
presented by

Embracing Modularity and Boot-Time
Configuration

Faster TTM with Tiano-based Solutions

UEFI Fall 2023 Developers Conference & Plugfest
October 9-12, 2023

Andrei Warkentin (Intel)
www.uefi.org 1

Agenda

• Background
• FdtBusDxe

www.uefi.org 2

Background
• UEFI has a flexible driver model and a rich set of

bus and I/O interfaces.
• No good mechanism to implement platform (non-

discoverable) devices as part of bring-up – fiddly,
hand-rolled, etc. Other implementations do better.

• Tiano is the reference UEFI implementation. Tiano
== UEFI, yet UEFI != Tiano. Tiano gaps are
frequently claimed as spec gaps… Time to fix the
gaps!

www.uefi.org 3

Problem #1
• Compile-time definitions for platform devices.

– DSC/FDF choose platform-specific drivers.
– #defines, Pcds guide driver behavior

• Hand-rolled platform description mechanisms
– https://github.com/tianocore/edk2-

platforms/blob/master/Silicon/Marvell/Armada7k
8k/Library/Armada7k8kSoCDescLib/Armada7k8kS
oCDescLib.c

www.uefi.org 4

https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Marvell/Armada7k8k/Library/Armada7k8kSoCDescLib/Armada7k8kSoCDescLib.c
https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Marvell/Armada7k8k/Library/Armada7k8kSoCDescLib/Armada7k8kSoCDescLib.c
https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Marvell/Armada7k8k/Library/Armada7k8kSoCDescLib/Armada7k8kSoCDescLib.c
https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Marvell/Armada7k8k/Library/Armada7k8kSoCDescLib/Armada7k8kSoCDescLib.c

Problem #2
Not clearly following driver model.
• Some drivers just install protocols

– https://github.com/tianocore/edk2-
platforms/blob/master/Silicon/Broadcom/Bcm283x/Drivers/Bcm2838RngDxe/Bcm2838R
ngDxe.c

• Some drivers are libraries consumed by a generic driver
– PciHostBridgeLib consumed by PciHostBridgeDxe
– SerialPortLib consumed by SerialDxe

• Some drivers publish a driver binding protocol, then install the one handle this
protocol supports.

– https://github.com/tianocore/edk2-
platforms/blob/master/Platform/RaspberryPi/Drivers/DwUsbHostDxe/DriverBinding.c

• A few common IP blocks can use NonDiscoverablePciDeviceDxe to bind existing PCIe
drivers.

www.uefi.org 5

https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Broadcom/Bcm283x/Drivers/Bcm2838RngDxe/Bcm2838RngDxe.c
https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Broadcom/Bcm283x/Drivers/Bcm2838RngDxe/Bcm2838RngDxe.c
https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Broadcom/Bcm283x/Drivers/Bcm2838RngDxe/Bcm2838RngDxe.c
https://github.com/tianocore/edk2-platforms/blob/master/Platform/RaspberryPi/Drivers/DwUsbHostDxe/DriverBinding.c
https://github.com/tianocore/edk2-platforms/blob/master/Platform/RaspberryPi/Drivers/DwUsbHostDxe/DriverBinding.c

Problem #3
Monolithic drivers are hard.
• Some devices aren’t simple. They are a hierarchy and may have complex dependency outside of the

immediate IP blocks.
• A NIC is a combination of:

– Board-specific PHY.
– Possibly GPIO/I2C and power resources.
– NIC engine, possibly with per-port/instance resources.

• A video framebuffer could be a combination of:
– An ISP with multiple video inputs (e.g. pixel format conversion)
– An LCD controller.
– An HDMI encoder (on I2C)
– EDID source (on another I2C)
– GPIOs, power rails, clocks.
– Multiple video outputs/sinks.

