UEFI1 Shell Specification

September 25, 2008

Revision 2.0

The material contained herein is not a license, either expressly or impliedly, to any intellectual property owned or controlled by
any of the authors or developers of this material or to any contribution thereto. The material contained herein is provided on an
"AS IS" basis and, to the maximum extent permitted by applicable law, this information is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material hereby disclaim all other warranties and conditions, either express,
implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of
fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses
and of lack of negligence, all with regard to this material and any contribution thereto. Designers must not rely on the absence
or characteristics of any features or instructions marked “reserved" or “undefined." The Unified EFI Forum, Inc. reserves any
features or instructions so marked for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SPECIFICATION AND ANY CONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANY CONTRIBUTION THERETO BE LIABLE TO ANY
OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF
DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT,
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT,
WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2008 Unified EFI, Inc. All Rights Reserved

i Version 2.0

Contents

) Yo 11 T o 1S 1
1.1 (O YT YTV 1
1.2 Related INfOrmation........oii e e 1
1.3 L= 00T P 1
[To LI B 1Y 1 011 o] o 1 3
2.1 0o T 11 T i T o T 3
2.2 EFI_SHELL _PROTOCOL. .ttt ettt e e e e ettt et et e e e e e e e e aneaaeaeans
EFI_SHELL_PROTOGCOL ..ttt ettt et e et et e a e e e e e e aeneaens
EFI_SHELL_PROTOCOL.BatChISACHVE() < ueueeiei e eae e
EFI_SHELL_PROTOCOL.CloseFile()
EFI_SHELL _PROTOCOL.CreateFile() « .uuuiett et e et eeeeas
EFI_SHELL_PROTOCOL.DEIEtEFIIE() «uveureneitieeieiee e eaeeaeas

EFI_SHELL_PROTOCOL.DeleteFileByName()
EFI_SHELL_PROTOCOL.DisablePageBreak()
EFI_SHELL_PROTOCOL.EnablePageBreak()uuuuoeraeeiiiiiiaeaeeeeeeeens
EFI_SHELL_PROTOCOL.Execute()
EFI_SHELL_PROTOCOL.FindFiles()
EFI_SHELL_PROTOCOL.FindFilesInDir()
EFI_SHELL_PROTOCOL.FlushFile()..........
EFI_SHELL_PROTOCOL.FreefFileList()
EFI_SHELL_PROTOCOL.GetCurDir()
EFI_SHELL_PROTOCOL.GetDeViceNaAME() - .cueueneiniieianeieeee et et eeeeas
EFI_SHELL_PROTOCOL.GetDevicePathFromMap() -...c.ceveieimiieiiiiiiiiieeenns
EFI_SHELL_PROTOCOL.GetDevicePathFromFilePath() .
EFI_SHELL_PROTOCOL.GETENV() .. .ueuiniiiniiiiiiie it e
EFI_SHELL_PROTOCOL.GetFilelNfo()......cccoooiiiiiiiiiiiiee e
EFI_SHELL_PROTOCOL.GetFilePathFromDevicePath() .
EFI_SHELL_PROTOCOL.GetFilePosition()
EFI_SHELL_PROTOCOL.GetFileSize().......
EFI_SHELL_PROTOCOL.GetHelpText()ccceeuvunnnn.
EFI_SHELL_PROTOCOL.GetMapFromDevicePath()
EFI_SHELL_PROTOCOL.GetPageBreak()
EFI_SHELL_PROTOCOL.ISROOtShell()cccooviniiiiiiiee
EFI_SHELL_PROTOCOL.OpenFileByName() ...cccevieiiieiii i
EFI_SHELL_PROTOCOL.OpenFileList()
EFI_SHELL_PROTOCOL.OPENROOT() .. euvuenininiiniiiieieieeee e e e eaeas
EFI_SHELL_PROTOCOL.OpenRootByHandle()ccveuiiiiiiiiiiiieiieeie e
EFI_SHELL_PROTOCOL.ReadFile()
EFI_SHELL_PROTOCOL.RemoveDUupInFileLiSt()ccouieviiiiiiiiiiiiiiieieeeas
EFI_SHELL_PROTOCOL.SETAIIAS() - . eueneneuininieneeee ettt eee e
EFI_SHELL_PROTOCOL.SetCurDir()
EFI_SHELL_PROTOCOL.SetEnv()
EFI_SHELL_PROTOCOL.SetFileInfo()
EFI_SHELL_PROTOCOL.SetFilePosition()
EFI_SHELL_PROTOCOL.SEtMapP().. . uuuueuinininiiniieie e
EFI_SHELL_PROTOCOL.WriteFile()ciuiiiiiie e

