvvvviiiiiiie e, 1-239
14 Dependency EXpression Grammar.........ccccveeuuuiiieeeeeeeeeeiiiiineeeeeeeeennnnns 1-241
14.1 Dependency EXPression Grammar.........ccceviieeiieeeiee e, 1-241
14.1.1 Example Dependency Expression BNF Grammar..........cccccccceeeeneieeeeeeeennnns 1-241
14.1.2 Sample Dependency EXPreSSIONScciieeeeieieeiiiiiiieeeeeeeeeeaennnnseeeeeeeeesennnnnns 1-242
T I = [=T PP PPTTRPPIN 1-243
L7001 To [F{ox 1T o PP PPPR PRI 1-243
15.2 PE32 HEAUEIS. ...cooiiiiiieeieeeeeee e 1-243
LI =30 == T [PP 1-245
16 TE IMage Creationouuuuiiii ettt e e e e et e e e e e eeenaanes 1-247
G300 R o £ o [Fox 1T o P PPPP PRI 1-247
16.2 TE Image Utility REQUIFEMENLScciiiieeiiiei e e e e e e e e e 1-247
16.3 TE Image ReIOCALIONS...........cuuuiiiii e e e e e e e e e e e e 1-247
17 TEIMaAge LOAdiNg...ccooviiiiiiii ittt e e e e e e eenaanes 1-248
0 R g To (3 o3 1T o P PPPR PRI 1-248
2 11 F= T TP 1-248
17.3 ReloCated IMAGEScoeiiiieeeieee e 1-248
L17.4 PIC IMAYGES ... ettt ettt e e e e e et et bbb e e e e e e e et eebbbb e e e e e e e eeeenbbanan s 1-248

UEFI Forum, Inc. April 2020 1-x

Platform Initialization Specification, Vol. 1

List of Tables

Table 1-1:
Table 1-2:
Table 1-3:
Table 1-4:
Table 1-5:
Table 1-6:
Table 1-7:
Table 1-8:
Table 1-9:

Table 1-10:
Table 1-11:
Table 1-12:
Table 1-13:
Table 1-14:
Table 1-15:
Table 1-16:
Table 1-17:
Table 1-18:
Table 1-19:
Table 1-20:
Table 1-21:
Table 1-22:
Table 1-23:
Table 1-24:
Table 1-25:
Table 1-26:
Table 1-27:

UEFI Forum, Inc.

Organization of the PEI CIS..........ooiiiiiiiie e 1-1

Sl PIEIIXES ..ttt 1-7
2T = LY o1 L= 0L PP 1-7
PEI Foundation Classes Of SEIVICEuuuuuuueuiieiiiiiiieiiieiiiiieeeiiaiieeeeeeeeeeneeeeees 1-11
PEI SEIVICES ...ttt e ettt e et e e e e et e e e et e e e eeeeeeeeaeeeeeeeeaeaeees 1-20
2 ToTo) ALY, oTo [T =T o 1] (=] PSP 1-27
Dependency Expression Opcode SUMMANYoicurirreeeeeeeiiiiiiiereeee e e e 1-72
PUSH INStruction ENCOAINGevviiiiiiiiiiiiiiicceeee e 1-73
AND Instruction ENCOAING.......cccoovvviiiiiiiiiiiiiieee e 1-74

(O] = 3 1915110 ox 1 o] g I =1 o oo o |1 o PR 1-75
NOT Instruction ENCOAING.......ccoviuiiiiiii e 1-76
TRUE Instruction ENCOAINGcoovvvviiiiiiiieieee e 1-77
FALSE INStruction ENCOAINGccvviiiiiiiiiiiiiieee e 1-78
END INStruction ENCOAING.........uviiiiiiiiiiiiiiiiiec e 1-79
Example DISPatCh Mapcccvviiiiiiiiiiiiiecieeeeeeee e 1-84
PEI PPI Services List DESCHPIOrS.......ccoviiiiiiiiiii e 1-116
Organization of the Code Definitions Sectioncccccoceeiiiiiiiiniiiiiiiiiiiiienes 1-144
Required HOB Types in the HOB LiStcoviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee 1-216
Handoff Processor State to the DXE IPL PPl ..., 1-216
Boot Path ASSUMPLIONScvviiiiiiiiiiiiiieieeeeeeeeee ettt e e e e ee e e 1-221
Architectural BoOot MO PPIS........c.uiiiiiiiiiiiiiieeee e 1-222
Device Recovery Module FUNCLIONScuuiiiiiiieiicecicin e 1-225
Device Recovery Block I/O FUNCHONScooooiiiiiiiiiiiiieeeeieeee e 1-225
Health Flag Bit Field DeSCrptionceueiiiiiiiiiiiiiiiieeeeieeeeeeeeeeeeeeee e 1-238
Self-Test State Bit ValUesS.......ccoooiiiiiiieiiiee e 1-238
COFF Header Fields Required for TE IMagEeSsccccvvvvvvvmivnvineriinininiinninnnnns 1-243
Optional Header Fields Required for TE IMageS........cccuvvvvvvvvvvvvvveeererenrennnne. 1-243

April 2020 1-xi

Platform Initialization Specification, Vol. 1

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Figure 1-8:

UEFI Forum, Inc.

PEI Operations DIiAgramM...........oouuuriiiieeeeeiiiiiiieee e e e s e e e e eeeeee e e 1-10
Typical PEIM Layout in a Firmware Fileoccoiiiiiiiiiiiiice e 1-108
Itanium Processor Boot Path (INIT and MCHK)ccccocviviiiiiiiiiiiiiiniinnnn, 1-229
Min-State Buffer Organizationuuiiiiiii e e e 1-230
Boot Path in [tanium ProCesSOrsSocooiiiii e 1-234
Health Flag Bit FOrMaLt........ccooiiii e 1-237
PEI Initialization StePS iN TA-32oeiiieii e 1-239
Security (SEC) Phase in the Itanium Processor Familyccccceeeeveeeeen. 1-240

April 2020 1-xii

Platform Initialization Specification, Vol. 1

1 Introduction

1.1 Overview

This specification defines the core code and services that are required for an implementation of the
Pre-EFI Initialization (PEI) phase of the Platform Initialization (PI) specifications (hereafter referred
to asthe“PI Architecture”). This PEI core interface specification (CIS) does the following:

» Describes the basic components of the PEI phase
» Provides code definitions for services and functions that are architecturally required by the UEFI

PI working group (PIWG)

» Describes the machine preparation that is required for subsequent phases of firmware execution
» Discusses state variables that describe the system restart type
See “Organization of the PEI CIS,” below, for more information.

1.2 Organization of the PEI CIS

This PEI core interface specification is organized as shown in Table 1-1. Because the PEI
Foundation is just one component of a Pl Architecture-based firmware solution, there are a number
of additional specificationsthat are referred to throughout this document.

Table 1-1: Organization of the PEI CIS

Section

Description

“Overview” on page 8

“PEI Services Table” on page 14

“Services - PEI” on page 20

“PEI Foundation” on page 58

“PEIMs” on page 107

“Architectural PPIs” on page 86

“Additional PPIs” on page 118
“PEI to DXE Handoff” on page 215

“Boot Paths” on page 217

“PEI Physical Memory Usage” on
page 226

Describes the major components of PEI, including the PEI Services,
boot mode, PEI Dispatcher, and PEIMs.

Describes the data structure that maintains the PEI Services.
Details each of the functions that comprise the PEI Services.

Describes the PEI Foundation and its methods of operation and the
PEI Dispatcher and its associated dependency expression
grammar..

Describes the format and use of the Pre-EFI Initialization Module
(PEIM).

Contains PEIM-to-PEIM Interfaces (PPIs) that are used by the PEI
Foundation.

Contains PPIs that can exist on a platform.

Describes the state of the machine and memory when the PEI phase
invokes the DXE phase.

Describes the restart modalities and behavior supported in the PEI
phase.

Describes the memory map and memory usage during the PEI
phase.

UEFI Forum, Inc.

April 2020 11

Platform Initialization Specification, Vol. 1 Introduction

Section Description

“Special Paths Unigue to the Contains flow during PEI that is unique to the Itanium® processor

Itanium® Processor Family” on family.

page 228

“Security (SEC) Phase Information” Contains an overview of the phase of execution that occurs prior to

on page 235 PEI.

“Dependency Expression Grammar” | Describes the BNF grammar for a tool that can convert a text file

on page 241 containing a dependency expression into a dependency section of a
PEIM stored in a firmware volume.

“TE Image” on page 243 Describes the format of the TE executable.

“TE Image Creation” on page 247 Describes how TE executables are created from PE32+ executables.

“TE Image Loading” on page 248 Describes how TE executables are loaded into memory.

1.3 Conventions Used in this Document

This document uses the typographic and illustrative conventions described below.

1.3.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-order byte of
amultibyte data item in memory is at the lowest address, while the high-order byteis at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any

reserved field.

The data structures described in this document generally have the following format:

Structure Name: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.3.2 Procedure Descriptions
The procedures described in this document generally have the following format:

UEFI Forum, Inc. April 2020 1-2

Platform Initialization Specification, Vol. 1 Introduction

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.3 Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.
Syntax: A brief description of the instruction.
Description: A description of the functionality provided by the instruction

accompanied by atable that details the instruction encoding.
Operation: Details the operations performed on operands.

Behaviors and Restrictions:

An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.3.4 PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPl Name: The formal name of the PPI.
Summary: A brief description of the PPI.
GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

Protocol Interface Structure:
A “C-style” procedure template defining the PPI calling structure.

Parameters: A brief description of each field in the PPI structure.

UEFI Forum, Inc. April 2020 1-3

Platform Initialization Specification, Vol. 1 Introduction

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
interface.

Status Codes Returned: A description of any codes returned by the interface. The PPl is

required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.3.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithmsin
this document are intended to be compiled directly. The code is presented at alevel corresponding to

the surrounding text.

In describing variables, alist is an unordered collection of homogeneous objects. A queueis an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In

First Out (FIFO).

Pseudo codeis presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0

specification).

1.3.6 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text

Plain text (blue)

Bold

Italic

BOLD Mbonospace

UEFI Forum, Inc.

The normal text typeface is used for the vast majority of the descriptive
text in a specification.

In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
activein the PDF of the specification.

In text, aBold typeface identifies a processor register name. In other
instances, aBold typeface can be used as a running head within a
paragraph.

Intext, an Italic typeface can be used as emphasis to introduce anew term
or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code segments
useaBOLD Monospace typeface with adark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in anormal text paragraph.

April 2020 1-4

Platform Initialization Specification, Vol. 1 Introduction

Bol d Monospace In the online help version of this specification, wordsin a
Bol d Monospace typeface that isunderlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
activein the PDF of the specification. Also, these inactive linksin the
PDF may instead have aBol d Monospace appearancethat is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace Incodeorintext,wordsinltalic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Pl ai n Monospace Incode wordsinaPl ai n Monospace typefacethat isadark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

1.4 Requirements

This document is an architectural specification that is part of the Platform Initialization Architecture
(PI Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the Pl Architecture isto present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this
specification falls both on the producer and the consumer of facilities described as part of the
specification.

In generd, it isincumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it isincumbent on adeveloper of a firmware component to ensure that its implementation
relies only on facilities that are defined as part of the Pl Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the Pl Architecture family of specifications.

Asthis document is an architectural specification, care has been taken to specify architecturein
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional .

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered arequired facility.

Where parts of the specification are marked as“ optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for afacility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and

UEFI Forum, Inc. April 2020 1-5

Platform Initialization Specification, Vol. 1 Introduction

exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conforms to the Pl Architecture are conformant only if they depend only on facilities described in
thisand related Pl Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the Pl Architecture specificationsis
conformant. A modular component is not conformant if it relies for correct and compl ete operation
upon areference to an interface or data structure that is neither part of its own image nor described in
any Pl Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themsel ves conforming might not function correctly with it. Correct operation
of non-conforming implementationsis explicitly out of scope for the Pl Architecture and this
specification.

1.5 Conventions used in this document

1.5.1 Number formats

A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by alower-case b (e.g., 0101b).
Underscores or spaces may be included between characters in binary number representations to
increase readability or delineate field boundaries (e.g., 00101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by Ox preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between charactersin
hexadecimal number representations to increase readability or delineate field boundaries (e.g., OxB
FD8C FA23 or 0xB_FD8C_FAZ23).

A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by alower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers.

» thedecimal separator (i.e., separating the integer and fractional portions of the number) isa
period,;

» thethousands separator (i.e., separating groups of three digits in a portion of the number) isa
comma;

» thethousands separator is used in the integer portion and is not used in the fraction portion of a
number.

1.5.2 Binary prefixes

This standard uses the prefixes defined in the International System of Units (Sl) (see http://
www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

UEFI Forum, Inc. April 2020 1-6

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Platform Initialization Specification, Vol. 1 Introduction

Table 1-2: Sl prefixes

Factor Factor Name Symbol
103 1,000 kilo K
108 1,000,000 mega M
10° 1,000,000,000 giga G

This standard uses the binary prefixes defined in | SO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and |EEE 1514 Standard for Prefixes for Binary Multiples for
values that are powers of two.

Table 1-3: Binary prefixes

Factor Factor Name Symbol
10 1,024 kibi Ki
220 1,048,576 mebi Mi
230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

UEFI Forum, Inc. April 2020 1-7

Platform Initialization Specification, Vol. 1

2 Overview

2.1 Introduction

The Pre-EFI Initialization (PEI) phase of the Pl Architecture specifications (hereafter referred to as
the “Pl Architecture”) isinvoked quite early in the boot flow. Specifically, after some preliminary
processing in the Security (SEC) phase, any machine restart event will invoke the PEI phase.

The PEI phase will initially operate with the platform in a nascent state, leveraging only on-
processor resources, such as the processor cache as a call stack, to dispatch Pre-EFI Initialization
Modules (PEIMs). These PEIMs are responsible for the following:

* Initializing some permanent memory complement

» Describing the memory in Hand-Off Blocks (HOBS)

e Describing the firmware volume locations in HOBs

* Passing control into the Driver Execution Environment (DXE) phase

Philosophically, the PEI phase isintended to be the thinnest amount of code to achieve the ends
listed above. As such, any more sophisticated algorithms or processing should be deferred to the
DXE phase of execution.

The PEI phaseisalso responsiblefor crisisrecovery and resuming from the S3 sleep state. For crisis
recovery, the PEI phase should reside in some small, fault-tolerant block of the firmware store. Asa
result, it isimperative to keep the footprint of the PEI phase as small as possible. In addition, for a
successful S3 resume, the speed of the resume is of utmost importance, so the code path through the
firmware should be minimized. These two boot flows also speak to the need to keep the processing
and code paths in the PEI phase to a minimum.

Theimplementation of the PEI phase is more dependent on the processor architecture than any other
phase. In particular, the more resources the processor provides at itsinitial or near initial state, the
richer the interface between the PEI Foundation and PEIMs. As such, there are severa parts of the
following discussion that note requirements on the architecture but are otherwise left architecturally
dependent.

2.2 Design Goals

The PI Architecture requires the PEI phase to configure a system to meet the minimum prerequisites
for the Driver Execution Environment (DXE) phase of the Pl Architecture architecture. In general,
the PEI phaseis required to initialize alinear array of RAM large enough for the successful
execution of the DXE phase elements.

The PEI phase provides a framework to allow vendors to supply separate initialization modules for
each functionally distinct piece of system hardware that must be initialized prior to the DXE phase
of execution in the Pl Architecture. The PEI phase provides a common framework through which
the separate initialization modules can be independently designed, devel oped, and updated. The PEI
phase was devel oped to meet the following goals in the Pl architecture:

UEFI Forum, Inc. April 2020 1-8

Platform Initialization Specification, Vol. 1 Overview

» Enable maintenance of the “chain of trust.” Thisincludes protection against unauthorized
updates to the PEI phase or its modules, as well as aform of authentication of the PEI
Foundation and its modules during the PEI phase.

* Provide a core PElI module (the PEI Foundation) that will remain more or less constant for a
particular processor architecture but that will support add-in modules from various vendors,
particular for processors, chipsets, RAM initialization, and so on.

* Allow independent devel opment of early initialization modules.

2.3 Pre-EFl Initialization (PEI) Phase

The design for the Pre-EFI Initialization (PEI) phase of a Pl Architecture-compliant boot is as an
essentially miniature version of the DXE phase of the PI Architecture and addresses many of the
sameissues. The PEI phaseis designed to be developed in several parts. The PEI phase consists of
the following:

» Some core code known as the PEI Foundation
e Specidized plug-ins known as Pre-EFI Initialization Modules (PEIMS)

Unlike DXE, the PEI phase cannot assume the availability of reasonable amounts of RAM, so the
richness of the features in DXE does not exist in PEI. The PEI phase limits its support to the
following actions:

» Locating, validating, and dispatching PEIMs
» Facilitating communication between PEIMs
* Providing handoff data to subsequent phases
Figure 1-1 below shows a diagram of the process completed during the PEI phase.

UEFI Forum, Inc. April 2020 1-9

Platform Initialization Specification, Vol. 1 Overview

Initialize the [PEIM n

dispatch of the [PEM 3 i
PEIM 1 1

“ /
Invoke PEIMs B

¥

Prepare state to
hand off to
DXE IPL PPI DZE IFL FEIM
ntry Foint
¥ J_DXE [FLCFF
PEI Foundation / Load/Start DXE
dispatches
DXE IPL PPI

Figure 1-1: PEI Operations Diagram

2.4 PEI Services

The PEI Foundation establishes a system table named the PEI Services Tablethat isvisible to all
Pre-EFI Initialization Modules (PEIMS) in the system. A PEI Serviceis defined as afunction,
command, or other capability manifested by the PEI Foundation when that service' sinitialization
requirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM’s entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

The PEI Foundation provides the classes of serviceslisted in Table 1-4.

UEFI Forum, Inc. April 2020 1-10

Platform Initialization Specification, Vol. 1 Overview

Table 1-4: PEI Foundation Classes of Service

PPI Services: Manages PPIs to facilitate intermodule calls between PEIMs.
Interfaces are installed and tracked on a database maintained in
temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, etc.) of the
system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBSs) that are used
to pass information to the next phase of the Pl Architecture.

Firmware Volume Services: Finds PEIMs and other firmware files in the firmware volumes.

PEI Memory Services: Provides a collection of memory management services for use both

before and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services (for
example, port 080h or a serial port for simple text output for debug).

Reset Services: Provides a common means by which to initiate a warm or cold restart
of the system.

2.5 PEI Foundation

The PEI Foundation is the entity that is responsible for the following:

» Successfully dispatching Pre-EFI Initialization Modules (PEIMS)

* Maintaining the boot mode

e Initializing permanent memory

» Invoking the Driver Execution Environment (DXE) loader

The PEI Foundation is written to be portable across all platforms of a given instruction-set
architecture. As such, abinary for 32-bit Intel® architecture (1A-32) should work across all
Pentium® processors, from the Pentium |1 processor with MMX™ technology through the latest

Pentium 4 processors. Similarly, the PEI Foundation binary for the Itanium® processor family
should work across all Itanium processors.

Regardless of the processor microarchitecture, the set of services exposed by the PEI Foundation
should be the same. This uniform surface area around the PEI Foundation allows PEIMs to be
written in the C programming language and compiled across any microarchitecture.

2.6 PEI Dispatcher

The PEI Dispatcher is essentially a state machine that is implemented in the PEI Foundation. The
PEI Dispatcher evaluates the dependency expressionsin Pre-EFI Initialization Modules (PEIMS)
that are in the firmware volume(s) being examined.

The dependency expressions are logical combinations of PEIM-to-PEIM Interfaces (PPIs). These
expressions describe the PPIs that must be available before a given PEIM can be invoked. To
evaluate the dependency expression for the PEIM, the PEI Dispatcher references the PPI databasein
the PEI Foundation to determine which PPIs have been installed. If the PPl has been installed, the

UEFI Forum, Inc. April 2020 1-11

Platform Initialization Specification, Vol. 1 Overview

dependency expression will evaluate to TRUE, which tells the PEI Dispatcher it can run the PEIM.
At this point, the PEI Foundation passes control to the PEIM with a true dependency expression.

Once the PEI Dispatcher has evaluated all of the PEIMsin all of the exposed firmware volumes and
no more PEIMs can be dispatched (i.e., the dependency expressions do not evaluate from FALSE to
TRUE), the PEI Dispatcher will exit. It isat thispoint that the PEI Dispatcher cannot invoke any
additional PEIMs. The PEI Foundation then reassumes control from the PEI Dispatcher and invokes
the DXE IPL PPI to pass control to the DXE phase of execution.

2.7 Pre-EFI Initialization Modules (PEIMS)

Pre-EFI Initialization Modules (PEIMs) are specialized drivers that personalize the PEI Foundation
to the platform. They are analogous to DXE drivers and generally correspond to the components
being initialized. Itisthe responsibility of the PEI Foundation code to dispatch the PEIMsin a
sequenced order and provide basic services. The PEIMs are intended to mirror the components
being initialized.

Communication between PEIMsis not easy in a“memory poor” environment. Nonetheless, PEIMs
cannot be coded without some interaction between one another and, even if they could, it would be
inefficient to do so. The PEI phase provides mechanisms for PEIMs to locate and invoke interfaces
from other PEIMs.

Because the PEI phase existsin an environment where minimal hardware resources are available and
execution is performed from the boot firmware device, it is strongly recommended that PEIMs do
the minimum necessary work to initialize the system to a state that meets the prerequisites of the
DXE phase.

It is expected that, in the future, common practice will be that the vendor of a software or hardware
component will provide the PEIM (possibly in source form) so the customer can debug integration
problems quickly.

2.8 PEIM-to-PEIM Interfaces (PPIs)

PEIMs communicate with each other using a structure called a PEIM-to-PEIM Interface (PPI). PPIs
arecontainedinaEFl _PEI _PPI _DESCRI PTOR data structure, which is composed of a GUID/
pointer pair. The GUID “names’ the interface and the associated pointer provides the associated
data structure and/or service set for that PPl. A consumer of a PPl must use the PEI Service

Locat ePpi () todiscover the PPI of interest. The producer of a PPl publishesthe available PPIs
inits PEIM using the PEI Services| nst al | Ppi () or Rei nstal | Ppi ().

All PEIMs are registered and located in the same fashion, namely through the PEI Serviceslisted
above. Within this name space of PPIs, there are two classes of PPIs:

e Architectural PPIs
e Additiona PPIs

An architectural PPI isa PPl whose GUID is described in the PEI CIS and isa GUID known to the
PEI Foundation. These architectural PPIstypically provide a common interface to the PEI
Foundation of a service that has a platform-specific implementation, such as the PEI Service
Report St at usCode() .

UEFI Forum, Inc. April 2020 1-12

Platform Initialization Specification, Vol. 1 Overview

Additional PPIsare PPIsthat are important for interoperability but are not depended upon by the PEI
Foundation. They can be classified as mandatory or optional. Specificaly, to have alarge class of
interoperable PEIMSs, it would be good to signal that the final boot mode was installed in some
standard fashion so that PEIMs could use this PPI in their dependency expressions. The alternative

to defining these additional PPIsin the PEI CIS would be to have a proliferation of similar services
under different names.

2.9 Firmware Volumes

Pre-EFI Initialization Modules (PEIMSs) reside in firmware volumes (FV's). The PEI phase supports
the ability for PEIMs to reside in multiple firmware volumes.. Other PEIMs can expose firmware
volumes for use by the PEI Foundation.

UEFI Forum, Inc. April 2020 1-13

Platform Initialization Specification, Vol. 1

3 PEI Services Table

3.1 Introduction

The PEI Foundation establishes a system table named the PEI Services Table that isvisible to al
Pre-EFI Initialization Modules (PEIMS) in the system. A PEI Serviceis defined as afunction,
command, or other capability manifested by the PEI Foundation when that service' sinitialization
reguirements are met. Because the PEI phase has no permanent memory available until nearly the
end of the phase, the range of services created during the PEI phase cannot be as rich as those
created during later phases. Because the location of the PEI Foundation and its temporary RAM is
not known at build time, a pointer to the PEI Services Table is passed into each PEIM's entry point
and also to part of each PEIM-to-PEIM Interface (PPI).

Note: In the PEI Foundation use of the EFI _ TABLE HEADER for the PEI Services Table, there is
special treatment of the CRC32 field. This value is ignorable for PEI and should be set to zero.

3.2 PEI Services Table

3.2.1 EFI_PEI_SERVICES

Summary

The PEI Services Table includes alist of function pointersin atable. The table islocated in the
temporary or permanent memory, depending upon the capabilities and phase of execution of PEI.
The functionsin thistable are defined in “ Services - PEI” on page 20.

Related Definitions
/1
/1 PElI Specification Revision informtion
11
#define PElI _SPECI FI CATI ON_MAJOR REVI SION 1
#defi ne PElI _SPECI FI CATI ON_M NOR_REVI SI ON 70

/1

/1 UEFI PElI Services Table

/1

#defi ne PElI _SERVI CES_SI GNATURE 0x5652455320494550

#def i ne ((PEl _SPECI FI CATI ON_MAJOR REVI Sl ONk<17) |
(PEI _SPECI FI CATI ON_M NOR_REVI SI ON))

typedef EFI _PEl _SERVI CES {
EFl _TABLE_HEADER Hdr ;

/1
/1 PPl Functions

UEFI Forum, Inc. April 2020 1-14

Platform Initialization Specification, Vol. 1

/1

EFl _PEl _I NSTALL_PPI
EFl _PEl _REI NSTALL_PPI
EFl _PEl _LOCATE_PPI

EFl _PEI _NOTI FY_PPI

/1

// Boot Mbyde Functi ons
/1

EFlI _PEI _GET_BOOT MODE
EFlI _PEI _SET BOOT MODE

/1

// HOB Functions

/1

EFlI _PEI GET _HOB LI ST
EFlI _PEI CREATE HOB

/1

/! Firmvare Vol ume Functions
/1

EFlI _PEI _FFS FI ND_NEXT_ VOLUME2
EFlI _PEI FFS FI ND NEXT FI LE2
EFI _PEI _FFS _FI ND_SECTI ON_DATA2

11

/1 PEl Menory Functions

I

EFI _PEI _I| NSTALL_PEI _MEMORY
EFI _PEI _ALLOCATE_PAGES

EFI _PEI _ALLOCATE_POOL

EFI _PEI _COPY_MEM

EFl _PEI _SET_MEM

/1
/] Status Code
EFI _PElI REPORT_STATUS CODE

/1

/] Reset

/1

EFI _PElI RESET_SYSTEM

Il

PEI Services Table

I nstal |l Ppi;
Rel nstal | Ppi ;
Locat ePpi ;
Not i f yPpi ;

Get Boot Mode;
Set Boot Mbde;

Get HoblLi st ;
Cr eat eHob;

Ff sFi ndNext Vol ume;
Ff sFi ndNext Fi | e;
Ff sFi ndSect i onDat a;

I nst al | Pei Menory;
Al 'l ocat ePages;

Al | ocat ePool ;
Copy Mem

Set Mem

Report St at usCode;

Reset Syst em

/Il (the following interfaces are installed by publishing PEIM

/1
/1 1/0O Abstractions

UEFI Forum, Inc. April 2020

1-15

Platform Initialization Specification, Vol. 1 PEI Services Table

11

EFlI _PEI _CPU_| O _PPI *Cpul 0;

EFl _PEl _PCl _CFQ_PPI *Pci Cf g;

11

/1 Additional File System Rel ated Services

11

EFl _PElI _FFS_FI ND_BY_NAME Ff sFi ndFi | eByNane;
EFlI _PEl _FFS_GET_FI LE_I NFO FfsGet Fi |l el nf 0;

EFI _PEl _FFS GET_VOLUME_| NFO Ff sGet Vol unel nf o;
EFl _PEI _REGQ STER _FOR_SHADOW Regi st er For Shadow;,
EFl _PEI _FFS_FI ND_SECTI ON_DATA3 Fi ndSect i onDat a3;
EFlI _PEl _FFS _CET_FI LE_| NFO2 Ff sGet Fi | el nf 02;
EFlI _PEl _RESET2_SYSTEM Reset Syst en®;

EFl _PEl _FREE_PAGES Fr eePages;
} EFl _PEl _SERVI CES;

Parameters
Hdr

The table header for the PEIl Services Table. This header contains the

PEI _SERVI CES_SI GNATURE and PEI _SERVI CES_REVI S| ON valuesaong
with the size of the EFI _PEI _ SERVI CES structure and a 32-bit CRC to verify that
the contents of the PEI Foundation Services Table are valid.

I nstal | Ppi

Installs an interface in the PEI PEIM-to-PEIM Interface (PPI) database by GUID. See
thel nst al | Ppi () function description in this document.

Rel nst al | Ppi

Reinstalls an interface in the PEI PPI database by GUID. Seethe
Rei nst al | Ppi () function description in this document.

Locat ePpi

Locates an interface in the PEI PPl database by GUID. SeethelLocat ePpi ()
function description in this document.

Not i f yPpi

Installs the notification service to be called back upon the installation or reinstallation
of agiveninterface. SeetheNot i f yPpi () function description in this document.

Get Boot Mbde

Returns the present value of the boot mode. Seethe Get Boot Mode() function
description in this document.

Set Boot Mbde

Sets the value of the boot mode. See the Set Boot Mode() function description in
this document.

UEFI Forum, Inc. April 2020 1-16

Platform Initialization Specification, Vol. 1 PEI Services Table

Get HobLi st

Returns the pointer to the list of Hand-Off Blocks (HOBS) in memory. Seethe
Get HobLi st () function description in this document.

Cr eat eHob

Abstracts the creation of HOB headers. Seethe Cr eat eHob() function description
in this document.

Ff sFi ndNext Vol ume

Discoversinstances of firmware volumesin the system. Seethe
Ff sFi ndNext Vol une() function description in this document.

Ff sFi ndNext Fi | e

Discoversinstances of firmware filesin the system. Seethe Ff sFi ndNext Fi | e()
function description in this document.

Ff sFi ndSect i onDat a

Searches for asection in afirmware file. Seethe Ff sFi ndSect i onDat a()
function description in this document.

I nstal | Pei Menory

Registers the found memory configuration with the PEI Foundation. See the
I nstal | Pei Menory() function description in this document.

Al 'l ocat ePages

Allocates memory ranges that are managed by the PEI Foundation. See the
Al | ocat ePages() function description in this document.

Al | ocat ePool

Frees memory ranges that are managed by the PEI Foundation. Seethe
Al 'l ocat ePool () function description in this document.

CopyMem

Copies the contents of one buffer to another buffer. Seethe CopyMen() function
description in this document.

Set Mem

Fills a buffer with a specified value. Seethe Set Men{) function description in this
document.

Report St at usCode

Provides an interface that a PEIM can call to report a status code. See the
Report St at usCode() function description in thisdocument. Thisisinstalled by
provider PEIM by copying the interface into the PEI Service table.

Reset System

Resets the entire platform. Seethe Reset Syst en() function description in this
document. Thisisinstalled by provider PEIM by copying the interface into the PEI
Service table.

UEFI Forum, Inc. April 2020 1-17

Platform Initialization Specification, Vol. 1 PEI Services Table

Reset Syst en?

Resets the entire platform. Seethe Reset Syst en®() function description in this
document. Thisisinstalled by provider PEIM by copying the interface into the PEI
Service table.

Cpul o

Provides an interface that a PEIM can call to execute an I/O transaction. This
interfaceisinstalled by provider PEIM by copying the interface into the PEI Service
table.

Pci Cf g

Provides an interface that a PEIM can call to execute PCI Configuration transactions.
Thisinterfaceisinstalled by provider PEIM by copying the interface into the
EFl _PEI _SERVI CEStable.

Ff sFi ndFi | eByNane

Discovers firmware files within a volume by name. See Ff sFi ndFi | eByNane()
in this document.

FfsGetFilelnfo

Return information about a particular file. See Ff sGet Fi | el nf o() inthis
document.

Ff sGet Fi |l el nfo2

Return information about a particular file. See Ff sGet Fi | el nf 02() inthis
document.

Ff sGet Vol unel nf o

Return information about a particular volume. See Ff sGet Vol unel nf o() inthis
document.

Regi st er For Shadow

Register adriver to be re-loaded when memory is available. See
Regi st er For Shadow() in this document.

Fi ndSect i onDat a3
Searches for asection in afirmware file. Seethe Ff sFi ndSect i onDat a3()
function description in this document.

Fr eePages
Releases memory previoudly allocated using AllocatePages().

Description

EFI _PElI _SERVI CES isacollection of functions whose implementation is provided by the PEI
Foundation. These servicesfall into various classes, including the following:

* Managing the boot mode

UEFI Forum, Inc. April 2020 1-18

Platform Initialization Specification, Vol. 1 PEI Services Table

» Allocating both early and permanent memory
» Supporting the Firmware File System (FFS)

» Abstracting the PPI database abstraction

» Creating Hand-Off Blocks (HOBS)

A pointer tothe EFI _PEI _ SERVI CES tableis passed into each PEIM when the PEIM isinvoked
by the PEI Foundation. As such, every PEIM has access to these services. Unlike the UEFI Boot
Services, the PEI Services have no calling restrictions, such as the UEFI 2.0 Task Priority Level
(TPL) limitations. Specifically, a service can be called from a PEIM or notification service.

Some of the services are also a proxy to platform-provided services, such as the Reset Services,
Status Code Services, and I/O abstractions. This partitioning has been designed to provide a
consistent interface to all PEIMs without encumbering a PEl Foundation implementation with
platform-specific knowledge. Any callable services beyond the set in this table should be invoked
using a PPl. The latter PEIM-installed services will return EFI _NOT_AVAI LABLE_YET until a
PEIM copies an instance of the interface into the EFI _PElI _SERVI CES table.

UEFI Forum, Inc. April 2020 1-19

Platform Initialization Specification, Vol. 1

4 Services - PEI

4.1 Introduction

A PEI Serviceis defined as afunction, command, or other capability created by the PEI Foundation
during a phase that remains avail able after the phase is complete. Because the PEI phase has no
permanent memory available until nearly the end of the phase, the range of PEI Foundation Services
created during the PEI phase cannot be as rich as those created during later phases.

Table 1-5 shows the PEI Services described in this section:

Table 1-5: PEI Services

PPI Services: Manages PEIM-to-PEIM Interface (PPIs) to facilitate intermodule calls
between PEIMSs. Interfaces are installed and tracked on a database
maintained in temporary RAM.

Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, etc.) of the
system.

HOB Services: Creates data structures called Hand-Off Blocks (HOBSs) that are used to
pass information to the next phase of the PI Architecture.

Firmware Volume Services Walks the Firmware File Systems (FFS) in firmware volumes to find PEIMs
and other firmware files in the flash device.

PEI Memory Services: Provides a collection of memory management services for use both before
and after permanent memory has been discovered.

Status Code Services: Provides common progress and error code reporting services (for
example, port 080h or a serial port for simple text output for debug).

Reset Services: Provides a common means by which to initiate a warm or cold restart of
the system.

The calling convention for PEI Servicesissimilar to PPIs. See “PEIM-to-PEIM Communication”
on page 116 for more details on PPIs.

The means by which to bind a service call into a service involves a dispatch table,
EFI _PElI _SERVI CES. A pointer to the tableis passed into the PEIM entry point.

4.2 PPl Services

The following services provide the interface set for abstracting the PPl database:
* InstalPpi()

* ReinstalPpi()
e LocatePpi()
* NotifyPpi()

UEFI Forum, Inc. April 2020 1-20

Platform Initialization Specification, Vol. 1 Services - PEI

InstallPpi()

Summary

Thisserviceisthefirst one provided by the PEI Foundation. Thisfunction installsan interfacein the

PEI PPI database by GUID. The purpose of the service isto publish an interface that other parties
can useto cal additional PEIMs.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEl I NSTALL_PPI) (
I N CONST EFI _PElI _SERVI CES ** Pej Servi ces,
I N CONST EFI _PElI PPl _DESCRI PTOR *Ppi Li st
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFlI _PEI _SERVI CES table published by the PEI
Foundation.

Ppi Li st
A pointer to thelist of interfaces that the caller shall install. Type
EFlI _PElI PPl _DESCRI PTORisdefined in “PEIM Descriptors’ on page 110.

Description

This service enables a given PEIM to register an interface with the PEI Foundation. The interface
takes a pointer to alist of records that adhere to the format of aEFI _PEI _PPI _DESCRI PTOR.
Since the PEI Foundation maintains a pointer to the list rather than copying the list, the list must
either be in the body of the PEIM or else allocated from temporary or permanent RAM.

The length of the list of described by the EFI _PEI _PPI _ DESCRI PTOR that hasthe
EFI _PEI PPl _DESCRI PTOR_TERM NATE LI ST flagsetinitsFl ags field. Thereshall beat
least one EFI _PElI PPl _DESCRI PTORInthelist.

There aretwo typesof EFI _PEI _PPI _DESCRI PTORsthat can be installed, including the
EFI _PElI _PPI _DESCRI PTOR_NOTI FY_DI SPATCHand
EFlI _PEI _PPI _DESCRI PTOR_NOTI FY_CALLBACK.

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID_PARAMETER The Ppi Li st pointer is NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have the
EFlI _PElI PPl _DESCRI PTOR_PPI bit set in the
FI ags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

UEFI Forum, Inc. April 2020 1-21

Platform Initialization Specification, Vol. 1 Services - PEI

ReinstallPpi()

Summary

Thisfunction reinstalls an interface in the PEI PPl database by GUID. The purpose of the serviceis
to publish an interface that other parties can use to replace an interface of the same namein the
protocol database with a different interface.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEl _REI NSTALL_PPI) (
| N CONST EFI _PElI _SERVI CES ** Pei Servi ces,
I N CONST EFI _PEI _PPlI _DESCRI PTOR *A dPpi ,
I N CONST EFI _PEI PPl _DESCRI PTOR * NewPpi
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFI _PEI _SERVI CES table published by the PEI
Foundation.

a dPpi

A pointer to the former PPl in the database. Type EFI _PEI _PPI _DESCRI PTORis
defined in “PEIM Descriptors’ on page 110.

NewPpi
A pointer to the new interfaces that the caller shal install.

Description
This service enables PEIMs to replace an entry in the PPl database with an aternate entry.

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.

EFI_INVALID PARAMETER The O dPpi or NewPpi pointeris NULL.

EFI_INVALID_PARAMETER Any of the PEI PPI descriptors in the list do not have the
EFlI _PElI PPl _DESCRI PTOR_PPI bit setin the
Fl ags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

EFI_NOT_FOUND The PPI for which the reinstallation was requested has not
been installed.

UEFI Forum, Inc. April 2020 1-22

Platform Initialization Specification, Vol. 1 Services - PEI

LocatePpi()

Summary
Thisfunction locates an interface in the PEI PPl database by GUID.

Prototype
t ypedef
EFlI _STATUS
(EFI APl *EFI _PEI _LOCATE_PPI') (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
N CONST EFI _GUI D *Qui d,
I N U NTN | nst ance,
I N QUT EFI _PEI _PPI _DESCRI PTOR **Ppi Descriptor OPTI ONAL,
IN QUT vO D ** Ppi
)
Parameters

Pei Servi ces
Anindirect pointer to the EFI _PEI _SERVI CES published by the PEI Foundation.
cQuid
A pointer to the GUID whose corresponding interface needs to be found.
I nst ance
The N-th instance of the interface that is required.
Ppi Descri pt or
A pointer to instance of the EFI _PElI _PPI _DESCRI PTOR.
Ppi
A pointer to the instance of the interface.

Description

This service enables PEIMs to discover agiven instance of an interface. Thisinterface differsfrom
the interface discovery mechanism in the UEFI 2.0 specification, namely Handl ePr ot ocol () ,in
that the PEI PPI database does not expose the handl€e's name space. Instead, PEl manages the
interface set by maintaining a partial order on the interfaces such that the | nst ance of the
interface, among others, can be traversed.

Locat ePpi () providesthe ability to traverse al of the installed instances of agiven GUID-named
PPI. For example, there can be multiple instances of a PPl nhamed Foo in the PPI database. An

I nst ance value of Owill provide thefirst instance of the PPI that isinstalled. Correspondingly, an
I nst ance vaue of 2 will provide the second, 3 the third, and so on. Thel nst ance value
designates when a PPl wasinstalled. For an implementation that must reference all possible
manifestations of a given GUID-named PP, the code should invoke Locat ePpi () witha
monotonically increasing | nst ance number until EFI _NOT_FOUND is returned.

UEFI Forum, Inc. April 2020 1-23

Platform Initialization Specification, Vol. 1 Services - PEI

Status Codes Returned

EFI_SUCCESS The interface was successfully returned.
EFI_NOT_FOUND The PPI descriptor is not found in the database.

UEFI Forum, Inc. April 2020 1-24

Platform Initialization Specification, Vol. 1 Services - PEI

NotifyPpi()

Summary

Thisfunction installs a notification service to be called back when a given interface isinstalled or
reinstalled. The purpose of the serviceis to publish an interface that other parties can use to call
additional PPIsthat may materialize later.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _NOTIFY_PPI) (
I N CONST EFI _PElI _SERVI CES ** Pej Servi ces,
I N CONST EFI _PElI _NOTI FY_DESCRI PTOR *Noti fyLi st
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFlI _PEI _SERVI CES table published by the PEI
Foundation.

Noti fyLi st

A pointer to thelist of notification interfaces that the caller shall install. Type
EFlI _PElI _NOTI FY_DESCRI PTORisdefined in “PEIM Descriptors’ on page 110.

Description

This service enables PEIMs to register a given service to be invoked when another serviceis
installed or reinstalled. This service will fire notifications on PPIsinstalled prior to this service
invocation. Thisis different behavior than the RegisterProtocolNotify of UEFI2.0, for example
EFI _PEI _NOTI FY_DESCRI PTCRisdefined in “PEIM Descriptors’ on page 110.

In addition, the PPl pointer is passed back to the agent that registered for the notification so that it
can deference private data, if so needed.

Status Codes Returned

EFI_SUCCESS The interface was successfully installed.
EFI_INVALID_PARAMETER The Not i f yLi st pointeris NULL.
EFI_INVALID_PARAMETER Any of the PEI notify descriptors in the list do not have the

EFI _PEI _PPI _DESCRI PTOR_NOTI FY_TYPES bit
setin the F| ags field.

EFI_OUT_OF_RESOURCES There is no additional space in the PPI database.

4.3 Boot Mode Services

These services provide abstraction for ascertaining and updating the boot mode:

UEFI Forum, Inc. April 2020 1-25

Platform Initialization Specification, Vol. 1 Services - PEI

* GetBootMode()
* SetBootMode()
See “Boot Paths’ on page 217 for additional information on the boot mode.

GetBootMode()

Summary
This function returns the present value of the boot mode.

Prototype

t ypedef

EFlI _STATUS

(EFI APl *EFI _PEI _GET_BOOT_MODE) (
I N CONST EFI _PEI _SERVICES **Pei Servi ces,
OUT EFI _BOOT_MODE *Boot Mbde

)

Parameters
Pei Ser vi ces

Anindirect pointer to the EFI _PEI _ SERVI CES table published by the PEI
Foundation.

Boot Mbde

A pointer to contain the value of the boot mode. Type EFI _BOOT_MODE is defined
in “Related Definitions’ below.

Description

This service enables PEIMsto ascertain the present value of the boot mode. Thelist of possible boot
modes is described in “ Related Definitions’ below.

Related Definitions

//**

/1 EFl_BOOT_MODE

//**

typedef Ul NT32 EFl _BOOT_MODE;

#def i ne BOOT_W TH_FULL_CONFI GURATI ON 0x00
#def i ne BOOT_W TH_M NI MAL_CONFI GURATI ON 0x01
#def i ne BOOT_ASSUM NG_NO_CONFI GURATI ON_CHANGES 0x02
#def i ne BOOT_W TH_FULL_CONFI GURATI ON_PLUS_DI AGNOSTI CS 0x03
#def i ne BOOT_W TH_DEFAULT_SETTI NGS 0x04
#def i ne BOOT_ON_S4 RESUME 0x05
#defi ne BOOT_ON_S5_RESUMVE 0x06
#def i ne BOOT_W TH_MFG_MODE_SETTI NGS 0x07
#def i ne BOOT_ON_S2_RESUME 0x10

UEFI Forum, Inc. April 2020 1-26

Platform Initialization Specification, Vol. 1 Services - PEI

#def i ne BOOT_ON_S3_RESUMVE 0x11
#def i ne BOOT_ON_FLASH_UPDATE 0x12
#def i ne BOOT_| N_RECOVERY_MODE 0x20

0x21 — OxF..F Reserved Encodi ngs
Table 1-6 describes the bit values in the Boot Mode Register.

Table 1-6: Boot Mode Register

Register Bits Values Descriptions
MSBit-0 000000b Boot with full configuration
000001b Boot with minimal configuration
000010b Boot assuming no configuration changes from last boot
000011b Boot with full configuration plus diagnostics
000100b Boot with default settings
000101b Boot on S4 resume
000110b Boot in S5 resume
000111b Boot with manufacturing mode settings

000111b-001111b | Reserved for boot paths that configure memory

010000b Boot on S2 resume
010001b Boot on S3 resume
010010b Boot on flash update restart

010011c-011111b | Reserved for boot paths that preserve memory context

100000b Boot in recovery mode
100001b-111111b @ Reserved for special boots

Status Codes Returned

| EFI_SUCCESS ‘ The boot mode was returned successfully.

UEFI Forum, Inc. April 2020 1-27

Platform Initialization Specification, Vol. 1 Services - PEI

SetBootMode()

Summary
This function sets the value of the boot mode.

Prototype

t ypedef

EFl _STATUS

(EFI APl *EFI _PElI _SET_BOOT_MODE) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
| N EFI _BOOT_MODE Boot Mode

)

Parameters
Pei Ser vi ces

Anindirect pointer to the EFI _PEI _ SERVI CES table published by the PEI
Foundation.

Boot Mbde

The value of the boot modeto set. Type EFI _BOOT _MODE is defined in
CGet Boot Mode() .

Description

This service enables PEIMs to update the boot mode variable. Thiswould be used by either the boot
mode PPIs described in “Architectural PPIS” on page 86 or by a PEIM that needs to engender a
recovery condition. It is permissible to change the boot mode at any point during the PEI phase.

Status Codes Returned

| EFI_SUCCESS ‘ The value was successfully updated. ‘

4.4 HOB Services
Thefollowing services describe the capabilities in the PEI Foundation for providing Hand-Off Block
(HOB) manipulation:
» GetHobList()
* CreateHob()

The purpose of the abstraction isto automate the common case of HOB creation and manipulation.
See the Volume 3 for details on HOBs and their type definitions.

UEFI Forum, Inc. April 2020 1-28

Platform Initialization Specification, Vol. 1 Services - PEI

GetHobList()

Summary
This function returns the pointer to the list of Hand-Off Blocks (HOBS) in memory.

Prototype

t ypedef

EFl _STATUS

(EFI APl *EFI _PElI _GET_HOB_LIST) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN OQUT VO D ** HobLi st

)

Parameters
Pei Ser vi ces

Anindirect pointer to the EFI _PEI _ SERVI CES table published by the PEI
Foundation.

HoblLi st
A pointer to the list of HOBs that the PEI Foundation will initialize.

Description

This service enables a PEIM to ascertain the address of the list of HOBsin memory. This service
should not be required by many modulesin that the creation of HOBs s provided by the PEI Service
Cr eat eHob() .

Status Codes Returned

EFI_SUCCESS The list was successfully returned.
EFI_NOT_AVAILABLE_YET The HOB list is not yet published.

UEFI Forum, Inc. April 2020 1-29

Platform Initialization Specification, Vol. 1 Services - PEI

CreateHob()
Summary
This service published by the PEI Foundation abstracts the creation of a Hand-Off Block's (HOB's)
headers.
Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _CREATE_HOB) (
I N CONST EFI _PEI _SERVI CES ** Pei Ser vi ces,
I N U NT16 Type,
I N U NT16 Lengt h,
IN QUT VA D ** Hob
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFlI _PEI _SERVI CES table published by the PEI
Foundation.

Type

Thetype of HOB to beinstalled. See the Volume 3 for a definition of thistype.
Lengt h

The length of the HOB to be added.
Hob

The address of a pointer that will contain the HOB header.

Description

This service enables PEIMs to create various types of HOBs. This service handles the common
work of allocating memory onthe HOB list, filling in the type and length fields, and building the end
of the HOB list. The final aspect of this serviceisto return a pointer to the newly allocated HOB.
At thispoint, the caller canfill in the type-specific data. This serviceisaways available becausethe
HOBs can also be created on temporary memory.

There will be no error checking on the Lengt h input argument. Instead, the Pl Architecture
implementation of this service will round up the allocation size that is specified inthe Lengt h field
to be amultiple of 8 bytesin length. This rounding is consistent with the requirement that al of the
HOBs, including the PHIT HOB, begin on an 8-byte boundary. See the PHIT HOB definition in the
Platform Initialization Specification, Volume 3, for more information.

Status Codes Returned

EFI_SUCCESS The HOB was successfully created.
EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

UEFI Forum, Inc. April 2020 1-30

Platform Initialization Specification, Vol. 1 Services - PEI

4.5 Firmware Volume Services

The following services abstract traversing the Firmware File System (FFS):

» FfsFindNextVolume()

* FfsFindNextFile()

* FfsFindSectionData()

» FfsFindFileByName()

o FfsGetFilelnfo()

» FfsGetVolumelnfo()

The description of the FFS can be found in the Platform Initialization Specification, Volume 3.

UEFI Forum, Inc. April 2020 1-31

Platform Initialization Specification, Vol. 1 Services - PEI

FfsFindNextVolume()

Summary

The purpose of the service isto abstract the capability of the PEl Foundation to discover instances of
firmware volumes in the system.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _FFS_FI ND_NEXT_VOLUME2) (
I N CONST EFI _PElI _SERVI CES ** Pej Ser vi ces,
I N U NTN | nst ance,
OUT EFI _PElI _FV_HANDLE *Vol unmeHandl e
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFlI _PEI _SERVI CES table published by the PEI
Foundation.

I nst ance

Thisinstance of the firmware volumeto find. The value O is the Boot Firmware
Volume (BFV).

Vol uneHandl e
On exit, points to the next volume handle or NULL if it does not exist.

Description

This service enables PEIMs to discover additional firmware volumes. The core uses
EFl _PEl _FI RMAMRE_VOLUME | NFO _PPI to discover these volumes. The servicereturns a
volume handle of type EFI _PEI _FV_HANDLE, which must be unique within the system.

Related Definitions
t ypedef VO D *EFI _PEl _FV_HANDLE;

Status Codes Returned

EFI_SUCCESS The volume was found.
EFI_NOT_FOUND The volume was not found.
EFI_INVALID_PARAMETER Vol uneHandl e is NULL

UEFI Forum, Inc. April 2020 1-32

Platform Initialization Specification, Vol. 1 Services - PEI

FfsFindNextFile()

Summary
Searchesfor the next matching file in the firmware volume.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _FFS_FI ND_NEXT_FI LE2) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
I N EFI _FV_FI LETYPE Sear chType,
I N CONST EFI _PEI _FV_HANDLE FvHandl e,
I N OUT EFI _PElI _FI LE HANDLE *Fi | eHandl e
)
Parameters

Pei Ser vi ces

Anindirect pointer tothe EFI _PEI _SERVI CES table published by the PEI
Foundation.

Sear chType

A filter to find files only of thistype. Type EFI _FV_FI LETYPE isdefined in the
Platform Initialization Specification, Volume 3. Type EFI _FV_FI LETYPE_ALL
causes no filtering to be done.

FvHandl e
Handle of firmware volume in which to search. Thetype EFI _PEI _FV_HANDLE is
defined in the PEI Services Ff sFi ndNext Vol une() .

Fi | eHandl e

On entry, points to the current handle from which to begin searching or NULL to start
at the beginning of the firmware volume. On exit, points the file handle of the next file
in the volume or NULL if there are no morefiles. The type

EFlI _PElI _FI LE HANDLE isdefined in “Related Defintions” below.

Description
This service enables PEIMs to discover firmware files within a specified volume. To find the first
instance of afirmwarefile, passaFi | eHandl e vaueof NULL into the service.
The servicereturns afile handle of type EFI _PEI _FI LE_HANDLE, which must be unique within
the system.
The behavior of fileswith filetypesEFI _FV_FI LETYPE_FFS_M Nand
EFI _FV_FI LETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard Pl firmware file system, see section 1.1.4.1.6 of the P
Specification, Volume 3.

UEFI Forum, Inc. April 2020 1-33

Platform Initialization Specification, Vol. 1

Related Definitions

t ypedef VO D *EFl _PEl _FI LE_HANDLE;

Status Codes Returned

Services - PEI

EFI_SUCCESS

The file was found.

EFI_NOT_FOUND

The file was not found.

EFI_NOT_FOUND

The header checksum was not zero.

UEFI Forum, Inc.

April 2020

1-34

Platform Initialization Specification, Vol. 1 Services - PEI

FfsFindSectionData()

Summary
Searches for the next matching section within the specified file. Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _FFS_FI ND_SECTI ON_DATA2) (
I N CONST EFI _PEI _SERVI CES **Pej Servi ces,
I N EFI _SECTI ON_TYPE Secti onType,
I N EFI _PEl _FI LE_HANDLE Fi | eHandl e,
oJT va D **Sect i onDat a
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFI _PEI _SERVI CES table published by the PEI
Foundation.

Secti onType

The value of the section typeto find. Type EFI _SECTI ON_TYPE is defined in the
Platform Initialization Specification, Volume 3.

Fi | eHandl e

Handle of the firmware fileto search. Type EFI _PEI _FI LE_HANDLE isdefined in
Ff sFi ndNext Fi | e() , “Related Definitions.” A pointer to the file header that
contains the set of sections to be searched.

Sect i onDat a
A pointer to the discovered section, if successful.

Description

This service enables PElI modulesto discover the first section of agiven typewithinavalidfile. This
service will search within encapsulation sections (compression and GUIDed) aswell. It will search
inside of a GUIDed section or a compressed section, but may not, for example, search a GUIDed
section inside a GUIDes section.

This service will not search within compression sections or GUIDed sections which require
extraction if memory is not present.

Status Codes Returned

EFI_SUCCESS The section was found.
EFI_NOT_FOUND The section was not found.

UEFI Forum, Inc. April 2020 1-35

Platform Initialization Specification, Vol. 1 Services - PEI

FfsFindSectionData3()

Summary
Searches for the next matching section within the specified file.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _FFS_FI ND_SECTI ON_DATA3) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
I N EFI _SECTI ON_TYPE Secti onType,
I n U NTN Secti onl nst ance
IN EFI _PEI _FI LE HANDLE Fi | eHandl e,
OouUT va D **Sect i onDat a
QUT Ul NT32 * Aut henti cati onSt at us
)
Parameters

Pei Servi ces
Anindirect pointer to the EFI _PEI _SERVI CES table published by the PEI
Foundation.

Secti onType

The value of the section typeto find. Type EFI _SECTI ON_TYPE is defined in the
Platform Initialization Specification, Volume 3.

Sectionlnstance
Section instance to find.

Fi | eHandl e

Handle of the firmware fileto search. Type EFI _PEI _FI LE HANDLE isdefined in
Ff sFi ndNext Fi | e() , “Related Definitions.” A pointer to the file header that
contains the set of sections to be searched.

Secti onDat a

A pointer to the discovered section, if successful.
Aut henti cati onSt at us

A pointer to the authentication status for this section.

Description
This service enables PEI modules to discover the section of a given type within avalid file. This
service will search within encapsulation sections (compression and GUIDed) aswell. It will search
inside of a GUIDed section or a compressed section, but may not, for example, search a GUIDed
section inside a GUIDes section.
This service will not search within compression sections or GUIDed sections which require
extraction if memory is not present.

UEFI Forum, Inc. April 2020 1-36

Platform Initialization Specification, Vol. 1 Services - PEI

Status Codes Returned

EFI_SUCCESS The section was found.
EFI_NOT_FOUND The section was not found.

UEFI Forum, Inc. April 2020 1-37

Platform Initialization Specification, Vol. 1 Services - PEI

FfsFindFileByName()

Summary
Find afile within avolume by its name.

Prototype
t ypedef
EFl _STATUS
(EFI APl *EFI _PEl _FFS_FI ND BY_NANME) (
IN CONST EFI _GUID *Fi | eNane,
IN EFI _PEl _FV_HANDLE Vol umeHandl e,
OUT EFl _PEI _FI LE HANDLE *Fi | eHandl e
)
Parameters
Fi | eName

A pointer to the name of the file to find within the firmware volume.
Vol unmeHandl e
The firmware volume to search
Fi | eHandl e
Upon exit, points to the found file's handle or NULL if it could not be found.

Description
This service searches for files with a specific name, within either the specified firmware volume or
all firmware volumes.

The service returns afile handle of type EFI _PEI _FI LE_HANDLE, which must be unique within
the system.