• No code reuse.
• Hard to tweak – everything is backed in and platform wiring specific.

www.uefi.org 6

Problem #4
• Minor SoC variants require custom

firmware image builds.
– E.g. SoC 7xxx has half of the SoC8xxx

I/Os…
• Minor board variants require custom

firmware image builds (different PHY,
different PCIe segment configs)

www.uefi.org 7

U-Boot Suggests a Solution

• Most drivers in U-Boot follow the U-
Boot device driver model.

• On platforms with a flattened device
tree, the latter can be used for driver
binding and configuration.

www.uefi.org 8

What is Device Tree?
• A marshalling format for a hierarchical key-value

store.
• https://www.devicetree.org/
• Came from PowerPC, embraced by Arm and

RISC-V platforms.
• Typically used to describe hardware to an OS in

vertically-integrated (“embedded”)
environments, where it is used in place of ACPI.

www.uefi.org 9

https://www.devicetree.org/

Is This DT vs ACPI Again?
• This is not about passing DT to an OS.

– This is a choice dictated by product segment, how
crazy/broken/advanced your hardware is, etc.

• Incidentally, many things that make DT not
particularly great for general purpose OS
consumption make it great for describing hardware
to firmware.
– No abstraction, no byte code – raw data.
– Can describe whatever the driver developers need.
– Think of it as a PI HOB on steroids.

www.uefi.org 10

An Example

www.uefi.org 11

How is DT Used in Tiano Today?
• Patched and passed to OS loaders when booting without ACPI

(AArch64, Arm, RISCV64)
• Manually traversed in drivers.
• EmbeddedPkg/Drivers/FdtClientDxe

www.uefi.org 12

A Few More Points
• DT blobs are almost always used by prior state

firmware on Arm (TF-A) and RISC-V (OpenSBI) and
passed to Tiano Sec/PrePi.

• Almost all platforms start with DT and then
(possibly) add ACPI support, so the DT always exists
in some form, at least to support early Linux
enablement.

• …but DT is not arch-specific. It can be trivially used
on x86 to replace any other bespoke mechanism to
describe hardware to Tiano platform drivers!

www.uefi.org 13

Introducing FdtBusDxe

www.uefi.org 14

FdtBusDxe
• A UEFI bus driver (e.g. similar to PciBus)
• Started at Intel, in the process of being

open sourced (BSD).
• RISE Project under the firmware Working

Group.
– https://wiki.riseproject.dev/

• Goal is to upstream to edk2 once the design
settles down and there is sufficient review.

www.uefi.org 15

https://wiki.riseproject.dev/

FdtBusDxe
• Binds to DT top level (root) handle
• Binds to simple-bus nodes (like ACPI0004 containers)
• Exposes EFI_DT_IO_PROTOCOL

• Common cached properties (Name, Model, Status)
• Properties lookup, child device processing
• Device register access (Poll, Read, Write, Copy)
• DMA operations (Map, Unmap, Allocate, Free)

• FdtClientDxe replacement
• Handles gPlatformHasDeviceTreeEvent, installing DT as a

configuration table
• Does not implement FDT_CLIENT_PROTOCOL.

www.uefi.org 16

Let’s See That Example Again

www.uefi.org 17

Property Lookup

www.uefi.org 18

• Actual properties can be an array of the same type, or even
compound.

• API centered around sequential parsing.
• EFI_DT_IO_PROTOCOL_GET_PROP returns an EFI_DT_PROPERTY

• VOID *Begin
• VOID *Iter
• VOID *End

• EFI_DT_IO_PROTOCOL_PARSE_PROP takes Type, Index and
advances Iter.

• Convenience wrappers (GetReg)

Property Lookup

www.uefi.org 19

EFI_DT_VALUE_TYPE Description
EFI_DT_VALUE_U32 A 32-bit value.
EFI_DT_VALUE_U64 A 64-bit value.
EFI_DT_VALUE_BUS_ADDRESS An address encoded by #address-cells.
EFI_DT_VALUE_SIZE A size encoded by #size-cells.
EFI_DT_VALUE_REG A reg property value.
EFI_DT_VALUE_RANGE A ranges/dma-ranges property value.
EFI_DT_VALUE_STRING A string property value.
EFI_DT_VALUE_LOOKUP A reference to another DT device

(EFI_DT_IO_PROTOCOL).

