

UEFI Shell Specification

January 26, 2016

Revision 2.2

ii

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or
controlled by any of the authors or developers of this material or to any contribution thereto. The material contained
herein is provided on an "AS IS" basis and, to the maximum extent permitted by applicable law, this information is
provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby disclaim all other
warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with regard to this material
and any contribution thereto. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or instructions so marked for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SPECIFICATION AND ANY
CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE LIABLE TO
ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE,
LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER
CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT
RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

Copyright 2008, - 2016 Unified EFI, Inc. All Rights Reserved

iii

Contents
1 Introduction .. 1

1.1 Overview ... 1
1.2 Related Information .. 1
1.3 Terms ... 1

2 Code Definitions .. 3
2.1 Introduction ... 3
2.2 EFI_SHELL_PROTOCOL .. 3

EFI_SHELL_PROTOCOL .. 3
EFI_SHELL_PROTOCOL.BatchIsActive() ... 9
EFI_SHELL_PROTOCOL.CloseFile() .. 10
EFI_SHELL_PROTOCOL.CreateFile() .. 11
EFI_SHELL_PROTOCOL.DeleteFile() .. 13
EFI_SHELL_PROTOCOL.DeleteFileByName() ... 14
EFI_SHELL_PROTOCOL.DisablePageBreak() ... 15
EFI_SHELL_PROTOCOL.EnablePageBreak() .. 16
EFI_SHELL_PROTOCOL.Execute() ... 17
EFI_SHELL_PROTOCOL.FindFiles() .. 19
EFI_SHELL_PROTOCOL.FindFilesInDir() ... 20
EFI_SHELL_PROTOCOL.FlushFile() .. 21
EFI_SHELL_PROTOCOL.FreeFileList() .. 22
EFI_SHELL_PROTOCOL.GetAlias() ... 23
EFI_SHELL_PROTOCOL.GetCurDir() .. 24
EFI_SHELL_PROTOCOL.GetDeviceName() .. 25
EFI_SHELL_PROTOCOL.GetDevicePathFromMap() 27
EFI_SHELL_PROTOCOL.GetDevicePathFromFilePath()................................ 28
EFI_SHELL_PROTOCOL.GetEnv() .. 29
EFI_SHELL_PROTOCOL.GetEnvEx() ... 30
EFI_SHELL_PROTOCOL.GetFileInfo() ... 31
EFI_SHELL_PROTOCOL.GetFilePathFromDevicePath()................................ 32
EFI_SHELL_PROTOCOL.GetFilePosition().. 33
EFI_SHELL_PROTOCOL.GetFileSize() ... 34
EFI_SHELL_PROTOCOL.GetGuidFromName() ... 35
EFI_SHELL_PROTOCOL.GetGuidName() ... 36
EFI_SHELL_PROTOCOL.GetHelpText() ... 37
EFI_SHELL_PROTOCOL.GetMapFromDevicePath() 38
EFI_SHELL_PROTOCOL.GetPageBreak() .. 39
EFI_SHELL_PROTOCOL.IsRootShell() .. 40
EFI_SHELL_PROTOCOL.OpenFileByName() .. 41
EFI_SHELL_PROTOCOL.OpenFileList() ... 43
EFI_SHELL_PROTOCOL.OpenRoot() .. 45
EFI_SHELL_PROTOCOL.OpenRootByHandle() ... 46
EFI_SHELL_PROTOCOL.ReadFile() .. 47
EFI_SHELL_PROTOCOL.RegisterGuidName() .. 48
EFI_SHELL_PROTOCOL.RemoveDupInFileList() ... 49
EFI_SHELL_PROTOCOL.SetAlias() ... 50
EFI_SHELL_PROTOCOL.SetCurDir() .. 52
EFI_SHELL_PROTOCOL.SetEnv() .. 53
EFI_SHELL_PROTOCOL.SetFileInfo() ... 54

iv

EFI_SHELL_PROTOCOL.SetFilePosition() .. 55
EFI_SHELL_PROTOCOL.SetMap() .. 56
EFI_SHELL_PROTOCOL.WriteFile() .. 57

2.3 EFI_SHELL_PARAMETERS_PROTOCOL ... 58
EFI_SHELL_PARAMETERS_PROTOCOL ... 58

2.4 EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL .. 59
EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL .. 59
EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL.Handler() 60
EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL.GetHelp() 61

3 UEFI Shell Features .. 63
3.1 Levels Of Support ... 63
3.2 Invocation ... 64
3.3 Initialization ... 65

3.3.1 Finding startup.nsh .. 66
3.3.2 Supported Profiles ... 66
3.3.3 Dynamic Profiles .. 67

3.4 Command-Line ... 67
3.4.1 Special Characters ... 67
3.4.2 Escape Characters ... 68
3.4.3 Quoting .. 68
3.4.4 Redirection ... 69
3.4.5 Comments .. 72

3.5 Current Directory .. 72
3.6 Variables ... 72

3.6.1 Environment Variables ... 73
3.6.2 Positional Parameters ... 75
3.6.3 Index Parameters .. 76
3.6.4 Aliases ... 76

3.7 File Names ... 76
3.7.1 Wildcard Expansion .. 77
3.7.2 Mappings .. 77
3.7.3 Consistent File System Mapping .. 78

3.8 Scripts ... 78
3.9 Nesting the Shell .. 78
3.10 Interactive Features .. 78

3.10.1 Key History Support ... 78
3.10.2 Execution Interrupt Support .. 79
3.10.3 Output Streaming Control ... 79
3.10.4 Scroll Back Buffer Support .. 79

3.11 Shell Applications .. 80
3.11.1 Installation ... 80
3.11.2 Command-Line Help... 81

3.12 GUID Name Information .. 81
3.13 Dynamic Shell Commands .. 81

4 Scripts ... 83
4.1 Comments ... 83
4.2 Error Handling .. 84
4.3 Script Nesting... 84
4.4 Output and Echoing... 84

v

4.5 Limitations ... 84

5 Shell Commands.. 87
5.1 Overview ... 87

5.1.1 Explanation of Command Description Layout 90
5.1.2 Shell Command-Line Options .. 90

5.2 Shell Command Profiles ... 91
5.3 Shell Commands ... 91

alias 92
attrib 94
bcfg 96
cd 100
cls 102
comp 104
connect . .. 106
cp 108
date 111
dblk 113
del 115
devices.. .. 116
devtree . .. 118
dh 119
dir 123
disconnect .. 124
dmem 126
dmpstore .. 129
drivers 132
drvcfg 134
drvdiag . .. 137
echo 139
edit 141
eficompress .. 142
efidecompress ... 143
exit 144
for 145
getmtc 147
goto 148
help 149
hexedit 151
if 152
ifconfig 157
IfConfig6 .. 159
load 161
loadpcirom ... 163
ls 164
map 168
md 171
mem 172
memmap .. 173
mkdir 177
mm 179
mode 182
mv........ .. 184

vi

openinfo .. 186
parse 188
pause 190
pci 191
ping 195
Ping6 196
reconnect ... 197
reset 199
rm 201
sermode .. 203
set 205
setsize 207
setvar 208
shift 211
smbiosview ... 212
stall 214
time 215
timezone .. 217
touch 219
type 220
unload 221
ver 222
vol 224

Appendix A UEFI Shell Consistent Mapping Design .. 227
A.1 Requirement: .. 227
A.2 Design .. 227

A.2.1 What does consistent mapping mean? 227
A.2.2 Hardware configuration change: ... 227
A.2.3 Mapping generated from device path .. 228
A.2.4 Consistent Mapping ... 228
A.2.5 Example (USB Devices) ... 229

A.3 Implementation ... 232
A.3.1 Get the MTD .. 237
A.3.2 Get the HI ... 237
A.3.3 Get the CSD ... 237

A.4 Function & Structure .. 240

Appendix B UEFI Help Manual Page Syntax .. 243

Appendix C UEFI Shell Status Codes.. 245

Appendix D UEFI Shell Command Standard Formatted Output .. 247

vii

Tables
Table 1 Support Levels ... 63
Table 2 Standard Command Line Options ... 64
Table 3 UEFI Shell Invocation Options .. 65
Table 4 Special Characters in Shell .. 68
Table 5 Output Redirection Syntax ... 70
Table 6 Input Redirection Syntax ... 71
Table 7 Input Redirection Syntax ... 71
Table 8 Environment Variables with Special Meaning to the UEFI Shell 74
Table 9 Built-in Aliases for the UEFI Shell ... 76
Table 10 Wildcard Character Expansion .. 77
Table 11 Commands from Default Build Shell .. 87
Table 12 Standard Command Line Options .. 90
Table 13 Standard Profiles .. 91
Table 14 Conventions for Directory Names ... 100
Table 15 cls Standard Formatted Output (ConOutAttribInfo) 103
Table 16 Date Command Table ... 112
Table 17 Standard-Format Output for devices .. 117
Table 18 dh Standard Formatted Output (HandlesInfo) .. 122
Table 19 Variable command line options .. 130
Table 20 dmpstore Standard Formatted Output (VariableInfo) 131
Table 21 Drivers command table .. 133
Table 22 Table Default Values for the “Type” Parameter 135
Table 23 Comparison Operators .. 154
Table 24 Functions used to convert integers into UEFI, PI or OEM error codes 154
Table 25 Boolean Functions .. 155
Table 26 ls Standard Formatted Output (VolumeInfo) ... 166
Table 27 ls Standard Formatted Output (FileInfo) ... 167
Table 28 Standard Formatted Output (Mappings) .. 170
Table 29 Standard-Format Output for memmap (MemoryMap) 175
Table 30 Standard-Format Output for memmap (Summary) 176
Table 31 Open Protocol Information Layout .. 186
Table 32 How to process each type the device path node: 233
Table 33 MTD Naming ... 237
Table 34 Subheadings and descriptions ... 243
Table 35 SHELL_STATUS return codes ... 245

viii

REVISION HISTORY

Revision Number Description Revision Date

2.0 Initial UEFI release 9/25/08

2.0 Errata A Numbers indicate Mantis ticket numbers. 5/22/12

2.0 Errata A 464: Basic typographical errata 5/22/12

2.0 Errata A 499 Shell get-function errata 5/22/12

2.0 Errata A 544 Fix ALIAS support 5/22/12

2.0 Errata A 597 binary 100 != 8 5/22/12

2.0 Errata A 607 EFI_SHELL_PROTOCOL.SetCurDir() return value 5/22/12

2.0 Errata A 614 Misformatted table 5/22/12

2.0 Errata A 615 MemMap command incorrectly limits itself 5/22/12

2.0 Errata A 617 Commands missing the 'return values' table 5/22/12

2.0 Errata A 619 DmpStore usage error 5/22/12

2.0 Errata A 623 Dblk command parameter [blocks] has 2 default values 5/22/12

2.0 Errata A 624 Description update in shell initialization steps 5/22/12

2.0 Errata A 644 Echo has no default state 5/22/12

2.0 Errata A 647 cp command has incorrect example 5/22/12

2.0 Errata A 648 Example under Parse command is missing data. 5/22/12

2.0 Errata A 649 Fix shell object name 5/22/12

2.0 Errata A 656 Pipe support corrections 5/22/12

2.0 Errata A 657 Special Character updates 5/22/12

2.0 Errata A 658 Remove -a/-u parameters for the TYPE command 5/22/12

2.0 Errata A 660 Typo's in driver commands 5/22/12

2.0 Errata A 683 Remove ipconfig command 5/22/12

2.0 Errata A 684 Fix table 4 to have all combinations of file redirections. 5/22/12

2.0 Errata A 701 Stall and Vol are not listed in table 1 or 11 5/22/12

2.0 Errata A 757 Remove : from delay parameter to the shell. 5/22/12

2.0 Errata A 758 Remove leading zeroes from time commands 5/22/12

2.0 Errata A 766 Remove ability of nested "for" statements with identical
variables.

5/22/12

2.0 Errata A 798 Remove smiley face 5/22/12

2.0 Errata A 799 Clarify "Lasterror" environment variable usage. 5/22/12

2.0 Errata A 875 Clarify reset command description. 5/22/12

2.0 Errata A 883 BCFG command has errors in parameter description 5/22/12

2.1 910 Add dynamic registration of GUIDS 05/01/14

2.1 911Add dynamic commands 05/01/14

2.1 929 Typo in description of dmpstore command 05/01/14

2.1 1057 UEFI Shell Spec Version #define 05/01/14

2.1 1087 UEFI Shell Updates: table typos and add .GetEnvEX 05/01/14

2.1 1107 Clarification on variable and alias substitution 05/01/14

2.1 1108 .nsh script execution interrupt behavior 05/01/14

ix

2.1 1138 Update to allow # comments on the command-line 05/01/14

2.2 1349 UEFI Shell Spec clarifications for path, output
redirection, index param, and quoting

11/13/15

2.2 1382 UEFI Shell Spec setvar command refactor 11/13/15

2.2 1416 UEFI Shell Spec new command features 11/13/15

2.2 1422 UEFI Shell Spec new feature for DH command 11/13/15

2.2 1430 UEFI Shell IPv4 network update 11/13/15

2.2 1431 UEFI Shell IPv6 network update 11/13/15

2.2 1473 Shell spec update to optionally allow Execute() to not
nest new shells

11/13/15

2.2 1482 UEFI Shell.next spec draft feedback 11/13/15

2.2 1486 UEFI Shell add command line parameter to auto exit 11/13/15

2.2 1520 UEFI Shell Specification Version will be 2.2 11/13/15

2.2 1535 UEFI Shell Spec ifconfig/ifconfig6 command refresh
IPv4/IPv6 config

12/17/15

x

1
Introduction

1.1 Overview
The UEFI Shell environment provides an API, a command prompt and a rich
set of commands that extend and enhance the UEFI Shell’s capability.

1.2 Related Information
The following publications and sources of information may be useful or are
referred to by this document:

Extensible Firmware Interface Specification, Version 1.10, Intel, 2001,
http://developer.intel.com/technology/efi.

Unified Extensible Firmware Interface Specification, Unified EFI, Inc,
http://www.uefi.org.

Intel® Platform Innovation Framework for EFI Specifications, Intel, 2006,
http://www.intel.com/technology/framework/.

1.3 Terms
EFI

Generic term that refers to one of the versions of the EFI
specification: EFI 1.02, EFI 1.10, or UEFI.

EFI 1.10 Specification

Intel Corporation published the Extensible Firmware Interface
Specification. It has been supplanted by the Unified Extensible
Firmware Interface (UEFI), which is controlled by the UEFI Forum.

GUID

Globally Unique Identifier. A 128-bit value used to name entities
uniquely. Without the help of a centralized authority, an individual
can generate a unique GUID. This allows the generation of names
that will never conflict, even among multiple, unrelated parties.

Protocol

An API named by a GUID as defined by the UEFI Specification.

http://developer.intel.com/technology/efi
http://www.uefi.org/
http://www.intel.com/technology/framework/

2

UEFI Application

An application following the UEFI specification. The only difference
between a UEFI application and a UEFI driver is that an application
is unloaded from memory when it exits regardless of return status,
while a driver that returns a successful return status is not
unloaded when its entry point exits.

UEFI Driver

A driver following the UEFI specification driver model.

UEFI Specification Version 2.0

The first UEFI specification released by the Unified EFI Forum.

Unified EFI Forum

A non-profit collaborative trade organization formed to promote
and manage the UEFI standard. For more information, see
www.uefi.org.

3

2
Code Definitions

2.1 Introduction

2.2 EFI_SHELL_PROTOCOL

EFI_SHELL_PROTOCOL

Summary

Provides shell services to UEFI applications.

4

Related Definitions
#define EFI_SHELL_MAJOR_VERSION 2
#define EFI_SHELL_MINOR_VERSION 2

GUID
#define EFI_SHELL_PROTOCOL_GUID \
 { 0x6302d008, 0x7f9b, 0x4f30, \
 { 0x87, 0xac, 0x60, 0xc9, 0xfe, 0xf5, 0xda, 0x4e } }

Protocol Interface Structure
typedef struct _EFI_SHELL_PROTOCOL {
 EFI_SHELL_EXECUTE Execute;
 EFI_SHELL_GET_ENV GetEnv;
 EFI_SHELL_SET_ENV SetEnv;
 EFI_SHELL_GET_ALIAS GetAlias;
 EFI_SHELL_SET_ALIAS SetAlias;
 EFI_SHELL_GET_HELP_TEXT GetHelpText;
 EFI_SHELL_GET_DEVICE_PATH_FROM_MAP GetDevicePathFromMap;
 EFI_SHELL_GET_MAP_FROM_DEVICE_PATH GetMapFromDevicePath;
 EFI_SHELL_GET_DEVICE_PATH_FROM_FILE_PATH GetDevicePathFromFilePath;
 EFI_SHELL_GET_FILE_PATH_FROM_DEVICE_PATH GetFilePathFromDevicePath;
 EFI_SHELL_SET_MAP SetMap;

 EFI_SHELL_GET_CUR_DIR GetCurDir;
 EFI_SHELL_SET_CUR_DIR SetCurDir;
 EFI_SHELL_OPEN_FILE_LIST OpenFileList;
 EFI_SHELL_FREE_FILE_LIST FreeFileList;
 EFI_SHELL_REMOVE_DUP_IN_FILE_LIST RemoveDupInFileList;

 EFI_SHELL_BATCH_IS_ACTIVE BatchIsActive;
 EFI_SHELL_IS_ROOT_SHELL IsRootShell;
 EFI_SHELL_ENABLE_PAGE_BREAK EnablePageBreak;
 EFI_SHELL_DISABLE_PAGE_BREAK DisablePageBreak;
 EFI_SHELL_GET_PAGE_BREAK GetPageBreak;
 EFI_SHELL_GET_DEVICE_NAME GetDeviceName;

 EFI_SHELL_GET_FILE_INFO GetFileInfo;
 EFI_SHELL_SET_FILE_INFO SetFileInfo;
 EFI_SHELL_OPEN_FILE_BY_NAME OpenFileByName;
 EFI_SHELL_CLOSE_FILE CloseFile;
 EFI_SHELL_CREATE_FILE CreateFile;
 EFI_SHELL_READ_FILE ReadFile;
 EFI_SHELL_WRITE_FILE WriteFile;
 EFI_SHELL_DELETE_FILE DeleteFile;
 EFI_SHELL_DELETE_FILE_BY_NAME DeleteFileByName;
 EFI_SHELL_GET_FILE_POSITION GetFilePosition;
 EFI_SHELL_SET_FILE_POSITION SetFilePosition;
 EFI_SHELL_FLUSH_FILE FlushFile;
 EFI_SHELL_FIND_FILES FindFiles;
 EFI_SHELL_FIND_FILES_IN_DIR FindFilesInDir;
 EFI_SHELL_GET_FILE_SIZE GetFileSize;

 EFI_SHELL_OPEN_ROOT OpenRoot;
 EFI_SHELL_OPEN_ROOT_BY_HANDLE OpenRootByHandle;

 EFI_EVENT ExecutionBreak;

 UINT32 MajorVersion;
 UINT32 MinorVersion;
 EFI_SHELL_REGISTER_GUID_NAME RegisterGuidName;
 EFI_SHELL_GET_GUID_NAME GetGuidName;
 EFI_SHELL_GET_GUID_FROM_NAME GetGuidFromName;

5

 EFI_SHELL_GET_ENV_EX GetEnvEx;
 // Added for Shell 2.1
} EFI_SHELL_PROTOCOL;

Members
Execute

Causes the shell to parse and execute the command line. See the
Execute() function description below.

GetEnv

Gets the environment variable. See the GetEnv() function description
below.

SetEnv

Changes a specific environment variable. Set the SetEnv() function
description below.

GetAlias

Retrieves the alias for a specific shell command. See the GetAlias()
function description below.

SetAlias

Adds or removes the alias for a specific shell command. See the
SetAlias() function description below.

GetDevicePathFromMap

Returns the device path that corresponds to a mapping. See the
GetDevicePathFromMap() function description below.

GetMapFromDevicePath

Returns the mapping that corresponds to a particular device path. See
the GetMapFromDevicePath() function description below.

GetDevicePathFromFilePath

Converts a file path to a device path, where all mappings have been
replaced with the corresponding device paths.

GetFilePathFromDevicePath

Converts a device path to a file path, where the portion of the device
path corresponding to one of the mappings is replaced with that
mapping.

SetMap

Creates, updates or deletes a mapping between a device and a device
path.

GetCurDir

Returns the current directory on a device. See the GetCurDir() function
description below.

SetCurDir

Changes the current directory on a device. Set the SetCurDir() function
description below.

6

OpenFileList

Opens the files that match the path pattern specified. See the
OpenFileList() function description below.

FreeFileList

Frees the file list that created by OpenFileList(). See the FreeFileList()
function description below.

RemoveDupInFileList

Deletes the duplicate files in the given file list. See the
RemoveDupInFileList() function description below.

BatchIsActive

Returns whether any script files are currently being processed. See the
BatchIsActive() function description below.

IsRootShell

Judges whether the active Shell is the root shell. See the IsRootShell()
function description below.

EnablePageBreak

Enables the page break output mode. See the EnablePageBreak() function
description below.

DisablePageBreak

Disables the page break output mode. See the DisablePageBreak()
function description below.

GetPageBreak

Gets the enable status of the page break output mode. See the
GetPageBreak() function description below.

GetDeviceName

Gets the name of the device specified by the device handle. See the
GetDeviceName() function description below.

GetFileInfo

Return information about a specific file handle. See the GetFileInfo()
function description below.

SetFileInfo

Change information about a specific file handle. See the SetFileInfo()
function description below.

OpenFileByName

Given a file name, open a file and return a file handle. See the
OpenFileByName() description below.

CloseFile

Close an open file. See the CloseFile() description below.

CreateFile

Create a new file. See the CreateFile() function description.

7

ReadFile

Read data from a file. See the ReadFile() function description.

WriteFile

Write data to a file. See the WriteFile() function description.

DeleteFile

Delete a file. See the DeleteFile() function description.

DeleteFileByName

Delete a file by name. See the DeleteFileByName() function description.

SetFilePosition

Change the current read/write position within a file. See the
SetFilePosition() function description.

GetFilePosition

Return the current read/write position within a file. See the
GetFilePosition() function description.

FlushFile

Write all buffered data to a file. See the FlushFile() function description.

FindFiles

Return all files that match a pattern in a file list. See the FindFiles()
function description.

FindFilesInDir

Return all files in a specified directory in a file list. See the
FindFilesInDir() function description.

GetFileSize

Return the size of a file. See the GetFileSize() function description.

OpenRoot

Return the root directory of a file system. See the OpenRoot() function
description.

OpenRootByHandle

Return the root directory of a file system on a particular handle. See the
OpenRootByHandle() function description.

ExecutionBreak

Event signaled by the UEFI Shell when the user presses CTRL-C to
indicate that the current UEFI Shell command execution should be
interrupted.

MajorVersion

This field contains the EFI_SHELL_MAJOR_VERSION value referenced in the
related definitions section. This will define what functions are available in
the protocol.

MinorVersion

This field contains the EFI_SHELL_MINOR_VERSION value referenced in the related
definitions section. This will define what functions are available in the protocol.

8

RegisterGuidName

Register a GUID and a localized human readable name for it.

GetGuidName

Get the human readable name for a GUID from the value.

GetGuidFromName

Get the GUID value from a human readable name.

GetEnvEx

Gets the environment variable and Attributes. See the GetEnvEx() function
description below.

Description

This protocol gives UEFI shell applications access to the low-level shell
functions, including: * Files, * Pipes, * Environment Variables, * The current
working directory, * Mappings, * Help Text, * Aliases, * Launching shell
applications and scripts.

9

EFI_SHELL_PROTOCOL.BatchIsActive()

Summary

Returns whether any script files are currently being processed.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_SHELL_BATCH_IS_ACTIVE) (
 VOID
);

Parameters

None

Description

This function tells whether any script files are currently being processed

Status Codes Returned

TRUE
There is at least one script file active.

FALSE
No script files are active now.

10

EFI_SHELL_PROTOCOL.CloseFile()

Summary

Closes the file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_CLOSE_FILE)(
 IN SHELL_FILE_HANDLE FileHandle
);

Parameters
FileHandle

The file handle to be closed

Description

This function closes a specified file handle. All “dirty” cached file data is flushed
to the device, and the file is closed. In all cases, the handle is closed.

Status Codes Returned
EFI_SUCCESS The file is closed successfully

11

EFI_SHELL_PROTOCOL.CreateFile()

Summary

Creates a file or directory by name.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_CREATE_FILE)(
 IN CONST CHAR16 *FileName,
 IN UINT64 FileAttribs,
 OUT SHELL_FILE_HANDLE *FileHandle
);

Parameters
FileName

Points to the null-terminated file path.

FileAttribs

The new file’s attributes. The different attributes are described in
EFI_FILE_PROTOCOL.Open().

FileHandle

On return, points to the created file or directory’s handle.

Description

This function creates an empty new file or directory with the specified
attributes and returns the new file’s handle. If the file already exists and is
read-only, then EFI_INVALID_PARAMETER will be returned.

If the file already existed, it is truncated and its attributes updated. If the file
is created successfully, the FileHandle is the file’s handle, else, the FileHandle
is NULL.

If the file name begins with >v, then the file handle which is returned refers to
the shell environment variable with the specified name. If the shell
environment variable already exists and is non-volatile then
EFI_INVALID_PARAMETER is returned.

Status Codes Returned
EFI_SUCCESS The file was opened. FileHandle points to the new

file’s handle.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED Could not open the file path.

EFI_NOT_FOUND The specified file could not be found on the device, or
could not find the file system on the device.

EFI_NO_MEDIA The device has no medium.

12

EFI_MEDIA_CHANGED The device has a different medium in it or the medium
is no longer supported.

EFI_DEVICE_ERROR The device reported an error or can’t get the file path
according the DirName.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for
write when the media is write-protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.

EFI_VOLUME_FULL The volume is full.

13

EFI_SHELL_PROTOCOL.DeleteFile()

Summary

Deletes the file specified by the file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_DELETE_FILE)(
 IN SHELL_FILE_HANDLE FileHandle
);

Parameters
FileHandle

The file handle to delete.

Description

This function closes and deletes a file. In all cases, the file handle is closed. If
the file cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is
returned, but the handle is still closed.

Status Codes Returned
EFI_SUCCESS The file was closed and deleted, and the handle

was closed.

EFI_WARN_DELETE_FAILURE The handle was closed but the file was not deleted.

14

EFI_SHELL_PROTOCOL.DeleteFileByName()

Summary

Deletes the file specified by the file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_DELETE_FILE_BY_NAME)(
 IN CONST CHAR16 *FileName
);

Parameters
FileName

Points to the null-terminated file name.

Description

This function deletes a file.

Status Codes Returned
EFI_SUCCESS The file was closed and deleted, and the handle was closed.

EFI_WARN_DELETE_FAILURE The handle was closed but the file was not deleted.

15

EFI_SHELL_PROTOCOL.DisablePageBreak()

Summary

Disables the page break output mode.

Prototype
typedef
VOID
(EFIAPI *EFI_SHELL_DISABLE_PAGE_BREAK) (
 VOID
);

Parameters

None

Description

This function disables the page break output mode.

Status Codes Returned

None

16

EFI_SHELL_PROTOCOL.EnablePageBreak()

Summary

Enables the page break output mode.

Prototype

typedef
VOID
(EFIAPI *EFI_SHELL_ENABLE_PAGE_BREAK) (
 VOID
);

Parameters

None

Description

This function enables the page break output mode.

Status Codes Returned

None

17

EFI_SHELL_PROTOCOL.Execute()

Summary

Execute the command line.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_EXECUTE) (
 IN EFI_HANDLE *ParentImageHandle,
 IN CHAR16 *CommandLine OPTIONAL,
 IN CHAR16 **Environment OPTIONAL,
 OUT EFI_STATUS *StatusCode OPTIONAL
);

Parameters
ParentImageHandle

A handle of the image that is executing the specified command line.

CommandLine

Points to the null-terminated UCS-2 encoded string containing the
command line. If NULL then the command-line will be empty.

Environment

Points to a null-terminated array of environment variables with the
format ‘x=y’, where x is the environment variable name and y is the
value. If this is NULL, then the current shell environment is used.

ErrorCode

Points to the status code returned by the command.

Description

If the nonesting environment variable is FALSE, then this function creates a
nested instance of the shell. The shell then executes the specified command
(CommandLine) with the specified environment (Environment). Upon return, the
status code returned by the specified command is placed in StatusCode.

If Environment is NULL, then the current environment is used and all changes
made by the commands executed will be reflected in the current environment.
If the Environment is non-NULL, then the changes made will be discarded.

The CommandLine is executed from the current working directory on the current
device.

18

Status Codes Returned
EFI_SUCCESS The command executed successfully. The

status code returned by the command is
pointed to by StatusCode.

EFI_INVALID_PARAMETER The parameters are invalid.

EFI_OUT_OF_RESOURCES Out of resources.

EFI_UNSUPPORTED Nested shell invocations are not allowed.

EFI_UNSUPPORTED Shell scripts are not supported by this UEFI
shell (see “Levels of Support”, section 3.1)

19

EFI_SHELL_PROTOCOL.FindFiles()

Summary

Find files that match a specified pattern.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_FIND_FILES)(
 IN CONST CHAR16 *FilePattern,
 OUT EFI_SHELL_FILE_INFO **FileList
);

Parameters
FilePattern

Points to a null-terminated shell file path, including wildcards.

FileList

On return, points to the start of a file list containing the names of all
matching files or else points to NULL if no matching files were found.

Description

This function searches for all files and directories that match the specified
FilePattern. The FilePattern can contain wild-card characters. The resulting
file information is placed in the file list FileList.

The files in the file list are not opened. The OpenMode field is set to 0 and the
FileInfo field is set to NULL.

Status Codes Returned
EFI_SUCCESS Files found.

EFI_NOT_FOUND No files found.

EFI_NO_MEDIA The device has no media

EFI_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED The file system structures are corrupted

20

EFI_SHELL_PROTOCOL.FindFilesInDir()

Summary

Find all files in a specified directory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_FIND_FILES_IN_DIR)(
 IN SHELL_FILE_HANDLE FileDirHandle,
 OUT EFI_SHELL_FILE_INFO **FileList
);

Parameters
FileDirHandle

Handle of the directory to search.

FileList

On return, points to the list of files in the directory or NULL if there are
no files in the directory.

Status Codes Returned
EFI_SUCCESS File information was returned successfully.

EFI_VOLUME_CORRUPTED The file system structures have been
corrupted.

EFI_DEVICE_ERROR The device reported an error.

EFI_NO_MEDIA The device media is not present.

21

EFI_SHELL_PROTOCOL.FlushFile()

Summary

Flushes data back to a device

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_FLUSH_FILE)(
 IN SHELL_FILE_HANDLE FileHandle
);

Parameters
FileHandle

The handle of the file to flush.

Description

This function flushes all modified data associated with a file to a device.

Status Codes Returned
EFI_SUCCESS The data was flushed.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

22

EFI_SHELL_PROTOCOL.FreeFileList()

Summary

Frees the file list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_FREE_FILE_LIST) (
 IN EFI_SHELL_FILE_INFO **FileList
);

Parameters
FileList

The file list to free. Type EFI_SHELL_FILE_INFO is defined in
OpenFileList()

Description

This function cleans up the file list and any related data structures. It has no
impact on the files themselves.

Status Codes Returned
EFI_SUCCESS Free the file list successfully.

23

EFI_SHELL_PROTOCOL.GetAlias()

Summary

Retrieves a shell command alias.

Prototype
typedef
CONST CHAR 16 *
(EFIAPI *EFI_SHELL_GET_ALIAS)(
 IN CONST CHAR16 *Alias
 OUT BOOLEAN *Volatile OPTIONAL
);

Parameters
Alias

Points to the null-terminated alias. If Alias is not NULL, this function
returns the associated null-terminated command. If Alias is NULL, this
function returns a ‘;’ delimited list of all the defined aliases (e.g.
ReturnedData = “md;rd;cp;mfp”) that is null-terminated.

Volatile

If the return value is not NULL and Alias is not NULL, the Volatile
parameter being TRUE indicates that the Alias is stored in a volatile
fashion. If the return value is not NULL and Alias is not NULL, the Volatile
parameter being FALSE indicates that the Alias is stored in a non-volatile
fashion. For all other situations, this output parameter must be ignored.

Description

This function returns the alias associated with a command. I

Status Codes Returned
NULL The command referenced doesn’t exist.

≠NULL The command could successfully returned.

24

EFI_SHELL_PROTOCOL.GetCurDir()

Summary

Returns the current directory on the specified device.

Prototype
typedef
CONST CHAR16 *
(EFIAPI *EFI_SHELL_GET_CUR_DIR) (
 IN CONST CHAR16 *FileSystemMapping OPTIONAL
);

Parameters
FileSystemMapping

A pointer to the file system mapping. If NULL, then the current working
directory is returned.

Description

If FileSystemMapping is NULL, it returns the current working directory. If the
FileSystemMapping is not NULL, it returns the current directory associated with
the FileSystemMapping. In both cases, the returned name includes the file
system mapping (i.e. fs0:\current-dir).

For more information, see “Current Directory”, section3.5.

Status Codes Returned
EFI_SUCCESS The current directory.

EFI_NOT_FOUND Current directory does not exist.

25

EFI_SHELL_PROTOCOL.GetDeviceName()

Summary

Gets the name of the device specified by the device handle.

Prototype
typedef
EFI_STATUS
(*EFI_SHELL_GET_DEVICE_NAME) (
 IN EFI_HANDLE DeviceHandle,
 IN EFI_SHELL_DEVICE_NAME_FLAGS Flags,
 IN CHAR8 *Language,
 OUT CHAR16 **BestDeviceName
);

Parameters
DeviceHandle

The handle of the device.

