- Leap ahead

UEFI Overview

Ruth LI

Manager UEFI Development
Intel

Session Goals

Describe Background of EFl and UEFI

Introduce fundamental principles of UEFI
architecture and Intel’s EFI
Implementation

Provide a basic common dictionary of
UEFI terms and concepts

TThese terms and concepts are the basis
of understanding UEFI and will be built
upon In following sessions.

(intel'

Agenda

"+ UEFI Overview

¢ UEFI Technical Overview
— UEFI Terminology
— What is the UEFI System Table?
— \What Is a Device Path
— What are UEFI Boot Services?
— EFI' 1.1 and UEFI 2.0 differences

EFI Overview
o Extensible Firmware Interface
* EEI Is an interface specification

o Albstracts the platform from OS 0S
— Decouples development
e Includes a modular driver model Loader

and CPU-Independent option ROMs VL

— Offers promise of improved RAS %‘

* Compatible by design
— Evolution, not revolution Platform

» Modular and extensible
— OS-Neutral value add

* Complements existing interfaces

Elexible to. meet existing and future needs

Qf (e

EFI Concept

EFI BOOT SERVICES

EFI or
Framework
Drivers

Fal Il L Tilkh o™
MNUIN T IIVIE

SERVICES

PLATFORM HARDWARE

Option
ROM
EFI

Drivers

EFI SYSTEM

PARTITION

EFI11.10
Drivers

EFI OS
Loader

OS PARTITION

Unified EFI (UEFI) Forum —

www.uefi.org
* Promoters
— OEMs: Dell, HP, IBM, Lenovo
— |BVs: AMI, Insyde, Phoenix

— AMD, Apple, Intel, Microsoft

o UEEI Specification

— EFI 1.10 specification contributed to the Forum by Intel and
Micresoft to be used as a starting draft

— UEFI 2.1 specification released.

— Ferum will' evolve, extend, and add any new functionality as
reqguired

— Intel contributed EFI 1.10 SCT being used as starting base for
UEFI conformance tests

Purpose: Worldwide adoption and promaotion of
UEEI specifications
(A

Qf (e

UEFI Membership

Promoters: board and corporate officers

Contributors:

— Corporations, groups or individuals wanting to
participate in UEFI

— Chance to join work groups and contribute to spec
or test development

— Early access to drafts and work in progress

Adopters:
— Any entity wanting to implement the specification

<

Qf 7

How the UEFI Forum Works

s\Board sets strategic direction
—Charters work groups to implement direction

s\Work groups drawn from membership
—Staffed by Promoters and Contributors
s Board approves work groups proposals
s \Work Groups:
— USWG — UEFI Specification Working Group

—responsible for UEFI Spec production
— UTWG — UEFI Testing Working Group

—Responsible for publishing SCT
— PIWG — Platform Initialization Working Group
—Responsible for the spec that will eventually,

replace the framework level specs
: — ICWG: Industry Communications

& (inteD

How the Forum Works

 uswe
me—
—

Each sub-team focuses

Publications/Decisions Each work group on specific topics and
ratified by the board approves/delivers different contributes material to
content to the public. the work group.

UEFI Many Groups working together for
Q ﬁ ~ (Inte)

Pre-boot

Us SWG TouE

'-'Scope{

Platform Drivers

PIWG Scope “H”
A

Silicon Component
\ Modules

Hardware

[1 PIFramework

B Modular components

<

fs

)

USWG/PIWG Relationship

UEFI Spec is about interfaces between

OS, add-in driver and system firmware

— Operating systems and other high-level
software should only interact with
Interfaces and services defined by the
UEFI Specification

Pl Specs relate to making UEFI

Implementations

— Promote interoperability between
firmware components providers

— All interfaces and services produced and
consumed by firmware only

UEFI and PI are Independent
Interfaces

10

Introducing UEFI 2.1

* Roughly one year of Specification work
— Builds on UEFI 2.0

e Board approved formal Adoption Jan 23", 07
— Avallable for download from www.uefi.org