Version 2.0

2.3

EFI_SHELL_PARAMETERS_PROTOCOL
EFI_SHELL_PARAMETERS_PROTOCOL

(8] ST =T | TN] = N 55
3.1 [V LR @] ST 0] o] o o o S PR 55
3.2 01 V7o o=\ [o PP 56
3.3 INIIAHZATION ... e e 57
3.3.1 Finding startup.nsh..... ... e 58
3.3.2 Supported Profiles ... s 58
3.4 ComMmMAN-LINE ... e 58
3.4.1 Special CharacCters.o e 59
3.4.2 Escape Characters
3.4.3 (@78 o] 1] T P N
3.4.4 [0 [T <Y1 1 o o 1S
3.5 (G181 (=10 Al BT g =Tox (o] oY PPN
3.6 Variables. s
3.6.1 Environment Variables ... 63
3.6.2 Positional Parametersccoiiiiiiiiiiei e 65
3.6.3 Index Parameters
3.6.4 AlTASES ... e
3.7 FlE NAIMIES .. e ettt
3.7.1 Wildcard EXPanSioNoeeiii et 66
3.7.2 11V o 0119 Vo S 67
3.7.3 Consistent File Systerm Mappingcoeeereriiiaeaeaeaeieeieeaees 67
3.8 FSTo g o) £ 67
3.9 Nesting the Shell e 68
3.10 INteractive FEAtUIES.ot e eaeas 68
3.10.1 Key HiStory SUPPOIT ... e e eaee 68
3.10.2 Execution INterrupt SUPPOIt.......ouuiueie et 68
3.10.3 Output Streaming Control
3.10.4 Scroll Back Buffer SUPPOrt...... ..o 69
3.11 Shell APPHCALIONS ettt et et eeeas 69
3111 INSTAllAtiON ... e 69
3.11.2 Command-Ling Help ..o e 70
o o £ 71
4.1 (0701 0 11T o 115 P
4.2 Error Handling
4.3 Script Nesting
4.4 (@181 o181 J= g o [<o o To 1 o T [FS0N P 72
4.5 [0) €= L o o S 72
1] o =11 @] 2'9T a'a =T g [1=
51 L@ Y= VT PP
51.1 Explanation of Command Description Layout
5.1.2 Shell Command-Line OPLioNS ..o
5.2 Shell Command Profil@s. ..o e aes
5.3 Shell Commands
alias ..
AL D e
1) PPN
[0 PPN

Version 2.0

o £
[o o] 1 01 o PPN
[oo] 0T o T Tox S PP
cp

date
dblk
del
devices
devtree ...
o PP
[T PP
disconnect .
['8 =T o 0 S
[L 10153 (0] =N
drivers
drvcfg
Lo LYo 1T T
echo .
edit ...
eficompress
efidecompress
exit

for
getmtc
goto
guid
help
hexedit
if
ifconfig
ipconfig
load
loadpcirom
Is

mem
memmap
mkdir
mm
mode
mv
openinfo ...
parse
pause
pci
ping
reconnect ..
reset
rm
sermode ...
set
setsize
setvar
shift

Version 2.0

smbiosview

Stall e

LT

timezone ...

touch

type

unload

ver

VOl s
Appendix A UEFI Shell Consistent Mapping DeSigN eaaeaees 209
A.l LTS o T8 T (=T 0 1= 0 P 209
A.2 07T o o 209
A.2.1 What does consistent mapping MEaAN?. ...t aeeeeas 209
A.2.2 Hardware configuration Change:o 209
A.2.2.1 Hardware configuration change exampleoooiiiiii i 210
A.2.2.2 Hardware configuration not change exampleo 210
A.2.3 Mapping generated from device path 210
A.2.4 (1] 0151153 (=] o ALY/ =T o] 011 0 T 210
A.2.5 EXQMPIE (USB DEVICES) .. uenntttiieiet et ettt et e et et e e e et e e e e ee e aeeaaans 211
A.2.5.1 Step 1: DetermMineg MTD ...ttt et eaneaes 211
A.2.5.2 Step 2: Determine HI ... e 212
A.2.5.3 Step 3: DetermMiINeG CSD ..ttt ettt ettt e aaas 213
A.2.5.3.1 Rules for USB device path NOGE ... e 213
A.2.5.3.2 Rules for hard drive device path NOde e 213
A.2.5.3.3 (] g =151 o o] g o 11T T @25] I 1= 213
A.2.5.3.4 Step 4: Make the Whole Mapping ..o aas 213
A.3 T 0] (=T aT=T a) 2= [0 o 214
A.3.1 [ET= A 1 T 8 I 5 PP 216
A.3.2 Gt TN HI Lo 216
A.3.3 (7= A 1 T 8T PP 216
A.3.3.1 L] I T o= 216
A.3.3.1.1 L0 L0 8] o = 217
A.3.3.2 FIOPPY DEBVICESttt ettt ettt ettt ettt ettt ettt e et e e e 217