The behavior of fileswith filetypesEFI _FV_FI LETYPE_FFS_M Nand

EFI _FV_FI LETYPE_FFS_MAX depends on the firmware file system. For more information on
the specific behavior for the standard Pl firmware file system, see section 1.1.4.1.6 of the P
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS File was found.

EFI_NOT_FOUND File was not found.

EFI_INVALID_PARAMETER Vol uneHandl| e or Fi | eHandl e or Fi | eNane was
NULL.

UEFI Forum, Inc. April 2020 1-38

Platform Initialization Specification, Vol. 1 Services - PEI

FfsGetFilelnfo()

Summary
Returns information about a specific file.

Prototype

t ypedef

EFlI _STATUS

(EFI APl *EFI _PElI _FFS GET_FILE I NFO (
IN EFI _PEI _FILE HANDLE Fil eHandl e,
OUT EFI _FV_FILE I NFO *Filelnfo

)

Parameters
Fi | eHandl e
Handle of thefile.
Filelnfo
Upon exit, points to the file' s information.

Description

This function returns information about a specific file, including its file name, type, attributes,
starting address and size. If the firmware volume is not memory mapped then the Buf f er member
will be NULL.

Related Definitions
typedef struct {

EFl _GUI D Fi | eNane;

EFlI _FV_FI LETYPE Fi | eType;

EFI _FV_FILE ATTRI BUTES Fil eAttri butes;
Vva D *Buf f er;

Ul NT32 Buf f er Si ze;

} EFl _FV_FILE_|I NFO

Fi | eNane
Name of thefile.
Fil eType

Filetype. See EFlI _FV_FI LETYPE, which is defined in the Platform Initialization
Firmware Storage Specification.

FileAttri butes

Attributes of thefile. TypeEFI _FV_FI LE_ATTRI BUTES isdefined in the Platform
Initialization Firmware Storage Specification.

UEFI Forum, Inc. April 2020 1-39

Platform Initialization Specification, Vol. 1

Buf f er

Points to the file's data (not the header). Not valid if
EFl _FV_FI LE_ATTRI B_MVEMORY_MAPPEDis zero.

Buf f er Si ze
Size of thefile' s data.

Status Codes Returned

Services - PEI

EFI_SUCCESS File information returned.
EFI_INVALID_PARAMETER If Fi | eHandl e does not represent a valid file.
EFI_INVALID_PARAMETER If Fi | el nf 0is NULL

UEFI Forum, Inc. April 2020

1-40

Platform Initialization Specification, Vol. 1 Services - PEI

FfsGetFilelnfo2()

Summary
Returns information about a specific file.

Prototype
t ypedef
EFl _STATUS
(EFI APl *EFI _PElI _FFS_GET_FILE I NFO2) (
I N EFI _PElI _FI LE_HANDLE Fi | eHandl e,

QUT EFI _FV_FI LE_| NFQ2 *Fil el nfo
)
Parameters
Fi | eHandl e
Handle of thefile.
Filelnfo

Upon exit, points to the file's information.

Description
This function returns information about a specific file, including its file name, type, attributes,

starting address, size and authentication status. If the firmware volume is not memory mapped then
the Buf f er member will be NULL.

Related Definitions

t ypedef struct {
EFI _GUI D Fil eNane;

EFl _FV_FI LETYPE Fi | eType;

EFI _FV_FILE ATTRI BUTES Fil eAttri butes;

VA D *Buf fer;

Ul NT32 Buf f er Si ze;

Ul NT32 Aut hent i cati onSt at us;
} EFlI _FV_FILE | NFC2;

Fi | eNane

Name of thefile.
Fil eType

Filetype. See EFI _FV_FI LETYPE, which is defined in the Platform Initialization
Firmware Storage Specification.
FileAttributes

Attributes of thefile. TypeEFI _FV_FI LE_ATTRI BUTES isdefined in the Platform
Initialization Firmware Storage Specification.

UEFI Forum, Inc. April 2020 1-41

Platform Initialization Specification, Vol. 1

Buf f er

Points to the file's data (not the header). Not valid if
EFl _FV_FI LE_ATTRI B_MVEMORY_MAPPEDis zero.

Buf fer Si ze
Size of the file's data.

Aut henti cati onSt at us
Authentication status for thisfile.

Status Codes Returned

Services - PEI

EFI_SUCCESS File information returned.
EFI_INVALID_PARAMETER If Fi | eHandl e does not represent a valid file.
EFI_INVALID_PARAMETER IfFi | el nf 0is NULL

UEFI Forum, Inc. April 2020

1-42

Platform Initialization Specification, Vol. 1 Services - PEI

FfsGetVolumelnfo()

Summary
Returns information about the specified volume.

Prototype

t ypedef

EFlI _STATUS

(EFI APl *EFI _PEI _FFS_GET_VOLUME_ | NFO (
IN EFI _PEI _FV_HANDLE Vol uneHandl e,
OQUT EFI _FV_I NFO *Vol unel nfo

)

Parameters
Vol uneHandl e

Handle of the volume.
Vol urrel nf o
Upon exit, points to the volume' sinformation.

Related Definitions

t ypedef struct {
EFI _FVB_ATTRI BUTES 2 FvAttri butes;

EFl _GUI D FvFor mat ;
EFI _GUI D FvNane;
VO D* FvStart;
Ul NT64 FvSi ze;

} EFl _FV_I NFQ,

FvAttri butes

Attributes of the firmware volume. Type EFI _FVB_ATTRI BUTES_2 isdefined in
the Platform Initialization Firmware Storage Specficiation.

FvFor mat

Format of the firmware volume. For Pl Architecture Firmware Volumes, this can be
copied from Fi | eSyst enGui d in EFl _FI RMAARE_VOLUME_HEADER.

FvNane

Name of the firmware volume. For Pl Architecture Firmware Volumes, this can be
copied from Vol uneNarme in the extended header of
EFI _FI RMAARE_VOLUVE_HEADER.

FvStart

Points to the first byte of the firmware volume, if bit EFI _FVB_MEMORY_MAPPED
issetinFvAttri butes.

UEFI Forum, Inc. April 2020 1-43

Platform Initialization Specification, Vol. 1 Services - PEI

FvSi ze
Size of the firmware volume.

Description

This function returns information about a specific firmware volume, including its name, type,
attributes, starting address and size.

Status Codes Returned

EFI_SUCCESS Volume information returned.

EFI_INVALID_PARAMETER If Vol uneHandl e does not represent a valid volume.
EFI_INVALID_PARAMETER If Vol unel nf o is NULL.

EFI_SUCCESS Information successfully returned
EFI_INVALID_PARAMETER The volume designated by the VolumeHandle is not available

UEFI Forum, Inc. April 2020 1-44

Platform Initialization Specification, Vol. 1 Services - PEI

RegisterForShadow()

Summary
Register a PEIM so that it will be shadowed and called again.

Prototype

t ypedef
EFlI _STATUS
(EFI APl *EFI _PEI _REGQ STER FOR _SHADOW (
IN EFI_PElI _FILE HANDLE Fi | eHandl e

)E

Parameters
Fi | eHandl e
PEIM’sfile handle. Must be the currently executing PEIM.

Description

This serviceregisters afile handle so that after memory is available, the PEIM will be re-loaded into
permanent memory and re-initialized. The PEIM registered thisway will alwaysbe initialized twice.
Thefirst time, this function call will return EFI _ SUCCESS. The second time, this function call will
return EFlI _ ALREADY STARTED.

Depending on the order in which PEIMs are dispatched, the PEIM making this call may be
initialized after permanent memory isinstalled, even thefirst time.

Status Codes Returned

EFI_SUCCESS The PEIM was successfully registered for shadowing.
EFI_ALREADY_STARTED The PEIM was previously registered for shadowing.
EFI_NOT_FOUND The Fi | eHandl e does not refer to a valid file handle.

4.6 PEI Memory Services
The following services are a collection of memory management services for use both before and
after permanent memory has been discovered:
e InstallPeiMemory()
» AllocatePages()
* AllocatePool()

* CopyMem()
e« SetMem()
» FreePages()

UEFI Forum, Inc. April 2020 1-45

Platform Initialization Specification, Vol. 1 Services - PEI

InstallPeiMemory/()

Summary
This function registers the found memory configuration with the PEI Foundation.

Prototype
t ypedef
EFl _STATUS
(EFI APl *EFI _PEl | NSTALL_PElI _MEMORY) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
| N EFl _PHYSI CAL_ADDRESS Meror yBegi n,
I N Ul NT64 Menor yLengt h
);
Parameters

Pei Ser vi ces

Anindirect pointer to the EFI _PEI _SERVI CES table published by the PEI
Foundation.

Menor yBegi n

The value of aregion of installed memory.
MenoryLengt h

The corresponding length of aregion of installed memory.

Description

This service enables PEIM s to register the permanent memory configuration that has been initialized
with the PEI Foundation. Theresult of this call-set isthe creation of the appropriate Hand-Off Block
(HOB) describing the physical memory.

The usage model is that the PEIM that discovers the permanent memory shall invoke this service.
The memory reported is a single contiguous run. 1t should be enough to allocate a PEI stack and
some HOB list. The full memory map will be reported using the appropriate memory HOBs. The
PEI Foundation will follow up with an installation of

EFI _PElI _PERMANENT MEMORY | NSTALLED PPI .

Any invocations of this service after the first invocation which returns EFI_SUCCESS will be
ignored.

Status Codes Returned

EFI_SUCCESS The region was successfully installed in a HOB or this service
was successfully invoked earlier and no HOB modification will
occur.

EFI_INVALID_PARAMETER Menor yBegi n and Menor yLengt h are illegal for this
system.
EFI_OUT_OF_RESOURCES There is no additional space for HOB creation.

UEFI Forum, Inc. April 2020 1-46

Platform Initialization Specification, Vol. 1 Services - PEI

AllocatePages()

Summary
The purpose of the service is to publish an interface that allows PEIMs to allocate memory ranges
that are managed by the PEI Foundation.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _ALLOCATE_PAGES) (
I N CONST EFI _PElI _SERVI CES ** Pej Servi ces,
I N EFI _MEMORY_TYPE Menor yType,
I N Ul NTN Pages,
OUT EFI _PHYSI CAL_ADDRESS *Menory,
)
Parameters

Pei Servi ces
Anindirect pointer to the EFlI _PEI _SERVI CES table published by the PEI
Foundation.

MenoryType

The type of memory to allocate. The only types allowed are Ef i Loader Code,
Ef i Loader Dat a, Ef i Runt i neSer vi cesCode,

Ef i Runti meSer vi cesDat a, Ef i Boot Ser vi cesCode,

Ef i Boot Ser vi cesDat a, Ef i ACPI Recl ai mvenory,

Ef i Reser vedMenor yType, and Ef i ACPI Menor yNVS.

Pages
The number of contiguous 4 KiB pagesto alocate. Type
EFI _PHYSI CAL_ADDRESS isdefinedin Al | ocat ePages() inthe UEFI 2.0
specification.

Menory
Pointer to a physical address. On output, the address is set to the base of the page
range that was allocated.

Description
This service allocates the requested number of pages and returns a pointer to the base address of the
page range in the location referenced by Memory. The service scans the available memory to locate
free pages. When it finds a physically contiguous block of pagesthat islarge enough it creates a
memory allocation HOB describing the region with the requested MemoryType.
Allocation made prior to permanent memory will be migrated to permanent memory and the HOB
updated.

The expectation is that the implementation of this service will automate the creation of the Memory
Allocation HOB types. Assuch, thisisin the same spirit asthe PEI Servicesto create the FV HOB,

UEFI Forum, Inc. April 2020 1-47

Platform Initialization Specification, Vol. 1 Services - PEI

for example.

Prior to InstallPeiMemory() being called, PEI will allocate pages from the heap. After
InstallPeiMemory() is called, PEI will allocate pages within the region of memory provided by
InstallPeiMemory() servicein a best-effort fashion. L ocation-specific all ocations are not managed
by the PEI foundation code.

The service also supports the creation of Memory Allocation HOBs that describe the stack, boot-
strap processor (BSP) BSPStore (“Backing Store Pointer Store”), and the DXE Foundation
allocation. Thisadditional information is conveyed through the final two argumentsin this APl and
the description of the appropriate HOB types can be found in the Platform Initialization
Specification, Volume 3.

Status Codes Returned

EFI_SUCCESS The memory range was successfully allocated.
EFI_OUT_OF_RESOURCES The pages could not be allocated.
EFI_INVALID_PARAMETER Type is not equal to Ef i Loader Code,

Ef i Loader Dat a, Ef i Runt i meSer vi cesCode,
Ef i Runti neServi cesDat a,

Ef i Boot Ser vi cesCode,

Ef i Boot Ser vi cesDat a,

Ef i ACPI Recl ai mvenory,

Ef i Reser vedMenor yType, or

Ef i ACPI Menor yNVS.

UEFI Forum, Inc. April 2020 1-48

Platform Initialization Specification, Vol. 1 Services - PEI

AllocatePool()

Summary

The purpose of this serviceisto publish an interface that allows PEIMs to alocate memory ranges
that are managed by the PEI Foundation.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _ALLOCATE_POQOL) (
I N CONST EFI _PElI _SERVI CES **Pej Servi ces,
I N U NTN Si ze,
oUT va D **Buf f er
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFlI _PEI _SERVI CES table published by the PEI
Foundation.

Si ze
The number of bytes to alocate from the pool.
Buf f er
If the call succeeds, apointer to apointer to the alocated buffer; undefined otherwise.

Description

This service allocates memory from the Hand-Off Block (HOB) heap. Because HOBs can be
allocated from either temporary or permanent memory, this service is available throughout the entire
PEI phase.

This service allocates memory in multiples of eight bytes to maintain the required HOB alignment.
The early allocations from temporary memory will be migrated to permanent memory when
permanent main memory is installed; this migration shall occur when the HOB list is migrated to
permanent memory.

Status Codes Returned

EFI_SUCCESS The allocation was successful.
EFI_OUT_OF_RESOURCES There is not enough heap to allocate the requested size.

UEFI Forum, Inc. April 2020 1-49

Platform Initialization Specification, Vol. 1 Services - PEI

CopyMem()

Summary
This service copies the contents of one buffer to another buffer.

Prototype

t ypedef

VA D

(EFI APl *EFI _PEI _COPY_MEM (
IN VO D *Desti nation,
IN VO D *Sour ce,
I N U NTN Lengt h

)

Parameters
Desti nati on

Pointer to the destination buffer of the memory copy.
Sour ce
Pointer to the source buffer of the memory copy.
Lengt h
Number of bytesto copy from Sour ce toDest i nati on.

Description
Thisfunction copies Lengt h bytes from the buffer Sour ce to the buffer Dest i nat i on.

Status Codes Returned
None.

UEFI Forum, Inc. April 2020 1-50

Platform Initialization Specification, Vol. 1 Services - PEI

FreePages()

Summary
Frees memory pages.

Prototype
t ypedef
EFlI _STATUS
(EFI APl *EFI _PElI _FREE PAGES) (
I N CONST EFI _PEI _SERVI CES **Pei Servi ces,
I N EFI _PHYSI CAL_ADDRESS Menory
I N U NTN Pages

),

UEFI Forum, Inc. April 2020 1-51

Platform Initialization Specification, Vol. 1 Services - PEI

Parameters
Pei Servi ces
Anindirect pointer to the EFl_PEI_SERVICES table published by the PEI Foundation.
Menory

The base physical address of the pagesto be freed. Type EFI_PHY SICAL_ADDRESS isdefined in
the EFI_BOOT_SERVICES.AllocatePages()function description.

Pages
The number of contiguous 4KiB pagesto free.

Description
The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.
EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages().
EFI_INVALID_PARAMETER Memory is not a page-aligned address or
Pages is invalid.

UEFI Forum, Inc. April 2020 1-52

Platform Initialization Specification, Vol. 1 Services - PEI

SetMem()

Summary
The service fills a buffer with a specified value.

Prototype

t ypedef

Va D

(EFI APl *EFI _PEI _SET_MEM (
IN VO D *Buf f er,
I N Ul NTN Si ze,
I N Ul NT8 Val ue

)
Parameters

Buf f er
Pointer to the buffer to fill.

Si ze
Number of bytesin Buf f er tofill.

Val ue
Vauetofill Buf f er with.

Description
Thisfunction fills Si ze bytes of Buf f er with Val ue.

Status Codes Returned
None.

4.7 Status Code Service

The PEI Foundation publishes the following status code service:
* ReportStatusCode()

Thisservicewill report EFI _NOT_AVAI LABLE_YET until aPEIM publishesthe servicesfor other
modules. For the GUID of the PPl, see EFI _PEI _PROGRESS CCDE_PPI .

UEFI Forum, Inc. April 2020 1-53

Platform Initialization Specification, Vol. 1 Services - PEI

ReportStatusCode()

Summary
This service publishes an interface that allows PEIMs to report status codes.

Prototype
t ypedef
EFlI _STATUS
(EFI APl *EFI _PEI _REPORT_STATUS CODE) (
I N CONST EFI _PEI _SERVI CES ** Pei Ser vi ces,
I N EFl _STATUS CODE_TYPE Type,
I N EFI _STATUS_CODE_VALUE Val ue,
I N U NT32 | nst ance,
I N CONST EFI _GUI D *Callerld OPTIONAL,
I N CONST EFI _STATUS CODE_DATA *Dat a OPTI ONAL
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFI _PEI _SERVI CES table published by the PEI
Foundation.

Type

Indicates the type of status code being reported. The type

EFlI _STATUS_CODE_TYPE isdefined in “Related Definitions” below.
Val ue

Describes the current status of a hardware or software entity. Thisincludes
information about the class and subclassthat is used to classify the entity aswell asan
operation. For progress codes, the operation is the current activity. For error codes, it
isthe exception. For debug codes, it isnot defined at thistime. Type

EFI _STATUS CODE_VALUE isdefined in “Related Definitions” below.

| nst ance

The enumeration of a hardware or software entity within the system. A system may
contain multiple entities that match a class/subclass pairing. The instance
differentiates between them. Aninstance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance numbers start with 1.

Callerld

This optional parameter may be used to identify the caller. This parameter allows the
status code driver to apply different rules to different calers.

Dat a

This optional parameter may be used to pass additional data. Type
EFI _STATUS_CODE_DATA isdefined in “Related Definitions* below. The
contents of this data type may have additional GUID-specific data.

UEFI Forum, Inc. April 2020 1-54

Platform Initialization Specification, Vol. 1 Services - PEI

Description

Report St at usCode() iscaled by PEIMs that wish to report status information on their
progress. The principal use model isfor aPEIM to emit one of the standard 32-hbit error codes. This
will allow aplatform owner to ascertain the state of the system, especialy under conditions where
the full consoles might not have been installed.

Thisisthe entry point that PEIMs shall use. This service can use all platform PEI Services, and
when main memory is available, it can even construct a GUIDed HOB that conveys the pre-DXE
data. Thisservice can aso publish an interface that is usable only from the DXE phase. This entry
point should not be the same as that published to the PEIMs, and the implementation of this code
path should not do the following:

* Useany PEI Services or PPIsfrom other modules.
* Make any presumptions about global memory allocation.

It can only operate on its local stack activation frame and must be careful about using 1/0 and
memory-mapped /O resources. These concerns, including the latter warning, arise because this
service could be used during the * blackout” period between the termination of PEI and the beginning
of DXE, prior to the loading of the DXE progress code driver. As such, the ownership of the
memory map and platform resource allocation is indeterminate at this point in the platform
evolution.

Related Definitions
/1
/1l Status Code Type Definition
/1
t ypedef U NT32 EFI _STATUS CODE_TYPE;

11

/1 A Status Code Type is nmade up of the code type and severity
/1 Al'l values nmasked by EFI _STATUS CODE RESERVED MASK are

/1l reserved for use by this specification.

11

#defi ne EFl _STATUS CODE_TYPE_NMASK 0x000000FF

#define EFl _STATUS CODE_SEVERI TY_MASK 0xFF000000

#define EFlI _STATUS CODE RESERVED MASK OxO00FFFFOO

11

/1 Definition of code types, all other values nasked by
/1 EFlI _STATUS CODE_TYPE MASK are reserved for use by

/1 this specification.

/1
#def i ne EFl _PROGRESS_CODE 0x00000001
#define EFl _ERROR _CODE 0x00000002
#def i ne EFl _DEBUG CODE 0x00000003
/1

/1 Definitions of severities, all other val ues masked by

UEFI Forum, Inc. April 2020 1-55

Platform Initialization Specification, Vol. 1 Services - PEI

/1 EFlI _STATUS CODE SEVERI TY_MASK are reserved for use by

/1 this specification.

/1 Uncontained errors are major errors that could not contained
/1l to the specific conponent that is reporting the error

/'l For exanple, if a menory error was not detected early enough,
/! the bad data coul d be consunmed by other drivers.

/1

#define EFl _ERROR M NOR 0x40000000
#define EFl _ERROR MAJOR 0x80000000
#defi ne EFl ERROR UNRECOVERED 0x90000000
#defi ne EFI _ERROR_UNCONTAI NED 0xa0000000
/1

/] Status Code Value Definition

/1

t ypedef U NT32 EFI_STATUS_CCDE_VALUE;

11

/1l A Status Code Value is made up of the class, subclass, and
/1 an operation.

11

#defi ne EFlI _STATUS_CODE_CLASS MASK 0xFFO00000

#define EFI _STATUS CODE_SUBCLASS MASK 0xO00FF0000

#defi ne EFI _STATUS_CODE_OPERATI ON_MASK 0xO0000FFFF

11
/1 Definition of Status Code extended data header.
/1l The data will follow HeaderSize bytes fromthe begi nning of
/1l the structure and is Size bytes |ong.
11
typedef struct {
Ul NT16 Header Si ze;
Ul NT16 Si ze;
EFI _GUID Type;
} EFI _STATUS_CODE_DATA,;

Header Si ze

The size of the structure. Thisis specified to enable future expansion.
Si ze

The size of the datain bytes. This does not include the size of the header structure.
Type

The GUID defining the type of the data.

UEFI Forum, Inc. April 2020 1-56

Platform Initialization Specification, Vol. 1 Services - PEI

Status Codes Returned

EFI_SUCCESS The function completed successfully.
EFI_NOT_AVAILABLE_YET No progress code provider has installed an interface in the
system.

4.8 Reset Services

The PEI Foundation publishes the following reset service:
* ResetSystem()

ResetSystem()

Summary
Resets the entire platform.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _RESET_SYSTEM (
I N CONST EFI _PElI _SERVI CES **Pej Servi ces
)
Parameters

Pei Ser vi ces

Anindirect pointer to the EFlI _PEI _SERVI CES table published by the PEI
Foundation.

Description

This service resetsthe entire platform, including all processors and devices, and reboots the system.
It isimportant to have a standard variant of this function for cases such as the following:

* Resetting the processor to change frequency settings
* Restarting hardware to complete chipset initialization
* Responding to exceptions from a catastrophic errorReturned Status Codes

Status Codes Returned

| EFI_NOT_AVAILABLE_YET | The service has not been installed yet.

4.9 1/0 and PCI Services
» The PEI Foundation publishes CPU 1/O and PCI Configuration services.

UEFI Forum, Inc. April 2020 1-57

Platform Initialization Specification, Vol. 1

5 PEI Foundation

5.1 Introduction

The PEI Foundation centers around the PEI Dispatcher. The dispatcher’sjob isto hand control to
the PEIMsin an orderly manner. The PEI Foundation also assists in PEIM-to-PEIM
communication. The central resource for the modul e-to-module communication involves the PPI.
The marshalling of referencesto PPIs can occur using the installable or notification interface.

The PEI Foundation is constructed as an autonomous binary image that is of file type
EFI _FV_FI LETYPE_PEI _CORE and is composed of the following:

* An authentication section
* A codeimagethat is possibly PE32+

See the Platform Initialization Specification, Volume 3, for information on section and file types. If
the code that comprises the PEI Foundation is not a PE32+ image, then it isaraw binary whose
lowest address is the entry point to the PEI Foundation. The PEI Foundation is discovered and
authenticated by the Security (SEC) phase.

5.1.1 Prerequisites

The PEI phase is handed control from the Security (SEC) phase of the Pl Architecture-compliant
boot process. The PEI phase must satisfy the following minimum prerequisites before it can begin
execution:

* Processor execution mode
* Access to the firmware volume that contains the PElI Foundation

It is expected that the SEC infrastructure code and PEI Foundation are not linked together asasingle
ROMable executable image. The entry point from SEC into PEI is not architecturally fixed but is
instead dependent on the PEI Foundation location within FVV 0, or the Boot Firmware Volume.

5.1.2 Processor Execution Mode

5.1.2.1 Processor Execution Mode in 1A-32 Intel® Architecture

In1A-32 Intel architecture, the Security (SEC) phase of the PI Architecture isresponsible for placing
the processor in a native linear address mode by which the full address range of the processor is
accessible for code, data, and stack. For example, “flat 32" isthe | A-32 processor generation mode
in which the PEI phase will execute. The processor must bein its most privileged “ring 0" mode, or
equivalent, and be able to access all memory and /O space.

This prerequisite is strictly dependent on the processor generation architecture.

5.1.2.2 Processor Execution Mode in Itanium® Processor Family

The PEI Foundation will begin executing after the Security (SEC) phase has completed. The SEC
phase subsumed the System Abstraction Layer entry point (SALE_ENTRY) in Itanium®

UEFI Forum, Inc. April 2020 1-58

Platform Initialization Specification, Vol. 1 PEI Foundation

architecture. In addition, the SEC phase makes the appropriate Processor Abstraction Layer (PAL)
callsor platform services to enable the temporary memory store. The SEC passes its handoff stateto
the PEI Foundation in physical mode with some configured memory stack, such as the processor
cache configured as memory.

5.1.2.3 Access to the Boot Firmware Volume (BFV) and other boot-critical FVs

The program that the Security (SEC) phase hands control to is known as the PEI Foundation. PEIMs
may residein the BFVor other FVs. A “special” PEIM must be resident in the BFV to provide
information about the location of the other FV's.

Each file that is required to boot, in the BFV and other critical FV's (like where the PEI foundation is
located), must be able to be discovered and validated by the PEI phase. Thisallowsthe PEI phaseto
determine if those FV's have been corrupted.

The PEI Foundation and the PEIMs are expected to be stored in some reasonably tamper-proof
(albeit not necessarily in the strict security-based definition of the term) nonvolatile storage (NVS).
The storage is expected to be fairly analogous to aflat file system with the unique 1Ds substituting
for names. Rules for using the particular NV S might affect certain storage considerations, but a
standard data-only mechanism for locating PEIMs by ID isrequired. The Pl Architecture
architecture describes the Pl Firmware Volume format and Pl Firmware File System format, with
the GUID convention of naming files. These standards are architectural for PEI inasmuch as the PEI
phase needs to directly support thisfile system.

The BFV can only be constructed of type EFI _FI RMAARE_FI LE_SYSTEM2_GUI D.

The PEI Foundation, and some PEIMs required for recovery, must be either locked into a
nonupdateable FV or must be able to be updated viaa“fault-tolerant” mechanism. The fault-tolerant
mechanism is designed such that, if the system halts at any point, either the old (preupdate) PEIM or
the newly updated PEIM is entirely valid and that the PEI phase can determine which isvalid.

5.1.2.4 Access to the Boot Firmware Volume in I1A-32 Intel Architecture

InA-32 Intel architecture, the Security (SEC) fileisat the top of the Boot Firmware VVolume (BFV).
This SEC file will have the 16-byte entry point for | A-32 and restarts at address OxFFFFFFFO.

5.1.2.5 Access to the Boot Firmware Volume in Itanium Processor Family

In the Itanium processor family, the microcode starts up the Processor Abstraction Layer A (PAL-A)
code, which isthefirst layer of PAL code and is provided by the processor vendor, that residesin the
Boot Firmware Volume (BFV). This code minimally initializes the processor and then finds and
authenticates the second layer of PAL code, called PAL-B. Thelocation of both PAL-A and PAL-B
can be found by consulting either of the following:

* Thearchitected pointersin the ROM (near the 4 GiB region)
* TheFirmware Interface Table (FIT) pointer in the ROM

The PAL layer communicates with the OEM boot firmware using a single entry point called the
System Abstraction Layer entry point (SALE_ENTRY). The PEI Foundation will be located at the
SALE_ENTRY point on the boot firmware device for an Itanium-based system. The Itanium
processor family PEIMSs, like other PEIMs, may residein the BFV or other firmware volumes. A
“special” PEIM must be resident in the BFV to provide information about the location of the other
firmware volumes; this will be described in the context of the EFI _PEI _FI ND_FV_PPI

UEFI Forum, Inc. April 2020 1-59

Platform Initialization Specification, Vol. 1 PEI Foundation

description. It must also be noted that in an Itanium-based system, all the processorsin each node
start up and execute the PAL code and subsequently enter the PEI Foundation. The BFV of a
particular node must be accessible by all the processors running in that node. This also means that
some of the PEIMsin the Itaniume architecture boot path will be multiprocessor (MP) aware.

In an Itanium-based system, it is also imperative that the organization of firmware modules in the
BFV must be such that at least the PAL-A is contained in the fault-tolerant regions. This processor-
specific PAL-A code authenticates the PAL-B code, which isusually contained in the non-fault-
tolerant regions of the firmware system. The PAL-A and PAL-B binary components are always
visibleto all the processorsin anode at the time of power-on; the system fabric should not need to be
initialized.

5.2 PEl Foundation Entry Point

5.2.1 PEl Foundation Entry Point
The Security (SEC) phase calls the entry point to the PEI Foundation with the following
information:
 Asetof PPIs
» Sizeand location of the Boot Firmware Volume (BFV)
» Sizeand location of other boot-critical FVs, by adding the firmware volume into the PpiList
with EFI _PEI _FI RMAARE_VOLUVE_PPI type.
» Sizeand location of the temporary RAM
* Sizeand location of the temporary RAM available for use by the PEI Foundation
* Sizeand location of the stack
The entry point is described in “ Code Definitions” below.

Prototype
t ypedef
VA D
EFI API
(*EFI _PEl _CORE_ENTRY_PO NT) (
| N CONST EFI _SEC PEI _HAND OFF *SecCor eDat a,
I N CONST EFI _PEI _PPI _DESCRI PTOR *Ppi Li st

)E

Parameters
SecCor eDat a

Points to a data structure containing information about the PEI core’s operating
environment, such as the size and location of temporary RAM, the stack location and
the BFV location. Thetype EFI _SEC PEI _HAND OFF isdefinedin “Related
Definitions’” below.

UEFI Forum, Inc. April 2020 1-60

Platform Initialization Specification, Vol. 1 PEI Foundation

Ppi Li st
Pointsto alist of one or more PPI descriptors. These PPl descriptors can be a
combination of descriptors of type EFI _PEI PPl _DESCRI PTOR for PPIsto be
installed initialy by the PEI core and descriptors of type
EFlI _PElI _NOTI FY_DESCRI PTOR for notifications in which the PEI Core will
notify when the PPl serviceisinstalled. An empty PPI list consists of asingle
descriptor with theend-tag EFI _PEI _PPI _DESCRI PTOR_TERM NATE_LI ST.
TypesEFI _PEI _PPI _DESCRI PTORand EFI _PEI _NOTI FY_DESCRI PTORare
defined in “PEIM Descriptors.” As part of itsinitialization phase, the PEI Foundation
will add these SEC-hosted PPIsto its PPl database, such that both the PEI Foundation
and any modules can leverage the associated service calls and/or code in these early
PPIs. This should contain all the boot critical FV s that would be passed from SEC to
PEI Foundation thorough the EFI _PEI _FI RMAMRE_VOLUVE_PPI .

Description

Thisfunction is the entry point for the PEI Foundation, which allows the SEC phase to pass
information about the stack, temporary RAM and the Boot Firmware Volume. In addition, it also
allows the SEC phase to pass services and data forward for use during the PEI phase in the form of
one or more PPIs. These PPI'swill be installed and/or immediately signaled if they are notification
type.

Thereisno limit to the number of additional PPIs that can be passed from SEC into the PEI
Foundation. As part of itsinitialization phase, the PEI Foundation will add these SEC-hosted PPIsto
its PPI database such that both the PEI Foundation and any modules can leverage the associated
service calls and/or code in these early PPIs.

Finally, later phases of platform evolution might need many of the features and data that the SEC
phase might possibly have. To support this, the SEC phase can construct a
EFI _PEI _PPI _DESCRI PTOR and passits addressinto the PEl Foundation as the final argument.

Among these PPIs, the SEC can pass an optional PP,

EFI _SEC PLATFORM | NFORMATI ON_PPI , as part of the PPI list that is passed to the PEI
Foundation entry point. This PPI abstracts platform-specific information that the PEI Foundation
needs to discover where to begin dispatching PEIMs. Other possible values to pass into the PEI
Foundation would include any security or verification services, such as the Trusted Computing
Group (TCG) access services, because the SEC would constitute the Core Root-of-Trust Module
(CRTM) in a TCG-conformant system.

Further, SEC can passthe EFl _SEC HOB_DATA PPl asapart of the PPI list. This PPI can
retrieve zero or more HOBs to be added to the HOB list before any PEIMss are dispatched.

UEFI Forum, Inc. April 2020 1-61

Platform Initialization Specification, Vol. 1 PEI Foundation

Related Definitions

typedef struct _EFI _SEC PEI _HAND OFF {
Ul NT16 Dat aSi ze;

VA D *Boot Fi r mvar eVol uneBase;
Ul NTN Boot Fi r mnvar eVol unmeSi ze;
VO D *Tenpor ar yRanBase;

U NTN Tenpor ar yRansi ze;

VA D *Pei Tenpor ar yRanBase;

Ul NTN Pei Tenpor ar yRansi ze;

VA D * St ackBase;

Ul NTN St ackSi ze;
} EFlI _SEC PElI HAND CFF;

Dat aSi ze
Size of the data structure.
Boot Fi r mnvar eVol unmeBase

Points to the first byte of the boot firmware volume, which the PEI Dispatcher should
search for PEl modules.

Boot Fi r mnvar eVol uneSi ze

Size of the boot firmware volume, in bytes.
Tenpor ar yRanBase

Points to the first byte of the temporary RAM.
Tenpor aryRanti ze

Size of the temporary RAM, in bytes.
Pei Tenpor ar yRanBase

Pointsto thefirst byte of the temporary RAM available for use by the PEI Foundation.
The area described by Pei Tenpor ar yRanmBase and Pei Tenpor ar yRanSi ze
must not extend outside beyond the area described by Tenpor ar yRanBase &
Tenpor ar yRanti ze. This area should not overlap with the area reported by

St ackBase and St ackSi ze.

Pei Tenpor ar yRanti ze

Size of the available temporary RAM available for use by the PEI Foundation, in
bytes.

St ackBase

Points to the first byte of the stack. This are may be part of the memory described by
Tenpor ar yRanmBase and Tenpor ar yRanSi ze or may be an entirely separate
area.

St ackSi ze
Size of the stack, in bytes.

Theinformation from SEC is mandatory information that is placed on the stack by the SEC phase to
invoke the PEI Foundation.

UEFI Forum, Inc. April 2020 1-62

Platform Initialization Specification, Vol. 1 PEI Foundation

The SEC phase provides the required processor and/or platform initialization such that thereisa
temporary RAM region available to the PEI phase. Thistemporary RAM could be a particular
configuration of the processor cache, SRAM, or other source. What isimportant with respect to this
handoff is that the PEI ascertain the available amount of cache as RAM from this data structure.

Similarly, the PEI Foundation needs to receive a priori information about where to commence the
dispatch of PEIMs. A platform can have various size BFVs. Assuch, the

Boot Fi r mnvar eVol une valuetellsthe PEI Foundation whereit can expect to discover afirmware
volume header data structure, and it is this firmware volume that contains the PEIMs necessary to
perform the basic system initialization.

5.3 PEI Calling Convention Processor Binding

Unless otherwise specified, the calling convention used for PEI functionsis the same as the one
specified in the UEFI specification. However, for certain processors, an alternate calling convention
is recommended for new PPl definitions.

5.4 PEI Services Table Retrieval

This section describes processor-specific mechanisms for retrieving a pointer to a pointer to the PEI
Services Table (EFI _PEI _SERVI CES* *) such asis commonly used in PEIMs. The means of
storage and retrieval are processor specific.

5.4.1 X86

For X86 processors, the EFI _PElI _ SERVI CES* * is stored in the 4 bytesimmediately preceding
the Interrupt Descriptor Table.

The EFI _PEI _SERVI CES** can be retrieved with the following code fragment, which should be
placed in alibrary routine for portability between architectures:

| DTR32 STRUCT

Limt DW1 DUP (?)

BaseAddr ess DD 1 DUP (?)

| DTR32 ENDS

sub esp, SIZECF | DTR32

si dt FWORD PTR ss: [esp]

nmov eax, [esp].|DTR32. BaseAddress
nov eax, DWORD PTR [eax — 4]

add esp, SIZEOF | DTR32

5.4.1.1 Interrupt Descriptor Table Initialization and Ownership Rules.

1. The SEC Core must initialize the IDT using the lidt command and ensure that the four-bytes
field immediately preceding the IDT base address resides within temporary memory.

2. The PEI Foundation initializes or updates the four-byte field immediately preceding the
currently loaded IDT base address.

UEFI Forum, Inc. April 2020 1-63

Platform Initialization Specification, Vol. 1 PEI Foundation

3. Any PEIM can reinitialize the IDT with the following restrictions:

» Thefour-bytesfield immediately prior to new IDT base address must reside within the
temporary or permanent memory.

» Thefour-byte field immediately preceding the old IDT base address must be copied to the
four-byte field immediately preceding the new IDT base address.

5.4.2 x64

For x64 processors, the EFI _PEI _ SERVI CES* * is stored in eight bytesimmediately preceding
the Interrupt Descriptor Table

The EFI _PEI _SERVI CES** can be retrieved with the following code fragment, which should be
placed in alibrary routine for portability between architectures:

| DTR64 STRUCT

Li mit DW 1 DUP (?)

BaseAddr ess DQ 1 DUP (?)

| DTR64 ENDS

sub rsp, SIZECF | DTR64

si dt [rsp]

nov rax, [rsp].| DTR64. BaseAddress
nov rax, QAORD PTR [rax — 8]

add rsp, SIZECF | DTR64

5.4.2.1 Interrupt Descriptor Table Initialization and Ownership Rules.

1. The SEC Core must initialize the IDT using the lidt command and ensure that the eight-bytes
field immediately preceding the IDT base address resides within temporary memory.

2. The PEI initializes or updates the eight-byte field immediately preceding the currently loaded
IDT base address.

3. Any PEIM can reinitialize the IDT with the following restrictions:

* Theeight-bytes field immediately prior to new IDT base address must reside within the
temporary or permanent memory

» Theeight-byte field immediately preceding the old IDT base address must be copied to the
eight-byte field immediately preceding the new IDT base address.

5.4.3 Itanium Processor Family — Register Mechanism

For Itanium Processor Family processors, the EFI _PEI _ SERVI CES* * is stored in kernel register
7 (ar.kr7). Information on the kernel registers for |PF can be found at http://www.intel.com/design/
itanium/downl oads/245358.htm.

The EFI _PEI _SERVI CES* * can be retrieved with the following code fragment, which may be
placed in alibrary routine for portability between architectures:
AsnmReadKr 7
nmov r8, ar.kr7;;
br.ret bO;;

UEFI Forum, Inc. April 2020 1-64

http://www.intel.com/design/itanium/downloads/245358.htm
http://www.intel.com/design/itanium/downloads/245358.htm

Platform Initialization Specification, Vol. 1 PEI Foundation

EFlI _PEI _SERVI CES **

Cet Pei Servi cesTabl ePoi nter (
VA D
)

{
return (EFlI_PEl _SERVI CES **) (U NTN) AsnmReadKr 7 ():

}

Note: Compilers should not be using KRs, they are reserved for OS use (i.e.,this is the overlap w/ the
Software Development Manual). Also, priv. level 3 code can only read KRs and not write them
anyway, only PLO code can write these.

5.4.4 ARM Processor Family — Register Mechanism

For the ARM Processor Family processors, the EFI _PEI _ SERVI CES* * isstored in athe
TPIDRURW read/write Software Thread ID register defined in the ARMv7-A Architectural
Reference Manual.

The EFI _PEI _SERVI CES* * can be retrieved with the following code fragment, which may be
placed in alibrary routine for portability between architectures:
CpuRead TPl DRURW
MRC p15, O, r0, c¢13, c0, 2
bx Ir

EFl _PElI _SERVI CES **
CGet Pei Servi cesTabl ePoi nter (
VA D
)
{
return (EFI _PElI _SERVI CES **) (U NTN) CouReadTPI DRURW () ;
}

5.4.4.1 ARM Vector Table

For ARM processors the vector table entries are instructions, and thus are limited to 24-bit relative
offset of abranch instruction. The Pl specification requires that the 8 defined vectors contain the
following instruction LDR pc, [pc, #0x20]. This means the 32-bit address of the handler is contained
at a 32-byte offset from the address of the vector. When Pl code hooks into the vector table it must
ensure that the 32-bit absolute address offset 32-bytes from the vector iswhat is updated. The first
codein the platform that initializes the vector table must fill it with 8 LDR pc, [pc, #0x20]
instructions.

UEFI Forum, Inc. April 2020 1-65

Platform Initialization Specification, Vol. 1 PEI Foundation

5.4.5 AArch64 Processor Family — Register Mechanism

For AArch64 architecture processors, the EFI _PEI _ SERVI CES** isstored inthe TPIDR_ELO
register. Information on this register can be found in the "ARM Architecture Reference Manual
ARMVS, for ARMV8-A architecture profile".

5.4.6 RISC-V Processor Family — Register Mechanism

For the RISC-V processor, the EFI _PEI _SERVI CES ** isstored in the

Rl SCV_NMACHI NE_MODE_CONTEXT structure and the pointer to this structure is stored in the
Machine mode Control and Status register MSCRATCH. EFI _PEI _SERVI CES ** isoneof the
structure member in RI SCV_MACHI NE_MODE _CONTEXT. The contentsin this structure will be
kept across al UEFI execution phases during the entire system life. MSCRATCH is areadable and
writable CSR which isinitiated to maintain various pointers for each UEFI execution phase. The
pointersin this structure includes EFI _PElI _SERVI CES ** and the interrupt handlers of each
RISC-V privilege level.

/1l Machi ne node context used for saving hart-local context.
typedef struct _RI SCV_MACH NE _MODE CONTEXT {

EFI _PHYSI CAL_ADDRESS Pei Service;/// PEl service.

EFI _PHYSI CAL_ADDRESS Machi neMbdeTrapHandl er;/// Machi ne node

trap
/1l handl er.
EFI _PHYSI CAL_ADDRESS Hyper vi sor ModeTr apHandl er;/// Hypervi sor
node trap
/1] handl er.
EFI _PHYSI CAL_ADDRESS Supervi sor ModeTr apHandl er; /// Supervi sor
node trap
/1l handl er.
EFl _PHYSI CAL_ADDRESS User ModeTr apHandl er;/// User node trap
handl er .
TRAP_HANDLER CONTEXT MvbdeHandl er;/// Handl er for machine
/1] node.

} Rl SCV_MACHI NE_MODE_CONTEXT;

EFlI _PEI _SERVI CES ** can be retrieved through bel ow function
which is provided by RISC-V library.

CONST EFI _PEI _SERVI CES **
EFI API
CGet Pei Servi cesTabl ePoi nter (
VA D
)

{
Rl SCV_MACHI NE_MODE_CONTEXT * Cont ext ;

EFI _PElI _SERVI CES **Pei Ser vi ces;

UEFI Forum, Inc. April 2020 1-66

Platform Initialization Specification, Vol. 1 PEI Foundation

Context = (Rl SCV_MACH NE_MODE CONTEXT *) Ul NTN)

Ri scVGet Scratch ();
Pei Servi ces = (EFI _PElI _SERVI CES **) Cont ext->Pei Servi ce;
return (CONST EFI _PEI SERVI CES **) Pei Servi ces;

}

5.5 PEI Dispatcher Introduction

The PEI Dispatcher’sjob isto hand control to the PEIMsin an orderly manner. The PEI Dispatcher
consists of asingle phase. It isduring this phase that the PEI Foundation will examine each filein
the firmware volumes that contain files of type EFI _FV_FI LETYPE_PEI Mor

EFI _FV_FI LETYPE_COVBI NED_PEI M DRI VER (see the Platform Initialization Specification,
Volume 3, for filetype definitions). It will examine the dependency expression (depex) and the
optional a priori file within each firmware file to decide when a PEIM is eligible to be dispatched.
The binary encoding of the depex will be the same as that of a depex associated with a PEIM.

5.6 Ordering

5.6.1 Requirements

Except for the order imposed by an a priori file, it is not reasonable to expect PEIMs to be executed
inany order. A chipset initialization PEIM usually requires processor initialization and a memory
initialization PEIM usually requires chipset initialization. On the other hand, the PEIMs that satisfy
these requirements might have been authored by different organizations and might reside in different
FVs. Thereguirement isthusto, without memory, create a mechanism to allow for the definition of
ordering among the different PEIMs so that, by the time a PEIM executes, all of the requirementsfor
it to execute have been met.

Although the update and build processes assist in resolving ordering issues, they cannot be relied
upon completely. Consider a system with aremovable processor card containing a processor and
firmware volume that plugsinto a main system board. If the processor card is upgraded, itisentirely
reasonabl e that the user should expect the system to work even though no update program was
executed.

5.6.2 Requirement Representation and Notation

Requirements are represented by GUIDs, with each GUID representing a particular requirement.
The requirements are represented by two sets of data structures:

» The dependency expression (depex) of agiven PEIM
* Theinstaled set of PPIs maintained by the PEI Foundation in the PPl database

This mechanism provides for a“weak ordering” among PEIMs. If PEIMs A and B consume X
(written AcX and BcX), once a PEIM (C) that produces X (CpX) is executed, A and B can be
executed. Thereis no definition about the order in which A and B are executed.

UEFI Forum, Inc. April 2020 1-67

Platform Initialization Specification, Vol. 1 PEI Foundation

5.6.3 PEl a priori File Overview

The PEl apriori fileisaspecid file that may optionally be present in afirmware volume, and its
main purpose isto provide a greater degree of flexibility in the firmware design of a platform.
Specificaly, the a priori file complements the dependency expression mechanism of PEI by
stipulating a series of modules which need be dispatched in a prescribed order.

There may be at most one PEI a priori file per firmware volume present in aplatform. Theapriori
file has aknown GUID file name PEI _APRI ORI _FI LE_NAME_GUI D, enabling the PEI
Foundation dispatch behavior to find the a priori fileif it is present. The contents of the file shall
contain data of the format PEI _ APRI ORI _FI LE_CONTENTS, with possibly zero entries. Every
time the PEI Dispatcher discovers afirmware volume, it first looksfor thea priori file. The PEIM’s
enumerated inaan a priori file must exist in the same firmware volume asthe a priori fileiteself; no
cross-volume mapping is allowed. The PEI Foundation will invoke the PEIM’ slisted in the

PEI _APRI ORI _FI LE_CONTENTS in the order found in thisfile.

Without the a priori file, PEIMs executed solely because of their dependency expressions are
weakly ordered. This means that the execution order is not completely deterministic between boots
or between platforms. In some cases a deterministic execution order isrequired. The PEI apriori file
provides a deterministic execution order of PEIMs using the following two implementation
methods.

The a priori model must be supported by all PEI Foundation implementations, but it does not
preclude additional a priori dispatch methodologies, aslong as the latter models use a different
mechanism and/or file name GUID for the alternate a priori module listing. The a priori file format
follows below.

UEFI Forum, Inc. April 2020 1-68

Platform Initialization Specification, Vol. 1 PEI Foundation

PEI_APRIORI_FILE_NAME_GUID

Summary

The GUID PEI _APRI ORI _FI LE_NAME_GUI D definition is the file name of the PEI a priori file
that is stored in a firmware volume.

GUID
#define PEI _APRI ORI _FILE NAME GUI D \
{0x1b45cc0Oa, Ox156a, 0x428a, Oxaf 62, 0x49, 0x86, \
0x4d, Oxa0, Oxe6, Oxe6}

t ypedef struct {

EFI _GU D FileNamesWthi nVol une[Nunber O Modul esl nVol une] ;
/1 Optional list of file-nanes

} PEl _APRI ORI _FI LE_CONTENTS;

Parameters
Fi | eNamesW t hi nVol urne]]

An array of zero or more EFlI_GUID type entries that match the file names of PEIM
modules in the same Firmware Volume. The maximum number of entries
Nunber OF Modul esl nVol une is determined by the number of modulesin the FV.

Description

Thisfile must be of type EFI _FV_FI LETYPE_FREEFORMand must contain a single section of
type EFlI _SECTI ON_RAW For details on firmware volumes, firmwarefile types, and firmwarefile
section types, see the Platform Initialization Specification, Volume 3.

5.6.3.1 Dispatch Behavior

Theapriori file can contain alist of the EFI_GUIDs, which are the names of the PEIM files within
the same firmware volume. Herein, the PEI Foundation dispatch logic reads the list of names from
the a priori file and invokes the appropriately named module in the order enumerated in the a priori
file. Thisvalue can be calculated by means of the size of PEI _APRI ORI _FI LE_CONTENTS.
This shall be an integral number of GUID sizes.

If thereisafile namewithin PEI _APRI ORI _FI LE_CONTENTS which isin the deleted state or
does not exist, the specific file name shall be ignored by the PEI Foundation dispatch logic and the
successive entry invoked.

During dispatch of PEIM’sintheapriori file, any PEIMsin newly published firmware volumeswill
be ignored until completion of thea priori file dispatch. These interfaces would be assessed during
subsequent modul e dispatch, though.

In addition to ignoring any additional volumes published during a priori dispatch, any dependency
expressions associated with PEIMs listed within PEI _APRI ORI _FI LE_CONTENTS are ignored.

During dispatch of the a priori PEIM list, the PEI Dispatcher shall invoke the
EFI _PElI _SECURI TY2_PPI Aut henti cati onSt at e service, if it exists, to qualify the
dispatch of each module. Thisisthe same behavior as the normal dependency-based dispatch. For

UEFI Forum, Inc. April 2020 1-69

Platform Initialization Specification, Vol. 1 PEI Foundation

thea priori filein the boot firmware volume, for example, theEFI _PEI _ SECURI TY2_PPI could
be passed by the SEC into the PEI Foundation viathe optional EFI _PEI PPl _DESCRI PTORIist.
This latter scenario allows authentication of PEIMsin the a priori file.

After executing all of the PEIMs specified inthe a priori file, the PEI Dispatcher searches the
firmware volume for any additional PEIMs and executes them according to their dependency
expressions.

5.6.4 Firmware Volume Image Files

For PEI, while processing afirmware volume, if afile of type
EFl _FV_FI RMAMARE_VOLUME_| MAGE isfound, the PEI Dispatcher will check whether this
firmware volume image file was already processed. If it was, then the fileisignored.

Otherwise, the PEI Dispatcher will search the file for a section with the type

EFI _SECTI ON_PEI _DEPEX, and if found, evaluate the expression against the presently installed
entries in the PPl database. If the file has a dependency expression that evaluates to TRUE (or no
EFI _SECTI ON_PEI _DEPEX section), then the PEI Dispatcher will search the file for a section
with the type EFI _SECTI ON_FI RMAARE_VOLUME_| MAGE, copy its contents into memory, and
install the EFI _PEI _FI RMAARE_VOLUME_| NFO_PPI and

EFI _PEI _FI RMAMARE_VOLUNMVE_| NFO2_PPI for the firmware volume image, and add HOBs of
type EFI _HOB_FI RMAARE_VOLUME and EFI _HOB_FI RMMARE_VOLUME? to the hob list for
the firmware volume image.

5.6.5 PEIM Dependency Expressions

The sequencing of PEIMsis determined by eval uating a dependency expression associated with each
PEIM. This expression describes the requirements necessary for that PEIM to run, which imposes a
weak ordering on the PEIMs. Within this weak ordering, the PEIMs may beinitialized in any order.

5.6.6 Types of Dependencies

The base unit of the dependency expression is adependency. A representative syntax (used in this
document for descriptive purposes) for each dependency is shown in the following section. The
syntax is case-insensitive and mnemonics are used in place of non-human-readable data such as
GUIDs. White spaceisoptional.

The operands are GUIDs of PPIs. The operand becomes “true” when a PPl with the GUID is
registered.

5.7 Dependency Expressions

5.7.1 Introduction

A PEIM isstored in afirmware volume as afile with one or more sections. One of the sections must
be a PE32+ image. If aPEIM has a dependency expression, then it is stored in a dependency
section. A PEIM may contain additional sections for compression and security wrappers. The PEI
Dispatcher can identify the PEIMs by their filetype. In addition, the PEI Dispatcher can look up the
dependency expression for a PEIM by looking for a dependency section in a PEIM file. The

UEFI Forum, Inc. April 2020 1-70

Platform Initialization Specification, Vol. 1 PEI Foundation

dependency section contains a section header followed by the actual dependency expression that is
composed of a packed byte stream of opcodes and operands.

Dependency expressions stored in dependency sections are designed to meet the following goals:
» Besmall to conserve space.
» Besimpleand quick to evaluate to reduce execution overhead.

These two goals are met by designing a small, stack-based instruction set to encode the dependency
expressions. The PEI Dispatcher must implement an interpreter for thisinstruction set to evaluate
dependency expressions. The instruction set is defined in the following topics.

See “Dependency Expression Grammar” on page 241 for an example BNF grammar for a
dependency expression compiler. There are many possible methods of specifying the dependency
expression for aPEIM. Thisexample grammar demonstrates one possible design for atool that can
be used to help build PEIM images.

5.7.1.1 Dependency Expression Instruction Set

The following topics describe each of the dependency expression (depex) opcodes in detail.
Information includes a description of the instruction functionality, binary encoding, and any
limitations or unique behaviors of the instruction.

Severa of the opcodes require aGUID operand. The GUID operand is a 16-byte value that matches
thetype EFI _GUI Dthat is described in Chapter 2 of the UEFI 2.0 specification. These GUIDs
represent PPIsthat are produced by PEIMs and the file names of PEIMs stored in firmware volumes.
A dependency expression is a packed byte stream of opcodes and operands. Asaresult, some of the
GUID operands will not be aligned on natural boundaries. Care must be taken on processor
architectures that do allow unaligned accesses.

The dependency expression is stored in a packed byte stream using postfix notation. Asa
dependency expression is evaluated, the operands are pushed onto a stack. Operands are popped off
the stack to perform an operation. After the last operation is performed, the value on the top of the
stack represents the evaluation of the entire dependency expression. If a push operation causes a
stack overflow, then the entire dependency expression evaluatesto FALSE. If a pop operation
causes a stack underflow, then the entire dependency expression evaluatesto FALSE. Reasonable
implementations of a dependency expression evaluator should not make arbitrary assumptions about
the maximum stack sizeit will support. Instead, it should be designed to grow the dependency
expression stack as required. In addition, PEIMs that contain dependency expressions should make
an effort to keep their dependency expressions as small as possible to help reduce the size of the
PEIM.

All opcodes are 8-bit values, and if an invalid opcode is encountered, then the entire dependency
expression evaluates to FALSE.

If an END opcode is hot present in a dependency expression, then the entire dependency expression
evaluatesto FALSE.

The final evaluation of the dependency expression results in either a TRUE or FAL SE result.

UEFI Forum, Inc. April 2020 1-71

Platform Initialization Specification, Vol. 1 PEI Foundation

Note: NoteThe PEI Foundation will only support the evaluation of dependency expressions that are less
than or equal to 256 terms.

Table 1-7 isasummary of the opcodes that are used to build dependency expressions. The
following sections describe each of these instructions in detail.

Table 1-7: Dependency Expression Opcode Summary

Opcode Description
0x02 PUSH <PPI GUID>
0x03 AND
0x04 OR
0x05 NOT
0x06 TRUE
0x07 FALSE
0x08 END
PUSH
Syntax

PUSH <PPI GUI D>

Description

Pushes a Boolean value onto the stack. If the GUID is present in the handle database, thenaTRUE is
pushed onto the stack. If the GUID is not present in the handle database, then a FALSE is pushed
onto the stack. The test for the GUID in the handle database may be performed with the Boot
Service Locat ePpi ().

Operation
Status = (*Pei Services)->LocatePpi (Pei Services, GJD, 0, NULL,
&l nterface);
if (EFI _ERROR (Status)) {
PUSH FALSE;
} Else {
PUSH TRUE;
}

The following table defines the PUSH instruction encoding.

UEFI Forum, Inc. April 2020 1-72

Platform Initialization Specification, Vol. 1

Table 1-8: PUSH Instruction Encoding

Byte Description
0 0x02
1..16 A 16-byte GUID that represents a protocol that is

produced by a different PEIM. The format is the same
attype EFI _GUI D.

Behaviors and Restrictions
None.

UEFI Forum, Inc. April 2020

PEI Foundation

1-73

Platform Initialization Specification, Vol. 1 PEI Foundation

AND

Syntax
AND

Description

Pops two Boolean operands off the stack, performs a Boolean AND operation between the two
operands, and pushes the result back onto the stack.