* New content area highlights:
— Human Interface Infrastructure
— Hardware Error Record Support
— Authenticated Variable Support
— Simple Text Input Extensions
— Absolute Pointer Support

11

http://www.uefi.org/

UEFI 2.2 Work In Progress

Eellow-on material from existing 2.1 content
— Backlog that needed more gestation time

— Aiming for latter portion of 2007 completion
Security/Integrity related enhancements

— Provide service interfaces for UEFI drivers that want to operate
with high integrity implementations of UEFI

Human Interface Infrastructure enhancements

— Eurther enhancements pending to help interaction/configuration
off platforms with standards-based methodologies.

Network — IPv6, PXE+, IPSec
Various other subject areas possible
— More boot devices, more authentication support, etc.

Establishing a formal relationship with DMTFE (Distributed
Management Task Force)

UEFI is the only place where these
future technologies are defined

Introducing PI1 1.0

* Roughly one year of Specification work
— Builds on Intel PEI and DXE Framework specifications
* Board approved formal Adoption Oct 31st, 06
— Avallable for download from http://www.uefi.org
e Starting work from Intel contributed
specifications
— Framework DXE and PEI Core Interface Specs
— Firmware Storage, HOB, SMBus
* New content area highlights:
— Pre-EFI Initialization Core Interface

— Driver Execution Environment Core Interface
— Shared Architectural Elements

K]

http://www.uefi.org/

Pl 1.1 Work In Progress

s Based on existing Intel Framework Specifications
— Highest priority subset chosen
— Target completion in 2007

o PC|
— Standardized resource allocation

* ACPI
— Manipulation of ACPI data.

o SVMIM
— Standardized SMM driver model

* MP
— Standardized Multi Processor infrastructure.
e S3

— Infrastructure to support power state transitions.

14

) ()
c 0
SO
- IEE .
- | — 2
o < Z:'
» e
o= -
c<
)

Foundations
o

15

Open Source “H”
Starting point for firmware
Add some NDA Stuff

Base Drivers for platform
SKU specific drivers
IBV Value Add

Full UEFI compliance
Legacy support
Current Firmware

Agenda

¢ UEFI Technical Overview
— UEFI Terminology
— What is the UEFI System Table?
— \What Is a Device Path
— What are UEFI Boot Services?
— EFI' 1.1 and UEFI 2.0 differences

16

UEFI Specification - Key Concepts

I = Objects - manage system state, including

* |/O devices, memory, and events

shilie UEFI System Table - data structure
With data in-formation tables to interface
with the systems

silanadle database and protocols - callable
Interfaces that are registered

o UEEI Images - the executable content
format

e Events - the software can be signaled in
response to some other activity

e Device paths - a data structure that
describes the hardware location of an enl;i:t-yD

& (ntel

17

What are GUIDs

s Guaranteed Unigue ldentifiers
—128-bit quantity **

* Used to identify protocols
—1:1 with interfaces

s Regulate extension mechanism

—Documented in the spec
—Added through drivers

** as defined in the Wired for Manageability 2.0 spec
http://www.intel.com/design/archives/wfm/downloads/base20.htm

<

)

fs ;

http://www.intel.com/design/archives/wfm/downloads/base20.htm

Protocols (API)
s GUID, Interface Structure, Services

— DEVICE _PATH, DEVICE_10, BLOCK 10, DISK 10, FILE_SYSTEM,
SIMPLE_INPUT, SIMPLE_TEXT_OUTPUT, SERIAL_10, PXE_BC,
SIMPLE_NETWORK, LOAD_FILE, UNICODE_COLLATION

Protocol Interface Access
Function Ptr 1 Function 1 Device
Function Ptr 2 O!'

