
UEFI & EDK II Base Training

UEFI Human Interface
Infrastructure
Intel Corporation
Software and Services Group

OBJECTIVE:
 • What is the Infrastructure for HII
• How Does HII work
• Lab

USER INTERFACE HII OVERVIEW

WHY ?

• Unified Look and Feel at
Platform level

• Single Interface
• Localization
• • •

4

HII: KEY CONCEPTS

5

forms & strings

input sources

setup browser

localization

HII

DESIGN DISCUSSIONS

See § 28.2 of the UEFI 2.3x Spec.

6

UEFI Global
Variable

Store

Display
Devices

HID
Devices

Forms
Browser

Display
Devices

HII
Database

Driver

Driver

Driver specific
data store

Hardware Input
Devices

HII COMPONENTS

– Unicode representation
– Presumption of bitmap fonts for easier localization
– Keyboard Mapping
– Describe user interface layout for ‘windowing’

interfaces
– An application that uses String and Font support

– Self supporting data structure containing fonts,

strings, and forms from a driver or set of drivers

HUMAN INTERFACE COMPONENTS

Strings

Fonts

Keyboard

Forms

Packages

text

AB前

STRINGS
• Strings stored in Unicode

– Real string encodings required for e.g. VT100
– Already the text standard in UEFI today

• Localization happens at the string level
– Caller externs and passes in language independent string token
– String support determines actual string from token and

selected language
– Usage Model:

• A string library supporting translations
– Reduces translation costs and delays

• Tools to extract strings depending on use by driver
• Analysis of strings used to extract fonts
• RFC 4646 Language codes (2-2)

Strings

TOKEN TO STRING MAPPING
• Request: Print string with token 37
• Currently selected language is as in UEFI 2.X. This is used to select between

language data structures. (The structures indicate which language(s) they support).
• The top part of the structure maps from token to string. The bottom part of the

structure is the strings

Magic
Prototype
Computer 神奇计算机模

型

English

Chinese

Currently Selected
Language

#37

STRING EXAMPLE (.UNI FILE)

#langdef en-US "English"
#langdef fr-FR "Francais“
#langdef sv-SE “Svenska”

#string STR_FORM_SET_TITLE

#string STR_FORM_SET_TITLE_HELP

#string STR_FORM1_TITLE

#language en-US "Browser Testcase Engine"
#language fr-FR "Navigateur Testcase Moteur”
#language sv-SE "Webbläsare Testcase Motor”

#language en-US "This is a sample UEFI driver which is used

to test the browser op-code operations. "
#language fr-FR “Il s'agit d'une UEFI Driver échantillon qui

est utilisé pour tester les navigateurs op-code
opérations.“

#language sv-SE ”Detta är ett exempel på UEFI-drivrutin som
används för att testa webbläsaren op-kod operationer”

#language en-US "My First Setup Page"
#language fr-FR "Mi Primero Arreglo Página“
#language sv-SE "Min första inställningssidan”

RFC 4646 Language codes

FONTS
• One Standard Font for UEFI

– One font database accumulated during boot
• Each Component Provides Its Fonts

– System provides ASCII and ISO Latin-1
– Fonts only required for characters in strings that may

appear
• If the firmware will never print “tractor” in Kanji, discard the

bit image

– Result is a sparse array of characters indexed by the
Unicode ‘weight’

• Wide and Narrow glyphs supported

Fonts

KEYBOARDS

• Support varying keyboards
– UK and US keyboard layout are not the same. Certainly that is

the case for US and Arabic, etc.
– Adding support of other modifiers (e.g. Alt-GR, Dead-keys, etc)

• Keyboard Layout
– Allow for a standardized mechanism to describe a keyboard

layout and add to system database.
– Allow for switching keyboard layouts.