Operation

Oper andl <= POP Bool ean stack el enent
Operand2 <= POP Bool ean stack el enent
Result <= Operandl AND COper and2

PUSH Resul t

Table 1-9 defines the AND instruction encoding.

Table 1-9: AND Instruction Encoding

Byte Description
0 0x03

Behaviors and Restrictions
None.

UEFI Forum, Inc. April 2020 1-74

Platform Initialization Specification, Vol. 1

OR

Syntax
R

Description

PEI Foundation

Pops two Boolean operands off the stack, performs a Boolean OR operation between the two

operands, and pushes the result back onto the stack.

Operation

Oper andl <= POP Bool ean stack el enent
Operand2 <= POP Bool ean stack el enent
Result <= Operandl OR Operand2

PUSH Resul t

Table 1-10 defines the OR instruction encoding.

Table 1-10: OR Instruction Encoding

Byte Description
0 0x04

Behaviors and Restrictions
None.

UEFI Forum, Inc. April 2020

1-75

Platform Initialization Specification, Vol. 1 PEI Foundation

NOT

Syntax
NOT

Description

Pops a Boolean operands off the stack, performs a Boolean NOT operation on the operand, and
pushes the result back onto the stack.

Operation

Operand <= POP Bool ean stack el enent
Result <= NOT QOperand
PUSH Resul t

Table 1-11 defines the NOT instruction encoding.

Table 1-11: NOT Instruction Encoding

Byte Description
0 0x05

Behaviors and Restrictions
None.

UEFI Forum, Inc. April 2020 1-76

Platform Initialization Specification, Vol. 1

TRUE

Syntax
TRUE

Description
Pushes a Boolean TRUE onto the stack.

Operation
PUSH TRUE

Table 1-12 defines the TRUE instruction encoding.

Table 1-12: TRUE Instruction Encoding

Byte Description
0 0x06

Behaviors and Restrictions
None.

UEFI Forum, Inc. April 2020

PEI Foundation

1-77

Platform Initialization Specification, Vol. 1

FALSE

Syntax
FALSE

Description
Pushes a Boolean FAL SE onto the stack.

Operation
PUSH FALSE

Table 1-13 defines the FAL SE instruction encoding.

Table 1-13: FALSE Instruction Encoding

Byte Description
0 0x07

Behaviors and Restrictions
None.

UEFI Forum, Inc. April 2020

PEI Foundation

1-78

Platform Initialization Specification, Vol. 1 PEI Foundation

END

Syntax
END

Description

Pops the final result of the dependency expression evaluation off the stack and exits the dependency
expression evaluator.

Operation

POP Resul t
RETURN Resul t

Table 1-14 defines the END instruction encoding.

Table 1-14: END Instruction Encoding

Byte Description
0 0x08

Behaviors and Restrictions
This opcode must be the last one in a dependency expression.

UEFI Forum, Inc. April 2020 1-79

Platform Initialization Specification, Vol. 1 PEI Foundation

5.7.2 Dependency Expression with No Dependencies

A PEIM that does not have any dependencies will have a dependency expression that eval uates to
TRUE with no dependencies on any PPl GUIDs.

5.7.3 Empty Dependency Expressions

If aPEIM file does not contain a dependency section, then the PEIM has an empty dependency
expression.

5.7.4 Dependency Expression Reverse Polish Notation (RPN)
The actual equations will be presented by the PEIM in a simple-to-evaluate form, namely postfix.

Thefollowing isaBNF encoding of this grammar. See “ Dependency Expression Instruction Set” on
page 71 for definitions of the dependency expressions.

<statement > ::= <expressi on> END
<expression> ::= PUSH <gui d> |
TRUE |
FALSE |

<expressi on> NOT |
<expressi on> <expressi on> OR |

<expressi on> <expressi on> AND

5.8 Dispatch Algorithm

5.8.1 Overview

5.8.1.1 Ordering Algorithm
The dispatch algorithm repeatedly scans through the PEIM s to find those that have not been
dispatched. For each PEIM that isfound, it scans through the PPI database of PPIs that have been
published, searching for elementsin the yet-to-be-dispatched PEIM's depex. If al of the elementsin
the depex are in the PEI Foundation's PPl database, the PEIM is dispatched. The phase terminates
when all PEIMs are scanned and none dispatched.

Note: The PEIM may be dispatched without a search if its depex is NULL.

5.8.1.2 Multiple Firmware Volume Support

In order to expose a new firmware volume, a PEIM should install an instance of

EFI _PElI _FI RMWMARE_VOLUVE | NFO_PPI containing the firmware volume format GUID, the
starting address and the size of the firmware volume’ swindow. PEIMs exposing firmware volumes
which have afirmware volume format other than the PI Architecture Firmware Volume format
should include the firmware volume format GUID in their dependency expression.

PEIMs exposing memory-mapped firmware volumes should create a memory resource descriptor
HOB for the memory occupied by the firmware volumeiif it is outside of the PEI memory.

UEFI Forum, Inc. April 2020 1-80

Platform Initialization Specification, Vol. 1 PEI Foundation

For each new exposed firmware volume, the PEI Foundation will take the following steps:

1

4,
5.

Create a new firmware volume handle. The firmware volume handle may be created by the PEI
Foundation or by the optional EFI _PElI _FI RMAMARE_VOLUME_PPI .

Create a new firmware volume HOB.

If the firmware volume' s format (identified by its GUID) is not supported directly by the PEI
Foundation and it is not supported by any installed EFI _ PEI _FI RMAMARE_VOLUVE_PPI |, the
firmware volume is skipped.

Otherwise, al PEIMsin the firmware volume are scheduled for dispatching.
Find the a priori file, if it exists, and dispatch any PEIMslisted in it.

5.8.2 Requirements

5.8.2.1 Requirements of a Dispatching Algorithm
The dispatching agorithm must meet the following requirements:

No g s~ wDdhRE

Preserve the dispatch weak ordering.

Prevent an infinite loop.

Control processor resources.

Preserve proper dispatch order.

Make use of available memory.

Invoke each PEIM’s entry point.

Know when the PEI Dispatcher tasks are finished.

5.8.2.2 Preserving Weak Ordering
The algorithm must preserve the weak ordering implied by the depex.

5.8.2.3 Preventing Infinite Loops

Itisillega for AcXpY (A consumes X and produces Y) and BcY pX. Thisisknown asacycleandis
unresolvable even if memory isavailable. At aminimum, the dispatching algorithm must not end up
in an infinite loop in such a scenario. With the algorithm described above, neither PEIM would be
executed.

5.8.2.4 Controlling Processor Register Resources

The agorithm must require that a minimum of the processor's register resources be preserved while
PEIMs are dispatched.

5.8.2.5 Preserving Proper Dispatch Order
The algorithm must preserve proper dispatch order in cases such as the following:

AcQpZ BcLpR CpL DcRpQ

Theissue with the above scenario isthat A and B are not obviously related until D is processed. If A
and B were in one firmware volume and C and D were in another, the ordering could not be resolved
until execution. The proper dispatch order in thiscaseis CBDA. The algorithm must resolve this
type of case.

UEFI Forum, Inc. April 2020 1-81

Platform Initialization Specification, Vol. 1 PEI Foundation

5.8.2.6 Using Available Memory

The PEI Foundation begins operation using a temporary memory store that contains theinitial call
stack from the Security (SEC) phase. The SEC phase must pass the size and location of the stack
and the size and location of the temporary memory store.

The PEI stack will be available for subsequent PEIM invocations, and the PEI heap will be used for
PEIM memory allocations and Hand-Off Block (HOB) creation.

There can be no memory writes to the address space beyond thisinitial temporary memory until a
PEIM registers a permanent memory range using the PEI Servicel nst al | Pei Menory (). When
permanent memory isinstalled, the PEI Foundation will copy the call stack that islocated in
temporary memory into a segment of permanent memory. |f necessary, the size of the call stack can
be expanded to support the subsequent transition into DXE.

In addition to the call stack, the PEI Foundation will copy the following from temporary to
permanent memory:

* PEI Foundation private data
» PEI Foundation heap

« HOBIist

* Installed Firmware Volumes

Any permanent memory consumed in this fashion by the PEI Foundation will be described in a
HOB, which the PEI Foundation will create.

The PEI Foundation will copy any installed firmware volumes from the temporary memory location
to a permanent memory location with the alignment specified in the firmware volume header. Any
uncompressed PE32 or TE sections within PEIMs in these firmware volumes will be fixed up. This
ensures any static EFI _PEI _PPI _DESCRI PTORs or PPl interface pointersin these PEIMs point
to the permanent memory addresses.

In addition, if therewere any EFlI _PEI _PPI _DESCRI PTORs created in the temporary memory
heap or declared statically in PEIMS, their respective locations have been trandated by an offset
equal to the difference between the original location in temporary memory and the destination
location in permanent memory. In addition to this heap copy, the PEI Foundation will traverse the
PEI PPI database. Any referencesto EFI _PEI PPl _DESCRI PTORs that are in temporary
memory will be fixed up by the PEI Foundation to reflect the location of the

EFI _PElI _PPI _DESCRI PTORs destination in permanent memory.

The PEI Foundation will invoke the DXE IPL PPI after dispatching all candidate PEIMs. The
DXE IPL PPl may haveto allocate additional regions from permanent memory to be able to load
and relocate the DXE Foundation from its firmware store. The DXE IPL PPl will describe these
memory allocations in the appropriate HOB such that when control is passed to DXE, an accurate
record of the memory usage will be known to the DXE Foundation.

5.8.2.7 Invoking the PEIM's Entry Point

The entry point of a PEIM uses the calling conventions specified in the UEFI 2.0 specification,
which detail how parameters are passed to afunction. After assessing a PEIM's dependency
expression to seeif it can beinvoked, the PEI Foundation will pass control to the PEIM's entry point.
This entry point is avalue described in the PEIM'simage header.

UEFI Forum, Inc. April 2020 1-82

Platform Initialization Specification, Vol. 1 PEI Foundation

The PEI Foundation will pass an indirect pointer to the PEI Services Table and the handle of the
firmware file when it invokes the PEIM.

In the entry point of the PEIM, the PEIM has the opportunity do the following:

* Locate other PPIs

* Install PPIsthat reference services within the body of this PEIM

* Register for anotification

* Upon return from the PEIM’ s entry point, it returns back to the PEI Foundation.

» Seethe Microsoft Portable Executable and Common Object File Format Specification for
information on PE/COFF images; see “TE Image’ on page 243 for information on TE images.

5.8.2.8 Knowing When Dispatcher Tasks Are Finished
The PEI Dispatcher isfinished with apass when it has finished dispatching all the PEIMsthat it can.

During a pass, some PEIMs might not have been dispatched if they had requirements that no other
PEIM has met.

However, with the weak ordering defined in previous requirements, system RAM could possibly be
initialized before all PEIMs are given a chance to run. This situation can occur because the system
RAM initialization PEIM is not required to consume all resources provided by al other PEIMs. The
PEI Dispatcher must recognize that its tasks are not complete until all PEIMs have been given an
opportunity to run.

5.8.2.9 Reporting PEI Core Location

If the EFI _PElI _LOADED | MAGE_PPI issupported by the PEI Dispatcher, then the PEI
Foundation must first report its own location by using the PEI Servicel nst al | Ppi () and the
EFI _PEI _LOADED | MAGE_PPI . If theFi | eHandl e isunknown, then NULL can be used. PEI
Foundation must also report the location of the PEIM loaded by creating the

EFlI _PElI _LQOADED | MAGE PPI and call the PEI Service Rei nst al | Ppi ().

5.8.3 Example Dispatch Algorithm

Thefollowing pseudo codeis an example of an algorithm that uses few registers and implements the
requirementslisted in the previous section. The pseudo code uses simple C-like statements but more
assembly-like flow-of-control primitives.

The dispatch algorithm’s main data structure is the DispatchedBitMap as described in Table 1-15.

UEFI Forum, Inc. April 2020 1-83

Platform Initialization Specification, Vol. 1 PEI Foundation

Table 1-15: Example Dispatch Map

PEIM# Item PEIM# Item
FVO 4 FV1
PEI Foundation <non PEIM>
<non PEIM> <non PEIM>
PEIM <non PEIM>
PEIM 5 PEIM
PEIM with <non PEIM>
EFlI _PElI _FI RMAMRE VOLUME_PPI
<non PEIM> 6 PEIM

3 PEIM 7 PEIM

Table 1-15 isan example of adispatch in agiven set of firmware volumes (FVs). Following arethe
stepsin this dispatch:

1. The algorithm scans through the PEIMs that it knows about.

2. When it comesto a PEIM that has not been dispatched, it verifies that all of the required PPIs
listed in the dependency expression (depex) are in the PPl database.

3. If dl of the GUIDed interfaces listed in the depex are available, the PEIM isinvoked.
4, CreatetheEFI PEI LOADED | MAGE PPI and call the PEl Service Rei nst al | Ppi ()

5. Iterations continue through all known PEIMsin all known FVs until a passis made with no
PEIMs dispatched, thus signifying completion.
6. After the dispatch completes, the PEI Foundation locates and invokes the GUID for the

DXE IPL PPI, passing in the HOB address and avalid stack. Failing to discover the GUID for
the DXE IPL PPl shall be an error.

5.8.4 Dispatching When Memory EXxists

The purpose of the PEI phase of execution is to discover and initialize main memory. There are
several circumstances in which the shadowing of a PEIM and the rel ocation of thisimage into
memory are of interest. This can include but isnot limited to compressing PEIMs, such asthe DXE
IPL PPI, those modulesthat are required for crisis recovery, and platformsin which codeis executed
from temporary memory.

The PEI architecture shall not dictate what compression mechanism is to be used, but there will be a
Decompress service that is published by some PEIM that the PEI Foundation will discover and use
when it becomes available. 1n addition, loading images also requires afull image-rel ocation service
and the ability to flush the cache. The former will allow the PEIM that was rel ocated into RAM to
have its relocations adjust pursuant to the new load address. The latter service will be invoked by
the PEI Foundation so that this rel ocated code can be run, especially on Itanium-based platforms that
do not have a coherent data and code cache.

A compressed section shall have an implied dependency on permanent memory having been
installed. To speed up boot time, however, there can be an explicit annotation of this dependency.

UEFI Forum, Inc. April 2020 1-84

Platform Initialization Specification, Vol. 1 PEI Foundation

5.8.5 PEIM Dispatching
When the PEI Dispatcher has decided to invoke a PEIM, the following steps are taken:

1

2.

4.
5.

If any instancesof EFI _PEI _LOAD FI LE PPl areinstaled, they are called, one at atime,
until one reports EFI _ SUCCESS.

If no instance reports EFI _ SUCCESS or there are no instances installed, then the built-in
support for (at least) the PE32+/TE XIP image formatsis used.

If any instancesof EFI _PElI _SECURI TY2_PPI areinstaled, they are called, one at atime, as
long as nonereturns an EFl _SECURI TY_VI OLATI ONerror. If such an error is returned, then
the PEIM is marked as dispatched, but is never invoked.

The PEIM’s entry point is invoked with the file's handle and the PEI Services Table pointer.
The PEIM is marked as dispatched.

The PEI Core may decide, because of memory constraints or performance reasons, to dispatch XI1P
instead of shadowing into memory.

5.8.6 PEIM Authentication

The PEI specification provides three methods which the PEI Foundation can use to authenticate a
PEIM:

1

3.

The authentication information could be encoded as part of a GUIDed section. In this case, the
provider of the EFI _PEI _GUI DED SECTI ON_EXTRACTI ON_PPI (seethe Platform
Initialization Specification, Volume 3) can check the authentication data and return the results
inAttestationState.

The authentication information can be checked by the provider of the

EFI _PEI _LOAD FI LE PPl (seethePlatform Initialization Specification, Volume 3) and
theresultsreturned in At t est at i onSt at e.

The PEI Foundation may implement the digital signing as described in the UEFI 2.0
specification.

In al cases, the result of the authentication must be passed to any instances of the
EFl _PEI _SECURI TY2_PPI .

UEFI Forum, Inc. April 2020 1-85

Platform Initialization Specification, Vol. 1

6 Architectural PPIs

6.1 Introduction

The PEI Foundation and PEI Dispatcher rely on the following PEIM-to-PEIM Interfaces (PPIs) to
perform itswork. The abstraction provided by these interfaces allows dispatcher algorithms to be
improved over time or have some platform variability without affecting the rest of PEI.

The key to these PPIsis that they are architecturally defined interfaces consumed by the PEI
Foundation, but they may not be published by the PEI Foundation.

6.2 Required Architectural PPIs

6.2.1 Master Boot Mode PPI (Required)
EFI_PEI_MASTER_BOOT_MODE_PPI (Required)

Summary

The Master Boot Mode PPl isinstalled by a PEIM to signal that afinal boot has been determined and
set. Thissignal isuseful in that PEIMs with boot-mode-specific behavior (for example, S3 versus
normal) can put this PPl in their dependency expression.

GUID

#define EFI _PEI MASTER BOOT_ MODE PEI M PPl \
{0x7408d748, Oxfc8c, 0Ox4ee6, 0x92, 0x88, 0xc4, Oxbe, \
0xc0, 0x92, Oxa4, 0x10}

PPI Interface Structure
None.

Description

The Master Boot Mode PPl isa PPl GUID and must be in the dependency expression of every PEIM
that modifies the basic hardware. The dispatch, or entry point, of the module that installs the Master
Boot Mode PPI modifies the boot path value in the following ways:

» Directly, through the PEI Service Set Boot Mbde()
* Indirectly through its optional subordinate boot path modules

The PEIM that publishes the Master Boot Mode PPI has a non-null dependency expression if there
are subsidiary modules that publish alternate boot path PPIs. The primary reason for this PPl isto be
the root of dependencies for any child boot mode provider PPIs.

Status Codes Returned
None.

UEFI Forum, Inc. April 2020 1-86

Platform Initialization Specification, Vol. 1 Architectural PPIs

6.2.2 DXE IPL PPI (Required)
EFI_DXE_IPL_PPI (Required)

Summary
Final serviceto be invoked by the PEI Foundation.

GUID
#define EFI_DXE_ | PL_PPI _GUI D \

{ Oxae8cebd, 0xe448, 0x4437, 0xa8, 0xd7, Oxeb, Oxf5, \
Oxf1l, 0x94, Oxf7, 0x31 }

PPI Interface Structure

typedef struct _EFI_DXE | PL_PPI {
EFI _DXE_| PL_ENTRY Entry;
} EFI _DXE_| PL_PPI;

Parameters
Entry

The entry point to the DXE IPL PPI. SeetheEnt r y() function description.

Description

After completing the dispatch of all available PEIMs, the PEI Foundation will invoke this PPI
through its entry point using the same handoff state used to invoke other PEIMs. This specia
treatment by the PEI Foundation effectively makes the DXE IPL PPl the last PPl to execute during
PEI. When this PPI isinvoked, the system state should be as follows:

» Singlethread of execution

e Interrupts disabled

* Processor mode as defined for PEI

The DXE IPL PPI isresponsible for locating and loading the DXE Foundation. The DXE IPL PPI
may use PEI servicesto locate and load the DXE Foundation. Aslong asthe DXE IPL PPl isusing
PEI Services, it must obey all PEI interoperability rules of memory allocation, HOB list usage, and
PEIM-to-PEIM communication mechanisms.

For S3 resume boot modes DXE IPL must be prepared to execute without permanent memory
installed and invoke the S3 resume modules.

UEFI Forum, Inc. April 2020 1-87

Platform Initialization Specification, Vol. 1 Architectural PPIs

EFI_DXE_IPL_PPI.Entry()

Summary

The architectural PPl that the PEI Foundation invokes when there are no additional PEIMs to
invoke.

Prototype

t ypedef
EFI _STATUS
(EFI APl *EFI _DXE_| PL_ENTRY) (
I N CONST EFI _DXE_| PL_PPI *Thi s,
I N EFI _PEI _SERVI CES **Pej Servi ces,
I N EFI _PElI _HOB_PO NTERS HobLi st

);

Parameters
Thi s
Pointer to the DXE IPL PPl instance.
Pei Servi ces
Pointer to the PEI Services Table.
HoblLi st
Pointer to thelist of Hand-Off Block (HOB) entries.

Related Definitions

11

/1 Union of all the possible HOB Types
11

t ypedef union {

EFI _HOB_GENERI C_HEADER *Header ;

EFI _HOB HANDOFF_| NFO TABLE *Handof f | nf or mati onTabl e;
EFI _HOB_MEMORY_ALLCOCATI ON *Menor yAl | ocati on;

EFI _HOB MEMORY_ALLOCATI ON_BSP_STORE *MenoryAl | ocati onBspSt or €;
EFlI _HOB MEMORY_ALLOCATI ON_STACK *Menor yAl | ocat i onSt ack;
EFI _HOB_MEMORY_ALLOCATI ON_MODULE *Menor yAl | ocat i onModul e;
EFI _HOB RESOURCE DESCRI PTCOR *Resour ceDescri ptor;

EFI _HOB_GUI D_TYPE *Qui d;

EFI _HOB_FI RMMARE_VOLUME *Fi r mmar eVol unre;

EFI _HOB_CPU *Cpu;

EFI _HOB_MEMORY_POCL *Pool ;

Ul NT8 * Raw,

} EFl _PEl _HOB_PO NTERS;

UEFI Forum, Inc. April 2020 1-88

Platform Initialization Specification, Vol. 1 Architectural PPIs

Description

Thisfunction is invoked by the PEI Foundation. The PEI Foundation will invoke this service when
there are no additional PEIMsto invoke in the system. |f this PPl does not exist, it isan error
condition and an ill-formed firmware set. The DXE IPL PPI should never return after having been
invoked by the PEI Foundation. The DXE IPL PPI can do many things internaly, including the
following:

* Invoke the DXE entry point from afirmware volume.
* Invoke the recovery processing modules.
* Invoke the S3 resume modules.

Status Codes Returned

EFI_SUCCESS Upon this return code, the PEI Foundation should enter some
exception handling. Under normal circumstances, the DXE IPL
PPI should not return.

UEFI Forum, Inc. April 2020 1-89

Platform Initialization Specification, Vol. 1 Architectural PPIs

6.2.3 Memory Discovered PPI (Required)
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI (Required)

Summary

This PPI is published by the PEI Foundation when the main memory isinstaled. Itisessentidly a
PPI with no associated interface. Its purposeisto be used as asignal for other PEIMs who can
register for a notification on its installation.

GUID

#define EFl _PElI PERVANENT MEMORY | NSTALLED PPl _GUI D \
{O0xf 894643d, 0xc449, 0x42dl, O0x8e, 0xa8, 0x85, O0Oxbd, \
0xd8, 0xc6, O0x5b, Oxde}

PPI Interface Structure
None.

Description

This PPl isinstalled by the PEI Foundation at the point of system evolution when the permanent
memory size has been registered and waiting PEIMs can use the main memory store. Using this
GUID dlows PEIMsto do the following:

« Benotified when this PPl isinstalled.
e Includethis PPI's GUID inthe EFlI _DEPEX.

The expectation is that a compressed PEIM would depend on this PPI, for example. The PEI
Foundation will relocate the temporary cache to permanent memory prior to thisinstallation.

Status Codes Returned
None.

UEFI Forum, Inc. April 2020 1-90

Platform Initialization Specification, Vol. 1 Architectural PPIs

6.3 Optional Architectural PPlIs

6.3.1 Boot in Recovery Mode PPI (Optional)
EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI (Optional)

Summary
This PPl isinstalled by the platform PEIM to designate that a recovery boot isin progress.

GUID

#define EFl _PEl _BOOT | N _RECOVERY MODE_PEI M PPl \
{0x17eed496a, 0xd8e4, O0x4b9a, 0x94, 0Oxdl, Oxce, 0x82, \
0x72, 0x30, 0x8, 0x50}

PPI Interface Structure
None.

Description

Thisoptional PPl isinstalled by the platform PEIM to designate that a recovery boot isin progress.
Its purpose isto alow certain PEIMs that wish to be dispatched only during a recovery boot to
include this PPI in their dependency expression (depex). Including this PPl in the depex allows the
PEI Dispatcher to skip recovery-specific PEIMs during normal restarts and thus save on boot time.
This PEIM has no associated PPl and is used only to designate the system state asbeing “in acrisis
recovery dispatch.”

Status Codes Returned
None.

UEFI Forum, Inc. April 2020 1-91

Platform Initialization Specification, Vol. 1 Architectural PPIs

6.3.2 End of PEI Phase PPI (Optional)
EFI_PEI_END_OF_PEI_PHASE_PPI (Optional)

Summary

This PPI will beinstaled at the end of PEI for all boot paths, including normal, recovery, and S3. It
alows for PEIMs to possibly quiesce hardware, build handoff information for the next phase of
execution, or provide some terminal processing behavior.

GUID

#define EFI _PEI _END OF PEI PHASE PPl _GUI D \
{0x605EA650, O0xC65C, 0x42el, OxBA, 0x80, 0x91, OxA5, \
0x2A, 0xB6, 0x18, 0xC6}

PPI Interface Structure
None.

Description

This PPl isinstalled by the DXE IPL PPI to indicate the end of the PEI usage of memory and
ownership of memory allocation by the DXE phase.

For the BOOT_ON_S3_ RESUME boot made, this PPI isinstalled by the
EFI _PEI _S3 RESUME PPI . S3Rest or eConfi g() (Section 8.6 of the PI1.2 Specification,
Volume 5) just before jump to OS waking vector.

The intended use model is for any agent that needs to do cleanup, such as memory servicesto
convert internal metadata for tracking memory allocation into HOBS, to have some distinguished
point in which to do so. The PEI Memory Services would register for acallback on the installation
of thisPPI.

Status Codes Returned
None.

UEFI Forum, Inc. April 2020 1-92

Platform Initialization Specification, Vol. 1 Architectural PPIs

6.3.3 PEI Reset PPI
EFI_PEI_RESET_PPI (Optional)

Summary

This PPl isinstalled by some platform- or chipset-specific PEIM that abstracts the Reset Service to
other agents.

GUID

#define EFlI _PElI RESET PPl _GUI D\
{Oxef 398d58, 0x9dfd, 0x4103, Oxbf, 0x94, 0x78, O0xc6, \
Oxf4, Oxfe, 0x71, O0x2f}

PPI Interface Structure

typedef struct _EFI_PElI RESET PPl {
EFI _PEI _RESET_SYSTEM Reset System
} EFlI _PEl _RESET PPI;

Parameters
Reset System

A serviceto reset the platform. Seethe Reset Syst em() function description in
“Reset Services’ on page 57.

Description

These services provide asimple reset service. Seethe Reset Syst en() function description for a
description of this service.

6.3.4 PEl Reset2 PPI
EFI_PEI_RESET2_PPI (Optional)
Summary

ThisPPI isinstalled by some platform- or chipset-specific PEIM that abstracts the ability to reset the
platform.

UEFI Forum, Inc. April 2020 1-93

Platform Initialization Specification, Vol. 1 Architectural PPIs

GUID

#define EFl _PEl _RESET2 PPl _GUI D \
{0x6cc45765, Oxcce4d, 0x42fd, \
{0Oxbc, 0x56, 0x1, Oxla, Oxaa, Oxc6, 0xc9, 0xa8}}

PPI Interface Structure

typedef struct _EFI _PEI _RESET2 PPl {
EFl _PElI _RESET2_SYSTEM Reset Syst em
} EFI _PElI _RESET_PPI ;

Parameters
Reset System
A service to reset the platform.

Description

These services provide asimple reset service. Thisisequivalent tothe Reset Syst en() AP call
in the UEFI 2.4 specification.

UEFI Forum, Inc. April 2020 1-94

Platform Initialization Specification, Vol. 1 Architectural PPIs

ResetSystem()

Summary
Resets the entire platform.

Prototype
t ypedef
Va D
(EFI APl *EFI _PElI _RESET2_SYSTEM (
I N EFI _RESET_TYPE Reset Type,

I N EFI _STATUS Reset St at us,
I N U NTN Dat aSi ze,
IN VO D *Reset Dat a OPTI ONAL
)
Parameters.
Reset Type

The type of reset to perform. Type EFl _RESET_TYPE isdefined in “Related
Definitions” below.

Reset St at us

The status code for the reset. If the system reset is part of a normal operation, the
status code would be EFI _SUCCESS. If the system reset is due to some type of
failure the most appropriate EFl Status code would be used.

Dat aSi ze
The size, in bytes, of Reset Dat a.
Reset Dat a

For aReset Type of Ef i Reset Col d, Ef i Reset \\ar m or

Ef i Reset Shut down the data buffer starts with a Null-terminated string,
optionally followed by additional binary data. The string is a description that the caller
may use to further indicate the reason for the system reset. Reset Dat a isonly valid
if Reset St at us issomething other than EFI _ SUCCESS unlessthe Reset Type
isEf i Reset Pl at f or nSpeci f i ¢ whereaminimum amount of Reset Dat a is
aways required.

UEFI Forum, Inc. April 2020 1-95

Platform Initialization Specification, Vol. 1 Architectural PPIs

Related Definitions

//***

/1 EFI _RESET TYPE //

khkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhddrddrdrdrdrdrdrdrdxdxdxdxdxrxdxrxdxrdrdxx*x*x

t ypedef enum {

Ef i Reset Col d,

Ef i Reset Varm

Ef i Reset Shut down,

Ef i Reset Pl at f or nSpeci fic
} EFI _RESET_TYPE;

Description
TheReset Syst en() function resetsthe entire platform, including all processors and devices, and
reboots the system.

Calling thisinterface with Reset Type of Ef i Reset Col d causes a system-wide reset. This sets
al circuitry within the system to itsinitial state. Thistype of reset is asynchronous to system
operation and operates without regard to cycle boundaries. Ef i Reset Col d istantamount to a
system power cycle.

Calling thisinterface with Reset Type of Ef i Reset WAr mcauses a system-wide initialization.
The processors are set to their initial state, and pending cycles are not corrupted. If the system does
not support this reset type, then an Ef i Reset Col d must be performed.

Cdling thisinterface with Reset Type of Ef i Reset Shut down causes the system to enter a
power state equivalent to the ACPI G2/S5 or G3 states. If the system does not support thisreset type,
then when the system is rebooted, it should exhibit the Ef i Reset Col d attributes.

Cdling thisinterface with Reset Ty pe of EfiResetPlatformSpecific causes a system-wide reset.
The exact type of thereset is defined by the EFI _GUI D that follows the Null-terminated Unicode
string passed into Reset Dat a. If the platform does not recognizethe EFI _GUI Din Reset Dat a
the platform must pick a supported reset type to perform.The platform may optionally log the
parameters from any non-normal reset that occurs.

The Reset Syst em() function does not return.

UEFI Forum, Inc. April 2020 1-96

Platform Initialization Specification, Vol. 1 Architectural PPIs

6.3.5 Status Code PPI (Optional)
EFI_PEI_PROGRESS_CODE_PPI (Optional)

Summary

Thisserviceispublished by aPEIM. There can be only oneinstance of this servicein the system. If
there are multiple variable access services, this PEIM must multiplex these alternate accessors and
provide this single, read-only service to the other PEIMs and the PEI Foundation. This singleton
nature isimportant because the PEI Foundation will notify when this service isinstalled.

GUID

#define EFl _PEl REPORT PROGRESS CODE PPl _GUI D \
{0x229832d3, 0x7a30, 0x4b36, O0xb8, 0x27, O0xf4, Oxc, \
Oxb7, Oxd4, 0x54, 0x36);

PPI Interface Structure

typedef struct _EFI _PElI PROGRESS CODE PPl {
EFI _PElI _REPORT_STATUS_ CODE Report St at usCode;
} EFI _PEl _PROGRESS_ CODE_PPI ;

Parameters
Report St at usCode

Service that allows PEIMs to report status codes. Seethe Report St at usCode()
function description in “ Status Code Service” on page 53.

Description
Seethe Report St at usCode() function description for adescription of this service.

UEFI Forum, Inc. April 2020 1-97

Platform Initialization Specification, Vol. 1 Architectural PPIs

6.3.6 Security PPI (Optional)
EFI_PEI_SECURITY2_PPI (Optional)

Summary
This PPl isinstalled by some platform PEIM that abstracts the security policy to the PEI Foundation,

namely the case of a PEIM’ s authentication state being returned during the PEI section extraction
process.

GUID
#define EFI _PEI _SECURI TY2_PPI _GU D \
{ OxdcdObe23, 0x9586, 0x40f4, O0xb6, 0x43, 0x6, 0x52, \
0x2c, Oxed, Ox4e, Oxde }

PPI Interface Structure
typedef struct _EFI _PElI _SECURI TY2 PPl {
EFI _PEI _SECURI TY_AUTHENTI CATI ON_STATE Aut henti cati onSt at e;
} EFI _PElI _SECURI TY2_PPI ;

Parameters
Aut henti cati onSt at e

Allows the platform builder to implement a security policy in responseto varying file
authentication states. Seethe Aut hent i cati onSt at e() function description.

Description

This PPl isameans by which the platform builder can indicate aresponse to a PEIM's authentication
state. This can be in the form of arequirement for the PEI Foundation to skip a module using the
Def er Execut i on Boolean output inthe Aut hent i cati onSt at e() member function.
Alternately, the Security PPI can invoke something like a cryptographic PPI that hashes the PEIM
contentsto log attestations, for which the Fi | eHandl e parameter in

Aut henti cati onSt at e() will beuseful. If this PPl does not exist, PEIMswill be considered
trusted.

UEFI Forum, Inc. April 2020 1-98

Platform Initialization Specification, Vol. 1 Architectural PPIs

EFI_PEI_SECURITY2_PPIl.AuthenticationState()

Summary
Allows the platform builder to implement a security policy in response to varying file authentication
states.
Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _SECURI TY_AUTHENTI CATI ON_STATE) (
I N CONST EFI _PEI _SERVI CES ** Pej Servi ces,
I N CONST EFI _PEI _SECURI TY2_PPI *Thi s,
I N U NT32 Aut hent i cati onSt at us,
I N EFI _PElI _FV_HANDLE FvHandl e,
I N EFI _PEI _FI LE_HANDLE Fi | eHandl e,
I N OQUT BOOLEAN *Def er Execut i on
)
Parameters

Pei Servi ces
Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Interface pointer that implements the particular EFI _PEI _SECURI TY2_PPI
instance.
Aut henti cati onSt at us
Authentication status of the file.
FvHandl e

Handle of the volume in which the fileresides. Type EFI _PEI _FV_HANDLE is
defined in Ff sFi ndNext Vol urre. This allows different policies depending on
different firmware volumes.

Fi | eHandl e

Handle of the file under review. TypeEFI _PElI FI LE HANDLE isdefined in
Ff sFi ndNext Fi | e.

Def er Execut i on
Pointer to avariable that alerts the PElI Foundation to defer execution of a PEIM.

Description

This service is published by some platform PEIM. The purpose of this serviceisto expose a given
platform's policy-based response to the PEI Foundation. For example, if thereisaPEIM ina
GUIDed encapsulation section and the extraction of the PEI file section yields an authentication
failure, thereisno a priori policy in the PEI Foundation. Specifically, this situation leads to the

UEFI Forum, Inc. April 2020 1-99

Platform Initialization Specification, Vol. 1 Architectural PPIs

guestion whether PEIMs that are either not in GUIDed sections or are in sections whose
authentication fails should still be executed.

Infact, it isthe responsibility of the platform builder to make this decision. This platform-scoped
policy isaresult that a desktop system might not be able to skip or not execute PEIMs because the
skipped PEIM could be the agent that initializes main memory. Alternately, a system may require
that unsigned PEIMs not be executed under any circumstances. In either case, the PEI Foundation
simply multiplexes access to the Section Extraction PPl and the Security PPI. The Section
Extraction PPl determines the contents of a section, and the Security PPI tells the PEI Foundation
whether or not to invoke the PEIM.

The PEIM that publishesthe Aut hent i cati onSt at e() service usesits parametersin the
following ways:

* AuthenticationSt at us conveys the source information upon which the PEIM acts.
» TheDef er Execut i on value tells the PEI Foundation whether or not to dispatch the PEIM.

In addition, between receiving the Aut hent i cat i onSt at e() from the PEl Foundation and
returning with the Def er Execut i on value, the PEIM that publishes
Aut henti cati onSt at e() can do the following:

* Logthefile state.
* Lock thefirmware hubsin response to an unsigned PEIM being discovered.
These latter behaviors are platform- and market-specific and thus outside the scope of the PEI CIS.

Status Codes Returned

EFI_SUCCESS The service performed its action successfully.
EFI_SECURITY_VIOLATION The object cannot be trusted

6.3.7 Temporary RAM Support PPI (Optional)
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI (Optional)

Summary

This service alows for migrating from some contents of Temporary RAM store, which is
instantiated during the SEC phase, into permanent RAM. The latter store will persist unmodified
into the subsequent phase of execution, such as DXE. This service may be published by the SEC as
part of the SEC-to-PEI handoff or published by any other PEIM.

UEFI Forum, Inc. April 2020 1-100

Platform Initialization Specification, Vol. 1 Architectural PPIs

GUID
#define EFl _PEl _TEMPORARY_RAM SUPPORT PPl _GUID \
{O0xdbe23aa9, 0xa345, 0x4b97,\
0x85, 0xb6, O0xb2, 0x26, Oxfl, 0x61, 0x73, 0x89}

Prototype
typedef struct _EFI _PEI _TEMPORARY_RAM SUPPORT PPl {
TEMPORARY_RAM M GRATI ON Tenpor ar yRamM gr ati on;

} EFl _PEl _TEMPORARY_RAM SUPPORT_PPI ;

Parameters
Tenpor aryRanmM grati on

Perform the migration of contents of Temporary RAM to Permanent RAM. This
service may terminate the Temporary RAM, for example, if it cannot coexist with the
Permanent RAM. Seethe Tenpor ar yRamM gr ati on() function description.

Description

This service abstracts the ability to migrate contents of the platform early memory store. Thisisan
optional PPI that is only required for platforms that may have side effects when both Temporary
RAM and Permanent RAM are enabled. This PPl provides a service that orchestrates the complete
transition from Temporary RAM to Permanent RAM that avoids side effects. Thisincludes the
migration of all data, a stack switch action, and possibly the disabling of Temporary RAM.

If aplatform does not have any side effects when both Temporary RAM and Permanent RAM are
enabled, and the platform is required to disable the use of Temporary RAM, then
EFl _PElI _TEMPORARY_RAM DONE should be produced.

If aplatform does not have any side effects when both Temporary RAM and Permanent RAM are
enabled, and the platform is not required to disable the use of Temporary RAM, then neither

EFl _PEl _TEMPORARY_ RAM DONEnor EFI _PElI _TEMPORARY RAM SUPPORT _PPI should
be produced.

UEFI Forum, Inc. April 2020 1-101

Platform Initialization Specification, Vol. 1 Architectural PPIs

EFI_PEI_TEMPORARY_RAM_SUPPORT_PPlL.TemporaryRamMigration
0

Summary

Thisserviceof theEFI _PElI _ TEMPORARY _RAM SUPPORT_PPI that migrates temporary RAM
into permanent memory.

Prototype
t ypedef
EFlI _STATUS
(EFI APl * TEMPORARY_RAM M GRATI ON) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,

I N EFI _PHYSI CAL_ADDRESS Tenpor ar yMenor yBase,
I N EFI _PHYSI CAL_ADDRESS Per manent Menor yBase,
[N U NTN CopySi ze
);
Parameters

Pei Ser vi ces
Pointer to the PEI Services Table.
Tenpor ar yMenor yBase

Source Address in temporary memory from which the SEC or PEIM will copy the
Temporary RAM contents.

Per manent Menor yBase

Destination Addressin permanent memory into which the SEC or PEIM will copy the
Temporary RAM contents.

CopySi ze
Amount of memory to migrate from temporary to permanent memory.

Description

This service is published by the SEC module or aPEIM. It migrates the Temporary RAM contents
into Permanent RAMRAM and performs all actions required to switch the active stack from
Temporary RAM to Permanent RAM. The address range from Per manent Menor yBase to

Per manent Menor yBase + CopySi ze should fix within the range of memory provided to the
PEI Foundation as part of thel nst al | Pei Menor y() core services. Also, since the SEC may
have sequestered some of the Temporary RAM for its own data storage and PPI’ s, the SEC handoff
now includes addresses and sizes of both the "available" (Pei Tenpor ar yRanBase/

Pei Tenpor ar yRansi ze) and "total” (Tenpor ar yRanBase/Tenpor ar yRanti ze)
Temporary RAM as separate numbers.

Pei Tenpor ar yRanBase isused by the PEI foundation for its resource management;

Tenpor ar yRanmBase isused by the foundation as an input to this

Tenpor ar yRamM gr ati on() servicecall. Assuch, the PEI foundation isthe only agent who
knows the full extent of the Temporary RAM store that needs migration to Permanent RAM. It will

UEFI Forum, Inc. April 2020 1-102

Platform Initialization Specification, Vol. 1 Architectural PPIs

usethisfull extent asthe Copy Si ze argument in this PPl invocation. At minimum, the CopySi ze
must include the portion of the Temporary RAM used by the SEC.

The PEI Foundation implementation will invoke this PPl service Tenpor ar yRanM grati on(),
if present, after | nst al | Pei Menory() isinvoked.

EFlI _PEI _PERMANENT _MEMORY_| NSTALLED PPI isinstaled after the PPl service
Tenpor ar yRamM gr at i on() isinvoked, providing a signal to PEIMs that permanent memory
isavailable.

If the EFI _PEI _ TEMPORARY_RAM SUPPORT_PPI serviceis not available, a PEI foundation

implementation shall copy the contents of the Temporary RAM to Permanent RAM directly and
perform the stack switch action. Thelack of this PPl is not an error condition.

The stack switch action, namely the beginning of usage of the permanent RAM as stack in lieu of the
temporary RAM stack, is an integral capability of any PEI foundation implementation and need not
have an API in this PPI or any other to externally-installed abstraction.

Status Codes Returned

EFI_SUCCESS The data was successfully returned.

EFI_INVALID_PARAMETER PermanentMemoryBase + CopySize >
TemporaryMemoryBase when TemporaryMemoryBase >
PermanentMemoryBase.

6.3.8 Temporary RAM Done PPI (Optional)
EFI_PEI_TEMPORARY_RAM_DONE_PPI (Optional)

Summary
The PPI that provides a service to disable the use of Temporary RAM.

GUID
#defi ne EFl _PEI TEMPORARY RAM DONE PPl _GUI D \
{ Oxceab683c, 0Oxec56, O0x4az2d, \
{ O0xa9, O0x6, 0x40, 0x53, Oxfa, Ox4e, 0x9c, 0x16 } }

Protocol Interface Structure
typedef struct _EFlI _PEl _TEMPORARY RAM DONE PPl {
EFI _PEl _TEMPORARY_RAM DONE Tenpor ar yRanDone;
} EFl _PEl _TEMPORARY_RAM DONE_PPI ;

Parameters
Tenpor ar yRanDone
Disable the use of Temporary RAM.

UEFI Forum, Inc. April 2020 1-103

Platform Initialization Specification, Vol. 1 Architectural PPIs

Description
Thisis an optional PPl that may be produced by SEC or aPEIM. If present, it provide a service to
disable the use of Temporary RAM. This service may only be called by the PEI Foundation after the
transition from Temporary RAM to Permanent RAM is complete. This PPl provides an alternative
to the Temporary RAM Migration PPl for system architectures that allow Temporary RAM and
Permanent RAM to be enabled and accessed at the same time with no side effects.

UEFI Forum, Inc. April 2020 1-104

Platform Initialization Specification, Vol. 1 Architectural PPIs

EFI_PEI_TEMPORARY_RAM_DONE_PPI.TemporaryRamDone ()

Summary
Disable the use of Temporary RAM.

Prototype
t ypedef
EFl _STATUS
(EFI APl * EFI _PElI _TEMPORARY_RAM DONE) (
VO

)E

Description

Tenpor ar yRanmDone() disablesthe use of Temporary RAM. If present, this service isinvoked
by the PEI Foundation after the EFI _PEI _ PERMANANT _MEMORY _| NSTALLED PPI is
installed.

Status Codes Returned

EFI_SUCCESS Use of Temporary RAM was disabled.
EFI_DEVICE_ERROR Temporary RAM could not be disabled.

6.3.9 EFI_PEl_CORE_FV_LOCATION_PPI

Summary
Indicates to the PEI Foundation which Firmware Volume contains the PEl Foundation.

UEFI Forum, Inc. April 2020 1-105

Platform Initialization Specification, Vol. 1 Architectural PPIs

GUID

#define EFI _PEl _CORE_FV_LOCATION_GUI D \
{0x52888eae, 0x5b10, 0x47d0, \
{0xa8, O0x7f, 0xb8, 0x22, Oxab, O0xa0O, Oxca, Oxf4}}

Prototype
typedef struct {
VA D *Pei Cor eFvLocati on;
} EFI _PElI _CORE_FV_LOCATI ON_PPI ;
Parameters
Pei Cor eFvLocati on Points to the first byte of the firmware
volume which contains the PEI
Foundation.
Description

PI Specification 1.6 and earlier versions required that the PEI Foundation reside in
the Boot Firmware Volume (BFV). This allowed the PEI Foundation to assume that
it can locate itself within the BFV. This assumption is no longer valid. As the PI
Specification no longer defines a mechanism for the PEI Foundation to locate itself,
a new method is needed. Specifically, the PEI Core can use the

EFI _PEI _CORE_FV_LOCATI ON_PPI to ascertain its containing firmware volume
location.

Specifically, if the PEI Foundation does not reside in the BFV, then SEC must pass
the EFI _PEI _CORE_FV_LOCATI ON_PPI as a part of the PPI list provided to the PEI
Foundation Entry Point. If this PPI is not present in the PPI list, the PEI Foundation
shall assume that it resides within the BFV.

The PEI Foundation will use the EFI _PEI _CORE_FV_LOCATI ON_PPI for purposes of

module dispatch if it exists. If it does not exist, the Boot Fi r nwar eVol une base in
EFI _SEC PEI _HAND_ OFF will be used.

UEFI Forum, Inc. April 2020 1-106

Platform Initialization Specification, Vol. 1

/7 PEIMs

7.1 Introduction

A Pre-EFI Initialization Module (PEIM) represents a unit of code and/or data. It abstracts domain-
specific logic and is analogous to a DXE driver. Assuch, agiven group of PEIMsfor aplatform
deployment might include a set of the following:

» Platform-specific PEIMs

» Processor-specific PEIMs

» Chipset-specific PEIMs

» PEI CIS—prescribed architectural PEIMs
* Miscellaneous PEIMs

The PEIM encapsulation allows for a platform builder to use services for a given hardware
technology without having to build the source of this technology or necessarily understand its
implementation. A PEIM-to-PEIM Interface (PPl) is the means by which to abstract hardware-
specific complexities to aplatform builder's PEIM. As such, PEIMs can work in concert with other
PEIMs using PPIs.

In addition, PEIMs can ascertain a fixed set of services that are always available through the PEI
Services Table.

Finally, because the PEIM represents the basic unit of execution beyond the Security (SEC) phase
and the PEI Foundation, there will always be some non-zero-sized collection of PEIMsin a
platform.

7.2 PEIM Structure

7.2.1 PEIM Structure Overview
Each PEI Module (PEIM) is stored in afile. It consists of the following:
» Standard header
» Execute-in-place code/data section
* Optiona relocation information
* Authentication information, if present

The PEIM binary image can be executed in place from its location in the firmware volume (FV) or
from a compressed component that will be shadowed after permanent memory has been installed.
The executabl e section of the PEIM may be either position-dependent or position-independent code.
If the executable section of the PEIM is position-dependent code, rel ocation information must be
provided in the PEIM imageto alow FV store software to relocate the image to a different location
than it is compiled.

Figure 1-2 depicts the typical layout of a PEIM.

UEFI Forum, Inc. April 2020 1-107

Platform Initialization Specification, Vol. 1 PEIMs

Firmmaare File

Header, Type PEIM
| "/’/(Dr’ CDme]

Optional ’ |
|

Marme
| p— SECTON Type PEGZ

p— S ection Type Mame Section

FEl Mame Information

PE32+ File
Optional | | Section Type PEI_DEFEX
DEFEX | | DEPEX Section

Figure 1-2: Typical PEIM Layout in a Firmware File
7.2.2 Relocation Information

7.2.2.1 Position-Dependent Code

PEIMs that are developed using position-dependent code require relocation information. When an
imagein afirmware volume (FV) is updated, the update software will use the rel ocation information
to fix the code image according to the modul€’ s location in the FV. The relocation is done on the
authenticated image; therefore, software verifying the integrity of the image must undo the
relocation during the verification process.

There isno explicit pointer to thisdata. Instead, the update and verification tool will know that the
image is actually stored as PE32 if the Pe321 nage bit is set in the header

EFI _COVMON_SECTI ON_HEADER or EFI _COVMON_SECTI ON_HEADERZ; types

EFI _COMVON_SECTI ON_HEADER and EFI _ COMMON_SECTI ON_HEADER? are defined in the
Platform Initialization Specification, Volume 3. The PE32 specification, in turn, will be used to
ascertain the relocation records.

7.2.2.2 Position-Independent Code

If the PEIM iswritten in position-independent code, then its entry point shall be at the lowest
address in the section. This method is useful for creating PEIMs for the Itaniume processor family.

7.2.2.3 Relocation Information Format

The relocations will be contained in a TE or PE32+ image. See the Microsoft Portable Executable
and Common Object File Format Specification for more information. The determination of whether

UEFI Forum, Inc. April 2020 1-108

Platform Initialization Specification, Vol. 1 PEIMs

the image subscribes to the PE32 image format or is position-independent assembly languageis
provided by the firmware volume section type. The PEIM that isformatted as PE/COFF will aways
be linked against a base address of zero. This allows for support of signature checking.

The section may also be compressed if there is a compression encapsul ation section.

7.2.3 Authentication Information

This section describes in more detail, the means by which authentication information could be
contained in a section of type EFI _SECTI ON_GUI D_DEFI NED (see the Platform Initialization
Foecification, Volume 3, for more information on section types). The information contained in this
section could be one of the following:

* A cryptographic-quality hash computed across the PEIM image
* A simple checksum
« ACRC

The GUID defines the meaning of the associated encapsulated data. The relocation section is
needed to undo the fix-ups done on the image so the hash that was computed at build time can be
confirmed. In other words, the build of aPEIM image is linked against zero, but the update tool will
relocate the PEIM image for its execute-in-place address (at least for images that are not position-
independent code). Any signing information is calculated on the image after the image has been
linked against an address of zero. The relocations on the image will have to be “undone” to
determine if the image has been modified.

The image must be linked against address zero by the PEIM provider. The build or update tool will
apply the appropriate relocations. The linkage against address zero is key because it allows a
subseguent undoing of the relocations.

7.3 PEIM Invocation Entry Point

7.3.1 EFI_PEIM_ENTRY_POINT2

Summary
The PEI Dispatcher will invoke each PEIM onetime.

UEFI Forum, Inc. April 2020 1-109

Platform Initialization Specification, Vol. 1 PEIMs

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI M_ENTRY_PQO NT2) (
I N EFI _PEI _FI LE_HANDLE Fi | eHandl e,
I N CONST EFI _PElI _SERVI CES ** Pei Servi ces
);

Parameters
Fi | eHandl e

Handle of thefile being invoked. Type EFI _PEI _FI LE_HANDLE isdefined in
Ff sFi ndNext Fi l e() .

Pei Servi ces
Describesthe list of possible PEI Services.

Description

Thisfunction isthe entry point for aPEIM. EFI _| MAGE_ENTRY_PO NT2 isthe equivalent of
this state in the UEFI/DXE environment; see the DXE CIS for its definition.

The motivation behind this definition isthat the firmware file system has the provision to mark afile
as being both a PEIM and DXE driver. The result of this name would be that both the PEI
Dispatcher and the DXE Dispatcher would attempt to execute the module. In doing o, it is
incumbent upon the code in the entry point of the driver to decide what services are exposed, namely
whether to make boot service and runtime callsinto the UEFI System Table or to make callsinto the
PEI Services Table. The means by which to make this decision entail examining the second
argument on entry, which isa pointer to the respective foundation's exported service-call table. Both
PEI and UEFI/DXE have acommon header, EFI _ TABLE HEADER, for thetable. The codein the
PEIM or DXE driver will examinethe Ar g2- >Hdr - >Si gnat ure. Ifitis

EFI _SYSTEM TABLE_SI GNATURE, the code will assume DXE driver behavior; if itis

PEI _SERVI CES_SI GNATURE, the code will assume PEIM behavior.

Status Codes Returned

EFI_SUCCESS The service completed successfully

<0 There was an error

7.4 PEIM Descriptors

7.4.1 PEIM Descriptors Overview

A PEIM descriptor is the data structure used by PEIMsto export service entry points and data. The
descriptor contains the following:

* Hags
* A pointer toaGUID

UEFI Forum, Inc. April 2020 1-110

Platform Initialization Specification, Vol. 1 PEIMs

e A pointer to data

The latter data can include alist of pointers to functions and/or data. It isthe function pointers that
are commonly referred to as PEIM-to-PEIM Interfaces (PPIs), and the PPl isthe unit of software
across which PEIMs can invoke services from other PEIMs.

A PEIM also uses a PEIM descriptor to export a service to the PEI Foundation into which the PEI
Foundation will pass control in response to an event, namely “notifying” the callback when aPPI is
installed or reinstalled. As such, PEIM descriptors serve the dual role of exposing the following:

* A cdlableinterface/datafor other PEIMs
» A callback interface from the perspective of the PEI Foundation

UEFI Forum, Inc. April 2020 1-111

Platform Initialization Specification, Vol. 1 PEIMs

EFI_PEI_DESCRIPTOR

Summary

This data structure is the means by which callable services are installed and notifications are
registered in the PEI phase.

Prototype

t ypedef union {
EFI _PEI _NOTI FY_DESCRI PTOR Noti fy;
EFI _PElI _PPI _DESCRI PTOR Ppi ;

} EFlI _PElI _DESCRI PTOR;

Parameters
Noti fy
The typedef structure of the notification descriptor. Seethe
EFI _PEI _NOTI FY_DESCRI PTOR type definition.
Ppi
The typedef structure of the PPI descriptor. Seethe EFI _PEI _PPI _DESCRI PTOR
type definition.

Description

EFI _PElI DESCRI PTORisadatastructure that can be either a PPl descriptor or a notification
descriptor. A PPI descriptor is used to expose callable services to other PEIMs. A notification
descriptor is used to register for anotification or callback when a given PPl isinstalled.

UEFI Forum, Inc. April 2020 1-112

Platform Initialization Specification, Vol. 1 PEIMs

EFI_PEI_NOTIFY_DESCRIPTOR

Summary
The data structure in a given PEIM that tells the PEI Foundation where to invoke the notification
service.
Prototype
t ypedef struct _EFI_PEl _NOTI FY_DESCRI PTOR {
Ul NTN Fl ags;
EFl _GUI D *Cui d;

EFl _PEI M_NOTI FY_ENTRY_PO NT Not i fy;
} EFI _PEI _NOTI FY_DESCRI PTOR

Parameters
Fl ags
Detailsif the type of notification is callback or dispatch.
Gui d
The address of the EFI _GUI D that names the interface.
Noti fy

Address of the notification callback function itself within the PEIM. Type
EFI _PEI M NOTI FY_ENTRY_PO NT isdefined in “Related Definitions’ below.

Description

EFI _PElI _NOTI FY_DESCRI PTCRis adata structure that is used by a PEIM that needs to be
called back when a PPl isingtalled or reinstalled. The notification is similar to the

Regi st er Prot ocol Noti fy() functioninthe UEFI 2.0 Specification. The use model is
complementary to the dependency expression (depex) and is as follows:

* A PEIM expresses the PPIsthat it must have to execute in its depex list.

» A PEIM expresses any other PEIMs that it needs, perhaps at some later time, in

EFlI _PEI _NOTI FY_DESCRI PTCR.
The latter data structure includes the GUID of the PPI for which the PEIM publishing the
notification would like to be reinvoked.
Following is an example of the notification use model for
EFI _PEI _PERMANENT MEMORY_| NSTALLED PPI . Inthisexample, aPEIM called
SamplePeim executes early in the PEI phase before main memory is available. However,
SamplePeim also needs to create some large data structure later in the PEI phase. Assuch,
SamplePeim hasa NULL depex, but after its entry point is processed, it needs to call
Not i fyPpi () withaEFI _PEI _NOTI FY_DESCRI PTOR, where the notification descriptor
includes the following:

* Areferenceto EFl _PElI _PERVMANENT_MEMORY_| NSTALLED PPI
* A referenceto afunction within this same PEIM called SampleCallback

UEFI Forum, Inc. April 2020 1-113

Platform Initialization Specification, Vol. 1 PEIMs

When the PEI Foundation finally migrates the system from temporary to permanent memory and
installsthe EFI _PEI _ PERMANENT _MEMORY _| NSTALLED PPI , the PEI Foundation assessesiif
there are any pending notifications on this PPI. After the PEI Foundation discovers the descriptor
from SamplePeim, the PEI Foundation invokes SampleCallback.