Flags

Determines the possible sources of component names. See “Related
Definitions” below for more information.

Language

A pointer to the language specified for the device name, in the same
format as described in the UEFI specification, Appendix M

BestDeviceName

On return, points to the callee-allocated null-terminated name of the
device. If no device name could be found, points to NULL. The name
must be freed by the caller..

Description

This function gets the user-readable name of the device specified by the
device handle. If no user-readable name could be generated, then
*BestDeviceName will be NULL and EFI_NOT_FOUND will be returned.

The

Related Definitions
typedef UINT32 EFI_DEVICE_NAME_FLAGS;
#define EFI_DEVICE_NAME_USE_COMPONENT_NAME 0x00000001
#define EFI_DEVICE_NAME_USE_DEVICE_PATH 0x00000002

If EFI_DEVICE_NAME_USE_COMPONENT_NAME is set, then the function will return the
device’s name using the EFI_COMPONENT_NAME2_PROTOCOL, if present on
DeviceHandle.

If EFI_DEVICE_NAME_USE_DEVICE_PATH is set, then the function will return the
device’s name using the EFI_DEVICE_PATH_PROTOCOL, if present on DeviceHandle.

26

If both EFI_DEVICE_NAME_USE_COMPONENT_NAME and
EFI_DEVICE_NAME_USE_DEVICE_PATH are set, then
EFI_DEVICE_NAME_USE_COMPONENT_NAME will have higher priority.

Status Codes Returned
EFI_SUCCESS Get the name successfully.

EFI_NOT_FOUND Fail to get the device name.

27

EFI_SHELL_PROTOCOL.GetDevicePathFromMap()

Summary

Gets the device path from the mapping.

Prototype
typedef
CONST EFI_DEVICE_PATH_PROTOCOL *
(EFIAPI *EFI_SHELL_GET_DEVICE_PATH_FROM_MAP) (
 IN CONST CHAR16 *Mapping
);

Parameters
Mapping

A pointer to the mapping.

Description

This function gets the device path associated with a mapping.

Status Codes Returned
≠NULL Pointer to the device path that corresponds to the device

mapping. The returned pointer does not need to be freed.

NULL There is no device path associated with the specified
mapping.

28

EFI_SHELL_PROTOCOL.GetDevicePathFromFilePath()

Summary

Converts a file system style name to a device path.

Prototype
typedef
EFI_DEVICE_PATH_PROTOCOL *
(EFIAPI *EFI_SHELL_GET_DEVICE_PATH_FROM_FILE_PATH) (
 IN CONST CHAR16 *Path
);

Parameters
Path

The pointer to the path.

Description

This function converts a file system style name to a device path, by replacing
any mapping references to the associated device path.

Status Codes Returned

The pointer of the file path. The file path is callee allocated and should be
freed by the caller.

29

EFI_SHELL_PROTOCOL.GetEnv()

Summary

Gets the environment variable or list of environment variables.

Prototype
typedef
CONST CHAR16 *
(EFIAPI *EFI_SHELL_GET_ENV) (
 IN CONST CHAR16 *Name
);

Parameters
Name

A pointer to the environment variable name. If Name is NULL, then the
function
will return all of the defined shell environment variables. In the case
where multiple environment variables are being returned, each variable
will be terminated by a NULL,and the list will be terminated by a double
NULL.

Description

This function returns the current value of the specified environment variable. If
no variable name was specified, then all of the known variables will be
returned.

Status Codes Returned
≠NULL The environment variable’s value. The returned pointer does not

need to be freed by the caller.

NULL The environment variable doesn’t exist.

30

EFI_SHELL_PROTOCOL.GetEnvEx()

Summary

Gets the environment variable and Attributes, or list of environment variables. Can be
used instead of GetEnv().

Prototype
typedef
CONST CHAR16 *
(EFIAPI *EFI_SHELL_GET_ENV_EX) (
IN CONST CHAR16 *Name,
OUT UINT32 *Attributes OPTIONAL
);

Parameters
Name

A pointer to the environment variable name. If Name is NULL, then the function
will return all of the defined shell environment variables. In the case where
multiple environment variables are being returned, each variable will be
terminated by a NULL, and the list will be terminated by a double NULL.

Attributes
If not NULL, a pointer to the returned attributes bitmask for the environment
variable. In the case where Name is NULL, and multiple environment variables are
being returned, Attributes is undefined.

Description
This function returns the current value of the specified environment variable and
the Attributes. If no variable name was specified, then all of the known variables
will be returned.

Status Codes Returned
≠NULL The environment variable’s value. The returned pointer does not

need to be freed by the caller.

NULL The environment variable doesn’t exist.

31

EFI_SHELL_PROTOCOL.GetFileInfo()

Summary

Gets the file information from an open file handle.

Prototype
typedef
EFI_FILE_INFO *
(EFIAPI *EFI_SHELL_GET_FILE_INFO)(
 IN SHELL_FILE_HANDLE FileHandle
);

Parameters
FileHandle

A file handle

Description

This function allocates a buffer to store the file’s information. It’s the caller’s
responsibility to free the buffer.

Returns

≠NULL A pointer to a buffer with file information.

NULL Cannot get the file info.

32

EFI_SHELL_PROTOCOL.GetFilePathFromDevicePath()

Summary

Converts a device path to a file system-style path.

Prototype
typedef
CHAR16 *
(EFIAPI *EFI_SHELL_GET_FILE_PATH_FROM_DEVICE_PATH) (
 IN CONST EFI_DEVICE_PATH_PROTOCOL *Path
);

Parameters
Path

The pointer to the device path.

Description

This function converts a device path to a file system path by replacing part, or
all, of the device path with the file-system mapping. If there are more than
one application file system mappings, the one that most closely matches Path
will be used.

Returned Value
The pointer of the null-terminated file path. The path is callee-allocated and should be
freed by the caller.

33

EFI_SHELL_PROTOCOL.GetFilePosition()

Summary

Gets a file’s current position

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_GET_FILE_POSITION)(
 IN SHELL_FILE_HANDLE FileHandle,
 OUT UINT64 *Position
);

Parameters
FileHandle

The file handle on which to get the current position.

Position

Byte position from the start of the file

Description

This function returns the current file position for the file handle. For
directories, the current file position has no meaning outside of the file system
driver and as such, the operation is not supported.

Status Codes Returns
EFI_SUCCESS Data was accessed.

EFI_UNSUPPORTED The request is not valid on open directories.

34

EFI_SHELL_PROTOCOL.GetFileSize()

Summary

Gets the size of a file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_GET_FILE_SIZE)(
 IN SHELL_FILE_HANDLE FileHandle,
 OUT UINT64 *Size
);

Parameters
FileHandle

The handle of the file.

Size

The size of this file.

Description

This function returns the size of the file specified by FileHandle.

Status Codes Returned
EFI_SUCCESS Get the file’s size.

EFI_DEVICE_ERROR Can’t access the file.

35

EFI_SHELL_PROTOCOL.GetGuidFromName()

Summary

Get the GUID value from a human readable name.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_GET_GUID_FROM_NAME)(
 IN CONST CHAR16 *GuidName,
 OUT EFI_GUID *Guid
);

Parameters
GuidName

A pointer to the localized name for the GUID being queried.

Guid

A pointer to the GUID structure to be filled in.

Description

If GuidName is a known GUID name, then update Guid to have the correct value for
that GUID.

This function is only available when the major and minor versions in the
EfiShellProtocol are greater than or equal to 2 and 1, respectively.

Status Codes Returned
EFI_SUCCESS The operation was successful.

EFI_INVALID_PARAMETER Guid was NULL.

EFI_INVALID_PARAMETER GuidName was NULL.

EFI_NOT_FOUND GuidName is not a known GUID Name.

36

EFI_SHELL_PROTOCOL.GetGuidName()

Summary

Get the human readable name for a GUID from the value.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_GET_GUID_NAME)(
 IN CONST EFI_GUID *Guid,
 OUT CONST CHAR16 **GuidName
);

Parameters
Guid

A pointer to the GUID being queried.

GuidName

A pointer to a pointer the localized to name for the GUID being requested.

Description

If Guid is assigned a name, then update *GuidName to point to the name. The callee
should not modify the value.

This function is only available when the major and minor versions in the
EfiShellProtocol are greater than or equal to 2 and 1, respectively.

Status Codes Returned
EFI_SUCCESS The operation was successful.

EFI_INVALID_PARAMETER Guid was NULL.

EFI_INVALID_PARAMETER GuidName was NULL.

EFI_NOT_FOUND Guid is not assigned a name.

37

EFI_SHELL_PROTOCOL.GetHelpText()

Summary

Return help information about a specific command.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_GET_HELP_TEXT) (
 IN CONST CHAR16 *Command,
 IN CONST CHAR16 *Sections,
 OUT CHAR16 **HelpText
);

Parameters
Command

Points to the null-terminated UEFI Shell command name.

Sections

Points to the null-terminated comma-delimited section names to return.
If NULL, then all sections will be returned.

HelpText

On return, points to a callee-allocated buffer containing all specified help
text.

Description

This function returns the help information for the specified command. The help
text can be internal to the shell or can be from a UEFI Shell manual page, as
described in Appendix B

If Sections is specified, then each section name listed will be compared in a
case-sensitive manner, to the section names described in Appendix B. If the
section exists, it will be appended to the returned help text. If the section does
not exist, no information will be returned. If Sections is NULL, then all help
text information available will be returned.

Status Codes Returned
EFI_SUCCESS The help text was returned.

EFI_OUT_OF_RESOURCES The necessary buffer could not be allocated to hold
the returned help text.

EFI_INVALID_PARAMETER HelpText is NULL

EFI_NOT_FOUND There is no help text available for Command.

38

EFI_SHELL_PROTOCOL.GetMapFromDevicePath()

Summary

Gets one or more mapping entries that most closely matches the device path.

Prototype
typedef
CONST CHAR16 *
(EFIAPI *EFI_SHELL_GET_MAP_FROM_DEVICE_PATH) (
 IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);

Parameters
DevicePath

On entry, points to a device path pointer. On exit, updates the pointer to
point to the portion of the device path after the mapping.

Description

This function gets the mapping which corresponds to the device path
*DevicePath. If there is no exact match, then the mapping which most closely
matches *DevicePath is returned, and *DevicePath is updated to point to the
remaining portion of the device path. If there is an exact match, the mapping
is returned and *DevicePath points to the end-of-device-path node.

Upon discovery of a match, the consistent mapping name will be returned as
the first element in the return string. If there are additional mapping names
associated with the *DevicePath the return string will have added to it a “;”
delimeter followed by each mapping name. For example, a three name
mapping return string might look like this “hd5a1b1e;C:;Fred” without the
quotes. This includes the consistent name of “hd5a1b1e” and the two alternate
names of “C:” and “Fred”. The return string will be NULL terminated.

Returned Value

!NULL
Pointer to null-terminated mapping. The buffer is callee-allocated and
should be freed by the caller.

NULL
No mapping was found.

39

EFI_SHELL_PROTOCOL.GetPageBreak()

Summary

Gets the enable status of the page break output mode.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_SHELL_GET_PAGE_BREAK) (
 VOID
);

Parameters

None

Description

User can use this function to determine current page break mode.

Status Codes Returned
TRUE The page break output mode is enabled

FALSE The page break output mode is disabled

40

EFI_SHELL_PROTOCOL.IsRootShell()

Summary

Judges whether the active shell is the root shell.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_SHELL_IS_ROOT_SHELL) (
 VOID
);

Parameters

None

Description

This function makes the user to know that whether the active Shell is the root
shell.

Status Codes Returned
TRUE The active Shell is the root Shell.

FALSE The active Shell is NOT the root Shell.

41

EFI_SHELL_PROTOCOL.OpenFileByName()

Summary

Opens a file or a directory by file name.

Prototype
typdef
EFI_STATUS
(EFIAPI *EFI_SHELL_OPEN_FILE_BY_NAME) (
 IN CONST CHAR16 *FileName,
 OUT SHELL_FILE_HANDLE *FileHandle,
 IN UINT64 OpenMode
);

Parameters
FileName

Points to the null-terminated UCS-2 encoded file name.

FileHandle

On return, points to the file handle.

OpenMode

File open mode. Either EFI_FILE_MODE_READ or EFI_FILE_MODE_WRITE from
section 12.4 of the UEFI Specification.

Related Definitions
typedef VOID *SHELL_FILE_HANDLE;

Description

This function opens the specified file in the specified OpenMode and returns a file
handle.

If the file name begins with >v, then the file handle which is returned refers to
the shell environment variable with the specified name. If the shell
environment variable exists, is non-volatile and the OpenMode indicates
EFI_FILE_MODE_WRITE, then EFI_INVALID_PARAMETER is returned.

If the file name is >i, then the file handle which is returned refers to the
standard input. If the OpenMode indicates EFI_FILE_MODE_WRITE, then
EFI_INVALID_PARAMETER is returned.

If the file name is >o, then the file handle which is returned refers to the
standard output. If the OpenMode indicates EFI_FILE_MODE_READ, then
EFI_INVALID_PARAMETER is returned.

If the file name is >e, then the file handle which is returned refers to the
standard error. If the OpenMode indicates EFI_FILE_MODE_READ, then
EFI_INVALID_PARAMETER is returned.

42

If the file name is case insensitive NUL or NULL, then the file handle that is
returned refers to the standard NUL/NULL file. If the OpenMode indicates
EFI_FILE_MODE_READ, then EFI_INVALID_PARAMETER is returned.

If return EFI_SUCCESS, the FileHandle is the opened file’s handle, else, the
FileHandle is NULL.

Status Codes Returned
EFI_SUCCESS The file was opened. FileHandle has the opened file’s

handle.

EFI_INVALID_PARAMETER One of the parameters has an invalid value. FileHandle
is NULL.

EFI_UNSUPPORTED Could not open the file path. FileHandle is NULL.

EFI_NOT_FOUND The specified file could not be found on the device or the
file system could not be found on the device. FileHandle
is NULL.

EFI_NO_MEDIA The device has no medium. FileHandle is NULL.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is
no longer supported. FileHandle is NULL.

EFI_DEVICE_ERROR The device reported an error or can’t get the file path
according the FileName. FileHandle is NULL.

EFI_VOLUME_CORRUPTED The file system structures are corrupted. FileHandle is
NULL.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for
write when the media is write-protected. FileHandle is
NULL.

EFI_ACCESS_DENIED The service denied access to the file. FileHandle is
NULL.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.
FileHandle is NULL.

EFI_VOLUME_FULL The volume is full. FileHandle is NULL.

43

EFI_SHELL_PROTOCOL.OpenFileList()

Summary

Opens the files that match the path specified.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_OPEN_FILE_LIST) (
 IN CHAR16 *Path,
 IN UINT64 OpenMode,
 OUT EFI_SHELL_FILE_INFO **FileList
);

Parameters
Path

A pointer to the path string.

OpenMode

Specifies the mode used to open each file, EFI_FILE_MODE_READ or
EFI_FILE_MODE_WRITE.

FileList

Points to the start of a list of files opened.

Description

This function opens all of the files specified by Path. Wildcards are processed
according to the rules specified in 3.7.1. Each matching file has an
EFI_SHELL_FILE_INFO structure created in a linked list.

Related Definitions
typedef struct _EFI_LIST_ENTRY {
 struct _EFI_LIST_ENTRY *Flink;
 struct _EFI_LIST_ENTRY *Blink;
} EFI_LIST_ENTRY;

typedef struct {
 EFI_LIST_ENTRY Link;
 EFI_STATUS Status;
 CONST CHAR16 *FullName;
 CONST CHAR16 *FileName
 SHELL_FILE_HANDLE Handle;
 EFI_FILE_INFO *Info;
} EFI_SHELL_FILE_INFO;

Link

Points to the next and previous entries in the file list. If NULL, then no
more files.

Status

The status returned when calling OpenFile() for the entry in the file list.

44

FullName

Specifies the full name of the file, including the path.

Handle

The file handle of the file after it was opened.

Info

The file information for the opened file.

Status Codes Returned

EFI_SUCCESS
Create the file list successfully.

Others Can’t create the file list.

45

EFI_SHELL_PROTOCOL.OpenRoot()

Summary

Opens the root directory of a device.

Prototype
typedef
EFI_STATUS
(EFIAPI EFI_SHELL_OPEN_ROOT)(
 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
 OUT SHELL_FILE_HANDLE *FileHandle
);

Parameters
DevicePath

Points to the device path corresponding to the device where the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is installed.

FileHandle

On exit, points to the file handle corresponding to the root directory on
the device.

Description

This function opens the root directory of a device and returns a file handle to
it.

Status Codes Returned
EFI_SUCCESS Root opened successfully.

EFI_NOT_FOUND EFI_SIMPLE_FILE_SYSTEM could not be found or the
root directory could not be opened.

EFI_VOLUME_CORRUPTED The data structures in the volume were corrupted.

EFI_DEVICE_ERROR The device had an error

46

EFI_SHELL_PROTOCOL.OpenRootByHandle()

Summary

Opens the root directory of a device on a handle

Prototype
typedef
EFI_STATUS
(EFIAPI EFI_SHELL_OPEN_ROOT_BY_HANDLE)(
 IN EFI_HANDLE DeviceHandle,
 OUT SHELL_FILE_HANDLE *FileHandle
);

Parameters
DeviceHandle

The handle of the device that contains the volume.

FileHandle

On exit, points to the file handle corresponding to the root directory on
the device.

Description

This function opens the root directory of a device and returns a file handle to
it.

Status Codes Returned
EFI_SUCCESS Root opened successfully.

EFI_NOT_FOUND EFI_SIMPLE_FILE_SYSTEM could not be found or the root
directory could not be opened.

EFI_VOLUME_CORRUPTED The data structures in the volume were corrupted.

EFI_DEVICE_ERROR The device had an error

47

EFI_SHELL_PROTOCOL.ReadFile()

Summary

Reads data from the file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_READ_FILE) (
 IN SHELL_FILE_HANDLE FileHandle,
 IN OUT UINTN *ReadSize,
 OUT VOID *Buffer
);

Parameters
FileHandle

The opened file handle for read

ReadSize

On input, the size of Buffer, in bytes. On output, the amount of data
read.

Buffer

The buffer in which data is read.

Description

If FileHandle is not a directory, the function reads the requested number of
bytes from the file at the file’s current position and returns them in Buffer. If
the read goes beyond the end of the file, the read length is truncated to the
end of the file. The file’s current position is increased by the number of bytes
returned.

If FileHandle is a directory, then an error is returned.

Status Codes Returned
EFI_SUCCESS Data was read.

EFI_NO_MEDIA The device has no media

EFI_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED The file system structures are corrupted

EFI_BUFFER_TO_SMALL Buffer is too small. ReadSize contains required size

48

EFI_SHELL_PROTOCOL.RegisterGuidName()

Summary

Register a GUID and a localized human readable name for it.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_REGISTER_GUID_NAME)(
 IN CONST EFI_GUID *Guid,
 IN CONST CHAR16 *GuidName
);

Parameters
Guid

A pointer to the GUID being registered.

GuidName

A pointer to the localized name for the GUID being registered.

Description

If Guid is not assigned a name, then assign GuidName to Guid. This list of GUID names
must be used whenever a shell command outputs GUID information.

This function is only available when the major and minor versions in the
EfiShellProtocol are greater than or equal to 2 and 1, respectively.

Status Codes Returned
EFI_SUCCESS The operation was successful.

EFI_INVALID_PARAMETER Guid was NULL.
EFI_INVALID_PARAMETER GuidName was NULL.

EFI_ACCESS_DENIED Guid already is assigned a name.

49

EFI_SHELL_PROTOCOL.RemoveDupInFileList()

Summary

Deletes the duplicate file names files in the given file list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_REMOVE_DUP_IN_FILE_LIST) (
 IN EFI_SHELL_FILE_INFO **FileList
);

Parameters
FileList

A pointer to the first entry in the file list.

Description

This function deletes the reduplicate files in the given file list.

Status Codes Returned
EFI_SUCCESS Always success.

50

EFI_SHELL_PROTOCOL.SetAlias()

Summary

Changes a shell command alias.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_SET_ALIAS)(
 IN CONST CHAR16 *Command,
 IN CONST CHAR16 *Alias,
 IN BOOLEAN Replace
 IN BOOLEAN Volatile
);

Parameters
Command

Points to the null-terminated shell command or existing alias.

Alias

Points to the null-terminated alias for the shell command. If this is NULL,
and Command refers to an alias, that alias will be deleted.

Replace

If TRUE and the alias already exists, then the existing alias will be
replaced. If FALSE and the alias already exists, then the existing alias is
unchanged and EFI_ACCESS_DENIED is returned.

Volatile

If TRUE, the Alias being set will be stored in a volatile fashion. If
FALSE, the Alias will be stored in a nonvolatile fashion.

Description

This function creates an alias for a shell command.

This function creates an additional name for an internal UEFI Shell command
or a UEFI Shell application. Aliases can be used to provide alternative
commonly used names for existing shell commands or even create shortcuts.
An alias is a C-style identifier and may refer to an internal command or else
the directory and file name of a UEFI shell application.

Some aliases are built-in (such as ls) and may not be modified. If a built-in
alias is specified by Alias, then there are no changes and EFI_ACCESS_DENIED
is returned.

If there is already an existing alias with the name Alias and Replace is TRUE,
then the existing alias is updated to refer to the new Command. If there is an
existing alias with the name Alias and Replace is FALSE, then there are no
changes and EFI_ACCESS_DENIED is returned.

51

If Command specifies an existing built-in alias and Alias is NULL, then
EFI_ACCESS_DENIED is returned. If Command specifies an existing alias and
Alias is NULL and Replace is TRUE, then the alias is deleted. If Command
specifies an existing alias and Alias is not NULL, then EFI_ACCESS_IS_DENIED
is returned.

Return Value
EFI_SUCCESS Alias created or deleted successfully.

EFI_ACCESS_DENIED The alias is a built-in alias or the alias already existed and
Replace had been set to FALSE.

52

EFI_SHELL_PROTOCOL.SetCurDir()

Summary

Changes the current directory on the specified device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_SET_CUR_DIR) (
 IN CONST CHAR16 *FileSystem OPTIONAL,
 IN CONST CHAR16 *Dir
);

Parameters
FileSystem

A pointer to the file system’s mapped name. If NULL, then the current
working directory is changed.

Dir

Points to the null-terminated directory on the device specified by
FileSystem.

Description

If the FileSystem is NULL, and the directory Dir does not contain a file system’s
mapped name, this function changes the current working directory. If
FileSystem is NULL and the directory Dir contains a mapped name, then the
current file system and the current directory on that file system are changed.

If FileSystem is not NULL, and Dir is NULL, then this changes the current
working file system.

If FileSystem is not NULL and Dir is not NULL, then this function changes the
current directory on the specified file system.

If the current working directory or the current working file system is changed
then the %cwd% environment variable will be updated. For more information,
see “Current Directory” , section3.5.

Status Codes Returned
EFI_SUCCESS The command completed successfully.

EFI_NOT_FOUND The directory does not exist.

53

EFI_SHELL_PROTOCOL.SetEnv()

Summary

Sets the environment variable.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_SET_ENV) (
 IN CONST CHAR16 *Name,
 IN CONST CHAR16 *Value,
 IN BOOLEAN Volatile
);

Parameters
Name

Points to the null-terminated environment variable name.

Value

Points to the null-terminated environment variable value. If the value is
an empty string then the environment variable is deleted.

Volatile

Indicates whether the variable is non-volatile (FALSE) or volatile (TRUE).

Description

This function changes the current value of the specified environment variable.
If the environment variable exists and the Value is an empty string, then the
environment variable is deleted. If the environment variable exists and the
Value is not an empty string, then the value of the environment variable is
changed. If the environment variable does not exist and the Value is an empty
string, there is no action. If the environment variable does not exist and the
Value is a non-empty string, then the environment variable is created and
assigned the specified value.

For a description of volatile and non-volatile environment variables, see3.6.1.

Status Codes Returned
EFI_SUCCESS The environment variable was successfully updated.

54

EFI_SHELL_PROTOCOL.SetFileInfo()

Summary

 Sets the file information to an opened file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_SET_FILE_INFO)(
 IN SHELL_FILE_HANDLE FileHandle,
 IN CONST EFI_FILE_INFO *FileInfo
);

Parameters
FileHandle

A file handle

FileInfo

Points to new file information.

Description

This function changes file information.

Status Codes Returned
EFI_SUCCESS The information was set.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write-protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

55

EFI_SHELL_PROTOCOL.SetFilePosition()

Summary

Sets a file’s current position

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_SET_FILE_POSITION)(
 IN SHELL_FILE_HANDLE FileHandle,
 IN UINT64 Position
);

Parameters
FileHandle

The file handle on which requested position will be set.

Position

Byte position from the start of the file

Description

This function sets the current file position for the handle to the position
supplied. With the exception of seeking to position 0xFFFFFFFFFFFFFFFF, only
absolute positioning is supported, and seeking past the end of the file is
allowed (a subsequent write would grow the file). Seeking to position
0xFFFFFFFFFFFFFFFF causes the current position to be set to the end of the file.

Status Codes Returned
EFI_SUCCESS Data was written.

EFI_UNSUPPORTED The seek request for nonzero is not valid on
open directories.

56

EFI_SHELL_PROTOCOL.SetMap()

Summary

Changes a shell device mapping.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL_SET_MAP)(
 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN CONST CHAR16 *Mapping
);

Parameters
DevicePath

Points to the device path. If this is NULL and Mapping points to a valid
mapping, then the mapping will be deleted.

Mapping

Points to the null-terminated mapping for the device path.

Description

This function creates a mapping for a device path.

Return Value
EFI_SUCCESS Mapping created or deleted successfully.

EFI_NO_MAPPING There is no handle that corresponds exactly to DevicePath.
See the boot service function LocateDevicePath().

EFI_ACCESS_DENIED The mapping is a built-in alias.

57

EFI_SHELL_PROTOCOL.WriteFile()

Summary

Writes data to the file.

Prototype
typedef
EFI_STATUS
(EFIAPI EFI_SHELL_WRITE_FILE)(
 IN SHELL_FILE_HANDLE FileHandle,
 IN OUT UINTN *BufferSize,
 OUT VOID *Buffer
);

Parameters
FileHandle

The opened file handle for writing.

BufferSize

On input, size of Buffer.

Buffer

The buffer in which data to write.

Description

This function writes the specified number of bytes to the file at the current file
position. The current file position is advanced the actual number of bytes
written, which is returned in BufferSize. Partial writes only occur when there
has been a data error during the write attempt (such as “volume space full”).
The file automatically grows to hold the data, if required.

Direct writes to opened directories are not supported.

Status Codes Returned
EFI_SUCCESS Data was written.

EFI_UNSUPPORTED Writes to open directory are not supported

EFI_NO_MEDIA The device has no media

EFI_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED The file system structures are corrupted

EFI_WRITE_PROTECTED The device is write-protected

EFI_ACCESS_DENIED The file was open for read only

EFI_VOLUME_FULL The volume is full

58

2.3 EFI_SHELL_PARAMETERS_PROTOCOL

EFI_SHELL_PARAMETERS_PROTOCOL

Summary

Shell application’s arguments.

GUID
#define EFI_SHELL_PARAMETERS_PROTOCOL_GUID \
 { 0x752f3136, 0x4e16, 0x4fdc, \
 { 0xa2, 0x2a, 0xe5, 0xf4, 0x68, 0x12, 0xf4, 0xca } };

Prototype
typedef struct _EFI_SHELL_PARAMETERS_PROTOCOL {
 CHAR16 **Argv;
 UINTN Argc;
 SHELL_FILE_HANDLE StdIn;
 SHELL_FILE_HANDLE StdOut;
 SHELL_FILE_HANDLE StdErr;
} EFI_SHELL_PARAMETERS_PROTOCOL;

Parameters
Argv

Points to an Argc-element array of points to null-terminated strings
containing the command-line parameters. The first entry in the array is
always the full file path of the executable. Any quotation marks that were
used to preserve whitespace have been removed.

Argc

The number of elements in the Argv array.

StdIn

The file handle for the standard input for this executable. This may be
different from the ConInHandle in the EFI_SYSTEM_TABLE.

StdOut

The file handle for the standard output for this executable. This may be
different from the ConOutHandle in the EFI_SYSTEM_TABLE.

StdErr

The file handle for the standard error output for this executable. This may
be different from the StdErrHandle in the EFI_SYSTEM_TABLE.

Description

An instance of this protocol is installed on each shell application’s image
handle prior to calling StartImage(). It describes all of the command-line
parameters passed on the command line, as well as the standard file handles
for standard input, output and error output.

2.4 EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL

EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL

Summary

Advertise an external shell command.

GUID
#define EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL_GUID \
 { 0x3c7200e9, 0x5f, 0x4ea4, \
 { 0x87, 0xde, 0xa3, 0xdf, 0xac, 0x8a, 0x27, 0xc3 } };

Prototype
typedef struct _EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL {
 CONST CHAR16 *CommandName;
 SHELL_COMMAND_HANDLER Handler;
 SHELL_COMMAND_GETHELP GetHelp;
} EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL;

Parameters
CommandName

The name of the command. This is the string entered on the console to invoke the
command.

Handler

The handler function to call when the UEFI Shell encounters the CommandName.

GetHelp

The function to call to get the formatted help for this command. The format must
match that in Appendix A.

60

EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL.Handler()

Summary

The handler function to call when the UEFI Shell encounters the CommandName.

Prototype
typedef
EFI_STATUS
(EFIAPI * SHELL_COMMAND_HANDLER)(
 IN EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL *This,
 IN EFI_SYSTEM_TABLE *SystemTable,
 IN EFI_SHELL_PARAMETERS_PROTOCOL *ShellParameters,
 IN EFI_SHELL_PROTOCOL *Shell
);

Parameters
This

Pointer to the protocol interface structure.

SystemTable

Pointer to the system table to use for the entirety of the time in the function. Any
previously saved SystemTable must be ignored.

ShellParameters

Pointer to the EfiShellParametersProtocol to use for parsing the Argc and Argv for the
command. This is how the command gets the command line.

Shell

Pointer to the EfiShellProtocol to use for interacting with the UEFI Shell.

Description

This function is called by the UEFI Shell when the CommandName from the protocol
interface structure was entered on a command line. The behavior of this function
should be described in the help text (see
EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL.GetHelp()).

Status Codes Returned
EFI_SUCCESS The operation was successful.

Other Any valid EFI_XXXXX error described in the UEFI specification.

61

EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL.GetHelp()

Summary

The function to call to get the formatted help for this command. The format must match
that in Appendix A.

Prototype
typedef
CHAR16*
(EFIAPI * SHELL_COMMAND_GETHELP)(
 IN EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL *This,
 IN CONST CHAR8 *Language
);

Parameters
This

Pointer to the protocol interface structure.

Lang

A pointer to the language specified for the help text, in the same format as described
in the UEFI specification, Appendix M

Description

This function will return the help text for the command associated with This instance of the
EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL. The memory must be allocated from gBS-
>AllocatePool, and the caller is responsible for freeing the memory.

Value Returned
NULL An error occurred retrieving the help text.

≠NULL A pointer to the help text.

62

63

3
UEFI Shell Features

The UEFI Shell supports an interactive command-line interface, scripting, and a
standard set of commands.

All the commands can be invoked by entering the name of the command at the
command prompt. For external commands, they must reside in a file system. So,
to run them users need to have at least one mapped file system and put those
external commands under this file system.

The active drive may be changed by entering the mapped name followed by a ‘:’ at
the command prompt.

3.1 Levels Of Support
This section describes the different standard levels of shell support. The different
standard levels are designed to provide different feature/size tradeoffs for different
uses. The levels mentioned here are referenced throughout this specification

Table 1 Support Levels
Level Name Execute()/

Scripting/
startup.nsh

PATH ALIAS Inter-
active

Commands

0 Minimal No No No No None

1 Scripting Yes Yes No No for, endfor, goto,
if, else, endif,
shift, exit, stall

2 Basic Yes Yes Yes No attrib, cd, cp,
date*, time*, del,
load, ls, map,
mkdir, mv, rm,
reset, set,
timezone*, touch,
vol

3 Inter-
active

Yes Yes Yes Yes alias, date, echo,
help, pause, time,
type, ver, cls,
timezone

*Non-interactive forms only

Execute()/Scripting/startup.nsh support indicates whether the Execute() function
is supported by the EFI_SHELL_PROTOCOL, whether or not scripts are supported
and whether the default startup script startup.nsh is supported.

64

PATH support determines whether the PATH environment variable will be used to
determine the location of executables.

ALIAS support determines whether the ALIAS feature will be used to determine
alternate names for shell commands.

Interactive determines whether or not an interactive session can be started.

For more information on scripting, see UEFI Shell Script (Chapter 4).

For more information on processing of the startup.nsh file, please see UEFI Shell
Initialization (section 0).

The shell must remain compliant with its advertised uefishellsupport command
profile. There can be cases where a shell implementation may not want to expose
certain commands to all users. If a shell implementation wants to make a
particular command inaccessible to a particular user, they must properly interpret
the command request and return an appropriate return code, such as
SHELL_SECURITY_VIOLATION.

3.2 Invocation
The UEFI Shell is a UEFI application. The UEFI Shell takes command-line options
that are null-terminated UCS-2 encoded strings. The syntax is:
shell.efi [ShellOpt-options] [options] [file-name [file-name-options]]

The command-line options are separated by the space or tab character. The
options are processed left-to-right retrieved from the LoadOptions field of the
EFI_LOADED_IMAGE_PROTOCOL.

The following table describes the standard command-line options.