Spanish English French

Keyboard

FORMS

• The forms are stored in the HII database, along with the strings,
fonts and images

• Other applications may use the information within the forms to
validate configuration setting values

• The Forms Browser provides a forms-based user interface which
understands

– how to read the contents of the forms
– interact with the user
– save the resulting values

• The Forms Browser uses forms data installed by an application or
driver during initialization in the HII database.

Forms

VISUAL FORMS REPRESENTATION (VFR)
• Language used to describe what a page layout would

be in a browser as well as the op-codes and string
tokens to display

• Op-codes are defined for the following functions
examples

• formSet and form definitions
• One of type questions with corresponding options (combo) fields

– checkbox
– numeric
– oneof
– String

• Boolean expressions in support of errors, suppress, and gray outs
– "disableif"
– “suppressif“

– “grayoutif"

FORM EXAMPLE (.VFR FILE)
formset
 guid = FORMSET_GUID,
 title = STRING_TOKEN(STR_FORM_SET_TITLE),
 help = STRING_TOKEN(STR_FORM_SET_TITLE_HELP),
 classguid = EFI_HII_PLATFORM_SETUP_FORMSET_GUID,

 varstore DRIVER_SAMPLE_CONFIGURATION,
 name = MyIfrNVData,
 guid = FORMSET_GUID;

 form formid = 1,
 title = STRING_TOKEN(STR_FORM1_TITLE);

 oneof varid = MyIfrNVData.MyVariableForOneofPrompt,
 prompt = STRING_TOKEN(STR_ONE_OF_PROMPT),
 help = STRING_TOKEN(STR_ONE_OF_HELP),
 option text = STRING_TOKEN(STR_ONE_OF_TEXT1), value = 0x0, flags = 0;
 option text = STRING_TOKEN(STR_ONE_OF_TEXT2), value = 0x1, flags = 0;
 option text = STRING_TOKEN(STR_ONE_OF_TEXT3), value = 0x2, flags = DEFAULT;
 endoneof;

 • • •
 endform;
endformset;

INTERNAL FORMS REPRESENTATION (IFR)

• IFR Code created by VFR to IFR compiler tool
• Byte encoded operations (much smaller)
• String references abstracted as tokens
• Improved validation, visibility primitives
• At better level of presentation control for firmware

– Tension between configuration driver and presentation driver
over control of presentation format

• Easy to
– Interpret for small Setup engine in desktop firmware
– Translate into XHTML or JavaScript or …

MINIMUM FILES FOR HII DRIVER
• Driver source file

– Consumes HII protocols
– Produces

EFI_HII_CONFIGURATION_ACCESS_
PROTOCOL

• Driver include file
– Defines data structures

• Strings file
– Defines strings in different

languages
• Forms file

– Defines the layout of the screen
• Pre-Make file

.c .h

.uni .vfr

.inf

EDK II HII

HII DataBase
Consists of IFR/String/Font

Which has been submitted by varying HII Drivers

HII Driver

HII Driver

HII Driver

Setup Browser
Provides User Interface Support
Callable by a Protocol Interface

BDS UI

System Reset

User
Changes NVRAM

HOW: UEFI HII PROTOCOLS

Sections 28-30 the UEFI 2.3x Specification

HII DATABASE OVERVIEW

Font Protocol

String Protocol

Image Protocol

Database Protocol

11101001110000001111010101

HII Browser Engine Protocols

 Data

• Fonts, Strings, Image, Forms
• GUID, Keyboard Layout, Device Paths

HII Protocols

NVRAM

Configuration Routing Protocol

Configuration Access Protocol

Form Browser 2 Protocol See § 29 of the UEFI 2.3x Spec.
See § 30 of the UEFI 2.3x Spec.

UEFI HII PROTOCOLS

• Sting to Image, Sting ID to Image,
Get Glyph, Get Font Info Font Protocol

• New – Get – Set – String
• Get Language & 2nd Language String Protocol

• New – Get – Set Image
• Draw Image, Draw Image ID Image Protocol

• New – Remove- Update – List –
Export Lists – Get Handle Package

• Register, Unregister Package Notify
• Find- Get- Set Keyboard layout

Database
Protocol

See § 29 of the UEFI 2.3x Spec.