With respect to the Fl ags parameter, the difference between callback and dispatch modeis as
follows:

» Callback mode: Invokesall of the agents that are registered for notification immediately after
the PPl isinstalled.

» Digpatch mode: Callsthe agentsthat are registered for notification only after the PEIM that
installs the PPI in question has returned to the PEI Foundation.

The callback mechanism will give a better quality of service, but it has the downside of possibly
deepening the use of the stack (i.e., the agent that installed the PPl that engenders the notification is
aPEIM itself that has used the stack already). The dispatcher mode, however, is better from a stack-
usage perspective in that when the PEI Foundation invokes the agents that want notification, the
stack has returned to the minimum stack usage of just the PEI Foundation.

Related Definitions

t ypedef
EFlI _STATUS
(EFI APl *EFI _PEI M_NOTI FY_ENTRY_PQO NT) (
I N EFI _PEI _SERVI CES ** Pej Servi ces,
I N EFI _PEI _NOTI FY_DESCRI PTOR *Not i f yDescri ptor,
IN VO D * Ppi
)

Pei Ser vi ces
Indirect reference to the PEI Services Table.
Not i f yDescri pt or

Address of the notification descriptor data structure. Type
EFI _PEI _NOTI FY_DESCRI PTCRis defined above.

Ppi
Address of the PPI that was installed.

The status code returned from this function isignored.

UEFI Forum, Inc. April 2020 1-114

Platform Initialization Specification, Vol. 1 PEIMs

EFI_PEI_PPI_DESCRIPTOR

Summary
The data structure through which a PEIM describes available services to the PEI Foundation.

Prototype

t ypedef struct {
Ul NTN Fl ags;
EFl _GUI D *Qui d;
Vva D *Ppi ;
} EFlI _PElI _PPI _DESCRI PTOR;

Parameters
Fl ags

Thisfield isaset of flags describing the characteristics of thisimported table entry.
See “Related Definitions” below for possible flag values.

Gui d
The address of the EFI _GUI D that names the interface.
Ppi
A pointer to the PPI. It contains the information necessary to install a service.

Description
EFI _PElI _PPI _DESCRI PTORisadatastructurethat iswithin the body of a PEIM or created by a
PEIM. It includesthe following:
* Information about the nature of the service
* A referenceto a GUID naming the service
» Anassociated pointer to either afunction or data related to the service
There can be a catenation of one or more of these EFI _PEI _PPI _DESCRI PTCRs. Thefina
descriptor will havethe EFI _PElI PPl _DESCRI PTOR_TERM NATE LI ST flag set to indicate
to the PEI Foundation how many of the descriptors need to be added to the PPI database within the

PEI Foundation. The PEI Services that references this data structure include | nst al | Ppi (),
Rei nstal | Ppi (), andLocat ePpi ().

Related Definitions

/1

/1 PEI PPl Services List Descriptors

11

#define EFlI _PElI PPl _DESCRI PTOR PI C 0x00000001
#defi ne EFI _PElI _PPI _DESCRI PTOR_PPI 0x00000010

#define EFI _PEl PPl _DESCRI PTOR_NOTI FY_CALLBACK 0x00000020
#define EFl _PEl PPl _DESCRI PTOR_NOTI FY_DI SPATCH 0x00000040
#define EFI _PEI PPl _DESCRI PTOR NOTI FY_TYPES 0x00000060

UEFI Forum, Inc. April 2020 1-115

UEFI Forum, Inc.

Platform Initialization Specification, Vol. 1

PEIMs

#define EFI _PElI PPl DESCRI PTOR TERM NATE LI ST 0x80000000
Table 1-16 provides descriptions of the fieldsin the above definition:

Table 1-16: PEI PPI Services List Descriptors

Descriptor
EFI_PEI_PPI_DESCRIPTOR_PIC

EFI_PEI_PPI_DESCRIPTOR_PPI

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_TYPES

EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST

Description

When set to 1, this designates that the PPI
described by the structure is position-independent
code (PIC).

When set to 1, this designates that the PPI
described by this structure is a normal PPI. As
such, it should be callable by the conventional PEI
infrastructure.

When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
callback. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be immediately invoked. The
danger herein is that the callback will inherit
whatever depth had been traversed up to and
including this call.

When set to 1, this flag designates that the service
registered in the descriptor is to be invoked at
dispatch. This means that if the PPI is installed for
which the listener registers a notification, then the
callback routine will be deferred until the PEIM
calling context returns to the PEI Foundation. Prior
to invocation of the next PEIM, the natifications will
be dispatched. The advantage herein is that the
callback will have the maximum available stack
depth as any other PEIM.

When set to 1, this flag designates that this is a
notification-style PPI.

This flag is set to 1 in the last structure entry in the
list of PEI PPI descriptors. This flag is used by the
PEI Foundation Services to know that there are no
additional interfaces to install.

7.5 PEIM-to-PEIM Communication

7.5.1 Overview

PEIMs may invoke other PEIMs. The interfaces themselves are named using GUIDs. Because the
PEIMs may be authored by different organizations at different times and updated at different times,
references to these interfaces cannot be resolved during their execution by referring to the PEI PP
database. The databaseis|oaded and queried using PEI Servicessuch as| nst al | Ppi () and

Locat ePpi ().

April 2020

1-116

Platform Initialization Specification, Vol. 1 PEIMs

7.5.2 Dynamic PPI Discovery

7.5.2.1 PPI Database

The PPI database is a data structure that PEIMs can use to discover what interfaces are available or
to manage a specific interface. The actual layout of the PPl database is opaqueto a PEIM but its
contents can be queried and manipulated using the following PEI Services:

* InstallPpi()

* ReinstallPpi()._
 Locat ePpi ()

* NotifyPpi()

7.5.2.2 Invoking a PPI

When the PEI Foundation examines a PEIM for dispatch eligibility, it examines the dependency
expression section of the firmware file. If there are non-NULL contents, the Reverse Polish
Notation (RPN) expression isevaluated. Any requested PPl GUIDs in this data structure are queried
in the PPI database. The existence in the database of the particular PUSH_GUID depex opcode
leads to this expression evaluating to true.

7.5.2.3 Address Resolution

When a PEIM needs to leverage a PPI, it uses the PEI Foundation Service Locat ePpi () to
discover if an instance of the interface exists. The PEIM could do either of the following:

* Install the PPI in its depex to ensure that its entry point will not be invoked until the needed PPI
isaready installed

» Haveavery thin set of code in its entry point that smply registers a notification on the desired
PPI.

In the case of either the depex or the notification, the Locat ePpi () call will then succeed and the
pointer returned on this call referencesthe EFI _PElI _PPI _DESCRI PTOR. It isthrough this data
structure that the actual code entry point can be discovered. If this PEIM isbeing loaded before
permanent memory isavailable, it will not have resourcesto cache this discovered interface and will
have to search for thisinterface every time it needs to invoke the service.

It should also be noted that you cannot uninstall a PPI, so the services will be left in the database. If
a PPl needs to be shrouded, aversion can be “reinstalled” that just returns failure.

Also, thereis peril in caching a PPl. For example, if you cache a PPl and the producer of the PP
“reingtalls’ it to be something else (i.e., shadows to memory), then you have the possibility that the
agent who cached the data will have “stale” or “illegal” data. For example, imagine the Stall PP,
EFI _PElI _STALL_PPI , relocating itself to memory using the Load File PPI,

EFI _PEI _LOAD FI LE_PPI , and reinstalling the interface for performance considerations. A
way to solve the latter issue, as a platform builder, is by having a different stall PPI for the memory-
based one versus that of the Execute In Place (XIP) one.

UEFI Forum, Inc. April 2020 1-117

Platform Initialization Specification, Vol. 1

8 Additional PPIs

8.1 Introduction

Architectural PPIs described a collection of architecturally required PPIs. These were interfaces
consumed by the PEI Foundation and are not intended to be consumed by other PEIMs.

In addition to these architectural PPIs, however, thereis another name space of PPIsthat are optional
or mandatory for agiven platform. This section describes these additional PPIs:
* Required PPIs:
— CPU I/OPPI
— PCI Configuration PP
— Stall PPI
— PEIl Variable Services
e Optiona PPIs:
— Security (SEC) Platform Information PPI
These shall be referred to asfirst-class PEIM s in some contexts.

8.2 Required Additional PPIs

8.2.1 PCI Configuration PPI (Required)

The PEI phase provides limited support for initializing and configuring PCI devices through the
EFI_PEI_PCl_CFG2_PPI. The PElI module which supports a PCI root bridge may install this PPI to
allow access to the PCI configuration space for a particular PCI segment. The PEI module
responsible for the PCI root bridge representing segment 0 should also install a pointer to the PPI in
the PEI Services Table.

The PEI modules which control devices on segment O may use the pointer provided in the PEI
Services Table. The PEI modulesfor devicesresiding on other segments may find the correct PPI by
iterating through PPI instances using the L ocatePpi() function. For example:

UEFI Forum, Inc. April 2020 1-118

Platform Initialization Specification, Vol. 1

EFlI _STATUS St at us;

Ul NTN | nstance = 0;

EFlI _PEI PPl _DESCRI PTOR *Pci Cf gDescri ptor = NULL;
EFI _PEI _PCl _CFG2_PPI *Pci Cfg = NULL;

/* Loop through all instances of the PPl */

for (;;) {

St at us = Pei Servi ces->Locat ePpi (Pei Servi ces,
&gPei Pci Cf g2Ppi Gui d,
| nst ance,
&Pci Cf gDescri pt or,
(VO D**) &Pci Cfg
);
if (Status != EFI _SUCCESS | |
Pci Cf g- >Segnment == MySegnent) {
br eak;

}

| nst ance++;

}
if (Status == EFI _SUCCESS) ({
...Pci Cfg contains pointer...

}

UEFI Forum, Inc. April 2020

Additional PPIs

1-119

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_PCI_CFG2_PP]

Summary

Provides platform or chipset-specific access to the PCI configuration space for a specific PCI
segment.

Guid
static const EFI_GUID EFl _PEI _PCl_CFG PPl _GUI D = \
{ O0x57a449a, O0x1fdc, O0x4c06, \
{ Oxbf, Oxc9, Oxf5, O0x3f, Ox6a, 0x99, Oxbb, 0x92 }}

Prototype
typedef struct _EFI _PEI _PCl _CF&_PPI {
EFI_PEI _PCl _CF&_PPI 10 Read:;
EFl _PEI _PCl_CF&_PPI IO Wite;
EFI _PEI _PCl _CF&_PPI _RW Modi fy;
Ul NT16 Segnment ;
} EFI _PEI _PCl _CF&_PPI

Parameters
Read

PCI read services. Seethe Read() function description.
Wite

PCI write services. Seethe Wi t e() function description.
Modi fy

PCI read-modify-write services. See the Modi f y() function description.
Segnent

The PCI bus segment which the specified functions will access.

Description

TheEFI _PEI _PCl _CFG&G2_PPI interfaces are used to abstract accesses to the configuration
space of PCI controllers behind a PCI root bridge controller. There can be multiple instances of this
PPl in the system, one for each segment. The pointer to the instance which describes segment O is
installed in the PEI Services Table.

The assignment of segment numbers isimplementation specific.

TheModi fy() service allows for space-efficient implementation of the following common
operations:

* Reading aregister

* Changing some bit fields within the register

» Writing the register value back into the hardware

The Modi fy() serviceisacomposite of the Read() and Wit e() services.

UEFI Forum, Inc. April 2020 1-120

Platform Initialization Specification, Vol. 1

Parameters
Regi st er

Register number in PCI configuration space.

Functi on

Function number in the PCI device (0-7).
Devi ce

Device number in the PCI device (0-31).
Bus

PCI bus number (0-255).
Ext endedRegi st er

Additional PPIs

Register number in PCI configuration space. If thisfield is zero, then Register is used
for the register number. If thisfield is non-zero, then Register isignored and thisfield

is used for the register number.

UEFI Forum, Inc. April 2020

1-121

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_PCI_CFG2_PPI.Read()

Summary
PCI read operation.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _PCl_CFG PPl 10 (
I N CONST EFI _PEI _SERVI CES **Pei Servi ces,

IN CONST EFl_PEI_PCl _CFG2_PPI *This,
IN EFI _PEI_PCl_CFG PPl_WDTH Wdth,

I N U NT64 Addr ess,
IN OUT VA D *Buf f er
),

Parameters

Pei Servi ces

An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
W dt h

The width of the access. Enumerated in bytes. Type

EFI _PEI _PCl _CFG PPl _W DTHisdefined in “Related Definitions’ below.
Addr ess

The physical address of the access. The format of the addressis described by
EFl _PEI _PCl _CFG PPl _PCl _ADDRESS, which isdefined in “Related
Definitions” below.

Buf f er
A pointer to the buffer of data.

Description
TheRead() function readsfrom agiven location in the PCI configuration space.

Related Definitions

//**

/| EFlI _PEI _PCl _CFG PPl _W DTH
//**
t ypedef enum {
Efi Pei Pci CfgWdthuint8 = 0
Ef i Pei Pci Cf gW dt hUi nt 16
Ef i Pei Pci Cf gW dt hUi nt 32
Ef i Pei Pci Cf gW dt hUi nt 64

1,
2,
3

UEFI Forum, Inc. April 2020 1-122

Platform Initialization Specification, Vol. 1 Additional PPIs

Ef i Pei Pci Cf gW dt hiMaxi mum
} EFlI_PElI _PCl _CFG_PPI _W DTH,

//**

/1 EFl_PEl _PCl _CFG PPl _PCl _ADDRESS

//**

typedef struct {

Ul NT8 Regi st er;

Ul NT8 Functi on;

Ul NT8 Devi ce;

Ul NT8 Bus;

Ul NT32 Ext endedRegi st er;

} EFI _PEl _PCl _CFG PPl _PCl _ADDRESS;

Regi st er

8-hit register offset within the PCI configuration space for a given device's function
space.

Functi on

Only the 3 least-significant bits are used to encode one of 8 possible functionswithin a
given device.

Devi ce

Only the 5 least-significant bits are used to encode one of 32 possible devices.
Bus

8-bit value to encode between 0 and 255 buses.
Ext endedRegi st er

Register number in PCI configuration space. If thisfield is zero, then Register is used
for the register number. If thisfield is non-zero, then Register isignored and thisfield
is used for the register number.

#defi ne EFlI _PElI PCl _CFG ADDRESS(bus, dev, func, reg) \
(((bus) << 24) |\
((dev) << 16) | \
((func) << 8) | \
((reg) < 256 ? (reg) : ((UNT64) (reg) << 32)))

Status Codes Returned

EFI_SUCCESS The function completed successfully

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

UEFI Forum, Inc. April 2020 1-123

Platform Initialization Specification, Vol. 1

EFI_PEI_PCI_CFG2_PPI.Write()

Summary
PCI write operation.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _PCl_CFG PPl 10 (
I N CONST EFI _PEI _SERVI CES ** Pej Ser vi ces,

IN CONST EFI_PEI_PCl_CFG2_PPI *This,
IN EFI_PEI_PCl_CFG PPI_WDTH Wdth,

I N U NT64 Addr ess,
IN OUT VA D *Buf f er
),
Parameters

Pei Ser vi ces

Additional PPIs

Anindirect pointer to the PEI Services Table published by the PEI Foundation.

Thi s
Pointer to local datafor the interface.
W dt h
The width of the access. Enumerated in bytes. Type
EFI _PEI _PCl _CFG_PPI _W DTHisdefinedin Read() .
Addr ess
The physical address of the access.
Buf f er
A pointer to the buffer of data.

Description

TheW it e() functionwritesto agiven location in the PCI configuration space.

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

UEFI Forum, Inc. April 2020

1-124

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_PCI_CFG2_PPIl.Modify()

Summary
PCI read-modify-write Operation.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _PCl _CFG PPl _RW (
I N CONST EFI _PEI _SERVI CES ** Pej Ser vi ces,

IN CONST EFI_PEI_PCl_CFG PPl *This,
IN EFl _PEI_PCl_CFG PPI_WDTH Wdth,

I N U NT64 Addr ess,
IN VO D *SetBits,
IN VO D *ClearBits
),
Parameters

Pei Servi ces
Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
W dt h
The width of the access. Enumerated in bytes. Type
EFI _PEl _PCl _CFG PPl _W DTHisdefinedin Read().
Addr ess
The physical address of the access.
SetBits

Points to value to bitwise-OR with the read configuration value. The size of the value
is determined by Width.

ClearBits

Points to the value to negate and bitwise-AND with the read configuration value. The
size of the value is determined by Width.

Description

The Modi f y() function performs a read-modify-write operation on the contents from a given
location in the PCI configuration space.

UEFI Forum, Inc. April 2020 1-125

Platform Initialization Specification, Vol. 1 Additional PPIs

Status Codes Returned

EFI_SUCCESS The function completed successfully.

EFI_DEVICE_ERROR There was a problem with the transaction.

EFI_DEVICE_NOT_READY The device is not capable of supporting the operation at this
time.

8.2.2 Stall PPI (Required)
EFI_PEI_STALL_PPI (Required)

Summary

This PPl isinstalled by some platform or chipset-specific PEIM that abstracts the blocking stall
service to other agents.

GUID

#define EFI _PEl _STALL_PPI_GUI D\
{ Ox1f 4c6f90, Oxb06b, 0x48d8, {0xa2, 0x01, Oxba, Oxe5, \
Oxf 1, Oxcd, 0Ox7d, Ox56} }

PPI Interface Structure

t ypedef

struct _EFlI_PElI STALL PPl {
Ul NTN Resol uti on;
EFl _PEl _STALL Stall;

} EFl_PEl _STALL_PPI;

Parameters
Resol uti on
The resolution in microseconds of the stall services.
St al l
The actual stall procedurecall. SeetheSt al | () function description.

Description
This service provides a simple, blocking stall with platform-specific resolution.

UEFI Forum, Inc. April 2020 1-126

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_STALL_PPI.Stall()

Summary
Blocking stall.

Prototype

t ypedef

EFlI _STATUS

(EFI APl *EFI _PEI _STALL) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
I N CONST EFI _PEI STALL_PPI *Thi s,
I N U NTN M cr oseconds

)

Parameters
Pei Servi ces
Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to the local datafor the interface.
M cr oseconds
Number of microseconds for which to stall.

Description

The St al | () function provides ablocking stall for at least the number of microseconds stipulated
in the final argument of the API.

Status Codes Returned

| EFI_SUCCESS ‘ The service provided at least the required delay.

UEFI Forum, Inc. April 2020 1-127

Platform Initialization Specification, Vol. 1 Additional PPIs

8.2.3 Variable Services PPI (Required)
EFI_PEI_READ_ONLY_VARIABLE2_PPI

Summary
Permits read-only access to the UEFI variable store during the PEI phase.

GUID
#define EFI _PElI READ ONLY_VARI ABLE2 PPI _GUI D \
{ Ox2ah86ef5, Oxecb5, 0x4134, \
Oxb5, 0x56, 0x38, 0x54, Oxca, Ox1f, Oxel, 0xb4 }

Prototype
typedef struct _EFlI_PEl _READ ONLY_VARI ABLE2_PPI {
EFI _PElI _GET_VARI ABLE2 Get Vari abl e;

EFl _PEI _GET_NEXT_VARI ABLE_NAME2 Next Vari abl eNaneg;
} EFl _PEl _READ ONLY_VARI ABLE2_PPI;

Parameters
CGet Vari abl e
A service to read the value of a particular variable using its name.
Next Var i abl eName
Find the next variable name in the variable store.

Description
These services provide alight-weight, read-only variant of the full UEFI variable services.

UEFI Forum, Inc. April 2020 1-128

Platform Initialization Specification, Vol. 1

EFI_PEI_READ_ONLY_VARIABLE2_ PPI.GetVariable

Summary
This service retrieves a variable s value using its name and GUID.

Additional PPIs

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _GET_VARI ABLE2) (
I N CONST EFI _PEl _READ ONLY_VARI ABLE2 PPl *Thi s,
I N CONST CHAR16 *Var i abl eNane,
I N CONST EFI _GUI D *Vari abl eQui d,
ouT Ul NT32 *Attributes, OPTI ONAL
N QUT U NTN *Dat aSi ze,
ouT Vva D *Dat a OPTI ONAL
)
Parameters
Thi s

A pointer to thisinstance of the EFI _PEI _READ ONLY_VARI ABLE2_PPI .

Var i abl eNane
A pointer to a null-terminated string that is the variable’ s name.
Vari abl eGui d

A pointer to an EFI _GUI Dthat isthe variable’s GUID. The combination of

Var i abl eGui d and Var i abl eNane must be unique.
Attributes

If non-NULL, on return, points to the variable' s attributes. See “ Related Definitons’
below for possible attribute values. If not NULL, then Attributesis set on output both
when EFI_SUCCESS and when EFI_BUFFER_TOO_SMALL is returned.

Dat aSi ze

On entry, pointsto the sizein bytes of the Dat a buffer. On return, pointsto the size of

the data returned in Dat a.
Dat a

Points to the buffer which will hold the returned variable value. May be NULL with a

zero Dat aSi ze in order to determine the size of the buffer needed.

Description

Read the specified variable from the UEFI variable store. If the Dat a buffer istoo small to hold the
contents of the variable, the error EFI _ BUFFER_TOO SMALL isreturned and Dat aSi ze isset to

the required buffer size to obtain the data.

UEFI Forum, Inc. April 2020

1-129

Platform Initialization Specification, Vol. 1 Additional PPIs

Status Codes Returned

EFI_SUCCESS The variable was read successfully.
EFI_NOT_FOUND The variable was not found.
EFI_BUFFER_TOO_SMALL The Dat aSi ze is too small for the result. Dat aSi ze has

been updated with the size needed to complete the request. If
At tri but es is not NULL, then the attributes bitmask for
the variable has been stored to the memory location pointed-to
by Attri but es.

EFI_INVALID_PARAMETER Var i abl eNanme is NULL.

EFI_INVALID_PARAMETER Dat aSi ze is NULL.

EFI_INVALID_PARAMETER The Dat aSi ze is not too small and Data is NULL.
EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.
EFI_INVALID_PARAMETER Vari abl eGui dis NULL.

UEFI Forum, Inc. April 2020 1-130

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_READ_ONLY_VARIABLE2 PPI.NextVariableName

Summary
Return the next variable name and GUID.

Prototype
t ypedef
EFl _STATUS
(EFI APl EFI _PEI _GET_NEXT_VARI ABLE_NAME2) (
I N CONST EFI _PElI _READ ONLY_VARI ABLE2_PPI *Thi s,

I N OUT U NTN *Var i abl eNaneSi ze,
IN QUT CHARL6 *Vari abl eNane,
IN OUT EFI _GUI D *Vari abl eGui d
)
Parameters
Thi s

A pointer to thisinstance of the EFI _PElI _READ _ONLY_VARI ABLE2_PPI .
Vari abl eNaneSi ze

On entry, points to the size of the buffer pointed to by Var i abl eNane. On return,
the size of the variable name buffer

Vari abl eNane

On entry, a pointer to a null-terminated string that isthe variable’ sname. On return,
points to the next variable’ s null-terminated name string.

Vari abl eGui d

On entry, apointer to an EFl _GUI Dthat isthe variable’s GUID. On return, a pointer
to the next variable' s GUID.

Description

Thisfunction is called multiple timesto retrieve the Var i abl eNane and Var i abl eCGui d of al
variables currently available in the system. On each call, the previous results are passed into the
interface, and, on return, the interface returns the data for the next interface. When the entire variable
list has been returned, EFI _NOT_FOUND is returned.

Note: If EFI _BUFFER_TOO SMALL is returned, the Var i abl eNane buffer was too small for the
name of the next variable. When such an error occurs, Var i abl eNaneSi ze is updated to
reflect the size of the buffer needed. In all cases when calling Get Next Var i abl eNang() the
Var i abl eNanmeSi ze must not exceed the actual buffer size that was allocated for
Vari abl eNane.

To start the search, anull-terminated string ispassed in Var i abl eName; thatis, Var i abl eNane
isapointer to anull Unicode character. Thisisawaysdone on theinitial call. When
Var i abl eName isapointer to anull Unicode character, Var i abl eGui d isignored.

UEFI Forum, Inc. April 2020 1-131

Platform Initialization Specification, Vol. 1 Additional PPIs

Status Codes Returned

EFI_SUCCESS The variable was read successfully.
EFI_NOT_FOUND The variable could not be found.
EFI_BUFFER_TOO_SMALL The Var i abl eNameSi ze is too small for the resulting

data. Var i abl eNaneSi ze is updated with the size
required for the specified variable.

EFI_INVALID_PARAMETER Var i abl eNane, Vari abl eGui d or
Var i abl eNanmeSi ze is NULL
EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.

UEFI Forum, Inc. April 2020 1-132

Platform Initialization Specification, Vol. 1 Additional PPIs

8.3 Optional Additional PPIs

8.3.1 SEC Platform Information PPI (Optional)
EFI_SEC_PLATFORM_INFORMATION_PPI (Optional)

Summary
This service is the platform information for the PEI Foundation.

GUID
#defi ne EFlI _SEC PLATFORM | NFORVATI ON _GUI D \
{O0x6f 8c2b35, Oxfef4, 0x448d, 0x82, 0x56, Oxel, \
Ox1b, 0x19, 0xd6, 0x10, Ox77}

Prototype
typedef struct _EFI _SEC PLATFORM | NFORMATI ON_PPI {
EFI _SEC_PLATFORM | NFORVATI ON Pl at f or m nf or mati on;

} EFlI _SEC_PLATFORM | NFORMVATI ON_PPI ;

Parameters
Pl at f or M nf or mati on

Conveys state information out of the SEC phase into PEI. Seethe
Pl at f or m nf or mat i on() function description.

Description
This service abstracts platform-specific information.

UEFI Forum, Inc. April 2020 1-133

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_SEC_PLATFORM_INFORMATION_PPI.PlatformInformation()

Summary
This serviceis the single member of the EFI _SEC PLATFORM | NFORVATI ON_PPI that
conveys state information out of the Security (SEC) phase into PEI.

Prototype

t ypedef

EFI _STATUS

(EFI APl *EFI _SEC PLATFORM | NFORMATI ON) (
I N CONST EFI _PEI _SERVI CES ** Pej Servi ces,
I N OQUT Ul NT64 *StructureSi ze,
OUT EFI _SEC PLATFORM | NFORMATI ON_RECORD

*Pl at f orml nf or mat i onRecord

)

Parameters
Pei Servi ces
Pointer to the PEI Services Table.
StructureSi ze
Pointer to the variable describing size of the input buffer.
Pl at f or m nf or mat i onRecord
Pointer tothe EFI _ SEC_PLATFORM | NFORVATI ON_RECORD. Type

EFI _SEC PLATFORM | NFORVATI ON_RECORD s defined in “Related
Definitions’ below.

Description
This serviceis published by the SEC phase. The SEC phase handoff has an optional
EFI _PElI _PPI _DESCRI PTORIigt asitsfinal argument when control is passed from SEC into the
PEI Foundation. As such, if the platform supports the built-in self test (BIST) on 1A-32 Intel

architecture or the PAL-A handoff state for Itanium® architecture, this information is encapsul ated
into the data structure abstracted by this service. Thisinformation is collected for the boot-strap
processor (BSP) on 1A-32, and for Itanium architecture, it is available on al processors that execute
the PEI Foundation.

The motivation for this serviceisthat a specific processor register contains thisinformation for each
microarchitecture, but the PEI CIS avoids using specific processor registers. Instead, the PEI CIS
describes callable interfaces across which dataiis conveyed. As such, this processor state information
that is collected at the reset of the machine is mapped into a common interface. The expectationis
that a manageability agent, such as a platform PEIM that logs information for the platform, would
use this interface to determine the viability of the BSP and possibly select an aternate BSP if there
are significant errors.

UEFI Forum, Inc. April 2020 1-134

Platform Initialization Specification, Vol. 1 Additional PPIs

Related Definitions

//**

/1 EFI _SEC_PLATFORM | NFORVATI ON_RECORD

//**

t ypedef union {

| A32_HANDOFF_STATUS | A32Heal t hFl ags;

X64_HANDOFF_STATUS x64Heal t hFl ags;

| TANI UM _HANDOFF_STATUS I t ani unHeal t hFl ags;
} EFI _SEC_PLATFORM | NFORMATI ON_RECORD;

Heal t hFl ags

Contains information generated by microcode, or hardware, about the state of the
processor upon reset. Type EFI _HEALTH_FLAGS is defined below.

//**

/1 EFl _HEALTH FLAGS

//**

t ypedef union {
struct {

Ul NT32 St at us 2;
Ul NT32 Test ed S
Ul NT32 Reservedl 0 13;
Ul NT32 Vi rtual MenoryUnavai l able : 1;
Ul NT32 | a32Executi onUnavai |l able : 1;
Ul NT32 Fl oati ngPoi nt Unavail able : 1;
Ul NT32 M scFeat ur esUnavai | abl e 1;
Ul NT32 Reserved2 1 12;

} Bits;

Ul NT32 Ui nt 32;

} EFl _HEALTH_FLAGS;

I1A-32 and X64 havethe BIST. See“Hedth Flag Bit Format” on page 236 for more information on
EFI _HEALTH FLAGS.

The following two structures are for |A32 and x64.

typedef EFI _HEALTH FLAGS X64_ HANDOFF_STATUS;
typedef EFI _HEALTH FLAGS | A32_ HANDOFF_STATUS;

Thereisnoinstance of an EFI _SEC PLATFORM | NFORVATI ON_RECORD for the ARM Pl
binding.

For Itanium, the structureis as follows:

For details, see the Itanium Software Devel opers Manual, Volume 2, Rev 2.2, Document Number:
245318-005 (SwDevMan) Section 11.2.2.1 "Definition of SALE_ENTRY State Parameter” as
indicated bel ow.

UEFI Forum, Inc. April 2020 1-135

Platform Initialization Specification, Vol. 1

typedef struct {
Ul NT8 Boot Phase; [/

Additional PPIs

SALE ENTRY state : 3 = Recovery_Check

/1 and 0 = RESET or Norrmal Boot phase.
/'l See 'function' in SwbevMan Fig 11-8 and
/1 Table 11-3.
U NT8 FWstatus; // Firmware status on entry to SALE
/1l See 'Status' in SwbevhMan Fig 11-8 and
/| Table 11-4.
Ul NT16 Reservedl
Ul NT32 Reserved?2;
U NT16 Procld; /'l Geographically significant unique
/'l processor |D assigned by PAL
/1l See 'proc_id in SwbDevMan Fig 11-9
/1 and Table 11-5.
Ul NT16 Reserved3;
U NT8 | dMvask; [l See 'id _mask' in SwDevMan
/1 Fig 11-9 and Table 11-5.
U NT8 Ei dMvask; /1 See 'eid_mask' in SwbDeviMan
/1l Fig 11-9 and Table 11-5
Ul NT16 Reserved4;
Ul NT64 Pal Cal | Addr ess; // Address to make PAL call s.
U NT64 Pal Speci al Addr ess; Il 1f the entry state is
/| RECOVERY_CHECK, this
/'l contains the PAL_RESET
/'l return address, and if entry
/] state is RESET, this contains
/| address for PAL_authentication
/1 call.
Ul NT64 Sel f Test St at us; /1 GR35 from PALE EXIT state,
/]l See 'Self Test State' in
/'l SwbevMan Fig 11-10 and
/| Table 11-6.
Ul NT64 Sel f Test Contr ol ; [l GR37 from PALE EXIT state:

U NT64 MenoryBufferRequired; //

/] See 'Self Test Control
/'l SwDevMan Fig 11-11

See GR38 Reset Layout
/1 in SwDevMan Table 11-2.

in

} | TANI UM _HANDOFF_STATUS
Consult the PALE_RESET Exit State in Software Development Manual for Itanium regarding an

interpretation of these fields.

UEFI Forum, Inc.

April 2020 1-136

Platform Initialization Specification, Vol. 1 Additional PPIs

Status Codes Returned

EFI_SUCCESS The data was successfully returned.

EFI_BUFFER_TOO_SMALL The buffer was too small. The current buffer size needed to
hold the record is returned in St r uct ur eSi ze.

8.3.1.1 SEC Platform Information 2 PPI (Optional)

UEFI Forum, Inc. April 2020 1-137

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_SEC_PLATFORM_INFORMATION2_PPI (Optional)

Summary

This service is the primary handoff state into the PEI Foundation. The Security (SEC) component
creates the early, transitory memory environment and also encapsulates knowledge of at least the
location of the Boot Firmware Volume (BFV).

GUID

#defi ne EFlI _SEC PLATFORM | NFORVATI ON2_GUI D \
{0x9e9f 374b, 0x8f 16, 0x4230,
{ 0x98, 0x24, 0x58, 0x46, Oxee, 0x76, Ox6a, 0x97}};

Prototype

typedef struct _EFI _SEC PLATFORM | NFORMATI ON2_PPI {
EFI _SEC PLATFORM | NFORMVATI ON2 Pl at f or ml nf or mati on2;
} EFI _SEC PLATFORM_ | NFORVATI ON2_PPI ;

Parameters
Pl at f or M nfor mati on2

Conveys state information out of the SEC phase into PEI for many CPU’s. See the
Pl at f or ml nf or mati on2() function description.

Description

This service abstracts platform-specific information for many CPU’s. It isthe multi-processor
equivalent of Pl at f or m nf or mat i on for implementations that synchronize some, if not all
CPU’sin the SEC phase.

UEFI Forum, Inc. April 2020 1-138

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_SEC_PLATFORM_INFORMATIONZ2_PPI.PlatformInformation2()

Summary

This service is the single member of the EFI _SEC PLATFORM | NFORMATI ON2_PPI that
conveys state information out of the Security (SEC) phase into PEI.

Prototype

t ypedef
EFI _STATUS
(EFI APl *EFI _SEC PLATFORM | NFORMATI ON2) (
I N CONST EFI _PEI _SERVI CES **Pei Servi ces,
I N OQUT Ul NT64 *StructureSi ze,
QUT EFI _SEC PLATFORM | NFORMATI ON_RECORD2
*Pl at f or nl nf or mat i onRecor d2

),

Parameters

Pei Servi ces
Pointer to the PEI Services Table.

StructureSi ze
Pointer to the variable describing size of the input buffer.

Pl at f or ml nf or mat i onRecor d2
Pointer tothe EFI _ SEC PLATFORM | NFORVATI ON_RECCORD2. Type
EFI _SEC PLATFORM | NFORMATI ON_RECORD2 isdefined in “Related
Definitions’ below.

Description
This service is published by the SEC phase.

Related Definitions

//**

/1 EFI _SEC_PLATFORM | NFORMATI ON_RECORD2

”**

typedef struct {
Ul NT32 CpuLocati on;
EFI _SEC PLATFORM | NFORMATI ON_RECORD | nf oRecor d;
} EFI _SEC_PLATFORM | NFORVATI ON_CPU;

UEFI Forum, Inc. April 2020 1-139

Platform Initialization Specification, Vol. 1 Additional PPIs

typedef struct {

Ul NT32 Nunmber Of Cpus.

EFI _SEC PLATFORM | NFORMVATI ON_CPU Cpul nstance [1];
} EFl _SEC PLATFORM | NFORVATI ON_ RECORDZ;

The CPU location would be the local API ID.

Status Codes Returned

EFI_SUCCESS The data was successfully returned.

EFl_ BUFFER_TOO_SMALL The buffer was too small. The current buffer size needed to
hold the record is returned in St r uct ur eSi ze.

UEFI Forum, Inc. April 2020 1-140

Platform Initialization Specification, Vol. 1 Additional PPIs

8.3.2 Loaded Image PPI (Optional)
EFI_PEI_LOADED_IMAGE_PPI

Summary
Notifies other drivers of the PEIM being initialized by the PEI Dispatcher.

GUID
#define EFI _PElI LOADED | MAGE PPl _GUI D \
{ Oxclfcd448, 0x6300, 0x4458, \
0xb8, 0x64, 0x28, Oxdf, Ox1l, 0x53, 0x64, Oxbc }

Prototype
t ypedef struct _EFI_PEI _LOADED | MAGE PPI {
EFI _PHYSI CAL_ADDRESS | mageAddr ess,
Ul NT64 | mgeSi ze,
EFI _PEI _FI LE_HANDLE Fi | eHandl e

} EFl _PEl _LOADED | MAGE_PPI ;

Parameters
| mageAddr ess
Address of the image at the address where it will be executed.
| mgeSi ze
Size of theimage asit will be executed.
Fi | eHandl e

File handle from which the image was loaded. Can be NULL, indicating the image
was not loaded from a handle.

Description

Thisinterfaceisinstalled by the PEI Dispatcher after the image has been loaded and after all security
checks have been performed, to notify other PEIMs of the files which are being loaded.

Note: The same PEIM may be initialized twice.
8.3.3 SEC HOB PPI
EFI_SEC_HOB_DATA_PPI

Summary
This PPl alowsthe SEC code to install HOBsinto the HOB list.

UEFI Forum, Inc. April 2020 1-141

Platform Initialization Specification, Vol. 1 Additional PPIs

GUID

#define EFI _SEC HOB_DATA PPl _GUI D \
{Ox3ebdaf 20, 0x6667, 0x40d8,\
{Oxb4, Oxee, Oxf5, 0x99, Ox9a, Oxcl, Oxb7, Ox1f}};

Protocol Interface Structure

typedef struct _EFI _SEC HOB DATA PPl {
EFlI _SEC HOB DATA GET Get Hobs;
} EFlI _SEC HOB _DATA PPI;

Parameters
Get Hobs

Retrieves alist of HOBsto install into the PEI HOB list.

Description
This PPI provides away for the SEC code to pass zero or more HOBsin aHOB list.

UEFI Forum, Inc. April 2020 1-142

Platform Initialization Specification, Vol. 1 Additional PPIs

EFl_SEC_HOB_DATA_PPI.GetHobs()

Summary

Return a pointer to a buffer containing zero or more HOBs that will beinstalled into the PEI HOB
List.

Prototype

EFl _STATUS

(EFI APl *EFI _SEC _HOB_DATA GET) (
IN CONST EFI _SEC HOB DATA PPl *This,
ouT EFl _HOB _GENERI C_HEADER **HobLi st

)

Parameters
Thi s
Pointer tothis PPI structure.
HoblLi st

A pointer to areturned pointer to zero or more HOBs. If no HOBs are to be returned,
then the returned pointer is a pointer to aHOB of type
EFl _HOB TYPE_END OF HOB LI ST.

Description

This function returns a pointer to a pointer to zero or more HOBS, terminated with a HOB of type
El _HOB TYPE_END OF HOB LI ST.

Note: The HobList must not contain a EFI _ HOB_HANDOFF | NFO_TABLE HOB (PHIT) HOB.

Note: The HOBs pointed to by HobList must be formed as described in section 4.5.2 of Volume 3, “HOB
Construction Rules” including the requirement that the list start on an 8-byte boundary.

Status Codes

EFI_SUCCESS This function completed successfully.
EFI_UNSUPPORTED No HOBS are available.

8.3.4 Recovery

This section contains the definitions of the PPIs that are required on platforms that support firmware
recovery. Thetable below explains the organization of this section and lists the PPIs that are defined
in this section.

UEFI Forum, Inc. April 2020 1-143

Platform Initialization Specification, Vol. 1 Additional PPIs

Table 1-17: Organization of the Code Definitions Section

Section Summary PPI Definition

Recovery Module Describes the main Recovery EFI_PEI_RECOVERY_MODULE_PPI

PPI Module PPI.

Device Recovery Describes the Device Recovery EFI_PEI_DEVICE_RECOVERY_MODULE_PPI
Module PPI Module PPI.

Device Recovery Describes the Device Recovery EFI_PEI_RECOVERY_BLOCK_IO_PPI

Block 1/0 PPI Block I/O PPI. This section is

device specific and addresses the
most common form of recovery
media—block I/O devices such
as legacy floppy, CD-ROM, or
IDE devices.

This section also contains the definitions for additional datatypes and structuresthat are subordinate
to the structures in which they are called. The following types or structures can be found in "Related
Definitions" of the parent protocol or function definition:

- EFlI_PEI _BLOCK_| O MEDI A
- EFl_PEl _BLOCK_DEVI CE_TYPE
- EFl_PEl _LBA

8.3.4.1 Recovery Module PPI
EFI_PEI_ RECOVERY_MODULE_PPI

Summary
Finds and loads the recovery files.

GUID

#defi ne EFI _PEl _RECOVERY_MODULE_PPI _GUI D \
{OxFB6D9542, 0x612D, 0x4f45, 0x87, Ox2F, Ox5C, \
OxFF, 0x52, OxE9, 0x3D, OxCF}

PPI Interface Structure

t ypedef struct _EFI _PElI _RECOVERY_MODULE_PPI {
EFl _PEI _LOAD_RECOVERY_CAPSULE LoadRecover yCapsul e;
} EFI _PEl _RECOVERY_MODULE_PPI ;

Parameters
LoadRecover yCapsul e
Loads a DXE binary capsule into memory.

UEFI Forum, Inc. April 2020 1-144

Platform Initialization Specification, Vol. 1 Additional PPIs

Description
This module has many roles and is responsible for the following:

1

© ® N o

10.
11.

12.

13.

14.

Calling the driver recovery PP
EFI _PElI _DEVI CE_RECOVERY_MODULE _PPI . Get Nunmber Recover yCapsul es() to
determine if one or more DXE recovery entities exist.

If no capsules exist, then performing appropriate error handling.

Allocating a buffer of MaxRecover yCapsul eSi ze as determined by
EFl _PEI _DEVI CE_RECOVERY_MODULE_PPI .GCet Recover yCapsul el nfo() or
larger.

Determining the policy in which DXE recovery capsules are |oaded.

Calling the driver recovery PPI
EFI _PElI _DEVI CE_RECOVERY_MODULE PPI . LoadRecover yCapsul e() for capsule
number x.

If the load failed, performing appropriate error handling.
Performing security checks for aloaded DXE recovery capsule.
If the security checks failed, then logging the failure in a data HOB.

If the security checks failed, then determining the next
EFl _PEI _DEVI CE_RECOVERY_MODULE_PPI . LoadRecover yCapsul e() capsule
number; otherwise, go to step 11.

If more DXE recovery capsules exist, then go to step 5; otherwise, perform error handling.

Decomposing the capsule loaded by

EFlI _PElI DEVI CE_RECOVERY_MODULE PPI . LoadRecover yCapsul e() intoits
components. It is assumed that the path parameters are redundant for recovery and Setup
parameters are either redundant or canned.

Invalidating all HOB entries for updateable firmware volume entries. This invalidation prevents
possible errant drivers from being executed.

Updating the HOB table with the recovery DXE firmware volume information generated from
the capsule decomposition.

Returning to the PEI Dispatcher.

UEFI Forum, Inc. April 2020 1-145

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_MODULE_PPIl.LoadRecoveryCapsule()

Summary

Loads a DXE capsule from some media into memory and updates the HOB table with the DXE
firmware volume information.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _LOAD RECOVERY_CAPSULE) (
I N EFI _PEI _SERVI CES ** Pej Servi ces,
IN struct _EFI_PElI _RECOVERY_MODULE PPI *Thi s
)
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PElI _SERVI CES isdefinedin section 3.2.1.

Thi s
Indicatesthe EFI _PElI _RECOVERY_MODULE_PPI instance.
Descri ption

This function, by whatever mechanism, retrieves a DXE capsule from some device
and loads it into memory. Note that the published interfaceis device neutral.

Status Codes Returned

EFI_SUCCESS The capsule was loaded correctly.
EFI_DEVICE_ERROR A device error occurred.
EFI_NOT_FOUND A recovery DXE capsule cannot be found.

8.3.4.2 Device Recovery Module PPI

EFI_PEI_DEVICE_RECOVERY_ MODULE_PPI

Summary

Presents a standard interface to EFI _PEI _ RECOVERY_MODULE_PPI , regardless of the
underlying device(s).

UEFI Forum, Inc. April 2020 1-146

Platform Initialization Specification, Vol. 1 Additional PPIs

GUID

#define EFlI _PElI _DEVI CE_ RECOVERY _MODULE PPI _GU D \
{ OxODE2CE25, O0x446A, 0x45a7, OxBF, 0xC9, 0x37, OxDA, \
0x26, 0x34, 0x4B, 0x37}

PPI Interface Structure

typedef struct _EFI _PEI _DEVI CE_RECOVERY_MODULE PPI {
EFlI _PElI _DEVI CE_GET_NUMBER RECOVERY_CAPSULE
Cet Number Recover yCapsul es;
EFI _PEI _DEVI CE_GET_RECOVERY_CAPSULE | NFO
CGet Recover yCapsul el nf o;
EFI _PElI _DEVI CE_LOAD RECOVERY_CAPSULE
LoadRecover yCapsul e;
} EFI _PEl _DEVI CE_RECOVERY_MODULE_PPI ;

Parameters
Get Nunmber Recover yCapsul es

Returns the number of DXE capsules that were found. See the
Get Nunmber Recover yCapsul es() function description.

Get Recover yCapsul el nfo

Returns the capsule image type and the size of a given image. See the
CGet Recover yCapsul el nf o() function description.

LoadRecover yCapsul e

Loads a DXE capsule into memory. Seethe LoadRecover yCapsul e() function
description.

Description

Therole of this module isto present a standard interface to
EFI _PEI RECOVERY_ MODULE PPI , regardless of the underlying device(s). The interface does
the following:

* Reports the number of recovery DXE capsules that exist on the associated device(s)
* Findsthe regquested firmware binary capsule
* Loadsthat capsule into memory

A device can be either agroup of devices, such asablock device, or anindividual device. The
modul e determines the internal search order, with capsule number 1 as the highest load priority and
number N as the lowest priority.

UEFI Forum, Inc. April 2020 1-147

Platform Initialization Specification, Vol. 1 Additional PPIs

EFlI_PEI_DEVICE_RECOVERY_MODULE_PPI.
GetNumberRecoveryCapsules()

Summary
Returns the number of DXE capsules residing on the device.

Prototype
t ypedef
EFl _STATUS
(EFI APl *EFI _PEI _DEVI CE_GET_NUMBER_RECOVERY_CAPSULE) (
I N EFI _PEI _SERVI CES ** Pej Servi ces,
IN struct _EFI _PEI _DEVI CE_RECOVERY_MODULE PPl *This,
OUT Ul NTN *Nunber Recover yCapsul es
)
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PEI _SERVI CES isdefined in section 3.2.1.

Thi s
Indicatesthe EFlI _PEI _DEVI CE_RECOVERY_MODULE_PPI instance.
Nunber Recover yCapsul es

Pointer to a caller-allocated Ul NTN. On output, * Nunber Recover yCapsul es
containsthe number of recovery capsuleimages availablefor retrieval from this PEIM
instance.

Description

This function, by whatever mechanism, searches for DXE capsules from the associated device and
returns the number and maximum size in bytes of the capsules discovered. Entry 1 is assumed to be
the highest load priority and entry N is assumed to be the lowest priority.

Status Codes Returned

EFI_SUCCESS One or more capsules were discovered.
EFI_DEVICE_ERROR A device error occurred.
EFI_NOT_FOUND A recovery DXE capsule cannot be found.

UEFI Forum, Inc. April 2020 1-148

Platform Initialization Specification, Vol. 1 Additional PPIs

EFlI_PEI_DEVICE_RECOVERY_MODULE_PPI.
GetRecoveryCapsulelnfo()

Summary
Returns the size and type of the requested recovery capsule.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _DEVI CE_GET_RECOVERY_CAPSULE_I NFO) (
IN EFI _PElI SERVI CES ** Pej Servi ces,
IN struct _EFI_PElI _DEVI CE_RECOVERY_MODULE PPl *This,
I N U NTN Capsul el nst ance,
OUT U NTN *Si ze,
QUT EFI _GUI D *Capsul eType
);
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PElI _SERVI CES isdefinedin section 3.2.1.

Thi s
Indicatesthe EFI _PEI DEVI CE_ RECOVERY_ MODULE PPI instance.
Capsul el nst ance

Specifies for which capsule instance to retrieve the information. This parameter must
be between one and the value returned by Get Nunber Recover yCapsul es() in
Nunber Recover yCapsul es.

Si ze
A pointer to acaller-allocated Ul NTN in which the size of the requested recovery
module is returned.

Capsul eType

A pointer to acaller-allocated EFI _GUI Din which the type of the requested recovery
capsule is returned. The semantic meaning of the value returned is defined by the
implementation. Type EFI _GUI Disdefined in

I nstal |l Protocol I nterface() inthe EFl 1.10 Specification.

Description
This function returns the size and type of the capsule specified by Capsulel nstance.

UEFI Forum, Inc. April 2020 1-149

Platform Initialization Specification, Vol. 1

Status Codes Returned

Additional PPIs

EFI_SUCCESS

One or more capsules were discovered.

EFI_DEVICE_ERROR

A device error occurred.

EFI_NOT_FOUND

A recovery DXE capsule cannot be found.

UEFI Forum, Inc.

April 2020

1-150

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule()

Summary
Loads a DXE capsule from some media into memory.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _DEVI CE_LOAD RECOVERY_CAPSULE) (
I N EFI _PElI _SERVI CES ** Pei Ser vi ces,
IN struct _EFI _PEI _DEVI CE_RECOVERY_MODULE_PPI *Thi s,
I N U NTN Capsul el nst ance,
QUT va D *Buf f er
),
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PElI _SERVI CES isdefinedin section 3.2.1.

Thi s

Indicates the EFI _PEI _DEVI CE_RECOVERY_MODULE_PPI instance.
Capsul el nst ance

Specifies which capsule instance to retrieve.
Buf f er

Specifies a caller-allocated buffer in which the requested recovery capsule will be
returned.

Description

This function, by whatever mechanism, retrieves a DXE capsule from some device and loads it into
memory. Note that the published interface is device neutral.

Status Codes Returned

EFI_SUCCESS The capsule was loaded correctly.
EFI_DEVICE_ERROR A device error occurred.
EFI_NOT_FOUND The requested recovery DXE capsule cannot be found.

8.3.4.3 Device Recovery Block I/O PPI

The Recovery Module PPI and the Device Recovery Module PPl subsections earlier in Code
Definitions are device neutral. This section is device specific and addresses the most common form
of recovery media-block 1/0 devices such as legacy floppy, CD-ROM, or IDE devices.

UEFI Forum, Inc. April 2020 1-151

Platform Initialization Specification, Vol. 1 Additional PPIs

The Recovery Block 1/0 PP is used to access block devices. Because the Recovery Block 1/0 PPIs
that are provided by the PEI ATAPI driver and PEI legacy floppy driver are the same, here we define
aset of general PPIs for both driversto use.

EFI_PE|_RECOVERY_BLOCK_lO_PPI

Summary
Provides the services required to access a block 1/0 device during PEI recovery boot mode.

GUID

#define EFl _PEI _RECOVERY_BLOCK | O PPl _GUID \
{ 0x695dBaal, 0x42ee, 0x4c46, 0x80, O0x5c, Ox6e, Oxa6, \
Oxbc, Oxe7, 0x99, O0Oxe3 }

PPI Interface Structure

t ypedef struct _EFI_PEI _RECOVERY_BLOCK | O PPl {
EFI _PEI _GET_NUMBER_BLOCK _DEVI CES Get Nunber O Bl ockDevi ces;
EFl _PElI _GET_DEVI CE_MEDI A | NFORVATI ON
Get Bl ockDevi ceMedi al nf o;
EFI _PEI READ BLOCKS ReadBl ocks;
} EFI _PEl _RECOVERY_BLOCK_| O PPI ;

Parameters
Get Nunber O Bl ockDevi ces

Gets the number of block 1/0 devices that the specific block driver manages. See the
Get Number OF Bl ockDevi ces() function description.

Get Bl ockDevi ceMedi al nfo

Gets the specified media information. Seethe Get Bl ockDevi ceMedi al nf o()
function description.

ReadBl ocks

Reads the requested number of blocks from the specified block device. See the
ReadBl ocks() function description.

Description

This function provides the services that are required to access a block 1/O device during PEI
recovery boot mode.

UEFI Forum, Inc. April 2020 1-152

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_BLOCK _ I0_PPI. GetNumberOfBlockDevices()

Summary
Gets the count of block 1/0O devices that one specific block driver detects.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEl _GET_NUMBER BLOCK_DEVI CES) (
IN EFI _PElI _SERVI CES ** Pej Ser vi ces,
IN struct _EFI _PElI _RECOVERY_BLOCK | O PP *Thi s,
QUT Ul NTN * Nunber Bl ockDevi ces
)
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PElI _SERVI CES isdefinedin section 3.2.1.

Thi s

Indicatesthe EFI _PElI RECOVERY _BLOCK | O PPI instance.
Nunber Bl ockDevi ces

The number of block I/O devices discovered.

Description

Thisfunction is used for getting the count of block I/0 devices that one specific block driver detects.
To the PEI ATAPI driver, it returns the number of al the detected ATAPI devicesit detects during
the enumeration process. To the PEI legacy floppy driver, it returns the number of all the legacy
devicesit finds during its enumeration process. If no deviceis detected, then the function will return
zero.

Status Codes Returned

| EFI_SUCCESS | Operation performed successfully

UEFI Forum, Inc. April 2020 1-153

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_BLOCK I0_PPIl.GetBlockDeviceMedialnfo()

Summary
Gets a block device's mediainformation.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _GET_DEVI CE_MEDI A | NFORMATI ON) (
IN EFI _PElI _SERVI CES ** Pei Servi ces,
IN struct _EFI _PElI RECOVERY_BLOCK | O PPI *Thi s,
I N U NTN Devi cel ndex,
OUT EFI _PEI _BLOCK | O MEDI A *Medi al nf o
)
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFl _PElI _SERVI CES isdefinedin section 3.2.1.

Thi s
Indicatesthe EFI _PElI RECOVERY BLOCK | O PPI instance.

Devi cel ndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block 1/0 PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the

enumeration process. Thisindex isanumber from oneto Nunber Bl ockDevi ces.

Medi al nf o

The media information of the specified block media. Type
EFlI _PElI _BLOCK | O MEDI Aisdefinedin"Related Definitions* below. The caller

is responsible for the ownership of this data structure.

Note: This structure describes an enumeration of possible block device types. This enumeration exists
because no device paths are actually passed across interfaces that describe the type or class of
hardware that is publishing the block 1/O interface. This enumeration will allow for policy decisions
in the Recovery PEIM, such as "Try to recover from legacy floppy first, LS-120 second, CD-ROM
third." If there are multiple partitions abstracted by a given device type, they should be reported in
ascending order; this order also applies to nested partitions, such as legacy MBR, where the
outermost partitions would have precedence in the reporting order. The same logic applies to
systems such as IDE that have precedence relationships like "Master/Slave" or "Primary/
Secondary"; the master device should be reported first, the slave second.

Description
This function will provide the caller with the specified block device's mediainformation. If the
media changes, calling this function will update the mediainformation accordingly.

UEFI Forum, Inc. April 2020 1-154

Platform Initialization Specification, Vol. 1 Additional PPIs

Related Definitions

//***

/1 EFI_PEl _BLOCK_| O MEDI A

//***

t ypedef struct {
EFI _PElI _BLOCK DEVI CE_TYPE Devi ceType;

BOOLEAN Medi aPr esent ;
Ul NTN Last Bl ock;
Ul NTN Bl ockSi ze;

} PEl _BLOCK_| O MEDI A;

DevType

The type of media device being referenced by Devicelndex. Type
EFl _PEl _BLOCK_DEVI CE_TYPE is defined below.

Medi aPr esent

A flag that indicates if mediais present. Thisflag is aways set for nonremovable
media devices.

Last Bl ock

The last logical block that the device supports.
Bl ockSi ze

The size of alogical block in bytes.

//***

/| EFI _PEI _BLOCK_DEVI CE_TYPE
//*********************************~k*************************
typedef enum {
LegacyFl oppy
| deCDROM
| deLS120
UsbMassSt or age
SD
EMVC
Uf sDevi ce
MaxDevi ceType
} EFI _PElI _BLOCK_DEVI CE_TYPE;

o nnnon
OUAWNPFO

Status Codes Returned

EFI_SUCCESS Media information about the specified block device was obtained
successfully.

EFI_DEVICE_ERROR Cannot get the media information due to a hardware error.

UEFI Forum, Inc. April 2020 1-155

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks()

Summary
Reads the requested number of blocks from the specified block device.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _READ BLOCKS) (
IN EFI _PElI _SERVI CES ** Pei Servi ces,
IN struct _EFI _PElI _RECOVERY_BLOCK | O PP *Thi s,
I N U NTN Devi cel ndex,
I N EFI _PEI _LBA St art LBA,
I N U NTN Buf f er Si ze,
QuUT va D *Buf f er
)
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PEI _SERVI CES isdefined in section 3.2.1.

Thi s
Indicatesthe EFI PEI RECOVERY_BLOCK | O PPI instance.
Devi cel ndex

Specifies the block device to which the function wantsto talk. Because the driver that
implements Block I/0 PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the

enumeration process. Thisindex isanumber from oneto Nunber Bl ockDevi ces.