Vi Version 2.0

A.3.3.2.1 L= 1 g o = 217
A.3.3.3 CSD of ATAPI device path NOAe.... ..o e aas 217
A.3.3.4 CSD of LUN DevVice Path NOAE et 217
A.3.34.1 L= 1 g o = 217
A.3.3.5 CSD of SAS Device Path NOE oot e e 217
A.3.3.6 CSD of SATA DeVice Path NOAEuineiii e aaes 217
A.3.3.7 CSD of hard drive device path NOAeo 217
A.3.3.7.1 L= L0 0] 0 = 218
A.3.3.8 CSD of SCSI device path NOAEoinuiii e aaes 218
A.3.3.8.1 L= 1 g o = PN 218
A.3.3.9 Fibre Channel Device Path. ... e 218
A.3.3.10 1394 Device Path..........oii i 218
A.3.3.11 120 Device Path ... 218
A.3.3.12 MAC Address Device Path.......... .. 218
A.3.3.13 InfiniBand Device Path...........c.oooiiiii 218
A.3.3.14 UART DeVICE Path ...ttt en 219
A.3.3.15 Vendor-Defined Device Path ... 219
A.3.3.16 Vendor-defined Media Device Path..................ooiii 219
A.3.3.17 File Path Media Device Path..............ooooiiiii s 219
A.4 FUNCLION & SEIUCTUIE. ... e e e 219
Appendix B UEFI Help Manual Page SYNTAX.t ettt et e eas 223
AppendixX C UEFI Shell STatUS COUESttt ettt e ettt et ettt ae e aaeens 225
Appendix D UEFI Shell Command Standard Formatted OUTPUL...........oieiiiiiiiiiii e 227

Version 2.0
vii

Tables

Table 1 SUPPOIt LEVEIS ... e
Table 2 Standard Command Line Options
Table 3: UEFI Shell INVOCation OPtiONS.oiuui et eeeaes
Table 4 Output Redirection Syntax
Table 5 INput REAIr@CtioN SYNTAXueinuiiiii it eeeeaaaes
Table 6 Input RedireCtioN SYNTAXcuiieie e eeeaens
Table 7 Environment Variables with Special Meaning to the UEFI Shell....
Table 8 Built-in Aliases for the UEFI Shell ...
Table 9 Wildcard Character EXPanSiON e e e eaeees
Table 10 Commands from Default Build Shell
Table 11Standard Command Line Options..............

Table 12Standard Profiles..........c.cooviiiiiiiiiiin...

Table 13 Conventions for DireCtory NamMESouiiiiiiiiiiiii i aaeeas
Table 14Date Command Table ... e
Table 15 Standard-Format Output for devices
Table 16 dh Standard Formatted Output (HandlesInfo)
Table 17 Variable command line options
Table 18 Drivers command table............
Table 19C0oMPAriSON OPEFAtOrSttt ettt ettt e aneaaneaan
Table 20Functions used to convert integers into UEFI, Pl or OEM error codes......... 142
Table 21 BOOIean FUNCHIONS ittt e e eeeeas
Table 22 Is Standard Formatted Output (Volumelnfo)
Table 23 Is Standard Formatted Output (FileInfo)

Table 24 Standard Formatted Output (MappingsS)cuueueueur e eieeareeeeeaenas
Table 25 Standard-Format Output for memmap (MemoryMap)c.cccoeeieieinenennn. 161
Table 26 Standard-Format Output for memmap (Summary)
Table 27 Open Protocol Information LayoOut..........coeeiiiiiiii i eeees

Table 29 MTD Naming
Table 30 Subheadings and desCriPtiONScoiuiiiii i eaeas
Table 31 SHELL_STATUS return COOESuiuuiiiiiieii et e e e et aee e eanens

viii Version 2.0

Revision History

Revision Description Revision
Number Date
2.0 Initial UEFI release 9/25/08
8
Version 2.0

1.1

1.2

1.3

1 Introduction

Overview

The UEFI Shell environment provides an API, a command prompt and a rich set of
commands that extend and enhance the UEFI Shell’s capability.

Related Information

The following publications and sources of information may be useful or are referred to
by this document:

Extensible Firmware Interface Specification, Version 1.10, Intel, 2001,
http://developer.intel.com/technology/efi.

Unified Extensible Firmware Interface Specification, Version 2.0, Unified EFI, Inc,
2006, http://www.uefi.org.

Intel® Platform Innovation Framework for EFl Specifications, Intel, 2006,
http://www.intel.com/technology/framework/.

Terms

EFI
Generic term that refers to one of the versions of the EFI specification: EFI
1.02, EFI 1.10, or UEFI 2.0.

EFI 1.10 Specification

Intel Corporation published the Extensible Firmware Interface
Specification. It has been supplanted by the Unified Extensible Firmware
Interface (UEFI), which is controlled by the UEFI Forum.

GUID
Globally Unique Identifier. A 128-bit value used to name entities uniquely.
Without the help of a centralized authority, an individual can generate a
unique GUID. This allows the generation of names that will never conflict,
even among multiple, unrelated parties.

Protocol

An APl named by a GUID as defined by the UEFI specification.

1 Version 2.0

http://developer.intel.com/technology/efi�
http://www.uefi.org/�
http://www.intel.com/technology/framework/�

UEFI Application

An application following the UEFI specification. The only difference
between a UEFI application and a UEFI driver is that an application is
unloaded from memory when it exits regardless of return status, while a
driver that returns a successful return status is not unloaded when its
entry point exits.

