
UEFI & EDK II Base Training

Lesson 8
UEFI Driver Wizard Lab

Intel Corporation
Software and Services Group

LESSON 8 OBJECTIVES

Setup the UEFI Driver Wizard

Generate and compile a driver template

Test driver in NT32 using UEFI Shell 2.0

Port code into the template driver

UEFI DRIVER REVIEW

DEFINING A UEFI DRIVER?

UEFI Loadable Image

May produce/consume protocols

Supports complex bus hierarchies

Driver Binding Protocol matches drivers
to devices, adds version management

Supports specific hardware, can be
unloaded or override an existing driver

UEFI DRIVERS - LOCATION

UEFI DRIVERS - LOCATION

DXEDriver

DXE
Driver

DXE Driver

DXE
Driver

DXE Driver

DXE
Driver

DXE Driver

• • •

U
EFI Driver

CSM

U
EFI Driver

U
EFI

Driver
U

EFI
Driver

U
EFI

Driver

Pre-EFI Initialization (PEI)Spec

Processor Module
Spec(s)

CS Module
Spec(s)

A
rchitecture Specification

DXE
Driver

Chipset/Processor
Function DXE Driver specs

OEM, ISV &
Intel BU UEFI Driver specs

Driver Execution Environment (DXE) Spec

UEFI DRIVERS VS. APPLICATIONS

UEFI Loader

Entry Point

Driver Initialization

Exit
Driver

7

Protocol (1)

Protocol (2)

Protocol (3)

UEFI Driver

. . .
8

Protocol
specific

functions

GUID 1

Protocol Interface

Handle

HandleProtocol(GUID, …)

Invoking
one of the
Protocol
Services

Device,
or next
Driver

Function Pointer
Function Pointer
. . .

Handle Database

Both have EFI_SYSTEM_TABLE

Protocol
specific

functions

GUID 2

Construction of a protocol

DRIVERS PRODUCE PROTOCOLS
 InstallProtocolInterface

DRIVER BINDING PROTOCOL

Stop()
Stops a driver from managing a controller

*

Supported()
Determines if a driver supports a controller

Start()
Starts a driver on a controller & Installs

Protocols

EXAMPLE OF UEFI DRIVER SOURCE CODE
• C:\FW\edk2\MdeModulePkg\Bus\Scsi\ScsiDiskDxe

– ScsiDiskDxe.inf
– ScsiDisk.c
– ScsiDisk.h

[.inf] Entry point, Global Protocols
[.h] Driver’s Private Data Structure declaration
[.c] Review the Supported, Start and Stop functions

.inf
.h

.c

LAB 8.1 CREATING A UEFI DRIVER
 USING THE UEFI DRIVER WIZARD

UEFI DRIVER WIZARD OVERVIEW

 Open source tool
 Based on Driver Writer’s

Guide for UEFI 2.3.1
content

 Intel SSG engineers
contributed

 Located on
www.TianoCore.org

http://www.tianocore.org/

LAB 8.1: INSTALLING THE UEFI DRIVER WIZARD

Work space must contain BaseTools, MdePkg &
MdeModulePkg Packages

UDK2010 IHV release for Driver development on
Tianocore.org

Uses previous lab’s setup C:\FW\Edk2

Requirements and Options

Lab 8.1

http://sourceforge.net/projects/edk2/files/UDK2010 Releases/UDK2010.SR1.UP1/UDK2010.SR1.UP1.IHV.zip/download

DRIVER FUNCTIONS

• UEFI Device Driver

• UEFI Version 2.3.1 (0x0002001F)

• Unloadable driver

• Support IA32 & x64 CPUs

• Returns component name information

• Test console device

• Option to produce strings & forms for setup

TEMPLATE FILE CONTENTS

Proper UEFI driver entry point

Basic driver libraries/headers

Skeletons for common driver functions

Error values until ported
EFI_UNSUPPORTED, EFI_DEVICE_ERROR

LAB 8.2 BUILDING A UEFI DRIVER

LAB 8.3 EDITING
 MYWIZARDDRIVER/COMPONENTNAME.C

PORTING DRIVER CODE

Port Supported()

Port Start()

Change the driver’s name

LAB 8.4 WRITING THE SUPPORTED
 FUNCTION FOR A UEFI DRIVER

LAB 8.4: SUPPORTED() GOALS

• Checks if the driver supports the device
for the specified controller handle

• Associates the driver with the Serial I/O
protocol

• Helps locate a protocol’s specific GUID
through UEFI Boot Services’ function

START() GOALS

Allocate a string buffer
in memory

Fill the memory range
with a pattern

ROBUST LIBRARIES

 AllocateZeroPool()
 [MemoryAllocationLib.h]

 SetMem16()
 [BaseMemoryLib.h]

Check the MdePkg help file (.chm format)

Lab 8.4

DEBUGGING BEFORE TESTING THE DRIVER

• UEFI drivers can use the EDK II debug library
– Enables DEBUG() ASSERT()

• DEBUG() statements

Lab 8.4

LAB 8.5 RETURNING A SUCCESSFULLY
 SUPPORTED FUNCTION

LAB 8.5: RETURNING A SUCCESSFUL
SUPPORTED FUNCTION
Create Non-Volatile UEFI Variable
Runtime Services - SetVariable(. . .)
Runtime Services - GetVariable(. . .)