Start LBA

The starting logical block address (LBA) to read from on the device. Type
EFlI _PElI LBA isdefinedin"Related Definitions' below.

Buf f er Si ze
The size of the Buf f er in bytes. This number must be a multiple of the intrinsic
block size of the device.

Buffer

A pointer to the destination buffer for the data. The caller isresponsible for the ownership of the
buffer.

Description

The function reads the requested number of blocks from the device. All the blocks are read, or an
error isreturned. If thereis no mediain the device, the function returns EFI _NO_MEDI A.

UEFI Forum, Inc. April 2020 1-156

Platform Initialization Specification, Vol. 1 Additional PPIs

Related Definitions

//***

/1 EFl _PEl _LBA

//***

typedef Ul NT64 EFl _PEl _LBA;

EFI _PEI _LBAisthe Ul NT64 LBA number.

Status Codes Returned

EFI_SUCCESS The data was read correctly from the device.
EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_INVALID_PARAMETER | The read request contains LBAs that are not valid, or the buffer is not
properly aligned.

EFI_NO_MEDIA There is no media in the device.
EFI_BAD_BUFFER_SIZE The Buf f er Si ze parameter is not a multiple of the intrinsic block size of
the device.

8.3.5 EFI PEI Recovery Block 102 PPI

UEFI Forum, Inc. April 2020 1-157

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_BLOCK_l02_PPI

Summary
Provides the services required to access a block 1/0 device during PEI recovery boot mode.

GUID

#define EFI _PEI _RECOVERY_BLOCK | 2_PPI_GUI D \
{ Ox26ccOf ad, Oxbeb3, 0x478a,\
{ 0x91, Oxb2, Oxc, 0x18, O0x8f, 0x72, 0x61, 0x98 } }

PPI Interface Structure

typedef struct _EFI _PEl RECOVERY BLOCK | 2 PPl {
Ul NT64 Revi si on;
EFI _PEI _GET_NUMBER BLOCK DEVI CES2 Get Number O Bl ockDevi ces;
EFl _PEI _GET_DEVI CE_MEDI A | NFORMATI ON2
Get Bl ockDevi ceMedi al nf o;
EFI _PEI READ BLOCKS2 ReadBl ocks;
} EFl _PEI RECOVERY BLOCK | O2_PPI ;

Parameters
Revi si on

The revision to which the interface adheres. All future revisions must be backwards
compatible.

Get Nunber O Bl ockDevi ces

Gets the number of block I/0 devices that the specific block driver manages. See the
Get Number O Bl ockDevi ces() function description.

Get Bl ockDevi ceMedi al nfo

Gets the specified mediainformation. Seethe Get Bl ockDevi ceMedi al nf o()
function description.

ReadBl ocks

Reads the requested number of blocks from the specified block device. See the
ReadBl ocks() function description.

Related Definitions
#def i ne EFl _PEl RECOVERY_BLOCK | @2_PPI _REVI SI ON 0x00010000

Description

This function provides the services that are required to access a block /O device during PEI
recovery boot mode.

UEFI Forum, Inc. April 2020 1-158

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_BLOCK 102_PPl.GetNumberOfBlockDevices()

Summary
Gets the count of block 1/0O devices that one specific block driver detects.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEl _GET_NUMBER BLOCK_DEVI CES2) (
IN EFI _PElI _SERVI CES ** Pej Ser vi ces,
IN EFlI _PEl _RECOVERY_BLOCK | C2_PPI *Thi s,
QUT Ul NTN *Nunber Bl ockDevi ces
);
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PElI _SERVI CES isdefined inthe Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

Thi s

Indicatesthe EFI _PElI RECOVERY_BLOCK | O PPI instance.
Nunber Bl ockDevi ces

The number of block I/O devices discovered.

Description
Thisfunction is used for getting the count of block 1/0 devicesthat one specific block driver detects.
To the PEI ATAPI driver, it returns the number of al the detected ATAPI devicesit detects during
the enumeration process. To the PEI legacy floppy driver, it returns the number of all the legacy
devicesit finds during its enumeration process. If no deviceis detected, then the function will return
zero.

Status Codes Returned

| EFI_SUCCESS | Operation performed successfully

UEFI Forum, Inc. April 2020 1-159

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_BLOCK 102 _PPIl.GetBlockDeviceMedialnfo()

Summary
Gets a block device' s mediainformation.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _GET_DEVI CE_MEDI A | NFORMATI ON2) (
IN EFI _PElI _SERVI CES ** Pej Servi ces,
I N EFI _PEI RECOVERY_BLOCK | O2_PPI *Thi s,
I N U NTN Devi cel ndex,
OUT EFl _PEI _BLOCK | 2_MEDI A *Medi al nf o
)
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PElI _SERVI CES isdefined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

Thi s
Indicatesthe EFI _PEI RECOVERY_BLOCK | O PPI instance.
Devi cel ndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block 1/0 PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the

enumeration process. Thisindex isanumber from oneto Nunber Bl ockDevi ces.

Medi al nf o

The mediainformation of the specified block media. Type
EFlI _PElI BLOCK | O2_MEDI Aisdefined in “Related Definitions’ below. The
caller isresponsible for the ownership of this data structure.

Note that this structure describes an enumeration of possible block device types. This
enumeration exists because no device paths are actually passed across interfaces that
describe the type or class of hardware that is publishing the block 1/0 interface. This
enumeration will allow for policy decisionsin the Recovery PEIM, such as“Try to
recover from legacy floppy first, USB mass storage device second, CD-ROM third.”
If there are multiple partitions abstracted by a given device type, they should be
reported in ascending order; this order also applies to nested partitions, such aslegacy
MBR, where the outermost partitions would have precedence in the reporting order.
The same logic applies to systems such as | DE that have precedence relationshipslike
“Master/Slave” or “Primary/Secondary” ; the master device should be reported first,
the slave second.

UEFI Forum, Inc. April 2020 1-160

Platform Initialization Specification, Vol. 1 Additional PPIs

Description

This function will provide the caller with the specified block device’s mediainformation. If the
media changes, calling this function will update the media information accordingly.

Related Definitions

//***

/1 EFI _PEI _BLOCK | O2_MEDI A

//*********'k***

t ypedef struct {

Ul NT8 I nterfaceType;
BOOLEAN Renovabl aMedi a;
BOCLEAN Medi aPr esent ;
BOCLEAN ReadOnl y;

Ul NT32 Bl ockSi ze;

EFl _PEl _LBA Last Bl ock;
} PEl_BLOCK_| O2_NEDI A;

I nterfaceType

A type of interface that the device being referenced by Devi cel ndex isattached to.
Thisfield re-uses Messaging Device Path Node sub-type values as defined by Section
“9.3.5 Messaging Device Path” of UEFI Specification. When more than one sub-type
is associated with the interface, sub-type with the smallest number must be used. For

example, | nt er f aceType must be set to 5 for USB devices.

Renovabl aMedi a
A flag that indicates if mediais removable.
Medi aPr esent

A flag that indicates if mediais present. Thisflag is aways set for non-removable
media devices.

ReadOnl y
A flag that indicates if mediais read-only.
Last Bl ock

The last logical block that the device supports.
Bl ockSi ze

The size of alogical block in bytes. Type EFI _PEI _LBA is defined below.

UEFI Forum, Inc. April 2020 1-161

Platform Initialization Specification, Vol. 1 Additional PPIs

Related Definitions

//***

/1 EFl _PEl _LBA

//***

typedef Ul NT64 EFl _PEl _LBA;

EFI _PEI _LBAisthe Ul NT64 LBA number.

Status Codes Returned

EFI_SUCCESS Media information about the specified block device was obtained
successfully.

EFI_DEVICE_ERROR Cannot get the media information due to a hardware error.

UEFI Forum, Inc. April 2020 1-162

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_RECOVERY_BLOCK_I02_PPI.ReadBlocks()

Summary
Reads the requested number of blocks from the specified block device.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEl _READ BLOCKS2) (
IN EFI _PElI _SERVI CES ** Pej Servi ces,
I N EFl _PElI _RECOVERY_BLOCK_| C2_PPI *Thi s,
I N U NTN Devi cel ndex,
I N EFI _PEI _LBA St art LBA,
I N U NTN Buf f er Si ze,
QuUT va D *Buf f er
)
Parameters

Pei Ser vi ces

General-purpose services that are available to every PEIM. Type
EFI _PElI _SERVI CES isdefined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

Thi s
Indicatesthe EFI _PElI _RECOVERY_BLOCK | O_PPI instance.

Devi cel ndex
Specifies the block device to which the function wants to talk. Because the driver that
implements Block 1/0 PPIs will manage multiple block devices, the PPIs that want to

talk to a single device must specify the device index that was assigned during the
enumeration process. Thisindex isanumber from oneto Nunber Bl ockDevi ces.

St art LBA

The starting logical block address (LBA) to read from on the device. Type
EFI _PElI _LBAisdefinedininthe Get Bl ockDevi ceMedi al nf o() function
description.

Buf f er Si ze

The size of the Buf f er in bytes. This number must be a multiple of the intrinsic
block size of the device.

Buf f er

A pointer to the destination buffer for the data. The caller is responsible for the
ownership of the buffer.

UEFI Forum, Inc. April 2020 1-163

Platform Initialization Specification, Vol. 1 Additional PPIs

Description

The function reads the requested number of blocks from the device. All the blocks are read, or an
error isreturned. If there isno mediain the device, the function returns EFI _NO_MEDI A.

Status Codes Returned

EFI_SUCCESS The data was read correctly from the device.
EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_INVALID_PARAMETER | The read request contains LBAs that are not valid, or the buffer is not
properly aligned.

EFI_NO_MEDIA There is no media in the device.

EFI_BAD_BUFFER_SIZE The Buf f er Si ze parameter is not a multiple of the intrinsic block
size of the device.

8.3.6 EFI PEI Vector Handoff Info PPI

UEFI Forum, Inc. April 2020 1-164

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_VECTOR_HANDOFF_INFO_PPI (Optional)

Summary

The PPI that describes an array of interrupt and/or exception vectors that are in use and need to
persist.

GUID
#define EFl _PEl VECTOR HANDOFF | NFO PPl _GUI D \
{ 0x3cd652b4, 0x6d33, Ox4dce, \
{ 0x89, Oxdb, 0x83, Oxdf, 0x97, 0x66, Oxfc, Oxca } }

Protocol Interface Structure
typedef struct _EFI _PEI _VECTOR HANDOFF_| NFO PPI {
EFl _VECTOR _HANDOFF | NFO *|nfo;
} EFl _PElI _VECTOR HANDOFF_| NFO PPI ;

Parameters
I nfo

Pointer to an array of interrupt and /or exception vectors.

Description

Thisisan optional PPI that may be produced by SEC. If present, it provides a description of the
interrupt and/or exception vectors that were established in the SEC Phase and need to persist into
PEI and DXE. ThisPPI isan array of entriesthat isterminated by an entry whose At t ri but e is
setto EFI _VECTOR HANDOFF_LAST_ENTRY.

IfAttri buteissetto EFl _VECTOR HANDOFF_DO_ NOT_HOOK, then the associated handler
for Vect or Number must be preserved in PEI and DXE.

IfAttri buteissetto EFl _VECTOR HANDOFF_HOOK BEFORE, then Vect or Nunber may
be used in PEI and DXE, but new handlers must be invoked prior to when the existing handler is
called.

IfAttri but eissetto EFI _VECTOR HANDOFF_HOOK AFTER, then the associated
Vect or Nunmber may be used in PEI and DXE, but new handlers must be called after the existing
handler is called.

EFlI _PEI VECTOR _HANDOFF_| NFO _PPI _GUI D can also be used in the PEI Phase to build a
GUIDed HOB that containsan array of EFlI _ VECTOR_HANDOFF_| NFOentries that describesthe
interrupt and/or exception vectorsin usein the PEI Phase. Thismay beidentical to the array passed
up from SEC, or it could be an array that is augmented with additional vectors used in PEI Phase.

UEFI Forum, Inc. April 2020 1-165

Platform Initialization Specification, Vol. 1 Additional PPIs

Related Definitions
11
/1l System configuration table entry that points to the table
/1 in case an entity in DXE wi shes to update/change the vector
/1 table contents.
11
[l The table shall be stored in nenory of type
/| Efi Boot Servi cesDat a.
11
#defi ne EFlI _VECTOR_HANDOFF_TABLE GUI D \
{0x996ecllc, 0x5397, O0x4e73, \
{0Oxb5, O0x8f, 0x82, O0x7e, 0x52, 0x90, 0x6d, Oxef}}

typedef struct {
Ul NT32 Vect or Nunber ;
Ul NT32 Attribute;
EFI _GU D Omer;

} EFI _VECTOR_HANDOFF_| NFQ,

Parameters
Vect or Nunber

Theinterrupt or exception vector that isin use and must be preserved.
Attribute

A bitmask that describes the attributes of the interrupt or exception vector.
Omner

The GUID identifies the party who created the entry. For the
EFlI _VECTOR_HANDOFF_ DO NOT_HOCK case, this establishes the single owner.

8.3.7 CPU 1/O PPI (Optional)

EFI_PEI_CPU_IO_PPI (Optional)

If the serviceis not available, the PEI Core service EFI _PEI _CPU_| O_PPI * Cpul o member
functions will have adummy function that return EFI _NOT_AVAI LABLE_YET;

Summary

This PPl isinstalled by some platform or chipset-specific PEIM that abstracts the processor-visible
1/O operations.

UEFI Forum, Inc. April 2020 1-166

Platform Initialization Specification, Vol. 1 Additional PPIs

GUID

#define EFI _PEI _CPU 1O PPl _INSTALLED GU D \
{Oxe6af 1f 7b, Oxfc3f, Ox46da, Oxa8, 0x28, 0xa3, O0xb4, \
0x57, Oxa4, 0x42, 0x82}

Thisisan indicator GUID without any data. It represents the fact that a PEIM has written the
address of the EFI _PEI _CPU_| O PPI intothe EFI _PEI _SERVI CES table.

PPI Interface Structure

t ypedef

struct _EFI _PEI _CPU | O PPI {
EFlI _PElI _CPU_| O PPl _ACCESS Mem
EFlI _PElI _CPU | O PPl _ACCESS | 0;
EFlI _PEI _CPU | O PPl | O READS | oRead8;
EFlI _PEI _CPU | O PPl | O READ16 | oRead16;
EFI _PEI _CPU_ |1 O PPl | O READ32 | oRead32;
EFlI _PEI _CPU_ | O PPl | O READ64 | oRead64;
EFI _PEI _CPU 1O PPl | O WRI TES | oWi t e8;
EFlI _PEI _CPU 1O PPl | O WRI TE16 |oWitel6;
EFI _PEI _CPU 1O PPl | O WRI TE32 | oW it e32;
EFI _PEI _CPU |1 O PPl | O WRI TE64 | oW it e64;
EFlI _PElI _CPU_| O PPl _MEM READ8S MenReads8;
EFlI _PElI _CPU_| O PPl _MEM READ16 MenRead16;
EFlI _PEI _CPU_| O PPl _MEM READ32 MenmRead32;
EFlI _PEI _CPU | O PPl _MEM READG64 MenRead64;
EFlI _PEI _CPU | O PPI _MEM WRI TES MenmWVit e8;
EFlI _PEI _CPU | O PPl _MEM WRI TE16 Memi it el6;
EFlI _PEI _CPU | O PPl _MVEM WRI TE32 MemW it e32;
EFlI _PEI _CPU | O PPl _MEM WRI TE64 MemWV i t e64;

} EFI _PElI _CPU_| O PPI;

Parameters

Mem

Collection of memory-access services. Seethe Men() function description. Type
EFI _PElI _CPU_| O _PPI _ACCESS isdefined in “Related Definitions’ below.

Collection of 1/0-access services. Seethel o() function description. Type
EFlI _PElI _CPU_| O_PPI _ACCESS isdefined in “Related Definitions’ below.

| oRead8
8-hit read service. Seethel oRead8() function description.
| oReadl16
16-bit read service. Seethel oRead16() function description.

UEFI Forum, Inc. April 2020 1-167

Platform Initialization Specification, Vol. 1 Additional PPIs

| oRead32

32-bit read service. Seethel oRead32() function description.
| oRead64

64-bit read service. Seethel oRead64() function description.
loWite8

8-bit write service. Seethel oW it e8() function description.
loWitel6

16-bit write service. Seethel oW it e16() function description.
| oWite32

32-hit write service. Seethel oW it e32() function description.
loWiteb4d

64-bit write service. Seethel oW i t e64() function description.
MenRead8

8-bit read service. Seethe MenmRead8() function description.
MenReadl16

16-bit read service. Seethe MenRead16() function description.
MenRead32

32-bit read service. Seethe MenRead32() function description.
MenRead64

64-bit read service. Seethe MenRead64() function description.
MemNite8

8-bit write service. Seethe MemW i t e8() function description.
MenmWitel6

16-bit write service. Seethe MenmWW it e16() function description.
MemWVite32

32-bit write service. Seethe MemW it e32() function description.
MemVite64

64-bit write service. Seethe MemW i t e64() function description.

Description

ThisPPI provides aset of memory- and |/O-based services. The perspective of the servicesisthat of
the processor, not the bus or system.

UEFI Forum, Inc. April 2020 1-168

Platform Initialization Specification, Vol. 1 Additional PPIs

Related Definitions

//***

/1 EFlI _PEl _CPU | O PPl _ACCESS

//***

t ypedef

struct {
EFlI _PEI _CPU | O PPl | O MEM Read;
EFlI _PEI _CPU | O PPl | O MEM Wite;

} EFlI_PEI _CPU_| O PPl _ACCESS;

Read

This service provides the various modalities of memory and I/O read.
Wite

This service provides the various modalities of memory and 1/0O write.

UEFI Forum, Inc. April 2020 1-169

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.Mem()

Summary
M emory-based access services.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _CPU IO PPl IO MEM (
I N CONST EFI _PEI _SERVI CES ** Pej Ser vi ces,
IN CONST EFI _PEI _CPU_ | O PPI *Thi s,
IN EFI_PEI_CPU | O PPI _W DTH W dt h,
IN Ul NT64 Addr ess,
IN Ul NTN Count ,
IN OUT VvOD *Buf f er
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
W dt h

The width of the access. Enumerated in bytes. Type

EFI _PEI _CPU_I O _PPI _W DTHisdefined in “Related Definitions’ below.
Addr ess

The physical address of the access.
Count

The number of accesses to perform.
Buf f er

A pointer to the buffer of data.

Description
The Men() function providesalist of memory-based accesses.

UEFI Forum, Inc. April 2020 1-170

Platform Initialization Specification, Vol. 1

Related Definitions

Additional PPIs

//***

// EFlI _PEl _CPU IO PPl _W DTH

//***

t ypedef enum {

Ef i Pei Cpul oW dt hUi nt 8,
Ef i Pei Cpul oW dt hUi nt 16,
Ef i Pei Cpul oW dt hUi nt 32,
Ef i Pei Cpul oW dt hUi nt 64,
Ef i Pei Cpul oW dt hFi f oUi nt 8,
Ef i Pei Cpul oW dt hFi f oUi nt 16,
Ef i Pei Cpul oW dt hFi f oUi nt 32,
Ef i Pei Cpul oW dt hFi f oUi nt 64,
Ef i Pei Cpul oW dt hFi | | Ui nt 8,
Ef i Pei Cpul oW dt hFi || Ui nt 16,
Ef i Pei Cpul oW dt hFi | | Ui nt 32,
Ef i Pei Cpul oW dt hFi | | Ui nt 64,
Ef i Pei Cpul oW dt hMaxi mum

} EFI _PElI _CPU_| O PPI _W DTH,;

Status Codes Returned

EFI_SUCCESS

The function completed successfully.

EFI_NOT_YET_AVAILABLE

The service has not been installed.

UEFI Forum, Inc.

April 2020

1-171

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPl.I0()

Summary
1/O-based access services.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEI _CPU IO PPl IO MEM (
I N CONST EFI _PEI _SERVI CES ** Pej Ser vi ces,
IN CONST EFI _PEI _CPU_ | O PPI *Thi s,
IN EFI_PEI_CPU | O PPI _W DTH W dt h,
IN Ul NT64 Addr ess,
IN Ul NTN Count ,
IN OUT VvOD *Buf f er
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
W dt h

The width of the access. Enumerated in bytes. Type

EFI _PEI _CPU_| O PPl _W DTHisdefinedin Men{() .
Addr ess

The physical address of the access.
Count

The number of accesses to perform.
Buf f er

A pointer to the buffer of data.

Description

Thel o() function provides alist of 1/0-based accesses. Input or output data can be found in the
last argument.

Status Codes Returned

EFI_SUCCESS The function completed successfully.
EFI_NOT_YET_AVAILABLE The service has not been installed.

UEFI Forum, Inc. April 2020 1-172

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.loRead8()

Summary
8-bit I/O read operations.

Prototype
t ypedef
Ul NT8
(EFI API *EFI _PEI _CPU_I O PPl _| O READ8) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
Thel oRead8() function returns an 8-bit value from the 1/O space.

UEFI Forum, Inc. April 2020 1-173

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.loRead16()

Summary
16-bit 1/O read operations.

Prototype
t ypedef
Ul NT16
(EFI APl *EFI _PEI _CPU_| O PPl _| O READ16) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
I N Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
Thel oRead16() function returns a 16-bit value from the I/O space.

UEFI Forum, Inc. April 2020 1-174

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.loRead32()

Summary
32-hit 1/0 read operations.

Prototype
t ypedef
Ul NT32
(EFI APl *EFI _PEI _CPU_ | O PPl _| O READ32) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
Thel oRead32() function returns a 32-bit value from the I/O space.

UEFI Forum, Inc. April 2020 1-175

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPIl.loRead64()

Summary
64-bit 1/0 read operations.

Prototype
t ypedef
Ul NT64
(EFI APl *EFI _PEI _CPU_| O PPl _| O READ64) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST_EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
Thel oRead64() function returns a 64-bit value from the I/O space.

UEFI Forum, Inc. April 2020 1-176

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.IoWrite8()

Summary
8-bit I/O write operations.

Prototype
t ypedef
va D
(EFI APl *EFI _PEI _CPU IO PPl | O WRI TE8) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST_EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess,
IN Ul NT8 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
Thel oW it e8() functionwritesan 8-bit value to the I/O space.

UEFI Forum, Inc. April 2020 1-177

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPIl.IoWrite16()

Summary
16-bit 1/0 write operation.

Prototype
t ypedef
va D
(EFI API *EFI _PEI _CPU_I O PPl | O WRI TE16) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess,
IN Ul NT16 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
Thel oW it el6() functionwritesa 16-bit value to the 1/0O space.

UEFI Forum, Inc. April 2020 1-178

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPIl.IoWrite32()

Summary
32-hit 1/0O write operation.

Prototype
t ypedef
va D
(EFI API *EFI _PEI _CPU_I O PPl | O WRI TE32) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess,
IN Ul NT32 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
Thel oW it e32() function writesa 32-bit value to the 1/0O space.

UEFI Forum, Inc. April 2020 1-179

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.IoWrite64()

Summary
64-bit 1/0 write operation.

Prototype
t ypedef
va D
(EFI APl *EFI _PEI _CPU_I O PPl _| O WRI TE64) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess,
IN Ul NT64 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
Thel oW it e64() function writes a64-bit value to the 1/0 space.

UEFI Forum, Inc. April 2020 1-180

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPIl.MemRead8()

Summary
8-bit memory read operations.

Prototype
t ypedef
Ul NT8
(EFI APl *EFI _PEI _CPU_| O PPI _MEM READ8) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
I N Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
The MenRead8() function returns an 8-bit value from the memory space.

UEFI Forum, Inc. April 2020 1-181

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPIl.MemRead16()

Summary
16-bit memory read operations.

Prototype
t ypedef
Ul NT16
(EFI APl *EFI _PElI _CPU | O PPI _MEM READ16) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
The MenRead16() function returns a 16-bit value from the memory space.

UEFI Forum, Inc. April 2020 1-182

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.MemRead32()

Summary
32-bit memory read operations.

Prototype
t ypedef
Ul NT32
(EFI API *EFI _PEI _CPU_I O PPI _MEM READ32) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
I N Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
The MenRead32() function returns a 32-bit value from the memory space.

UEFI Forum, Inc. April 2020 1-183

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPl.MemRead64()

Summary
64-bit memory read operations.

Prototype
t ypedef
Ul NT64
(EFI API *EFI _PEI _CPU_I O PPI _MEM READ64) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
I N Ul NT64 Addr ess
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to local datafor the interface.
Addr ess

The physical address of the access.

Description
The MenRead64() function returns a 64-bit value from the memory space.

UEFI Forum, Inc. April 2020 1-184

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.MemWrite8()

Summary
8-bit memory write operations.

Prototype
t ypedef
va D
(EFI API *EFI _PEI _CPU_I O PPI _MEM WRI TE8) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess,
IN Ul NT8 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
TheMenW i t e8() function writes an 8-bit value to the memory space.

UEFI Forum, Inc. April 2020 1-185

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.MemWrite16()

Summary
16-bit memory write operation.

Prototype
t ypedef
VA D
(EFI APl *EFI _PEI _CPU_| O PPl _MEM WRI TE16) (
I N CONST EFI _PEI _SERVI CES ** Pej Servi ces,

IN CONST EFI_PEI _CPU IO PPl *This,
IN Ul NT64 Addr ess,
IN Ul NT16 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
TheMemWV it e16() function writes a 16-bit value to the memory space.

UEFI Forum, Inc. April 2020 1-186

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPI.MemWrite32()

Summary
32-bit memory write operation.

Prototype
t ypedef
va D
(EFI APl *EFI _PEI _CPU_| O PPI _MEM WRI TE32) (
I N CONST EFI _PEI _SERVI CES ** Pei Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess,
IN Ul NT32 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
TheMenW i t e32() function writes a 32-bit value to the memory space.

UEFI Forum, Inc. April 2020 1-187

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CPU_IO_PPIl.MemWrite64()

Summary
64-bit memory write operation.

Prototype
t ypedef
va D
(EFI APl *EFI _PEI _CPU_I O PPl _| O WRI TE64) (
IN CONST EFI _PEI SERVI CES **Pej Servi ces,
IN CONST EFI _PEI _CPU | O PPI *Thi s,
IN Ul NT64 Addr ess,
IN Ul NT64 Dat a
)
Parameters

Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
Pointer to local datafor the interface.
Addr ess
The physical address of the access.
Dat a
The data to write.

Description
TheMenW i t e64() function writes a 64-bit value to the memory space.

/1

/1 Vector Handoff Info Attri butes

/1

#defi ne EFlI _VECTOR HANDOFF DO NOT_HOOK 0x00000000
#def i ne EFlI _VECTOR HANDOFF HOOK BEFORE 0x00000001
#defi ne EFl _VECTOR HANDOFF HOOK AFTER 0x00000002
#defi ne EFl _VECTOR HANDOFF LAST ENTRY 0x80000000

8.3.8 EFI Pei Capsule PPI

UEFI Forum, Inc. April 2020 1-188

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CAPSULE_PPI (Optional)

Summary
This PPl isinstalled by some platform or chipset-specific PEIM that abstracts handling of UEFI

Capsule processing.

GUID
#define EFl _PEl _CAPSULE_PPI_GUI D \

{O0x3acf 33ee, 0xd892, 0x40f4, \
{0Oxa2, Oxfc, 0x38, 0x54, 0xd2, Oxel, 0x32, 0x3d } }

PPI Interface Structure
t ypedef
struct _EFI _PEI _CAPSULE_PPI ({
EFI _PEI _CAPSULE_CQALESCE Coal esce;
EFl _PEl _CAPSULE_CHECK CAPSULE_UDPATE CheckCapsul eUpdat e;

EFl _PEl _CAPSULE_CREATE_STATE CreateStat e;
} EFl _PEl _CAPSULE_PPI ;

Parameters
Coal esce
Upon determining that there is a capsule to operate on, this service will use a series of
EFlI _CAPSULE BLOCK DESCRI PTOR entriesto determine the current location of
the various capsule fragments and coal esce them into a contiguous region of system

memory.

CheckCapsul eUpdat e
Determine if a capsule needsto be processed. The means by which the presence of a
capsule is determined is platform specific. For example, an implementation could be
driven by the presence of a Capsule EFI Variable containing alist of
EFI _CAPSULE BLOCK DESCRI PTOR entries. If present, return EFlI _ SUCCESS,

otherwise return EFI _NOT_FOUND.

CreateState
The Capsule PPl service that gets called after memory is available. The capsule
coal esce function, which must be called first, returns a base address and size. Oncethe
memory init PEIM has discovered memory, it should call this function and passin the
base address and size returned by the Coalesce() function. Then this function can
create a capsule HOB and return.

Description
This PPl provides several servicesin PEI to work with the underlying capsule capabilities of the

platform. These services include the ability for PEI to coalesce a capsule from a scattered set of
memory locations into a contiguous space in memory, detect if a capsuleis present for

processing, and once memory is available, create aHOB for the capsule.

UEFI Forum, Inc. April 2020 1-189

Platform Initialization Specification, Vol. 1 Additional PPIs

EFlI_PEI CAPSULE_PPIl.Coalesce

Summary
Coalesce the capsule

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _CAPSULE_COALESCE) (
I N EFI _PEI _SERVI CES **Pei Servi ces,

IN QUT VO D **Menor yBase,
N OUT U NTN *MenSi ze
)

Parameters

Pei Servi ces
Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Menor yBase

Pointer to the base of ablock of memory into which the buffers will be coalesced. On
output, this variable will hold the base address of a coalesced capsule.

MenorySi ze
Pointer to loca datafor the interface.

Description

Upon determining that there is a capsule to operate on, this service will use a series of
EFI _CAPSULE BLOCK DESCRI PTOR entriesto determine the current location of the various
capsule fragments and coal esce them into a contiguous region of system memory.

Status Codes Returned

EFI_SUCCESS There was no capsule, or the capsule was processed
successfully.

EFI_NOT_FOUND If: boot mode could not be determined, or the boot mode is not
flash-update, or the capsule descriptors were not found.

EFI_BUFFER_TOO_SMALL The capsule could not be coalesced in the provided memory
region.

UEFI Forum, Inc. April 2020 1-190

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CAPSULE_CHECK_CAPSULE_UDPATE.CheckCapsuleUpdat
e()

Summary
Check the Capsule Update.

Prototype

t ypedef

EFl _STATUS

(EFI APl *EFI _PEI _CAPSULE_CHECK CAPSULE_UPDATE) (
IN EFI _PElI SERVI CES **Pei Services

)

Parameters
Pei Servi ces
An indirect pointer to the PEI Services Table published by the PEI Foundation.

Description

Determineif a capsule needs to be processed. The means by which the presence of acapsuleis
determined is platform specific. For example, an implementation could be driven by the presence of
a Capsule EFI Variable containing alist of EFI _ CAPSULE_BLOCK DESCRI PTOR entries. If
present, return EFI _ SUCCESS, otherwise return EFI _ NOT_FOUND.

Status Codes Returned

EFI_SUCCESS If a capsule is available.
EFI_NOT_FOUND No capsule detected.

UEFI Forum, Inc. April 2020 1-191

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_CAPSULE_CHECK_ CAPSULE_UDPATE.CapsuleCreateState(
)

Summary
Create the Capsule state.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PElI _CAPSULE_CREATE_STATE) (
| N EFI _PEI _SERVI CES **Pei Servi ces,

IN VO D *Capsul eBase,
I N U NTN Capsul eSi ze
)

Parameters

Pei Servi ces

Pointer to the PEI Services Table.
Capsul eBase

Address returned by the capsule coal esce function.
Capsul eSi ze

Value returned by the capsule coalesce function.

Description

The Capsule PPI service that gets called after memory is available. The capsule coalesce function,
which must be called first, returns a base address and size. Once the memory init PEIM has
discovered memory, it should call this function and pass in the base address and size returned by the
Coaesce() function. Then this function can create a capsule HOB and return.

Status Codes Returned

EFI_VOLUME_CORRUPTED Capsul eBase does not appear to point to a coalesced
capsule.
EFI_SUCCESS Capsule HOB was created successfully.

8.3.9 EFI MP Services PPI

UEFI Forum, Inc. April 2020 1-192

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_MP_SERVICES_PPI (Optional)

Summary

This PPl isinstalled by some platform or chipset-specific PEIM that abstracts handling
multiprocessor support.

GUID
#define EFlI _MP_SERVI CES_PPI _GUI D \
{Oxeel6160a, 0Oxe8be, 0x47a6,\
{0x82, Oxa, 0Oxc6, 0x90, Oxd, Oxb0O, 0x25, Oxa } }

PPI Interface Structure
t ypedef
struct _EFI _MP_SERVI CES_PPI {
PEI _MP_SERVI CES GET_NUMBER_OF PROCESSORS
Get Nunber Of Pr ocessor s;
PEI _MP_SERVI CES GET_PROCESSOR | NFO
Get Processor | nf o;
PEI _MP_SERVI CES_STARTUP_ALL_APS
St art upAl | APs;
PEI _MP_SERVI CES STARTUP_THI S_AP
St art upThi sAP;
PElI _MP_SERVI CES _SW TCH BSP
Swi t chBSP;
PElI _MP_SERVI CES ENABLEDI SABLEAP
Enabl eDi sabl eAP;
PEI _MP_SERVI CES VWHOAM
VWhoAM ;
} EFI _MP_SERVI CES_PPI ;

Parameters
Get Nunber O Pr ocessor s

Discover the number of CPU’s
Get Processorinfo
Ascertain information on the CPU’s.
SartupAllAPs
Startup al of the application processors.

SartupThisAP
Startup the specific application processor.
SwitchBSP

Swtich the boot strap processor.

UEFI Forum, Inc. April 2020 1-193

Platform Initialization Specification, Vol. 1 Additional PPIs

WhoAml
Identify the currently executing processor.

Description

When installed, the MP Services Ppi produces a collection of services that are needed for MP
management.

Beforethe Pl event END_OF_PEI issignaled, the module that produces this protocol isrequired to
place al APsinto an idle state whenever the APs are disabled or the APs are not executing code as
requested through the St art upAl | APs() or St art upThi sAP() services. Theidle state of an
AP beforethe Pl event END_OF PEI issignaled isimplementation dependent.

After the Pl event END_OF PEI issignaed, al the APs must be placed in the OS compatible CPU
state as defined by the UEFI Specification. Implementations of this Ppi may use the Pl event
END_OF_PEI to force APsinto the OS compatible state as defined by the UEFI Specification.

The support for Swi t chBSP() and Enabl eDi sabl eAP() may no longer be supported after the
PEI event END_OF_PEI issignaed.

UEFI Forum, Inc. April 2020 1-194

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_MP_SERVICES_ PPIl.GetNumberOfProcessors()

Summary
Get the number of CPU’s

Prototype
t ypedef
EFI _STATUS
(EFI APl PEI _MP_SERVI CES_GET_NUMBER OF PROCESSORS) (
I N CONST EFI _PEI _SERVI CES ** Pej Servi ces,

IN EFI _MP_SERVI CES PPI *Thi s,
OUT U NTN *Nunber Of Processors,
OUT U NTN *Nunber Of Enabl edPr ocessor s
)
Parameters

Pei Servi ces

An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

Pointer to thisinstance of the PPI.
Nunber OF Processor s

Pointer to the total number of logical processorsin the system, including the BSP and
disabled APs.

Nunber OF Enabl edPr ocessor s
Number of processors in the system that are enabled.

Description

This service retrieves the number of logical processor in the platform and the number of those
logical processors that are enabled on this boot. This service may only be called from the BSP.

Thisfunction is used to retrieve the following information:
- The number of logical processors that are present in the system.
- The number of enabled logical processorsin the system at the instant this call is made.

Because MP Service Ppi provides services to enable and disable processors dynamically, the
number of enabled logical processors may vary during the course of a boot session.

If thisserviceiscaled from an AP, then EFI _ DEVI CE_ERROR s returned.

If Number Of Processor s or Nunmber Of Enabl edPr ocessor s isNULL, then

EFI _I NVALI D_PARAMETER isreturned. Otherwise, the total number of processorsisreturned in
Nunmber OF Pr ocessor s, the number of currently enabled processor is returned in

Nunber Of Enabl edPr ocessor s, and EFI _ SUCCESS is returned.

UEFI Forum, Inc. April 2020 1-195

Platform Initialization Specification, Vol. 1

Status Codes Returned

Additional PPIs

EFI_SUCCESS

The number of logical processors and enabled logical
processors was retrieved.

EFI_DEVICE_ERROR

The calling processor is an AP.

EFI_INVALID_PARAMETER

Nunber Of Pr ocessor s is NULL.

EFI_INVALID_PARAMETER

Nunmber OF Enabl edPr ocessors is NULL.

UEFI Forum, Inc.

April 2020

1-196

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_MP_SERVICES_ PPIl.GetProcessorinfo()

Summary
Get information on a specific CPU.

Prototype

t ypedef
EFlI _STATUS
(EFI APl PEI _MP_SERVI CES_GET_PROCESSOR | NFO) (
I N CONST EFI _PEI _SERVI CES ** Pej Servi ces,
IN EFI _MP_SERVI CES PPI *Thi s,
IN U NTN Pr ocessor Nunber,
QUT EFI _PROCESSOR | NFORMATI ON *Pr ocessor | nf oBuf f er

),

Parameters
Pei Ser vi ces

An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

A pointer tothe EFI _MP_SERVI CES_PPI instance.
Processor Nunmber

The handle number of the processor.
Processor | nf oBuf f er

A pointer to the buffer where the processor information is stored.

Description

Gets detailed MP-related information on the requested processor at the instant this call ismade. This
service may only be called from the BSP.

This service retrieves detailed MP-related information about any processor on the platform. Note the
following:

. The processor information may change during the course of a boot session.
. The information presented here is entirely MP related.

Information regarding the number of caches and their sizes, frequency of operation, slot numbersis
al considered platform-related information and is not provided by this service.

Status Codes Returned

EFI_SUCCESS Processor information was returned.
EFI_DEVICE_ERROR The calling processor is an AP.
EFI_INVALID_PARAMETER Processor | nf oBuf f er is NULL.
EFI_NOT_FOUND The processor with the handle specified by
Processor Number does not exist in the platform.

UEFI Forum, Inc. April 2020 1-197

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_MP_SERVICES_PPI.StartupAllAPs ()

Summary
Activate al of the application proessors.

Prototype
t ypedef
EFl _STATUS
(EFI APl *PElI _MP_SERVI CES_STARTUP_ALL_APS) (
I N CONST EFI _PEI _SERVI CES **Pej Servi ces,

IN EFI _MP_SERVI CES PPI *Thi s,
IN EFI _AP_PROCEDURE Procedur e,
IN BOOLEAN Si ngl eThr ead,
IN U NTN Ti meout | nM cr oSeconds,
IN VO D *Pr ocedur eAr gunent OPTI ONAL
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

A pointer to the EFI _MP_SERVI CES_PPI instance.
Procedure

A pointer to the function to be run on enabled APs of the system. See type
EFl _AP_PROCEDURE.

Si ngl eThr ead

If TRUE, then all the enabled APs execute the function specified by Pr ocedur e one
by one, in ascending order of processor handle number. If FALSE, then all the enabled
APs execute the function specified by Pr ocedur e simultaneously.

Ti meout | nM cr oseconds

Indicates the time limit in microseconds for APs to return from Procedure, for
blocking mode only. Zero means infinity. If the timeout expires before all APsreturn
from Pr ocedur e, then Pr ocedur e on thefailed APsisterminated. All enabled
APs are available for next function assigned by

EFI _MP_SERVI CES PPI . St art upAl | APs() or

EFl _MP_SERVI CES PPl . Start upThi SAP().

If the timeout expires in blocking mode, BSP returns EFI _ Tl MEQOUT.
Pr ocedur eAr gunent
The parameter passed into Pr ocedur e for all APs.

UEFI Forum, Inc. April 2020 1-198

Platform Initialization Specification, Vol. 1 Additional PPIs

Description

This service executes a caller provided function on all enabled APs. APs can run either
simultaneously or one at atime in sequence. This service supports both blocking requests only. This
service may only be called from the BSP.

Thisfunction is used to dispatch all the enabled APsto the function specified by Pr ocedur e. If
any enabled AP isbusy, then EFI _NOT _READY isreturned immediately and Pr ocedur e isnot
started on any AP.

If Si ngl eThr ead is TRUE, al the enabled APs execute the function specified by Procedur e
one by one, in ascending order of processor handle number. Otherwise, al the enabled APs execute
the function specified by Pr ocedur e simultaneously.

If the timeout specified by Ti meout | nM cr oseconds expires before al APs return from
Pr ocedur e, then Pr ocedur e onthefailed APsisterminated. All enabled APs are always
available for further callsto EFI _MP_SERVI CES_PPI . St art upAl | APs() and

EFI _MP_SERVI CES PPI . StartupThi sAP() . If Fai | edCpulLi st isnot NULL, its
content pointsto the list of processor handle numbersin which Pr ocedur e was terminated.

Note: Itis the responsibility of the consumer of the EFI _MP_SERVI CES_PPI . St art upAl | APs()
to make sure that the nature of the code that is executed on the BSP and the dispatched APs is
well controlled. The MP Services Ppi does not guarantee that the Pr ocedur e function is MP-
safe. Hence, the tasks that can be run in parallel are limited to certain independent tasks and well-
controlled exclusive code. PEI services and Ppis may not be called by APs unless otherwise
specified.

In blocking execution mode, BSP waits until all APsfinishor Ti meout | nM cr oSeconds
expires.

Status Codes Returned

EFI_SUCCESS In blocking mode, all APs have finished before the timeout
expired.

EFI_DEVICE_ERROR Caller processor is AP.

EFI_NOT_STARTED No enabled APs exist in the system.

EFI_NOT_READY Any enabled APs are busy.

EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs
have finished.

EFI_INVALID_PARAMETER Pr ocedur e is NULL

UEFI Forum, Inc. April 2020 1-199

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_MP_SERVICES_PPI.StartupThisAP ()

Summary
Activate a specific application processor

Prototype
t ypedef
EFI _STATUS
(EFI APl *PElI _MP_SERVI CES_STARTUP_THI S_AP) (
I N CONST EFI _PEI _SERVI CES ** Pej Servi ces,

IN EFI _MP_SERVI CES PPI *Thi s,
IN EFI _AP_PROCEDURE Procedur e,
IN U NTN Pr ocessor Nunber,
I N U NTN Ti meout | nM cr oseconds,
IN VAOD *Pr ocedur eAr gunent OPTI ONAL
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

A pointer to the EFI _MP_SERVI CES_PPI instance.
Procedure

A pointer to thefunctionto berun on enabled APsof the system. Seetype
EFl _AP_PROCEDURE.

Pr ocessor Number

The handle number of the AP. The rangeis from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved by
EFI _MP_SERVI CES PPl . Get Nunber OF Processors().

Ti meout | nM cr osecsond

Indicates the time limit in microseconds for APsto return from Pr ocedur e, for
blocking mode only. Zero means infinity. If the timeout expires before all APs return
from Pr ocedur e, then Pr ocedur e on thefailed APsisterminated. All enabled
APs are available for next function assigned by

EFI _MP_SERVI CES PPI . St art upAl | APs() or

EFl _MP_SERVI CES PPl . Start upThi SAP().

If the timeout expiresin blocking mode, BSP returns EFI _ Tl MEQUT.
Pr ocedur eAr gunrent
The parameter passed into Procedure for al APs.

UEFI Forum, Inc. April 2020 1-200

Platform Initialization Specification, Vol. 1 Additional PPIs

Description
This service lets the caller get one enabled AP to execute a caller-provided function. The caller can
regquest the BSP to wait for the completion of the AP. This service may only be called from the BSP.
Thisfunction is used to dispatch one enabled AP to the function specified by Pr ocedur e passing
in the argument specified by Pr ocedur eAr gunent .

The execution is in blocking mode. The BSP waits until the AP finishes or
Ti meout | nM cr oSecondss expires.

If the timeout specified by Ti meout | nM cr oseconds expires before the AP returns from
Pr ocedur e, then execution of Pr ocedur e by the AP isterminated. The AP is available for
subsequent callsto EFI _MP_SERVI CES _PPI . St art upAl | APs() and

EFI _MP_SERVI CES_PPI . StartupThi sAP().

Status Codes Returned

EFI_SUCCESS In blocking mode, specified AP finished before the timeout
expires.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP
has finished.

EFI_NOT_FOUND The processor with the handle specified by

Pr ocessor Nunber does not exist.

EFI_INVALID_PARAMETER Pr ocessor Nunber specifies the current BSP or a
disabled AP.
EFI_INVALID_PARAMETER Pr ocedur e is NULL

UEFI Forum, Inc. April 2020 1-201

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_MP_SERVICES_PPI.SwitchBSP ()

Summary
Switch the boot strap processor

Prototype
t ypedef

(EFI APl *PElI _MP_SERVI CES SW TCH BSP) (
IN CONST EFI _PElI _SERVI CES **Pei Servi ces,

IN EFI _MP_SERVI CES_PPI *Thi s,
IN U NTN Pr ocessor Nunber,
I N BOCLEAN Enabl ed dBSP
)
Parameters

Pei Servi ces
Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s
A pointer tothe EFI _MP_SERVI CES_PPI instance.
Pr ocessor Nunber

The handle number of AP that isto become the new BSP. The rangeisfrom 0 to the
total number of logical processors minus 1. The total number of logical processors
can beretrieved by EFI _MP_SERVI CES_PPI . Get Nunber Of Processors() .

Enabl ed dBSP

If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be
disabled.

Description
This service switches the requested AP to be the BSP from that point onward.
This service changes the BSP for all purposes.This call can only be performed by the current BSP.

This service switches the requested AP to be the BSP from that point onward. This service changes
the BSP for al purposes. The new BSP can take over the execution of the old BSP and continue
seamlessly from where the old one left off.

If the BSP cannot be switched prior to the return from this service, then EFI _ UNSUPPORTED must
be returned.

UEFI Forum, Inc. April 2020 1-202

Platform Initialization Specification, Vol. 1 Additional PPIs

Status Codes Returned

EFI_SUCCESS BSP successfully switched.

EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service
returning.

EFI_UNSUPPORTED Switching the BSP is not supported.

EFI_DEVICE_ERROR The calling processor is an AP.

EFI_NOT_FOUND The processor with the handle specified by
Pr ocessor Nunber does not exist.

EFI_INVALID_PARAMETER Pr ocessor Nunber specifies the current BSP or a
disabled AP.

EFI_NOT_READY The specified AP is busy.

Summary

Switch the boot strap processor

Prototype
t ypedef
(EFI APl *PElI _MP_SERVI CES_ENABLEDI SABLEAP) (
I N CONST EFI _PEI _SERVI CES ** Pej Servi ces,

IN EFI _MP_SERVI CES_PPI *Thi s,
IN U NTN Pr ocessor Nunber ,
IN BOOLEAN Enabl eAP,
IN Ul NT32 *Heal t hFl ag OPTI ONAL
)
Parameters

Pei Servi ces

An indirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

A pointer tothe EFI _MP_SERVI CES_PPI instance.
Processor Nunmber

The handle number of AP that isto becomethe new BSP. Therangeisfrom O to the
total number of logical processors minus 1. The total number of logical processors
can beretrieved by EFI _MP_SERVI CES_PPI . Get Nunber OF Processors() .

Enabl eAP
Specifies the new state for the processor for enabled, FAL SE for disabled.
Heal t hFl ag

If not NULL, a pointer to avalue that specifies the new health status of the AP. This
flag correspondsto St at usFl ag definedin
EFI _MP_SERVI CES_PPI . Get Processor I nf o() . Only the

UEFI Forum, Inc. April 2020 1-203

Platform Initialization Specification, Vol. 1 Additional PPIs

PROCESSOR _HEALTH STATUS BI T isused. All other bitsare ignored. If itis
NULL, this parameter is ignored.

Description
This service lets the caller enable or disable an AP from this point onward.
This service may only be called from the BSP.

This service allows the caller enable or disable an AP from this point onward. The caller can
optionally specify the health status of the AP by Health. If an AP isbeing disabled, then the state of
the disabled AP isimplementation dependent. If an AP is enabled, then the implementation must
guarantee that a complete initialization sequence is performed on the AP, so the AP isin a state that
is compatible with an MP operating system.

If the enable or disable AP operation cannot be completed prior to the return from this service, then
EFI _ UNSUPPORTED must be returned.

Status Codes Returned

EFI_SUCCESS The specified AP was enabled or disabled successfully.
EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this
service returning.
EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
EFI_DEVICE_ERROR The calling processor is an AP.
EFI_NOT_FOUND Processor with the handle specified by
Pr ocessor Nunber does not exist.
EFI_INVALID_PARAMETER Pr ocessor Number specifies the BSP.

UEFI Forum, Inc. April 2020 1-204

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_MP_SERVICES_PPI.WhoAml ()

Summary
Identify the currently executing processor.

Prototype
t ypedef
EFI _STATUS
(EFI APl *PElI _MP_SERVI CES_WHOAM) (
IN CONST EFI _PElI _SERVI CES **Pei Servi ces,

IN EFI_MP_SERVI CES_PPI *Thi s,
OUT U NTN *Processor Nunber
)
Parameters

Pei Servi ces

Anindirect pointer to the PEI Services Table published by the PEI Foundation.
Thi s

A pointer tothe EFI _MP_SERVI CES_PPI instance.
Pr ocessor Nunber

The handle number of AP that isto become the new BSP. The rangeisfrom 0 to the
total number of logical processors minus 1. The total number of logical processors
can beretrieved by EFI _MP_SERVI CES_PPI . Get Nunber Of Processors() .

Description
This services returns the handle number for the calling processor. This service may be called from
the BSP and APs.

This service returns the processor handle number for the calling processor.

Thereturned valueisin the range from O to the total number of logical processors minus 1. Thetotal
number of logical processors can beretrieved with

EFI _MP_SERVI CES PPI . Get Nunber Of Processor s() . Thisservicemay be called from
the BSP and APs. If Pr ocessor Nunber isNULL, then EFI _| NVALI D_PARAMETERIis
returned. Otherwise, the current processors handle number isreturned in Pr ocessor Nunber , and
EFI _SUCCESS isreturned.

UEFI Forum, Inc. April 2020 1-205

Platform Initialization Specification, Vol. 1 Additional PPIs

Status Codes Returned

EFI_SUCCESS The current processor handle number was returned in
Processor Nunber .
EFI_INVALID_PARAMETER Pr ocessor Number is NULL.

8.4 Graphics PEIM Interfaces

Thereisone PEI to PEI Interfaces (PPI) that is required to provide graphics
functionality in the PEI phase.

The Pei Gr aphi csPpi isthe PPI produced by the Graphics PEI Module and provides
interfaces to the platform code to complete the basic initialization of the graphics
subsystem to enable consol e output.

8.4.1 Pei Graphics PPI

The Pei Gr aphi csPpi isthe main interface exposed by the Graphics PEIM to be used by the
other firmware modules.

The following sections cover the individual APIsin detail.

GUID
#define EFl _PEl GRAPHI CS PPl _GUI D \
{ Ox6ecdl1463, Ox4ada, 0x461b,
{Oxaf, Ox5f, Oxb5a, 0x33, Oxe3, O0xb2, 0x16, 0x2b }};

Prototype
struct _EFI _PElI _GRAPHI CS_PPI {
EFl _PEI _GRAPHICS_INIT G aphi csPpilnit;

EFI _PEI _GRAPHI CS_CGET_MODE G aphi csPpi Get Mode;
} EFI _PEl _GRAPHI CS_PPI ;

UEFI Forum, Inc. April 2020 1-206

Platform Initialization Specification, Vol. 1 Additional PPIs

GraphicsPpilnit

Description
The Gr aphi csPpi | ni t initiaizes the graphics subsystem in phases.

Calling Condition
There are certain conditions to be met before the Gr aphi csPpi | ni t can be called; Memory has
been initialized.
Prototype
t ypedef
EFlI _STATUS
(EFI APl *EFI _PEI _GRAPHICS INIT) (
IN VO D *G aphi csPolicyPtr;
)

Parameters
G aphi csPol i cyPtr

Graphi csPol i cyPt r pointsto aconfiguration data block of policy settings
required by Graphics PEIM.

Return

EFI_SUCCESS The invocation was successful.
EFI_INVALID_PARAMETER

EFI_NOT_ABORTED

The phase parameter is not valid.

The stages were not called in the proper order.

EFI_NOT_FOUND The Pei Gr aphi csPl at f or nPol i cyPpi is not
located.

EFI_DEVICE_ERROR
EFI_NOT_READY

The initialization failed due to device error.

The previous init stage is still in progress and not ready
for the current initialization phase yet. The platform
code should call this again sometime later..

UEFI Forum, Inc. April 2020 1-207

Platform Initialization Specification, Vol. 1 Additional PPIs

GraphicsPpiGetMode

Description

The Gr aphi csPpi Get Mode returns the mode information supported by the Graphics PEI
Module.

The frame buffer abstracts the video display as an array of pixels. Each pixelslocation on the video
display isdefined by its X and Y coordinates. The X coordinate representsascan line. A scanlineis
ahorizontal line of pixelson the display. The Y coordinate represents a vertical line on the display.
The upper left hand corner of the video display is defined as (0, 0) where the notation (X, Y)
representsthe X and Y coordinate of the pixel. The lower right corner of the video display is
represented by (Width -1, Height -1).

A pixel iscomprised of a 32-bit quantity. The first three bytes for each pixel represents the intensity
for Red, Blue and Green colors. Thefourth byte isreserved and must be zero. The byte valuesfor the
red, green, and blue components represent the color intensity. This color intensity value range from a
minimum intensity of O to maximum intensity of 255.

The mode information returned by this PPl is similar to the GOP's
EFlI _GRAPHI CS_OUTPUT _PROTOCOL MODE structure.

X-axis

(0, 0) > (Width -1, 0)
Pixel | * ..
Scan Line |
. Y-axis
L [1 T- I
(0, Height - 1) (Width -1, Height - 1)

UEFI Forum, Inc. April 2020 1-208

Platform Initialization Specification, Vol. 1 Additional PPIs

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _PEl _GRAPHI CS_GET_MODE) (
I N OUT EFI _GRAPHI CS_OUTPUT_PROTOCOL_MODE * Mbde

)
Parameters
Mbde
Pointer to EFI _ GRAPHI CS_QOUTPUT _PROTOCOL_MODE data. Type
EFl _GRAPHI CS_OUTPUT_PROTOCCOL_MODE isdefined inthe UEFI Specification
and in “Related Definitions” below.
Return
EFI_SUCCESS Valid mode information was returned.
EFI_INVALID_PARAMETER The Mode parameter is not valid.
EFI_NOT_FOUND The Pei Gr aphi csPl at f or mPol i cyPpi is not
located.
EFI_DEVICE_ERROR A hardware error occurred trying to retrieve the video mode.
EFI_NOT_READY The Graphics Initialization is not compete, and Mbde
information is not yet available.The platform code should call
this again after the Graphics initialization is done.

t ypedef struct {
Ul NT32 MaxMbde;
Ul NT32 Mode;
EFI _GRAPHI CS_OUTPUT_MODE_| NFORMVATI ON * | nf o;
U NTN Si zeOf | nf o;
EFI _PHYSI CAL_ADDRESS Fr aneBuf f er Base;
Ul NTN Fr ameBufferSi ze;
} EFlI _GRAPHI CS_OUTPUT _PROTOCOL_MODE;

Related Definition — EFI_GRAPHICS _OUTPUT_PROTOCOL_MODE
MaxMode

The number of modes that is supported by this module.
Mbde

Current mode of the graphics device. If the MaxMode is 1, then thisfield will be 0.
I nfo

Pointer to EFI _ GRAPHI CS_OUTPUT _MODE_| NFORVMATI ON data. See Related
Definition bel ow.

Si zeOf I nfo
Size of the | nf o structurein bytes.

UEFI Forum, Inc. April 2020 1-209

Platform Initialization Specification, Vol. 1 Additional PPIs

FrameBuf f er Base
Base address of graphics linear frame buffer. | nf o contains information required to
allow software to draw directly to the frame buffer.

FrameBufferSi ze
Size of the frame buffer represented by Fr aneBuf f er Base in bytes.