UEFI Driver

A driver following the UEFI specification driver model.
UEFI Specification Version 2.0
The first UEFI specification released by the Unified EFI Forum.

UEFI Specification Version 2.1

Current version of the UEFI specification released by the Unified EFI
Forum.

Unified EFI Forum

A non-profit collaborative trade organization formed to promote and
manage the UEFI standard. For more information, see www.uefi.org.

2 Version 2.0

2 Code Definitions

2.1 Introduction

2.2 EF1_SHELL_PROTOCOL

EFI_SHELL_PROTOCOL

Summary

Provides shell services to UEFI applications.

P

Version 2.0

- {Formatted: Bullets and Numbering]

GUID

#define EFI_SHELL PROTOCOL GUID \

0x7£9b,

0x6302d4008,
0x60, O0xc9,

0x87, Oxac,

Protocol Interface Structure
typedef struct _EFI_SHELL PROTOCOL {

Members

EFI_SHELL EXECUTE
EFI_SHELL_ GET_ENV
EFI_SHELL_SET ENV
EFI_SHELL SET ALIAS
EFI_SHELL_GET_HELP_ TEXT

0x4£30,
Oxfe,

\
0x£5,

EFI_SHELL GET DEVICE_PATH FROM MAP
EFI_SHELL GET MAP FROM DEVICE PATH

EFI_SHELL_ GET DEVICE_PATH FROM FILE PATH
EFI_SHELL GET FILE PATH FROM DEVICE PATH

EFI_SHELL_SET_MAP

EFI_SHELL GET CUR DIR
EFI_SHELL SET CUR DIR
EFI_SHELL OPEN FILE LIST
EFI_SHELL FREE FILE LIST

EFI_SHELL REMOVE DUP_IN FILE LIST

EFI_SHELL BATCH IS ACTIVE
EFI_SHELL IS ROOT SHELL
EFI_SHELL_ENABLE PAGE_BREAK
EFI_SHELL DISABLE PAGE BREAK
EFI_SHELL GET PAGE BREAK
EFI_SHELL_GET_DEVICE_NAME

EFI_SHELL GET FILE INFO
EFI_SHELL SET FILE INFO
EFI_SHELL OPEN FILE BY NAME
EFI_SHELL CLOSE FILE
EFI_SHELL CREATE FILE
EFI_SHELL READ FILE
EFI_SHELL WRITE FILE
EFI_SHELL DELETE FILE

EFI_SHELL DELETE FILE BY NAME

EFI_SHELL GET FILE POSITION
EFI_SHELL SET FILE POSITION
EFI_SHELL FLUSH FILE
EFI_SHELL FIND FILES
EFI_SHELL FIND FILES IN DIR
EFI_SHELL GET FILE SIZE

EFI_SHELL_ OPEN_ ROOT

EFI_SHELL OPEN ROOT BY HANDLE

EFI_EVENT
UINT32

UINT32
} EFI_SHELL PROTOCOL;

Execute

Oxda, Ox4e } }

Execute;

GetEnv;

SetEnv;

SetAlias;

GetHelpText;
GetDevicePathFromMap;
GetMapFromDevicePath;
GetDevicePathFromFilePath;
GetFilePathFromDevicePath;
SetMap;

GetCurDir;
SetCurDir;
OpenFileList;
FreeFilelList;
RemoveDuplInFileList;

BatchlsActive;
IsRootShell;
EnablePageBreak;
DisablePageBreak;
GetPageBreak;
GetDeviceName;

GetFilelnfo;
SetFilelnfo;
OpenFileByName;
CloseFile;
CreateFile;
ReadFile;
WriteFile;
DeleteFile;
DeleteFileByName;
GetFilePosition;
SetFilePosition;
FlushFile;
FindFiles;
FindFileslInDir;
GetFileSize;

OpenRoot;
OpenRootByHandle;

ExecutionBreak;

MajorVersion;
MinorVersion;

Version

Causes the shell to parse and execute the command line. See the Execute()
function description below.

GetEnv
Gets the environment variable. See the GetEnv() function description below.

SetEnv
Changes a specific environment variable. Set the SetEnv() function description
below.
SetAlias
Adds or removes the alias for a specific shell command. See the SetAlias()
function description below.
GetDevicePathFromMap
Returns the device path that corresponds to a mapping. See the
GetDevicePathFromMap() function description below.
GetMapFromDevicePath
Returns the mapping that corresponds to a particular device path. See the
GetMapFromDevicePath() function description below.
GetDevicePathFromFilePath
Converts a file path to a device path, where all mappings have been replaced
with the corresponding device paths.
GetFilePathFromDevicePath
Converts a device path to a file path, where the portion of the device path
corresponding to one of the mappings is replaced with that mapping.
SetMap
Creates, updates or deletes a mapping between a device and a device path.

GetCurDir
Returns the current directory on a device. See the GetCurDir() function
description below.