Table 2 Standard Command Line Options
Option Description

file-name The name of a UEFI shell application or script to be executed
after initialization is complete. By default, if file-name is
specified, then -nostartup is implied. Scripts are not supported
by level 0.

file-name-
options

The command-line options that are passed to file-name when it
is invoked.

options Options (from Table 3 below) which control the initialization
behavior of the shell.

ShellOpt-options Options (from Table 3 below) which control the
initialization behavior of the shell. These options are
read from the EFI global variable “ShellOpt” and are
processed before options or file-name.

65

Table 3 UEFI Shell Invocation Options
-nostartup The default startup script startup.nsh will not be

executed.

-noconsoleout Console output from the shell applications will not be
displayed. This has no effect for UEFI Shells that do
not support an interactive mode.

-noconsolein Console input will not be accepted from the user. This
has no effect for UEFI Shells that do not support an
interactive mode.

-delay [n] Specifies the integer number of seconds the shell will
delay prior to the execution of startup.nsh. Ignored
for shell level 0 or if –nostartup is specified. If n is
not specified, the default is 5 seconds. If 0 is
specified, then there will be no delay. If –nointerrupt
is specified, then there will be no delay.

-nointerrupt Execution interruption (as described in Execution
Interrupt Support) is not allowed. This has no effect
for UEFI Shells that do not support an interactive
mode.

-nomap The default mappings will not be displayed.

-noversion The version information will not be displayed.

-startup The default startup script startup.nsh will be
executed. Requires shell support level 1 or higher.
This overrides the default behavior when file-name is
specified.

-nonesting Specifies that the EFI_SHELL_PROTOCOL.Execute() API
nesting of a new Shell instance is optional and dependent on
the “nonesting” shell environment variable. If the caller of the
shell required nesting, then it will always nest; if this
parameter is not present, then the environment variable is set
to FALSE and is read only, otherwise the parameter is present
and read-write.

-exit After running the command line specified when launched, the
UEFI Shell must immediately exit.

If the UEFI Shell does not support scripting and file-name specifies a UEFI shell
script file, then the UEFI Shell will exit with a status code of
STATUS_UNSUPPORTED.

3.3 Initialization
This section describes the steps taken during shell initialization. The following steps
are not exhaustive, but they are executed in order:

1. The command-line options of the shell itself are processed.

2. Default file system and block identifier (FSx:/BLKx:) mapped names are
created. Consistent mapping names are created, and the current
directory for each mapped name is set to the root.

66

3. The default alias settings are read from non-volatile storage. This is only
supported in shell level 2.

4. The default environment variable settings are read from non-volatile
storage.

5. The profiles are read into the ‘profiles’ environment variable.

6. If the shell supports interactive mode and console output support is
enabled, then the console is cleared.

7. The platform watchdog will be cleared through the UEFI
SetWatchdogTimer() API to avoid inadvertent platform resets
during long operations within the UEFI Shell environment.

8. If the shell supports interactive mode and console output support is
enabled and version support (see –noversion) is enabled, then the
equivalent of ver will be executed.

9. If the shell supports interactive mode and console output support is
enabled and map support is enabled (see –nomap), then the
equivalent of map –terse will be executed.

10. If interactive mode is supported and execution interrupt is supported (see –
nointerrupt) then the shell will wait for the number of seconds
specified by the –delay option.

11. If startup.nsh is supported and enabled (see –startup and –nostartup), the
script will be launched.

12. If a file name was specified among the command-line options, then the
image or script (if supported) is launched.

13. If -exit was specified on the command line, then the UEFI Shell exits.

3.3.1 Finding startup.nsh

When executing startup.nsh, the shell will search for it first in the directory where
the shell itself was launched. If it cannot find the startup.nsh file in that directory
or it was not launched from a file system, it will search the execution path defined
by the environment variable PATH.

3.3.2 Supported Profiles

The UEFI Shell may have support for zero or more profiles, such as those described
in chapter 5 built in to its executable. Additional profiles are described in the file
‘profiles.txt’, located in the same directory as the UEFI Shell executable. The
contents of the file are carriage-return delimited (one profile name per line) and
are read into the UEFI shell environment variable ‘profiles’, where they are
semicolon (‘;’) delimited. Profiles names that begin with ‘UEFI’ are reserved for use
in this specification.

67

3.3.3 Dynamic Profiles

The UEFI Shell must also list the names of any dynamic commands as profiles in the UEFI
shell environment variable ‘profiles’, where they are semicolon (‘;’) delimited.

3.4 Command-Line
The UEFI Shell implements a programming language that provides control over the
execution of individual commands. Command names and keywords in certain
commands are all case insensitive.

The UEFI Shell processes the command-line by

1. If first command-line parameter is a variable, perform substitution on this
variable only.

2. Substitute alias. The UEFI Shell supports specifying aliases for UEFI Shell
commands (both internal and external). The substitution is
performed automatically on the first command-line parameter, and
is not recursive.

3. Substituting variables. The UEFI Shell finds the % character and
substitutes the value of an Environment Variable, Positional
Parameter or Index Parameter based on the characters found after
the % character. See Variables (section, 3.6) for more information.

4. Setting up input and output redirection. Using special characters on the
command-line, the UEFI Shell can get input from file or
environment variable and send output to a file or environment
variable. See Redirection (section 3.4.4) for more information.

5. Breaking up the command-line into arguments. The arguments are
delimited by non-quoted whitespace characters.

6. Launching the shell command , dynamic shell command, UEFI Application,
or UEFI Shell script.

3.4.1 Special Characters

When the shell scans its input, it always treats certain characters (#, >, <, |, %, *, ?,
^, “, space, [,] and newline) specially. The usage of these characters is briefly
listed here:

68

Table 4 Special Characters in Shell
Character Description

newline Ends a command line.

space Ends an argument, if it is not in a quotation.

Starts a comment in a script file or on the command-line.

: Starts a label in a script file.

> Used for output redirection.

< Used for input redirection

| Used for pipe command support.

% Used to delimit a variable or an argument.

” Used to delimit a quotation.

^ Prevents the next character from being interpreted as
having special meaning. Can be used inside quoted strings.

*, ?, [,] Wildcards to specify multiple similar file names.

3.4.2 Escape Characters

The escaping character ^ is used to prevent interpreting the character that
immediately follows it as a special character.

3.4.3 Quoting

The UEFI Shell uses quotation marks for argument grouping. Normally, the UEFI
Shell will interpret a one or more whitespace character as an argument delimiter.
However, if the whitespace character appears between double quotation marks, it
will be ignored for the purposes of argument delimiting. Empty strings are treated
as valid command line arguments. Substitution of environment variables and
positional parameters still occurs within quotation marks.

Double-quotation marks that surround arguments are stripped before they are
passed to the entry point of a shell application. For more information, see the Argv
member of the EFI_SHELL_PARAMETERS_PROTOCOL.

Double-quotation marks that surround arguments are not stripped in positional
parameters (see Positional Parameters, section 3.6.2) or on the copy of the
command line passed in the LoadOptions member of the EFI_LOADED_IMAGE_PROTOCOL
passed to shell applications.

If there is an unbalanced double-quotation (no ending double-quotation mark), it
will be considered an invalid argument error, and command-line processing stops.

To include a double-quotation mark inside of a quoted string, use ^”. To include a
^ character inside of a quoted string, use ^^.

69

For information about how the quotes are treated in each of the options, see “Shell
Commands”, chapter 5).

3.4.4 Redirection

3.4.4.1 Output Redirection

Output of EFI Shell commands can be redirected to files. For example:
Command > ucs2_output_file_pathname
Command >a ascii_output_file_pathname
Command 1> ucs-2_output_file_pathname
Command 1>a ascii_output_file_pathname
Command 2> ucs-2_output_file_pathname
Command 2>a ascii_output_file_pathname
Command >> ucs-2_output_file_pathname
Command >>a ascii_output_file_pathname
Command 1>> ucs-2_output_file_pathname
Command 1>>a ascii_output_file_pathname

Table 5 shows the special character combinations that are used to denote output
redirection operations:

70

Table 5 Output Redirection Syntax
Character
Sequence

Description

> Redirect standard output to a UCS-2 encode file.

>a Redirect standard output to an ASCII file.

1> Redirect standard output to a UCS-2 encoded file.

1>a Redirect standard output to an ASCII file.

2> Redirect standard error to a UCS-2 encoded file.

2>a Redirect standard error to an ASCII file.

>v Redirect standard output to an environment variable,
encoded as UCS-2.

1>v Redirect standard output to an environment variable,
encoded as UCS-2.

2>v Redirect standard error to an environment variable,
encoded as UCS-2.

>> Redirect standard output appended to a UCS-2 encoded
file.

>>a Redirect standard output appended to an ASCII file.

1>> Redirect standard output appended to a UCS-2 encoded
file.

1>>a Redirect standard output appended to an ASCII file.

>>v Append standard output to an environment variable,
encoded as UCS2.

1>>v Append standard output to an environment variable,
encoded as UCS2.

2>>v Append standard error to an environment variable,
encoded as UCS2.

2>> Append standard error to a UCS2 file.

The UEFI Shell will redirect standard output to a single file or variable and standard
error to a single file or variable. Redirecting both standard output and standard
error to different files or variables is allowed, but not to the same file or variable.
Redirecting standard output to more than one file or variable on the same
command is not supported. Similarly, redirecting to multiple files or variables is not
supported for standard error either.

When redirecting output to an environment variable, if a new environment variable
will be created, then it will be volatile. If the environment variable already exists
and is non-volatile, an error will be generated.

All output to UCS-2 encoded files will be prefixed with the Unicode Byte Ordering
Character (0xFFFE) if (a) there is at least one other character output and (b) that
character is not the Unicode Byte Ordering Character.

71

Case insensitive “NUL” and “NULL” are used as special output file names. When “NUL”
or “NULL” are used, the output will not be written into a file. Instead, they are
discarded silently.

3.4.4.2 Input Redirection

Contents from an existing file or variable can be used as standard input to a UEFI
shell command. Any commands coming from an ASCII file will be automatically be
converted to the equivalent UCS-2 encoding and passed to the UEFI shell
command.

When redirecting input from an environment variable, the environment variable
must already exist. If it does not, an error will be generated. The shell will ensure
that the first character read from an input redirected environment variable will
contain the Unicode Byte Ordering Character (0xFFFE). If the first character in the
input source is not the Unicode Byte Ordering Character, the shell will insert this
character in the output from the input redirected variable. This is done to ensure
that an input redirected variable will be look like a UCS-2 encoded file.

Redirecting input from a non-volatile variable is permitted.

Table 6 Input Redirection Syntax
Character Sequence Description

< Redirect standard input from a Unicode file.

<a Redirect standard input from an ASCII file.

<v Redirect standard input from an environment variable.

3.4.4.3 Pipe Support

By using the | character, a data channel is formed that takes the standard Unicode
output of a file and feeds the data as standard input to another program.

The format for this support is as follows:

UEFI_Shell_Command [options] [| UEFI_Shell_Command [options]]*

Table 7 Input Redirection Syntax
Character
Sequence

Description

| Pipe output of a command to another program in UCS-2
format.

|a Pipe output of a command to another program in ASCII
format.

All output to UCS-2 encoded files will be prefixed with the Unicode Byte Ordering
Character (0xFFFE) if (a) there is at least one other character output and (b) that
character is not the Unicode Byte Ordering Character.

72

3.4.5 Comments

Comments can be added at the end of a command-line. The # character is used to
denote that the # and all characters to the right of it are to be ignored by the shell.
Use ^# to provide # as an actual command-line argument. For example:

Shell> echo "You are ^#1!" # Testing echo
You are #1!

3.5 Current Directory
For each file system, the UEFI Shell maintains a current directory, which is the
default directory used if a directory is not specified in a file path. The UEFI Shell
maintains a current working file system, which is the default file system used if one
is not supplied in a file path. The current directory in the current working file
system is the current working directory.

The current directory for any file system and current working file system can be
retrieved using the GetCurDir() function (see page 34). The current directory for
any file system and the current working file system can be changed using the
SetCurDir() function (see page 57).

The current directory for any file system and current working directory can
retrieved and changed using the cd shell command (see page 95).

The current working directory can be found in the standard %cwd% environment
variable.

3.6 Variables
This section describes the different types of variable substitution that happens on
the command-line for environment variables, positional parameters, index
parameters and aliases.

73

Figure 1 Variable substitution flow chart

3.6.1 Environment Variables

Environment variables are variables that can hold the user specified contents and
can be used on the command line or in scripts. Each environment variable has a
case- sensitive name (a C-style identifier) and a string value. Environment
variables can be either volatile (they will lose their value on reset or power-off) or
non-volatile (they will maintain their value across reset or power-off).

Environment variables can be used on the command-line by using %variable-name%
where variable-name is the environment variable’s name. Variable substitution is
not recursive. Environment variables can also be retrieved by a UEFI Shell
command by using the GetEnvEx() (see page 30) function.

Environment variables can be displayed or changed using the set shell command.
They can also be changed by a UEFI Shell command using the SetEnv() function.

The following table lists the environment variables that have special meaning to the
UEFI Shell:

74

Table 8 Environment Variables with Special Meaning to the UEFI Shell
Variable V/NV

RO/RW

Description

cwd V/RO The current working directory, including
the current working file system. See
“Current Directory” (page 72) for more
information.

lasterror V/RO Last returned error from a UEFI Shell
command, UEFI Application, or batch
script.

path

V/RW Contains the file systems and directories
path that UEFI Shell will search if
necessary. When user wants to launch
an UEFI application, UEFI Shell will first
try to search the current directory if it
exists, and then search the path list
sequentially. If the application is found in
one of the paths, it will stop searching
and execute that application. If the
application is not found in all the paths,
UEFI Shell will report the application is
not found.
In general, paths stored in path variable
looks like:
path:
fs0:\efi\tools;fs0:\efi\boot;fs0:\;fs1:\efi\
tools;fs1:\efi\boot;fs1:\
The minimum default path must contain
“\efi\tools”, “\efi\boot”, and “\” for each
mapped file system. The path variable is
created or refreshed when launching the
UEFI Shell or executing the ‘map –r’
command.
The UEFI Shell supports both absolute
paths and relative paths when launching
commands. Users can set path to any
specified value, but this variable will be
refreshed immediately after the
execution of command ‘map –r’ and it’s
volatile so that the contents will be lost
after reset or power off. Typically users
can append the paths to this variable in
this way:
set –v path %path%;fs0:\test
If the path variable is empty or it does
not exist, UEFI Shell will treat current
directory as the working directory.

profiles V/RO The list of UEFI shell command profiles
supported by the shell. Each profile
name may only contain alphanumeric
characters or the ‘_’ character. Profile
names are semicolon (‘;’) delimited.

75

uefishellsupport V/RO Reflects the current support level
enabled by the currently running shell
environment (see UEFI Shell Levels of
Support, section 3.1. The contents of
the variable will reflect the text-based
numeric version in the form that looks
like:
3
This variable is produced by the shell
itself and is intended as read-only, any
attempt to modify the contents will be
ignored.

uefishellversion V/RO Reflects the revision of the UEFI Shell
specification that the shell supports. The
contents are formatted as text:
2.00

uefiversion V/RO Reflects the revision of the UEFI
specification that the underlying
firmware supports. The contents will look
like this:

2.10

nonesting
V/Depends

If the Shell sets this to FALSE based on
command line parameters, then this
setting is RO. Otherwise this is RW.
This controls whether
EFI_SHELL_PROTOCOL.Execute() API
nests a new shell when it is called.

3.6.2 Positional Parameters

Positional parameters are the first ten arguments (%0-%9) passed from the
command line into a UEFI shell script. The first parameter after the UEFI Shell
script name becomes %1, the second %2, the third %3 , and so on. %0 is the full path
name of the script itself.

The shift command (see page 162) can be used delete the contents of %1 and
shift all of the other positional parameters down one place (%2 -> %1, %3 -> %2,
%4 -> %3, etc.) There is no way for a UEFI Shell script to access the 10th or
greater argument without using shift.

When executing the UEFI Shell script, the %n is replaced by the corresponding
argument on the command-line that invoked the script. If a positional parameter is
referenced in the UEFI Shell script but that parameter was not present, then an
empty string is substituted.

Positional parameters do not have quotation marks removed from them. For more
information on how quotation marks are handled, see “Quoting”

76

3.6.3 Index Parameters

Index parameters are the variables created by the for command (see page 139)
when executing inside of a UEFI Shell script. Each index parameter is in the form of
%x, where x is a letter from ‘A’ to ‘Z’ or ‘a’ to ‘z’. Index parameters are case
sensitive.

When executing the UEFI Shell script, the %x is replaced by the value specified by
the for command. If the specified index parameter has not been defined in the
current UEFI Shell script, the script execution will halt with an error.

3.6.4 Aliases

An alias creates an additional name for an internal UEFI Shell command or a UEFI
Shell application. Aliases can be used to provide alternative commonly used names
for existing shell commands or even create shortcuts. An alias is a C-style identifier
and may refer to an internal command or else the directory and file name of a UEFI
shell application.

During command-line processing, if the 1st argument of a command is a defined
alias, the shell replaces the alias with its defined value. The alias substitution
occurs after the first command-line parameter variable substitution. So if
%myvariable% is set to dir and dir is aliased to ls, entering %myvariable% in
command line will cause the ls command to be executed. Alias substitution is not
recursive.

There are several built-in aliases (sometimes referred to as synonyms) provided by
the UEFI Shell for the following commands:

Table 9 Built-in Aliases for the UEFI Shell
Original

Command
Built-In

Alias
Description

ls dir List directory contents

rm del Delete a file

cp copy Copy a file.

mkdir md Create a directory

dmem mem Display memory

3.7 File Names
The UEFI Shell supports file names and paths with the following format:

fs-path := [fs-map-name] [fs-divider][fs-dirs][fs-name]

fs-map-name := identifier :

fs-divider := \ | /

77

fs-dirs := fs-dir |

 fs-dirs fs-dir

fs-dir := fs-name fs-divider

fs-name := fs-file-name .fs-file-ext

fs-file-name := one or more ASCII characters, excluding * ? < > \ / ” :)

Both short and long names are supported. The maximum valid length for a file path
is 255 characters.

3.7.1 Wildcard Expansion

The *, ? and [] characters can be used as wildcard characters in file name
command-line options certain UEFI shell commands that use the OpenFileList()
function. In addition, the UEFI Shell for and if script commands also expand
arguments containing wildcard characters to existing file names that matches the
pattern. A ^ before the wildcard cannot prevent the wildcard from being expanded.

[] can be either wildcard characters or literal file name characters, the UEFI Shell
will try to take them as wildcard characters first to match files, if there are files
matched, no further interpretation. Otherwise, they will be considered as literal
characters in file names.

Table 10 Wildcard Character Expansion
Character Sequence Description

* Matches zero or more characters in a file name.

? Matches exactly one character in a file name.

[] Matches one character in a file name with one of the
characters in []

3.7.2 Mappings

Mappings are C-style identifiers that act as an alias for a device path. These
mappings can be used interchangeably with the device path in the
EFI_SHELL_PROTOCOL and on the interactive shell’s command line. Default mappings
(such as fsx) are created by the UEFI Shell during initialization (see Initializaiton,
section 0. Other mappings can be created using the map shell command or the
SetMap() function.

A mapping which translates to a device path of a device that has a file system
protocol installed on its handle is called a file system mapping.

78

3.7.3 Consistent File System Mapping

The UEFI Shell provides consistent mapping for file system mappings. The
consistent mappings will not change after reboot or after ‘map –r’ if the hardware
configuration hasn’t changed. If two or more computers have the same hardware
configurations, the consistent mapping results on these computers should be
exactly the same. Hardware configuration changes are defined as the changes of
controllers or physical interfaces to which the devices are connected. If you are
used to the fsx notation style for mapping file systems, then the new consistent
mapping convention might look a little different. For example, the GUIDed file
system may have a consistent mapping , such as
f0agonennapphibbndlnmeaakamjeafdnb. The fsx style mappings facilitates the use of
mappings on the command line, but they don’t have the consistent mapping
characteristics.

Consistent mapping only applies to file system mappings, not other device
mappings.

3.8 Scripts
The UEFI Shell has the capability of executing commands from a file (script). UEFI
Shell script files are named using the ".nsh" extension. Script files can be either
UCS-2 or ASCII format files. UEFI Shell script files are invoked by entering the
filename at the command prompt, with or without the filename extension. See
“Scripts” (section 4) for more information.

3.9 Nesting the Shell
The UEFI Shell supports nested shell execution. The UEFI Shell can run the shell
from within itself. The maximum nesting level is determined by how much memory
the system has. The command exit can be used to exit the current shell instance.
If the current shell is a child shell, it will return to the parent shell. Newly launched
shell will have a brand new execution environment except for environment
variables and aliases.

3.10 Interactive Features
Even though the shell design specification primarily discusses aspects of the shell
that can run without user interaction, there are some features described which can
augment the experience of users that are actively interacting with the console.

3.10.1 Key History Support

The UEFI Shell will save commands history that executed from the shell prompt.
User can press up-arrow key and down-arrow key to browse the previous
commands. Commands that were executed in script will not be saved in the key
history.

79

3.10.2 Execution Interrupt Support

The UEFI Shell supports the capability of interrupting the execution of the shell
commands, applications, and scripts.

There are two kinds of the execution interrupt: command or application execution
interrupt and script execution interrupt.

Shell Command or Application Execution Interrupt.

The user can press the CTRL-C key sequence to interrupt the execution of
some time-consuming UEFI Shell commands (i.e. ls –r) or applications. The
UEFI Shell detects this key sequence and signals the ExecutionBreak member
of the EFI_SHELL_PROTOCOL. Individual UEFI Shell commands or applications
check the state of ExecutionBreak as often as practical and return the
SHELL_ABORTED error code.

Script Execution Interrupt.

The user can press CTRL-C to interrupt the execution of the script. The UEFI
Shell detects this key sequence and signals the ExecutionBreak member of
the EFI_SHELL_PROTOCOL. If an UEFI Shell command or application processes
ExecutionBreak, break immediately. If an UEFI Shell command or application
does not process ExecutionBreak, wait until it completes. Script execution
stops, and SHELL_ABORTED error code is returned. When there is nested script
execution, once a script is interrupted, all its predecessor scripts are also
interrupted.

Note: The UEFI Shell may not support asynchronous execution interrupt for commands or
applications.

3.10.3 Output Streaming Control

The UEFI Shell supports the ability to pause and resume the streaming of
characters to the output device. The user can press the CTRL-S key sequence to
pause and any key to resume the output results produced by the current running
commands or applications. It is especially useful for the commands and
applications that may produce a great deal of the output results.

3.10.4 Scroll Back Buffer Support

The UEFI Shell supports the ability to scroll back and forward the output so that
consoles can have screen history. The user can press Page Up and Page Down to
scroll back and forward the screen history, and press any other key to quit
scrolling. However, the user cannot do this while the command, application or
script is being executed. The text output history will be at least 3 screens.

80

3.11 Shell Applications
UEFI Shell applications have the extension .efi and have the same entry point
(EFI_IMAGE_ENTRY_POINT) defined in section 4.1 of the UEFI specification. When the
entry point to a shell command is called, the image handle (ImageHandle) has both
the EFI_LOADED_IMAGE_PROTOCOL and the EFI_SHELL_PARAMETERS_PROTOCOL installed on
it.

In the EFI_LOADED_IMAGE_PROTOCOL, the LoadOptions member points to the NULL-
terminated, expanded command line. The first part (which corresponds to Argv[0]
in the EFI_SHELL_PARAMETERS_PROTOCOL) is the file path of the executable after alias
substitution.

After this, delimited by a whitespace character, are listed each of the arguments,
with all environment variables expanded, and with quotation marks still present.
This is different from what appears in Argv[] in the EFI_SHELL_PARAMETERS_PROTOCOL.

The EFI_SHELL_PARAMETERS_PROTOOCOL has two members: Argv, which points to each
of the command-line arguments and Argc, which is the number of command-line
arguments. There is always at least one command-line argument: the path and file
name of the shell command. Any arguments are enumerated in Argv[1-n], with all
environment variables expanded and all quotation marks removed.

If ExecutionBreak was signaled during the execution of a UEFI Shell application,
then it will be cleared upon return to the shell.

3.11.1 Installation

During installation, UEFI Shell applications may choose to update certain global
files or settings, which are used for detecting installed UEFI Shell profiles or
providing help text for UEFI shell applications.

During installation, UEFI Shell applications may update the profiles environment
variable, which lists all of the command profiles supported by the current
implementation of the shell. Some of these command profiles are standard (see
“Shell Command Profiles”, section 5.2) and others can be defined by implementers.

During installation, UEFI Shell applications may provide a help file (as described in
“Command-Line Help”, section 3.11.2) to support the standard help command.

During installation, UEFI Shell applications may update a help file for the help
category/categories to which the application belongs. This consists of creating a
NAME section for the <category>.man file and then copying the NAME section from
the command’s help file to the end of the DESCRIPTION section of the <command>.man
file, if not already present.

The shell application’s category (or categories) is listed in the CATEGORY section of
the shell application’s help (.man) file. Help categories are not described as part of
this specification.

81

3.11.2 Command-Line Help

The user can get UEFI Shell application command-line either using the help
command or else by typing in <command-name> -?. Both of these use the
GetHelpText() (page 37) function to retrieve the help text.

The UEFI Shell gets help text for UEFI Shell applications by search the directory
where startup.nsh was located (highest priority) (if –nostartup was not specified)
and then the directories specified by the path environment variable for a file with
the same name as the UEFI Shell application, but with the .man extension. The
format of these files is described in Appendix B.

The UEFI Shell supports help categories, which have .man pages similar to those for
UEFI shell applications, except using the category name instead of the application
name.

3.12 GUID Name Information
UEFI Shell commands output all UEFI and PI defined GUIDs not by value, but by a human
readable name.

This list must support extension via the RegisterGuidName function. UEFI Shell applications
must also be able to query information from this list via GetGuidName and GetGuidFromName.
This allows for custom GUID values to be seen as names via any standard UEFI Shell
command.

This information will not cascade to nested shells.

3.13 Dynamic Shell Commands
UEFI Shell commands may be added by drivers resident in memory via the use of the
EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL. Each instance of this protocol resident in memory
represents the information about one additional command for the shell.

The shell must support checking for this protocol and using the command handlers as
necessary to support seamless integration.

Any dynamic command names that overlap names of commands or profiles listed in this
specification, or begin with ‘UEFI’ may be ignored by the shell.

The UEFI Shell’s internal commands must have higher name priority than a dynamic
command.

82

83

4
Scripts

UEFI Shell scripts allow user to simplify routine or repetitive tasks. A shell script
program is a UCS-2 or ASCII text file that contains one or more commands and has
a .nsh file name extension. When the file name is typed at the command prompt,
commands in the file are executed sequentially.

All shell commands can be executed in scripts. In addition, some script-only
commands are also provided to do basic flow control. Script-only means those
commands can be only executed in UEFI Shell Script files, and cannot be executed
from the shell prompt.

Up to ten positional arguments are supported for scripts. Positional argument
substitution is performed before the execution of each line in the script file.
Positional arguments are denoted by %n, where n is a digit between 0 and 9. By
convention, %0 is the name of the script file currently being executed.

Script file execution can be nested; that is, script files may be executed from within
other script files. Recursion is allowed. Shell scripts run in their parent’s
environment.

Output and input redirection are fully supported in scripts. Output redirection on a
command in a script file causes the output for that command to be redirected.
Output redirection on the invocation of a script causes the output for all commands
executed from that script to be redirected to the file, with the output of each
command appended to the end of the file.

By default, both the input and output for all commands executed from a script are
echoed to the console. Display of commands read from a script file can be
suppressed via the echo -off command (see echo). Also, additional ‘@’ before a
command in a script file can prevent the current command from being echoed.

If output for a command is redirected to a file, then that output is not displayed on
the console. Commands executed from a script will not be saved by the shell for
key history and these commands cannot be recalled by pressing Up-Arrow key.

4.1 Comments
Comments can be embedded in scripts. The # character is used to denote that the #
and all characters to the right of it are to be ignored by the shell. Whether the echo
state is on or off, comments are not echoed to the console. Use ^# to provide # as
an actual command-line argument in a script.

84

4.2 Error Handling
By default, if an error is encountered during the execution of a command in a
script, the script will continue to execute. But if an error is encountered when
executing the script-only commands which affects the logic of the script, such as
for, endfor, if, else, endif, and goto, the script will exit. If the error arousing script
is a called by another script, the caller script will continue to execute.

The lasterror shell variable allows scripts to test the results of the most recently
executed command or application using the if command. This variable is
maintained by the shell, is read-only, and cannot be modified by command set.

Script-only commands, as well as echo, which are used to control the logic of the
script, do not affect the value of variable lasterror. The lasterror environment
variable is not changed by comments.

4.3 Script Nesting
Scripts can be nested. A script can call one or more scripts. The embedded script
will be executed as a command. After the whole embedded script is executed
completely, the next command will be executed.

The UEFI Shell will automatically save and restore the running mode before and
after the execution of nested scripts so that the changes of running modes in
nested scripts will not affect the running mode of a parent script.

4.4 Output and Echoing
Output redirection is supported for scripts. Output redirection on a command in a
script file causes the output for that command to be redirected. Output redirection
on the invocation of a script causes the output for all commands executed from
that script to be redirected to the file, with the output of each command appended
to the end of the file. The default echo state will be "on" until changed. If a
command in a script redirects its output to file1, while the output is redirected to
file2 on invocation of a whole script, the output of that command will be redirected
to file1, but the echo of the command itself (if echo state is on) will appear in file2,
as well as output of all other commands

When a script is launched from the interactive shell, it inherits its echo state from
interactive shell or parent script. Changing echo state in the script does not affect
the echo state of the interactive shell. When a script calls another script, the called
script inherits the caller script’s current echo state. But if the called script changes
the echo state, after returning, the caller’s echo script changes, too.

4.5 Limitations
Following are some examples of known limitations with the UEFI scripts:

85

1. Cannot read and write the same file within a single command, for example,
fs0:>type test.nsh > test.nsh

2. goto cannot be used to jump into another loop.

3. Don’t use the same index variable in nested for statements.

4. Index values cannot be referred outside of the for statement that defines
it.

86

87

5
 Shell Commands

5.1 Overview
This section describes the standard UEFI Shell commands.

The table below lists all standard UEFI Shell commands.

Table 11 Commands from Default Build Shell
Command Description Required at

Shell Level
or Profile

alias Displays, creates, or deletes aliases in the UEFI
Shell environment

3

attrib Displays or changes the attributes of files or
directories.

2

bcfg Manipulate boot order and driver order Debug1,
Install1

cd Displays or changes the current directory 2
cls Clears the standard output and optionally

changes the background and foreground color
3

comp Compares the contents of two files on a byte for
byte basis

Debug1

connect Binds a driver to a specific device and starts the
driver.

Driver1

cp Copies one or more source files or directories to a
destination.

2

date Displays and sets the current date for the system. 2/3
dblk Displays the contents of one or more blocks from

a block device.
Debug1

del Deletes one or more files or directories. 2

devices Displays the list of devices managed by UEFI
drivers.

Driver1

devtree Displays the tree of devices compliant with the
UEFI Driver Model.

Driver1

dh Displays the device handles in the UEFI
environment.

Driver1

dir Lists directory contents or file information. 2

88

Command Description Required at
Shell Level
or Profile

disconnect Disconnects one or more drivers from the
specified devices.

Driver1

dmem Displays the contents of system, I/O register,
PCI/PCIe configuration space, or device memory.

Debug1

dmpstore Manages all UEFI NVRAM variables. Debug1
drivers Displays a list of information for drivers that follow

the EFI Driver Model in the EFI environment.
Driver1

drvcfg Configures the driver using the UEFI
Configuration Access Protocol.

Driver1

drvdiag Invokes the Driver Diagnostics Protocol. Driver1
echo Controls whether or not script commands are

displayed as they are read from the script file and
prints the given message to the display.

3

edit Full screen editor for ASCII or UCS-2 files. Debug1
eficompress Compress a file using EFI Compression

Algorithm.
Debug1

efidecompress Decompress a file using EFI Decompression
Algorithm.

Debug1

else Conditionally execute commands if a previous if
condition was false.

1

endfor End a loop stated with for in a script. 1
endif End a conditional block started with if. 1

exit Exits the UEFI Shell environment and returns
control to the parent that launched the UEFI
Shell.

1

for Start a loop in a script 1
getmtc Return current monotonic count. 3
goto Go to a label in a script 1

help Displays the list of commands that are built into
the UEFI Shell.

3

hexedit Full screen hex editor for files, block devices, or
memory.

Debug1

if Conditionally execute script statements. 1
ifconfig Displays or modifies the current IP configuration. Network1

Ifconfig6 Display or modify IPv6 configuration for network
interface

Network2

load Loads a UEFI driver into memory. 2
loadpcirom Loads a PCI Option ROM from the specified file. Debug1

89

Command Description Required at
Shell Level
or Profile

ls Lists a directory's contents or file information. 2

map Defines a mapping between a user-defined name
and a device handle.

2

mem Displays the contents of system or device
memory.

Debug1

memmap Displays the memory map maintained by the EFI
environment.

Debug1

mkdir Creates one or more new directories. 2

mm Displays or modifies MEM/MMIO/IO/PCI/PCIE
address space.

Debug1

mode Displays or changes the console output device
mode.

Debug1

mv Moves one or more files to a destination within a
file system.

2

openinfo Displays the protocols and agents associated
with a handle.

Driver1

parse Parse data returned from standard formatted
output

2

pause Pause script execution and wait for a keypress 3
pci Displays PCI device list, or PCI function

configuration space and PCIe extended
configuration space.

Debug1

ping Check response of an ip address. Network1

ping6 Ping a target machine with UEFI IPv6 network
stack.