Related Definition — EFI_GRAPHICS_OUTPUT_MODE_INFORMATION
t ypedef struct {

Ul NT32 Ver si on;

Ul NT32 Hor i zont al Resol uti on;
Ul NT32 Verti cal Resol uti on;
EFI _GRAPHI CS_PI XEL _FORNVAT Pi xel For mat ;

EFI _PI XEL_BI TMASK Pi xel I nf or mati on;

Ul NT32 Pi xel sPer ScanLi ne;

} EFI _GRAPHI CS_OUTPUT_MODE_| NFORMATI ON;

Ver si on

Theversion of thisdatastructure. A value of zero representsthe structure asdefined in
this specification. Future version of this specification may extend this data structure

in a backwards compatible way and increase the value of Version.
Hori zont al Resol uti on

The size of video screenin pixelsin the X dimension.
Verti cal Resol ution

The size of video screenin pixelsinthe Y dimension.
Pi xel For mat

Enumeration that defines the physical format of the pixel. A value of
Pi xel Bl t Onl y

implies that alinear frame buffer is not available for this mode.
Pi xel I nf or mati on
Thisbit-mask isonly valid if Pi xel For mat issetto Pi xel Pi xel Bi t Mask. A
bit being set
defines what bits are used for what purpose such as Red, Green, Blue, or Reserved.
Pi xel sPer ScanLi ne

Defines the number of pixel elements per video memory line. For performance
reasons, or due to hardware restrictions, scan lines may be padded to an amount of
memory alignment. These padding pixel elements are outside the area covered by
Hor i zont al Resol ut i on and are not visible. For direct frame buffer access, this
number is used as a span between starts of pixel linesin video memory. Based on the
size of anindividual pixel element and Pi xel sPer Scanl i ne, the offset in video
memory from pixel element (X, y) to pixel element (X, y+1) hasto be calculated as
"sizeof(PixelElement) * Pi xel sPer ScanLi ne", not"si zeof (PixelElement) *

UEFI Forum, Inc. April 2020 1-210

Platform Initialization Specification, Vol. 1 Additional PPIs

Hor i zont al Resol uti on", though in many cases those values can coincide. This
value can depend on video hardware and mode resol ution.

Related Definition — EFI_GRAPHICS _OUTPUT_MODE_INFORMATION
t ypedef enum {
Pi xel RedGr eenBl ueReser ved8Bi t Per Col or,
Pi xel Bl ueGr eenRedReser ved8Bi t Per Col or,
Pi xel Bi t Mask,
Pi xel Bl t Onl vy,
Pi xel For nat Max
} EFlI _GRAPHI CS_PI XEL_FORVAT;

Pi xel RedG eenBl ueReser ved8Bi t Per Col or
A pixel is 32-bits and byte zero represents red, byte one represents green, byte two
represents blue, and byte three isreserved. Thisis the definition for the physical
frame buffer. The byte values for the red, green, and blue components represent the
color intensity. This color intensity value range from a minimum intensity of 0 to
maximum intensity of 255.

Pi xel Bl ueG eenRedReser ved8Bi t Per Col or
A pixel is 32-bits and byte zero represents blue, byte one represents green, byte two
represents red, and byte threeis reserved. Thisis the definition for the physical frame
buffer. The byte values for the red, green, and blue components represent the color

intensity. This color intensity value range from a minimum intensity of O to maximum
intensity of 255.
Pi xel Bi t Mask

The pixel definition of the physical frame buffer is defined by
EFI Pl XEL Bl TMASK

Pi xel Bl t Only
This mode does not support a physical frame buffer.

Related Definition — EFI_PIXEL_BITMASK
t ypedef struct {
Ul NT32 RedMask;
Ul NT32 G eenlask;
Ul NT32 Bl ueMask;
Ul NT32 ReservedMask;
} EFl _PI XEL_BI TMASK;

If abitissetin RedMask, G- eenMask, or Bl ueMask then those bits of the pixel represent the
corresponding color. Bitsin RedMask, G- eenMask, Bl ueMask, and

Reser ver edMask must not overlap bit positions. The values for the red, green, and blue
components in the bit mask represent the color intensity. The color intensities must increase as the

UEFI Forum, Inc. April 2020 1-211

Platform Initialization Specification, Vol. 1 Additional PPIs

color values for each color mask increase with a minimum intensity of all bitsin a color mask clear
to amaximum intensity of all bitsin acolor mask set.

8.4.2 EFI PEI Graphics INFO HOB

UEFI Forum, Inc. April 2020 1-212

Platform Initialization Specification, Vol. 1 Additional PPIs

EFI_PEI_GRAPHICS INFO_HOB

#define EFl _PEl GRAPHI CS | NFO HOB GUI D \
{ O0x39f 62cce, 0x6825, 0x4669, \
{ Oxbb, 0x56, 0x54, Oxla, Oxba, 0x75, Ox3a, 0x07 }}

t ypedef struct {
EFl _PHYSI CAL_ADDRESS FrameBuf f er Base;

Ul NT32 FrameBufferSi ze;
EFI _GRAPHI CS_QUTPUT_MODE_| NFORVATI ON Gr aphi csMode;
} EFI _PEl _GRAPHI CS_| NFO_HOB;

EFI_PEI_GRAPHICS DEVICE_INFO_HOB

#define EFl _PElI GRAPHI CS DEVI CE | NFO HOB GUID \
{ Oxebcb2ac9, 0xd35d, 0x4430,\
{ 0x93, Ox6e, 0Oxl1ld, 0Oxe3, 0x32, 0x47, 0x8d, 0Oxe7 }}

t ypedef struct {

U NT16 Vendor | d

U NT16 Devi cel d

Ul NT16 Subsyst enVendor | d
Ul NT16 Subsyst em d;

Ul NT8 Revi si onl d;

Ul NT8 Bar | ndex;

} EFl _PEl _GRAPHI CS_DEVI CE_| NFO_HOB;

When graphics capability isincluded in PEI, it may optionally provide a splash screen capability as
well.

When graphics capability isincluded in PEI, it producesaEFI _PElI _GRAPHI CS_| NFO_HOB
which provides information about the graphics mode and the framebuffer, and may optionally
produceaEFI_PEI_GRAPHICS DEVICE_INFO_HOB which provides information about the
graphics device characteristics. The EFI _GRAPHI CS_OUTPUT_MODE_| NFORMATI ON structure
is defined in the UEFI specification. This information can be used by the HOB-consumer phase,

such as DXE, to provide display support of its own, or elide the need to do graphics initialization
again in the UEFI GOP driver, for example.

It isto be noted that the PEI phase may program atemporary framebuffer address to complete its
initialization and the framebuffer address at the time of building the

EFI _PElI _GRAPHI CS_| NFO_HOB will reflect the current assignment. The post-PEI phase
consuming this HOB should be aware that a generic PCl enumeration logic could reprogram the
temporary resources assigned by the PEI phase and it is the responsibility of the post-PEI phaseto

UEFI Forum, Inc. April 2020 1-213

Platform Initialization Specification, Vol. 1 Additional PPIs

update itsinternal data structures with the new framebuffer address after the enumeration is
compl ete.

The EFI_PEI_GRAPHICS DEVICE_INFO_HOB isoptional. When it exists, the DXE module
which provides display support usesthe Vendorld, Deviceld, Revisionld, SubsystemVendorld,
and SubsystemDevicel d in the HOB to match the graphics device. It’ s useful when system has
multiple graphics devices and the DXE module cannot know which one to manage without the
information provided by this HOB. If Vendor1d, Devicel d, SubsystemVendorld or
SubsystemDeviceld is set to MAX_UINT16, or Revisionld is set to MAX_UINTS, that field will
beignored. The ID values that are assigned to other values will be used to identify the graphics
device. The BarIndex tells DXE module which PCI MMIO BAR is used to hold the frame buffer.
BAR Oisused if the BarIndex is set to MAX_UINTS8 or the HOB doesn’t exist.

UEFI Forum, Inc. April 2020 1-214

Platform Initialization Specification, Vol. 1

9 PEI to DXE Handoff

9.1 Introduction

The PEI phase of the system firmware boot process performs rudimentary initialization of the
system to meet specific minimum system state requirements of the DXE Foundation. The PEI
Foundation must have a mechanism of locating and passing off control of the system to the DXE
Foundation. PEI must aso provide a mechanism for components of DXE and the DXE Foundation
to discover the state of the system when the DXE Foundation isinvoked. Certain aspects of the
system state at handoff are architectural, while other system state information may vary and hence
must be described to DXE components.

9.2 Discovery and Dispatch of the DXE Foundation
The PEI Foundation uses a special PPl named the DXE Initial Program Load (IPL) PPl to discover
and dispatch the DXE Foundation and components that are needed to run the DXE Foundation

The final action of the PEI Foundation is to locate and pass control to the DXE IPL PPI. To
accomplish this, the PEI Foundation scans all PPIs by GUID for the GUID matching the DXE IPL
PPI. The GUID for this PPl isdefined in EFI _DXE | PL_PPI .

9.3 Passing the Hand-Off Block (HOB) List

The DXE IPL PPl passes the Hand-Off Block (HOB) list from PEI to the DXE Foundation when it
invokes the DX E Foundation. The handoff state is described in the form of HOBs in the HOB list.
The HOB list must contain at |east the HOBslisted in Table 1-18.

UEFI Forum, Inc. April 2020 1-215

Platform Initialization Specification, Vol. 1

PEI to DXE Handoff

Table 1-18: Required HOB Types in the HOB List

Required HOB Type
Phase Handoff Information Table (PHIT) HOB

One or more Resource Descriptor HOB(s)
describing physical system memory

Boot-strap processor (BSP) Stack HOB

BSP BSPStore (“Backing Store Pointer Store”)
HOB
Note: Itanium processor family only

One or more Resource Descriptor HOB(S)
describing firmware devices

One or more Firmware Volume HOB(s)

A Memory Allocation Module HOB

Usage
This HOB is required.

The DXE Foundation will use this physical system
memory for DXE.

The DXE Foundation needs to know the current stack

location so that it can move it if necessary, based upon
its desired memory address map. This HOB will be of

type EfiConventionalMemory

The DXE Foundation needs to know the current store
location so that it can move it if necessary, based upon
its desired memory address map.

The DXE Foundation will place this into the GCD.

The DXE Foundation needs this information to begin
loading other drivers in the platform.

This HOB tells the DXE Foundation where it is when
allocating memory into the initial system address map.

The above HOB types are defined in volume 3 of this specification.

9.4 Handoff Processor State to the DXE IPL PPI
Table 1-19 defines the state that processors must be in at handoff to the DXE IPL PP, for the

following processors:
* |A-32 processors
e Itanium processor family

« Inte® processors using Intel® X Scale™ technology

Table 1-19: Handoff Processor State to the DXE IPL PPI

Processor

Itanium
Intel XScale

State at Handoff
1A-32 In 32-bit flat mode
In Itanium processor family physical mode

In SuperVisor Mode with a one-to-one virtual-to-physical mapping if

there is a memory management unit (MMU) in the system

UEFI Forum, Inc.

April 2020

1-216

Platform Initialization Specification, Vol. 1

10 Boot Paths

10.1 Introduction

The PEI Foundation is unaware of the boot path required by the system. It relies on the PEIMsto
determine the boot mode (e.g. RO, R1, S3, etc.) and take appropriate action depending on the mode.

To implement this, each PEIM has the ability to manipulate the boot mode using the PEI Service
Set Boot Mbde() describedin Services - PEI.

The PEIM does not change the order in which PEIMs are dispatched depending on the boot mode.

10.2 Code Flow

The normal code flow in Pl firmware passes through a succession of phases, in the following order:

1. SEC
PEI
DXE
BDS
Runtime
. Afterlife
This section describes alternatives to this ordering.

o oA wWN

10.2.1 Reset Boot Paths

The following sections describe the boot paths that are followed when a system encounters several
different types of reset.

10.2.1.1 Intel Itanium Processor Reset

Itanium architecture contains enough hooks to authenticate PAL-A and PAL-B code that is
distributed by the processor vendor. The internal microcode on the processor silicon, which starts up
on a PowerGood reset, finds the first layer of processor abstraction code (called PAL-A) that is
located in the boot firmware volume (BFV), or the volume that has SEC and the PEI core, using
architecturally defined pointersin the BFV. It isthe responsibility of this microcode to authenticate
that the PAL-A code layer from the processor vendor has not been tampered. If the authentication of
the PAL-A layer passes, control then passes to the PAL-A layer, which then authenti cates the next
layer of processor abstraction code (called PAL-B) before passing control toit. In addition to this
microarchitecture-specific authentication, the SEC phase of UEFI isstill responsible for locating the
PEI Foundation and verifying its authenticity.

In an lItanium-based system, it is also imperative that the firmware modules in the BFV be organized
such that at least the PAL-A is contained in the fault-tolerant regions. This processor-specific PAL-

A authenticates the PAL-B code, which usually is contained in the non-fault-tolerant regions of the

firmware system. The PAL A and PAL B binary components are always visible to all the processors
in anode at the time of power-on; the system fabric should not need to be initialized.

UEFI Forum, Inc. April 2020 1-217

Platform Initialization Specification, Vol. 1 Boot Paths

10.2.1.2 Non-Power-on Resets

Non-power-on resets can occur for many reasons. There are PEI and DXE system services that reset
and reboot the entire platform, including all processors and devices. It isimportant to have a
standard variant of this boot path for cases such as the following:

» Resetting the processor to change frequency settings

» Restarting hardware to complete chipset initialization

* Responding to an exception from a catastrophic error

Thisreset is also used for Configuration Vaues Driven through Reset (CVDR) configuration.

10.3 Normal Boot Paths

A traditional BIOS executes POST from acold boot (G3 to SO state), on resumes, or in specia cases
like INIT. UEFI covers al those cases but provides aricher and more standardized operating
environment

The basic code flow of the system needs to be changeable due to different circumstances. The boot
path variable satisfies this need. The initial value of the boot mode is defined by some early PEIMS,
but it can be altered by other, later PEIM(S). All systems must support a basic SO boot path.
Typically asystem hasamore rich set of boot paths, including SO variations, S-state boot paths, and
one or more special boot paths.

The architecture for multiple boot paths presented here has several benefits, asfollows:

* ThePEI Foundation is not required to be aware of system-specific requirements such as MP and
various power states. This lack of awareness allows for scalability and headroom for future
expansion.

» Supporting the various paths only minimally impacts the size of the PEI Foundation.
* ThePEIMsthat are required to support the paths scale with the complexity of the system.

Note that the Boot Mode Register becomes a variable upon transition to the DXE phase. The DXE
phase can have additional modifiers that affect the boot path more than the PEI phase.

These additional modifiers can indicate if the system isin manufacturing mode, chassisintrusion, or
AC power loss or if silent boot is enabled.

10.3.1 Basic GO0O-t0-S0 and SO Variation Boot Paths

The basic SO boot path is "boot with full configuration." This path setting informs all PEIMsto do a
full configuration. The basic SO boot path must be supported.

The Framework architecture also defines several optional variations to the basic SO boot path. The
variations that are supported depend on the following:

* Richness of supported features
* If theplatform is open or closed
* Platform hardware

For example, a closed system or one that has detected a chassis intrusion could support a boot path
that assumes no configuration changes from last boot option, thus allowing a very rapid boot time.

UEFI Forum, Inc. April 2020 1-218

Platform Initialization Specification, Vol. 1 Boot Paths

Unsupported variations default to basic SO operation. The following are the defined variationsto the
basic boot path:

» Boot with minimal configuration:

This path isfor configuring the minimal amount of hardware to boot the system.

» Boot assuming no configuration changes:

This path uses the last configuration data.

« Boot with full configuration plus diagnostics:

This path also causes any diagnostics to be executed.

» Boot with default settings: This path uses aknown set of safe values for programming hardware.

10.3.2 S-State Boot Paths

The following optional boot paths alow for different operation for aresume from S3, $4, and S5:

» S3(Saveto RAM Resume): Platforms that support S3 resume must take special careto
preserve/restore memory and critical hardware.

* S4(Saveto Disk): Some platforms may want to perform an abbreviated PEI and DXE phase on
a4 resume.

o S5 (Soft Off): Some platforms may want an S5 system state boot to be differentiated from a
normal boot-for example, if buttons other than the power button can wake the system.

An S3 resume needs to be explained in more detail because it requires cooperation between a GO-to-
S0 boot path and an S3 resume boot path. The GO-to-S0 boot path needs to save hardware
programming information that the S3 resume path needs to retrieve.

Thisinformation is saved in the Hardware Save Table using predefined data structures to perform 1/
O or memory writes. The datais stored in an UEFI equivalent of the INT15 E820 type 4 (firmware
reserved memory) area or afirmware device areathat is reserved for use by UEFI. The S3 resume
boot path code can access this region after memory has been restored.

10.4 Recovery Paths

All of the above boot paths can be modified or aborted if the system detects that recovery is needed.
Recovery is the process of reconstituting a system'’s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes on
nonvolatile storage devices (flash, disk) are managed as blocks. If the system loses power while a
block, or semantically bound blocks, are being updated, the storage might become invalid. On the
other hand, the device might become corrupted by an errant program or by errant hardware. The
system designers must determine the level of support for recovery based on their perceptions of the
probabilities of these events occurring and their consegquences.

The following are some reasons why system designers may choose to not support recovery:

» A system'sfirmware volume storage media might not support modification after being
manufactured. It might be the functional equivalent of a ROM.

* Most mechanisms of implementing recovery require additional firmware volume space, which
might be too expensive for a particular application.

UEFI Forum, Inc. April 2020 1-219

Platform Initialization Specification, Vol. 1 Boot Paths

» A system may have enough firmware volume space and hardware features that the firmware
volume can be made sufficiently fault tolerant to make recovery unnecessary.

10.4.1 Discovery

Discovering that recovery is done using a PEIM (for example, by checking a "force recovery"
jumper).

10.4.2 General Recovery Architecture
The concept behind recovery isto preserve enough of the system firmware so that the system can
boot to a point where it can do the following:
* Read acopy of the data that was lost from chosen peripherals.
* Reprogram the firmware volume with that data.

Preserving the recovery firmware is afunction of the way the firmware volume store is managed,
which is generally beyond the scope of this document.

The Pl recovery architecture alows for one or many PEIMs to be built to handle the portion of the
recovery that would initialize the recovery peripherals (and the buses they reside on) and then to read
the new images from the peripherals and update the firmware volumes.

It is considered far more likely that the PEI will transition to DXE because DXE is designed to
handle access to peripherals. Thistransition has the additional benefit that, if DXE then discovers
that a device has become corrupted, it may institute recovery without transferring control back to the
PEI.

10.5 Defined Boot Modes

Thelist of possible boot modesis described in the Get Boot Mode() function description. P
architecture specifically does not define an upgrade path if new boot modes are defined. Thisis
necessary asthe nature of those additional boot modes may work in conjunction with or may conflict
with the previously defined boot modes.

10.6 Priority of Boot Paths

Within agiven PEIM, the priority ordering of the sources of boot mode should be as follows (from
highest priority to lowest):

1. BOOT_I N_RECOVERY_MCODE

BOOT_ON_FLASH UPDATE

BOOT_ON_S3_RESUVE

BOOT_W TH_M NI MAL_ CONFI GURATI ON

BOOT_W TH_FULL_CONFI GURATI ON

BOOT_ASSUM NG_NO_CONFI GURATI ON_CHANGES

BOOT_W TH_FULL_CONFI GURATI ON_PLUS_DI AGNCSTI CS

BOOT_W TH_DEFAULT_SETTI NGS

® N>R WN

UEFI Forum, Inc. April 2020 1-220

Platform Initialization Specification, Vol. 1 Boot Paths

9. BOOT_ON_S4 RESUME
10. BOOT_ON_S5_RESUME
11. BOOT_ON_S2_RESUME
The boot modes listed above are defined in the PEI Service Set Boot Mode() .

10.7 Assumptions
Table 1-20 lists the assumptions that can be made about the system for each seep state.

Table 1-20: Boot Path Assumptions

System State Description
RO Cold Boot

Assumptions

Cannot assume that the previously stored configuration data
is valid.

R1 Warm Boot May assume that the previously stored configuration data is

valid.

S3 ACPI Save to RAM
Resume

The previously stored configuration data is valid and RAM is
valid. RAM configuration must be restored from nonvolatile
storage (NVS) before RAM may be used. The firmware may
only modify previously reserved RAM. There are two types
of reserved memory. One is the equivalent of the BIOS
INT15h, E820 type-4 memory and indicates that the RAM is
reserved for use by the firmware. The suggestion is to add
another type of memory that allows the OS to corrupt the
memory during runtime but that may be overwritten during
resume.

S4, Save to Disk Resume,
S5 “Soft Off”

S4 and S5 are identical from a PEIM's point of view. The two
are distinguished to support follow-on phases. The entire
system must be reinitialized but the PEIMs may assume that
the previous configuration is still valid.

Boot on Flash
Update

This boot mode can be either an INIT, S3, or other means by
which to restart the machine. Ifitis an S3, for example, the
flash update cause will supersede the S3 restart. Itis
incumbent upon platform code, such as the Memory
Initialization PEIM, to determine the exact cause and perform
correct behavior (i.e., S3 state restoration versus INIT
behavior).

Boot with
Manufacturing
Mode settings

PEIM's and/or DXE drivers may parameterize based upon
actions that should only occur in the factory or a
manufacturer approved setting.

10.8 Architectural Boot Mode PPIs

Thereisapossible hierarchy of boot mode PPIs that abstracts the various producers of this variable.
It isahierarchy in that there should be an order of precedence in which each mode can be set. The
PPIs and their respective GUIDs are described in “ Required Architectural PPIS’ on page 86 and
“Optional Architectural PPIS’ on page 91. The hierarchy includes the master PPI, which publishes a

UEFI Forum, Inc. April 2020 1-221

Platform Initialization Specification, Vol. 1 Boot Paths

PPI that will be depended upon by the appropriate PEIMs, and some subsidiary PPI. For PEIMs that
require that the boot mode isfinally known, the Master Boot Mode PPI can be used as a dependency.

Table 1-21 lists the architectural boot mode PPIs.

Table 1-21: Architectural Boot Mode PPlIs

PPI Name Required or Optional? PPI Definition in Section...

Master Boot Mode PPI Required Architectural PPIs: Required Architectural
PPIs

Boot in Recovery Mode PPI Optional Architectural PPIs: Optional Architectural
PPIs

10.9 Recovery

10.9.1 Scope

Recovery isthe process of reconstituting a system’ s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes (FVs) in
nonvolatile storage (NV S) devices (flash or disk, for example) are managed as blocks. If the system
loses power while a block, or semantically bound blocks, are being updated, the storage might
become invalid. On the other hand, an errant program or hardware could corrupt the device. The
system designers must determine the level of support for recovery based on their perceptions of the
probabilities of these events occurring and the consequences.

The designers of a system may choose not to support recovery for the following reasons:

* A system’sFV storage media might not support modification after being manufactured. It might
be the functional equivalent of a ROM.

* Most mechanisms of implementing recovery require additional FV space that might be too
expensive for a particular application.

* A system may have enough FV space and hardware features that the FV can be made
sufficiently fault tolerant to make recovery unnecessary.

10.9.2 Discovery

Discovering that recovery isrequired may be done using aPEIM (for example, by checking a“force
recovery” jumper) or the PEI Foundation itself. The PEI Foundation might discover that a particular
PEIM has not validated correctly or that an entire firmware has become corrupted.

10.9.3 General Recovery Architecture

The concept behind recovery isto preserve enough of the system firmware so that the system can
boot to a point where it can do the following:

* Read acopy of the data that was lost from chosen peripherals.
* Reprogram the firmware volume (FV) with that data.

UEFI Forum, Inc. April 2020 1-222

Platform Initialization Specification, Vol. 1 Boot Paths

Preserving the recovery firmware is afunction of the way the FV store is managed, whichis
generaly beyond the scope of this document.

If the PEI Dispatcher encounters PEIMs that have been corrupted (for example, by receiving an
incorrect hash value), it must change the boot mode to “recovery.” Once set to recovery, other
PEIMs must not change it to one of the other states.

A PEIM can also detect a catastrophic condition or aforced-recovery event and alert the PEI 10.6.4
Finding and Loading the Recovery DXE Image.

10.9.4 Finding and Loading the Recovery DXE Image

10.9.4.1 Finding the Recovery DXE Image: Overview

The PEI Dispatcher specifically invokes the DXE Initial Program Load (IPL) PEIM, regardless of
normal or recovery mode. The DXE IPL PEIM detects that arecovery isin process and invokes a
recovery-specific PPI, the Recovery Module PPI. The Recovery Module PPI,

EFlI _PEI RECOVERY_MODULE_PPI , doesthe following:

» Loadsahinary capsule that includes arecovery DXE image into memory
» Updates the Hand-Off Block (HOB) table with the DXE firmware volume

« |nstallsor Reinstalls instance of the Firmware Volume Info PPl
(EFI _PEI _FI RMMARE_VOLUVE_| NFO_PPI') for the DXE firmware volume

See Section 8.6.3 for the PPIs that are needed to load the DXE image.
Note: The Recovery Module PPI is device and content neutral. The DXE IPL PEIM uses the Recovery
Module PPI to load a DXE image and invokes the DXE image normally. The DXE IPL PEIM does

not know or care about the capsule's internal structure or from which device the capsule was
loaded.

The internals of the recovery PEIM normally fall within four phases:
e Searching the supported devices for recovery capsules

e Deciding which capsuleto load

» Loading the capsule into memory

» Loading the resulting DXE firmware volume

The Recovery Module PPI encompasses the first three phases and the DXE IPL PEIM encompasses
the last phase. See the next topic, Recovery Sequence: Detailed Steps, for the details of these four
phases.

10.9.4.2 Recovery Sequence

The normal, non-recovery sequence is that after completion of the PEI phase, the PEI Dispatcher
specifically invokes the DXE Initial Program Load (IPL) PEIM. The recovery sequenceisidentical
to the non-recovery sequence in that the PEI Dispatcher also specifically invokes the DXE IPL
PEIM. After invoking the DXE IPL PEIM, the recovery sequenceis as follows:

1. TheDXEIPL PEIM detectsthat arecovery isin process, searchesfor the Recovery Module PPI,
and invokes the recovery function
EFl _PEI RECOVERY_MODULE PPI . LoadRecoveryCapsul e().

UEFI Forum, Inc. April 2020 1-223

Platform Initialization Specification, Vol. 1 Boot Paths

2. EFI _PElI _RECOVERY_MODULE_PPI searchesfor one or more instances of the Device
Recovery Module PPI, EFI _PElI _DEVI CE_RECOVERY_ MODULE PPI . For each instance
found, the
EFl _PEI _DEVI CE_RECOVERY_MODULE_PPI . Get Nunber Recover yCapsul es()
function is invoked to determine the following:

» The number of recovery DXE capsules detected by the specified device
» The maximum buffer size required to load a capsule
3. EFI _PElI _RECOVERY_MODULE_PPI then decides the following:
* Thedevice search order, if more than one Device Recovery Module PPl was discovered

e Theindividual search order, if the device reported more than one recovery DXE capsule was
found generating a search order list

4. EFI _PEI _RECOVERY_MODULE_PPI invokesthe device recovery function
EFI _PEI _DEVI CE_RECOVERY_MODULE_PPI . LoadRecover yCapsul e() toload a
capsule that includes arecovery DXE image into memory. The capsule that is returned from the
device recovery module is a capsule that contains the recovery DXE image.

5. TheEFI _PElI _RECOVERY_MODULE_PPI security does the following:
» Verifiesthe capsule
* Generates adata Hand-Off Block (HOB) entry for a security failure
» Triesthe next entry in the search order list

6. Onceavalid capsule has been loaded, EFI _PEI RECOVERY_MODULE PPl doesthe
following:

» Decomposes the capsule and updates the HOB table with the recovery DXE firmware
volume information. The path parameters are assumed to be redundant for recovery. The
Setup parameters are either redundant or fixed.

* Invaidates all HOB entries for updateable firmware volume entries.

The DXE capsule that is loaded by the Device Recovery Module PPl makes no assumptions about
contents or format other than assuming that the recovery DXE image is somewhere in the returned

capsule.
The following subsections describe the different recovery PPIs.

10.9.4.3 Recovery PPIs: Recovery Module PPI

The Recovery Module PPI, EFI _PEI _RECOVERY_MODULE_PPI , invokes the Device Recovery
Module PPI EFI _PEI _DEVI CE_RECOVERY_MODULE _PPI to do the following:

» Determine the number of DXE recovery capsules found by each device
* Determine capsule information

* Load aspecific DXE recovery capsule from the indicated device

* Determine the device load order

The capsuleis security verified and decomposed and the HOB table is updated with the DXE
recovery firmware volume.

There are two general categories of recovery PPIs:
e Devicerecovery PPl

UEFI Forum, Inc. April 2020 1-224

Platform Initialization Specification, Vol. 1 Boot Paths

» Devicerecovery block 1/0O PPI

The Device Recovery Module PPl is device neutral. The Device Recovery Block I/0 PPl isdevice
specific and used to access the physical media. The following subsections describe the PP
associated with each category. See Code Definitions for the definitions of these PPIs.

10.9.4.3.1 Device Recovery Module PPI

The table below lists the device recovery functions in the Device Recovery Module PPI,
EFI _PEI _DEVI CE_RECOVERY_MODULE_PPI .

Table 1-22: Device Recovery Module Functions

Function Description

GetNumberRecoveryCapsules() Scans the devices that are supported by the PPI for DXE recovery
capsules and reports the number found. The internal ordering should
reflect the priority in the load order, with the highest priority capsule
number set to one and the lowest priority number set to N.

GetRecoveryCapsulelnfo() Provides the size of the indicated capsule and a Capsul eType
Globally Unique Identifier (GUID). The recovery module uses this
information to allow an alternate priority scheme based on the

Capsul eType information.

LoadRecoveryCapsule() Loads the indicated DXE recovery capsule instance and returns a
capsule with the actual number of bytes loaded.

10.9.4.3.2 Device Recovery Block 1/0 PPI

The Device Recovery Block I/O PPI, EFlI _PElI _RECOVERY_BLOCK | O_PPI , differsfrom the

Device Recovery Module PPl in that the Device Recovery Block 1/O PPI is used for physica media
access. The Device Recovery Module PPI uses this PPI to search for capsules. This PPl isincluded

with the recovery PEIMs because a block 1/0 is the most common recovery media.

The table below lists the functions in the Device Recovery Block 1/0 PPI.

Table 1-23: Device Recovery Block I/0O Functions

Function Description

GetNumberOfBlockDevices() Returns the number of block 1/0 devices supported. There is no ordering
priority.

GetBlockDeviceMedialnfo() Indicates the type of block I/O device found, such as a legacy floppy or CD-
ROM. The block size and last block number are also returned.

ReadBlocks() Reads the indicated block 1/0O device starting at the given logical block
address (LBA) and for buffer size/block size.

UEFI Forum, Inc. April 2020 1-225

Platform Initialization Specification, Vol. 1

11 PEI Physical Memory Usage

11.1 Introduction

This section describes how physical system memory is used during PEI. The rulesfor using
physical system memory are different before and after permanent memory registration within the
PEI execution.

11.2 Before Permanent Memory Is Installed

11.2.1 Discovering Physical Memory

Before permanent memory isinstalled, the minimum exit condition for the PEI phaseisthat it has
enough physical system memory to run PEIMs and the DXE IPL PPI that require permanent
memory. These memory-aware PEIMs may discover and initialize additional system memory, but
in doing so they must not cause loss of datain the physical system memory initialized during the
earlier phase. The required amount of memory initialized and tested by PEIMs in these two phases
is platform dependent.

Before permanent memory isinstalled, a PEIM may not assume any area of physical memory is
present and initialized. During this early phase, a PEIM—usually one specific to the chipset
memory controller—will initialize and test physical memory. When this PEIM hasinitialized and
tested the physical memory, it will register the memory using the PEI Memory Service

I nstal | Pei Menory(),whichinturn will cause the PEI Foundation to create an initial Hand-
Off Block (HOB) list and describe the memory. The memory that is present, initialized, and tested
will reside in resource descriptor HOBsin theinitial HOB list (see Volume 3 for more information).
This memory allocation PEIM may also choose to allocate some of this physical memory by doing
the following:

e Creating memory allocation HOBS, as described in “ Allocating Memory Using GUID Extension

HOBS’ on page 227.
e Using the memory alocation services Al | ocat ePages() and Al | ocat ePool ()

Once permanent memory has been installed, the resources described in the HOB list are considered
permanent system memory.

11.2.2 Using Physical Memory

A PEIM that requires permanent, fixed memory allocation must schedule itself to run after
EFI _PEI _PERMANENT _MEMORY_| NSTALLED PPI isinstalled. To scheduleitself, the PEIM
can do one of the following:

* Put thisPPI's GUID into the depex of the PEIM.
* Register for anctification.

The PEIM can then allocate Hand-Off Blocks (HOBS) and other memory using the same
mechanisms described in “ Allocating Physical Memory” on page 227.

UEFI Forum, Inc. April 2020 1-226

Platform Initialization Specification, Vol. 1 PEI Physical Memory Usage

The Al | ocat ePool () service can beinvoked at any time during the boot phase to discover
temporary memory that will have itslocation translated, even before permanent memory isinstalled.

11.3 After Permanent Memory Is Installed

11.3.1 Allocating Physical Memory
After permanent memory isinstalled, PEIMs may allocate memory in four ways:
* Using aGUID Extension HOB
* Within the PEI free memory space

11.3.2 Allocating Memory Using GUID Extension HOBs

A PEIM may allocate memory for its private use by constructing a GUID Extension HOB and using
the private data area defined by the GUIDed name of the HOB for private data storage.

See Volume 3 for HOB construction rules.

11.3.3 Allocating Memory Using PEI Service

A PEIM may alocate memory using the PEI Service Al | ocat ePages() . Usethe
EFI _MEMORY_TYPE valuesto specify the type of memory to allocate; type EFI _ MEMORY _TYPE
isdefined isdefinedin Al | ocat ePages() inthe UEFI 2.0 specification.

UEFI Forum, Inc. April 2020 1-227

Platform Initialization Specification, Vol. 1

12 Special Paths Unique to the
ltanium®Processor Family

12.1 Introduction

The Itanium processor family supports the full complement of boot modes listed in the PEI CIS. In
addition, however, Itaniume architecture requires an augmented flow. Thisflow includesa
“recovery check call” inwhich all processors execute the PEI Foundation when an Itanium platform
restarts. Each processor has its own version of temporary memory such that there are as many
concurrent instances of PEI execution as there are Itanium processors.

There is a point in the multiprocessor flow, however, when al processors have to call back into the
Processor Abstraction Layer A (PAL-A) component to assess whether the processor revisions and
PAL-B binaries are compatible. This callback into the PAL-A does not preserve the state of the
temporary memory, however. When the PAL-A returns control back to the various processors, the
PEI Foundation and its associated data structures have to be reinstantiated.

At this point, however, the flow of the PEI phase isthe same asfor |A-32 Intel architecturein that all
processors make forward progress up through invoking the DXE IPL PPI.

12.2 Unique Boot Paths for Itanium Architecture

Intel® Itanium processors possess two unique boot paths that also invoke the dispatcher located at
the System Abstraction Layer entry point (SALE_ENTRY):

e Processor INIT
e Machine Check (MCHK)

INIT and MCHK are two asynchronous events that start up the Security (SEC) code/dispatcher in an
Itaniume-based system. The Pl Architecture security module is transparent during all the code paths
except for the recovery check call that happens during a cold boot. The PEIMs that handle these
events are architecture aware and do not return control to the PEI Dispatcher. They call their
respective architectural handlersin the operating system.

Figure 1-3 shows the boot path for INIT and MCHK events.

UEFI Forum, Inc. April 2020 1-228

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

= &=

All Processors Run PAL-A

PAL Handoff State (Regs + Min)

Dispatcher invokes PEI
INIT or MCHK Code

INIT Code MCHK Code

Figure 1-3: Itanium Processor Boot Path (INIT and MCHK)

12.3 Min-State Save Area
When the Processor Abstraction Layer (PAL) hands control to the dispatcher, it will supply the
following:
* Unique handoff statein the registers
* A pointer, called the min-state pointer, to the minimum-state saved buffer area

This buffer is aunique per-processor save areathat is registered to each processor during the normal
OS boot path. The PI Architecture defines a unique, Pl Architecture-specific data pointer,

EFI _PEI _M N_STATE DATA, that is attached to this min-state pointer. This data structureis
defined in the next topic.

Figure 1-4 shows atypical organization of a min-state buffer. The PEI Data Pointer references
EFl _PEI _M N_STATE_DATA.

UEFI Forum, Inc. April 2020 1-229

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

PEI Data Pointer —— Processor’'s MinState Buffer

MinState Area 2 KiB

Figure 1-4: Min-State Buffer Organization

UEFI Forum, Inc. April 2020 1-230

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

EFI_PEI_MIN_STATE_DATA

Note: This data structure is for the Itanium® processor family only.

Summary

A structure that encapsul ates the Processor Abstraction Layer (PAL) min-state data structure for
purposes of firmware state storage and reference.

Prototype
typedef struct {

Ul NT64 Gsl ni t Handl er Poi nt er;
Ul NT64 GCsl ni t Handl er GP;
Ul NT64 Gsl ni t Handl er Checksuni
Ul NT64 OSsMehkHandl er Poi nt er;
Ul NT64 OSMchkHandl er GP;
Ul NT64 OSMchkHandl er Checksum
Ul NT64 Pei m ni t Handl er Poi nt er;
Ul NT64 Pei m ni t Handl er G~;
Ul NT64 Pei m ni t Handl er Checksum
Ul NT64 Pei mvchkHandl er Poi nt er;
Ul NT64 Pei mvchkHandl er GP;
Ul NT64 Pei mvckhHandl er Checksum
Ul NT64 TypeOF OSBoot ed;
Ul NT8 M nSt at eReser ved[0x400] ;
Ul NT8 CEMReser ved[0x400] ;

} EFl_PEI _M N_STATE DATA;

Parameters
Gsl ni t Handl er Poi nt er
The address of the operating system's INIT handler. The INIT isarestart type for the
[tanium processor family.
Gsl ni t Handl er GP

Thevalue of the operating system'sINIT handler's General Purpose (GP) register. Per
the calling conventions for the Itanium processor family, the GP must be set before
invoking the function.

Gsl ni t Handl er Checksum

A 64-bit checksum across the contents of the operating system's INIT handler. This
can be used by the PEI firmware to corroborate the integrity of the INIT handler prior
to invocation.

OSMehkHandl er Poi nt er

The address of the operating system's Machine Check (MCHK) handler. MCHK isa
restart type for the Itanium processor family.

UEFI Forum, Inc. April 2020 1-231

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

OSMchkHandl er GP

The value of the operating system's MCHK handler's GP register. Per the calling
conventions for the Itanium processor family, the GP must be set before invoking the
function.

OSMchkHandl er Checksum

A 64-bit checksum across the contents of the operating system's MCHK handler. This
can be used by the PEI firmware to corroborate the integrity of the MCHK handler
prior to invocation.

Pei m ni t Handl er Poi nt er
The address of the PEIM's INIT handler.
Pei m ni t Handl er GP

The value of the PEIM's INIT handler's GP register. Per the calling conventions for
the Itanium processor family, the GP must be set before invoking the function.

Pei m ni t Handl er Checksum

A 64-bit checksum across the contents of the PEIM'sINIT handler. This can be used
by the PEI firmware to corroborate the integrity of the INIT handler prior to
invocation.

Pei mvthkHandl er Poi nt er
The address of the PEIM's MCHK handler.
Pei mvthkHandl er GP

Thevalue of the PEIM's MCHK handler's GPregister. Per the calling conventionsfor
the Itanium processor family, the GP must be set before invoking the function.

Pei mvtkhHandl er Checksum

A 64-bit checksum across the contents of the PEIM's MCHK handler. This can be
used by the PEI firmware to corroborate the integrity of the MCHK handler prior to
invocation.

TypeOf OSBoot ed

Details the type of operating system that was originally booted. Thisallows for
different preliminary processing in firmware based upon the target OS.

M nSt at eReser ved

Reserved bytes that must not be interpreted by OEM firmware. Future versions of PEI
may choose to expand in this range.

OEMReser ved

Reserved bytesfor the OEM. PEI core components should not attempt to interpret the
contents of this region.

Description

A 64-bit PEI data pointer is defined at the beginning of the Itanium processor family min-state data
structure. Thisdata pointer referencesan EFI _PEI _M N_STATE_DATA structure that is defined
above. Thislatter structure contains the entry points of INIT and MCHK code blocks. The pointers

UEFI Forum, Inc. April 2020 1-232

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

are defined such that the INIT and MCHK code can be either written as ROM-based PEIMs or as
DXE drivers. The distinction between PEIM and DXE driver are at the OEM's discretion.

In Itaniume architecture, the PEI firmware must register amin-state with the PAL. Thismin-stateis
memory when the PAL code can deposit processor-specific information upon various restart events
(INIT, RESET, Machine Check). Upon receipt of INIT or MCHK, the PEI firmware shall first
invoke the PEIM INIT or MCHK handlers, respectively, and then the OS INIT or MCHK handler.
The min-state data structure is a natural location from which to reference the PEI data structure that
contains these latter entry points.

12.4 Dispatching Itanium Processor Family PEIMs

The Itanium processor family dispatcher starts dispatching all the PEIMs as it resolves the
dependency grammar contained within their headers. Because all Itanium processors enter into
SALE_ENTRY for arecovery check, some of the PEIMswill contain multiprocessor (MP) code and
will work on all processors. The behavior of a particular PEIM that is dispatched depends on the
following:

» Handoff state given by the Processor Abstraction Layer (PAL)
» The boot mode flag

Once the processor runs some code and one of the recovery check PEIM determines that the
firmware needs to be recovered, it flips the boot flag to recovery and invokes the dispatcher again in
recovery mode.

If it is anonrecovery situation (normal boot), then the recovery check PEIM wakes up all the
processors and returns them to PAL-A for further initialization. Note that when control for anormal
boot returns back to the PAL to run PAL-B code, all of the register contents are lost. When control
returns to the dispatcher, the PEIMs gain control in the dispatched order and can determine the
memory topology (if needed in a platform implementation) by reading the memory controller
registers of the chipset. The PEIMs can then build Hand-Off Blocks (HOBS).

When the first phase is done, there will be coherent memory on the system that all the node
processors can see. The system then begins to execute the dispatcher in a second phase, during
which it builds HOBs. On a multinode system with many processors, the configuration of memory
may take several steps and therefore quite a bit of code.

When the second phase is done, the last PEIM will build DXE as described in “PEI to DXE
Handoff” on page 215 and hand control to the Pl Architecture DXE phase for further initialization of
the platform.

Figure 1-5 depictstheinitial flow between PAL-A , PAL-B, and the PEI Foundation located at
SALE _ENTRY point.

UEFI Forum, Inc. April 2020 1-233

Platform Initialization Specification, Vol. 1 Special Paths Unique to the Itanium® Processor Family

l: RESET
@ K
¥

All Processars run
FAL A

PAL H andoff State (Regs)

PEIM Dispatcher (SALE_Entry)

FEIM L ispatcher Imiaked

FEIM behavior depends on the handoff
=tate and the boot flag

Some PEIM= work in WP mode

Fec. Mode
Check PEIM

First Phase Done Second Phase Drone

Fec bode Mon Rec. bode Begin Phase2 Load L BEHandoff

Figure 1-5: Boot Path in Itanium Processors

UEFI Forum, Inc. April 2020 1-234

Platform Initialization Specification, Vol. 1

13 Security (SEC) Phase Information

13.1 Introduction
The Security (SEC) phase isthe first phase in the Pl Architecture architecture and is responsible for
the following:
* Handling all platform restart events
» Creating atemporary memory store
» Serving astheroot of trust in the system
* Passing handoff information to the PEI Foundation

In addition to the minimum architecturally required handoff information, the SEC phase can pass
optional information to the PEI Foundation, such as the SEC Platform Information PPl or
information about the health of the processor.

The tasks listed above are common to all processor microarchitectures. However, there are some
additions or differences between 1A-32 and Itanium processors, which are discussed in “ Processor-
Specific Details’ on page 239.

13.2 Responsibilities

13.2.1 Handling All Platform Restart Events

The Security (SEC) phaseisthe unit of processing that handles all platform restart events, including
the following:

* Applying power to the system from an unpowered state
* Restarting the system from an active state
» Receiving various exception conditions

The SEC phaseis responsible for aggregating any state information so that some PEIM can deduce
the health of the processor upon the respective restart.

13.2.2 Creating a Temporary Memory Store

The Security (SEC) phase is also responsible for creating some temporary memory store. This
temporary memory store can include but is not limited to programming the processor cacheto
behave asalinear store of memory. This cache behavior isreferred to as* no evictions mode” in that
access to the cache should always represent a hit and not engender an eviction to the main memory
backing store; this“no eviction” isimportant in that during this early phase of platform evolution,
the main memory has not been configured and such as eviction could engender a platform failure.

UEFI Forum, Inc. April 2020 1-235

Platform Initialization Specification, Vol. 1 Security (SEC) Phase Information

13.2.3 Serving As the Root of Trust in the System

Finaly, the Security (SEC) phase represents the root of trust in the system. Any inductive security
design in which the integrity of the subsequent module to gain control is corroborated by the caller
must have aroot, or “first,” component. For any PI Architecture deployment, the SEC phase
represents the initial code that takes control of the system. Assuch, a platform or technology
deployment may choose to authenticate the PEI Foundation from the SEC phase before invoking the
PEI Foundation.

13.2.4 Passing Handoff Information to the PEI Foundation

Regardless of the other responsibilities listed in this section, the Security (SEC) phase's final
responsibility isto convey the following handoff information to the PEI:

» State of the platform

» Location and size of the Boot Firmware Volume (BFV)

e Location and size of the temporary RAM

» Location and size of the stack

» Optionaly, one or more HOBsviathe EFI _SEC HOB_DATA PPI .

This handoff information listed aboveis passed to the PEI as argumentsto the PEI Foundation entry
point described in section 5.2. The location of the BFV will be superseded by
EFlI _PEI _CORE_FV_LOCATI ON_PPI if that exists.

13.3 SEC Platform Information PPI

Handoff information is passed from the Security (SEC) phase to the PEI Foundation using the

EFI _SEC PElI _HAND_ OFF structure and the list of PPI descriptors passed to the PEI entry point.
One of these PPIs, EFI _SEC PLATFORM | NFORMVATI ON_PPI , can be used to pass handoff
information from SEC to the PEI Foundation. This PPl abstracts platform-specific information that
the PEI Foundation needs to discover where to begin dispatching PEIMSs.

13.4 SEC HOB Data PPI

HOB data can be passed forward from the SEC phase to PEI or DXE consumers using HOBs. If the
EFI _SEC HOB _DATA PPI isinthelist of PPIs passed to the PEI entry point, the PEl Foundation
will call the Get Hobs() member function and installed all HOBs returned into the HOB list. It
doesthis after installing all PPIs passed from SEC into the PPI database and before dispatching any
PEIMs.

13.5 Health Flag Bit Format

The Headlth flag contains information that is generated by microcode, hardware, and/or the Itanium
processor Processor Abstraction Layer (PAL) code about the state of the processor upon reset. Type
EFl _HEALTH_FLAGS isdefinedin

SEC_PLATFORM_| NFORVATI ON_PPI . Pl at f or m nf or mati on() .

UEFI Forum, Inc. April 2020 1-236

Platform Initialization Specification, Vol. 1 Security (SEC) Phase Information

In an ltaniume-based system, the Health flag is passed from PAL-A after restarting. It isthe means
by which the PAL conveys the state of the processor to the firmware, such as Pl. The handoff state
is separated between the PAL and Pl because the code is provided by different vendors; Intel
provides the PAL and various OEMs design the PI firmware.

The Health flag is used by both 1A-32 and Itanium architectures, but Test ed (Te) isthe only
common hit. 1A-32 hasthe built-in self-test (BIST), but none of the other capabilities.

Figure 1-6 depicts the bit format in the Health flag.

%y 20 18 18 17 16 3 2 0

\E N\ [e

=
&
=

63

Tast Status (imglementation depandeant)

Figure 1-6: Health Flag Bit Format

Table 1-24 explains the bit fields in the Health flag. 1A-32 ignores all bits except Test ed (Te).

UEFI Forum, Inc. April 2020 1-237

Platform Initialization Specification, Vol. 1

Table 1-24: Health Flag Bit Field Description

Security (SEC) Phase Information

Field Parameter Name in Bit # Description
EFI _HEALTH FLAGS

State St at us 0:1 A 2-bit field indicating self-test state after
reset. For more information, see “Self-
Test State Parameter” on page 238.

Te Test ed 2 A 1-bit field indicating whether testing has
occurred. If this field is zero, the processor
has not been tested, and no further fields
in the self-test State parameter are valid.

vm Vi rtual MenoryUnavai | abl e | 16 A 1-bit field. If set to 1, indicates that
virtual memory features are not available.

la | a32Executi onUnavai | abl e 17 A 1-bit field. If setto 1, indicates that IA-32
execution is not available.

Fp Fl oat i ngPoi nt Unavai |l abl e | 18 A 1-bit field. If setto 1, indicates that the
floating point unit is not available.

Mf M scFeat ur esUnavai | abl e 19 A 1-bit field. If set to 1, indicates

miscellaneous functional failure other than
vm, ia, or fp. The test status field provides
additional information on test failures
when the State field returns a value of
performance restricted or functionally
restricted. The value returned is
implementation dependent.

13.5.1 Self-Test State Parameter

Self-test state parameters are defined in the same format for 1A-32 Intel® processors and the Intel®
Itaniume processor family. Some of the test status bits may not be relevant to | A-32 processors. In

that case, these bits will read NULL on | A-32 processors.

Table 1-25 indicates the meanings for various values of the self-test State parameter (bits 0:1) of the
Health flag.

Table 1-25: Self-Test State Bit Values

State Value Description

Catastrophic Failure N/A Processor is not executing.

Healthy 00 No failure in functionality or performance.
Performance Restricted 01 No failure in functionality but performance is restricted.
Functionally Restricted 10 Some code may run but functionality is restricted and

performance may also be affected.

If the state field indicates that the processor is functionally restricted, then thevm, ia, and fp fieldsin
the Health flag specify additional information about the functional failure. See Table 1-24 for a
description of these fields.

UEFI Forum, Inc.

April 2020

1-238

Platform Initialization Specification, Vol. 1 Security (SEC) Phase Information

To further qualify “Functionally Restricted,” the following requirements will be met:

» The processor or PAL (for the Itanium processor family) has detected and isolated the failing
component so that it will not be used.

» The processor must have at least one functioning memory unit, arithmetic logic unit (ALU),
shifter, and branch unit.

» Thefloating-point unit may be disabled.

» For the Itanium processor family, the Register Stack Engine (RSE) is not required to work, but
register renaming logic must work properly.

* The paths between the processor-controlled caches and the register files must work during the
tests.

» Loadsfrom the firmware address space must work correctly.

13.6 Processor-Specific Details

13.6.1 SEC Phase in I1A-32 Intel Architecture

In 32-bit Intel® architecture (1A-32), the Security (SEC) phase of the PI Architectureis responsible
for several activities:

* Locating the PEI Foundation_
» Passing control directly to PEI using an architecturally defined handoff state

» Initiaizing processor-controlled memory resources, such asthe processor data cache, that can be
used as alinear extent of memory for acall stack (if supported)

Figure 1-7 below shows the steps completed during PEI initialization for 1A-32.

Microcode Starfup |A32 SEC Phase »

and BIST Processor Entry PEI Foundation

Figure 1-7: PEI Initialization Steps in 1A-32

13.6.2 SEC Phase in the Itanium Processor Family

Itanium architecture contains enough hooks to authenticate the PAL-A and PAL-B code distributed
by the processor vendor.

The internal microcode on the processor silicon that starts up on a power-good reset finds the first
layer of processor abstraction code (called PAL-A) located in the Boot Firmware Volume (BFV)
using architecturally defined pointersin the BFV. It isthe responsibility of this microcode to
authenticate that the PAL-A code layer from the processor vendor has not been tampered.

UEFI Forum, Inc. April 2020 1-239

Platform Initialization Specification, Vol. 1 Security (SEC) Phase Information

If the authentication of the PAL-A layer passes, then control passes on to the PAL-A layer. The
PAL-A layer then authenticates the next layer of processor abstraction code (called PAL-B) before
passing control to it.

In addition, the SEC phase of the Pl Architectureis also responsible for |ocating the PEI Foundation
and verifying its authenticity.

Figure 1-8 summarizes the SEC phase in the Itaniume processor family.

PowerGood

Microcode PAL-A PAL-B
Startup Ragl Authenticate Rl Authenticate

Framework SEC Phase Starts Up

Figure 1-8: Security (SEC) Phase in the Itanium Processor Family

UEFI Forum, Inc. April 2020 1-240

Platform Initialization Specification, Vol. 1

14 Dependency Expression Grammar

14.1 Dependency Expression Grammar

This topic contains an example BNF grammar for a PEIM dependency expression compiler that
converts a dependency expression source file into a dependency section of a PEIM stored in a

firmware volume.

14.1.1 Example Dependency Expression BNF Grammar

<depex>
<bool >

<terne

<factor>

<gui d>

<hex32>
<hex16>
<hex8>

<hexprefi x>:

<hexval ue> :

<hexdigit> :

UEFI Forum, Inc.

<bool >

<bool > AND <t ernm

<bool > OR <terne

<ternp

NOT <fact or >

<f act or >

<bool >

TRUE

FALSE

QU D

END

“{* <hex32> * <hex16> * <hex16>
<hex8> ‘,’ <hex8> ‘,’ <hex8> ')’
<hex8> <hex8> <hex8> *
<hexprefi x> <hexval ue>

= <hexprefix> <hexval ue>

<hexprefi x> <hexval ue>
RES

‘o x

<hexdi gi t > <hexval ue>
<hexdi gi t >

[0-9]

[a-f]

[A-F]

April 2020

<hex8> '
<hex8> ’

1-241

Platform Initialization Specification, Vol. 1 Dependency Expression Grammar

14.1.2 Sample Dependency Expressions

The following contains three examples of source statements using the BNF grammar from above
along with the opcodes, operands, and binary encoding that a dependency expression compiler
would generate from these source statements.

/1

/1 Source

/1

EFI _PEI _CPU | O PPl _GU D AND EFI _PElI READ ONLY_VARI ABLE ACCESS PPl _GUI D
END

/1
/1 Opcodes, Operands, and Binary Encoding
/1

0x00 : 02 PUSH

0x01 : 26 25 73 b0 c8 38 40 4b EFI _PEI _CPU IO PPI_GU D
88 77 61 c7 b0 6a ac 45

0Ox11 : 02 PUSH

0x12 : bl cc ba 26 42 6f d4 11

EFI _PEI _READ ONLY_VARI ABLE ACCESS PPI _GUI D
bc e7 00 80 ¢c7 3c 88 81

0x22 : 03 AND

0x23 : 08 END

UEFI Forum, Inc. April 2020 1-242

Platform Initialization Specification, Vol. 1

15 TE Image

15.1 Introduction

The Terse Executable (TE) image format was created as a mechanism to reduce the overhead of the
PE/COFF headers in PE32/PE32+ images, resulting in a corresponding reduction of image sizes for
executables running in the Pl Architecture environment. Reducing image size provides an
opportunity for use of asmaller system flash part.

TE images, both drivers and applications, are created as PE32 (or PE32+) executables. PE32 isa
generic executable image format that is intended to support multiple target systems, processors, and
operating systems. As aresult, the headers in the image contain information that is not necessarily
applicable to all target systems. In an effort to reduce image size, a new executable image header
(TE) was created that includes only those fields from the PE/COFF headers required for execution
under the Pl Architecture. Since this header contains the information required for execution of the
image, it can replace the PE/COFF headers from the origina image. This specification defines the
TE header, the fields in the header, and how they are used in the PI Architecture’ s execution
environment.

15.2 PE32 Headers

A PE file header, as described in the Microsoft Portable Executable and Common Object File
Format Specification, contains an MS-DOS* stub, a PE signature, a COFF header, an optional
header, and section headers. For successful execution, PEIMsin the Pl Architecture require very
little of the data from these headers, and in fact the MS-DOS stub and PE signature are not required
a al.

See Table 1-26 and Table 1-27 for the necessary fields and their descriptions.

Table 1-26: COFF Header Fields Required for TE Images

COFF Header Description

Machine Target machine identifier. 2 bytes in both COFF header and TE header

NumberOfSections Number of sections/section headers. 2 bytes in COFF header, 1 byte in TE
header

Table 1-27: Optional Header Fields Required for TE Images

OPTIONAL Header Description

AddressOfEntryPoint Address of entry point relative to image base. 4 bytes in both optional header
and TE header

BaseOfCode Offset from image base to the start of the code section. 4 bytes in both

optional header and TE header

ImageBase Image’s linked address. 4 bytes in OptionalHeader32, 8 bytes in
OptionalHeader64, and 8 bytes in TE header

UEFI Forum, Inc. April 2020 1-243

Platform Initialization Specification, Vol. 1 TE Image

Subsystem Subsystem required to run the image. 2 bytes in optional header, 1 byte in TE
header

UEFI Forum, Inc. April 2020 1-244

Platform Initialization Specification, Vol. 1 TE Image

TE Header

Summary

To reduce the overhead of PE/COFF headersin the Pl Architecture's environment, aminimal (TE)
header can be defined that includes only those fields required for execution in the Pl Architecture.
This header can then be used to replace the original headers at the start of the original image.