Function 2 Services
Produced by
Private Data Oth_er EFI
Drivers

Blklo->ReadBlocks(Blklo, ...

el

19

Handles

o All protocols have a handle which is
associated with the protocol

e Every device and executable image In
EFI has a handle protocol in the handle
database

20

Handle Protocol Database

First Handle

Handle

GUID

GUID

Image Handle Image Handle

Con'groller Handle Protocol Controller Handlg
Attributes Interface [Attributes

Controller Handle Data

Attributes

Protocol
Interface

Instance
Data

Handle

GUID

Image Handle Protocol
Controller Handle Interface
Attributes

Image Handle Data

Controller Handle
Attributes

Protocol
Interface

Instance
Data

What Is the UEFI System Table

* Eirmware implementation information
—Read only for peripheral drivers
— Specification version
— Interface to UEFI protocols
— Interface to other standards...

22

UEFI System Table

5

ACPI Table
SMBIOS Table
New std ??7?

23

Device Path Protocol

e A data structure description of where a
device Is In the platform

o All boot devices, logical devices and Images
must be described by a device path

* 6 types of device paths:
— Hardware
— ACPI — UID/HID of device in AML

— Messaging — i.e. LAN, Fiber Channel, ATAPI,
SCSI, USB

— Media — i.e. Hard Drive, Floppy or CD-ROM

— EDD 3.0 boot device — see EDD 3.0 spec Iintl3
48

End of hardware — marks end of device path

24

What are UEFI Boot Services?

e Events and notifications
— Polled devices, no interrupts

o \Watchdog timer
— Elegant recovery

e Memory allocation

* Handle location — for finding
protocols

* Image loading
— Drivers, applications, OS loader

25

UEFI Runtime Services

o Services available at both boot time and
runtime

* [imer, Wakeup alarm
— Allows system to wake up or power on at a set
time.

e \/ariables
— Boot manager handshake

*» System reset

26

UEFI Driver Design

e Modular chunks of code run in preboot
—Manage devices or services
—...they are NOT OS-present drivers!

* Drivers export protocol interfaces
—Protocol = instance data + access methods
—Like C++ classes but more code space efficient
— ldentified by GUID to avoid collisions
—\Version numbers and signatures provide

means to manage driver management policy

* Drivers may consume protocol interfaces

—Self-describing dependencies

—E.g. Memory Initialization may depend! en
SMBUS service
(A

Qf (e

27

UEFI Driver Model

e Used for devices on industry standard buses
— “pDoot devices”
e Structured model of device/bus hierarchy
— Device Drivers and Bus Drivers
— Device Drivers are topology agnostic
* Benefits
— Simpler Device Drivers
— Moves complexity into Bus Drivers and core services
— Smaller driver footprint
— Deterministic driver selection by the platform
— Which driver controls which device
— Describes complex bus hierarchies
— Embedded, Desktop, Workstation, Server
— Extensible to future bus types

28

Bus Driver

* Consumes Parent Bus 1/0 Abstraction(s)
o Initializes Bus Controller

s Allecates Resources for Child Controllers
e Creates Handles for Child Controllers

e Loads drivers from Option ROMs If

present
Child Controller Handle
EFl_DEVICE_PATH_PROTOCOL
EFI_XYZ_1/O_PROTOCOL
Optional =
o EFl_BUS SPECIFIC_DRIVER

ﬁ OVERRIDE_PROTOCO

Device Driver

sConsumes Bus 1/0 Abstraction(s)
s Initializes Device Controller

s Produces Device Abstraction(s)

—Block 1/0 Protocol
—Simple Text Output Protocol
—Simple Network Protocol

e Does Not Create Any Child Handles
e Can still be a “Parent” Controller

<

fs ,

Driver Initialization

s EEl Driver Handoff State
s Nlot Allowed to Touch Hardware Resources

o [nstalls Driver Binding on Driver Image
iHandle

Created by Loadimage() s

Driver Image Handle

UBIETELVROARELMIPEVEVE) 4 EF| LOADED IMAGE

Installed in Driver Initialization WSS EFI DRIVER BINDING
Implemented by Driver Writer — —