Network 2

reconnect Reconnects drivers to the specific device. Driver1
reset Resets the system. 2
rm Deletes one or more files or directories. 2

sermode Sets serial port attributes. Debug1
set Used to maintain the environment variables that

are available from the EFI environment.
2

setsize Set the size of a file Debug1
setvar Change value of UEFI variable Debug1

shift Shift to the 2nd set of positional parameters 1
smbiosview Displays SMBIOS information. Debug1
stall Stalls the operation for a specified time 1
time Displays or sets the current time for the system. 2/3

timezone Displays or sets time zone information. 2/3

90

Command Description Required at
Shell Level
or Profile

touch Updates the time and date on a file to the current
time and date.

2

type Sends the contents of a file to the standard
output device.

2

unload Unloads a driver image that was already loaded. Driver1
ver Displays the version information for this EFI

firmware.
3

vol Displays volume information 2

5.1.1 Explanation of Command Description Layout

The description of each command is composed of four sections: Summary, Usage,
Options, Description, Notes, Status Codes Returned and Examples.

Summary is a brief explanation of the function of the command. Usage describes how
the command is used. Options gives a complete description of each of the
command-lie options. Description describes the details of the command.

Examples give sample usage of the command. The output may differ from the
output listed in this section.

5.1.2 Shell Command-Line Options

The following table describes the standard command-line options. No command
supports all options, but when needed, the following option parameters are used:

Table 12 Standard Command Line Options
Option Description

-b, -break Pause after each page.

-q, -quiet The command will suppress all output.

-sfo Standard Format Output. Instead of normal output, the shell
command will output using the standard format described
Appendix D.

-t, -terse Terse Output. The shell command will restrict additional
informative content.

-v, -verbose Verbose Output. The shell command will output additional
informative content.

-? Help. For more information on how command-line help is
supported, see section 3.11.2.

Command-line options that begin with the ‘_’ character are implementation-
specific.

91

5.2 Shell Command Profiles
Shell command profiles are groups of shell commands that are identified by a
profile name. Profile names that begin with the ‘_’ character are reserved for
individual implementations. For information on how profiles are identified, see
section 3.3.2 (Supported Profiles).

For more information on how profiles are updated when new commands are
installed, see section 3.11

There are four standard profiles:

Table 13 Standard Profiles
Profile Name Description

Driver1 Standard set of driver-related commands.

Debug1 Standard set of debug commands.

Network1 Standard set of Ipv4 networking-related commands.

Network2 Standard set of Ipv6 networking-related commands.

Install1 Standard set of commands to aid installation.

5.3 Shell Commands

92

alias

Summary

Displays, creates, or deletes aliases in the UEFI Shell environment.

Usage
alias [-d|-v] [alias-name] [command-name]

Options
alias-name

Alias name

command-name

Original command’s name or original command’s file name/directory.

-d

Delete an alias. command-name should not be present.

-v

Make the alias volatile.

Description

This command displays, creates, or deletes aliases in the UEFI Shell environment.
An alias provides a new name for an existing UEFI Shell command or UEFI
application. Once the alias is created, it can be used to run the command or launch
the UEFI application.

There are some aliases that are predefined in the UEFI Shell environment. These
aliases provide the MS-DOS and UNIX equivalent names for the file manipulation
commands. See Built-In Aliases (section 3.6.4) for more details.

Aliases will be retained even after exiting the shell unless the –v option is specified.
If -v is specified then the alias will not be valid after leaving the shell.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_OUT_OF_RESOURCES A request to set a variable in a non-volatile fashion
could not be completed. The resulting non-volatile
request has been converted into a volatile request.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

93

Examples

To display all aliases in the UEFI Shell environment:

Shell> alias
md : mkdir
rd : rm

To create an alias in the UEFI Shell environment:
Shell> alias myguid guid
 Shell> alias
 md : mkdir
 rd : rm
 myguid : guid

To delete an alias in the UEFI Shell environment:
 Shell> alias -d myguid
 Shell> alias
 md : mkdir
 rd : rm

To add a volatile alias in the current EFI environment, which has a star * at the line
head. This volatile alias will disappear at next boot.
Shell> alias -v fs0 floppy
Shell> alias
 md : mkdir
 rd : rm
* fs0 : floppy

94

attrib

Summary

Displays or changes the attributes of files or directories.

Usage
attrib [+a|-a] [+s|-s] [+h|-h] [+r|-r] [file...] [directory...]

Options
+a|-a

Set or clear the ‘archive’ attribute

+s|-s

Set or clear the ‘system’ attribute

+h|-h

Set or clear the ‘hidden’ attribute

+r|-r

Set or clear the ‘read-only’ attribute

file

File name (wild cards are permitted)

directory

Directory name (wildcards are permitted)

Description

This command displays and sets the attributes of files or directories. The following
four attribute types are supported in the UEFI file system:

• Archive [A]

• System [S]

• Hidden [H]

• Read only [R]

If a file (in general meaning) is a directory, then it is also shown to have the
attribute [D].

If any file in the file list that is specified in the command line does not exist, attrib
will continue processing the remaining files while reporting the error.

If no file or directory is specified, then all of the files in the current directory are
displayed.

If no attribute is specified, then the attributes of the files will be displayed.

95

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The requested file was not found.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_WRITE_PROTECTED The media that the action was to take place on is write-
protected.

Examples
• To display the attributes of a directory:
 fs0:\> attrib fs0:\
 attrib:D fs0:\

• To display the attributes of all files and sub-directories in the current directory:
 fs0:\> attrib *
 attrib: AS fs0:\serial.efi
 attrib:DA fs0:\test1
 attrib: A HR fs0:\bios.inf
 attrib: A fs0:\VerboseHelp.txt
 attrib: AS fs0:\IsaBus.efi

• To add the system attribute to all files with extension '.efi':
 fs0:\> attrib +s *.efi

• To remove the read only attribute from all files with extension '.inf':
 fs0:\> attrib -r *.inf
attrib: A H fs0:\bios.inf

96

bcfg

Summary

Manages the boot and driver options that are stored in NVRAM.

Usage
bcfg driver|boot [dump [-v]]
bcfg driver|boot [add # file "desc"] [addp # file “desc”] [addh # handle
“desc”]
bcfg driver|boot [rm #]
bcfg driver|boot [mv # #]
bcfg driver|boot [mod # “desc”] | [modf # file] | [modp # file] | [modh #
handle]
bcfg driver|boot [-opt # [[filename]|[”data”]] | [KeyData <ScanCode
UnicodeChar>*]]

Options
driver

Display/modify the driver option list

boot

Display/modify the boot option list

dump

Display the option list

-v

Display the option list with extra info including the optional data.

add

Add an option. The # is the option number to add in hexadecimal. The file
name of the UEFI application/driver for the option. The quoted parameter is
the description of the option being added.

addh

Add an option that refers to the driver/device specified by handle. The # is the
option number to add, in hexadecimal. The handle is the driver/device handle,
in hexadecimal. The device path for the option is retrieved from the handle.
The quoted parameter is the description of the option being added.

addp

Add an option that refers to a specific file. Only the portion of the device path
starting with the hard drive partition is placed in the option. The # is the
option number to add, in hexadecimal. The quoted parameter is the
description of the option being added.

rm

Remove an option. The # parameter lists the option number to remove in
hexadecimal.

97

mv

Move an option. The first numeric parameter is the option to move in hexadecimal.
The second numeric parameter is the new option number.

mod

Modify description of an existing option. The # is the option number to modify
in hexadecimal. The quoted parameter is the new description of the option.

modf

Modify device path stored in an existing option, using a file name. The # is the
option number to modify in hexadecimal. The file is the new file name of the
UEFI application/driver to store in the option.

modp

Modify device path stored in an existing option, using a file name. The # is the
option number to modify in hexadecimal. The file is the new file name of the
UEFI application/driver, but only the portion of the device path starting with
the hard drive partition is stored in the option.

modh

Modify device path stored in an existing option, using a device handle. The # is the
option number to modify in hexadecimal. The handle is the device handle number in
hexadecimal, and the device path of this handle is stored in the option.

-opt

Modify the optional data associated with a driver or boot option. Followed
either by the filename of the file which contains the binary data to be
associated with the driver or boot option optional data, or else the quote-
delimited data that will be associated with the driver or boot option optional
data.

KeyData

The packed value associated with a hot-key. This is the
EFI_BOOT_KEY_DATA.PackedValue in the UEFI Specification.

ScanCode

This is the UEFI-defined Scan code portion of the EFI_INPUT_KEY
structure. This value is directly associated with the preceding KeyData value
and there may be 1 to 4 entries per the UEFI specification. When one
instance of this parameter has a non-zero value, the paired UnicodeChar value
will have a zero-based value.

UnicodeChar

This is the Unicode value for the character associated with the preceding
KeyData value. There may be 1 to 4 entries per the UEFI specification. When
one instance of this parameter has a non-zero value, the paired ScanCode
value will have a zero-based value.

Description

Manages the boot and driver options stored in NVRAM. This command can display
the Boot#### or Driver#### environment variables (see the UEFI Specification for
details about the variables) by using the dump option. The add/addh/addp options
can be used to add a new Boot#### or Driver#### environment variable.

98

The rm option can be used to delete a Boot#### or Driver#### environment variable.

The mv option can be used to reorder the Boot#### and Driver#### environment
variables. Finally, the mod/modf/modp/modh options can be used to modify existing
Boot#### or Driver#### environment variables.

The add/addh/addp, rm, and mv options also update the BootOrder or DriverOrder
environment variables as appropriate.

The -opt option can update Driver#### or Boot#### options when using a file or
quote delimited data. When adding hotkeys they will be created as Key#### and
only support Boot (not Driver)

Examples

To display driver options:
Shell> bcfg driver dump

To display boot options:
Shell> bcfg boot dump

To display verbosely of boot options:
Shell> bcfg boot dump -v

To add a driver option #5
Shell> bcfg driver add 5 mydriver.efi "My Driver"

To add a boot option #3
Shell> bcfg boot add 3 osloader.efi "My OS"

To remove boot option #3
Shell> bcfg boot rm 3

To move boot option #3 to boot option #7
Shell> bcfg boot mv 3 7

To assign a CTRL-B hot-key to boot option #3.
Shell> bcfg boot –opt 3 0x40000200 0 0x42

To modify the description in boot option #2:
Shell> bcfg boot mod 2 “My UEFI App”

To modify the device path in boot option #8 to the path associated with device handle 26F:
Shell> bcfg boot modh 8 26f

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The requested option was not found.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_UNSUPPORTED The action as requested was unsupported.

99

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_OUT_OF_RESOURCES There was insufficient free space for the request to be
completed.

100

cd

Summary

Displays or changes the current directory.

Usage
cd [path]

Options
path

The relative or absolute directory path.

Description

This command changes the current working directory that is used by the UEFI Shell
environment. If a file system mapping is specified, then the current working
directory is changed for that device. Otherwise, the current working directory is
changed for the current device.

If path is not present, then the current working directory (including file system
mapping) is displayed to standard out.

The table below describes the conventions that are used to refer to the directory,
its parent, and the root directory in the UEFI Shell environment.

Table 14 Conventions for Directory Names
Convention Description

. Refers to the current directory.

.. Refers to the directory's parent.

\ Refers to the root of the current file system.

The current working directory is maintained in the environment variable %cwd%. See
“Current Directory” (section 3.5) for more information.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

101

Examples

To change the current filesystem to the mapped fs0 filesystem:
 Shell> fs0:

To change the current directory to subdirectory 'efi':
 fs0:\> cd efi

To change the current directory to the parent directory (fs0:\):
 fs0:\efi\> cd ..

To change the current directory to 'fs0:\efi\tools':
 fs0:\> cd efi\tools

To change the current directory to the root of the current fs (fs0):
 fs0:\efi\tools\> cd \
 fs0:\>

To change volumes with cd will not work! For example:
 fs0:\efi\tools\> cd fs1:\ !!!! will not work !!!!
 must first type fs1: then cd to desired directory

To move between volumes and maintain the current path.
 fs0:\> cd \efi\tools
 fs0:\efi\tools\> fs1:
 fs1:\> cd tmp
 fs1:\tmp> cp fs0:*.* .
copies all of files in fs0:\efi\tools into fs1:\tmp directory

102

cls

Summary

Clears the console output and optionally changes the background and foreground
color.

Usage
cls [background [foreground]] | [-sfo]

Options
background

- New background color
0 - Black
1 - Blue
2 - Green
3 - Cyan
4 - Red
5 - Magenta
6 - Brown
7 - Light gray

foreground

- New foreground color
0 - Black
1 - Blue
2 - Green
3 - Cyan
4 - Red
5 - Magenta
6 - Brown
7 - Light gray
8 - Dark gray
9 - Light Blue
10 - Light Green
11 - Light Cyan
12 - Light Red
13 - Light Magenta
14 - Yellow
15 - White

-sfo

Console output is not cleared, instead displays information as described in “Standard-
Format Output” below.

103

Description

This command clears the console output device with optional background and
foreground color attributes. If background is not specified, or if background and
foreground are not specified, then the colors do not change.

To change the foreground color, both background and foreground must be set.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a
security violation

Examples

To clear console output without changing the background or foreground colors:
 fs0:\> cls

To clear console output and change the background color to cyan:
 fs0:\> cls 3

To clear console output and change the background to black and foreground to
white:
fs0:\> cls 0 15

Standard-Format Output

The standard-format output for the cls command produces a single table:
ConOutAttribInfo.

The following columns are described:

Table 15 cls Standard Formatted Output (ConOutAttribInfo)
Column Number Description

1 The name of the table. The name is ConOutAttribInfo.

2 Attribute. Console output device Attribute value.

3 Foreground. Foreground value from Attribute.

4 Background. Background value from Attribute.

104

comp

Summary

Compares the contents of two files on a byte for byte basis.

Usage
comp [-b] file1 file2 [-n count] [-s size]

Options

-b

- Display one screen at a time

file1

- First file name (directory name or wildcards not permitted)

file2

- Second file name (directory name or wildcards not permitted)

-n

Maximum number of differences to display

-s

Number of bytes to display after finding a difference

Description

This command compares the contents of two files in binary mode. If the -n flag is
not provided, by default the command displays up to 10 differences between the
two files. To display all differences, specify –n all. For each difference, if the -s
flag is not provided, by default the command displays up to 4 bytes from the
location where the difference starts.

Status Codes Returned
SHELL_SUCCESS The function operated as expected.

SHELL_NOT_EQUAL The files were not identical.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a
security violation

SHELL_NOT_FOUND The requested file was not found.

Examples

To compare two files with the same contents:

105

 fs0:\> comp bios.inf rafter.inf
 Compare fs0:\bios.inf to fs0:\rafter.inf
 [no difference encountered]

To compare two files with different contents:

 fs0:\> comp bios.inf bios2.inf

 Compare fs0:\bios.inf to fs0:\bios2.inf

 Difference #1:

 File1: fs0:\bios.inf

 00000000: 5F *_*

 File2: fs0:\bios2.inf

 00000000: 33 *3*

 Difference #2:

 File1: fs0:\bios.inf

 0000000C: 00 00 00 00 *....*

 File2: fs0:\bios2.inf

 0000000C: 25 32 03 03 *%2..*

 [difference(s) encountered]

To compare two files and display all differences:
fs0:\> comp bios.inf bios3.inf –n all

To compare two files, display up to 4 differences, and 16 bytes after finding a
difference:
fs0:\> comp bios.inf bios4.inf –n 4 –s 16

106

connect

Summary

Binds a driver to a specific device and starts the driver.

Usage
connect [[DeviceHandle] [DriverHandle] | [-c] | [-r]]

Options
-r

Recursively scan all handles and check to see if any loaded or embedded
driver can match the specified device. If so, the driver will be bound to the
device. Additionally, if more device handles are created during the binding,
these handles will also be checked to see if a matching driver can bind to
these devices as well. The process is repeated until no more drivers are able
to connect to any devices. However, without the option, the newly created
device handles will not be further bound to any drivers.

-c

Connect console devices found in the EFI global variables (see UEFI
specification, chapter 3)

DeviceHandle

Device handle (a hexadecimal number). If not specified, then all device
handles will be connected.

DriverHandle

Driver handle (a hexadecimal number). If not specified, then all matching
drivers will be bound to the specified device. If specified, then this driver will
have the highest priority.

Description

This command binds a driver to a specific device and starts the driver. If the -r flag
is used, then the connection is done recursively until no further connections
between devices and drivers are made. If the -c flag is used, then the connect
command will bind the proper drivers to the console devices that are described in
the EFI environment variables. The example below shows the typical output from
the verbose help for this command.

If only a single handle is specified and the handle has an
EFI_DRIVER_BINDING_PROTOCOL on it, then the handle is assumed to be a driver
handle. Otherwise, it is assumed to be a device handle.

If no parameters are specified, then the command will attempt to bind all proper
drivers to all devices without recursion. Each connection status will be displayed.

107

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLAT
ION

This function was not performed due to a
security violation

SHELL_INVALID_PARAMET
ER

One of the passed in parameters was
incorrectly formatted or its value was out of
bounds.

Examples
• To connect all drivers to all devices recursively:
 Shell> connect -r

• To display all connections:
 Shell> connect
 ConnectController(1) : Status = Success
 ConnectController(2) : Status = Success
 ConnectController(3) : Status = Success
 ...
 ConnectController(3D) : Status = Success

• To connect drivers with 0x17 as highest priority to all the devices they can
manage:
 Shell> connect 17

• To connect all possible drivers to device 0x19:
 Shell> connect 19

• To connect drivers with 0x17 as highest priority to device 0x19 they can
manage:
 Shell> connect 19 17

• To connect console devices described in the UEFI Shell environment variables:
 Shell> connect -c

108

cp

Summary

Copies one or more source files or directories to a destination.

Usage
cp [-r] [-q] src [src...] [dst]

Options
src

Source file/directory name (wildcards are permitted)

dst

Destination file/directory name (wildcards are not permitted). If not specified,
then the current working directory is assumed to be the destination. If there
are more than one directory specified, then the last is always assumed to be
the destination.

-r

Recursive copy.

-q

Quiet copy (no prompt)

Description

This command copies one or more source files or directories to a destination. If the
source is a directory, the -r flag must be specified. If -r is specified, then the
source directory will be recursively copied to the destination (which means that all
subdirectories will be copied). If a destination is not specified, then the current
working directory is assumed to be the destination.

If any target file (not directory) already exists, there will be a prompt asking the
user to confirm replacing the file. The following four choices are available:

• Yes: Replace the file.

• No: Do not replace the file.

• All: Replace the existing files in all subsequent cases.

• Cancel: Do not replace any existing files in all subsequent cases.

If there are multiple source files/directories, the destination must be a directory.

If an error occurs, then the copying process will stop immediately.

When executing in a script, the default is –q.

When copying to another directory, the directory must already exist.

109

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMET
ER

One of the passed in parameters was
incorrectly formatted or its value was out of
bounds.

SHELL_OUT_OF_RESOURCE
S

There was insufficient space to save the
requested file at the destination.

SHELL_SECURITY_VIOLAT
ION

This function was not performed due to a
security violation

SHELL_WRITE_PROTECTED An attempt was made to create a file on media
that was write-protected.

Examples
• To display the contents of current directory first of all:
 fs0:\> ls
 Directory of: fs0:\

 06/18/01 01:02p <DIR> 512 efi
 06/18/01 01:02p <DIR> 512 test1
 06/18/01 01:02p <DIR> 512 test2
 06/13/01 10:00a 28,739 IsaBus.efi
 06/13/01 10:00a 32,838 IsaSerial.efi
 06/18/01 08:04p 29 temp.txt
 06/18/01 08:05p <DIR> 512 test
 3 File(s) 61,606 bytes
 4 Dir(s)

• To copy a file in the same directory, but change the file name:
 fs0:\> cp temp.txt readme.txt
 copying fs0:\temp.txt -> fs0:\readme.txt
 - [ok]

• To copy multiple files to another directory:
 fs0:\> cp temp.txt isaBus.efi \test
 copying fs0:\temp.txt -> fs0:\test\temp.txt
 - [ok]
 copying fs0:\isaBus.efi -> fs0:\test\IsaBus.efi
 - [ok]

• To copy multiple directories recursively to another directory:
 fs0:\> cp -r test1 test2 boot \test
 copying fs0:\test1 -> fs0:\test\test1
 copying fs0:\test1\test1.txt -> fs0:\test\test1\test1.txt
 - [ok]
 copying fs0:\test2 -> fs0:\test\test2
 copying fs0:\test2\test2.txt -> fs0:\test\test2\test2.txt
 - [ok]
 copying fs0:\boot -> fs0:\test\boot
 copying fs0:\boot\shell.efi -> fs0:\test\boot\shell.efi
 - [ok]

• To see the results of the above operations:

110

 fs0:\> ls \test
 Directory of: fs0:\test

 06/18/01 01:01p <DIR> 512 .
 06/18/01 01:01p <DIR> 0 ..
 01/28/01 08:21p <DIR> 512 test1
 01/28/01 08:21p <DIR> 512 test2
 01/28/01 08:21p <DIR> 512 boot
 01/28/01 08:23p 29 temp.txt
 01/28/01 08:23p 28,739 IsaBus.efi
 2 File(s) 28,828 bytes
 5 Dir(s)

Shell>

111

date

Summary

Displays and sets the current date for the system.

Usage
date [mm/dd/[yy]yy][-sfo]

Options
mm

Month of the date to be set (1-12)

dd

Day of the date to be set (1-31)

yy/yyyy

Year of the date to be set. If only two digits, then 9x = 199x, otherwise 20xx.

-sfo

Standard-format output. See "Related Definitions" below.

Description

This command displays and/or sets the current date for the system. If no
parameters are used, it shows the current date. If a valid month, day, and year are
provided, then the system's date will be updated. Detailed rules are listed below:

Except for numeric characters and /, all other characters in the argument are
invalid. The Shell will report an error if the number is in the wrong
month/date/year range.

Space before or after the numeric character is not allowed. Inserting a space into
the number is invalid.

The year range is greater than or equal to 1998. Two numeric characters indicate
the year. Numbers below 98 are regarded as 20xx, and numbers equal to or above
98 are regarded as 19xx. 00 means 2000. For example:
Shell > date 8/4/97
Shell > date
08/04/2097
Shell >

Shell > date 8/4/98
Shell > date
08/04/1998
Shell >

The range of valid years is from 1998–2099.

112

Standard-Format Output

The standard-format from the date command has a single table: Date, with the
following columns:

Table 16 Date Command Table
Column Description

1 The name of the table. The name is Date.

2 Day (from 1-31)

3 Month (from 1-12)

4 Year (from 1998-2099)

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_DEVICE_ERROR There was a hardware error preventing the completion of
this command

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples
• To display the current date in the system:
 fs0:\> date
 06/18/2001

• To set the date with long year format:
 fs0:\> date 01/01/2050
 fs0:\> date
 01/01/2050

• To set the date with short year format:
 fs0:\> date 06/18/01
 fs0:\> date
 06/18/2001

113

dblk

Summary

Displays the contents of one or more blocks from a block device.

Usage
dblk device [lba] [blocks] [-b]

Options
device

Block device name

lba

Index of the first block to be displayed (a hexadecimal number). The default is
0.

blocks

Number of blocks to be displayed (a hexadecimal number). The default is 1. If
larger than 0x10, then only 0x10 are displayed.

-b

Display one screen at a time.

Description

This command displays the contents of one or more blocks from a block device. lba
and blocks should be typed in hex value. If lba is not specified, block #0 is
assumed. If blocks is not specified, then on1y 1 block will be displayed. The
maximum number of blocks that can be displayed at one time is 0x10.

If an MBR is found on the block, the partition information will be printed after all
the block contents have been displayed.

If the block is a FAT partition, some FAT parameters will be displayed (label,
systemid, oemid, sectorsize, clustersize, media etc) after all the blocks have been
displayed.

Examples
• To display one block of blk0, beginning from block 0:
 Shell>dblk blk0

• To display one block of fs0, beginning from block 0x2:
 Shell>dblk fs0 2

• To display 0x5 blocks of fs0, beginning from block 0x12:
 Shell>dblk fs0 12 5

• To display 0x10 blocks of fs0, beginning from block 0x12:

114

 Shell>dblk fs0 12 10

• The attempt to display more than 0x10 blocks will display only 0x10 blocks:
 Shell>dblk fs0 12 20

• To display one block of blk2, beginning from the first block (blk0):
 fs1:\tmps1> dblk blk2 0 1

 LBA 0000000000000000 Size 00000200 bytes BlkIo 3F0CEE78
 00000000: EB 3C 90 4D 53 44 4F 53-35 2E 30 00 02 04 08 00 *.<.MSDOS5.0.....*
 00000010: 02 00 02 00 00 F8 CC 00-3F 00 FF 00 3F 00 00 00 *........?...?...*
 00000020: 8E 2F 03 00 80 01 29 2C-09 1B D0 4E 4F 20 4E 41 *./....),...NO NA*
 00000030: 4D 45 20 20 20 20 46 41-54 31 36 20 20 20 33 C9 *ME FAT16 3.*
 00000040: 8E D1 BC F0 7B 8E D9 B8-00 20 8E C0 FC BD 00 7C *.........*
 00000050: 38 4E 24 7D 24 8B C1 99-E8 3C 01 72 1C 83 EB 3A *8N$.$....<.r...:*
 00000060: 66 A1 1C 7C 26 66 3B 07-26 8A 57 FC 75 06 80 CA *f...&f;.&.W.u...*
 00000070: 02 88 56 02 80 C3 10 73-EB 33 C9 8A 46 10 98 F7 *..V....s.3..F...*
 00000080: 66 16 03 46 1C 13 56 1E-03 46 0E 13 D1 8B 76 11 *f..F..V..F....v.*
 00000090: 60 89 46 FC 89 56 FE B8-20 00 F7 E6 8B 5E 0B 03 *`.F..V..^..*
 000000A0: C3 48 F7 F3 01 46 FC 11-4E FE 61 BF 00 00 E8 E6 *.H...F..N.a.....*
 000000B0: 00 72 39 26 38 2D 74 17-60 B1 0B BE A1 7D F3 A6 *.r9&8-t.`.......*
 000000C0: 61 74 32 4E 74 09 83 C7-20 3B FB 72 E6 EB DC A0 *at2Nt... ;.r....*
 000000D0: FB 7D B4 7D 8B F0 AC 98-40 74 0C 48 74 13 B4 0E *........@t.Ht...*
 000000E0: BB 07 00 CD 10 EB EF A0-FD 7D EB E6 A0 FC 7D EB *................*
 000000F0: E1 CD 16 CD 19 26 8B 55-1A 52 B0 01 BB 00 00 E8 *.....&.U.R......*
 00000100: 3B 00 72 E8 5B 8A 56 24-BE 0B 7C 8B FC C7 46 F0 *;.r.[.V$......F.*
 00000110: 3D 7D C7 46 F4 29 7D 8C-D9 89 4E F2 89 4E F6 C6 *=..F.)....N..N..*
 00000120: 06 96 7D CB EA 03 00 00-20 0F B6 C8 66 8B 46 F8 *........ ...f.F.*
 00000130: 66 03 46 1C 66 8B D0 66-C1 EA 10 EB 5E 0F B6 C8 *f.F.f..f....^...*
 00000140: 4A 4A 8A 46 0D 32 E4 F7-E2 03 46 FC 13 56 FE EB *JJ.F.2....F..V..*
 00000150: 4A 52 50 06 53 6A 01 6A-10 91 8B 46 18 96 92 33 *JRP.Sj.j...F...3*
 00000160: D2 F7 F6 91 F7 F6 42 87-CA F7 76 1A 8A F2 8A E8 *......B...v.....*
 00000170: C0 CC 02 0A CC B8 01 02-80 7E 02 0E 75 04 B4 42 *............u..B*
 00000180: 8B F4 8A 56 24 CD 13 61-61 72 0B 40 75 01 42 03 *...V$..aar.@u.B.*
 00000190: 5E 0B 49 75 06 F8 C3 41-BB 00 00 60 66 6A 00 EB *^.Iu...A...`fj..*
 000001A0: B0 4E 54 4C 44 52 20 20-20 20 20 20 0D 0A 52 65 *.NTLDR ..Re*
 000001B0: 6D 6F 76 65 20 64 69 73-6B 73 20 6F 72 20 6F 74 *move disks or ot*
 000001C0: 68 65 72 20 6D 65 64 69-61 2E FF 0D 0A 44 69 73 *her media....Dis*
 000001D0: 6B 20 65 72 72 6F 72 FF-0D 0A 50 72 65 73 73 20 *k error...Press *
 000001E0: 61 6E 79 20 6B 65 79 20-74 6F 20 72 65 73 74 61 *any key to resta*
 000001F0: 72 74 0D 0A 00 00 00 00-00 00 00 AC CB D8 55 AA *rt............U.*

Fat 16 BPB FatLabel: 'NO NAME ' SystemId: 'FAT16 ' OemId: 'MSDOS5.0'
 SectorSize 200 SectorsPerCluster 4 ReservedSectors 8 # Fats 2
 Root Entries 200 Media F8 Sectors 32F8E SectorsPerFat CC
 SectorsPerTrack 3F Heads 255

115

del

Summary

Internal alias for the rm command.

116

devices

Summary

Displays the list of devices managed by UEFI drivers.

Usage
devices [-b] [-l XXX] [-sfo]

Options

-b

- Display one screen at a time

-l XXX

- Display drivers using the language code XXX, which has the format specified
by Appendix M of the UEFI Specification.

-sfo

- Display information as described in “Standard-Format Output” below.

Description

The command prints a list of devices that are being managed by drivers that follow
the UEFI Driver Model.

Examples
• To display all devices compliant with the EFI Driver Model

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

117

 Shell> devices
 C T D
 T Y C I
 R P F A
 L E G G #P #D #C Device Name
 == = = = == == == ==
 20 R - - - 1 13 VenHw(58C518B1-76F3-11D4-BCEA-0080C73C8881)
 3D D - - 3 - - Primary Console Input Device
 3E D - - 3 - - Primary Console Output Device
 64 B - - 1 6 2 "UGA Window 1
 65 B - - 1 6 2 UGA Window 2"
 66 B - - 1 1 1 EFI_WIN_NT_SERIAL_PORT=COM1
 67 B - - 1 1 1 COM1
 68 B - - 1 4 2 PC-ANSI Serial Console
 69 D - - 1 - - EFI_WIN_NT_SERIAL_PORT=COM2
 6E D - - 1 - - EFI_WIN_NT_PHYSICAL_DISKS=e:RW;262144;512
 6F D - - 1 - - EFI_WIN_NT_CPU_MODEL=Intel(R) Processor Model
 70 D - - 1 - - EFI_WIN_NT_CPU_SPEED=3000
 71 D - - 1 - - EFI_MEMORY_SIZE=64
 72 D - - 1 - - EFI_MEMORY_SIZE=64

Standard-Format Output

Table 17 Standard-Format Output for devices
Column
Number

Description

1 The name of the table. The name is DevicesInfo

2 The handle number of the EFI device

3 The device type:
R – Root Controller
B – Bus Controller
D – Device Controller

4 A managing driver supports the Driver Configuration Protocol: Yes
(Y) or No (N)

5 A managing driver supports the Driver Diagnostics Protocol: Yes (Y)
or No (N)

6 The number of parent controllers for this device

7 The number of this type of devices.

8 The number of child controllers produced by this device

9 The name of the device from the Component Name Protocol

118

devtree

Summary

Displays the tree of devices compliant with the UEFI Driver Model.

Usage
devtree [-b] [-d] [-l XXX] [DeviceHandle]

Options
DeviceHandle

Display device tree below a certain handle

-b

Display one screen at a time

-d

Display device tree using device paths

-l

Display device tree using the specified language

Description

This command prints a tree of devices that are being managed by drivers that
follow the UEFI Driver Model. By default, the devices are printed in device names
that are retrieved from the Component Name Protocol. If the option –d is specified,
the device paths will be printed instead.

Examples
• To display the tree of all devices compliant with the UEFI Driver Model:
 Shell> devtree

• To display the tree of all devices below device 28 compliant with the UEFI
Driver Model:
 Shell> devtree 28

• To display the tree of all devices compliant with the UEFI Driver Model one
screen at a time:
 Shell> devtree -b

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

119

dh

Summary

Displays the device handles in the UEFI environment.

Usage
dh [-l <lang>] [handle | -p <Protocol_Identifier>] [-d] [-v]
dh decode [-p <Protocol_Identifier>]

Options
handle

Specific handle to dump information about (a hexadecimal number). If not
present, then all information will be dumped.

-p <Protocol_Identifier>

Dumps all handles of a protocol specified by <Protocol_Identifier>.
Protocol_Identifier is either a GUID or the string representation of a protocol.

-d

Dumps UEFI Driver Model-related information.

-l

Dumps information using the language codes, as described in Appendix M of
the UEFI specification.

-sfo

Displays information as described in “Standard-Format Output” below.

-v, -verbose

Dumps verbose information about a specific handle.

decode [-p <Protocol_Identifier>]

Display decode information. Protocol_Identifier is either a GUID or the string
representation of a protocol.

Description

This command displays the device handles in the EFI environment. If this command
is used with a specific handle number, the details of all the protocols that are
associated with that device handle are displayed. Otherwise, the -p option can be
used to list the device handles that contain a specific protocol.

If neither –p or handle is specified, then all handles will be displayed.

If decode is specified, then only decode information is displayed. With no additional
parameters, display all possible identifiers and their associated GUID in alphabetical order.
If -p is also used, then only decode information for the specified protocol identifier is
dumped. Decode information includes the full GUID and the string representation that can
be used instead.