Prototype
typedef struct {
Ul NT16 Si gnat ur e;
Ul NT16 Machi ne;
Ul NT8 Nunber OfF Sect i ons;
Ul NT8 Subsyst em
Ul NT16 Stri ppedSi ze;
Ul NT32 Addr essO Ent r yPoi nt ;
Ul NT32 BaseOf Code;
Ul NT64 | mageBase;
EFl _1 MAGE_DATA DI RECTORY Dat aDi rectory[2] ;

} EFl _TE_| MAGE_HEADER;

Parameters

Si gnat ure

TE image sighature
Machi ne

Target machine, as specified in the original image’ s file header
Nurber OF Sect i ons

Number of sections, as specified in the original image’ s file header
Subsyst em

Target subsystem, as specified in the original optional header
Stri ppedSi ze

Number of bytes removed from the base of the original image
Addr essOF Ent r yPoi nt

Address of the entry point to the driver, as specified in the original image’ s optional
header

BaseOf Code
Base of the code, as specified in the original image’' s optional header
| mageBase

Image base, as specified in the original image’ s optiona header (0-extended to 64-bits
for PE32 images)

UEFI Forum, Inc. April 2020 1-245

Platform Initialization Specification, Vol. 1 TE Image

Dat aDi rectory

Directory entries for base rel ocations and the debug directory from the origina
image' s corresponding directory entries. See “ Related Definitions’ below.

Field Descriptions

Inthe EFI _TE | MAGE HEADER, the Machi ne, Number O Secti ons, Subsystem
Addr essO Ent ryPoi nt, BaseO Code, and | mageBase all come directly from the original
PE headers to enable partial reconstitution of the original headers if necessary.

The 2-byte Si gnat ur e should be setto EFI _ TE | MAGE_HEADER_SI GNATURE to designate
theimage as TE, as opposed to the “MZ” signature at the start of standard PE/COFF images.

The St ri ppedSi ze should be set to the number of bytes removed from the start of the original
image, which will typicaly include the MS-DOS, COFF, and optional headers, aswell asthe section
headers. This size can be used by image loaders and tools to make appropriate adjustments to the
other fieldsin the TE image header. Note that St r i ppedSi ze does not take into account the size
of the TE image header that will be added to the image. That isto say, the deltain the total image
sizewhen convertedto TEisSt ri ppedSi ze —sizeof (EFI _TE | MAGE HEADER). Thiswill
typically need to be taken into account by tools using the fields in the TE header.

TheDat aDi r ect or y array contents are copied directly from the base rel ocations and debug
directory entriesin the original optional header data directories. Thisimage format al so assumes that
file alignment is equal to section alignment.

Related Definitions

//***

/| EFI _| MAGE_DATA DI RECTORY
//***
typedef struct {

Ul NT32 Vi rt ual Addr ess;

Ul NT32 Si ze;
} EFl _| MAGE DATA DI RECTORY;
#define EFl _TE_| MAGE DI RECTORY_ENTRY_ BASERELOC 0
#defi ne EFl _TE_| MAGE DI RECTORY_ENTRY_DEBUG

=

#define EFI _TE_ | MAGE_HEADER S| GNATURE 0X5A56 [/ “VZ’

UEFI Forum, Inc. April 2020 1-246

Platform Initialization Specification, Vol. 1

16 TE Image Creation

16.1 Introduction

This section describes the tool requirements to create a TE image.

16.2 TE Image Utility Requirements
A utility that creates TE images from standard PE/COFF images must be able to do the following:

Createan EFI _TE | MAGE_HEADER in memory

Parse the PE/COFF headersin an existing image and extract the necessary fields to fill in the
EFlI _TE_| MAGE_HEADER

Fill in the signature and stripped sizefieldsinthe EFI _TE | MAGE HEADER
Writeout the EFI _TE | MAGE_HEADER to anew binary file
Write out the contents of the original image, less the stripped headers, to the output file

Since some fields from the PE/COFF headers have a smaller corresponding field in the TE image
header, the utility must be able to recognize if the original value from the PE/COFF header does not
fitin the TE header. In this case, the original image is not a candidate for conversion to TE image
format.

16.3 TE Image Relocations

Relocation fix upsin TE images are not modified by the TE image creation process. Therefore, if a
TE image is to be rel ocated, the loader/relocator must take into consideration the stripped size and
size of a TE image header when applying fix ups.

UEFI Forum, Inc. April 2020 1-247

Platform Initialization Specification, Vol. 1

17 TE Image Loading

17.1 Introduction

This section describes the use of the TE image and how embedded, execute-in-place environments
can invoke these images.

17.2 XIP Images

For execute-in-place (XIP) images that do not require relocations, loading a TE image simply
requires that the loader adjust the image's entry point from the value specified in the

EFI _TE | MAGE HEADER. For example, if the image (and thus the TE header) resides at memory
location Loadedl mageAddr ess, then the actual entry for the driver is computed as follows:

EntryPoi nt = Loadedl mageAddress + sizeof (EFI_TE | MAGE HEADER)
+

((EFI _TE_I MAGE_HEADER *) Loadedl mageAddr ess) —>
Addr essCf Ent ryPoi nt — ((EFl _TE_I MAGE_HEADER *)
Loadedl mageAddr ess) —>St ri ppedSi ze;

17.3 Relocated Images

To successfully load and relocate a TE image requires the same operations as required for X1P code.
However, for images that can be rel ocated, the image loader must make adjustments for al the
relocation fix ups performed. Details on this operation are beyond the scope of this document, but
suffice it to say that the adjustments will be computed in a manner similar to the Ent r yPoi nt
adjustment made in X1P Images.

17.4 PIC Images

A TE Image is Position Independent Code (PIC) if it can be executed in flash and shadowed to
memory without any fix ups. In this case, the TE Image Relocation Data Directory Entry Virtual
Addressis non-zero, but the Relocation Data Directory Size is zero.

UEFI Forum, Inc. April 2020 1-248

UEFI Platform Initialization (PIl) Specification

Volume 2;
Driver Execution Environment Core Interface

Version 1.7 A
April 2020

Platform Initialization Specification, Vol. 2

The material contained herein is not a license, either expressly or impliedly, to any intellectual property
owned or controlled by any of the authors or developers of this material or to any contribution thereto. The
material contained herein is provided on an "AS IS" basis and, to the maximum extent permitted by
applicable law, this information is provided AS IS AND WITH ALL FAULTS, and the authors and
developers of this material hereby disclaim all other warranties and conditions, either express, implied or
statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of
merchantability, of fithess for a particular purpose, of accuracy or completeness of responses, of results, of
workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material and any
contribution thereto. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or
instructions so marked for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION
OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR
NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY CONTRIBUTION
THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION
THERETO BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,
CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT,
TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE
NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2020, Unified Extensible Firmware Interface (UEFI) Forum, Inc. All Rights Reserved. The
UEFI Forum is the owner of all rights and title in and to this work, including all copyright rights that may
exist, and all rights to use and reproduce this work. Further to such rights, permission is hereby granted to
any person implementing this specification to maintain an electronic version of this work accessible by its
internal personnel, and to print a copy of this specification in hard copy form, in whole or in part, in each
case solely for use by that person in connection with the implementation of this Specification, provided no
modification is made to the Specification.

UEFI Forum, Inc. April 2020 2-ii

Platform Initialization Specification, Vol. 2

Specification Organization

The Platform Initialization Specification is divided into volumes to enable logical organization, future
growth, and printing convenience. The current volumes are as follows:

e “Volumel: Pre-EFI Initialization Core Interface’

* “Volume 2: Driver Execution Environment Core I nterface’
e “Volume 3: Shared Architectural Elements”

* “Volume4: Management Mode Core I nterface’

e “Volume5: Standards’

Each volume should be viewed in relation to al other volumes, and readers are strongly encouraged to
consult the entire specification when researching areas of interest. Recent versions of this specification are

issued as a single document containing all five volumes, for easier searching of the complete content.

Changes in this Release

Revision

Mantis ID / Description

Date

1.7A

1663 SmmSxDispatch2->Register() is not clear
1736 Specification of EFI_BOOT_SCRIPT_WIDTH in Save State Write
1993 Allow MM CommBuffer to be passed as a VA

2017 EFI_RUNTIME_EVENT_ENTRY.Event should have type EFI_EVENT,
not (EFI_EVENT¥)

2039 PI Configuration Tables Errata
2040 EFI_SECTION_FREEFORM_SUBTYPE_GUID Errata

2060 Add missing
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PC|_ADDRESS definition

2063 Add Index to end of Pl Spec
2071 Extended cpu topology

April 2020

For a complete change history for this specification, see the master Revision History at the beginning of
the consolidated five-volume document.

UEFI Forum, Inc.

April 2020

2-iii

Platform Initialization Specification, Vol. 2

Table of Contents

TabIE Of CONTENES...ueeii e e e e e e e e e eeeeeeeeeane 2-iv
I ESY A0 1= o = PO 2-iX
RSy Ao o 1= P 2-X
O 1 11 o T [0 o 4 o o 2-1
L1 OVEIVIBW ..ttt 2-1

1.2 Organization of the DXE CISuiiiiiiee i e e e 2-1
1.3 Target AUIENCE.......oe e 2-2

1.4 Conventions Used in thiS DOCUMENT..........ccooiiiiiiii e 2-2
1.4.1 Data StruCture DESCIPLIONScoiiuiiiiiiieieee e sttt e e e e e e e e e e e 2-3

2 o o (o Toto] I T=T Yo g o] 1 o 1P 2-3

1.4.3 Procedure DeSCIIPLIONSciiiieieieeeeiiiiis e e ee et e e e e e e e e e e e e e e e e ea e e e e 2-4

1.4.4 INStruCtioN DESCIIPLIONSui it eeieeeeiiii e e e e e e e e e e e e e e e e e 2-4

1.4.5 Pseudo-Code CONVENTIONSoeiiiiiiiiiiiiieiieeieee ettt ettt e et e e e e e e e e e e e e e aeees 2-4

1.4.6 TypographiC CONVENTIONScoiiiuuiiiiiiieeee it e e e e e e e e e annees 2-5

L5 REQUITEMENTS...cciiiieeceee e 2-5
1.6 Conventions used in thiS dOCUMENTc.uuiiiiiiie e 2-7
G N[0 g 01T g 0] £ 1 4 = L PP 2-7

1.6.2 BINAIY PrefiXS ...uuuieieeiuiiiiieitiiiiieieieeiaeeteeaeaeeees 2-7

2 OVEBIVIBW ...ttt e aaaeas 2-9
2.1 Driver Execution Environment (DXE) Phasecccccccvviviiiii 2-9
2.2 UEFI SYStem Table......ccoiiiiiii e e e e e e e e e e eeaes 2-10
B T @ YT o T 2-10

2.2.2 UEFI BOOt Services Tableo 2-11

2.2.3 UEFI Runtime Services TabIle...........uuuuuumuiiniiiiiiiiiiiiiiriinerineeneeeeeseeeeeeeeeeeeeeee. 2-11

2.2.4 DXE ServiCes Tablecouuiiiiiiiiiie e 2-12

2.3 DXE FOUNUALION.....ciiiiiiiitiiiie ettt e e e e e e e e e e e e s st e e e e e e e s s annnbneeeeeas 2-12
A) R I 1Y o - (o = RPN 2-13
2.5 DXE DIIVEIS ..tttttittieeiieetiteeeeeeteeeteeaeeeeeeeeeeeeaaeaaaaeaaaaaeaaeaaaeees 2-13
2.6 DXE ArchiteCtural ProtOCOIS........ceuiiiiiiiiiieeeeeeeet ettt 2-13
2.7 RUNEIME PrOTOCOLt e e e e e e e e e e e e e bbbt e e e e eeeeeeenes 2-14

3 BOOt MANAGET ... et aeae 2-15
TR R = o Lol Y = T T= Vo 1] TP TRSUPPPPPIIN 2-15

4 UEF] SYStem Table ... e 2-16
4.1 DXE SEerVICES TabIl ..ot 2-16
DXE_SERVICES.ttt ettt e e e e ee e e e e e e 2-16

4.2 UEFI Image Entry POint EXAMPIESuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeees 2-19
4.2.1 UEFI Application EXample ... 2-19

4.2.2 Non-UEFI Driver Model Example (Resident in MEMOrY)ccccceevviiiiviieenenn. 2-22

4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)ccccccccvvnnnnnn. 2-23

UEFI Forum, Inc. April 2020 2-iv

Platform Initialization Specification, Vol. 2

4.2.4 UEFI Driver Model EXample..........coooiiii e, 2-25

4.2.5 UEFI Driver Model Example (Unloadabl@)ccouviiiiiiiiiiiiiiiein e, 2-26

4.2.6 UEFI Driver Model Example (Multiple INStanCes)cccccovveeeviiiieiiiiiniieeeeeeeeens 2-29

5 SEerviCes - BOOt SEIVICES.....cuuiiiiiiiiiiiiiiiiii s e e e 2-32
5.1 Extensions to UEFI Boot Service Event Usagecccoovvvvveiiiiiiiieeeee 2-32
5.1.1 CreateEVENT aaeene 2-32

5.1.2 Pre-Defined EVENT GIOUPScovviiiiiiieeeeeeeeitiie s e e e e et s e e e e e e eeee e a e e e e e e e 2-32

5.1.3 Additions t0 Loadimage()ceeeeeeeeeeeeee oo e 2-33

6 RUNtiME CapabilitieScccceuii e e 2-37
6.1 Additional RUNtIME PrOtOCOL...........uiiiiiiiiiiiiiiiiiiee e, 2-37
6.1.1 StatuS COUE SEIVICES .. iii i it eeeeeneeenees 2-37

7 SErviCes - DXE SEIVICES ..coiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisss s n e e e e e e e e e e 2-38
4% N 1 e Yo [8 o 1 o o TSP PPP PRI 2-38
7.2 Global Coherency DOMAaIN SEIVICESuuuiiiieeeiiieiiiiiie e e e eeeeeeetes s e e e e e e e eearaan e e eeaeeenes 2-38
7.2.1 Global Coherency Domain (GCD) Services OVEIVIEWccovveeeeveeeeviinineeeeennn. 2-38

7.2.2 GCD MEMOIY RESOUITESoiiiiiiiiii ettt e e e et 2-38

7.2.3 GCD 1/O RESOUICTESuuiiiiiieniiueaaeaaeeeeeaaeeeaesteesseesssessessseessessssssssnsennnees 2-40

7.2.4 Global Coherency DoOmain SEIVICESuuuuirriiiiiiriiiiiiiriiiirinrinrsieerrrr————. 2-41
AdAMEMOIYSPACE() .oceeeeeeeeeee e ——— 2-43
AlloCateEMEMOIYSPACE() ..evvvrrniiieeeiieeeiiiae et e e e e e e et e e e e e e e e e e e e e e e eeeenaennnns 2-46
FreeMemOorySPACE() . .cooeee oo e 2-49
REMOVEMEMOIYSPACE() -.vvvveeeeeiiiiiiiiiiei et e e 2-51
GetMemorySpPaceDESCIIPLON() .. v . eeiiiiiirreieeeee ettt 2-53
SetMemorySpaceAttributeS() ..oovvvvvevieeiiiiiee 2-56
SetMemorySpaceCapabilitieS()......cuvveviieiieeiiiiiiii 2-58
GetMemOorySPaCEMAP()ccvveeeeriiiiee e e e e 2-60

AdAIOSPACE() oo oo 2-62
AllOCAEIOSPACE() ...ttt e ettt e e 2-64
FrE@IOSPACE() «vevereeeiiiiiiiei ittt 2-67
RemMOVEIOSPACE() ..cceeieeeeeeeeeee e, 2-69
(T[0T oL 1ot =T B Lot Yol ¢ o1 (o € TR PP 2-71

LT A [0S o= Tt =11 F= T o PPN 2-73

7.3 DISPAICNEN SEIVICES ...ttt 2-75
DISPALCN() .o s 2-76

SCNEAUIE() i 2-77

I 0 1S3 (S 2-78
ProcessFirmwareVolume() ..o 2-79

8 Protocols - Device Path ProtoCol.........ooouuiiiiiiiiiiiici e 2-81
S 70 0] (o To [U T 1o o KPS 2-81
8.2 Firmware Volume Media DeViCe Path............cccuuiiiiiiiiiiiiiiecece e 2-81
8.3 Firmware File Media DeVviCe Path ...t 2-82

O DXE FOUNAALION....cciiiiiieiiiii e e e e e e e e e e eaeenes 2-83
LS 200 I 110 To [T 1o) o 1P 2-83
9.2 Hand-Off BIOCK (HOB) LiSt......uuuuuuiiiiiiiiiiiiiiiiiiiiieeeiesiieeeeeeseeeeeeeeeeeseeseeseeeeseeseesseessseeseeess 2-83

UEFI Forum, Inc. April 2020 2-v

Platform Initialization Specification, Vol. 2

9.3 DXE Foundation Dat@ StIUCIUIES........cuiiiiiiiiiiiiiieie ettt e e e e 2-85
9.4 Required DXE Foundation COMPONENTS.......ciiiieiiiieiiiiiiiii e eeee et e e e e e e eeeren e e e e e 2-86
9.5 Handing Control to DXE DISPALCNENuuiiiiiieiiiieeiiiis et 2-88
9.6 DXE Foundation ENtry POINT.........cooiiiiiiiiiiiiiiiiiiei ettt 2-89
9.6.1 DXE_ENTRY _POINT ...cciiiitiiiie ettt e et e e e e e e e s e eae s 2-89
DXE_ENTRY _POINT ...ttt e e e ae e e e e e e enntnneaaeaeeeans 2-89

0.7 DEPENUENCIES ...vvvvvieriiiiiieiieeetietteesseeeeeeseeeeaeesaeeseeteeeeaarteretaeeetettteeetertrttttetterttrtttrrareeaeeess 2-90
9.7.1 UEFI Boot Services DepPendeNnCIES........ccovvvuiiiiiiiiieeiceeeiiiis e eeeeee e 2-90
9.7.2 UEFI Runtime Services DependenCiES..........uuiiiiiieerrieeeiiiiine e eeeeeeaniin e eees 2-93
9.7.3 DXE Services DePENUENCIEScccoviiuiiiiiiiieeieeeiee e 2-96

oIS o (@] = T I = T IS = 11 £ TSRS 2-97
9.8.1 HOB TranslatioNs OVEIVIEW...........uuuuuuruueiuurenrienuineninnneennennnerrrerneesrneeererrre. 2-97
O.8.2 PHIT HOBttt e e ee e e e as 2-97
O.8.3 CPU HOB.... .ttt e e e e e e s et e e e e e e e s eeeaaee s 2-98
9.8.4 Resource DescCriptor HOBS........couuiiiiiiii et e et e 2-98
9.8.5 Firmware VOoIUME HOBS ...ttt eeeeeeeeeeeeeeeeeees 2-99
9.8.6 Memory AlIOCAtION HOBSccciiiiiiiiiieiie e 2-99
9.8.7 GUID EXtENSION HOBS......ccoiiiieiee e 2-100

10 DXE DiSPatCNeI ...t eeeereana 2-101
0 I 1 o o 13 o 1 o T o SRR 2-101
10.2 REQUITEIMENTSeiiiiiiiitti et ettt et e e e e e e bbbt e e e e e e e e be e e et e e e e s e annnnneeeeeeas 2-101
L10.3 THE A PIOK FlE oot 2-102
EFI_APRIORI_GUIDotiiiiiiiiiiiiiiieee ettt 2-103

10.4 Firmware Volume IMage FilES ..o 2-103
10.5 DependencCy EXPreSSIONScceiieiiieeiie e 2-104
10.6 Dependency EXPressions OVEIVIEWcciieeiieeeiieeeeeeeeeeee e 2-104
10.7 Dependency EXpression INSTUCHION Stccuuiiiiiiiiiiieieieiiiiiiee e 2-104
BEFORE.ottt e e e e 2-106

AFTER . e e e e e e e 2-107

PUSH et e e et e e e e s et e e e e e e a e reeeeeaaas 2-108

Y N USSP 2-109

[PR EERR PO 2-110

N SRR UUURPR 2-111

TRUE ..ttt ettt e e e e e s e e e e e e s e e e e e e e 2-112

FALSE ...ttt e e a e e e e e 2-113

EN D ettt e e e e e et e e e e e e e e anrarereeaeeaans 2-114

1@ SRRSO 2-115

10.8 Dependency Expression with NO Dependencies..........coooveieeeiiiii e 2-116
10.9 Empty DependencCy EXPr@SSIONScouiiuuuriiiiieeeeiaiiiiieee e e e s e s 2-116
10.10 Dependency Expression Reverse Polish Notation (RPN)ccooooiiiiiiiiiiiiiiiiins 2-119
10.11 DXE Dispatcher State Machineccccoo i, 2-120
O I 2 = g] o] [@ o [T [T 2-122
10.13 Security CONSIAEIALIONSccoiiiiiiiiiiie e e et e e e e e e e e e e e s eeeeeas 2-125
11 DXE DIIVEIS ittt ettt e ettt e e e e e e e e e e bbb e e e e e e eeeseanes 2-126
300 1 To [F o3 1T o PP PPPP PRI 2-126
11.2 Classes Of DXE DIIVEIScoouiiiiiiiiiiiiee e, 2-126

UEFI Forum, Inc. April 2020 2-vi

Platform Initialization Specification, Vol. 2

11.2.1 EQrly DXE DIIVEIS ...uuuuuiiiiiiiiiriuniiiininsunsssessssssssssssssssesseseseesrrrereseerererserrere 2-126
11.2.2 DXE Drivers that Follow the UEFI Driver Modelcccooueeiiiiiiiiiiiiiinceennn, 2-127
11.2.3 Additional ClasSIfICAtIONSuoiieuiiie e 2-127

12 DXE Architectural ProtoColScoovvviiiiieie e 2-128
2 I [0 1 0 o [Tt o o [2-128
12.2 Boot Device Selection (BDS) Architectural Protocol.............cccoovvviiiiiiiii e, 2-130
EFI_BDS ARCH _PROTOCOLcccooiiiii i 2-130
EFI_BDS_ARCH_PROTOCOL.ENIY() .eeeeieiiiiieiee e eciiieiiee e eiieeee e e 2-131

12.3 CPU Architectural ProtOCOIc.uiiiieiiiie ettt e et e et r e e 2-132
EFI_CPU_ARCH PROTOCOL.....ccoiiiiiii i 2-132
EFI_CPU_ARCH_PROTOCOL.FlushDataCache()..........cccccuvvvrrrvrvinrrvnnnennnne. 2-135
EFI_CPU_ARCH_PROTOCOL.Enablelnterrupt().......ccccceeeeuummrmmrmrrnnnnennnnnnnns 2-137
EFI_CPU_ARCH_PROTOCOL.Disablelnterrupt()cccocvvrrrrrmerrrenrrenrnennnee. 2-138
EFI_CPU_ARCH_PROTOCOL.GetInterruptState().......ccueeeeeeririiieeeerreeenannnns 2-139
EFI_CPU_ARCH_PROTOCOL.INIL()uuttieeeiiiiiiiiiiieeeeeeiiiiiie e e e e e ee e e e 2-140
EFI_CPU_ARCH_PROTOCOL.RegisterInterruptHandler()ccccccveeeernne 2-141
EFI_CPU_ARCH_PROTOCOL.GetTimerValue()ccccceeeeumrmrmennnninnnennnnnnnns 2-143
EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes().........cccvvvvvvvvvvvnvvnnnnee. 2-145

12.4 Metronome ArchiteCtural ProtOCOL...........uiiieuiiiii et e e 2-147
EFI. METRONOME_ARCH PROTOCOL.....cccoiiiiiieiviieeninaes 2-147
EFI_METRONOME_ARCH_PROTOCOL.WaitForTick()ccovvvrrrrrreeerinnnns 2-148

12.5 Monotonic Counter Architectural ProtoColoeviiviiiiiiiiiiie e 2-149
EFI_MONOTONIC_COUNTER_ARCH_PROTOCOLccccvvvvvvvirvierreneiennee. 2-149

12.6 Real Time Clock Architectural ProtOCOlccuuviieiiiiiiiiie e 2-150
EFI_REAL TIME_CLOCK ARCH PROTOCOL....ccccccuuvviviiiiiiiiinreeeeeeeeeeeeeee. 2-150

12.7 Reset ArchiteCtural ProtOCOIciveiiii et e e 2-151
EFI_RESET _ARCH PROTOCOLcoooiiiiiiiiiieeeeeee e 2-151

12.8 Runtime Architectural ProtoCOleiiiiiiiiiiiie e 2-152
EFI_ RUNTIME_ARCH_PROTOCOLuuiiiiiiiiiiiiiiiniieievvvevveevverveeeeeeeeeeeees 2-152

12.9 Security Architectural ProtOCOIScoovviiiiiii e 2-158
12.9.1 Security Architectural ProtOCOl.............uuueuiieiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 2-158
EFI_SECURITY_ARCH_PROTOCOLuiiiiviiiiivieveivevveevvvesveeeveeeeees 2-158
EFI_SECURITY_ARCH_PROTOCOL.FileAuthenticationState()................... 2-160

12.9.2 Security2 Architectural ProtOCOluuuvveeiiiiiiiiiiieiiieieieeeeeeeeeeeeeeeeeeeeeeeen 2-161
EFI_SECURITY2_ARCH_PROTOCOL.FileAuthentication()c...ccceee.... 2-163

12.10 Timer ArchiteCtural ProtOCOL........coouuiiii i et eeaa s 2-164
EFI_TIMER_ARCH_PROTOCOLcoooiiiiii i 2-164
EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()........cccccceeeviiiirreereeeeennnns 2-166
EFI_TIMER_ARCH_PROTOCOL.SetTimerPeriod()......ccccccvveeeeiiiiiriireeeeenanns 2-168
EFI_TIMER_ARCH_PROTOCOL.GetTimerPeriod()ccccvvvrvrrrivrrennnnnnnne. 2-169
EFI_TIMER_ARCH_PROTOCOL.GenerateSoftInterrupt()ccccvvvvvvvveneee. 2-170

12.11 Variable Architectural ProtOCOL..........cooueiiiiiii e 2-171
EFI_VARIABLE_ARCH _PROTOCOL......ccoiiiiiiieiee e 2-171

12.12 Variable Write Architectural ProtoColooooueiiiiiiiieiee e 2-172
EFI_VARIABLE_WRITE_ARCH PROTOCOLcccooiiiiiiiiiiiinviiinaes 2-172

12.13 EFI Capsule Architectural Protocol..........cccccooiviiiiii e, 2-172

UEFI Forum, Inc. April 2020 2-vii

Platform Initialization Specification, Vol. 2

EFI_CAPSULE_ARCH_PROTOCOL........ciiiiiiiiiiiieeiiiiiiiiea e e 2-172

12.14 Watchdog Timer Architectural ProtoColc.ooeviiiiiiiii e 2-173
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL........ccvviiiieeeeiiiiiiiiieeee e 2-173
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.RegisterHandler() 2-175
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.SetTimerPeriod() 2-177
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL.GetTimerPeriod().............. 2-178

13 DXE B0Ot Services ProtoCOl......cccoeiviiiiiii i 2-179
R B0 RO 1YY YT PSSP 2-179
13.2 Conventions and Abbreviations ..., 2-179
13.3 MP Services ProtoCOl OVEIVIEW..........cccuveiieiieeeeeeeeee e 2-179
13.4 MP SErVIiCEeS PrOtOCOL.cciiiiiiiiiiiiiiiieie ettt ee e 2-180
EFI_MP_SERVICES _PROTOQCOL ...ceeiiiiiiiiiiiiiiee e eeiiiiieee e 2-180
EFI_MP_SERVICES PROTOCOL.GetNumberOfProcessors()ccccveuveee 2-182
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo().....cccccceeevvveeeeeeeennnns 2-184
EFI_MP_SERVICES_PROTOCOL.StartupAlAPS()cccoveveverererereecnennns 2-189
EFI_MP_SERVICES_PROTOCOL.StartupThiSAP()coveveveeeeeeeereeeeennns 2-193
EFI_MP_SERVICES_PROTOCOL.SWIitChBSP().......ccecuvriieieeiiiiiiiiiieeee e 2-196
EFI_MP_SERVICES_PROTOCOL.EnableDisableAP()......cc.ccccceuivrrerreeeennnns 2-198
EFI_MP_SERVICES_PROTOCOL.WHhOAMI()...cceeeiiiiiiiiiiieeeeeeiiiiiieeee e 2-200

14 DXE RUNtiMe ProtOCOIScooiiiiiiiiiiiiieieeeeeeeeeeeeee s 2-202
I R g (o To [F o3 1T o P PPPR PRI 2-202
14.2 Status Code RUNLIME ProtOCOL...........ccoiiiiiiiiie e, 2-202
EFI_STATUS_CODE_ PROTOCOL ..cceeeiiiiiiiiiiiie e e eiieiiee e e e e e 2-202
EFI_STATUS_CODE_PROTOCOL.ReportStatusCode()ceevvrrvvrverrrreennnns 2-203

15 Dependency EXpression Grammar......c..ccoeuuoeeeeeieieeeeenineeeeeenneeeeeennnns 2-207
15.1 Dependency EXPression GramMarl.............ucieiieeeeeeeeeeiiiinaseeeeessessnnsnnaneeeeeeseessnnnnnnn 2-207
15.2 Example Dependency Expression BNF Grammar............ooooeoiieeiiinieiieneeeeeeeeeeeeeenes 2-207
15.3 Sample Dependency EXPreSSIiONSccovi i 2-208
APPENdiX AEITOr COUBSuniiiiiie e 2-211
Appendix BGUID DefiNitiONScccccciiiiiiiiiie e e e eeeanans 2-212

UEFI Forum, Inc. April 2020 2-viii

Platform Initialization Specification, Vol. 2

List of Tables

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 2-9:

Table 2-10:
Table 2-11:
Table 2-12:
Table 2-13:
Table 2-14:
Table 2-15:
Table 2-16:
Table 2-17:
Table 2-18:
Table 2-19:
Table 2-20:
Table 2-21:
Table 2-22:
Table 2-23:
Table 2-24:
Table 2-25:
Table 2-26:
Table 2-27:
Table 2-28:
Table 2-29:
Table 2-30:
Table 2-31:
Table 2-32:
Table 2-33:

UEFI Forum, Inc.

Organization of the DXE CISouiiiiiiiiiiiie e 2-2
SIPIEIIXES .ttt a e 2-7

2T = LY 01 L= 0L PP 2-8
UEFI BOOL SEIVICES ..coniietiieee ettt et e e e e 2-11
UEF] RUNLIME SEIVICES conniiieiiie ettt s e e s s e 2-12
DXE SEIVICES ..cvniiieiiiee ettt et e e e e e e e e st e e e e e b e e ra e e naaas 2-12
DXE Architectural ProtOCOISooiveiiiiiiiie e 2-14
Status Codes RUNIME ProtOCO!ooeveiiiieiiieeee e 2-14
Supported SUbSYStEM VAlUES ..o 2-36

Status Code Runtime ProtoColccoooiiiiiiiiiii e 2-37
Global Coherency Domain Boot TYpe SEIVICEScccevvveeeeiiieiiiiiiiiieeeeeeeeeaanns 2-42
Dispatcher BOOt TYPE SEIVICESccoiiiiiiiiiiiieeeie it 2-75
Firmware Volume Media Device Pathccccccccviviiiii 2-81
Firmware Volume Device Node Text Representationcccccceveeeerriinnnnnn. 2-81
Firmware File Media Device Pathccceeiiiiiiiiiiii e 2-82
Firmware Volume File Device Node Text Representationccccccceeeeeennee. 2-82
Boot Service DEPENUENCIESocvvviiiiiiiiieiiieeeeee e 2-91
Runtime Service DePendencCi€scovvivviiiiiiiiiiiiii e 2-94
DXE Service DEePENUENCIESoviiiiiiiiiiiiiiiiee et 2-96
Resource Descriptor HOB to GCD Type Mappingcccccveeeeeeiieeeeeeeeeeeeee, 2-99
Dependency Expression Opcode SUMMATYcccevvvevvieeieeviieiieeiieeeieeeeeeeeen 2-105
BEFORE Instruction ENCOAiNgcooiiieriiiiiiiin e 2-106
AFTER Instruction ENCOAINGeeviiiiiiiiiiiiiiiiiiiieeeeeeeeeee et 2-107
(S WIS] o I [0 1S3 i 0 Tox 1o o T =t Voo Lo 11 o PP 2-108
AND INStruction ENCOAINGuvvviiiieiiiiiiiiiii e 2-109
OR INStruction ENCOINGcoceeeiiiiieiic e annennees 2-110
N [@ 3 T 1S3 (W Tod 10T I =1 oo [T o PP 2-111
TRUE InStruction ENCOAINGccoovviiiiiiiii e e e e 2-112
FALSE INStruction ENCOAINGcccoiiiiiiiiiiiiiee e 2-113
END INStruction ENCOQINGveeiiiiiiiiiiiiiiiiiieeiee ettt e e e e e e e e 2-114
SOR INStruction ENCOAINGcoooiiiiiiiiiiiieeee e 2-115
DXE DispatCher OrderiNgScovveiiiiiiiiiiieiiiiieeeeeeeeeer e eee e e e e e aae e 2-124
StatusFlag bitS ..o 2-186

April 2020 2-vi

Platform Initialization Specification, Vol. 2

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

UEFI Forum, Inc.

Pl Architecture Firmware PRaSESccccceuuruuuriuniiiiiiinininiiiieeineennnereeereereeeeee 2-10
GCD Memory State TranSItioNS..........ccuvvririiie e 2-40
GCD I/O State TranSItIONSeeieeiiiiiiiieiiee e 2-41
[(0= 3 1 PP PPPPRR 2-84
UEFI System Table and Related COmponents.........ccccoovveeviiieiiiiiiiiin e eeeceeeennns 2-85
DXE Foundation COMPONENTSuuuuiieiiuniiiiiiniiiiiiiieieiiennneeneeeeeeeneeeeeeeeeeeneennees 2-86
D) S B 1Yo] = (T 2-121
Sample FIrmware VOIUMEcoooiiiiiiiiiiiiieeee e 2-123
DXE Architectural ProtOCOISoeiiiiiiiiiiiiiiiiiee e 2-129

April 2020 2-x

Platform Initialization Specification, Vol. 2 Introduction

1 Introduction

1.1 Overview

This specification defines the core code and services that are required for an implementation of the
driver execution environment (DXE) phase of the Unified Extensible Firmware Interface (UEFI)
Foundation. This DXE core interface specification (CIS) does the following:

» Describes the basic components of the DXE phase.

» Provides code definitions for services and functions that are architecturally required by the
Unified Extensible Firmware Interface Specification (UEFI 2.0 specification).

» Presents aset of backward-compatible extensions to the UEFI 2.0 specification.
» Describes the machine preparation that is required for subsegquent phases of firmware execution.
See “Organization of the DXE CIS’ for more information.

1.2 Organization of the DXE CIS

This DXE core interface specification (CIS) is organized as shown in Table 2-1. Because the DXE
Foundation is just one component of a Pl Architecture-based firmware solution, there are a number
of additional specificationsthat are referred to throughout this document.

UEFI Forum, Inc. April 2020 2-1

Platform Initialization Specification, Vol. 2

Introduction

Table 2-1: Organization of the DXE CIS

Book

“Overview” on page 9

“Boot Manager” on page 15

“UEFI System Table” on page 16

“Services - Boot Services” on
page 32
“Runtime Capabilities” on page 37

“Services - DXE Services” on
page 38
“Protocols - Device Path Protocol” on

page 81
“DXE Foundation” on page 83

“DXE Dispatcher” on page 101

“DXE Drivers” on page 126

“DXE Architectural Protocols” on
page 128

“DXE Runtime Protocols” on
page 202
“Dependency Expression Grammar”

on page 207

Description

Describes the major components of DXE, including the boot
manager, firmware core, protocols, and requirements.
Describes the boot manager, which is used to load UEFI drivers,
UEFI applications, and UEFI OS loaders.

Describes the DXE Service table.

Describes specific event types for DXE Foundation.

Contains definitions of a runtime protocol for status code support.

Contains definitions for the fundamental services that are present in
a DXE-compliant system before an OS is booted.

Defines the device path extensions required by the DXE Foundation.

Describes the DXE Foundation that consumes HOBs, Firmware
Volumes, and DXE Architectural Protocols to produce an UEFI
System Table, UEFI Boot Services, UEFI Runtime Services, and the
DXE Services.

Describes the DXE Dispatcher that is responsible for loading and
executing DXE drivers from Firmware Volumes.

Describes the different classes of DXE drivers that may be stored in
Firmware Volumes.

Describes the Architectural Protocols that are produced by DXE
drivers. They are also consumed by the DXE Foundation to produce
the UEFI Boot Services, UEFI Runtime Services, and DXE Services.

Lists success, error, and warning codes returned by DXE and UEFI
interfaces.

Describes the BNF grammar for a tool that can convert a text file
containing a dependency expression into a dependency section of a
DXE driver stored in a Firmware Volume.

1.3 Target Audience

This document isintended for the following readers:
e IHVsand OEMswho will be implementing DXE drivers that are stored in firmware volumes.

» BIOSdevelopers, either those who create genera -purpose BIOS and other firmware products or
those who modify these products for use in various vendor architecture—based products.

1.4 Conventions Used in this Document

This document uses the typographic and illustrative conventions described below.

UEFI Forum, Inc.

April 2020 2-2

Platform Initialization Specification, Vol. 2 Introduction

1.4.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-order byte of
amultibyte dataitem in memory is at the lowest address, while the high-order byte is at the highest
address. Some supported processors may be configured for both “little endian” and “big endian”
operation. All implementations designed to conform to this specification will use “little endian”
operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any

reserved field.
The data structures described in this document generally have the following format:
STR U CTU R E NA M E . The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this data
structure.

1.4.2 Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.
Summary: A brief description of the protocol interface.
GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol

interface structure or any of its procedures.

UEFI Forum, Inc. April 2020 2-3

Platform Initialization Specification, Vol. 2 Introduction

1.4.3 Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureNam e(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this
procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

1.4.4 Instruction Descriptions
A dependency expression instruction description generally has the following format:

InstructionName The formal name of the instruction.

Syntax: A brief description of the instruction.

Description: A description of the functionality provided by the instruction
accompanied by atable that details the instruction encoding.

Operation: Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each operand
involved in the instruction and any restrictions that apply to the
operands or the instruction.

1.4.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithmsin
this document are intended to be compiled directly. The codeis presented at alevel corresponding to
the surrounding text.

In describing variables, alist is an unordered collection of homogeneous objects. A queueis an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

UEFI Forum, Inc. April 2020 2-4

Platform Initialization Specification, Vol. 2 Introduction

Pseudo codeis presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Unified Extensible Firmware Interface Specification (UEFI 2.0

specification).

1.4.6 Typographic Conventions

This document uses the typographic and illustrative conventions described bel ow:

Plain text

Plain text (blue)

Bold

Italic

BOLD Mbonospace

Bol d Mbnospace

Italic Monospace

Pl ai n Mbnospace

1.5 Requirements

The normal text typeface is used for the vast majority of the descriptive
text in a specification.

In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
activein the PDF of the specification.

In text, aBold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a

paragraph.
Intext, an Italic typeface can be used as emphasis to introduce anew term
or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code segments
use aBOLD Monospace typeface with adark red color. These code
listings normally appear in one or more separate paragraphs, though
words or segments can also be embedded in anormal text paragraph.

In the online help version of this specification, wordsin a

Bol d Monospace typeface that isunderlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
activein the PDF of the specification. Also, these inactive linksin the
PDF may instead have aBol d Monospace appearancethat is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

In code or in text, wordsin| t al i ¢ Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Incode, wordsinaPl ai n Monospace typefacethat isadark red color
but is not bold or italicized indicate pseudo code or example code. These
code segments typically occur in one or more separate paragraphs.

This document is an architectural specification that is part of the Platform Initialization Architecture
(P! Architecture) family of specifications defined and published by the Unified EFI Forum. The
primary intent of the Pl Architecture isto present an interoperability surface for firmware
components that may originate from different providers. As such, the burden to conform to this

UEFI Forum, Inc.

April 2020 2-5

Platform Initialization Specification, Vol. 2 Introduction

specification falls both on the producer and the consumer of facilities described as part of the
specification.

In generd, it isincumbent on the producer implementation to ensure that any facility that a
conforming consumer firmware component might attempt to use is present in the implementation.
Equally, it isincumbent on a devel oper of afirmware component to ensure that its implementation
relies only on facilities that are defined as part of the Pl Architecture. Maximum interoperability is
assured when collections of conforming components are designed to use only the required facilities
defined in the PI Architecture family of specifications.

Asthis document is an architectural specification, care has been taken to specify architecturein
ways that allow maximum flexibility in implementation for both producer and consumer. However,
there are certain requirements on which elements of this specification must be implemented to
ensure a consistent and predictable environment for the operation of code designed to work with the
architectural interfaces described here.

For the purposes of describing these requirements, the specification includes facilities that are
required, such as interfaces and data structures, as well as facilities that are marked as optional.

In general, for an implementation to be conformant with this specification, the implementation must
include functional elements that match in all respects the complete description of the required
facility descriptions presented as part of the specification. Any part of the specification that is not
explicitly marked as “optional” is considered arequired facility.

Where parts of the specification are marked as* optional,” an implementation may choose to provide
matching elements or leave them out. If an element is provided by an implementation for afacility,
then it must match in all respects the corresponding complete description.

In practical terms, this means that for any facility covered in the specification, any instance of an
implementation may only claim to conform if it follows the normative descriptions completely and
exactly. This does not preclude an implementation that provides additional functionality, over and
above that described in the specification. Furthermore, it does not preclude an implementation from
leaving out facilities that are marked as optional in the specification.

By corollary, modular components of firmware designed to function within an implementation that
conformsto the Pl Architecture are conformant only if they depend only on facilities described in
thisand related Pl Architecture specifications. In other words, any modular component that is free of
any external dependency that falls outside of the scope of the Pl Architecture specificationsis
conformant. A modular component is not conformant if it relies for correct and compl ete operation
upon areference to an interface or data structure that is neither part of its own image nor described in
any Pl Architecture specifications.

It is possible to make a partial implementation of the specification where some of the required
facilities are not present. Such an implementation is non-conforming, and other firmware
components that are themselves conforming might not function correctly with it. Correct operation
of non-conforming implementationsis explicitly out of scope for the Pl Architecture and this
specification.

UEFI Forum, Inc. April 2020 2-6

Platform Initialization Specification, Vol. 2 Introduction

1.6 Conventions used in this document

1.6.1 Number formats

A binary number is represented in this standard by any sequence of digits consisting of only the
Western-Arabic numerals 0 and 1 immediately followed by alower-case b (e.g., 0101b).
Underscores or spaces may be included between charactersin binary number representations to
increase readability or delineate field boundaries (e.g., 00101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by Ox preceding any sequence of digits
consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A
through F (e.g., 0xFA23). Underscores or spaces may be included between charactersin
hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xB
FD8C FA23 or OxB_FD8C_FA23).

A decimal number is represented in this standard by any sequence of digits consisting of only the
Arabic numerals 0 through 9 not immediately followed by alower-case b or lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:
» thedecimal separator (i.e., separating the integer and fractional portions of the number) isa

period;

» thethousands separator (i.e., separating groups of three digits in a portion of the number) isa
comma;

» thethousands separator is used in the integer portion and is not used in the fraction portion of a
number.

1.6.2 Binary prefixes

This standard uses the prefixes defined in the International System of Units (Sl) (see http://
www.bipm.org/en/si/si_brochure/chapter3/prefixes.html) for values that are powers of ten.

Table 2-2: Sl prefixes

Factor Factor Name Symbol
108 1,000 kilo K
10° 1,000,000 mega M
10° 1,000,000,000 giga G

This standard uses the binary prefixes defined in | SO/IEC 80000-13 Quantities and units -- Part 13:
Information science and technology and |EEE 1514 Standard for Prefixes for Binary Multiples for
valuesthat are powers of two.

UEFI Forum, Inc. April 2020 2-7

http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html
http://www.bipm.org/en/si/si_brochure/chapter3/prefixes.html

Platform Initialization Specification, Vol. 2

Table 2-3: Binary prefixes

Factor Factor Name Symbol
210 1,024 kibi Ki
220 1,048,576 mebi Mi
230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

UEFI Forum, Inc.

April 2020

Introduction

2-8

Platform Initialization Specification, Vol. 2 Overview

2 Overview

2.1 Driver Execution Environment (DXE) Phase

The Driver Execution Environment (DXE) phase is where most of the system initialization is
performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is responsible for initializing
permanent memory in the platform so that the DXE phase can be loaded and executed. The state of
the system at the end of the PEI phase is passed to the DXE phase through alist of position-
independent data structures called Hand-Off Blocks (HOBs). HOBs are described in detail in
Volume 3.

There are several components in the DXE phase:
+ “DXE Foundation”

* “DXE Dispatcher”

* A setof “DXE Drivers’

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE Services. The
DXE Dispatcher isresponsible for discovering and executing DXE driversin the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as well
as providing software abstractions for system services, console devices, and boot devices. These
components work together to initialize the platform and provide the services required to boot an
operating system. The DXE phase and Boot Device Selection (BDS) phases work together to
establish consoles and attempt the booting of operating systems. The DXE phaseisterminated when
an operating system is successfully booted. The DXE Foundation is composed of boot services code,
so no code from the DXE Foundation itself is allowed to persist into the OS runtime environment.
Only the runtime data structures allocated by the DXE Foundation and services and data structured
produced by runtime DXE drivers are allowed to persist into the OS runtime environment.

Figure 2-1 shows the phases that a platform with Pl Architecture firmware will execute.

UEFI Forum, Inc. April 2020 2-9

Platform Initialization Specification,

Vol. 2

Overview

Pre
Verifier §

2

Device,
Bus, or
Service
Driver

DXE
Dispatcher

oot Services

Runtime Services
DXE Services

security

Expozed
AP

0S-Absent
App
3"

Transient OS5
Environment

1

Transient OS
Boot Loader

{rP

.

Final OS5
Boot Loader

Previous|y
exposed
Lo E APIs
now |imited

0S-Present
App

Final OS5
Il Environment

-
J

(SEC)

Security

Pre EFI
Initialization

(PEI)

Environment

Driver
Execution
Envirenment
(DXE)

Boot
Device
Selection
{BDS)

Transient
System Load
(TSL)

Run Time
(RT)

After
Life
(AL)

Power on—=[. . Platform initalization . .]—[....05 boot....]—— = Shutdown

Figure 2-1: PI Architecture Firmware Phases

In aPl Architecture firmware implementation, the phase executed prior to DXE is PEI. This
specification covers the transition from the PEI to the DXE phase, the DXE phase, and the DXE
phase’ s interaction with the BDS phase. The DXE phase does not require a PEI phaseto be
executed. The only requirement for the DXE phase to execute is the presence of avalid HOB list.
There are many different implementations that can produce avalid HOB list for the DXE phase to
execute. The PEI phasein aPl Architecture firmware implementation is just one of many possible
implementations.

2.2 UEFI System Table

2.2.1 Overview

The UEFI System Table is passed to every executable component in the DXE phase. The UEFI
System Table contains a pointer to the following:

e “UEFI Boot Services Table’
e “UEFI Runtime Services Table”

It also contains pointers to the console devices and their associated 1/0 protocols. In addition, the
UEFI System Table contains a pointer to the UEFI Configuration Table, and this table contains alist
of GUID/pointer pairs. The UEFI Configuration Table may include tables such asthe “DXE
Services Dependencies’ on page 96, HOB list, ACPI table, SMBIOS table, and SAL System table.

UEFI Forum, Inc.

April 2020

2-10

Platform Initialization Specification, Vol. 2 Overview

The UEFI Boot Services Table contains services to access the contents of the handle database. The
handle database is where protocol interfaces produced by drivers are registered. Other drivers can
use the UEFI Boot Servicesto look up these services produced by other drivers.

All of the services available in the DXE phase may be accessed through a pointer to the UEFI

System Table.

2.2.2 UEFI Boot Services Table

Table 2-4 provides a summary of the services that are available through the UEFI Boot Services
Table. These services are described in detail in the UEFI 2.0 specification. This DXE CIS makes a
few minor, backward-compatible extensions to these services.

Table 2-4: UEFI Boot Services

UEFI Boot Services
Task Priority

Memory

Event and Timer

Protocol Handler

Image

Driver Support

Description

Provides services to increase or decrease the current task priority level. This
can be used to implement simple locks and to disable the timer interrupt for
short periods of time. These services depend on the “CPU Architectural
Protocol” on page 132.

Provides services to allocate and free pages in 4 KiB increments and allocate
and free pool on byte boundaries. It also provides a service to retrieve a map
of all the current physical memory usage in the platform.

Provides services to create events, signal events, check the status of events,
wait for events, and close events. One class of events is timer events, and
that class supports periodic timers with variable frequencies and one-shot
timers with variable durations. These services depend on the “CPU
Architectural Protocol” on page 132, the “Timer Architectural Protocol” on
page 164, the “Metronome Architectural Protocol” on page 147, and the
“Watchdog Timer Architectural Protocol” on page 173.

Provides services to add and remove handles from the handle database. It
also provides services to add and remove protocols from the handles in the
handle database. Additional services are available that allow any component
to lookup handles in the handle database, and open and close protocols in the
handle database.

Provides services to load, start, exit, and unload images using the PE/COFF
image format. These services use the services of the “Security Architectural
Protocols” on page 158 if it is present.

Provides services to connect and disconnect drivers to devices in the platform.
These services are used by the BDS phase to either connect all drivers to all

devices, or to connect only the minimum number of drivers to devices required
to establish the consoles and boot an operating system. The minimal connect
strategy is one possible mechanism to reduce boot time.

2.2.3 UEFI Runtime Services Table

Table 2-5 provides a summary of the services that are available through the UEFI Runtime Services
Table. These services are described in detail in the UEFI 2.0 specification. One additional runtime
service, Status Code Services, is described in this specification.

UEFI Forum, Inc.

April 2020 2-11

Platform Initialization Specification, Vol. 2 Overview

Table 2-5: UEFI Runtime Services

UEFI Runtime Services Description

Variable Provides services to look up, add, and remove environment variables from
nonvolatile storage. These services depend on the Variable Architectural
Protocol and the Variable Write Architectural Protocol.

Real Time Clock Provides services to get and set the current time and date. It also provides
services to get and set the time and date of an optional wake-up timer.
These services depend on the Real Time Clock Architectural Protocol.

Reset Provides services to shut down or reset the platform. These services
depend on the Reset Architectural Protocol.

Virtual Memory Provides services that allow the runtime DXE components to be converted
from a physical memory map to a virtual memory map. These services can
only be called once in physical mode. Once the physical to virtual
conversion has been performed, these services cannot be called again.
These services depend on the Runtime Architectural Protocol.

2.2.4 DXE Services Table

Table 2-6 provides a summary of the services that are available through the DXE Services Table.
These are new services that are available in boot service time and are required only by the DXE
Foundation and DXE drivers.

Table 2-6: DXE Services

DXE Services Description
Global Coherency Provides services to manage 1/O resources, memory-mapped I/O resources,
Domain and system memory resources in the platform. These services are used to

dynamically add and remove these resources from the processor’s global
coherency domain.

Dispatcher Provides services to manage DXE drivers that are being dispatched by the
DXE Dispatcher.

2.3 DXE Foundation

The DXE Foundation is a boot service image that is responsible for producing the following:
» UEFI Boot Services

* UEFI Runtime Services

* DXE Services

The DXE Foundation consumes aHOB list and the services of the DXE Architectural Protocolsto
produce the full complement of UEFI Boot Services, UEFI Runtime Services, and DXE Services.
The HOB list is described in detail in the Volume 3.

The DXE Foundation is an implementation of UEFI. The DXE Foundation defined in this
specification is backward compatible with the UEFI 2.0 specification. Asaresult, both the DXE
Foundation and DXE drivers share many of the attributes of UEFI images. Because this
specification makes extensions to the standard UEFI interfaces, DXE images will not be functional

UEFI Forum, Inc. April 2020 2-12

Platform Initialization Specification, Vol. 2 Overview

on UEFI systems that are not compliant with this DXE CIS. However, UEFI images must be
functional on all UEFI-compliant systems including those that are compliant with the DXE CIS.

2.4 DXE Dispatcher

The DXE Dispatcher is one component of the DXE Foundation. This component is required to
discover DXE drivers stored in firmware volumes and execute them in the proper order. The proper
order is determine by a combination of an a priori file that is optionally stored in the firmware
volume and the dependency expressions that are part of the DXE drivers. The dependency
expression tells the DXE Dispatcher the set of servicesthat a particular DXE driver requiresto be
present for the DXE driver to execute. The DXE Dispatcher does not allow a DXE driver to execute
until al of the DXE driver’s dependencies have been satisfied. After all of the DXE drivers have
been loaded and executed by the DXE Dispatcher, control is handed to the BDS Architectural
Protocol that is responsible for implementing a boot policy that is compliant with the UEFI Boot
Manager described in the UEFI 2.0 specification.

2.5 DXE Drivers

The DXE drivers are required to initialize the processor, chipset, and platform. They are also
required to produce the DXE Architectural Protocols and any additional protocol services required
to produce /O abstractions for consoles and boot devices.

2.6 DXE Architectural Protocols

Table 2-7 provides a summary of the DXE Architectural Protocols. The DXE Foundation is
abstracted from the platform through the DXE Architectural Protocols. The DXE Architectural
Protocols manifest the platform-specific components of the DXE Foundation. DXE driversthat are
loaded and executed by the DXE Dispatcher component of the DXE Foundation must produce these
protocols.

UEFI Forum, Inc. April 2020 2-13

Platform Initialization Specification, Vol. 2

Overview

Table 2-7: DXE Architectural Protocols

DXE Architectural Protocols

Security Architectural

CPU Architectural

Metronome Architectural
Timer Architectural

BDS Architectural

Watchdog Timer Architectural
Runtime Architectural
Variable Architectural
Variable Write Architectural
Protocol

Monotonic Counter Architectural

Reset Architectural
Real Time Clock Architectural

Description

Allows the DXE Foundation to authenticate files stored in firmware
volumes before they are used.

Provides services to manage caches, manage interrupts, retrieve the
processor’s frequency, and query any processor-based timers.
Provides the services required to perform very short calibrated stalls.
Provides the services required to install and enable the heartbeat timer
interrupt required by the timer services in the DXE Foundation.

Provides an entry point that the DXE Foundation calls once after all of
the DXE drivers have been dispatched from all of the firmware
volumes. This entry point is the transition from the DXE phase to the
Boot Device Selection (BDS) phase, and it is responsible for
establishing consoles and enabling the boot devices required to boot
an OS.

Provides the services required to enable and disable a watchdog timer
in the platform.

Provides the services required to convert all runtime services and
runtime drivers from physical mappings to virtual mappings.

Provides the services to retrieve environment variables and set volatile
environment variables.

Provides the services to set nonvolatile environment variables.

Provides the services required by the DXE Foundation to manage a 64-
bit monotonic counter.

Provides the services required to reset or shutdown the platform.

Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

Capsule Architectural Protocol

Provides the services to retrieve and set the current time and date as
well as the time and date of an optional wake-up timer.

2.7 Runtime Protocol

Table 2-8 provides a summary of the runtime protocol for status codes.

Table 2-8: Status Codes Runtime Protocol

Status Code Runtime
Protocol:

Provides the services to send status codes from the DXE Foundation or DXE
drivers to a log or device.

UEFI Forum, Inc.

April 2020 2-14

Platform Initialization Specification, Vol. 2 Boot Manager

3 Boot Manager

3.1 Boot Manager

The Boot Manager in DXE executes after all the DXE drivers whose dependencies have been
satisfied have been dispatched by the DXE Dispatcher. At that time, control is handed to the Boot
Device Selection (BDS) phase of execution. The BDS phase is responsible for implementing the
platform boot policy. System firmware that is compliant with this specification must implement the
boot policy specified in the Boot Manager chapter of the UEFI 2.0 specification. This boot policy
provides flexibility that allows system vendors to customize the user experience during this phase of
execution.

The Boot Manager must also support booting from a short-form device path that starts with the first
node being a firmware volume device path. The boot manager must use the GUID in the firmware
volume device node to match it to afirmware volume in the system. The GUID in the firmware
volume device path is compared with the firmware volume name GUID. If amatch is made, then the
firmware volume device path can be appended to the device path of the matching firmware volume
and normal boot behavior can then be used.

The BDS phase isimplemented as part of the BDS Architectural Protocol. The DXE Foundation
will hand control to the BDS Architectural Protocol after all of the DXE drivers whose dependencies
have been satisfied have been loaded and executed by the DXE Dispatcher. The BDS phaseis
responsible for the following:

» Initializing console devices
» Loading devicedrivers
» Attempting to load and execute boot selections

If the BDS phase cannot make forward progress, it will reinvoke the DXE Dispatcher to seeif the
dependencies of any additional DXE drivers have been satisfied since the last time the DXE
Dispatcher was invoked.

UEFI Forum, Inc. April 2020 2-15

Platform Initialization Specification, Vol. 2 UEFI System Table

4 UEFI System Table

4.1 DXE Services Table

DXE_SERVICES

Summary
Contains a table header and pointers to all of the DXE-specific services.