SetCurDir
Changes the current directory on a device. Set the SetCurDir() function
description below.

OpenFileList
Opens the files that match the path pattern specified. See the OpenFileList()
function description below.

FreeFileList
Frees the file list that created by OpenFileList(). See the FreeFileList()
function description below.

RemoveDupInFileList
Deletes the duplicate files in the given file list. See the RemoveDuplInFileList()
function description below.

BatchIsActive

Returns whether any script files are currently being processed. See the
BatchlsActive() function description below.

Version 2.0

IsRootShell
Judges whether the active Shell is the root shell. See the IsRootShell()
function description below.

EnablePageBreak
Enables the page break output mode. See the EnablePageBreak() function
description below.

DisablePageBreak
Disables the page break output mode. See the DisablePageBreak() function
description below.

GetPageBreak
Gets the enable status of the page break output mode. See the GetPageBreak()
function description below.

GetDeviceName
Gets the name of the device specified by the device handle. See the
GetDeviceName() function description below.

GetFileInfo
Return information about a specific file handle. See the GetFilelnfo() function
description below.

SetFileInfo
Change information about a specific file handle. See the SetFilelnfo() function
description below.

OpenFileByName
Given a file name, open a file and return a file handle. See the
OpenFileByName() description below.

CloseFile
Close an open file. See the CloseFile() description below.

CreateFile
Create a new file. See the CreateFile() function description.

ReadFile
Read data from a file. See the ReadFile() function description.

WriteFile
Write data to a file. See the WriteFile() function description.

DeleteFile
Delete a file. See the DeleteFile() function description.

DeleteFileByName
Delete a file by name. See the DeleteFileByName() function description.

SetFilePosition

Change the current read/write position within a file. See the SetFilePosition()
function description.

6 Version 2.0

GetFilePosition
Return the current read/write position within a file. See the GetFilePosition()
function description.

FlushFile
Write all buffered data to a file. See the FlushFile() function description.

FindFiles
Return all files that match a pattern in a file list. See the FindFiles() function
description.

FindFilesInDir
Return all files in a specified directory in a file list. See the FindFilesInDir()
function description.

GetFileSize
Return the size of a file. See the GetFileSize() function description.

OpenRoot
Return the root directory of a file system. See the OpenRoot() function
description.

OpenRootByHandle

Return the root directory of a file system on a particular handle. See the
OpenRootByHandle() function description.

ExecutionBreak

Event signaled by the UEFI Shell when the user presses CTRL-C to indicate that
the current UEFI Shell command execution should be interrupted.

MajorVersion
The major version of the shell environment.

MinorVersion

The minor version of the shell environment.

Description

Description that is more detailed goes here.

Version 2.0

EFI_SHELL_PROTOCOL.BatchlsActive()

Summary
Returns whether any script files are currently being processed.

Prototype
typedef
BOOLEAN
(EFIAPI *EFI_SHELL BATCH IS ACTIVE) (
VOID
)i

Parameters
None
Description
This function tells whether any script files are currently being processed

Status Codes Returned

There is at least one script file active.
TRUE P

No script files are active now.

FALSE

Version 2.0

EFI_SHELL_PROTOCOL.CloseFile()

Summary

Closes the file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL CLOSE FILE) (
IN EFI_FILE HANDLE FileHandle
);
Parameters
FileHandle

The file handle to be closed
Description

This function closes a specified file handle. All “dirty” cached file data is flushed to the
device, and the file is closed. In all cases, the handle is closed.

Status Codes Returned

EFI_SUCCESS The file is closed successfully

Version 2.0

EFI_SHELL_PROTOCOL.CreateFile()

Summary

Creates a file or directory by name.

Prototype

typedef
EFI STATUS

(EFIAPI *EFI_SHELL CREATE FILE) (

IN CONST CHAR16
IN UINT64

*FileName,
FileAttribs,

OUT EFI_FILE HANDLE *FileHandle

)i

Parameters

FileName

Points to the null-terminated file path.

FileAttribs

The new file’s attributes. The different attributes are described in
EF1_FILE_PROTOCOL.Open().

FileHandle

On return, points to the created file or directory’s handle.

Description

This function creates an empty new file or directory with the specified attributes and
returns the new file’s handle. If the file already exists and is read-only, then
EFI_INVALID_PARAMETER will be returned.

If the file already existed, it is truncated and its attributes updated. If the file is
created successfully, the FileHandle is the file’'s handle, else, the FileHandle is NULL.

If the file name begins with >v, then the file handle which is returned refers to the
shell environment variable with the specified name. If the shell environment variable
already exists and is non-volatile then EFI_INVALID_PARAMETER is returned.

Status Codes Returned

EFI_SUCCESS

The file was opened. Fi leHandle points to the new file’s handle.

EFI_INVALID_PARAMETER

One of the parameters has an invalid value.

EF1_UNSUPPORTED

Could not open the file path.

EF1_NOT_FOUND

The specified file could not be found on the device, or could not
find the file system on the device.