120

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples

To display all handles and display one screen at a time:
 Shell> dh -b
 Handle dump
 1: Image(DXE Core)
 2: FwVol FwFileSys FwVolBlk DevPath(MemMap(11:1B50000-
 1D4FFC8))
 3: Image(Ebc)
 4: DevPath(MemMap(11:1CA0000-1CB0000))
 5: Image(WinNtThunk)
 6: WinNtThunk DevPath(..76F3-11D4-BCEA-0080C73C8881))
 7: Image(WinNtBusDriver) DriverBinding
 ...

To display the detailed information on handle 0x30:
 Shell> dh 30
 Handle 30 (01AF5308)
 IsaIo
 ROM Size......: 00000000
 ROM Location..: 00000000
 ISA Resource List :
 IO : 000003F8-000003FF Attr : 00000000
 INT : 00000004-00000000 Attr : 00000000

 dpath
 PNP Device Path for PnP
 HID A0341D0, UID 0x0
 Hardware Device Path for PCI
 PNP Device Path for PnP
 HID 50141D0, UID 0
 AsStr: 'Acpi(PNP0A03,0)/Pci(1F|0)/Acpi(PNP0501,0)'

To display all handles with 'diskio' protocol:

121

 Shell> dh -p diskio
 Handle dump by protocol 'Diskio'
 15: DiskIo BlkIo DevPath(..i(3|1)/Ata(Secondary,Master))
 16: DiskIo BlkIo DevPath(..,1)/PCI(0|0)/Scsi(Pun0,Lun0))
 44: DiskIo BlkIo Fs DevPath(..ABD0-01C0-507B-9E5F8078F531))
 ESP
 45: DiskIo BlkIo Fs DevPath(..i(Pun0,Lun0)/HD(Part4,SigG0))
 ESP
 17: DiskIo BlkIo DevPath(..PCI(3|1)/Ata(Primary,Master))

To display all handles with 'Image' protocol and break when the screen is full:
 Shell> dh -p Image -b
 Handle dump by protocol 'image'
 1: Image(DXE Core)
 5: Image(WinNtThunk)
 7: Image(WinNtBusDriver) DriverBinding
 8: Image(Metronome)
 A: Image(IsaBus) DriverBinding
 B: Image(WinNtConsole) DriverBinding
...

To display a list of Protocol Identifiers and associated GUIDs:
Shell> dh decode
AbsolutePointer: 8D59D32B-C655-4AE9-9B15-F25904992A43
AcpiTable: FFE06BDD-6107-46A6-7BB2-5A9C7EC5275C
AdapterInfo: E5DD1403-D622-C24E-8488-C71B17F5E802
ARP: F4B427BB-BA21-4F16-BC4E-43E416AB619C
ARPServiceBinding: F44C00EE-1F2C-4A00-AA09-1C9F3E0800A3
AtaPassThru: 1D3DE7F0-0807-424F-AA69-11A54E19A46F
AuthenticationInfo: 7671D9D0-53DB-4173-AA69-2327F21F0BC7
…

To display decode of specified GUID:

Shell> dh decode –p F4B427BB-BA21-4F16-BC4E-43E416AB619C
ARP: F4B427BB-BA21-4F16-BC4E-43E416AB619C

To display decode of specified Protocol Identifier:
Shell> dh decode –p ARP
ARP: F4B427BB-BA21-4F16-BC4E-43E416AB619C

Standard-Format Output

When using the –sfo command-line option, the dh shell command will produce one
of two tables: HandlesInfo or HandleInfo. The table columns are described in the
following table:

122

Table 18 dh Standard Formatted Output (HandlesInfo)
Column Number Description

1 The name of the table. The name is HandlesInfo.

2 Driver Name. Name of driver producing the handle.

3 Controller Name. Name of controller producing the handle.

4 Handle Number. Integer handle number.

5 Device Path.Device path associated with the handle.

6 Protocol Identifiers. Semicolon-delimited list of protocol
identifiers or GUIDs.

123

dir

Summary

An internal alias for the ls command.

124

disconnect

Summary

Disconnects one or more drivers from the specified devices.

Usage
disconnect DeviceHandle [DriverHandle [ChildHandle]]
disconnect –r [-nc]

Options
DeviceHandle

Device handle (a hexadecimal number). If not specified, then disconnect
DriverHandle.

DriverHandle

Driver handle (a hexadecimal number)

ChildHandle

Child handle of a device (a hexadecimal number). If not specified, then all
child handles of DeviceHandle will be disconnected.

-r

Disconnect all drivers from all devices, then reconnect consoles.

-nc

Do not reconnect the console devices.

Description

This command disconnects one or more drivers from the specified devices. If the -r
option is used, all drivers are disconnected from all devices in the system, then
only the console devices found in the UEFI global variables (see UEFI specification,
chapter 3) are reconnected. If the -nc option is used along with the -r option, the
console devices are not reconnected.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a
security violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

125

Examples
• To disconnect all drivers from all devices, then reconnect console devices:

 Shell> disconnect –r

• To disconnect all drivers from all devices, including console devices:
Shell> disconnect -r -nc
• To disconnect all drivers from device 0x28:

 fs0:\> disconnect 28

• To disconnect driver 0x17 from device 0x28:
 fs0:\> disconnect 28 17

• To disconnect driver 0x17 from controlling the child 0x32 of device 0x28
 fs0:\> disconnect 28 17 32

126

dmem

Summary

Displays the contents of system, I/O register, PCI/PCIe configuration space, or
device memory.

Usage
dmem [-b] [address] [size] [-MMIO] | -IO | -PCI | -PCIE]

Options
address

Starting address in hexadecimal format

size

Number of bytes to display in hexadecimal format

-b

Display one screen at a time

-MMIO

Memory-Mapped IO Address type

-IO

IO Address type

-PCI

PCI Configuration Space. The address will have the format ssssbbddffrr, where ssss =
Segment, bb = Bus, dd = Device, ff = Function and rr = Register.

-PCIE

PCI Express Configuration Space. The address will have the format ssssbbddffrrr,
where ssss = Segment, bb = Bus, dd = Device, ff = Function and rrr = Register.

Description

This command displays the contents of system memory (volatile or persistent), I/O
register, PCI/PCIe configuration space, or device memory. The address and size
should be typed in hex value. If address is not specified, then the contents of the
EFI System Table are displayed. Otherwise, memory starting at address is
displayed. The size specifies the number of bytes to display. If size is not
specified, then it defaults to 512 bytes. If –MMIO, -IO, -PCI, and -PCIE are
not specified, then main system memory (volatile or persistent) is displayed. -
MMIO displays device memory, -IO displays device I/O ports, -PCI displays PCI
Configuration Space, and –PCIE displays PCIE Configuration Space.

127

Examples

* To display the EFI system table pointer entries:
 fs0:\> dmem

 Memory Address 000000003FF7D808 200 Bytes
 3FF7D808: 49 42 49 20 53 59 53 54-02 00 01 00 78 00 00 00 *IBI SYST....x...*
 3FF7D818: 5C 3E 6A FE 00 00 00 00-88 2E 1B 3F 00 00 00 00 *\>j........?....*
 3FF7D828: 26 00 0C 00 00 00 00 00-88 D3 1A 3F 00 00 00 00 *&..........?....*
 3FF7D838: A8 CE 1A 3F 00 00 00 00-88 F2 1A 3F 00 00 00 00 *...?.......?....*
 3FF7D848: 28 EE 1A 3F 00 00 00 00-08 DD 1A 3F 00 00 00 00 *(..?.......?....*
 3FF7D858: A8 EB 1A 3F 00 00 00 00-18 C3 3F 3F 00 00 00 00 *...?..........*
 3FF7D868: 00 4B 3F 3F 00 00 00 00-06 00 00 00 00 00 00 00 *.K............*
 3FF7D878: 08 DA F7 3F 00 00 00 00-70 74 61 6C 88 00 00 00 *...?....ptal....*
 3FF7D888: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D898: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8A8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8B8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8C8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8D8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8E8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D8F8: 00 00 00 00 00 00 00 00-70 68 06 30 88 00 00 00 *........ph.0....*
 3FF7D908: 65 76 6E 74 00 00 00 00-02 02 00 60 00 00 00 00 *evnt.......`....*
 3FF7D918: 18 6F 1A 3F 00 00 00 00-10 E0 3F 3F 00 00 00 00 *.o.?..........*
 3FF7D928: 10 00 00 00 00 00 00 00-40 C0 12 3F 00 00 00 00 *........@..?....*
 3FF7D938: 10 80 13 3F 00 00 00 00-00 00 00 00 00 00 00 00 *...?............*
 3FF7D948: 00 00 00 00 00 00 00 00-40 7D 3F 3F 00 00 00 00 *........@.....*
 3FF7D958: 50 6F 1A 3F 00 00 00 00-00 00 00 00 00 00 00 00 *Po.?............*
 3FF7D968: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D978: 00 00 00 00 00 00 00 00-70 74 61 6C 88 00 00 00 *........ptal....*
 3FF7D988: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D998: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9A8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9B8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9C8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9D8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9E8: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 3FF7D9F8: 00 00 00 00 00 00 00 00-70 68 06 30 A0 00 00 00 *........ph.0....*

 Valid EFI Header at Address 000000003FF7D808
 --
 System: Table Structure size 00000078 revision 00010002
 ConIn (3F1AD388) ConOut (3F1AF288) StdErr (3F1ADD08)
 Runtime Services 000000003F3FC318
 Boot Services 000000003F3F4B00
 SAL System Table 000000003FF22760
 ACPI Table 000000003FFD9FC0
 ACPI 2.0 Table 00000000000E2000
 MPS Table 000000003FFD0000
 SMBIOS Table 00000000000F0020

* To display memory contents from 1af3088 with size of 16 bytes:
 Shell> dmem 1af3088 16
 Memory Address 0000000001AF3088 16 Bytes
 01AF3088: 49 42 49 20 53 59 53 54-00 00 02 00 18 00 00 00 *IBI SYST........*
 01AF3098: FF 9E D7 9B 00 00 *......*

* To display memory mapped IO contents from 1af3088 with size of 16 bytes:

128

 Shell> dmem 1af3088 16 -MMIO

* To display 0x10 bytes of PCIE configuration space, ssss=0000, bb=06, dd=00,
ff=00, rrr=000:
Shell> dmem 0000060000000 10 -PCIE

129

dmpstore

Summary

Manages all UEFI variables.

Usage
dmpstore [-b] [-d] [-all | (–guid guid)] [variable] [-sfo]
dmpstore [-all | (–guid guid)] [variable] [-s file]
dmpstore [-all | (–guid guid)] [variable] [-l file]

Options
-b

Display one screen at a time

variable

Specifies the name of the variable name. May be a literal name or a pattern
as specified in the MetaiMatch() function of the
EFI_UNICODE_COLLATION2_PROCOOL.

-guid

Specifies the GUID of the variables to be displayed. The GUID has the
standard text format. If guid is not specified and –all is not specified, then
the EFI_GLOBAL_VARIABLE GUID is assumed.

-sfo

Displays information as described in “Standard-Format Output” below.

-all

Indicates that all variables should be dumped, including those with a different
GUID than EFI_GLOBAL_VARIABLE.

-d

Delete variables

-s

Save variables to file

-l

Load and set variables from file

Description

This command is used to manage the UEFI NVRAM variables. The variables to
display or delete depend on the command line options, as specified in the following
table:

130

Table 19 Variable command line options
Variable GUID -all Description

--- --- --- All variables with the GUID EFI_GLOBAL_VARIABLE will
be operated on.

--- --- X All variables (regardless of GUID or name) will be
operated on.

--- X --- All variables with the specified GUID will be operated on.

X --- --- The variable with the GUID EFI_GLOBAL_VARIABLE and
the name Variable will be operated on.

X --- X All variables with the specified name will be operated on
(regardless of GUID).

X X --- The variable with the specified GUID and name Variable
will be operated on.

The variable value is printed as hexadecimal dump.

Option –d is used to delete variables. Option –s and –l are used to save and load variables
to and from file. The variable name can be specified when using these flags so that the
operation only takes effect on that variable.

Examples

To dump all variables with the GUID EFI_GLOBAL_VARIABLE:
Shell> dmpstore

To dump all variables (regardless of GUID or name):
Shell> dmpstore -all

To dump the ‘path’ variable with the GUID ‘158DEF5A-F656-419C-B027-7A3192C079D2’:
Shell> dmpstore –guid 158DEF5A-F656-419C-B027-7A3192C079D2 path

To dump all variables matching ‘hwerr*’ regardless of GUID:
Shell> dmpstore –all hwerr*

To save all variables (regardless of GUID or name) to a file VarDump.txt:
Shell> dmpstore –all –s VarDump.txt

To delete the ‘BootOrder’ variable with the GUID EFI_GLOBAL_VARIABLE:
Shell> dmpstore –d BootOrder

Standard-Format Output

The standard-format output for the dmpstore command produces a single table:
VariableInfo. The following columns are described:

131

Table 20 dmpstore Standard Formatted Output (VariableInfo)
Column Number Description

1 The name of the table. The name is VariableInfo.

2 Variable Name. Name of the variable.

3 Vendor GUID. The variable GUID represented as a string.

4 Attributes. The variable attributes represented as a bitmask.

5 Data Size. The size of Data.

6 Data. The variable data represented as a hexadecimal byte
array.

132

drivers

Summary

Displays a list of information for drivers that follow the UEFI Driver Model in the
UEFI environment.

Usage
drivers [-l XXX] [-sfo]

Options
-l

Displays drivers using the language code XXX, which has the format specified
by Appendix M of the UEFI specification.

-sfo

Displays information as described in “Standard-Format Output” below.

Description

This command displays a list of information for drivers that follow the UEFI Driver
Model in the UEFI environment. The list includes:

• The handle number of the EFI driver.

• The version number of the EFI driver.

• The driver type. A B in this column indicates a bus driver, and D indicates a
device driver.

• Indicates that the driver supports the Driver Configuration Protocol.

• Indicates that the driver supports the Driver Diagnostics Protocol.

• The number of devices that this driver is managing.

• The number of child devices that this driver has produced.

• The name of the driver from the Component Name Protocol.

• The file path from which the driver was loaded.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples
• To display the list:

133

Shell> drivers
 T D
D Y C I
R P F A
V VERSION E G G #D #C DRIVER NAME IMAGE NAME
=== ======= = = = == == ===================================== ==========
39 00000010 D - - 1 - Platform Console Management Driver ConPlatform
3A 00000010 D - - 1 - Platform Console Management Driver ConPlatform
3B 00000010 B - - 1 1 Console Splitter Driver ConSplitter
3C 00000010 ? - - - - Console Splitter Driver ConSplitter
3D 00000010 B - - 1 1 Console Splitter Driver ConSplitter
3E 00000010 ? - - - - Console Splitter Driver ConSplitter
42 00000010 D - - 1 - UGA Console
Driver GraphicsConsole
43 00000010 ? - - - - Serial Terminal Driver Terminal
44 00000010 D - - 1 - Generic Disk I/O Driver DiskIo
45 00000010 D - - 1 - FAT File System Driver Fat
48 00000010 ? - - - - ISA Bus Driver IsaBus
49 00000010 ? - - - - ISA Serial Driver IsaSerial
4C 00000010 B - - 1 1 PCI Bus Driver PciBus
55 00000010 D X X 1 - Windows Block I/O Driver WinNtBlockIo
56 00000010 ? - - - - Windows Text Console Driver WinNtConsole
57 00000010 ? - - - - Windows Serial I/O Driver WinNtSerialIo
58 00000010 D - - 1 - Windows Simple File System Driver
WinNtSimpleFileSystem
59 00000010 B - - 1 3 Windows Bus
Driver WinNtBusDriver
5F 00000010 D - - 1 - Windows Universal Graphics Adapter WinNtUga

Standard-Format Output

The standard-format output for the drivers command produces a single table:
Drivers. The following columns are described:

Table 21 Drivers command table
Column Number Description

1 The name of the table. The name is DriversInfo.

2 Handle Number. The handlenumber of the UEFI driver.

3 Version Number. The version number of the UEFI Driver

4 Driver Type. Either ‘B’ for bus driver or ‘D’ for device driver.

5 Configuration Protocol Support. Either “Y” (Yes) or “N” (No)

6 Driver Protocol Support. Either ‘Y’ (Yes) or ‘N’ (No)

7 Devices Managed. The number of devices that this driver is
managing.

8 Child Devices. The number of child devices that this driver has
produced.

9 Driver Name. The name of the driver from the Component
Name Protocol.

10 Driver Image Path. The device path from which the driver was
loaded.

134

drvcfg

Summary

Configures the driver using the platform’s underlying configuration infrastructure.

Usage
drvcfg [-l XXX] [-c] [-f <Type>|-v|-s] [DriverHandle [DeviceHandle
[ChildHandle]]] [-i filename] [-o filename]

Options
Type

The type of default configuration options to force on the controller.
0 - Standard Defaults.
1 - Manufacturing Defaults.
2 - Safe Defaults.
4000-FFFF - Custom Defaults.

DriverHandle

The handle of the driver to configure

DeviceHandle

The handle of a device that DriverHandle is managing

ChildHandle

The handle of a device that is a child of DeviceHandle

-c

Configure all child devices

-l

Configure using the ISO 3066 language specified by XXX

-f

Force defaults

-v

Validate options

-s

Set options

-i

Receive configuration updates from an input file
-o

Export the settings of the specified driver instance to a file

Description

This command invokes the platform’s Configuration infrastructure. The table below
describes the values for the Type parameter. Other values depend on the driver’s
implementation.

135

Table 22 Table Default Values for the “Type” Parameter
Value Type of

Default
Description

0x0000 Standard Defaults Places a controller in a state that is prepared for
normal operation in a platform.

0x0001 Manufacturing
Defaults

Optional type that places the controller in a
configuration that is suitable for a manufacturing
and test environment.

0x0002 Safe Defaults Optional type that places a controller in a safe
configuration that has the greatest probability of
functioning correctly in a platform.

0x0003 –
0x3FFF

Reserved Specification reserved range of default values

0x4000 –
0xFFFF

Custom Defaults Optional type that places the controller in a
configuration that has custom characteristics.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_UNSUPPORTED The action as requested was unsupported.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples

To display the list of devices that are available for configuration:
 Shell> drvcfg

To display the list of devices and child devices that are available for configuration:
 Shell> drvcfg –c

To force defaults on all devices:
 Shell> drvcfg –f 0

To force defaults on all devices that are managed by driver 0x17:
 Shell> drvcfg –f 0 17

136

To force defaults on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –f 0 17 28

To force defaults on all child devices of device 0x28 that is managed by driver
0x17:
 Shell> drvcfg –f 0 17 28 –c

To force defaults on child device 0x30 of device 0x28 that is managed by driver
0x17:
 Shell> drvcfg –f 0 17 28 30

To validate options on all devices:
 Shell> drvcfg –v

To validate options on all devices that are managed by driver 0x17:
 Shell> drvcfg –v 17

To validate options on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –v 17 28

To validate options on all child devices of device 0x28 that is managed by driver
0x17:
 Shell> drvcfg –v 17 28 –c

To validate options on child device 0x30 of device 0x28 that is managed by driver
0x17:
 Shell> drvcfg –v 17 28 30

To set options on device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –s 17 28

To set options on child device 0x30 of device 0x28 that is managed by driver 0x17:
 Shell> drvcfg –s 17 28 30

To set options on device 0x28 that is managed by driver 0x17 in English:
 Shell> drvcfg –s 17 28 –l eng

To set options on device 0x28 that is managed by driver 0x17 in Spanish:
 Shell> drvcfg –s 17 28 –l spa

137

drvdiag

Summary

Invokes the Driver Diagnostics Protocol.

Usage
drvdiag [-c] [-l XXX] [-s|-e|-m] [DriverHandle [DeviceHandle [ChildHandle]]]

Options
DriverHandle

The handle of the driver to diagnose

DeviceHandle

The handle of a device that DriverHandle is managing

ChildHandle

The handle of a device that is a child of DeviceHandle

-c

Diagnose all child devices

-l

Diagnose drivers using the language code XXX, which has the format specified
by Appendix M of the UEFI Specification.

-s

Run diagnostics in standard mode

-e

Run diagnostics in extended mode

-m

Run diagnostics in manufacturing mode

Description

This command invokes the Driver Diagnostics Protocol.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples

To display the list of devices that are available for diagnostics:

138

 Shell> drvdiag

To display the list of devices and child devices that are available for diagnostics:
 Shell> drvdiag –c

To run diagnostics in standard mode on all devices:
 Shell> drvdiag –s

To run diagnostics in standard mode on all devices in English:
 Shell> drvdiag –s –l eng

To run diagnostics in standard mode on all devices in Spanish:
 Shell> drvdiag –s –l spa

To run diagnostics in standard mode on all devices and child devices:
 Shell> drvdiag –s –c

To run diagnostics in extended mode on all devices:
 Shell> drvdiag –e

To run diagnostics in manufacturing mode on all devices:
 Shell> drvdiag –m

To run diagnostics in standard mode on all devices managed by driver 0x17:
 Shell> drvdiag –s 17

To run diagnostics in standard mode on device 0x28 managed by driver 0x17:
 Shell> drvdiag –s 17 28

To run diagnostics in standard mode on all child devices of device 0x28 managed
by driver 0x17:
 Shell> drvdiag –s 17 28 –c

To run diagnostics in standard mode on child device 0x30 of device 0x28 managed
by driver 0x17:
 Shell> drvdiag –s 17 28 30

139

echo

Summary

Controls whether or not script commands are displayed as they are read from the
script file and prints the given message to the display.

Usage
echo [-on|-off]
echo [message]

Options
message

Message to display

-on

Enables display when reading commands from script files.

-off

Disables display when reading commands from script files.

Description

The first form of this command controls whether or not script commands are
displayed as they are read from the script file. If no argument is given, the current
"on" or "off" status is displayed. The second form prints the given message to the
display.

Note

This command does not change the value of the environment variable lasterror.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

140

Examples
• To display a message string of 'Hello World':
 fs0:\> echo Hello World
 Hello World

• To turn command echoing on:
 fs0:\> echo -on

• To execute HelloWorld.nsh, and display when reading lines from the script file:
 fs0:\> HelloWorld.nsh
 +HelloWorld.nsh> echo Hello World
 Hello World

• To turn command echoing off:
 fs0:\> echo -off

• To display the current echo setting:
 fs0:\> echo
 Echo is off

141

edit

Summary

Full screen editor for ASCII or UCS-2 files.

Usage
edit [file]

Options
file

Name of file to be edited. If none is specified, then an empty file will be
created with a default file name.

Description

This command allows a file to be edited using a full screen editor. The editor
supports both UCS-2 and ASCII file types. The following example shows typical
output for help on this command.

Examples

• To edit the 'shell.log' file:
 fs0:\> edit shell.log

142

eficompress

Summary

Compress a file using EFI Compression Algorithm.

Usage
eficompress infile outfile

Options

 infile

- Filename for uncompressed input file

 outfile

- Filename for compressed output file

Description

This command is used to compress a file using EFI Compression Algorithm and
write the compressed form out to a new file.

Examples
• To compress a file named ‘uncompressed’ to file ‘compressed’:
 fs0:\> eficompress uncompressed compressed

143

efidecompress

Summary

Decompress a file using EFI Decompression Algorithm.

Usage
efidecompress infile outfile

Options
infile

Filename of compressed input file

outfile

 Filename of decompressed output file

Description

This command is used to decompress a file using EFI Decompression Algorithm and
write the decompressed form out to a new file.

Examples
• To decompress a file named ‘compressed’ to file ‘uncompressed’:
 fs0:\> efidecompress compressed uncompressed

144

exit

Summary

Exits the UEFI Shell or the current script.

Usage
exit [/b] [exit-code]

Options
/b

Indicates that only the current UEFI shell script should be terminated. Ignored
if not used within a script.

exit-code

If exiting a UEFI shell script, the value that will be placed into the
environment variable lasterror. If exiting an instance of the UEFI shell, the
value that will be returned to the caller. If not specified, then 0 will be
returned.

Description

This command exits the UEFI Shell or, if /b is specified, the current script.

Status Codes Returned
0 Exited normally

exit-code The value specified as an option.

145

for

Usage
for %indexvar in set [;]

 command [arguments]
 [command [arguments]]
 …
endfor

for %indexvar run (start end [step])
 command [arguments]
 [command [arguments]]
 …
endfor

Description

The for command executes one or more commands for each item in a set of items.
The set may be text strings or filenames or a mixture of both, separated by spaces
(if not in a quotation). If the length of an element in the set is between 0 and 256,
and if the string contains wildcards, the string will be treated as a file name
containing wildcards, and be expanded before command is executed.

If after expansion no such files are found, the literal string itself is kept. Indexvar is
any alphabet character from ‘a’ to ‘z’ or ‘A’ to ‘Z’, and they are case sensitive. It
should not be a digit (0-9) because %digit will be interpreted as a positional
argument on the command line that launches the script. The namespace for index
variables is separate from that for environment variables, so if indexvar has the
same name as an existing environment variable, the environment variable will
remain unchanged by the for loop.

Each command is executed once for each item in the set, with any occurrence of
%indexvar in the command replacing with the current item. In the second format
of for … endfor statement, indexvar will be assigned a value from start to end with
an interval of step. start and end can be any integer whose length is less than 7
digits excluding sign, and it can also applied to step with one exception of zero.
step is optional, if step is not specified it will be automatically determined by
following rule, if start <= end then step = 1, otherwise step = -1. start, end and
step are divided by space. Use of the same index variable in nested for statements
results in undefined behavior.

This command may only be used in scripts.

This command does not change the value of the environment variable lasterror.

146

Examples

Sample for loop – listing all .txt files

echo -off
for %a in *.txt
 echo %a exists
endfor

If in current directory, there are 2 files named file1.txt and file2.txt, the output of
the sample script will be:
Sample1> echo –off
file1.txt exists
file2.txt exists

147

getmtc

Usage
getmtc

Description

This command displays the current monotonic counter value. The lower 32 bits
increment every time this command is executed. Every time the system is reset,
the upper 32 bits will be incremented, and the lower 32 bits will be reset to 0. The
following example is typical output from help for this command.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_DEVICE_ERROR The underlying device was not working correctly.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

Examples
fs0:\> getmtc
100000000
fs0:\> getmtc
100000001

148

goto

Usage
goto label

Description

The goto command directs script file execution to the line in the script file after the
given label. The command is not supported from the interactive shell. A label is a
line beginning with a colon (:). It can appear either after the goto command, or
before the goto command. The search for label is done forward in the script file,
from the current file position. If the end of the file is reached, the search resumes
at the top of the file and continues until label is found or the starting point is
reached. If label is not found, the script process terminates and an error message
is displayed. If a label is encountered but there is no goto command executed, the
label lines are ignored. Using goto command to jump into another for loop is not
allowed, but jumping into an if statement is legal.

Note

The goto command is only valid in script files.

Examples
This is a script
goto Done
…
:Done
cleanup.nsh

149

help

Summary

Displays the list of commands that are built into the UEFI Shell.

Usage
help [cmd | pattern | special] [-usage] [-verbose] [-section sectionname][-b]

Options
cmd

Command to display help about.

pattern

Pattern which describes the commands to be displayed.

special

Displays a list of the special characters used in the shell command line.

-usage

Display the usage information for the command. The same as specifying –
section:NAME and –section:SYNOPSIS

-section sectionname

Display the specified section of the help information. Standard section names
can be found in Appendix B.

Description

The help command displays information about one or more shell commands.

If no other options are specified, each command will be displayed along with a brief
description of its function. If –verbose is specified, then all help information for the
specified commands. If –section is specified, only the help section specified will be
displayed (see below). If –usage is specified, then the command, a brief description
and the usage will be displayed.

The help text is gathered from UCS-2 text files found in the directory where the
shell or shell command executable was located. The files have the name command-
name.man, where command-name is the name of the shell command. The files
follow a sub-set of the MAN page format, as described below.

If no option is specified, then only the NAME section of the page is reproduced.

Status Codes Returned
0 The help was displayed

1 No command help was displayed

150

Examples

To display the list of commands in the UEFI Shell and break after one screen:
 Shell> help –b
 ? - Displays commands list or verbose help of a
 command
 alias - Displays, creates, or deletes aliases in the
 UEFI Shell
 attrib - Displays or changes the attributes of files
 or directories
 cd - Displays or changes the current directory
 cls - Clears the standard output with an optional
 background color
 connect - Binds an EFI driver to a device and starts
 the driver
 copy - Copies one or more files/directories to
 another location
 ...

To display help information of a Shell command - ls:
 Shell> help ls
 Shell> ? ls
 Shell> ls -?

To display the list of commands that start with character ‘p’:
 Shell> help p*
 pause – Prints a message and suspends for keyboard input

151

hexedit

Summary

Full screen hex editor for files, block devices, or memory.

Usage
hexedit [[-f] filename| [-d diskname offset size] | [-m address size]]

Options
-f

Name of file to edit

-d

Disk block to edit:

 DiskName - Name of disk to edit (for example fs0)

 Offset - Starting block number (beginning from 0)

 Size - Number of blocks to be edited

-m

Memory region to edit:

 Address - Starting 32-bit memory address (beginning

 from 0)

 Size - Size of memory region to be edited in bytes

Description

This command allows a file, block device, or memory region to be edited. The
region being edited is displayed as hexadecimal bytes, and the contents can be
modified and saved. The following example shows typical output for help on this
command.

Examples
• To edit a file in hex mode:
 fs0:\> hexedit test.bin

• To edit block device fs0 starting at block 0 with size of 2 blocks:
 fs0:\> hexedit -d fs0 0 2

• To edit memory region starting at address 0x00000000 with size of 2 bytes:
 fs0:\> hexedit -m 0 2

152

if

Controls which script commands will be executed based on provided conditional
expressions.

Usage
if [not] exist filename then
 command [arguments]
 [command [arguments]]
 …
 [else
 command [arguments]
 [command [arguments]]
 …
]
 endif

if [/i] [not] string1 == string2 then
 command [arguments]
 [command [arguments]]
 …
 [else
 command [arguments]
 [command [arguments]]
 …
]
endif

if [/i][/s] ConditionalExpression then
 command [arguments]
 [command [arguments]]
 …
 [else
 command [arguments]
 [command [arguments]]
 …
]
 Endif

Options
ConditionalExpression

Conditional expression, as described in “Expressions”, below.

Description

The if command executes one or more commands before the else or endif
commands, if the specified condition is true; otherwise commands between else (if
present) and endif are executed.

In the first usage of if, the exist condition is true when the file specified by
filename exists. The filename argument may include device and path information.
Also wildcard expansion is supported by this form. If more than one file matches
the wildcard pattern, the condition evaluates to TRUE.

In the second usage, the string1 == string2 condition is true if the two strings are
identical. Here the comparison can be case sensitive or insensitive, it depends on

153

the optional switch /i. If /i is specified, it will compare strings in the case
insensitive manner; otherwise, it compares strings in the case sensitive manner.

In the third usage, general purpose comparison is supported using expressions
optionally separated by and or or. Since < and > are used for redirection, the
expressions use common two character (FORTRAN) abbreviations for the operators
(augmented with unsigned equivalents):

Expressions

Conditional expressions are evaluated strictly from left to right. Complex
conditionals requiring precedence may be implemented as nested ifs.

The expressions used in the third usage have the following syntax:

conditional-expression := expression |

 expression and expression

 expression or expression

expression := expr |

 not expr

expr := item binop item |

 boolfunc(string)

item := mapfunc(string) |

 string

mapfunc := efierror | pierror | oemerror

boolfunc := isint | exists | available | profile

binop := gt | lt | eq | ne | ge | le | == | ugt | ult | uge | ule

Comparisons

By default, comparisons are done numerically if the strings on both sides of the
operator are numbers (as defined below) and in case sensitive character sort order
otherwise. Spaces separate the operators from operands.

The /s option forces string comparisons and the /i option forces case-insensitive
string comparisons. If either of these is used, the signed or unsigned versions of
the operators have the same results. The /s and /i apply to the entire line and

154

must appear at the start of the line (just after the if itself). The two may appear
in either order.

When performing comparisons, the Unicode Byte Ordering Character is ignored at
the beginning of any argument.

Table 23 Comparison Operators
Operator Definition

gt Greater than

ugt Unsigned Greater than

lt Less than

ult Unsigned Less than

ge Greater than or equal

uge Unsigned greater than or equal

le Less than or equal

ule Unsigned less than or equal

ne Not equal

eq Equals (semantically equivalent to ==)

== Equals (semantically equivalent to eq)

Error Mapping Functions

These functions are used to convert integers into UEFI, PI or OEM error codes, as
defined by Appendix D of the UEFI specification.

Table 24 Functions used to convert integers into UEFI, PI or OEM error
codes

Function Definition

UefiError Sets top nibble of parameter to 1000 binary (0x8)

PiError Sets top nibble of parameter to 1010 binary (0xA)

OemError Sets top nibble of parameter to 1100 binary (0xC)

Each function maps the small positive parameter into its equivalent error
classification as described in Appendix D of the UEFI Specification. For example,
...
if %lasterror% == EfiError(8) then # Check for write protect.
...

These functions may only be used to modify operators in comparisons.

Boolean Functions

The following built-in Boolean functions are also available:

155

Table 25 Boolean Functions
Function Definition

IsInt Evaluates to true if the parameter string that follows is a
number (as defined below) and false otherwise.

Exists Evaluates to true if the file specified by string exists is in
the current working directory or false if not.

Available Evaluates to true if the file specified by string is in the
current working directory or current path.

Profile Determines whether the parameter string matches one of
the profile names in the profiles environment variable.

No spaces are allowed between function names and the open parenthesis, between
the open parenthesis and the string or between the string and the closed
parenthesis. Constant strings containing spaces must be quoted.

Note: To avoid ambiguity and current or future incompatibility, users are strongly
encouraged to surround constant strings that contain parenthesis with quotes
in if statements.