PUBLISH

DevicePath Instance

UEFI DRIVER INITIALIZATION PROCESS
HII Protocols
Config Routing Protocol

ExtractConfig
RouteConfig
ExportConfig
BlockToConfig
ConfigToBlock

Form Browser 2 Protocol

SendForm
BrowserCallback

HII Database Protocols

NewPackageList
Remove
Update
. . .
GetPackageListHandle

UEFI 2.1+ Driver
(e.g. Motherboard Driver, Addin card Op
ROM)

Config Access Protocol

MyVfr.vfr

MyX.uni

MyDriver

MyFormGUID
Installed Handle
MyDriverStrings
MyVfrBin

HII Package List

ExtractConfig

RouteConfig

Call Back

Installed Handle

1. Produce Config Access Protocols
2. Install Device path protocol
3. Install Config Access Protocol
4. Create Package List
5. Publish Package to HII Database

FORM BROWSER PROTOCOLS
SendForm

Browser Callback

ExtractConfig
RouteConfig
ExportConfig
BlockToConfig
ConfigToBlock

ExtractConfig
RouteConfig
Call Back

UEFI
Browser Protocol

Config
Routing
Protocol

Config Access
Protocol

UEFI Browser Engine

UEFI 2.1+ Driver

MyDriver

LAB 9.1 ADDING HII TO A UEFI DRIVER
 FROM THE UEFI DRIVER WIZARD

LAB 9.2 UPDATING HII TO SAVE DATA
SETTINGS

LAB 9.3 UPDATING YOUR DRIVER TO
INITIALIZE DATA FROM THE VFR DATA TO
THE HII DATABASE

LAB 9.4 UPDATING MENU: RESET BUTTON

LAB 9.5 UPDATING MENU: POP-UP BOX

LAB 9.6 UPDATING MENU: CREATING A
STRING TO NAME THE SAVED CONFIGURATION

LAB 9.7 UPDATING MENU: NUMERIC ENTRY

LAB 9.8 UPDATING YOUR DRIVER FOR
INTERACTIVE CALL BACKS

LAB 9.9 MANAGING CALL BACK EVENTS IN
YOUR DRIVER

LAB 9.10 ADDING ADDITIONAL FORM PAGES

LAB 9.11 HOW TO ADD MULTIPLE
LANGUAGE

REFERENCE

• Unified Extensible Firmware Interface
Specification, Version 2.3.1,
http://www.uefi.org

• VFR Programming Language 1.7,
http://sourceforge.net/projects/edk2/files

• Build Spec 1.22,
http://sourceforge.net/projects/edk2/files

http://www.uefi.org/
http://sourceforge.net/projects/edk2/files
http://sourceforge.net/projects/edk2/files

37

BACK UP

*

CONFIGURATION STRINGS

CONFIGURATION STRINGS

CONFIGACCESS/CONFIGROUTING PROTOCOL

HII Database Protocol

Config Routing Protocol
Config Access Protocol

ExtractConfig
RouteConfig
ExportConfig

BlockToConfig
ConfigToBlock

EFI Driver
(e.g. Motherboard Driver,

Add- in card Driver/Option- ROM)

UEFI Utility
(e.g. Browser)

DevicePath InstanceReturn Current Setting <ConfigResp>

IFR data

#7 Read Default Setting, Construct ALTCFG

#8 Combine current setting and ALTCFG,
return<MultiConfigAltResp>

ExtractConfig
RouteConfig

Callback

<MultiConfigRequest>

Send <Config
Request>

Read Variable Store
<GUID> <NAME>

Routing use
<PATH>

Routing <PATH> From driver handle to HII handle

<PATH>

Notes: BlockToConfig() is only
suitable for <BlockConfig>, not
suitable for <Name>/<value> pair#1 Request current setting