EF1_NO_MEDIA

The device has no medium.

10

Version 2.0

EF1_MEDIA_CHANGED

The device has a different medium in it or the medium is no
longer supported.

EFI_DEVICE_ERROR

The device reported an error or can’'t get the file path according
the DirName.

EFI_VOLUME_CORRUPTED

The file system structures are corrupted.

EFI_WRITE_PROTECTED

An attempt was made to create a file, or open a file for write
when the media is write-protected.

EF1_ACCESS_DENIED

The service denied access to the file.

EFI_OUT OF RESOURCES

Not enough resources were available to open the file.

EFI_VOLUME_FULL

The volume is full.

Version 2.0

11

EFI_SHELL_PROTOCOL.DeleteFile()

Summary

Deletes the file specified by the file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL DELETE FILE) (
IN EFI_FILE HANDLE FileHandle
)
Parameters
FileHandle

The file handle to delete.
Description
This function closes and deletes a file. In all cases, the file handle is closed. If the file
cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is returned, but the

handle is still closed.

Status Codes Returned
EF1_SUCCESS The file was closed and deleted, and the handle was closed.

EFI1_WARN_DELETE_FAILURE | The handle was closed but the file was not deleted.

12 Version 2.0

EFI_SHELL_PROTOCOL.DeleteFileByName()

Summary

Deletes the file specified by the file handle.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL DELETE FILE BY NAME) (
IN CONST CHAR16 *FileName
)
Parameters
FileName

Points to the null-terminated file name.
Description
This function deletes a file.

Status Codes Returned

EF1_SUCCESS The file was closed and deleted, and the handle was
closed.

EFI_WARN_DELETE_FAILURE | The handle was closed but the file was not deleted.

Version 2.0

13

EF1_SHELL PROTOCOL.DisablePageBreak()

Summary
Disables the page break output mode.

Prototype

typedef

VOID

(EFIAPI *EFI_SHELL DISABLE PAGE BREAK) (
VOID
)i

Parameters
None

Description

This function disables the page break output mode.

Status Codes Returned

None

14

Version 2.0

EF1_SHELL PROTOCOL.EnablePageBreak()

Summary
Enables the page break output mode.

Prototype

typedef

VOID

(EFIAPI *EFI_SHELL ENABLE PAGE_ BREAK) (
VOID
)i

Parameters
None

Description

This function enables the page break output mode.

Status Codes Returned

None

Version 2.0

15

EFI_SHELL_PROTOCOL.Execute()

Summary
Execute the command line.
Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL EXECUTE) (
IN EFI HANDLE *ParentlImageHandle,
IN CHAR16 *CommandLine OPTIONAL,
IN CHAR16 **Environment OPTIONAL,
OUT EFI_STATUS *StatusCode OPTIONAL
):
Parameters

ParentImageHandle

A handle of the image that is executing the specified command line.

CommandLine
Points to the null-terminated UCS-2 encoded string containing the command line.
If NULL then the command-line will be empty.

Environment
Points to a null-terminated array of environment variables with the format ‘x=y’,
where X is the environment variable name and y is the value. If this is NULL,
then the current shell environment is used.

ErrorCode

Points to the status code returned by the command.

Description

This function creates a nested instance of the shell and executes the specified
command (CommandLine) with the specified environment (Environment). Upon return,
the status code returned by the specified command is placed in StatusCode.

If Environment is NULL, then the current environment is used and all changes made
by the commands executed will be reflected in the current environment. If the
Environment is non-NULL, then the changes made will be discarded.

The CommandLine is executed from the current working directory on the current
device.

Status Codes Returned

EF1_SUCCESS The command executed successfully. The
status code returned by the command is

16 Version 2.0

pointed to by StatusCode.

EFI_INVALID_PARAMETER

The parameters are invalid.

EF1_OUT_OF RESOURCES

Out of resources.

EF1_UNSUPPORTED

Nested shell invocations are not allowed.

Version 2.0

17

EFI_SHELL_PROTOCOL.FindFiles()

Summary

Find files that match a specified pattern.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL FIND FILES) (
IN CONST CHARL6 *FilePattern,
OUT EFI_SHELL FILE INFO **FileList
)i
Parameters
FilePattern
Points to a null-terminated shell file path, including wildcards.
FileList

On return, points to the start of a file list containing the names of all matching
files or else points to NULL if no matching files were found.

Description

This function searches for all files and directories that match the specified
FilePattern. The FilePattern can contain wild-card characters. The resulting file
information is placed in the file list FileList.

The files in the file list are not opened. The OpenMode field is set to 0 and the Filelnfo
field is set to NULL.

Status Codes Returned

EFI_SUCCESS Files found.

EFI_NOT_FOUND No files found.

EFI_NO_MEDIA The device has no media
EFI_DEVICE_ERROR The device reported an error
EFI_VOLUME_CORRUPTED | The file system structures are corrupted

18 Version 2.0

EFI_SHELL_PROTOCOL.FindFilesInDir()

Summary

Find all files in a specified directory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL FIND FILES IN DIR) (
IN EFI FILE HANDLE FileDirHandle,
OUT EFI_SHELL FILE INFO **FileList
)i
Parameters
FileDirHandle
Handle of the directory to search.
FileList

On return, points to the list of files in the directory or NULL if there are no files in
the directory.