Conditional Expressions

Not inverts the sense of only the following expression.

Numbers

Allowable number formats are decimal numbers and C-style case insensitive
hexadecimal numbers. Numbers may be preceded by a “-“ indicating a negative
number. Examples:

• 13

• 46

• -0x3FFF

• 0x3fff

• 0x1234

Unsigned values must be less than 264. Signed integer values are bounded by
±263. Numbers are internally represented in two’s compliment form. The
representation of the number in the string has no bearing on the way that number
is treated in an numeric expression – type is assigned by the operator. So, for
example, -1 lt 2 is true but -1 ult 2 is false.

156

Examples

Example script for “if” command usages 1 and 2

if exist fs0:\myscript.nsh then
 myscript myarg1 myarg2
endif
if %myvar% == runboth then
 myscript1
 myscript2
else
 echo ^%myvar^% != runboth
endif

In this example, if the script file myscript.nsh exists in fs0:\, this script will be
launched with 2 arguments, myarg1 and myarg2. After that, environment variable
%myvar% is checked to see if its value is runboth, if so, script myscript1 and
myscript2 will be executed one after the other, otherwise a message %myvar% !=
runboth is printed.

Example script for “if” command usage 3

:Redo
echo Enter 0-6 or q to quit
assumes “input y” stores a character of user input into variable y
InputCh MyVar
if x%MyVar% eq x then
 echo Empty line. Try again
 goto Redo
endif

if IsInt(%MyVar%) and %MyVar% le 6 then
 myscript1 %MyVar%
 goto Redo
endif
if /i %MyVar% ne q then
 echo Invalid input
 goto Redo
endif

In this example, the script requests user input and uses the if command for input
validation. It checks for empty line first and then range checks the input. Note
also the use of the /i in the last comparison so “Q” and “q” are both supported.

Note: This command does not change the value of the environment variable
lasterror.

Note: The if command is only available in scripts.

Note: The else command is optional in an if/else statement.

157

ifconfig

Summary

Modify the default IP address of the UEFI IP4 Network Stack.

Usage
ifConfig [-?] [-r [Name]] [-l [Name]] [-s <Name> dhcp | <static <IP> <SubnetMask>
<GatewayMask>> | <dns <IP [,IP…]>>]

Options
Name

Adapter name, i.e., eth0

-r [Name]

Reconfigure all or specified interface, and set DHCP policy. If specified
interface is already set to DHCP, then refresh the IPv4 configuration.

-l [Name]

List the configuration for all or the specified interface.

-s < Name> static <IP> <SubnetMask> <GatewayMask>
Use static IP4 address configuration for all or specified interface.

-s <Name> dhcp
Use DHCP4 to request the IP4 address configuration dynamically for all
interface or specified interface.

-s <Name> dns <IP [,IP…]>
Configure DNS server addresses for the specified interface. This setting must
under static policy. IPs can be combined distinguished by space.

IP

IP4 address in four integer values (each between 0-255). i.e., 192.168.0.10

SubnetMask

Subnet mask in four integer values (each between 0-255), i.e., 255.255.255.0

GatewayMask

Default gateway in four integer values (each between 0-255), i.e.,
192.168.0.1

-?

Display the help message

Description

This command is used to modify the default IP address for the UEFI IP4 Network
Stack.

158

Examples

To list the configuration for the interface eth0:
 Shell:\> IfConfig -l eth0

To use DHCP4 to request the IP4 address configuration dynamically for the
interface eth0:
 Shell:\> IfConfig –s eth0 dhcp

 To use the static IP4 address configuration for the interface eth0:
 Shell:\> IfConfig –s eth0 static 192.168.0.5 255.255.255.0 192.168.0.1

To configure DNS server address for the eth0 interface:
Shell:\> ifconfig -s eth0 dns 192.168.0.8 192.168.0.9

To reconfigure all interfaces to DHCP:
Shell:\> ifconfig -r

To reconfigure eth0 interface to DHCP, or refresh eth0 IPv4 configuration if already DHCP:
Shell:\> ifconfig -r eth0

159

IfConfig6

Summary

Display or modify IPv6 configuration for network interface.

Usage
IfConfig6 -r [Name] | -l [Name]
IfConfig6 -s <Name> [dad <Num>] [auto | [man [id <Mac>] [host <IPv6> gw <IPv6>] [dns
<IPv6>]]]

Options
Name

Adapter name, i.e., eth0
-r [Name]

Reconfigure all or specified interface, and set automatic policy. If specified interface is
already set to automatic, then refresh the IPv6 configuration.

-l [Name]
List the configuration of the specified interface.

-s <Name> dad <Num>
Set dad transmits count of the specified interface.

-s <Name> auto

Set automatic policy of the specified interface.
-s <Name> man id <Mac>

Set alternative interface id of the specified interface.
Must under manual policy.

-s <Name> man host <IPv6> gw <IPv6>

Set static host IP and gateway address of the specified interface.
Must under manual policy.

-s <Name> man dns <IPv6>

Set DNS server IP addresses of the specified interface.
Must under manual policy.

-?

Display Help information.

Description

This command is used to display or modify IPv6 configuration for network interface.

Examples

To list the configuration for the interface eth0:
 Shell:\> ifconfig6 -l eth0

To use automatic configuration to request the IPv6 address configuration dynamically for
the interface eth0:
 Shell:\> ifconfig6 –s eth0 auto

To set the dad transmits count for eth0 under automatic policy:

160

 Shell:\> ifconfig6 –s eth0 auto dad 10

To set the alternative interface id of eth0 under manual policy:
 Shell:\> ifconfig6 –s eth0 man id ff:dd:aa:88:66:cc

To use the static IP6 addresses configuration for the interface eth0, and this configuration
survives the network reload:
Shell:\> ifconfig6 –s eth0 man host 2002::1/64 2002::2/64 gw 2002::3/64

161

load

Summary

Loads a UEFI driver into memory.

Usage
load [-nc] file [file...]

Options
-nc

Load the driver, but do not connect the driver.

File

File that contains the image of the UEFI driver (wildcards are permitted)

Description

This command loads an driver into memory. It can load multiple files at one time,
and the file name supports wildcards.

If the -nc flag is not specified, this command will try to connect the driver to a
proper device; it may also cause already loaded drivers be connected to their
corresponding devices.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAME
TER

One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_SECURITY_VIOLA
TION

This function was not performed due to a
security violation

SHELL_NOT_FOUND The requested file was not found

162

Examples

 fs0:\> load Isabus.efi
 load: Image 'fs0:\Isabus.efi' loaded at 18FE000 - Success

 fs0:\> load Isabus.efi IsaSerial.efi
 load: Image 'fs0:\Isabus.efi' loaded at 18E5000 - Success
 load: Image 'fs0:\IsaSerial.efi' loaded at 18DC000 - Success

 fs0:\> load Isa*.efi
 load: Image 'fs0:\IsaBus.efi' loaded at 18D4000 - Success
 load: Image 'fs0:\IsaSerial.efi' loaded at 18CB000 – Success

 fs0:\> load –nc IsaBus.efi
 load: Image ‘fs0:\Isabus.efi’ loaded at 18FE000 - Success

163

loadpcirom

Summary

Loads a UEFI driver from a file in the format of a PCI Option ROM.

Usage
loadpcirom [-nc] romfile [romfile...]

Options

 -nc

- Load the ROM image but do not connect the driver

 romfile

- PCI option ROM image file (wildcards are permitted)

Description

This command is used to load PCI option ROM images into memory for execution.
The file can contain legacy images and multiple PE32 images, in which case all
PE32 images will be loaded. The example below shows typical output from help for
this command.

Examples
To load a rom file ‘rom.bin’:
 fs0:\> LoadPciRom rom.bin
To load ‘*.bin’ files but do not connect the driver
 fs0:\> LoadPciRom –nc *.bin

164

ls

Summary

Lists a directory's contents or file information.

Usage
ls [-r] [-a[attrib]][-sfo][file]

Options
-r

Displays recursively (including subdirectories)

-a

Display only those files with the attributes which follow. If no attributes are
listed, then all files will be listed. If –a is not specified, then all non-system
and non-hidden files will be listed. The attributes (attrib) may be one or more
of the following:

1. a - Archive

2. s - System

3. h - Hidden

4. r - Read-only

5. d - Directory
-sfo

Display information as described in “Standard-Format Output” below.

file

Name of file/directory (wildcards are permitted)

Description

This command lists directory contents or file information. If no file name or
directory name is specified, then the current working directory is assumed. The
contents of a directory are listed if all of the following are true:

• If option -r is not specified

• If no wildcard characters are specified in the file parameter

• If file represents an existing directory

In all other cases, the command functions as follows:

• All files/directories that match the specified name are displayed.

• The -r flag determines whether a recursive search is performed.

• The option flag -a[attrib] tells the command to display only those files
with the attributes that are specified by [attrib]. If more than one attribute is
specified, only the files that have all those attributes will be listed. If -a is

165

followed by nothing, then all files/directories are displayed, regardless of their
attributes. If -a itself is not specified, then all files except system and hidden
files are displayed.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_NOT_FOUND The requested file or directory was not found.

Examples

To hide files by adding the hidden or system attribute to them:
 fs0:\> attrib +s +h *.efi
 ASH fs0:\IsaBus.efi
 ASH fs0:\IsaSerial.efi

To display all, except the files/directories with 'h' or 's' attribute:
 fs0:\> ls
 Directory of: fs0:\

 06/18/01 09:32p 153 for.nsh
 06/18/01 01:02p <DIR> 512 efi
 06/18/01 01:02p <DIR> 512 test1
 06/18/01 01:02p <DIR> 512 test2
 06/18/01 08:04p 29 temp.txt
 06/18/01 08:05p <DIR> 512 test
 01/28/01 08:24p r 29 readme.txt
 3 File(s) 211 bytes
 4 Dir(s)

To display files with all attributes in the current directory:
 fs0:\> ls -a
 Directory of: fs0:\

 06/18/01 09:32p 153 for.nsh
 06/18/01 01:02p <DIR> 512 efi
 06/18/01 01:02p <DIR> 512 test1
 06/18/01 01:02p <DIR> 512 test2
 06/18/01 10:59p 28,739 IsaBus.efi
 06/18/01 10:59p 32,838 IsaSerial.efi
 06/18/01 08:04p 29 temp.txt
 06/18/01 08:05p <DIR> 512 test
 01/28/01 08:24p r 29 readme.txt
 5 File(s) 61,788 bytes
 4 Dir(s)

To display files with read-only attributes in the current directory:

166

 fs0:\> ls -ar
 Directory of: fs0:\

 06/18/01 11:14p r 29 readme.txt
 1 File(s) 29 bytes
 0 Dir(s)

To display the files with attribute of 's':
 fs0:\> ls -as isabus.efi
 Directory of: fs0:\

 06/18/01 10:59p 28,739 IsaBus.efi
 1 File(s) 28,739 bytes
 0 Dir(s)

To display all in fs0:\efi directory recursively:
 fs0:\> ls -r -a efi

To search for files with the specified type in the current directory recursively:
 fs0:\> ls -r -a *.efi –b

Standard-Format Output

The ls command will produce at least two tables: VolumeInfo and FileInfo. The
VolumeInfo table reports one row for each file system volume reported. The
FileInfo table reports one row for each file, including directories. The following
tables describe the standard table column headings and their description. For more
information on “Standard-Format Output”, see Appendix D.

Table 26 ls Standard Formatted Output (VolumeInfo)
Column
Number

Description

1 The name of the table. The name is VolumeInfo.

2 Name. Standard volume label

3 Total Size. Total number of bytes in the volume.

4 Read Only. “True” if the volume is read-only, otherwise “False”.

5 Free Space. Total number of free bytes in the volume.

6 Block Size. Nominal block size by which files are typically grown, in
bytes.

167

Table 27 ls Standard Formatted Output (FileInfo)
Column
Number

Description

1 The name of the table. The name is FileInfo.

2 Name. Complete file name & directory, including the file system’s
mapped name.

3 Logical Size. Size of the file, in bytes.

4 Physical Size. Size of the file in the volume, including any padding, in
bytes.

5 Attributes. List of file attributes. The string can contain zero or more of
the following (but no repeats):
a – Archive
d – Directory
h – Hidden
r – Read-Only
s – System

6 File Creation Time. Time when the file was created, in the format:
hh:mm:ss.

7 File Creation Date. Date when the file was created, in the format:
dd.mm.yyyy.

8 File Access Time. Time when the file was accessed, in the format:
hh:mm:ss

9 File Access Date. Date when the file was accessed, in the format:
dd.mm.yyyy

10 File Modification Time. Time when the file was modified, in the format:
hh:mm:ss

11 File Modification Date. Date when the file was modified, in the format:
dd.mm.yyyy.

168

map

Summary

Defines a mapping between a user-defined name and a device handle.

Usage
map [-d <sname>]
map [[-r][-v][-c][-f][-u][-t <type[,type…]>][sname]]
map [sname handle | mapping]

Options
sname

MappingMapped name

handle

The number of handle, which is same as dumped from 'dh'

mapping

The device’s mapped name. Use this parameter to assign a new mapping to a
device. The mapping must end with a ‘:’.

-sfo

Output will be formatted according to “Standard-Format Output” below.

-t

Shows the device mappings, filtered according to the device type. The
supported types are fp (floppy), hd (hard disk) and cd (CD-ROM). Types can
be combined by putting a comma between two types. Spaces are not allowed
between types.

-d

Deletes a mapping

-r

Resets to default mappings

-v

Lists verbose information about all mappings.

-c

Shows the consistent mapping.

-f

Shows the normal mapping (not the consistent mapping).

-u

This option will add mappings for newly installed devices and remove
mappings for uninstalled devices but will not change the mappings of existing
devices. The user-defined mappings are also preserved.

169

Description

This command creates a mapping between a user-defined name and a device. The
most common use of this command is to create a the mapped name for devices
that support a file system protocol. Once these mappings are created, the names
can be used with all the file manipulation commands.

The UEFI Shell environment creates default mappings for all of the devices that
support a recognized file system.

This command can be used to create additional mappings, or it can be used to
delete an existing mapping with the -d option. If the map command is used without
any parameters, all of the current mappings will be listed. If the -v option is used,
the mappings will be shown with additional information about each device.

The -r option is used to reset all the default mappings in a system; this option is
useful if the system configuration has changed since the last boot.

The –u option will add mappings for newly installed devices and remove mappings
for uninstalled devices but will not change the mappings of existing devices. The
user-defined mappings are also preserved. A mapping history will be saved so that
the original mapping name is used for a device with a specific device path if that
mapping name was used for that device path last time. The current directory is also
preserved if the current device is not changed.

Each device in the system has a consistent mapping. If the hardware configuration
has not changed, the device’s consistent mappings do not change. If two or more
machines have the same hardware configurations, the device’s consistent mapping
will be the same. Use the -c option to list all the consistent mappings in the
system.

The mapping consist of digits and characters. Other characters are illegal.

This command support wildcards. You can use the wildcards to delete or show the
mapping . However, when you assign the mapping, wildcards are forbidden.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Standard-Format Output

If –sfo is specified, then the map command will output a single table: Mappings.
The following table describes the table columns for this table:

170

Table 28 Standard Formatted Output (Mappings)
Column Number Description

1 The name of the table. The name is Mappings.

2 Mapped Name. The mapped device name.

3 Device Path. The device path which corresponds to the mapped
device name.

4 Consistent Name. The consistent mapped name (if any) which is
equivalent to MappedName. If MappedName is already a consistent
mapped name, then this column is empty.

171

md

Summary

An internal alias for the mkdir command.
 '

172

mem

Summary

This is a built-in alias for dmem.

173

memmap

Summary

Displays the memory map maintained by the EFI environment.

Usage
memmap [-b] [-sfo]

Options
-b

Display one screen at a time

-sfo

Standard-format output. See "Related Definitions" below.

Description

This command displays the memory map that is maintained by the UEFI
environment. The UEFI environment keeps track all the physical memory in the
system and how it is currently being used. The UEFI Specification defines a set of
Memory Type Descriptors. Please see the UEFI Specification for a description of
how each of these memory types is used.

Total Memory size is calculated by adding LoaderCode, LoaderData,
BootServiceCode, BootServiceData, RuntimeCode, RuntimeData, Available,
Persistent, ACPIReclaimMemory, ACPIMemoryNVS, and PalCode.

Examples

To display the system memory map:

174

 fs0:\> memmap

Type Start End # Pages Attributes
available 0000000000750000-0000000001841FFF 00000000000010F2 0000000000000009
LoaderCode 0000000001842000-00000000018A3FFF 0000000000000062 0000000000000009
available 00000000018A4000-00000000018C1FFF 000000000000001E 0000000000000009
LoaderData 00000000018C2000-00000000018CAFFF 0000000000000009 0000000000000009
BS_code 00000000018CB000-0000000001905FFF 000000000000003B 0000000000000009
BS_data 0000000001906000-00000000019C9FFF 00000000000000C4 0000000000000009
...
RT_data 0000000001B2B000-0000000001B2BFFF 0000000000000001 8000000000000009
BS_data 0000000001B2C000-0000000001B4FFFF 0000000000000024 0000000000000009
reserved 0000000001B50000-0000000001D4FFFF 0000000000000200 0000000000000009

 reserved : 512 Pages (2,097,152)
 LoaderCode: 98 Pages (401,408)
 LoaderData: 32 Pages (131,072)
 BS_code : 335 Pages (1,372,160)
 BS_data : 267 Pages (1,093,632)
 RT_data : 19 Pages (77,824)
 available : 4,369 Pages (17,895,424)
 Persistent: 0 Pages (0)
Total Memory: 20 MB (20,971,520) Bytes

Standard-Format Output

The standard-format output produced with the –sfo option produces two tables:
MemoryMap and Summary.

175

Table 29 Standard-Format Output for memmap (MemoryMap)
Column Number Description

1 The name of the table. The name is
MemoryMap.

2 Type.
Available

Persistent

LoaderCode

LoaderData

BootServiceCode

BootServiceData

RuntimeCode

RuntimeData

Reserved

MemoryMappedIO

MemoryMappedIOPortSpace

UnusableMemory

ACPIReclaimMemory

ACPIMemoryNVS

PalCode

3 Starting Address

4 Ending Address

5 Number Of 4KB Pages

6 Attributes

176

Table 30 Standard-Format Output for memmap (Summary)
Column Number Description

1 The name of the table. The name is
MemoryMapSummary.

2 Total Memory Size (bytes)

3 Reserved Memory Total Size (bytes)

4 Boot Service Code Total Size (bytes)

5 Boot Service Data Total Size (bytes)

6 Runtime Code Total Size (bytes)

7 Runtime Data Total Size (bytes)

8 Loader Code Total Size (bytes)

9 Loader Data Total Size (bytes)

10 Available Total Size (bytes)

11 Memory Mapped IO Total Size (bytes)

12 Memory Mapped IO Port Total Size (bytes)

13 Unusable Total Size (bytes)

14 ACPI Reclaim Total Size (bytes)

15 ACPI NVS Total Size (bytes)

16 PAL Code Total Size (bytes)

17 Available Persistent Total Size (bytes)

177

mkdir

Summary

Creates one or more new directories.

Usage
mkdir dir [dir...]

Options
dir

Name of directory or directories to be created. Wildcards are not allowed.

Description

This command creates one or more new directories. If dir includes nested
directories, then parent directories will be created before child directories. If the
directory already exists, then the command will exit with an error.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_OUT_OF_RESOURCES There was insufficient space on the destination to
create the requested directory.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_WRITE_PROTECTED An attempt was made to create a directory when the
target media was write-protected.

Examples

To create a new directory:
 fs0:\> mkdir rafter
 fs0:\> ls
 Directory of: fs0:\

 06/18/01 08:05p <DIR> 512 test
 06/18/01 11:14p r 29 readme.txt
 06/18/01 11:50p <DIR> 512 rafter
 1 File(s) 211 bytes
 2 Dir(s)

• To create multiple directories:

178

 fs0:\> mkdir temp1 temp2
 fs0:\> ls
 Directory of: fs0:\

 06/18/01 08:05p <DIR> 512 test
 06/18/01 11:14p r 29 readme.txt
 06/18/01 11:50p <DIR> 512 rafter
 06/18/01 11:52p <DIR> 512 temp1
 06/18/01 11:52p <DIR> 512 temp2
 1 File(s) 211 bytes
 4 Dir(s)

179

mm

Summary

Displays or modifies MEM/MMIO/IO/PCI/PCIE address space.

Usage
mm address [value] [-w 1|2|4|8] [-MEM | -PMEM | -MMIO | -IO | -PCI | -PCIE] [-
n]

Options
address

Starting address in hexadecimal format.

value

The value to write in hexadecimal format. If not specified, then the current
value will be displayed.

-MEM

Memory Address type.

-PMEM

Persistent Memory Address type.

-MMIO

Memory-Mapped IO Address type.

-IO

IO Address type

-PCI

PCI Configuration Space. The address will have the format ssssbbddffrr, where
ssss = Segment, bb = Bus, dd = Device, ff = Function and rr = Register.

-PCIE

PCI Express Configuration Space. The address will have the format
ssssbbddffrrr, where ssss = Segment, bb = Bus, dd = Device, ff = Function
and rrr = Register.

-w

Access Width, in bytes. 1 = byte, 2 = 2 bytes, 4 = 4 bytes, 8 = 8 bytes. If not
specified, then 1 is assumed.

-n

Non-interactive mode.

Description

This command allows the user to display or modify I/O register, memory contents,
or PCI configuration space. The user can specify the start address and the access

180

size they wish to perform using the address parameter and –w option. The address
should be typed in hex format.

• -MEM accesses system memory

• -PMEM accesses through persistent memory (only needed when modifying persistent
memory)

• -MMIO accesses device memory,

• -IO accesses device I/O ports,

• -PCI accesses PCI Configuration Space

• –PCIE accesses PCIE Configuration Space

 If –MEM, -PMEM, -MMIO, -IO, -PCI, and -PCIE are not specified, then –MEM is assumed. Use
–PMEM to indicate that persistent memory is being modified; so firmware can perform
correct operations to flush or store the new data to hardware.

If value is specified, which should be typed in hex format, this command will write
this value to specified address. Otherwise when this command is executed, the
current contents of address are displayed. If value is specified, then -n is assumed.

If -n is not specified, the command will run in interactive mode and the user has
the option of modifying the contents by typing in a hex value. When the user
presses ‘ENTER’, then next address is displayed. This is continued until the user
enters ‘q’.

Examples

To display or modify memory:
 Address 0x1b07288, default width=1 byte:
 fs0:\> mm 1b07288
 MEM 0x0000000001B07288 : 0x6D >
 MEM 0x0000000001B07289 : 0x6D >
 MEM 0x0000000001B0728A : 0x61 > 80
 MEM 0x0000000001B0728B : 0x70 > q

 fs0:\> mm 1b07288
 MEM 0x0000000001B07288 : 0x6D >
 MEM 0x0000000001B07289 : 0x6D >
 MEM 0x0000000001B0728A : 0x80 > *Modified
 MEM 0x0000000001B0728B : 0x70 > q

To modify memory: Address 0x1b07288, width = 2 bytes:
 Shell> mm 1b07288 -w 2
 MEM 0x0000000001B07288 : 0x6D6D >
 MEM 0x0000000001B0728A : 0x7061 > 55aa
 MEM 0x0000000001B0728C : 0x358C > q

 Shell> mm 1b07288 -w 2
 MEM 0x0000000001B07288 : 0x6D6D >
 MEM 0x0000000001B0728A : 0x55AA > *Modified
 MEM 0x0000000001B0728C : 0x358C > q

To display IO space: Address 80h, width = 4 bytes:

181

 Shell> mm 80 -w 4 -IO
 IO 0x0000000000000080 : 0x000000FE >
 IO 0x0000000000000084 : 0x00FF5E6D > q

To modify IO space using non-interactive mode:
 Shell> mm 80 52 -w 1 -IO
 Shell> mm 80 -w 1 -IO
 IO 0x0000000000000080 : 0x52 > FE *Modified
 IO 0x0000000000000081 : 0xFF >
 IO 0x0000000000000082 : 0x00 >
 IO 0x0000000000000083 : 0x00 >
 IO 0x0000000000000084 : 0x6D >
 IO 0x0000000000000085 : 0x5E >
 IO 0x0000000000000086 : 0xFF >
 IO 0x0000000000000087 : 0x00 > q

• To display PCI configuration space, ssss=0000, bb=00, dd=00, ff=00, rr=00:
 Shell> mm 000000000000 -PCI
 PCI 0x0000000000000000 : 0x86 >
 PCI 0x0000000000000001 : 0x80 >
 PCI 0x0000000000000002 : 0x30 >
 PCI 0x0000000000000003 : 0x11 >
 PCI 0x0000000000000004 : 0x06 >
 PCI 0x0000000000000005 : 0x00 > q

These contents can also be displayed by 'PCI 00 00 00'.

To display PCIE configuration space, ssss=0000, bb=06, dd=00, ff=00, rrr=000:
 Shell> mm 0000060000000 -PCIE
 PCIE 0x0000000060000000 : 0xAB >
 PCIE 0x0000000060000001 : 0x11 >
 PCIE 0x0000000060000002 : 0x61 >
 PCIE 0x0000000060000003 : 0x43 >
 PCIE 0x0000000060000004 : 0x00 > q

To modify persistent memory and indicate to firmware that new data needs to be
flushed/stored to HW:
Shell> mm 1b07288 80 -PMEM

182

mode

Summary

Displays or changes the console output device mode.

Usage
mode [col row]

Options
row

Number of rows

col

Number of columns

Description

This command is used to change the display mode for the console output device.
When this command is used without any parameters, it shows the list of modes
that the standard output device currently supports. The mode command can then
be used with the row and col parameter to change the number of rows and columns
on the standard output device. The following examples show how the mode
command can be used. The first example lists all modes that are currently
available, and the current selected mode is indicated by an '*'. The second
example changes the mode to an 80 X 50 text mode display. The display is cleared
every time the mode command is used to change the currently selected display
mode.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples

To display all available modes on standard output:
 Shell> mode
 Available modes on standard output
 col 80 row 25 *
 col 80 row 50
 col 80 row 43
 col 100 row 100

To change the current mode setting:

183

 Shell> mode 80 50
 Available modes on standard output
 col 80 row 25
 col 80 row 50 *
 col 80 row 43
 col 100 row 100

184

mv

Summary

Moves one or more files to a destination within a file system.

Usage
mv src [src...] [dst]

Options
src

Source file/directory name (wildcards are permitted)

dst

Destination file/directory name (wildcards are permitted). If not specified,
then the current working directory is assumed to be the destination. If there is
more than one argument on the command line, the last one will always be
considered the destination.

Description

This command moves one or more files to a destination within a file system. If the
destination is an existing directory, then the sources are moved into that directory.
Otherwise, the sources are moved to the destination, as if the directory has been
renamed. If a destination is not specified, the current directory is assumed to be
the destination.

Attempting to move a read-only file/directory will result in an error. Moving a
directory that contains read-only files is allowed. You cannot move a directory into
itself or its subdirectories. You cannot move a directory if the current working
directory is itself or its subdirectories.

If an error occurs, the remaining files or directories will still be moved.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_NOT_FOUND The source file was not able to be found

SHELL_OUT_OF_RESOURCES There was insufficient free space to move the requested
file to its destination.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_WRITE_PROTECTED An attempt was made to create a file on media that was
write-protected.

185

Examples

To rename a file:
 fs0:\> mv IsaBus.efi Bus.efi
 moving fs0:\IsaBus.efi -> \Bus.efi
 - [ok]

186

openinfo

Summary

Displays the protocols and agents associated with a handle.

Usage
openinfo Handle [-b]

Options
Handle

Display open protocol information for specified handle

-b

Display one screen at a time

Description

This command is used to display the open protocols on a given handle. The
example below is typical output from help for this command.

Table 31 Open Protocol Information Layout
Column
Index

Description

1 Agent handle that opens the protocol

2 Controller handle that requires the protocol interface

3 Open count

4 Open type: HandProt, GetProt, TestProt, Child, Driver, Exclusive,
DriverEx or Unknown

5 Name of image of the agent if available

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_NOT_FOUND The passed-in handle was not found.

187

Examples

To show open protocols on handle 0x23:
 Shell> openinfo 23
 Handle 23 (07DEE108)
 PciRootBridgeIo
 Drv[1D] Ctrl[23] Cnt(01) Driver Image(PciBus)
 Drv[1D] Ctrl[28] Cnt(01) Child Image(PciBus)
 Drv[1D] Ctrl[29] Cnt(01) Child Image(PciBus)
 Drv[1D] Ctrl[2A] Cnt(01) Child Image(PciBus)
 Drv[1D] Ctrl[2B] Cnt(01) Child Image(PciBus)
 Drv[1D] Ctrl[2C] Cnt(01) Child Image(PciBus)
 Drv[1D] Ctrl[2D] Cnt(01) Child Image(PciBus)
 Drv[1D] Ctrl[2E] Cnt(01) Child Image(PciBus)
 Drv[00] Ctrl[] Cnt(01) HandProt
 dpath
 Drv[1D] Ctrl[23] Cnt(01) Driver Image(PciBus)
 Drv[00] Ctrl[] Cnt(0D) HandProt

188

parse

Summary

Command used to retrieve a value from a particular record which was output in a
standard formatted output.

Usage
parse filename tablename column [-i <Instance>] [-s <Instance>] < filename
command-name | parse tablename column [-i <Instance>] [-s <Instance>]

Options
filename

Source file name

tablename

The name of the table being parsed.

column

The one-based column index to use to determine which value from a
particular record to parse.

-i <Instance>

Start parsing with the nth instance of specified tablename, after the specified
instance of ShellCommand. If not present, then all instances will be returned.

-s <Instance>

Start parsing with the nth instance of the ShellCommand table. If not present,
then 1 is assumed.

Description

This command will enable the parsing of data from a file which contains data which
has been output from a command having used the –sfo parameter. Since the
standard formatted output has a well known means of parsing, this command is
intended to be used as a simplified means of having scripts consume such
constructed output files and use this retrieved data in logic of the scripts being
written for the UEFI shell.

189

Examples

The following data is contained in a temporary file (temp.txt):

ShellCommand,"ls"
VolumeInfo,"MikesVolume","400000000","FALSE","32000000","16000000"
FileInfo,"FS0:\efi\boot\winloader.efi","45670","45900","arsh","08:30:12","01.08
.2013","00:00:00","01.08.2013","08:30:12","01.08.2013"
FileInfo,"FS0:\efi\boot\mikesfile.txt","1250","1280","a","08:30:12","01.08.2013
","00:00:00","01.08.2013","08:30:12","01.08.2013"
FileInfo,"FS0:\efi\boot\readme.txt","795","900","a","08:30:12","01.08.2013","00
:00:00","01.08.2013","08:30:12","01.08.2013"

The following shows the parse command being used:
 fs0:\> parse temp.txt VolumeInfo 2
 MikesVolume

Below is an example using the Index parameter:
 fs0:\> parse temp.txt FileInfo 3 –i 3
 795

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was
incorrectly formatted or its value was out
of bounds.

SHELL_NOT_FOUND The source file was not able to be found

SHELL_SECURITY_VIOLATION This function was not performed due to a
security violation

190

pause

Usage
pause [-q]

Description

The pause command prints a message to the display and then suspends script file
execution and waits for keyboard input. Pressing any key resumes execution,
except for q or Q. If q or Q is pressed, script processing terminates; otherwise
execution continues with the next line after the pause command.

The pause command is available only in scripts. Switch –q can hide the message
and it’s optional.

Examples

Following script is a sample of 'pause' command:
 fs0:\> type pause.nsh
 #
 # Example script for 'pause' command
 #
 echo pause.nsh begin..
 date
 time
 pause
 echo pause.nsh done.

To execute the script with echo on:
 fs0:\> pause.nsh
 +pause.nsh> echo pause.nsh begin..
 pause.nsh begin..
 +pause.nsh> date
 06/19/2001
 +pause.nsh> time
 00:51:45
 +pause.nsh> pause
 Enter 'q' to quit, any other key to continue:
 +pause.nsh> echo pause.nsh done.
 pause.nsh done.

To execute the script with echo off:
 fs0:\> echo -off
 fs0:\> pause.nsh
 pause.nsh begin..
 06/19/2001
 00:52:50
 Enter 'q' to quit, any other key to continue: q
 fs0:\>

191

pci

Summary

Displays PCI device list, or PCI function configuration space and PCIe extended
configuration space.

Usage
pci [Bus Dev [Func] [-s Seg] [-i | [-ec ID]]]

Options
Bus

Bus number (hexadecimal number)

Dev

Device number (hexadecimal number)

Func

Function number (hexadecimal number)

-s

Optional segment number Seg (hexadecimal number) specified

-i

Information interpreted

-ec

Display detailed interpretation of specified PCIe extended capability ID (hexadecimal
number)

Description

This command will display all the PCI devices found in the system. And it can also
display the configuration space of a PCI device according to the specified bus (Bus),
device (Dev), and function (Func) numbers. If the function number is not specified,
it will default to 0. The –i option is used to display verbose information for the
specified PCI device. The PCI configuration space and PCIe extended configuration
space (if available) for the device will be dumped with a detailed interpretation.
The –ec ID option is used to display verbose information for a specific PCIe
extended capability ID.