#2

#4

#6

#3
Send buffer to convert

#5 <ConfigResp>

ExtractConfig

ConfigAccess/ConfigRouting Protocol
• ExportConfig

HII Database Protocol

Config Routing Protocol
Config Access Protocol

ExtractConfig
RouteConfig
ExportConfig

BlockToConfig
ConfigToBlock

EFI Driver
(e.g. Motherboard Driver,

Add- in card Driver/Option- ROM)

UEFI Utility
(e.g. Browser)

DevicePath InstanceExtractConfig
RouteConfig

Callback <PATH>#5

#1

#2 Get all HII handles(Locate HII handle buffer)
#3 Scan IFR for configurable Op-code
#4 Construct <ConfigRequest>

<Confi
gReque

st>

<ConfigAltResp>#6

#7 Collect <ConfigAltResp> from
all ConfigAccess protocol instanse<MultiConfigAltResp>

ConfigAccess/ConfigRouting Protocol
• RouteConfig

HII Database Protocol

Config Routing Protocol
Config Access Protocol

ExtractConfig
RouteConfig
ExportConfig

BlockToConfig
ConfigToBlock

EFI Driver
(e.g. Motherboard Driver,

Add- in card Driver/Option- ROM)

UEFI Utility
(e.g. Browser)

DevicePath InstanceExtractConfig
RouteConfig

Callback <PATH>

#1<MultiConfigAltResp>

#2 <ConfigResp>

#3 <Conf
igResp

>

#4 Block
Write Variable Store
<GUID> <NAME>

#5

DISCLAIMER
• THIS INFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST RESULTS ARE PROVIDED "AS IS" WITH

NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT OR BY THE SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

• Intel retains the right to make changes to its specifications at any time, without notice.
• Recipients of this information remain solely responsible for the design, sale and functionality of their products,

including any liability arising from product infringement or product warranty.
• Intel may make changes to specifications, product roadmaps and product descriptions at any time, without

notice.
• Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the

United States and other countries.

• *Other names and brands may be claimed as the property of others.

• Copyright © 2008-2013, Intel Corporation

OPTIMIZATION NOTICE

Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets

covered by this notice.

Notice revision #20110804

	UEFI Human Interface Infrastructure
	�Objective: �
	User Interface HII Overview
	Why ?
	HII: Key Concepts
	Design Discussions
	HII Components
	Human Interface Components
	Strings
	Token to String Mapping
	String Example (.uni file)
	Fonts
	Keyboards
	Forms
	Visual Forms Representation (VFR)
	Form Example (.vfr file)
	Internal Forms Representation (IFR)
	Minimum Files for HII Driver
	EDK II HII
	How: UEFI HII Protocols
	HII Database Overview
	UEFI HII Protocols
	UEFI Driver Initialization Process
	Form Browser Protocols
	Lab 9.1 Adding HII to a UEFI Driver �			 from the UEFI Driver Wizard
	Lab 9.2 Updating HII to Save Data �Settings
	Lab 9.3 Updating your driver to �Initialize data from the VFR data to �the HII Database�
	Lab 9.4 Updating Menu: Reset Button
	Lab 9.5 Updating Menu: Pop-up Box
	Lab 9.6 Updating Menu: Creating a �string to Name the Saved Configuration
	Lab 9.7 Updating Menu: Numeric Entry
	Lab 9.8 Updating your Driver for �Interactive Call Backs
	Lab 9.9 Managing Call Back Events in �Your Driver
	Lab 9.10 Adding Additional Form Pages�
	Lab 9.11 How to Add Multiple �Language �
	Reference
	Slide Number 37
	Slide Number 38
	Back up
	Configuration Strings
	Configuration Strings
	ConfigAccess/ConfigRouting Protocol
	ConfigAccess/ConfigRouting Protocol
	ConfigAccess/ConfigRouting Protocol
	Disclaimer
	Optimization Notice