[|

31

- UEFI Overview

EFI 1.1 vs. UEFI

j,;"'l'fltemS being UGA Protocols, SCSI Passthrough, USB Host

- | changed or Controller, Device 1/0
deprecated

New: Items Added Networking APIs, Intel® 64 binding,
Service Binding, Tape 1/0, Hash, DevicePath
Utilities, CreateEventEx, UpdateCapsule, ISCSI
Initiator, QueryCapsuleCapabilities,
QueryVariablelnfo, Authenticationlnfo

Loaded Image, Device Path, Driver Binding, Platform Driver Override, Bus Specific Override, Driver Configuration, Driver
I te ms th a_t are not Diagnostics, Component Name, Simple Text Input, Simple Text Output, Simple Pointer, Serial 10, Load File, Simple File System,
p File Protocol, Disk IO, Block 10, Unicode Collation, PCI Root Bridge 10, PCI IO, SCSI 10, USB 10, Simple Network, PXE BC,
Chang | ng Network Identifier Interface, BIS, Debug Support, Debug Port, Decompress, Device |10, EBC, RaiseTPL, RestoreTPL,
AllocatePages, FreePages, GetMemoryMap, AllocatePool, FreePool, CreateEvent, SetTimer, WaitforEvent, SignalEvent,
CloseEvent, CheckEvent, InstallProtocollnterface, ReinstallProtocollnterface, UninstallProtocollnterface, HandleProtocol,
LocateHandle, LocateDevicePath, InstallConfigurationTable, Loadlmage, Startimage, Exit, Unloadimage, ExitBootServices,
GetNextMonotonicCount, Stall, SetWatchdogTimer, ConnectController, DisconnectController, OpenProtocol, CloseProtocol,
OpenProtocollnformation, ProtocolsPerHandle, LocateHandleBuffer, LocateProtocol, InstallMultipleProtocollnterfaces,
Uninstallprotocollnterfaces, CalculateCrc32, CopyMem, SetMem, GetTime, SetTime, GetWakeupTime, SetWakeupTime,
SetVirtualAddressMap, ConvertPointer, GetNextVariable, GetVariable, SetVariable, GetNextHighMonotonicCount, ResetSystem, ...

Unchanged Items, Deprecated Items, Changed AND Deprecated
Items, New ltems

32 e

UEFI 2.1 Published 2007

A smaller update than the 2.0 iteration
— Backlog that needed more gestation time
— Aiming for mid year 2006 completion

User interface presentation

— Aiming to define interfaces that support integration of
setup/configuration functions for motherboard and add-in devices

Security/Integrity related enhancements

— Provide service interfaces for UEFI drivers that want to operate
with high integrity implementations of UEFI

Various other subject areas possible
— More boot devices, error reporting, etc.

S
L

33

What’s supported?

* [he community Is In the progress of
switching from EFI 1.1 to UEFI 2.x.

—EFI 1.1 protocols

—UEEI 2.0 protocols starting to replace EFI 1.1
protocols

—New UEFI 2.1 protocols have been added

34

	UEFI Overview
	 Session Goals
	Agenda
	EFI Overview
	EFI Concept
	Unified EFI (UEFI) Forum – www.uefi.org
	UEFI Membership
	How the UEFI Forum Works
	How the Forum Works
	USWG/PIWG Relationship
	Introducing UEFI 2.1
	UEFI 2.2 Work in Progress
	Introducing PI 1.0
	PI 1.1 Work In Progress
	Framework Concept
	Agenda
	UEFI Specification - Key Concepts
	What are GUIDs
	Protocols (API)
	Handles
	Handle Protocol Database
	What is the UEFI System Table
	UEFI System Table
	Device Path Protocol
	What are UEFI Boot Services?
	UEFI Runtime Services
	UEFI Driver Design
	UEFI Driver Model
	Bus Driver
	Device Driver
	Driver Initialization
	EFI 1.1 vs. UEFI
	UEFI 2.1 Published 2007
	What’s supported?