192

Examples

To display all PCI devices in the system:
Shell> PCI

 Seg Bus Dev Func
 --- --- --- ----
 00 00 00 00 ==> Bridge Device - Host/PCI bridge
 Vendor 8086 Device 1130 Prog Interface 0
 00 00 01 00 ==> Bridge Device - PCI/PCI bridge
 Vendor 8086 Device 1131 Prog Interface 0
 00 00 1E 00 ==> Bridge Device - PCI/PCI bridge
 Vendor 8086 Device 244E Prog Interface 0
 00 00 1F 00 ==> Bridge Device - PCI/ISA bridge
 Vendor 8086 Device 2440 Prog Interface 0
 00 00 1F 01 ==> Mass Storage Controller - IDE controller
 Vendor 8086 Device 244B Prog Interface 80
 00 00 1F 02 ==> Serial Bus Controllers - USB
 Vendor 8086 Device 2442 Prog Interface 0
 00 00 1F 03 ==> Serial Bus Controllers - System Management Bus
 Vendor 8086 Device 2443 Prog Interface 0
 00 00 1F 04 ==> Serial Bus Controllers - USB
 Vendor 8086 Device 2444 Prog Interface 0
 00 00 1F 05 ==> Multimedia Device - Audio device
 Vendor 8086 Device 2445 Prog Interface 0
 00 00 1F 06 ==> Simple Communications Controllers - Modem
 Vendor 8086 Device 2446 Prog Interface 0
 00 01 00 00 ==> Display Controller - VGA/8514 controller
 Vendor 1002 Device 5246 Prog Interface 0
 00 02 07 00 ==> Multimedia Device - Audio device
 Vendor 1274 Device 1371 Prog Interface 0
 00 02 0A 00 ==> Bridge Device - CardBus bridge
 Vendor 1180 Device 0476 Prog Interface 0
 00 02 0A 01 ==> Bridge Device - CardBus bridge
 Vendor 1180 Device 0476 Prog Interface 0

To display the configuration space of Bus 0, Device 0, Function 0:

193

Shell> PCI 00 00 00 -i

 PCI Segment 00 Bus 00 Device 00 Func 00
 00000000: 86 80 30 11 06 00 90 20-02 00 00 06 00 00 00 00 *..0....*
 00000010: 08 00 00 20 00 00 00 00-00 00 00 00 00 00 00 00 *...*
 00000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000030: 00 00 00 00 88 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000040: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000050: 50 00 09 38 00 00 00 00-00 00 00 00 00 00 00 00 *P..8............*
 00000060: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000070: 00 00 18 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000080: DE 2C CF 00 00 00 00 00-09 A0 04 F1 00 00 00 00 *.,..............*
 00000090: 00 00 D6 FF FE FF 00 00-33 80 33 80 85 84 C4 00 *........3.3.....*
 000000A0: 02 00 20 00 07 02 00 1F-00 00 00 00 00 00 00 00 *..*
 000000B0: 00 00 00 00 30 00 00 00-00 00 00 00 00 00 08 00 *....0...........*
 000000C0: 00 00 00 00 00 00 00 00-00 08 00 00 00 00 00 00 *................*
 000000D0: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 000000E0: 00 00 00 00 00 00 00 00-00 00 90 14 00 00 00 00 *................*
 000000F0: 00 00 00 00 74 F8 00 00-00 00 00 00 08 00 00 00 *....t...........*

Vendor ID(0): 8086 Device ID(2): 1130

Command(4): 0006
 (00)I/O space access enabled: 0 (01)Memory space access enabled: 1
 (02)Behave as bus master: 1 (03)Monitor special cycle enabled: 0
 (04)Mem Write & Invalidate enabled: 0 (05)Palette snooping is enabled: 0
 (06)Assert PERR# when parity error: 0 (07)Do address/data stepping: 0
 (08)SERR# driver enabled: 0 (09)Fast back-to-back transact...: 0

Status(6): 2090
 (04)New Capabilities linked list: 1 (05)66MHz Capable: 0
 (07)Fast Back-to-Back Capable: 1 (08)Master Data Parity Error: 0
 (09)DEVSEL timing: Fast (11)Signaled Target Abort: 0
 (12)Received Target Abort: 0 (13)Received Master Abort: 1
 (14)Signaled System Error: 0 (15)Detected Parity Error: 0

Revision ID(8): 02 BIST(0F): Incapable
Cache Line Size(C): 00 Latency Timer(D): 00
Header Type(0E): 0, Single function, PCI device
Class: Bridge Device - Host/PCI bridge -
Base Address Registers(10):
 Start Type Space Prefetchable? Size Limit
 --
 20000000 Mem 32 bits YES 04000000 24000000
 --
No Expansion ROM(30)

Cardbus CIS ptr(28): 00000000
Sub VendorID(2C): 0000 Subsystem ID(2E): 0000
Capabilities Ptr(34): 88
Interrupt Line(3C): 00 Interrupt Pin(3D): 00
Min_Gnt(3E): 00 Max_Lat(3F): 00

To display configuration space of Segment 0, Bus 0, Device 0, Function 0:

194

Shell> PCI 00 00 00 -s 0

 PCI Segment 00 Bus 00 Device 00 Func 00
 00000000: 86 80 30 11 06 00 90 20-02 00 00 06 00 00 00 00 *..0....*
 00000010: 08 00 00 20 00 00 00 00-00 00 00 00 00 00 00 00 *...*
 00000020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000030: 00 00 00 00 88 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000040: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000050: 50 00 09 38 00 00 00 00-00 00 00 00 00 00 00 00 *P..8............*
 00000060: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000070: 00 00 18 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 00000080: DE A8 CE 00 00 00 00 00-09 A0 04 F1 00 00 00 00 *................*
 00000090: 00 00 D6 FF FE FF 00 00-33 80 33 80 85 84 C4 00 *........3.3.....*
 000000A0: 02 00 20 00 07 02 00 1F-00 00 00 00 00 00 00 00 *..*
 000000B0: 00 00 00 00 30 00 00 00-00 00 00 00 00 00 08 00 *....0...........*
 000000C0: 00 00 00 00 00 00 00 00-00 08 00 00 00 00 00 00 *................*
 000000D0: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 *................*
 000000E0: 00 00 00 00 00 00 00 00-00 00 A0 18 00 00 00 00 *................*
 000000F0: 00 00 00 00 74 F8 00 00-00 00 00 00 08 00 00 00 *....t...........*

To display PCIe extended capability ID 000Eh (ARI Capability) for Bus 9, Device 0,
Function 0:
Shell> pci 9 0 0 –ec E

Status Codes Returned
SHELL_SUCCESS Data was displayed as requested.

SHELL_DEVICE_ERROR The specified device parameters did not match a physical
device in the system.

195

ping

Summary

Ping the target host with IPv4 stack.

Usage
Ping [-n count] [-l size] [-s SourceIp] TargetIp

Options

-n count

Number of echo request datagram to be sent.

-l size

Size of data buffer in echo request datagram.

-s SourceIp

Specifies the source adapter as IPv4 address.

TargetIp

IPv4 address of the target machine.

-?

Display the help message

Description

This command uses the ICMPv4 ECHO_REQUEST datagram to elicit ECHO_REPLY from a
host.

Examples

To ping the target host with 64 bytes data:

Shell:\> ping -l 64 192.168.0.1

To ping the target host by sending 20 echo request datagram:

Shell:\> ping -n 20 202.120.100.1

To ping the target host by specifying the source adapter as IPv4 address:

Shell:\> ping -s 202.120.100.12 202.120.100.1

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_NOT_FOUND No configured interfaces were found.

196

Ping6

Summary

 Ping a target machine with UEFI IPv6 network stack.

Usage
Ping6 [-l size] [-n count] [-s SourceIp] TargetIp

Options
-l size

Send buffer size, in bytes (default=16, min=16, max=32768).
-n count

Send request count, (default=10, min=1, max=10000).
-s SourceIp

Source IPv6 address.
TargetIp

Target IPv6 address.
-?

Display Help information.

Description

This command is used to ping a target machine with UEFI IPv6 network stack.

Examples
To ping the target host by sending 5 request with 1000 bytes from 2002::1
Shell:\> Ping6 -s 2002::1 2002::2 -l 1000 -n 5

To ping the target host with 1000 bytes
Shell:\> Ping6 2002::2 -l 1000

197

reconnect

Summary

Reconnects drivers to the specific device.

Usage
reconnect DeviceHandle [DriverHandle [ChildHandle]]
reconnect -r

Options
DeviceHandle

Device handle (a hexadecimal number)

DriverHandle

Driver handle (a hexadecimal number). If not specified, all drivers on the
specified device will be reconnected.

ChildHandle

Child handle of device (a hexadecimal number). If not specified, then all child
handles of the specified device will be reconnected.

-r

Reconnect drivers to all devices.

Description

This command reconnects drivers to the specific device. It will first disconnect the
specified driver from the specified device and then connect the driver to the device
recursively.

If the -r option is used, then all drivers will be reconnected to all devices. Any
drivers that are bound to any devices will be disconnected first and then connected
recursively. See the connect and disconnect commands for more details.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples

To reconnect all drivers to all devices:

198

 Shell> reconnect -r

To reconnect all drivers to device 0x28:
 fs0:\> reconnect 28

To disconnect 0x17 from 0x28 then reconnect drivers with 0x17 as highest priority
to device 0x28:
 fs0:\> reconnect 28 17

To disconnect 0x17 from 0x28 destroying child 0x32 then reconnect drivers with
0x17 as highest priority to device 0x28
 fs0:\> reconnect 28 17 32

199

reset

Summary

Resets the system.

Usage
reset [-w|-s|-c [string]] [-fwui]

Options

-s

- Performs a shutdown

-w

- Performs a warm boot

-c

- Performs a cold boot
string

- String to be passed to reset service

 -fwui

If the system firmware supports it, perform a reset back to the firmware user
interface (FW UI)

Description

This command resets the system. The default is to perform a cold reset. If string is
specified, then it is passed into the SystemTable ResetSystem() function, informing
the system of the reason for the system reset.

If -fwui is specified and system firmware supports it, on the next boot stop at the
firmware user interface. If system firmware does not support booting to FW UI,
the command returns SHELL_UNSUPPORTED.

Status Codes Returned
SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly

formatted or its value was out of bounds.
SHELL_UNSUPPORTED The command operation is not supported by the

system firmware.

200

Examples

To shut down the system:
Shell> reset -s

To cold reset the system and stop boot at the firmware user interface:
Shell> reset –c -fwui

201

rm

Summary

Deletes one or more files or directories.

Usage
rm [-q] file/directory [file/directory ...]

Options
-q

Quiet mode; does not prompt user for a confirmation

file

File name (wildcards are permitted)

directory

Directory name (wildcards are permitted)

Description

This command deletes one or more files or directories. If the target is a directory, it
will delete the directory, including all its subdirectories. It is not allowed to redirect
a file whose parent directory (or the file itself) is being deleted.

Removing a read-only file/directory will result in a failure. Removing a directory
containing read-only file(s) will result in a failure. If an error occurs, rm will exit
immediately and later files/directories will not be removed.

You cannot remove a directory when the current directory is itself or its
subdirectory. If file contains wildcards, it will not ask user for confirmation.

You cannot remove the root directory. You cannot remove the current directory or
its ancestor.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The target file or directory was not able to be found

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_WRITE_PROTECTED The target media was write-protected.

Examples

To remove multiple directories at a time:

202

 fs0:\> ls test
 Directory of: fs0:\test

 06/18/01 01:01p <DIR> 512 .
 06/18/01 01:01p <DIR> 0 ..
 06/19/01 12:59a <DIR> 512 temp1
 06/19/01 12:59a <DIR> 512 temp2
 0 File(s) 0 bytes
 4 Dir(s)

Error occurs and RM will exit:
 fs0:\> rm test\temp11 temp2
 rm/del: Cannot find 'fs0:\test\temp11' - Not Found

To remove multiple directories with wildcards:
 fs0:\> rm test\temp*
 rm/del: Remove subtree 'fs0:\test\temp1' [y/n]? y
 removing fs0:\test\temp1\temp1.txt
 - [ok]
 removing fs0:\test\temp1\boot\nshell.efi
 - [ok]
 removing fs0:\test\temp1\boot
 - [ok]
 removing fs0:\test\temp1
 - [ok]
 rm/del: Remove subtree 'fs0:\test\temp2' [y/n]? y
 removing fs0:\test\temp2\temp2.txt
 - [ok]
 removing fs0:\test\temp2
 - [ok]

Removing a directory that contains a read-only file will fail:
 fs0:\> attrib +r test\temp1\readme.txt
 A R fs0:\test\temp1\readme.txt

 fs0:\> rm test\temp1
 rm/del: Cannot open 'readme.txt' under 'fs0:\test\temp1' in
 writable mode
 - [error] - Access Denied
 Exit status code: Access Denied

203

sermode

Summary

Sets serial port attributes.

Usage
sermode [handle [baudrate parity databits stopbits]]

Options
handle

Device handle for a serial port in hexadecimal. The dh command can be used
to retrieve the right handle.

baudrate

Baud rate for specified serial port. The following values are supported: 50, 75,
110, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200,
9600(default), 19200, 38400, 57600, 115200, 230400, and 460800. All other
values will be converted to the next highest setting.

parity

Parity bit settings for specified serial port. Any one of the following:
d - Default parity
n - No parity
e - Even parity
o - Odd parity
m - Mark parity
s - Space parity

databits

Data bits for the specified serial port. The following settings are supported: 4,
7, 8 (default). All other settings are invalid.

stopbits

Stop bits for the specified serial port. The following settings are supported:
0 (0 stop bits - default setting)
1 (1 stop bit)
2 (2 stop bits)
15 (1.5 stop bits)

Note: All other settings are invalid.

Description

This command displays or sets baud rate, parity attribute, data bits and stop bits of
serial ports. If no attributes are specified, then the current settings are displayed. If
no handle is specified, then all serial ports are displayed.

204

Examples

To display the settings for all serial port devices:
 Shell> sermode
 4F06B08 - (115200, N, 8, 1)
 4F05F88 - (115200, N, 8, 1)

To display the settings for the serial port device whose handle is 0x6B:
 Shell> sermode 6B
 4F06B08 - (115200, N, 8, 1)

To configure the serial port settings for handle 0x6B to 9600bps, even parity, 8
data bits, and 1 stop bit:
 Shell> sermode 6B 9600 e 8 1
 sermode: Mode set on handle 04F06B08

Status Codes Returned
SHELL_SUCCESS The new attributes were set on the serial device.

SHELL_INVALID_PARAMETER One or more of the attributes has an unsupported value.

SHELL_DEVICE_ERROR The serial device is not functioning correctly..

205

set

Summary

Displays, changes or deletes a UEFI Shell environment variables.

Usage
set [-v] [sname [value]]
set [-d <sname>]

Options
-d

Deletes the environment variable

-v

Volatile variable

sname

 Environment variable name

value

Environment variable value

Description

This command is used to maintain the UEFI Shell environment variables. This
command can do the following:

• Display the environment variables.

• Create new environment variables.

• Change the value of existing environment variables.

• Delete environment variables.

The set command will set the environment variable that is specified by sname to
value. This command can be used to create a new environment variable or to
modify an existing environment variable.

If the set command is used without any parameters, then all the environment
variables are displayed. If the set command is used with the -d option, then the
environment variable that is specified by sname will be deleted.

Note: This command does not change the value of the environment variable
lasterror.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

206

SHELL_OUT_OF_RESOURCES A request to set a variable in a non-volatile fashion could
not be completed. The resulting non-volatile request has
been converted into a volatile request.

Examples

To add an environment variable:
 Shell> set DiagnosticPath fs0:\efi\diag;fs1:\efi\diag

To display environment variables:
 Shell> set
 * path : .
 diagnosticPath : fs0:\efi1.1\diag;fs1:\efi1.1\diag

To delete an environment variable:
 Shell> set -d diagnosticpath
 Shell> set
 * path : .

To change an environment variable:
 fs0:\> set src efi
 fs0:\> set
 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\
 src : efi
 fs0:\> set src efi1.1
 fs0:\> set
 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\
 src : efi1.1

To append an environment variable:
 Shell> set
 * path : .
 Shell> set path %path%;fs0:\efi\tools;fs0:\efi\boot;fs0:\
 Shell> set
 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\

To set a volatile variable that will disappear at the next
 boot:
 Shell> set -v EFI_SOURCE c:\project\EFI1.1
 Shell> set
 * path : .;fs0:\efi\tools;fs0:\efi\boot;fs0:\
 * EFI_SOURCE : c:\project\EFI1.1

207

setsize

Summary

Adjusts the size of a file.

Usage
setsize size file [file...]

Options
file

The file or files which will have its size adjusted.

size

The desired size of the file once it is adjusted. Setting the size smaller than
the actual data contained in this file will truncate this data.

Description

This command adjusts the size of a particular target file. When adjusting the size
of a file, it should be noted that it will automatically truncate or extend the size of a
file based on the passed in parameters. If the file does not exist, it will be created.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_VOLUME_FULL The media has insufficient space to complete the request.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

208

setvar

Summary

Display, create, delete, or modify a UEFI variable.

Usage
setvar variable-name [–guid guid][-bs][-rt][-nv] [=data [=data…]]

Options
variable-name

The name of the UEFI variable to display, create, delete, or modify.

-guid

Specifies the GUID of the UEFI variable to display, create, delete, or modify. If
not present, defaults to the GUID EFI_GLOBAL_VARIABLE, as defined in the UEFI
Specification.

-bs

Indicates that the variable is a boot service (BS) variable. Effective only for
new variables, otherwise it is ignored.

-rt

Indicates that the variable is a runtime (RT) variable. Effective only for new
variables, otherwise it is ignored.

-nv

Indicates that the variable is non-volatile (NV). If not present, then the
variable is assumed to be volatile. Effective only for new variables, otherwise
it is ignored.

=data

If ‘=’ is not present, then the current value of the variable is displayed as
hexadecimal bytes. If there is nothing after the ‘=’, the variable is deleted.
More than one =data argument can be provided, and data from each
argument is concatenated. Here are the possible values. Unless specifically
indicated, the ‘=’ delimiters are case-sensitive (EX: =L not =l):

=0xhexnumber OR =0Xhexnumber
 Hexadecimal number. For example =0x1234567890abcdef will store this

hexadecimal number in the UEFI variable. Hexadecimal characters are
case-insensitive.

=Hhexbytearray OR =hexbytearrayxx[xx]
 Hexadecimal byte array, where left most byte is byte 0 and right most byte

is byte n. For example, =H12345678 means byte 0 is 0x12, byte 1 is
0x34, byte 2 is 0x56, and byte 3 is 0x78 when stored in the UEFI variable.
Must provide two hexadecimal digits for each byte. For example =H01
not =H1. Hexadecimal characters are case-insensitive.

209

=S“ascii-string” OR =“ascii-string”
 ASCII-string with no null-terminator by default. Add =0x00 on the

command line to provide null-terminator. For example, =S“this is a test”
will result in “this is a test” (not including double-quotes) being stored in
the UEFI variable without a null-terminator. To store the same string with
a null-terminator, provide =S“this is a test” =0x00. If =”ascii-string” only
contains hexadecimal characters (0-9, a-f, A-F), it will be treated as a
hexadecimal byte array.

=L“UCS2-string”
 UCS-2 encoded string with no null-terminator by default. Add =0x0000 on

the command line to provide null-terminator. For example, =L“this is a
test” will result in “this is a test” (not including double-quotes) being stored
in the UEFI variable without a null-terminator. To store the same string
with a null-terminator, provide =L“this is a test” =0x0000.

=P“devicepath” OR =--devicepath
 Device path text format, as specified by the EFI Device Path Display

Format Overview section of the UEFI Specification. The
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL is used to convert text
to the binary representation of the device path. For example,
=P“PciRoot(0)/Pci(31,2)/USB(0,0)” will result in byte array
02010C00D041030A0000… being stored in the UEFI variable. If device
path text does not match exact case in UEFI Specification (EX: “pci”
instead of “Pci”), the behavior is undefined.

Description

This command displays, creates, deletes or modifies the UEFI variable specified by
name and guid.

If = is not specified, then the current variable contents are displayed.

If = is specified, but data is not, the variable is deleted.

If =data is specified and variable does not exist, then the variable is created using
specified -bs, -rt, and/or -nv attributes.

If =data is specified and variable exists, then the variable’s value is changed to the
value specified by data.

-bs, -rt and –nv are only useful if the variable does not exist. If the variable
already exists, the attributes cannot be changed, and the flags will be ignored. To
change a variable’s attributes, first delete, then recreate with the desired
attributes.

210

Examples

To display the ‘BootOrder’ EFI_GLOBAL_VARIABLE variable:
Shell> setvar BootOrder

To create a BS variable named ‘test1’ with GUID ‘158DEF5A-F656-419C-B027-
7A3192C079D2’ and data that has 1234567890ab (hexadecimal number):
Shell> setvar test1 –guid 158DEF5A-F656-419C-B027-7A3192C079D2 –bs =0x1234567890ab

To modify ‘test1’ variable to be BS+NV, first delete then recreate:
Shell> setvar test1 –guid 158DEF5A-F656-419C-B027-7A3192C079D2 =
Shell> setvar test1 –guid 158DEF5A-F656-419C-B027-7A3192C079D2 –bs -nv =0x1234567890ab

To create a BS+RT+NV variable named ‘test2’ with GUID ‘158DEF5A-F656-419C-B027-
7A3192C079D2’ and data that has UCS-2 null-terminated string “this is a test”:
Shell> setvar test2 –guid 158DEF5A-F656-419C-B027-7A3192C079D2 –bs –rt -nv =L”this is
a test” =0x0000

To modify ‘test2’ variable to null-terminated string “this is another test”:
Shell> setvar test2 –guid 158DEF5A-F656-419C-B027-7A3192C079D2 =L”this is another
test” =0x0000

Status Codes Returned
SHELL_SUCCESS The shell has stored the variable and its data with the

defined attributes.

SHELL_INVALID_PARAMETER Incorrect attributes were used.

SHELL_OUT_OF_RESOURCES Insufficient resources were available for storing the
variable and its data.

SHELL_DEVICE_ERROR The variable could not be saved due to a hardware error.

SHELL_WRITE_PROTECTED The variable in question is read-only.

SHELL_WRITE_PROTECTED The variable in question cannot be deleted.

SHELL_NOT_FOUND The variable could not be found

211

shift

Usage
shift

Description

The shift command shifts the contents of a UEFI Shell script’s positional
parameters so that %1 is discarded, %2 is copied to %1, %3 is copied to %2, %4 is
copied to %3 and so on. This allows UEFI Shell scripts to process script parameters
from left to right.

Note: This command does not change the UEFI shell environment variable
lasterror.

Note: The shift command is available only in UEFI Shell scripts.

Examples

Following script is a sample of 'shift' command:
fs0:\> type shift.nsh

Example script for 'shift' command

echo %1 %2 %3
shift
echo %1 %2

To execute the script with echo on:
fs0:\> shift.nsh welcome EFI world
shift.nsh> echo welcome EFI world
 welcome EFI world
 shift
 echo EFI world
 EFI world

To execute the script with echo off:
fs0:\> echo -off
fs0:\> shift.nsh welcome EFI world
 welcome EFI world
 EFI world

212

smbiosview

Summary

Displays SMBIOS information.

Usage
smbiosview [-t SmbiosType]|[-h SmbiosHandle]|[-s]|[-a]

Options
-t

Display all structures of SmbiosType. The following values are supported:
0 - BIOS Information
1 - System Information
3 - System Enclosure
4 - Processor Information
5 - Memory Controller Information
6 - Memory Module Information
7 - Cache Information
8 - Port Connector Information
9 - System Slots
10 - On Board Devices Information
15 - System Event Log
16 - Physical Memory Array
17 - Memory Device
18 - 32-bit Memory Error Information
19 - Memory Array Mapped Address
20 - Memory Device Mapped Address
21 - Built-in Pointing Device
22 - Portable Battery
34 - Management Device
37 - Memory Channel
38 - IPMI Device Information
39 - System Power Supply

-h

Display the structure of SmbiosHandle, the unique 16-bit value assigned to
each SMBIOS structure. SmbiosHandle can be specified in either decimal or
hexadecimal format. Use the 0x prefix for hexadecimal values.

-s

Display statistics table.

213

-a

Display all information.

Description

This command displays the SMBIOS information. Users can display the information
of SMBIOS structures specified by type or handle. When no flags are provided on
the command line, display SMBIOS Table Entry Point Structure.

Status Codes Returned
SHELL_SUCCESS Data was displayed as requested.

SHELL_DEVICE_ERROR The requested structure was not found.

214

stall

Summary

Stalls the operation for a specified number of microseconds.

Usage
stall time

Options
time

The number of microseconds for the processor to stall.

Description

This command would be used to establish a timed stall of operations during a
script.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_DEVICE_ERROR There was a hardware error associated with this request.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

215

time

Summary

Displays or sets the current time for the system.

Usage
time [hh:mm[:ss]] [-tz tz] [-d dl]

Options
hh

New hour (0-23) (required)

mm

New minute (0-59) (required)

ss

New second (0-59) If not specified, then zero will be used.

-tz

Timezone adjustment, measured in minutes offset from GMT. Valid values can
be between -1440 and 1440 or 2047. If not present or set to 2047, time is
interpreted as local time.

-d

Indicates that time is not affected by daylight savings time (0), time is
affected by daylight savings time but time has not been adjusted (1), or time
is affected by daylight savings time and has been adjusted (3).. All other
values are invalid. If no value follows –d, then the current daylight savings
time will be displayed.

Description

This command displays or sets the current time for the system. If no parameters
are used, it shows the current time. If valid hours, minutes, and seconds are
provided, then the system's time will be updated.

Note the following rules:

Except for numeric characters and the : character, all other characters in the
argument are invalid. The Shell will report an error if the number is in the wrong
hour/minute/second range.

Spaces before or after the numeric character are not allowed. Spaces inserted into
the number are not allowed either.

The seconds parameter is optional. If there is no seconds number, it will set to zero
by default.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

216

SHELL_DEVICE_ERROR There was a hardware error preventing the completion of
this command

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

Examples
Shell > time 17:23
Shell > time
17:23:00 (GMT+08:00)
Shell > time 17:23:
Shell > time
17:23:00 (GMT+08:00)

To display current time:
 fs0:\> time
 16:51:03 (GMT+08:00)

To set the system time:
 fs0:\> time 9:51:30
 fs0:\> time
 09:51:31 (GMT+08:00)

To get the time, including daylight savings time:
fs0:\> time 9:51:30
fs0:\> time –d
09:51:31 (GMT+08:00) DST: Not Affected

217

timezone

Summary

Displays or sets time zone information.

Usage
timezone [-s hh:mm | -l] [-b] [-f]

Options
-s

Set time zone associated with hh:mm offset from GMT

-l

Display list of all time zones

-b

Display one screen at a time

-f

Display full information for specified timezone

Description

This command displays and sets the current time zone for the system. If no
parameters are used, it shows the current time zone. If a valid hh:mm parameter is
provided, then the system's time zone information will be updated.

Examples

To display all available time zones:

218

 Shell> timezone -l
 GMT-12:00, International Date Line West
 GMT-11:00, Midway Island, Samoa
 GMT-10:00, Hawaii
 GMT-09:00, Alaska
 GMT-08:00, Pacific Time(US & Canada); Tijuana
 GMT-07:00, Arizona, Chihuahua, La Paz, Mazatlan
 GMT-06:00, Central America, Central Time(US & Canada)
 GMT-05:00, Bogota, Lima, Quito, Eastern Time(US & Canada)
 GMT-04:00, Atlantic Time(Canada), Caracas, Santiago
 GMT-03:30, Newfoundland
 GMT-03:00, Brasilia, Buenos Aires, Georgetown, Greenland
 GMT-02:00, Mid-Atlantic
 GMT-01:00, Azores, Cape Verde Is.
 GMT, Greenwich Mean Time, Casablanca, Monrovia, Dublin, London
 GMT+01:00, Amsterdam, Berlin, Bern, Rome, Paris, West Central Africa
 GMT+02:00, Athens, Istanbul, Bucharest, Cairo, Jerusalem
 GMT+03:00, Baghdad, Kuwait, Riyadh, Moscow, Nairobi
 GMT+03:30, Tehran
 GMT+04:00, Abu Dhabi, Muscat, Baku, Tbilisi, Yerevan
 GMT+04:30, Kabul
 GMT+05:00, Ekaterinburg, Islamabad, Karachi, Tashkent
 GMT+05:30, Chennai, Kolkata, Mumbai, New Delhi
 GMT+05:45, Kathmandu
 GMT+06:00, Almaty, Novosibirsk, Astana, Dhaka, Sri Jayawardenepura
 GMT+06:30, Rangoon
 GMT+07:00, Bangkok, Hanio, Jakarta, Krasnoyarsk
 GMT+08:00, Beijing, Chongqing, Hong Kong, Urumqi, Taipei, Perth
 GMT+09:00, Osaka, Sapporo, Tokyo, Seoul, Yakutsk
 GMT+09:30, Adelaide, Darwin
 GMT+10:00, Canberra, Melbourne, Sydney, Guam, Hobart, Vladivostok
 GMT+11:00, Magadan, Solomon Is., New Caledonia
 GMT+12:00, Auckland, Wellington, Fiji, Kamchatka, Marshall Is.
 GMT+13:00, Nuku'alofa

To set the time zone:
 Shell> timezone -s -7:00
 Shell> timezone
 GMT-07:00

 Shell> timezone -s 5:00
 Shell> timezone
 GMT+05:00

To display detailed information for the current time zone:
 Shell> timezone -f
 GMT+05:00, Ekaterinburg, Islamabad, Karachi, Tashkent
 Shell> timezone
 GMT+05:00

Status Codes Returned
SHELL_SUCCESS The operation completed successfully.

SHELL_INVALID_PARAMETER A time field is out of range

SHELL_DEVICE_ERROR The timezone could not be saved due to a hardware
error.

219

touch

Summary

Updates the time and date on a file to the current time and date.

Usage
touch [-r] file [file …]

Options
file

The name or pattern of the file or directory. There can be multiple files on the
command-line.

-r

Recurse into subdirectories

Description

This command updates the time and date on the file that is specified by the file
parameter to the current time and date.

If multiple files are specified on the command line, it will continue processing. It
will touch the files one by one and errors will be ignored.

Touch cannot change the time and date of read-only files and directories.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The target file or set of files were not found.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_WRITE_PROTECTED The media was write-protected or the file had a read-
only attribute associated with it.

220

type

Summary

Sends the contents of a file to the standard output device.

Usage
type file [file...]

Options
file

Name of the file to display.

Description

This command sends the contents of a file to the standard output device. If no
options are used, then the command attempts to detect the file type. If it fails,
then UCS-2 is presumed.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_NOT_FOUND The target file or set of files were not found.

Examples

To display a file in format:
fs0:\> type pause.nsh

Example script for 'pause' command

echo pause.nsh begin..
date
time
pause
echo pause.nsh done.

To display multiple files:
fs0:\> type test.*
How to Install?
time
stall 3000000
time

221

unload

Summary

Unloads a driver image that was already loaded.

Usage
unload [-n] [-v|-verbose] Handle

Options
-n

Skips all prompts during unloading, so that it can be used in a script file.

-v, -verbose

Dump verbose status information before the image is unloaded.

Handle

Handle of driver to unload, always taken as hexadecimal number

Description

This command unloads a driver image that was already loaded and which supports
the unloading option (see EFI_LOADED_IMAGE_PROTOCOL’s Unload() member.)

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

222

ver

Summary

Displays the version information for the UEFI Shell and the underlying UEFI
firmware.

Usage
ver [-s|-terse]

Options
-s

Displays only the UEFI Shell version

-terse

The shell command will restrict additional informative content.

Description

This command displays the version information for this EFI Firmware or the version
information for the UEFI Shell itself. The information is retrieved through the EFI
System Table or the Shell image.
UEFI <support-level> Shell v<uefi-shell-version>
shell-supplier-specific-data
UEFI v<uefi-firmware-version> (<firmware vendor name>, 0x<firmware vendor
version as 32-bit hex value> <optional additional vendor version>)

UEFI Basic Shell v2.0
Build 8192. Copyright 2008 by Intel(R) Corporation.
UEFI v2.10 Firmware (Phoenix Technologies Ltd., 0x01014318)

<support-level>

0 = Minimal, 1 = Scripting, 2 = Basic, 3 = Interactive

<uefi-shell-version>

comes from the shell spec upon which the shell implementation is based.

<shell-supplier-specific-data>

Build, copyright, etc.

<uefi-firmware-version>

From the EFI System Table's Hdr.Revision field, formatted as two period
delimited fields. The first field is the upper 16-bits of this field, represented as
a decimal unsigned integer. The second field is the lower 16-bites of this field,
represented as a two-digit, zero-filled decimal unsigned integer.

<firmware vendor name>

From the EFI System Table's FirmwareVendor field

223

<firmware vendor version>

From the EFI System Table's FIrmwareRevision field

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

224

vol

Summary

Displays the volume information for the file system that is specified by fs.

Usage
vol [fs] [-n <VolumeLabel>]
vol [fs] [-d]

Options
fs

The name of the file system.

VolumeLabel

The name of the file system. The following characters cannot be used: % ^ *
+ = [] | : ; “ < > ? / . No spaces are allowed in the volume label.

-d

Empty volume label.

Description

This command displays the volume information for the file system that is specified
by fs. If fs is not specified, the current file system will be used. If -n is specified,
then the volume label for fs will be set to VolumeLabel. The maximum length for
VolumeLabel is 11 characters.

Status Codes Returned
SHELL_SUCCESS The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly
formatted or its value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a security
violation

SHELL_NOT_FOUND The target file-system was not found

Examples

To display the volume of the current fs:
fs0:\> vol
Volume has no label (rw)
1,457,664 bytes total disk space
1,149,440 bytes available on disk
512 bytes in each allocation unit

To change the label of fs0:

225

shell> vol fs0 –n help_test
Volume HELP_TEST (rw)
1,457,664 bytes total disk space
1,149,440 bytes available on disk
512 bytes in each allocation unit

To get rid of the label of fs0:
fs0:\> vol fs0 -d
Volume has no label (rw)
1,457,664 bytes total disk space
220,160 bytes available on disk
512 bytes in each allocation unit

226

227

Appendix A
 UEFI Shell Consistent

Mapping Design
This appendix describes how device assignments are created.