Property Lookup

www.uefi.org 20

Parsing can be complicated
• The number of cells in a bus address reg is controlled by parent device

#address-cells and #size-cells
• Limit on address/size values is __int128 on 64-bit systems.
• “reg” may be translated.

Reg[0] is [0x4600, 0x4700), and within parent’s
[0xe0000000,0xe0100000)

Reg[0] is thus translated to [0xe0004600,
0xe0004700), can can be accessed using I/O
accessors for the soc node.

If something translates all the way to root node,
it’s in CPU address space.

I/O Access

• ReadReg/WriteReg/PollReg.
• Can be hooked by drivers.

www.uefi.org 21

DMA Buffers

www.uefi.or 22

Buffer handling can be complicated.
• Need to honor parent dma-ranges.

– Device may have restricted I/O
capabilities.

– Translation between a device bus
address and the CPU view of the
buffer.

• Need to honor dma-coherent
– May imply MMU attributes
– May imply bounce buffering

• There can be also CPU barriers hidden by
the Map/Unmap API.

Two Usage Patterns

www.uefi.or 23

• Driver Binding
• Legacy (Like FdtClientDxe, manual scraping of tree

nodes):
– Well suited to lib-based drivers, e.g. using:

• SerialPortLib
• PciHostBridgeLib

HighMemDxe – Legacy Way

www.uefi.or 24

• DEPEX on gEfiDtIoProtocolGuid (FdtBusDxe loading)
• InitializeHighMemDxe:

– LocateHandleBuffer (gEfiDtIoProtocolGuid)
– For Handle in HandleBuffer:

• If AsciiStrCmp (DtIo->DeviceType, "memory") != 0 && DtIo-
>DeviceStatus == EFI_DT_STATUS_OKAY

– ProcessMemoryRanges

HighMemDxe – Driver Binding

www.uefi.or 25

• InitializeHighMemDxe:
– EfiLibInstallDriverBindingComponentName2

• DriverSupported
– AsciiStrCmp (DtIo->DeviceType, "memory") != 0 && DtIo-

>DeviceStatus == EFI_DT_STATUS_OKAY

• DriverStart
– ProcessMemoryRanges

HighMemDxe – ProcessMemoryRanges

www.uefi.or 26

HighMemDxe – Driver Binding

www.uefi.or 27

…might wonder what forces the binding to happen at boot.
• This could be via Bds, similarly as to how video devices are

connected even on a boot without full enumeration.
• Some node are marked as critical nodes – must be connected.

– Nodes of type memory
– Nodes with uefi,critical property present

More Examples

www.uefi.org 28

Thanks for attending the UEFI Fall 2023
Developers Conference & Plugfest

For more information on UEFI Forum and UEFI
Specifications, visit http://www.uefi.org

presented by

www.uefi.org 29

http://www.uefi.org/

	Embracing Modularity and Boot-Time Configuration�Faster TTM with Tiano-based Solutions
	Agenda
	Background
	Problem #1
	Problem #2
	Problem #3
	Problem #4
	U-Boot Suggests a Solution
	What is Device Tree?
	Is This DT vs ACPI Again?
	An Example
	How is DT Used in Tiano Today?
	A Few More Points
	Introducing FdtBusDxe
	FdtBusDxe
	FdtBusDxe
	Let’s See That Example Again
	Property Lookup
	Property Lookup
	Property Lookup
	I/O Access
	DMA Buffers
	Two Usage Patterns
	HighMemDxe – Legacy Way
	HighMemDxe – Driver Binding
	HighMemDxe – ProcessMemoryRanges
	HighMemDxe – Driver Binding
	More Examples
	Slide Number 29