ADDING NON-VOLITILE UEFI VARIABLES

Supported() Call function to set/get
NVRam Variable

Include new .h file

Create .h file with new typedef and GUID

EntryPoint() Init new buffer for NVRam
Variable

Lab 8.5

LAB 8.5 PORTING UNLOAD()
 AND STOP()FUNCTIONS

Porting
Unload() and
Stop() functions

ADDITIONAL PORTING

Adding strings and forms to setup (HII)

Publish & consume protocols

Hardware initialization

LESSON 8 SUMMARY

Setup the UEFI Driver Wizard

Generate and compile a driver template

Test driver in NT32 using UEFI Shell 2.0

Port code into the template driver

31

BACKUP

SUPPORTED - PCI CONTROLLER DEVICE HANDLE

• Inputs:
– “This”
– Controller to manage
– Remaining Device Path

• Supported()
– Checks to see if a driver

supports a controller
– Check should not change

hardware state of controller
– Minimize execution time,

move complex I/O to Start()
– May be called for controller

that is already managed
– Child is optionally specified

1. Opens PCI_IO Protocol
2. Checks
3. Closes PCI_IO Protocol
4. Returns: Supported or

Not Supported

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_IO_PROTOCOL

34

See § 10.1 UEFI 2.x Spec.

START - PCI CONTROLLER DEVICE HANDLE

• Inputs:
– “This”
– Controller to manage,
– Remaining Device Path

• Start()
– Opens PCI I/O
– Starts a driver on a

controller
– Can create ALL child

handles or ONE child
handle

35

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_IO_PROTOCOL

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_IO_PROTOCOL

EFI_BLOCK_IO_PROTOCOL

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_IO_PROTOCOL

EFI_BLOCK_IO_PROTOCOL

STOP - PCI CONTROLLER DEVICE HANDLE

• Inputs:
– “This”
– Controller to manage,
– Remaining Device Path

• Stop()
– Closes PCI I/O
– Stops a driver from

managing a controller
– Destroys all specified child

handles
– If no children specified,

controller is stopped
– Stopping a bus controller

requires 2 calls
• One call to stop the

children. A second call to
stop the bus controller itself

36

PCI Controller Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_IO_PROTOCOL

DISCLAIMER
• THIS INFORMATION COTNAINED IN THIS DOCUMENT, INCLUDING ANY TEST RESULTS ARE PROVIDED "AS IS" WITH

NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT OR BY THE SALE OF INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

• Intel retains the right to make changes to its specifications at any time, without notice.
• Recipients of this information remain solely responsible for the design, sale and functionality of their products,

including any liability arising from product infringement or product warranty.
• Intel may make changes to specifications, product roadmaps and product descriptions at any time, without

notice.
• Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the

United States and other countries.

• *Other names and brands may be claimed as the property of others.

• Copyright © 2008-2013, Intel Corporation

OPTIMIZATION NOTICE

Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets

covered by this notice.

Notice revision #20110804

	Lesson 8�UEFI Driver Wizard Lab
	Lesson 8 Objectives
	UEFI Driver Review
	Defining a UEFI Driver?
	UEFI Drivers - Location
	UEFI Drivers - Location
	UEFI Drivers Vs. Applications
	Drivers Produce Protocols�
	Driver Binding Protocol
	Example of UEFI Driver source code
	Lab 8.1 Creating a UEFI Driver �			 using the UEFI Driver Wizard
	UEFI Driver Wizard Overview
	Lab 8.1: Installing the UEFI Driver Wizard
	Driver Functions
	Template File Contents
	Lab 8.2 Building a UEFI Driver
	Lab 8.3 Editing�			 MyWizardDriver/ComponentName.c
	Porting Driver Code
	Lab 8.4 writing the supported �			 function for a UEFI driver
	Lab 8.4: Supported() Goals
	Start() Goals
	Robust Libraries
	Debugging before Testing the Driver
	Lab 8.5 Returning a Successfully�			 Supported Function
	Lab 8.5: Returning a Successful Supported Function
	Adding Non-Volitile UEFI Variables
	Lab 8.5 Porting Unload() �			 and Stop()functions
	Slide Number 28
	Additional Porting
	Lesson 8 Summary
	Slide Number 31
	Slide Number 32
	Backup
	Supported - PCI Controller Device Handle
	Start - PCI Controller Device Handle
	Stop - PCI Controller Device Handle
	Disclaimer
	Optimization Notice