A.1 Requirement:
1. The shell shall support consistent device assignments across (through)

reboots.

e.g. same concept as how you assign the letter D: to a partition under
DOS/Windows.

2. The shell commands shall support defining mappings.

For identical machines with the same hardware configurations the mapping
result should always be the same.

3. Not use the NV storage.

In the OS, it is easy to implement the consistent mapping, because it can
store the mapping info on the hard disk or other storage. The firmware has
no large storage to store all of this system info. To save space, it is strongly
desired that such mapping data does not use NV storage to maintain this
data.

A.2 Design

A.2.1 What does consistent mapping mean?

If hardware configuration is not changed, the mappings should not change.
EXAMPLE: map –r, reboot, map -r will not change the mappings.

If two or more machines have the same hardware configurations, mapping result
should be the same.

A.2.2 Hardware configuration change:

Generally, buses, controllers, hubs or bridges changing mean hardware
configuration change.

The change of the number or physical connection of hardware which can have child
hardware devices will be considered as hardware configuration change.

228

Example:

A.2.2.1 Hardware configuration change example

1. Change IDE disk from IDE primary master to slave

2. Change USB device from port0 to port1

3. Add or remove a SCSI controller adapt card

A.2.2.2 Hardware configuration not change example

1. Remove floppy/cdrom disk in drive will not affect mapped names of other
existing names

2. Remove floppy/cdrom, then insert back, the newly mapped name will be
the same as the last time it was mapped.

3. Unplugging a usb device will not affect mapped names of other existing
names

4. Unplug usb device, then plug back to the same port, the newly mapped will
be the same as the last time it was mapped.

A.2.3 Mapping generated from device path

The device path is used to generate the mapping, because in a platform, the device
path is unique and if the hardware configuration doesn’t change, the device’s
device path doesn’t change.

A.2.4 Consistent Mapping

A consistent mapping consists of 3 parts:

 <MTD><HI><CSD>

MTD(Media Type Descriptor): A string carries device’s media info (harddisk, CD-
ROM, …etc.)

1. Auxiliary name of media type, determined by device path

2. Matches with EFI device path specification

3. Proposed name (hd for harddisk, cd for CD-ROM, fp for floppy, etc.)

HI(Hardware Index): The index of the hardware device path node described in
current device path. The index is determined by the position of the whole sorted
hardware device path node in system.

1. Extract the hardware device path node and ACPI device path node from
each device path in system, make a condensed device path.

2. Use certain algorithm to sort all the condensed device paths

229

3. Adding/Removing controller(s) would change the index (hardware
configuration change)

CSD(Connection Specific Descriptor): A string of numbers and characters, which
identifies how the device connects to parent controller.

1. Specify the connection of device

2. use one or several numbers or characters to describe each media and
messaging device path node in device path to specify the
connection

A.2.5 Example (USB Devices)

Hardware Configuration (USB part)

4 UHC

7 USB devices: 4 Hard disks, 3 hub

Other hardware are ignored when mapping usb subsystem

Device Path (controllers are underlined)

acpi(pnp0a03,0)/pci(1d,0)/usb(0,1)/usb(1,1)/HD(Part4, sigxxx)
acpi(pnp0a03,0)/pci(1d,3)/usb(0,1)/usb(5,1)/HD(Part2, sigxxx)
acpi(pnp0a03,0)/pci(1d,1)/usb(1,0)/HD(Part3, sigxxx)
acpi(pnp0a03,0)/pci(1d,2)/usb(1,0)/ usb(2,0)/HD(Part1, sigxxx)

Steps to determine the consistent mapping for devices:

1. Determine the MTD

2. Determine the HI

3. Determine the CSD

4. Make the final mapping

A.2.5.1 Step 1: Determine MTD

MTD for all devices:

• hd is defined for harddisk.

• cd is defined for CD-ROM.

• fp is defined for floppy.

• f is defined for unknown device.

…

More names will be added according to the evolution of UEFI specification

230

The 4 USB devices are the hard disks, so their MTDs are “hd”.

A.2.5.2 Step 2: Determine HI

HI is determined by ACPI device path node and hardware device path node

1. Algorithm to calculate the HI

2. Enumerate all device path exist in system, whether there is a file system on
it or not.

3. Split the device path: the hardware and ACPI device path node part
consists of the HI device path that generates the HI and the remain
device path consist the CSD device path which generate the CSD.

Each kind of device path node has its own compare algorithm.

For acpi device path node, the compare algorithm is:
 acpi(h1, u1) > acpi(h2, u2) only if h1 > h2 or (h1 = h2 and u1 > u2)

For pci device path node, the compare algorithm is:
pci(d1, f1) > pci (d2, f2) only if d1 > d2 or (d1 = d2 and f1>f2)

For example:

acpi(pnp0a03,0)/pci(1d|0) <….< acpi(pnp0a03,0)/pci(1d|1)<….<
acpi(pnp0a03,0)/pci(1d|2) <….< apci(pnp0a03,0)/pci(1d|3)

Use decimal number for HI (0, 1, 2, 3, …)

After sorting we can assign HI for each hardware device path node part:

acpi(pnp0a03,0)/pci(1d|0)/usb(0,1)/usb(1,1)/HD(Part4, sigxxx)

acpi(pnp0a03,0)/pci(1d|0) usb(0,1)/usb(1,1)/HD(Part4, sigxxx)

HI device path, for
generate HI.

CSD device path, for generate CSD.

231

UHC1 acpi(pnp0a03,0)/pci(1d|0) - 5
UHC2 acpi(pnp0a03,0)/pci(1d|1) - 8
UHC3 acpi(pnp0a03,0)/pci(1d|2) - 12
UHC4 acpi(pnp0a03,0)/pci(1d|3) - 20

A.2.5.3 Step 3: Determine CSD

For each kind device path node, there are rules to translate the device path node to
the CSD.

A.2.5.3.1 Rules for USB device path node

Use interface number and port number for usb node

Numbers in device path will be mapped at intervals to characters or numbers

When mapping from numbers to characters: use a – 0 , b – 1, …, z – 25

Sample:
usb(0,1)  a1 or 0b.

A.2.5.3.2 Rules for hard drive device path node

Use partition number for hard drive device node

Sample:
 HD(Part4, sigxxx)  e or 4.

The CSD device paths of the 4 harddisk in our sample are:
usb(0,1)/usb(1,1)/HD(Part4, sigxxx)
usb(0,1)/usb(5,1)/HD(Part2, sigxxx)
usb(1,0)/HD(Part3, sigxxx)
usb(1,0)/usb(2,0)/HD(Part1, sigxxx)

A.2.5.3.3 Corresponding CSDs
usb(0,1)/usb(1,1)/HD(Part4, sigxxx)  a1b1e
usb(0,1)/usb(5,1)/HD(Part2, sigxxx)  a1e1c
usb(1,0)/HD(Part3, sigxxx)  b0d
usb(1,0)/ usb(2,0) /HD(Part1, sigxxx)  b0c0b

A.2.5.3.4 Step 4: Make the whole mapping

Whole mapping rule:
<USB mapping >::=[<MTD>]<HI><CSD>
<MTD> ::= {hd, fp, cd…}
<HI>::={0, 1, 2, …}
<CSD> ::=<node sequence>

Put the three parts (MTD, HI and CSD) together to get final mapping for the four
hard disks

232

acpi(pnp0a03,0)/pci(1d,0)/usb(0,1)/usb(1,1)/HD(Part4, sigxxx)  hd5a1b1e
acpi(pnp0a03,0)/pci(1d,3)/usb(0,1)/usb(5,1)/HD(Part2, sigxxx)  hd8a1d1c
acpi(pnp0a03,0)/pci(1d,1)/usb(1,0)/HD(Part3, sigxxx)  hd12b0d
acpi(pnp0a03,0)/pci(1d,2)/usb(1,0)/ usb(2,0)/HD(Part1, sigxxx)  hd20b0c0b

A.3 Implementation
Consistent Mapping = <MTD><HI><CSD>

MTD

fp floppy
hd hard disk
cd cd rom

f unknown media

HI

1. Extract the hardware device path node and ACPI device path node from
each device path in system,

2. Extract the condensed HI device path

3. Sort the extracted HI device paths.

HI is index of the sorted HI device paths.

CSD
Use one or several numbers or characters to describe each media and
messaging device path node in device path to specify the connection.

All of the reference values in the table below are references to the device path type
and sub-type values in the UEFI specification. For actual values of each of the
corresponding Type and Sub-type values, please refer to the UEFI spec.

233

Table 32 How to process each type the device path node:

234

Type Sub Type Node Type Note

HARDWARE_DEVICE HW_PCI HI Node Used to get HI

HARDWARE_DEVICE HW_PCCARD HI Node Used to get HI

HARDWARE_DEVICE HW_MEMMAP HI Node Used to get HI

HARDWARE_DEVICE HW_VENDOR HI Node Used to get HI

HARDWARE_DEVICE HW_CONTROLLER HI Node Used to get HI

ACPI_DEVICE ACPI HI/CSD Node Used ACPI(0604) to get
HI and other to get
CSD.

MESSAGING_DEVICE MSG_ATAPI CSD Node IDE channel index (0
for primary, master, 3
for secondary slave)

MESSAGING_DEVICE MSG_SCSI CSD Node Use LUN number and
PUN number for SCSI
node

MESSAGING_DEVICE MSG_FIBRECHANNEL CSD Node Use WWW number and
LUN number for fibre
channel device node

235

MESSAGING_DEVICE MSG_1394 CSD Node Use GUID as CSD for
1394 device path node

MESSAGING_DEVICE MSG_USB CSD Node Use interface number
and port number for
USB node

MESSAGING_DEVICE MSG_USB_CLASS NONE Not process.

MESSAGING_DEVICE MSG_I2O CSD Node Use Target ID as I2o
Device Path

MESSAGING_DEVICE MSG_MAC_ADDR CSD Node Use MAC address as
CSD for MAC node

MESSAGING_DEVICE MSG_IPv4 CSD Node Use local IP address,
local port, Remote IP
address, remote port
for IPv4 node

MESSAGING_DEVICE MSG_IPv6 CSD Node Use local IP address,
local port, Remote IP
address, remote port
for IPv6 node

MESSAGING_DEVICE MSG_INFINIBAND CSD Node Use PORT GID, IOC
GUID, Target Port ID,
Device ID

MESSAGING_DEVICE MSG_UART CSD Node Use Baud Rate, Data
Bits, Parity, Stop Bits
as CSD

MESSAGING_DEVICE MSG_VENDOR CSD Node Use GUID as CSD

236

MESSAGING_DEVICE MSG_LUN CSD
Node

Use the Logical Unit
Number

MESSAGING_DEVICE MSG_SATA CSD
Node

Use the HBA Port
Number, Port
Multiplier, and LUN
value.

MESSAGING_DEVICE MSG_SAS CSD
Node

Use the SAS Address,
LUN, Device Topology,
and Relative Target
Port

MEDIA_DEVICE MEDIA_HARDDRIVE CSD Node Partition Number

MEDIA_DEVICE MEDIA_CDROM CSD Node Boot Entry

MEDIA_DEVICE MEDIA_VENDOR CSD Node Use Vendor_GUID as
CSD

MEDIA_DEVICE MEDIA_FILEPATH NONE Don’t process.

MEDIA_DEVICE MEDIA_PROTOCOL NONE Don’t process.

MEDIA_DEVICE MEDIA_FV_FILEPATH NONE Don’t process.

BBS_DEVICE BBS_BBS NONE Don’t process.

237

A.3.1 Get the MTD

The MTD is a string that carries device’s media info. Such as floppy, hard disk or
others. The MTD is a string that makes the mapping more readable.

Now, the MTD has four types: fp(floppy), hd(hard disk), cd(CD Rom) and
f(unknown type).

The MTD’s info come from the device path. the algorithm go through each node of
the device path to find the special node that can specify this device’s MTD.

Table 33 MTD Naming
TYPE SUBTYPE MTD

EDIA_DEVICE_PATH MEDIA_HARDDRIVE hd

EDIA_DEVICE_PATH MEDIA_CDROM cd

ACPI_DEVICE_PATH ACPI &HID=0x0604 fp

Note: If a device has the MEDIA_HARDDRIVE and MEDIA_CDROM device path
node, then its MTD is cd.

If a device path has no any node list on the table, then, its MTD is f(unknown).

A.3.2 Get the HI

Each device can be separated into two part: the HI part and CSD part.

The HI part is used to get the HI section in the consistent mapping.

The CSD part is used to get the CSD section in the consistent mapping.

The algorithm of get HI goes through each device path in the system and extracts
each HI node in the device path according Table 32 to create a HI device path.

A.3.3 Get the CSD

A device path remove the HI device path part, the remain part is the CSD part.

The algorithm is go through the CSD device part, to each node, according Table 32
get the data that will be add to the CSD, translate the data to a string of digital or
character(according the position in the CSD).

A.3.3.1 USB Devices

CSD of hard drive device path node

Use partition number and interface for CSD

238

A.3.3.1.1 Example
usb(0,1)  a1
usb(1,0)  b0

A.3.3.2 Floppy Devices

General consistent mapping rule

Use _UID for CSD

A.3.3.2.1 Examples:

1. acpi(pnp0604,0)  a

2. acpi(pnp0604,1)  b

3. IDE Devices

A.3.3.3 CSD of ATAPI device path node

ATAPI node  ide channel index

0 for primary, master, 3 for secondary slave

A.3.3.4 CSD of LUN Device path node
Use the LUN number

A.3.3.4.1 Examples:
USB(0x2,0x1)/Unit(0x0)  c10
USB(0x2,0x1)/Unit(0x2)  c12

A.3.3.5 CSD of SAS Device path node

Use the SAS Address, followed by the LUN number, Device Topology Value, and
Relative Target Port

A.3.3.6 CSD of SATA Device path node

Use the HBA Port Number, followed by the Port Multiplier Number, and the LUN
value.

A.3.3.7 CSD of hard drive device path node

Hard disk node - > partition number

239

A.3.3.7.1 Examples
Ata(Primary,Master)  a
Ata(Primary, Slave)  b
Ata(Secondary,Master)  c
Ata(Secondary, Slave)  d
HD(p2, sig*)  c
CD(Entry0)  a

SCSI device

A.3.3.8 CSD of SCSI device path node

Use LUN number and PUN number for scsi node

A.3.3.8.1 Examples:
scsi(1,0)  b0
 scsi(2,0)  c0
 scsi(2,0)/scsi(1,0)  c0b0

A.3.3.9 Fibre Channel Device Path

Use WWW number and LUN number for fibre channel device node:
Acpi(0a03)/pci(0,0)/FC(0x1b833212, 0x34a65)/HD(Part4, sig**4)
hd45bmwccxe4654145e
(bmwccxe)26 = (1b833212)16, (4654145)10 = (34a65)16

A.3.3.10 1394 Device Path

Use GUID as CSD for 1394 device path node

Treat the guid as a string, for CSD, translate character by character
0001,db08,5001,0a5f  aaabnlaifaabakfp

A.3.3.11 I2o Device Path

Use Target ID as I2o Device Path

A.3.3.12 MAC Address Device Path

Use MAC address as CSD for MAC node

IPv4 Device Path & IPv6 Device Path

Use local Ip address, local port, Remote Ip address, remote port for IPv4 node

A.3.3.13 InfiniBand Device Path

Use PORT GID, IOC GUID, Target Port ID, Device ID

A.3.3.14 UART Device Path

Use Baud Rate, Data Bits, Parity, Stop Bits as CSD

240

A.3.3.15 Vendor-Defined Device Path

Use guid as CSD
{18ABEA39-F472-4278-BD55-E8C81C7030E1} 
biklokdjpehcechilnffoimibmhadaob

A.3.3.16 Vendor-defined Media Device Path

Use Vendor_GUID as CSD

A.3.3.17 File Path Media Device Path

Put file path in MTD

A.4 Function & Structure
EFI_STATUS
ConsistMappingCreateHIDevicePathTable (
 OUT EFI_DEVICE_PATH_PROTOCOL ***HIDevicePathTable
) ;

Parameters
HIDevicePathTable

 A pointer to the Table of HI Device Path.

Description

This function will go through all the device paths in the system, extract the HI
device path from each device path and add the HI device path to the HI device
path table then sort the HI device path table.

In this function, only use the device path’s first instance, if the device path has
more than one instance, the other instances are ignored.

Extract the HI device path.

To each device path, go through each node from the first device path node.
According to Table 33, if the node is the HI Device path node, add it to the HI
Device, path, until meet the first NuHI Device path node.

Sort the HI device path table.

According the compare rules above, sort the HI device path table.

241

Pseudo Code
foreach handle in System
{
 Get DevicePath form handle;
 If DevicePath is null {
 Continue;
 }
 HIDevicePath = ExtractHI(DevicePath);
 Add the HIDevicePath to the HDPT
}
Sort the HDPT

Status Codes Returned
SHELL_SUCCESS Success to get the HI device path table.

SHELL_OUT_OF_RESOURCE Can not create the HI device path table.

CHAR16*
ConsistMappingGenMappingName(
 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
 IN EFI_DEVICE_PATH_PROTOCOL **HIDevicePathTable
) ;

Parameters
DevicePath

A pointer to a device path that will be translated to the consist name.

HIDevicePathTable

A pointer to the Table of HI Device Path.

Description

This function go through each node of the DevicePath, extract the info about the
MTD, HI, and CSD, and then according to the extracted info, create a consistent
mapping.

Pseudo Code
Foreach handle in System
{
 Get DevicePath form handle;
 If DevicePath is null {
 Continue;
 }
 HIDevicePath = ExtractHI(DevicePath);
 Add the HIDevicePath to the HDPT
}
Sort the HDPT

Status Codes Returned
NULL Can’t create the consistent

mapping.

NULL The consistent mapping.

242

Sort the HI device path table.

Consist mapping device path compare:
Compare(Node1, Node2)
{
 If (DeviceType(Node1) != DeviceType(Node2)) {
 Return DeviceType(Node1) –
DeviceType(Node2);
 }
 If (DeviceSubType(Node1)!= DeviceSubType(Node2)) {
 Return DeviceSubType(Node1) –
DeviceSubType(Node2);
 }
 If (DeviceSubType(Node) == PCI) {
pci(d1, f1) > pci (d2, f2) only if d1 > d2 or (d1 = d2 and f1>f2)
 }
 If (DeviceSubType(Node) == ACPI) {
pci(d1, f1) > pci (d2, f2) only if d1 > d2 or (d1 = d2 and f1>f2)
 }
 If(Length(Node) != Length(Node2)) {
 Return (Length(Node1) – Length(Node2);
 }
 Return memcmp(Node1, Node2, Length(Node1));
}

243

Appendix B
 UEFI Help Manual Page

Syntax
The manual page files are standard text files with title and section heading
information embedded using commands which begin with a ‘.’. The following two
macros are supported:

.TH command-name 0 “short-description”

Title header. When printing multi-page help, this will appear at the top of each
page.

.SH section-name

Sub-header. Specifies one of several standard sub-headings.

Table 34 Subheadings and descriptions
Sub-

Heading
Name

Description

NAME The name of the function or command, along with a one-line summary.

SYNOPSIS Usage of the command

DESCRIPTION General description

OPTIONS Description of all options and parameters.

RETURN VALUES Values returned.

ENVIRONMENT
VARIABLES

Environment variables used

FILES Files associated with the subject.

EXAMPLES Examples and suggestions.

ERRORS Errors reported by the command.

STANDARDS Conformance to applicable standards.

BUGS Errors and caveats.

CATEGORY The comma-delimited list of categories to which this command belongs.
Category names must follow normal file naming conventions. Category
names which begin with ‘_’ will not be used in the specification. See
section 3.11.2 (“Command-Line Help”) for more information on how this
category is used when installing new commands.

other Other sections added by the help author.

244

245

Appendix C
 UEFI Shell Status Codes

Most UEFI Shell commands return SHELL_STATUS code values. These UEFI Shell
status codes are enumerated below.

Table 35 SHELL_STATUS return codes
Mnemonic Value Description

SHELL_SUCCESS 0 The operation completed successfully

SHELL_LOAD_ERROR 1 The image failed to load.

SHELL_INVALID_PARAMETER 2 There was an error in the command-line
options.

SHELL_UNSUPPORTED 3 The operation is not supported.

SHELL_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the
request.

SHELL_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the
requested data. The required buffer size is
returned in the appropriate parameter
when this error occurs.

SHELL_NOT_READY 6 There is no data pending upon return.

SHELL_DEVICE_ERROR 7 The physical device reported an error while
attempting the operation.

SHELL_WRITE_PROTECTED 8 The device cannot be written to.

SHELL_OUT_OF_RESOURCES 9 A resource has run out.

SHELL_VOLUME_CORRUPTED 10 An inconstancy was detected on the file
system causing the operating to fail.

SHELL_VOLUME_FULL 11 There is no more space on the file system.

SHELL_NO_MEDIA 12 The device does not contain any medium to
perform the operation.

SHELL_MEDIA_CHANGED 13 The medium in the device has changed
since the last access.

SHELL_NOT_FOUND 14 The item was not found.

SHELL_ACCESS_DENIED 15 Access was denied.

SHELL_TIMEOUT 18 The timeout time expired.

SHELL_NOT_STARTED 19 The specified operation could not be
started.

SHELL_ALREADY_STARTED 20 The specified operation had already
started.

SHELL_ABORTED 21 The operation was aborted by the user

246

Mnemonic Value Description

SHELL_INCOMPATIBLE_VERSION 25 The function encountered an internal
version that was incompatible with a version
requested by the caller.

SHELL_SECURITY_VIOLATION 26 The function was not performed due to a
security violation.

SHELL_NOT_EQUAL 27 The function was performed and resulted in
an unequal comparison..

247

Appendix D
 UEFI Shell Command

Standard Formatted
Output

This section describes the general, table-based standard output format for
UEFI shell commands. The format is designed so that tools can easily process
output produced by shell commands.

UEFI shell commands using standard formatted output display the same
information they would normally display, except using rows and columns of
comma-delimited data. The first column always contains a C-style identifier
which describes the type of data on the row. This identifier is known as the
table name. Table names which begin with the ‘_’ character are
implementation-specific.

The second and subsequent columns are quoted C-style strings containing the
actual UEFI shell command data. For each UEFI shell command, the format
and meaning of each column depends on the column number and the table
name.

Shell commands which support the –sfo option will always produce the table
name ShellCommand. The second column contains the name of the shell
command without any extension. For example:

ShellCommand,”ls”

In the syntax below, an identifier is a C-style identifier, which starts with an
alphabetic character or underscore. A quoted string starts with a double-
quotation mark (“) character, followed by zero or more characters and
concluding with a double-quotation mark (“) character. Quotation marks in the
string must be escaped by using a ^ character (i.e. ^”). The ^ character may
be inserted using ^^.

Extended Syntax
sfo-format := sfo-row

 sfo-row <EOL> <sfo-row>

sfo-row := sfo-table-name, sfo-columns

sfo-table-name := identifier

sfo-columns := sfo-column |

 sfo-columns, | sfo-column

sfo-column := quoted-string |

248

 <empty>

Example
ShellCommand,"ls"
VolumeInfo,"TimsVolume","400000000","FALSE","32000000","16000000"
FileInfo,"FS0:\efi\boot\winloader.efi","45670","45900","arsh","08:30:12","
01.08.2013","00:00:00","01.08.2013","08:30:12","01.08.2013"
FileInfo,"FS0:\efi\boot\timsfile.txt","1250","1280","a","08:30:12","01.08.
2013","00:00:00","01.08.2013","08:30:12","01.08.2013"
FileInfo,"FS0:\efi\boot\readme.txt","795","900","a","08:30:12","01.08.2013","00:00
:00","01.08.2013","08:30:12","01.08.2013"

	1 Introduction
	1.1 Overview
	1.2 Related Information
	1.3 Terms

	2 Code Definitions
	2.1 Introduction
	2.2 EFI_SHELL_PROTOCOL
	EFI_SHELL_PROTOCOL
	Summary
	Related Definitions
	GUID
	Protocol Interface Structure
	Members
	Description

	EFI_SHELL_PROTOCOL.BatchIsActive()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.CloseFile()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.CreateFile()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.DeleteFile()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.DeleteFileByName()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.DisablePageBreak()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.EnablePageBreak()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.Execute()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.FindFiles()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.FindFilesInDir()
	Summary
	Prototype
	Parameters
	Status Codes Returned

	EFI_SHELL_PROTOCOL.FlushFile()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.FreeFileList()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetAlias()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetCurDir()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetDeviceName()
	Summary
	Prototype
	Parameters
	Description
	Related Definitions
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetDevicePathFromMap()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetDevicePathFromFilePath()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetEnv()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetEnvEx()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetFileInfo()
	Summary
	Prototype
	Parameters
	Description
	Returns

	EFI_SHELL_PROTOCOL.GetFilePathFromDevicePath()
	Summary
	Prototype
	Parameters
	Description
	Returned Value

	EFI_SHELL_PROTOCOL.GetFilePosition()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returns

	EFI_SHELL_PROTOCOL.GetFileSize()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetGuidFromName()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetGuidName()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetHelpText()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.GetMapFromDevicePath()
	Summary
	Prototype
	Parameters
	Description
	Returned Value

	EFI_SHELL_PROTOCOL.GetPageBreak()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.IsRootShell()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.OpenFileByName()
	Summary
	Prototype
	Parameters
	Related Definitions
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.OpenFileList()
	Summary
	Prototype
	Parameters
	Description
	Related Definitions
	Status Codes Returned

	EFI_SHELL_PROTOCOL.OpenRoot()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.OpenRootByHandle()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.ReadFile()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.RegisterGuidName()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.RemoveDupInFileList()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.SetAlias()
	Summary
	Prototype
	Parameters
	Description
	Return Value

	EFI_SHELL_PROTOCOL.SetCurDir()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.SetEnv()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.SetFileInfo()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.SetFilePosition()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_PROTOCOL.SetMap()
	Summary
	Prototype
	Parameters
	Description
	Return Value

	EFI_SHELL_PROTOCOL.WriteFile()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	2.3 EFI_SHELL_PARAMETERS_PROTOCOL
	EFI_SHELL_PARAMETERS_PROTOCOL
	Summary
	GUID
	Prototype
	Parameters
	Description

	2.4 EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL
	EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL
	Summary
	GUID
	Prototype
	Parameters

	EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL.Handler()
	Summary
	Prototype
	Parameters
	Description
	Status Codes Returned

	EFI_SHELL_DYNAMIC_COMMAND_PROTOCOL.GetHelp()
	Summary
	Prototype
	Parameters
	Description
	Value Returned

	3 UEFI Shell Features
	3.1 Levels Of Support
	3.2 Invocation
	3.3 Initialization
	3.3.1 Finding startup.nsh
	3.3.2 Supported Profiles
	3.3.3 Dynamic Profiles

	3.4 Command-Line
	3.4.1 Special Characters
	3.4.2 Escape Characters
	3.4.3 Quoting
	3.4.4 Redirection
	3.4.4.1 Output Redirection
	3.4.4.2 Input Redirection
	3.4.4.3 Pipe Support

	3.4.5 Comments

	3.5 Current Directory
	3.6 Variables
	3.6.1 Environment Variables
	3.6.2 Positional Parameters
	3.6.3 Index Parameters
	3.6.4 Aliases

	3.7 File Names
	3.7.1 Wildcard Expansion
	3.7.2 Mappings
	3.7.3 Consistent File System Mapping

	3.8 Scripts
	3.9 Nesting the Shell
	3.10 Interactive Features
	3.10.1 Key History Support
	3.10.2 Execution Interrupt Support
	3.10.3 Output Streaming Control
	3.10.4 Scroll Back Buffer Support

	3.11 Shell Applications
	3.11.1 Installation
	3.11.2 Command-Line Help

	3.12 GUID Name Information
	3.13 Dynamic Shell Commands

	4 Scripts
	4.1 Comments
	4.2 Error Handling
	4.3 Script Nesting
	4.4 Output and Echoing
	4.5 Limitations

	5 Shell Commands
	5.1 Overview
	5.1.1 Explanation of Command Description Layout
	5.1.2 Shell Command-Line Options

	5.2 Shell Command Profiles
	5.3 Shell Commands
	alias
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	attrib
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	bcfg
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	cd
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	cls
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples
	Standard-Format Output

	comp
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	connect
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	cp
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	date
	Summary
	Usage
	Options
	Description
	Standard-Format Output
	Status Codes Returned
	Examples

	dblk
	Summary
	Usage
	Options
	Description
	Examples

	del
	Summary

	devices
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned
	Standard-Format Output

	devtree
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	dh
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples
	Standard-Format Output

	dir
	Summary

	disconnect
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	dmem
	Summary
	Usage
	Options
	Description
	Examples

	dmpstore
	Summary
	Usage
	Options
	Description
	Examples
	Standard-Format Output

	drivers
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples
	Standard-Format Output

	drvcfg
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	drvdiag
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	echo
	Summary
	Usage
	Options
	Description
	Note
	Status Codes Returned
	Examples

	edit
	Summary
	Usage
	Options
	Description
	Examples

	eficompress
	Summary
	Usage
	Options
	Description
	Examples

	efidecompress
	Summary
	Usage
	Options
	Description
	Examples

	exit
	Summary
	Usage
	Options
	Description
	Status Codes Returned

	for
	Usage
	Description
	Examples

	getmtc
	Usage
	Description
	Status Codes Returned
	Examples

	goto
	Usage
	Description
	Note
	Examples

	help
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	hexedit
	Summary
	Usage
	Options
	Description
	Examples

	if
	Usage
	Options
	Description
	Expressions
	Comparisons
	Error Mapping Functions
	Boolean Functions
	Conditional Expressions
	Numbers
	Examples

	ifconfig
	Summary
	Usage
	Options
	Description
	Examples

	IfConfig6
	Summary
	Usage
	Options
	Description
	Examples

	load
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	loadpcirom
	Summary
	Usage
	Options
	Description
	Examples

	ls
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples
	Standard-Format Output

	map
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Standard-Format Output

	md
	Summary

	mem
	Summary

	memmap
	Summary
	Usage
	Options
	Description
	Examples
	Standard-Format Output

	mkdir
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	mm
	Summary
	Usage
	Options
	Description
	Examples

	mode
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	mv
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	openinfo
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	parse
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	pause
	Usage
	Description
	Examples

	pci
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	ping
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	Ping6
	Summary
	Usage
	Options
	Description
	Examples

	reconnect
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	reset
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	rm
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	sermode
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	set
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	setsize
	Summary
	Usage
	Options
	Description
	Status Codes Returned

	setvar
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	shift
	Usage
	Description
	Examples

	smbiosview
	Summary
	Usage
	Options
	Description
	Status Codes Returned

	stall
	Summary
	Usage
	Options
	Description
	Status Codes Returned

	time
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	timezone
	Summary
	Usage
	Options
	Description
	Examples
	Status Codes Returned

	touch
	Summary
	Usage
	Options
	Description
	Status Codes Returned

	type
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	unload
	Summary
	Usage
	Options
	Description
	Status Codes Returned

	ver
	Summary
	Usage
	Options
	Description
	Status Codes Returned

	vol
	Summary
	Usage
	Options
	Description
	Status Codes Returned
	Examples

	Appendix A UEFI Shell Consistent Mapping Design
	A.1 Requirement:
	A.2 Design
	A.2.1 What does consistent mapping mean?
	A.2.2 Hardware configuration change:
	Example:
	A.2.2.1 Hardware configuration change example
	A.2.2.2 Hardware configuration not change example

	A.2.3 Mapping generated from device path
	A.2.4 Consistent Mapping
	A.2.5 Example (USB Devices)
	A.2.5.1 Step 1: Determine MTD
	A.2.5.2 Step 2: Determine HI
	A.2.5.3 Step 3: Determine CSD
	A.2.5.3.1 Rules for USB device path node
	A.2.5.3.2 Rules for hard drive device path node
	A.2.5.3.3 Corresponding CSDs
	A.2.5.3.4 Step 4: Make the whole mapping

	A.3 Implementation
	A.3.1 Get the MTD
	A.3.2 Get the HI
	A.3.3 Get the CSD
	A.3.3.1 USB Devices
	A.3.3.1.1 Example

	A.3.3.2 Floppy Devices
	A.3.3.2.1 Examples:

	A.3.3.3 CSD of ATAPI device path node
	A.3.3.4 CSD of LUN Device path node
	A.3.3.4.1 Examples:

	A.3.3.5 CSD of SAS Device path node
	A.3.3.6 CSD of SATA Device path node
	A.3.3.7 CSD of hard drive device path node
	A.3.3.7.1 Examples

	A.3.3.8 CSD of SCSI device path node
	A.3.3.8.1 Examples:

	A.3.3.9 Fibre Channel Device Path
	A.3.3.10 1394 Device Path
	A.3.3.11 I2o Device Path
	A.3.3.12 MAC Address Device Path
	A.3.3.13 InfiniBand Device Path
	A.3.3.14 UART Device Path
	A.3.3.15 Vendor-Defined Device Path
	A.3.3.16 Vendor-defined Media Device Path
	A.3.3.17 File Path Media Device Path

	A.4 Function & Structure
	Parameters
	Description
	Pseudo Code
	Status Codes Returned
	Parameters
	Description
	Pseudo Code
	Status Codes Returned

	Appendix B UEFI Help Manual Page Syntax
	Appendix C UEFI Shell Status Codes
	Appendix D UEFI Shell Command Standard Formatted Output
	Extended Syntax
	Example