Related Definitions

#def i ne DXE_SERVI CES_S| GNATURE 0x565245535f 455844
#defi ne DXE_SPECI FI CATI ON_MAJOR REVI SION 1

#defi ne DXE_SPECI FI CATI ON.M NOR_REVI SION 60

#def i ne DXE_SERVI CES_REVI S| ON

((DXE_SPECI FI CATI ON_MAJOR_REVI S| ON<<16) |

(DXE_SPECI FI CATI ON_M NOR_REVI SI ON)

typedef struct {

EFI _TABLE_HEADER Hdr ;

11

/I d obal Coherency Domain Services

I

EFI _ADD MEMORY_SPACE AddMenor ySpace;

EFI _ALLOCATE MEMORY_SPACE Al | ocat eMenor ySpace;
EFl _FREE NMEMORY_SPACE FreeMenor ySpace;

EFI _REMOVE_MEMORY_SPACE RenmoveMenor ySpace;

EFl _GET_MEMORY_SPACE_DESCRI PTOR CGet MenorySpaceDescri pt or;
EFI _SET_MEMORY_SPACE_ATTRI BUTES Set MenorySpaceAttri but es;

EFl _GET_MEMORY_ SPACE NMAP Get Menor y SpaceMap;

EFI _ADD | O SPACE Addl oSpace;

EFI _ALLCOCATE | O SPACE Al'l ocat el oSpace;

EFI _FREE | O SPACE Freel oSpace;

EFI _REMOVE | O SPACE Renovel oSpace;

EFlI _GET | O SPACE DESCRI PTOR Get | oSpaceDescri ptor;
EFlI _GET | O SPACE NMAP CGet | oSpaceMap;

11
/1 Dispatcher Services
I

EFlI DI SPATCH Di spat ch;
EFI _SCHEDULE Schedul e;
EFl _TRUST Trust;

UEFI Forum, Inc. April 2020 2-16

Platform Initialization Specification, Vol. 2 UEFI System Table

11
/'l Service to process a single firmvare volune found in
/1l a capsul e

I

EFI _PROCESS_FI RMWMARE VOLUMVE Pr ocessFi r mvar eVol une;
11

/1 Extensions to d obal Coherency Donmain Services

11

EFl _SET _MEMORY_ _SPACE CAPABI LI TI ES Set MenorySpaceCapabilities;
} DXE_SERVI CES;

Parameters
Hdr
The table header for the DXE Services Table. This header contains the
DXE_SERVI CES_SI GNATURE and DXE_SERVI CES_REVI SI ONvalues aong

with the size of the DXE_SERVI CES_TABLE structure and a 32-bit CRC to verify
that the contents of the DXE Services Table are valid.

AddMenor ySpace

Adds reserved memory, system memory, or memory-mapped /O resources to the
global coherency domain of the processor. Seethe AddMenor ySpace() function
description in this document.

Al'l ocat eMenor ySpace

Allocates nonexistent memory, reserved memory, system memory, or memory-
mapped /O resources from the global coherency domain of the processor. See the
Al'l ocat eMenor ySpace() function description in this document.

FreeMenor ySpace

Frees nonexistent memory, reserved memory, system memory, or memory-mapped
1/0 resources from the global coherency domain of the processor. See the
Fr eeMenor ySpace() function description in this document.

RenoveMenor ySpace

Removes reserved memory, system memory, or memory-mapped 1/O resources from
the global coherency domain of the processor. Seethe RenoveMenor ySpace()
function description in this document.

Get Menor ySpaceDescri pt or

Retrieves the descriptor for a memory region containing a specified address. See the
Get Menor ySpaceDescri pt or () function description in this document.

Set MenorySpaceAttri but es

Modifies the attributes for amemory region in the global coherency domain of the
processor. Seethe Set Menor ySpaceAttri but es() function descriptionin this
document.

UEFI Forum, Inc. April 2020 2-17

Platform Initialization Specification, Vol. 2 UEFI System Table

Cet Menor ySpacelMap

Returns a map of the memory resources in the global coherency domain of the
processor. Seethe Get Menor ySpaceMap() function description in this document.

Addl oSpace

Adds reserved 1/0 or 1/0 resources to the global coherency domain of the processor.
Seethe Addl oSpace() function description in this document.

Al | ocat el oSpace

Allocates nonexistent 1/0O, reserved 1/0, or 1/O resources from the global coherency
domain of the processor. Seethe Al | ocat el oSpace() function description in
this document.

Freel oSpace

Frees nonexistent 1/0, reserved 1/0O, or 1/O resources from the global coherency
domain of the processor. Seethe Fr eel oSpace() function descriptionin this
document.

Renmpvel oSpace

Removes reserved 1/0 or 1/O resources from the global coherency domain of the
processor. Seethe Renovel oSpace() function description in this document.

Cet | oSpaceDescri pt or

Retrieves the descriptor for an 1/0 region containing a specified address. Seethe
Get | oSpaceDescri pt or () function description in this document.

Cet | oSpaceMap

Returns amap of the 1/0 resourcesin the global coherency domain of the processor.
Seethe Get | oSpaceMap() function description in this document.

Di spat ch

Loads and executed DXE drivers from firmware volumes. Seethe Di spat ch()
function description in this document.

Schedul e

Clears the Schedule on Request (SOR) flag for a component that is stored in a
firmware volume. Seethe Schedul e() function description in this document.

Tr ust

Promotes afile stored in afirmware volume from the untrusted to the trusted state.
Seethe Tr ust () function description in this document.

Pr ocessFi r mnvar eVol une

Creates afirmware volume handle for afirmware volume that is present in system
memory. Seethe Pr ocessFi r mwvar eVol une(') function description in this
document.

Set Menor ySpaceCapabi lities

Modifies the capabilities for amemory region in the global coherency domain of the
processor. Seethe Set Menor ySpaceCapabi | i ti es() function descriptionin
this document.

UEFI Forum, Inc. April 2020 2-18

Platform Initialization Specification, Vol. 2 UEFI System Table

Description

The UEFI DXE Services Table contains a table header and pointersto all of the DXE-specific
services. Except for the table header, all elementsin the DXE Services Tables are prototypes of
function pointersto functions as defined in " Services - DXE Services’ on page 38.

4.2 UEFI Image Entry Point Examples

4.2.1 UEFI Application Example

The following exampl e shows the UEFI image entry point for an UEFI application. This application
makes use of the UEFI System Table, UEFI Boot Services Table, UEFI Runtime Services Table,
and DXE Services Table.

UEFI Forum, Inc. April 2020 2-19

Platform Initialization Specification, Vol. 2 UEFI System Table

EFl _GUI D gEfi DxeServi cesTabl eGui d = DXE_SERVI CES_TABLE GU D;

EFl _SYSTEM TABLE *gST;
EFI _BOOT_SERVI CES * gBS;
EFI _RUNTI ME_SERVI CES * gRT;
DXE_SERVI CES * gDS;

Ef i Applicati onEntryPoi nt (
I N EFI _HANDLE | mgeHandl e,
I N EFI _SYSTEM TABLE *Systenilabl e

)

{
U NTN I ndex;
BOOLEAN Resul t;
EFlI _STATUS St at us;
EFI _TI ME *Ti ne;
U NTN Number Of Descri pt ors;

EFI _GCD_MEMORY_SPACE DESCRI PTOR MenorySpaceDescri ptor;

gST = Systeniabl e;

gBS = gST- >Boot Servi ces;
gRT = gST->Runti neServi ces;
gDS = NULL;

for (I ndex = 0; Index < gST->Nunber Of Tabl eEntries; |ndex++) {
Result = Efi ConpareGuid (
&gEf i DxeSer vi cesTabl eCui d,
&(gST->Confi gurati onTabl e[| ndex] . Vendor Gui d)
)
if (Result) {
gDS = gST->Confi gurationTabl e[| ndex] . Vendor Tabl e;
}
}
if (gDS == NULL) {
return EFI _NOT_FOUND;
}

/1
/1 Use UEFI System Table to print “Hello Wrld” to the active consol e
/1 output device.
/1
Status = gST->ConCQut->Cut put String (gST->ConCQut, L"Hello World\n\r");
if (EFI _ERROR (Status)) {

return Status;

UEFI Forum, Inc. April 2020 2-20

Platform Initialization Specification, Vol. 2 UEFI System Table

}

/1
/1 Use UEFI Boot Services Table to allocate a buffer to store the
// current tinme and date.
/1
St at us = gBS->Al | ocat ePool (
Ef i Boot Servi cesDat a,
si zeof (EFI _TI MVE),
(VO D **) &Ti ne
)
if (EFI _ERROR (Status)) {
return Status;

}

/1
/1 Use the UEFI Runtine Services Table to get the current
// time and date.
/1
Status = gRT->CGet Tine (&Ti me, NULL)
if (EFI _ERROR (Status)) {
return Status;

}

/1
/1 Use UEFI Boot Services to free the buffer that was used to store
// the current tine and date.
/1
Status = gBS->FreePool (Tine);
if (EFI _ERROR (Status)) {
return Status;

}

/1
/1 Use the DXE Services Table to get the current GCD Menory Space Map
/1
Status = gDS->Cet Menor ySpaceMap (
&Nunber O Descri ptors,
&Menor y SpaceMap
);
if (EFI _ERROR (Status)) {
return Status;

}

/1
/1 Use UEFI Boot Services to free the buffer that was used to store

UEFI Forum, Inc. April 2020 2-21

Platform Initialization Specification, Vol. 2 UEFI System Table

/'l the GCD Menory Space Map.
11
St at us = gBS- >FreePool (MenorySpaceMap);
if (EFI_ERROR (Status)) {
return Status;

}

return Status;

4.2.2 Non-UEFI Driver Model Example (Resident in Memory)

The following example shows the UEFI image entry point for an UEFI driver that does not follow
the UEFI Driver Model. Because this driver returns EFlI _ SUCCESS, it will stay resident in
memory after it exits.

UEFI Forum, Inc. April 2020 2-22

Platform Initialization Specification, Vol. 2 UEFI System Table

EFl _GUI D gEfi DxeServi cesTabl eGui d = DXE_SERVI CES_TABLE GU D;

EFl _SYSTEM TABLE *gST;
EFI _BOOT_SERVI CES * gBS;
EFI _RUNTI ME_SERVI CES * gRT;
DXE_SERVI CES * gDS;

Ef i Dri ver Ent ryPoi nt (
I N EFI _HANDLE | mgeHandl e,
I N EFI _SYSTEM TABLE *Systenilabl e

)

{
U NTN | ndex;
BOCLEAN Resul t;
gST = Syst enirabl e;
gBS = gST- >Boot Servi ces;
gRT = gST->Runti neServi ces;
gDS = NULL;
for (I ndex = 0; Index < gST->Nunber Of Tabl eEntries; |ndex++) {
Result = Efi ConpareGui d (
&gEf i DxeSer vi cesTabl eGui d,
&(gST->Confi gurationTabl e[| ndex] . Vendor Gui d)
)
if (Result) {
gDS = gST->Confi gurationTabl e[| ndex] . Vendor Tabl e;
}
}
if (gDS == NULL) {
return EFlI _REQUEST_UNLQAD | MAGE;
}
/1
/1 1mplenent driver initialization here.
/1
return EFI_SUCCESS;
}

4.2.3 Non-UEFI Driver Model Example (Nonresident in Memory)

The following example shows the UEFI image entry point for an UEFI driver that also does not
follow the UEFI Driver Model. Because this driver returns the error code

UEFI Forum, Inc. April 2020 2-23

Platform Initialization Specification, Vol. 2 UEFI System Table

EFI _REQUEST_UNLQOAD | MAGE, it will not stay resident in memory after it exits.

UEFI Forum, Inc. April 2020 2-24

Platform Initialization Specification, Vol. 2 UEFI System Table

EFl _GUI D gEfi DxeServi cesTabl eGui d = DXE_SERVI CES_TABLE GU D;

EFl _SYSTEM TABLE *gST;
EFI _BOOT_SERVI CES * gBS;
EFI _RUNTI ME_SERVI CES * gRT;
DXE_SERVI CES * gDS;

Ef i Dri ver Ent ryPoi nt (

}

I N EFI _HANDLE | mgeHandl e,
I N EFI _SYSTEM TABLE *Syst enilabl e

)

Ul NTN | ndex;
BOOLEAN Resul t;

gST = Syst enirabl e;

gBS = gST- >Boot Servi ces;
gRT = gST->Runti neServi ces;
gDS = NULL;

for (I ndex = 0; Index < gST->Nunber Of Tabl eEntries; |ndex++) {
Result = Efi ConpareGui d (
&gEf i DxeSer vi cesTabl eGui d,
&(gST->Confi gurationTabl e[| ndex] . Vendor Gui d)
)
if (Result) {
gbS = gST->Confi gurati onTabl e[| ndex] . Vendor Tabl e;
}
}
if (gbS == NULL) {
return EFlI _REQUEST_UNLQAD | MAGE;
}

/1
/1 1mplenent driver initialization here.

11

return EFl _REQUEST UNLOAD_ | MAGE;

4.2.4 UEFI Driver Model Example

Thefollowing isan UEFI Driver Model example that shows the driver initialization routine for the
ABC device controller that is on the XYZ bus. The EFlI _DRI VER_BI NDI NG_PROTOCQOL is

UEFI Forum, Inc. April 2020 2-25

Platform Initialization Specification, Vol. 2 UEFI System Table

defined in Chapter 9 of the UEFI 2.0 specification. The function prototypes for the
AbcSupported(),AbcStart(),andAbcSt op() functions are defined in Section 9.1 of the
UEFI 2.0 specification. This function saves the driver'simage handle and a pointer to the UEFI
Boot Services Tablein global variables, so that the other functions in the same driver can have
access to these values. It then creates an instance of the EFI DRI VER Bl NDI NG_PROTOCCL
and installs it onto the driver'simage handle.

extern EFI _GUI D gEf i Dri ver Bi ndi ngPr ot ocol Gui d;
EFI _BOOT_SERVI CES *gBS;
static EFI _DRI VER_BI NDI NG_PROTOCOL mAbcDri verBi ndi ng = {
AbcSupport ed,
AbcStart,
Abc St op,
0x10,
NULL,
NULL

b
AbcEnt r yPoi nt (

I N EFI _HANDLE | mgeHandl e,
I N EFl _SYSTEM TABLE *Syst enilabl e

)
EFlI _STATUS St at us;
gBS = Syst enirabl e- >Boot Ser vi ces;

mAbcDr i ver Bi ndi ng- >l mageHandl e | mageHandl e;
mAbcDr i ver Bi ndi ng- >Dri ver Bi ndi ngHandl e = | nageHandl e;

Status = gBS->Install Multipl eProtocol | nterfaces(
&mAbcDr i ver Bi ndi ng- >Dri ver Bi ndi ngHandl e,
&gEfi Dri ver Bi ndi ngPr ot ocol Gui d, &mAbcDri ver Bi ndi ng,
NUL L
);
return Status;

}

4.2.5 UEFI Driver Model Example (Unloadable)

The following is the same UEFI Driver Model example asin the UEFI Driver Model Example,
except that it also includes the code required to allow the driver to be unloaded through the boot
service Unl oad() . Any protocolsinstalled or memory allocated in AbcEnt r yPoi nt () must be
uninstalled or freed in the AbcUnl oad() . The AbcUnl oad() function first checksto see how

UEFI Forum, Inc. April 2020 2-26

Platform Initialization Specification, Vol. 2 UEFI System Table

many controllersthisdriver is currently managing. |f the number of controllersis greater than zero,
then this driver cannot be unloaded at thistime, so an error is returned.

UEFI Forum, Inc. April 2020 2-27

Platform Initialization Specification, Vol. 2

UEFI System Table

extern EFl _GUI D gEf i Loadedl magePr ot ocol Gui d;
extern EFI _GUI D gEf i Dri ver Bi ndi ngPr ot ocol Gui d;
EFI _BOOT_SERVI CES *gBS;
static EFlI _DRI VER BI NDI NG PROTOCOL mAbcDriverBi nding = {
AbcSupport ed,
AbcStart,
Abc St op,
1,
NULL,
NULL
1
EFI _STATUS
AbcUnl oad (

I N EFI _HANDLE | nageHandl e
)

AbcEnt ryPoi nt (
I N EFI _HANDLE | mageHandl e,
I N EFlI _SYSTEM TABLE *Syst entabl e

)

EFlI _STATUS St at us;
EFI _LOADED | MAGE PROTOCOL *Loadedl nage;

gBS = Syst enirabl e- >Boot Ser vi ces;

St at us = gBS->OpenPr ot ocol (
| mgeHandl e,
&gEf i Loadedl magePr ot ocol Gui d,
&L oadedl mage,

| mgeHandl e,
NULL,
EFI _OPEN_PROTOCCOL_GET_PROTOCOL

)
if (EFI_ERROR (Status)) {
return Status;

}

Loadedl mage- >Unl oad = AbcUnl oad;

mAbcDr i ver Bi ndi ng- >l mageHandl e | mageHand| e;
mAbcDr i ver Bi ndi ng- >Dri ver Bi ndi ngHandl e = | nageHandl e;

Status = gBS->Install Multipl eProtocol |l nterfaces(

UEFI Forum, Inc. April 2020

2-28

Platform Initialization Specification, Vol. 2 UEFI System Table

&MAbcDri ver Bi ndi ng- >Dri ver Bi ndi ngHandl e,
&gEfi Dri ver Bi ndi ngProt ocol Gui d, &AbcDri ver Bi ndi ng,
NULL

)

return Status;

}

EFl _STATUS
AbcUnl oad (
I N EFI _HANDLE | mageHandl e

)

EFlI _STATUS St at us;
U NTN Count ;

Status = Li bGet ManagedControl | er Handl es (I mageHandl e, &Count, NULL);
if (EFl _ERROR (Status)) {
return Status;

}

if (Count > 0) {
return EFI _ACCESS_DENI ED;
}

Status = gBS->Uninstall Multipl eProtocolInterfaces (
| mageHandl e,
&gEfi Dri ver Bi ndi ngProt ocol Gui d, &AbcDri ver Bi ndi ng,
NULL
)

return Status;

4.2.6 UEFI Driver Model Example (Multiple Instances)

Thefollowing is the same as the first UEFI Driver Model example, except that it produces three
EFI _DRI VER_BI NDI NG_PROTOCOL instances. Thefirst oneisinstalled onto the driver’ simage
handle. The other two areinstalled onto newly created handles.

UEFI Forum, Inc. April 2020 2-29

Platform Initialization Specification, Vol. 2 UEFI System Table

extern EFI _GU D gEf i Dri ver Bi ndi ngPr ot ocol Gui d;
EFI _BOOT_SERVI CES *gBS;

static EFlI _DRI VER BI NDI NG PROTOCOL mAbcDri verBi ndi ngA = {
AbcSupport edA,
AbcSt art A,
Abc St opA,
1,
NULL,
NULL

b

static EFI _DRI VER_BI NDI NG_PROTOCOL mAbcDri ver Bi ndi ngB = {
AbcSupport edB,
AbcSt art B,
Abc St opB,
1,
NULL,
NULL

b

static EFl _DRI VER BI NDI NG PROTOCOL mAbcDri ver Bi ndi ngC = {
AbcSupport edC,
AbcSt art C,
Abc St opC,
1,
NULL,
NUL L

s

AbcEnt r yPoi nt (
I N EFI _HANDLE | mgeHandl e,
I N EFI _SYSTEM TABLE *Systenilabl e
)

EFlI _STATUS St at us;
gBS = Syst enirabl e- >Boot Ser vi ces;

/1

/1 1nstall mAbcDriverBi ndi ngA onto | nmageHandl e

/1

mAbcDr i ver Bi ndi ngA- >l nageHandl| e | mageHand| e;
mAbcDr i ver Bi ndi ngA->Dri ver Bi ndi ngHandl e = | mageHandl e;

UEFI Forum, Inc. April 2020 2-30

Platform Initialization Specification, Vol. 2 UEFI System Table

Status = gBS->Install Multipl eProtocol | nterfaces(
&MAbcDri ver Bi ndi ngA- >Dri ver Bi ndi ngHandl e,
&gEf i Dri ver Bi ndi ngProt ocol Gui d, &mAbcDri ver Bi ndi ngA,
NULL
)
if (EFI _ERROR (Status)) {
return Status;

}

/1

/1 Install mAbcDriverBindingB onto a newWy created handl e
/1

mAbcDr i ver Bi ndi ngB- >l nageHandl| e = | mageHandl e;
mAbcDr i ver Bi ndi ngB- >Dri ver Bi ndi ngHandl e = NULL;

Status = gBS->Install Multipl eProtocol | nterfaces(
&mAbcDri ver Bi ndi ngB->Dri ver Bi ndi ngHandl e,
&gEf i Dri ver Bi ndi ngPr ot ocol Gui d, &mAbcDri ver Bi ndi ngB,
NULL
)
if (EFI_ERROR (Status)) {
return Status;

}

/1

/1 Install mAbcDriverBi ndingC onto a newmy created handl e
/1

mAbcDr i ver Bi ndi ngC >l nageHandl| e = | mageHandl e;
mAbcDr i ver Bi ndi ngC- >Dri ver Bi ndi ngHandl e = NULL;

Status = gBS->Install MultipleProtocollnterfaces(
&mAbcDri ver Bi ndi ngC- >Dri ver Bi ndi ngHandl e,
&gEfi Dri ver Bi ndi ngPr ot ocol Gui d, &mAbcDri ver Bi ndi ngC,
NULL

)

return Status;

UEFI Forum, Inc. April 2020 2-31

Platform Initialization Specification, Vol. 2 Services - Boot Services

5 Services - Boot Services

5.1 Extensions to UEFI Boot Service Event Usage

5.1.1 CreateEvent

Cr eat eEvent Ex() in UEFI 2.0 allowsfor registration of events named by GUID’s. The DXE
foundation defines the following:
#define EFI _EVENT_LEGACY_BOOT_GUI D
{0x2a571201, 0x4966, 0x47f6, 0x8b, 0x86, Oxf3, Oxle,
0x41, Oxf3, Ox2f, 0x10}

Thisevent isto be used with Cr eat eEvent Ex() in order to be notified when the UEFI boot
manager is about to boot alegacy boot option. Notification of events of thistypeis sent just before
Int19h isinvoked.

5.1.2 Pre-Defined Event Groups

This section describes the pre-defined event groups used by this specification.
EFI _EVENT_GROUP_DXE_DI SPATCH _GUI D

This event group is notified by the system when the DXE dispatcher finished one round of driver
dispatch. Thisallowsthe SMM dispatcher get chance to dispatch SMM driver which will depend on
UEFI protocols.

Related Definitions
#defi ne EFl _EVENT_GROUP_DXE DI SPATCH GUI D \
{ 0x7081e22f, Oxcac6, 0x4053, { 0x94, 0x68, 0x67, 0x57, \
0x82, Oxcf, 0x88, Oxe5 } \ }

5.1.2.1 End of DXE Event

Prior to invoking any UEFI drivers, or applications that are not from the platform manufacturer, or
connecting consoles, the platform should signalsthe event EFI _ END OF DXE_EVENT_GUI D
End of DXE Event and immediately after that the platform installs DXE SMM Ready to Lock
Protocol (defined in volume 4)..
#define EFI _END OF DXE EVENT GROUP _GUI D \
{ Ox2ce967a, 0Oxdd7e, Ox4ffc, { Ox9e, Oxe7, 0x81, Oxc, \
Oxf 0, 0x47, 0x8, 0x80 } }

From SEC through the signaling of thisevent, all of the components should be under the authority of
the platform manufacturer and not have to worry about interaction or corruption by 3rd party
extensible modules such as UEFI drivers and UEFI applications.

Platform may choose to lock certain resources or disable certain interfaces prior to executing third
party extensible modules. Transition from the environment where all of the components are under
the authority of the platform manufacturer to the environment where third party modules are
executed is a two-step process:

UEFI Forum, Inc. April 2020 2-32

Platform Initialization Specification, Vol. 2 Services - Boot Services

1. Endof DXE Event issignaled. This event presents the last opportunity to use resources or
interfaces that are going to be locked or disabled in anticipation of the invocation of 3rd party
extensible modules.

2. DXE SMM Ready to Lock Protocol isinstalled. Pl modules that need to lock or protect their
resources in anticipation of theinvocation of 3rd party extensible modules should register for
notification on installation of this protocol and effect the appropriate protectionsin their
notification handlers

5.1.3 Additions to Loadlmage()

Summary
Loads an UEFI image into memory. This function has been extended from the Loadl mage()
Boot Service defined in the UEFI 2.0 specification. The DXE foundation extends this to support an
additional image type, allowing UEFI imagesto be loaded from files stored in firmware volumes. It
a so validates the image using the services of the Security Architectural Protocol.

Prototype
EFI _STATUS
Loadl nage (
| N BOOLEAN Boot Pol i cy,
I N EFI _HANDLE Par ent | rageHandl e,
I N EFI _DEVI CE_PATH *Fil ePat h,
IN VO D *Sour ceBuf fer OPTI ONAL
I N U NTN Sour ceSi ze,
QUT EFI _HANDLE *| mageHandl e
)
Parameters
Boot Pol i cy

If TRUE, indicates that the request originates from the boot manager, and that the boot
manager is attempting to load Fi | ePat h asaboot selection. Ignored if
Sour ceBuf f er isnot NULL.

Par ent | nageHandl| e

The caller’simage handle. Type EFI _HANDLE isdefined in the
Install Protocol I nterface() functiondescriptioninthe UEFI 2.0
specification. Thisfield isused to initialize the Par ent Handl e field of the
LOADED | MACE protocol for the image that is being loaded.

Fi | ePat h

The specific file path from which theimageisloaded. Type EFI _DEVI CE_PATHis
defined inthe Locat eDevi cePat h() function description in the UEFI 2.0
specification.

Sour ceBuf f er

If not NULL, a pointer to the memory location containing a copy of the image to be
loaded.

UEFI Forum, Inc. April 2020 2-33

Platform Initialization Specification, Vol. 2 Services - Boot Services

Sour ceSi ze
The sizein bytes of Sour ceBuf f er . Ignored if Sour ceBuf f er isNULL.
I mgeHandl| e

Pointer to the returned image handle that is created when the image is successfully
loaded. Type EFI _HANDLE isdefinedinthel nstal | Prot ocol | nt erface()
function description in the UEFI 2.0 specification.

Description

TheLoadl mage() function loads an UEFI image into memory and returns a handle to the image.
The supported subsystem values in the PE image header are listed in "Related Definitions" below.
Theimageisloaded in one of two ways. If Sour ceBuf f er isnot NULL, the functionisamemory-
to-memory load in which Sour ceBuf f er pointsto the image to be loaded and Sour ceSi ze
indicatestheimage'ssizein bytes. Fi | ePat h specifies where the image specified by

Sour ceBuf f er and Sour ceSi ze wasloaded. Inthis case, the caller has copied theimage into
Sour ceBuf f er and can free the buffer once loading is complete.

If Sour ceBuf f er isNULL, the function is afile copy operation that uses the

EFl _FI RMMARE_VOLUME2_PROTOCCOL, followed by the

SI MPLE_FI LE_SYSTEM PROTOCCL and thenthe LOAD_FI LE_PROTOCOL to access thefile
referred to by Fi | ePat h. Inthiscase, the Boot Pol i cy flag is passed to the

LOAD _FI LE. LoadFi | e() function and is used to load the default image responsible for booting
when the Fi | ePat h only indicates the device. For more information see the discussion of the
Load File Protocol in Chapter 11 of the UEFI 2.0 specification.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
theimage while loading it.

Theimageisalso validated using the Fi | eAut hent i cati onSt at e() service of the Security
Architectural Protocol (SAP). If the SAP returnsthe status EFI _ SUCCESS, then the load operation
iscompleted normally. If the SAPreturnsthe statusEFI _ SECURI TY_VI OLATI QN, then the load
operation is completed normally, and the EFI _ SECURI TY_VI OLATI ON statusisreturned. Inthis
case, the caler is not alowed to start the image until some platform specific policy is executed to
protect the system while executing untrusted code. If the SAP returns the status

EFI _ACCESS_DENI ED, then the image should never be trusted. In this case, theimageis
unloaded from memory, and EFlI _ ACCESS _DENI EDis returned.

Once theimage is loaded, firmware creates and returns an EFI _ HANDL E that identifies the image
and supportsthe LOADED_| MAGE_PROTOCOL. The caller may fill in theimage' s “load options’
data, or add additional protocol support to the handle before passing control to the newly loaded
image by calling St ar t | mage() . Also, oncetheimageisloaded, the caller either startsit by
callingSt art | mage() or unloadsit by calling Unl oadl mage() .

UEFI Forum, Inc. April 2020 2-34

Platform Initialization Specification, Vol. 2 Services - Boot Services

Related Definitions

//**

/1l Supported subsystem val ues

//**

#def i ne EFl_| MAGE_SUBSYSTEM EFI _APPL| CATI ON 10
#define EFl_| MAGE_SUBSYSTEM EFI _BOOT_SERVI CE_DRI VER 11
#define EFl | MAGE_SUBSYSTEM EFI _RUNTI ME_DRI VER 12
#define EFl_| MAGE_SUBSYSTEM SAL_RUNTI ME_DRI VER 13

Table 2-9 describes the fields in the above definition.

UEFI Forum, Inc. April 2020 2-35

Platform Initialization Specification, Vol. 2

Table 2-9: Supported Subsystem Values

Supported Subsystem Values
EFl_IMAGE_SUBSYSTEM_EFI_

APPLICATION

EFI_IMAGE_SUBSYSTEM_EFI_

BOOT_SERVICE_DRIVER

EFI_IMAGE_SUBSYSTEM_EFI_

RUNTIME_DRIVER

EFI_IMAGE_SUBSYSTEM_SAL_

RUNTIME_DRIVER

Description

The image is loaded into memory of type Ef i Loader Code, and
the memory is freed when the application exits.

The image is loaded into memory of type

Ef i Boot Ser vi cesCode. If the image exits with an error
code, then the memory for the image is free. If the image exits with
EFlI _SUCCESS, then the memory for the image is not freed.

The image is loaded into memory of type

Ef i Runt i neSer vi cesCode. If the image exits with an error
code, then the memory for the image is free. If the image exits with
EFlI _SUCCESS, then the memory for the image is not freed.
Images of this type are automatically converted from physical
addresses to virtual address when the Runtime Service

Set Vi r t ual Addr essMap() is called.

The image is loaded into memory of type

Ef i Runt i neSer vi cesCode. If the image exits with an error
code, then the memory for the image is free. If the image exits with
EFlI _SUCCESS, then the memory for the image is not freed.
Images of this type are not converted from physical to virtual
addresses when the Runtime Service

Set Vi rt ual Addr essMap() is called.

Status Codes Returned

EFI_SUCCESS

The image was loaded into memory.

EFI_SECURITY_VIOLATION

The image was loaded into memory, but the current security policy
dictates that the image should not be executed at this time.

EFI_ACCESS_DENIED

The image was not loaded into memory because the current security
policy dictates that the image should never be executed.

EFI_NOT_FOUND

The Fi | ePat h was not found.

EFI_INVALID_PARAMETER

One of the parameters has an invalid value.

EFI_UNSUPPORTED

The image type is not supported, or the device path cannot be
parsed to locate the proper protocol for loading the file.

EFI_OUT_OF RESOURCES

Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR

Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR

Image was not loaded because the device returned a read error.

UEFI Forum, Inc.

April 2020

Services - Boot Services

2-36

Platform Initialization Specification, Vol. 2 Runtime Capabilities

6 Runtime Capabilities

6.1 Additional Runtime Protocol

6.1.1 Status Code Services

Table 2-10 lists the runtime protocol that are used to report status codes. This protocol provides a
runtime protocol that can be bound by other runtime drivers for reporting status information.

Table 2-10: Status Code Runtime Protocol

Name Type Description
ReportStatusCode Runtime Reports status codes at boot services time and runtime.

UEFI Forum, Inc. April 2020 2-37

Platform Initialization Specification, Vol. 2 Services - DXE Services

7 Services - DXE Services

7.1 Introduction
This chapter describes the servicesin the DXE Services Table. These servicesinclude the
following:
» Globa Coherency Domain (GCD) Services
» Digpatcher Services

The GCD Services are used to manage the system memory, memory-mapped /O, and 1/O resources
present in a platform. The Dispatcher Services are used to invoke the DXE Dispatcher and modify
the state of a DXE driver that is being tracked by the DXE Dispatcher.

7.2 Global Coherency Domain Services

7.2.1 Global Coherency Domain (GCD) Services Overview

The Global Coherency Domain (GCD) Services are used to manage the memory and |/O resources
visible to the boot processor. These resources are managed in two different maps:

* GCD memory space map
* GCD I/O space map

If memory or 1/O resources are added, removed, allocated, or freed, then the GCD memory space
map and GCD /O space map are updated. GCD Services are also provided to retrieve the contents
of these two resource maps.

The GCD Services can be broken up into two groups. The first manages the memory resources
visibleto the boot processor, and the second manages the 1/0 resources visibl e to the boot processor.
Not all processor types support 1/O resources, so the management of 1/0 resources may not be
required. However, since system memory resources and memory-mapped /O resources are required
to execute the DXE environment, the management of memory resources is always required.

7.2.2 GCD Memory Resources

The Global Coherency Domain (GCD) Services used to manage memory resources include the
following:

e« AddMenorySpace()

e All ocat eMenorySpace()

e FreeMenorySpace()

* RenoveMenorySpace()

» Set MenorySpaceAttributes()

e Set MenorySpaceCapabilities()

The GCD Services used to retrieve the GCD memory space map include the following:

UEFI Forum, Inc. April 2020 2-38

Platform Initialization Specification, Vol. 2 Services - DXE Services

e Get MenorySpaceDescri ptor ()
« Get MenorySpaceMap()

The GCD memory space map isinitialized from the HOB list that is passed to the entry point of the
DXE Foundation. One HOB type describes the number of address lines that are used to access
memory resources. Thisinformation is used to initialize the state of the GCD memory space map.
Any memory regions outside thisinitial region are not available to any of the GCD Servicesthat are
used to manage memory resources. The GCD memory space map is designed to describe the
memory address space with as many as 64 address lines. Each region in the GCD memory space
map can begin and end on a byte boundary. There are additional HOB types that describe the
location of system memory, the location memory mapped I/O, the location of firmware devices, the
location of firmware volumes, the location of reserved regions, and the location of system memory
regions that were allocated prior to the execution of the DXE Foundation. The DXE Foundation
must parse the contents of the HOB list to guarantee that memory regions reserved prior to the
execution of the DXE Foundation are honored. Asaresult, the GCD memory space map must
reflect the memory regions described in the HOB list. The GCD memory space map provides the
DXE Foundation with the information required to initialize the memory services such as

Al'l ocat ePages(), FreePages(),Al | ocat ePool (), FreePool (), and

Cet Menor yMap() . Seethe UEFI 2.0 specification for definitions of these services.

A memory region described by the GCD memory space map can be in one of several different states:
* Nonexistent memory

* System memory

* Memory-mapped I/O

* Reserved memory

These memory regions can be allocated and freed by DXE drivers executing in the DXE
environment. In addition, a DXE driver can attempt to adjust the caching attributes of a memory
region. Figure 2-2 showsthe possible state transitions for each byte of memory in the GCD memory
gpace map. Thetransitions are labeled with the GCD Service that can move the byte from one state
to another. The GCD services are required to merge similar memory regions that are adjacent to
each other into a single memory descriptor, which reduces the number of entriesin the GCD
memory space map.

UEFI Forum, Inc. April 2020 2-39

Platform Initialization Specification, Vol. 2 Services - DXE Services

SetAllribules
SelCapalahbes

Allocated
MMIO

Allecale
SetAdtributes

SetAttibutes SelAlnbules
1Capabillies

elCapabililies SelCapatihbes

Allocated
Reserved

Allocated
System Memory

Fres

Remaowe Free

SelAlinbules
SelCapabilities

(/

SelAltributes

SelAllribules
SelCapabihbes

SelCapabiilies

Reserved System Memory

Operation GCD Service Free Allocale

A AddMermony Space]) SelAlinbules
Remaove RemovellemonySpacel) SetCapabilifies
Allocate AllocateMemorySpace()

Free FreellemorySpacel) Allocated

Sethttnbates SethiemanySpaceftmbutes()
aetlapahilibes | SethemonSpaceCapabilties|)

Mon Existent

Figure 2-2: GCD Memory State Transitions

7.2.3 GCD I/0O Resources
The Global Coherency Domain (GCD) Services used to manage I/O resources include the following:
e Addl oSpace()
e All ocateloSpace()
 Freel oSpace()
* Renovel oSpace()
The GCD Services used to retrieve the GCD 1/0O space map include the following:
e CetloSpaceDescriptor()

e GetloSpaceMap()

The GCD 1/0 space map isinitialized from the HOB list that is passed to the entry point of the DXE
Foundation. One HOB type describes the number of address lines that are used to access |/0O
resources. Thisinformation isused to initialize the state of the GCD 1/0O space map. Any /O
regions outside thisinitial region are not available to any of the GCD Services that are used to

UEFI Forum, Inc. April 2020 2-40

Platform Initialization Specification, Vol. 2 Services - DXE Services

manage 1/0 resources. The GCD 1/0 space map is designed to describe the 1/0 address space with
as many as 64 address lines. Each region in the GCD |/O space map can being and end on a byte
boundary.

An /O region described by the GCD 1/0 space map can bein severa different states. Theseinclude
nonexistent 1/0, 1/0, and reserved I/0O. These /O regions can be allocated and freed by DXE drivers
executing in the DXE environment. Figure 2-3 shows the possible state transitions for each byte of
1/0 in the GCD 1/0O space map. Thetransitions are labeled with the GCD Service that can move the
byte from one state to another. The GCD Services are required to merge similar 1/O regionsthat are
adjacent to each other into asingle I/O descriptor, which reduces the number of entriesin the GCD
1/0O space map.

Allocated
(fle)

Allocated
Reserved

Allocate

Allocate

Add

Add

Reserved

Remove

Remove

Allocate

Operation | GCD Service

Add AddloSpacel) Allocated
Remaove RemoveloSpacel Non Existent
Allocate AllocateloEpaced

Free FreeloSpacad)

Figure 2-3: GCD I/O State Transitions

7.2.4 Global Coherency Domain Services

The functions that make up Global Coherency Domain (GCD) Services are used during preboot to
add, remove, alocate, free, and provide maps of the system memory, memory-mapped I/O, and I/O
resources in aplatform. These services, used in conjunction with the Memory Allocation Services,
provide the ability to manage all the memory and 1/O resources in a platform. Table 2-11 liststhe
Global Coherency Domain Services.

UEFI Forum, Inc. April 2020 2-41

Platform Initialization Specification, Vol. 2 Services - DXE Services

Table 2-11: Global Coherency Domain Boot Type Services

Name
AddMemorySpace

AllocateMemorySpace

FreeMemorySpace

RemoveMemorySpace

GetMemorySpaceDescriptor

SetMemorySpaceAttributes

SetMemorySpaceCapabilities

GetMemorySpaceMap

AddloSpace

AllocateloSpace

FreeloSpace

RemoveloSpace

GetloSpaceDescriptor

GetloSpaceMap

Description

This service adds reserved memory, system memory, or memory-
mapped I/O resources to the global coherency domain of the
processor.

This service allocates nonexistent memory, reserved memory, system
memory, or memory-mapped I/O resources from the global coherency
domain of the processor.

This service frees nonexistent memory, reserved memory, system
memory, or memory-mapped /O resources from the global coherency
domain of the processor.

This service removes reserved memory, system memory, or memory-
mapped I/O resources from the global coherency domain of the
processor.

This service retrieves the descriptor for a memory region containing a
specified address.

This service modifies the attributes for a memory region in the global
coherency domain of the processor.

This service modifies the capabilities for a memory region in the global
coherency domain of the processor.

Returns a map of the memory resources in the global coherency
domain of the processor.

This service adds reserved 1/O, or 1/0 resources to the global
coherency domain of the processor.

This service allocates nonexistent I/O, reserved I/O, or I/O resources
from the global coherency domain of the processor.

This service frees nonexistent I/O, reserved I/O, or 1/O resources from
the global coherency domain of the processor.

This service removes reserved I/O, or I/O resources from the global
coherency domain of the processor.

This service retrieves the descriptor for an I/O region containing a
specified address.

Returns a map of the 1/0 resources in the global coherency domain of
the processor.

UEFI Forum, Inc.

April 2020 2-42

Platform Initialization Specification, Vol. 2 Services - DXE Services

AddMemorySpace()

Summary

This service adds reserved memory, system memory, or memory-mapped 1/O resources to the global
coherency domain of the processor.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _ADD_MEMORY_SPACE) (
I N EFI _GCD_MEMORY_TYPE GcdMenor yType,
I N EFI _PHYSI CAL_ADDRESS BaseAddress,

I N Ul NT64 Lengt h,
I N Ul NT64 Capabilities
)
Parameters
GcdMenor yType

The type of memory resource being added. Type EFI _GCD_MEMORY_TYPE is
defined in “Related Definitions” below. The only types alowed are

Ef i GcdMenoryTypeReser ved, Ef i GcdMenor yTypeSyst enivenory,

Ef i GcdMenor yTypePer si st ent, Efi GcdMenoryTypeMor eRel i abl e,
and Ef i GcdMenor yTypeMenor yMappedl o.

BaseAddr ess

The physical address that is the start address of the memory resource being added.
Type EFI _PHYSI CAL_ADDRESS isdefined inthe Al | ocat ePages() function
description in the UEFI 2.0 specification.

Lengt h

The size, in bytes, of the memory resource that is being added.
Capabilities

The bit mask of attributes that the memory resource region supports. The bit mask of
available attributesis defined in the Get Menor yMap() function description in the
UEFI 2.0 specification.

Description

The AddMenor ySpace() function converts unallocated non-existent memory ranges to arange
of reserved memory, arange of system memory, or arange of memory mapped 1/0.

BaseAddr ess and Lengt h specify the memory range, and GcdMenor yType specifiesthe
memory type. The bit mask of all supported attributes for the memory range being added is

specified by Capabi | i ti es. If the memory rangeis successfully added, then EFI _SUCCESS is
returned.

If the memory range specified by BaseAddr ess and Lengt h isof type
Ef i GCcdMenor yTypeSyst emVenory or Ef i GcdMenor yTypeMor eRel i abl e, then the

UEFI Forum, Inc. April 2020 2-43

Platform Initialization Specification, Vol. 2 Services - DXE Services

memory range may be automatically allocated for use by the UEFI memory services. If the addition
of the memory range specified by BaseAddr ess and Lengt h resultsin a GCD memory space
map containing one or more 4 KiB regions of unallocated Ef i GcdMenor yTypeSyst emvenor y
or Efi GcdMenor yTypeMor eRel i abl e aligned on 4 KiB boundaries, then those regions will
always be converted to ranges of allocated Ef i GcdMenor yTypeSyst enivenory or

Ef i GcdMenor yTypeMor eRel i abl e respectively. Thisextra conversion will never be
performed for fragments of memory that do not meet the above criteria.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Lengt h iszero, then EFI _| NVALI D_PARAMETERIs returned.

If GcdMenor yType isnot Ef i GcdMenor yTypeReser ved,

Ef i GcdMenor yTypeSyst emvenory, Ef i GcdMenor yTypeMenor yMappedl o,
Ef i GcdMenor yPer si st ent or Ef i GcdMenor yTypeMor eRel i abl e then

EFl _1 NVALI D_PARANMETER isreturned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddr ess and Lengt h, then EFI _ UNSUPPORTED is returned.

If any portion of the memory range specified by BaseAddr ess and Lengt h is not of type
Ef i GcdMenor yTypeNonExi st ent , then EFI _ ACCESS DENI EDis returned.

If any portion of the memory range specified by BaseAddr ess and Lengt h was dlocated in a
prior cal to Al | ocat eMenor ySpace() , then EFI _ACCESS_DENI EDis returned.

If there are not enough system resources available to add the memory resource to the global
coherency domain of the processor, then EFI _OUT_COF RESOURCES is returned.

Related Definitions

//***

/| EFlI _GCD MEMORY_TYPE
//***
t ypedef enum {
Ef i GcdMenor yTypeNonEXxi st ent
Ef i GcdMenor yTypeReser ved,
Ef i GcdMenor yTypeSyst emvenory,
Ef i GcdMenor yTypeMenor yMappedl o,
Ef i GcdMenor yTypePer si st ent
Ef i GcdMenor yTypeMor eRel i abl e,
Ef i GcdMenor y TypeMaxi num
} EFI _GCD_MEMORY_TYPE;

Ef i GcdMenor yTypeNonExi st ent

A memory region that is visible to the boot processor. However, there are no system
components that are currently decoding this memory region.

UEFI Forum, Inc. April 2020 2-44

Platform Initialization Specification, Vol. 2 Services - DXE Services

Ef i GcdMenor yTypeReser ved

A memory region that is visible to the boot processor. This memory region is being
decoded by a system component, but the memory region is not considered to be either
system memory or memory-mapped |/O.

Ef i GcdMenor yTypeSyst emvenory

A memory region that is visible to the boot processor. A memory controller is
currently decoding this memory region and the memory controller is producing a
tested system memory region that is available to the memory services.

Ef i GcdMenor yTypeMenor yMappedl o

A memory region that is visible to the boot processor. This memory regionis
currently being decoded by a component as memory-mapped /O that can be used to
access |/O devicesin the platform.

Ef i GcdMenor yTypePer si st ent

A memory region that is visible to the boot processor. This memory supports byte-
addressable non-volatility.

Ef i GcdMenor yTypeMor eRel i abl e

A memory region that provides higher reliability relative to other memory in the
system. If all memory has the same reliability, then this bit is not used.

Status Codes Returned

EFI_SUCCESS The memory resource was added to the global coherency domain
of the processor.

EFI_INVALID_PARAMETER GcdMenor yType is invalid.
EFI_INVALID_PARAMETER Lengt h is zero.

EFI_OUT_OF_RESOURCES There are not enough system resources to add the memory
resource to the global coherency domain of the processor.

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddr ess and Lengt h.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddr ess and Lengt h conflicts with a memory
resource range that was previously added to the global coherency
domain of the processor.

EFI_ACCESS_DENIED One or more bytes of the memory resource range specified by
BaseAddr ess and Lengt h was allocated in a prior call to
Al | ocat eMenor ySpace().

UEFI Forum, Inc. April 2020 2-45

Platform Initialization Specification, Vol. 2 Services - DXE Services

AllocateMemorySpace()

Summary

This service allocates nonexistent memory, reserved memory, system memory, or memory-mapped
1/0 resources from the global coherency domain of the processor.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _ALLOCATE_MEMORY_SPACE) (
IN EFI _GCD ALLOCATE_TYPE GcdAl | ocat eType,
I N EFI _GCD_MEMORY_TYPE GcdMenor yType,
I'N Ul NTN Ali gnnment ,
I N Ul NT64 Lengt h,
I N OUT EFI _PHYSI CAL_ADDRESS *BaseAddr ess,
IN EFI _HANDLE | mageHandl e,
I N EFlI _HANDLE Devi ceHandl e OPTI ONAL
);
Parameters

CcdAl | ocat eType

Thetype of alocationto perform. Type EFI _GCD _ALLOCATE_TYPE isdefined in
“Related Definitions” below.

GcdMenor yType

The type of memory resource being allocated. Type EFI _GCD MEMORY_TYPE s
defined in AddMenor ySpace() . Theonly typesallowed are

Ef i GcdMenor yTypeNonExi st ent, Ef i GcdMenor yTypeReser ved,

Ef i GcdMenor yTypeSyst emvenory, Ef i GcdMenor yTypePer si st ent
Ef i GcdMenor yTypeMor eRel i abl e and

Ef i GcdMenor yTypeMenor yMappedl o.

Al i gnnent

The log base 2 of the boundary that BaseAddr ess must be aligned on output. For
example, avalue of 0 meansthat BaseAddr ess can be aligned on any byte
boundary, and avalue of 12 means that BaseAddr ess must be aligned on a4 KiB
boundary.

Lengt h
The size in bytes of the memory resource range that is being allocated.
BaseAddr ess

A pointer to aphysical address. On input, the way in which the addressis used
depends on the value of Type. See “Description” below for more information. On
output the address is set to the base of the memory resource range that was allocated.
Type EFI _PHYSI CAL_ADDRESS isdefined inthe Al | ocat ePages() function
description in the UEFI 2.0 specification.

UEFI Forum, Inc. April 2020 2-46

Platform Initialization Specification, Vol. 2 Services - DXE Services

| mmgeHandl| e

The image handle of the agent that is allocating the memory resource. Type
EFI _HANDLE isdefinedinl nstal | Prot ocol | nterface() inthe UEFI 2.0
specification.

Devi ceHandl e

The device handle for which the memory resourceis being alocated. |f the memory
resource is not being allocated for a device that has an associated device handle, then
this parameter is optional and may be NULL. Type EFI _HANDLE isdefined in

I nstal |l Protocol I nterface() inthe UEFI 2.0 specification.

Description

The Al | ocat eMenor ySpace() function searches for amemory range of type

GcdMenor y Ty pe and converts the discovered memory range from the unallocated state to the
alocated state. The parameters GcdAl | ocat eType, Al i gnnent , Lengt h, and

BaseAddr ess specify the manner in which the GCD memory space map is searched. If amemory
range isfound that meets the search criteria, then the base address of the memory rangeisreturnedin
BaseAddr ess, and EFI _ SUCCESS isreturned. | nageHandl e and Devi ceHandl| e are used
to convert the memory range from the unallocated state to the allocated state. | mageHandl e
identifiestheimagethat iscalling Al | ocat eMenor ySpace() , and Devi ceHandl e identifies
the device that | mageHand| e is managing that requires the memory range. Devi ceHandl e is
optional, because the device that | mageHandl e is managing might not have an associated device
handle. If amemory range meeting the search criteria cannot be found, then EFI _NOT_FOUNDIis
returned.

If GcdAl | ocat eType isEf i GcdAl | ocat eAnySear chBot t onlJp, then the GCD memory
space map is searched from the lowest address up to the highest address looking for unallocated
memory ranges of Lengt h bytes beginning on a boundary specified by Al i gnnent that matches
CcdMenor yType.

If GcdAl | ocat eType isEf i GcdAl | ocat eAny Sear chTopDown, then the GCD memory
space map is searched from the highest address down to the lowest address looking for unallocated
memory ranges of Lengt h bytes beginning on a boundary specified by Al i gnnent that matches
GcdMenor yType.

If GcdAl | ocat eType isEf i GcdAl | ocat eMaxAddr essSear chBot t omJp, then the GCD
memory space map is searched from the lowest address up to BaseAddr ess looking for
unallocated memory ranges of Lengt h bytes beginning on aboundary specified by Al i gnnent
that matches GcdMenor yType.

If GcdAl | ocat eType isEf i GcdAl | ocat eMaxAddr essSear chTopDown, then the GCD
memory space map is searched from BaseAddr ess down to the lowest address |ooking for
unallocated memory ranges of Lengt h bytes beginning on a boundary specified by Al i gnnment
that matches GcdMenor yType.

If GcdAl | ocat eType isEf i GcdAl | ocat eAddr ess, then the GCD memory space map is
checked to seeif the memory range starting at Base Addr ess for Lengt h bytesis of type
GcdMenor y Ty pe, unalocated, and begins on athe boundary specified by Al i gnrent .

UEFI Forum, Inc. April 2020 2-47

Platform Initialization Specification, Vol. 2 Services - DXE Services

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Lengt hiszero, then EFI _| NVALI D_PARAMETER s returned.
If BaseAddr ess isNULL, then EFI _| NVALI D_PARAMETER is returned.
If | mageHandl e isNULL, then EFI _| NVALI D_PARAMETER is returned.

If GcdMenor yType isnot Ef i GcdMenor yTypeNonExi st ent

Ef i GcdMenor yTypeReser ved, Ef i GcdMenor yTypeSyst em Menory,

Ef i GcdMenor yTypePer si st ent, Ef i GcdMenor yTypeMenor yMappedl o,

Ef i GcdMenor yTypeMor eRel i abl e, then EFI _| NVALI D_PARAMETER s returned.

If GcdAl ocat eType islessthan zero, or GcdAl | ocat eType isgreater than or equal to
Ef i GcdMaxAl | ocat eType then EFI _| NVALI D_PARAMETER s returned.

If there are not enough system resources availabl e to allocate the memory range, then
EFl _OUT_OF RESOURCES is returned.

Related Definitions

//***

/| EFlI _GCD_ALLOCATE_TYPE
//***
t ypedef enum {

Ef i GcdAl | ocat eAnySear chBot t oniJp,

Ef i GcdAl | ocat eMaxAddr essSear chBot t omJp,

Ef i GcdAl | ocat eAddr ess,

Ef i GcdAl | ocat eAnySear chTopDown,

Ef i GcdAl | ocat eMaxAddr essSear chTopDown,

Ef i GcdMaxAl | ocat eType
} EFlI _GCD_ALLOCATE_TYPE;

Status Codes Returned

EFI_SUCCESS The memory resource was allocated from the global coherency
domain of the processor.

EFI_INVALID_PARAMETER GcdAl | ocat eType is invalid.
EFI_INVALID_PARAMETER GcdMenor yType is invalid.

EFI_INVALID_PARAMETER Lengt h is zero.
EFI_INVALID_PARAMETER BaseAddr ess is NULL.
EFI_INVALID_PARAMETER | mmgeHand!| e is NULL.

EFI_OUT_OF_RESOURCES There are not enough system resources to allocate the memory
resource from the global coherency domain of the processor.

EFI_NOT_FOUND The memory resource request could not be satisfied.

UEFI Forum, Inc. April 2020 2-48

Platform Initialization Specification, Vol. 2 Services - DXE Services

FreeMemorySpace()

Summary

This service frees nonexistent memory, reserved memory, system memory, or memory-mapped 1/0
resources from the global coherency domain of the processor.

Prototype

t ypedef

EFl _STATUS

(EFI APl *EFI _FREE_MEMORY_SPACE) (
I N EFI _PHYSI CAL_ADDRESS BaseAddress,
I N Ul NT64 Lengt h

)

Parameters
BaseAddr ess

The physical address that is the start address of the memory resource being freed.
Type EFI _PHYSI CAL_ADDRESS isdefined inthe Al | ocat ePages() function
description in the UEFI 2.0 specification.

Lengt h
The size in bytes of the memory resource range that is being freed.

Description

The Fr eeMenor ySpace() function converts the memory range specified by BaseAddr ess
and Lengt h from the allocated state to the unallocated state. If this conversion is successful, then
EFI _SUCCESS isreturned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Lengt hiszero, then EFI _| NVALI D_PARAMETER s returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddr ess and Lengt h, then EFI _ UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddr ess and Lengt h were not
allocated on previous callsto Al | ocat eMenor ySpace() , then EFI _NOT_FOUND s returned.

If there are not enough system resources available to free the memory range, then
EFl _OUT_OF RESOURCES isreturned.

Status Codes Returned

EFI_SUCCESS The memory resource was freed from the global coherency domain of
the processor.
EFI_INVALID_PARAMETER Lengt h is zero.

UEFI Forum, Inc. April 2020 2-49

Platform Initialization Specification, Vol. 2 Services - DXE Services

EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddr ess and Lengt h.
EFI_NOT_FOUND The memory resource range specified by Base Addr ess and

Lengt h was not allocated with previous calls to
Al | ocat eMenor ySpace().

EFI_OUT_OF_RESOURCES There are not enough system resources to free the memory resource
from the global coherency domain of the processor.

UEFI Forum, Inc. April 2020 2-50

Platform Initialization Specification, Vol. 2 Services - DXE Services

RemoveMemorySpace()

Summary

This service removes reserved memory, system memory, or memory-mapped |/O resources from the
global coherency domain of the processor.

Prototype
t ypedef
EFI _STATUS
(EFI APl *EFI _REMOVE_MEMORY_SPACE) (
I N EFI _PHYSI CAL_ADDRESS BaseAddress,
I N Ul NT64 Lengt h

)

Parameters
BaseAddr ess

The physical address that is the start address of the memory resource being removed.
Type EFI _PHYSI CAL_ADDRESS isdefined inthe Al | ocat ePages() function
description in the UEFI 2.0 specification.

Lengt h
The size in bytes of the memory resource that is being removed.

Description

The RenmoveMenor ySpace() function converts the memory range specified by BaseAddr ess
and Lengt h to the memory type Ef i GcdMenor yTypeNonExi st ent . If thisconversionis
successful, then EFI _ SUCCESS isreturned.

If the GCD memory space map contains adjacent memory regions that only differ in their base
address and length fields, then those adjacent memory regions must be merged into a single memory
descriptor.

If Lengt hiszero, then EFI _| NVALI D_PARAMETER s returned.

If the processor does not support one or more bytes of the memory range specified by
BaseAddr ess and Lengt h, then EFI _ UNSUPPORTED is returned.

If one or more bytes of the memory range specified by BaseAddr ess and Lengt h were not
added to