Status Codes Returned

EF1_SUCCESS File information was returned successfully.

EFI1_VOLUME_CORRUPTED | The file system structures have been corrupted.

EFI1_DEVICE_ERROR The device reported an error.
EFI_NO_MEDIA The device media is not present.
Version 2.0

19

EFI_SHELL_PROTOCOL.FlushFile()

Summary

Flushes data back to a device

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ SHELL FLUSH FILE) (
IN EFI_FILE HANDLE FileHandle
)
Parameters
FileHandle

The handle of the file to flush.

Description

This function flushes all modified data associated with a file to a device.

Status Codes Returned

EF1_SUCCESS

The data was flushed.

EFI_NO_MEDIA

The device has no medium.

EF1_DEVICE_ERROR

The device reported an error.

EF1_VOLUME_CORRUPTED

The file system structures are corrupted.

EFI_WRITE_PROTECTED

The file or medium is write-protected.

EF1_ACCESS_DENIED

The file was opened read-only.

EFI_VOLUME_FULL

The volume is full.

20

Version 2.0

EFI_SHELL_PROTOCOL.FreeFileList()

Summary

Frees the file list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_ SHELL FREE FILE LIST) (
IN EFI_ SHELL FILE INFO **FileList
)
Parameters
FileList

The file list to free. Type EFI_SHELL_FILE_INFO is defined in OpenFileList()
Description

This function cleans up the file list and any related data structures. It has no
impact on the files themselves.

Status Codes Returned

EFI_SUCCESS Free the file list successfully.

Version 2.0
21

EFI_SHELL_PROTOCOL.GetCurDir()

Summary
Returns the current directory on the specified device.

Prototype
typedef
CONST CHAR16 *
(EFIAPI *EFI_SHELL GET CUR DIR) (
IN CONST CHAR16 *FileSystemMapping OPTIONAL
)

Parameters
FileSystemMapping
A pointer to the file system mapping. If NULL, then the current working directory
is returned.

Description

If FileSystemMapping is NULL, it returns the current working directory. If the
FileSystemMapping is not NULL, it returns the current directory associated with the
FileSystemMapping. In both cases, the returned name includes the file system
mapping (i.e. fsO:\current-dir).

For more information, see “Current Directory”, section3.5.

Status Codes Returned

#NULL The current directory.

NULL Current directory does not exist.

22 Version 2.0

EFI_SHELL_PROTOCOL.GetDeviceName()

Summary

Gets the name of the device specified by the device handle.

Prototype
typedef
EFI_STATUS
(*EFI_SHELL GET DEVICE NAME) (
IN EFI HANDLE DeviceHandle,
IN EFI_SHELL DEVICE NAME FLAGS Flags,
IN CHARS *Language,
OUT CHAR16 **BestDeviceName
)i
Parameters
DeviceHandle
The handle of the device.
Flags
Determines the possible sources of component names. See “Related Definitions”
below for more information.
Language
A pointer to the language specified for the device name, in the same format as
described in the UEFI specification, Appendix M
BestDeviceName

On return, points to the callee-allocated null-terminated name of the device. If
no device name could be found, points to NULL. The name must be freed by the
caller..

Description

This function gets the user-readable name of the device specified by the device
handle. If no user-readable name could be generated, then *BestDeviceName will be
NULL and EFI_NOT_FOUND will be returned.

The

Related Definitions

typedef UINT32 EFI DEVICE NAME FLAGS;
#define EFI DEVICE NAME USE COMPONENT NAME 0x00000001
#define EFI DEVICE NAME USE DEVICE PATH 0x00000002

If EFI_DEVICE_NAME_USE_COMPONENT_NAME is set, then the function will return the
device’s name using the EFI_COMPONENT_NAME2_PROTOCOL, if present on
DeviceHandle.

Version 2.0
23

If EF1_DEVICE_NAME_USE_DEVICE_PATH is set, then the function will return the
device’s name using the EF1_DEVICE_PATH_PROTOCOL, if present on DeviceHandle.

If both EFI1_DEVICE_NAME_USE_COMPONENT_NAME and
EFI_DEVICE_NAME_USE_DEVICE_PATH are set, then
EFI_DEVICE_NAME_USE_COMPONENT_NAME will have higher priority.

Status Codes Returned
EFI_SUCCESS Get the name successfully.

EFI_NOT_FOUND Fail to get the device name.

24 Version 2.0

EF1_SHELL PROTOCOL.GetDevicePathFromMap()

Summary
Gets the device path from the mapping.
Prototype
typedef
CONST EFI_DEVICE PATH PROTOCOL *
(EFIAPI *EFI_SHELL GET DEVICE PATH FROM MAP) (

IN CONST CHAR16 *Mapping
):

Parameters

Mapping
A pointer to the mapping.

Description
This function gets the device path associated with a mapping.

Status Codes Returned

#NULL Pointer to the device path that corresponds to the device mapping.
The returned pointer does not need to be freed.

NULL There is no device path associated with the specified mapping.

Version 2.0

25

EF1_SHELL PROTOCOL.GetDevicePathFromFilePath()

Summary
Converts a file system style name to a device path.

Prototype
typedef
EFI_DEVICE PATH PROTOCOL *
(EFIAPI *EFI_SHELL GET DEVICE PATH FROM_ FILE PATH) (
IN CONST CHAR16 *Path
)
Parameters

Path
The pointer to the path.

Description

This function converts a file system style name to a device path, by replacing any
mapping references to the associated device path.

Status Codes Returned

The pointer of the file path. The file path is callee allocated and should be freed by the
caller.

26 Version 2.0

EFI_SHELL_PROTOCOL.GetEnv()

Summary

Gets the environment variable.
Prototype

typedef

CONST CHAR16 *

(EFIAPI *EFI_SHELL GET ENV) (

IN CONST CHAR16 *Name
)

Parameters

Name

A pointer to the environment variable nhame.
Description
This function returns the current value of the specified environment variable.

Status Codes Returned

#NULL The environment variable’s value. The returned pointer does not need
to be freed by the caller.

NULL The environment variable doesn'’t exist.

Version 2.0
27

EFI_SHELL_PROTOCOL.GetFileInfo()

Summary
Gets the file information from an open file handle.

Prototype

typedef

EFI_FILE INFO *

(EFIAPI *EFI_SHELL GET FILE INFO) (
IN EFI_FILE HANDLE FileHandle
)

Parameters

FileHandle
A file handle

Description

This function allocates a buffer to store the file’s information. It's the caller’s
responsibility to free the buffer.

Returns

#NULL Cannot get the file info.

NULL A pointer to a buffer with file information.

28

Version 2.0

EF1_SHELL PROTOCOL.GetFilePathFromDevicePath()

Summary
Converts a device path to a file system-style path.

Prototype

typedef

CHAR1l6 *

(EFIAPI *EFI_SHELL GET FILE PATH FROM DEVICE PATH) (
IN CONST EFI DEVICE PATH PROTOCOL *Path
)

Parameters

Path
The pointer to the device path.

Description

This function converts a device path to a file system path by replacing part, or all, of
the device path with the file-system mapping. If there are more than one application
file system mappings, the one that most closely matches Path will be used.

Returned Value

The pointer of the null-terminated file path. The path is callee-allocated and should be freed by
the caller.

Version 2.0
29

EFI_SHELL_PROTOCOL.GetFilePosition()

Summary
Gets a file’s current position

Prototype

typedef

EFI STATUS

(EFIAPI *EFI_ SHELL GET FILE POSITION) (
IN EFI FILE HANDLE FileHandle,
OUT UINT64 *Position
)

Parameters

FileHandle
The file handle on which to get the current position.

Position

Byte position from the start of the file

Description

This function returns the current file position for the file handle. For directories, the
current file position has no meaning outside of the file system driver and as such, the

operation is not supported.

Status Codes Returns

EF1_SUCCESS Data was accessed.

EFI_UNSUPPORTED | The request is not valid on open directories.

30

Version 2.0

EFI_SHELL_PROTOCOL.GetFileSize()

Summary
Gets the size of a file.

Prototype

typedef

EFI STATUS

(EFIAPI *EFI_SHELL GET FILE SIZE) (
IN EFI FILE HANDLE FileHandle,
OUT UINT64 *Size
)

Parameters

FileHandle
The handle of the file.

Size

The size of this file.

Description

This function returns the size of the file specified by FileHandle.

Status Codes Returned

EFI1_SUCCESS Get the file’s size.

EFI1_DEVICE_ERROR | Can’t access the file.

Version 2.0

31

EF1_SHELL PROTOCOL.GetHelpText()
Summary

Return help information about a specific command.
Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_SHELL GET HELP_ TEXT) (
IN CONST CHAR16 *Command,
IN CONST CHAR16 *Sections,
OUT CHARL6 **HelpText
)i

Parameters

Command
Points to the null-terminated UEFI Shell command name.
Sections

Points to the null-terminated comma-delimited section names to return. If NULL,
then all sections will be returned.

HelpText
On return, points to a callee-allocated buffer containing all specified help text.

Description

This function returns the help information for the specified command. The help text
can be internal to the shell or can be from a UEFI Shell manual page, as described in
Appendix B

If Sections is specified, then each section name listed will be compared in a case-
sensitive manner, to the section names described in Appendix B. If the section exists,
it will be appended to the returned help text. If the section does not exist, no
information will be returned. If Sections is NULL, then all help text information
available will be returned.

Status Codes Returned

EF1_SUCCESS The help text was returned.

EFI1_OUT_OF_RESOURCES The necessary buffer could not be allocated to hold the returned
help text.

EFI_INVALID_PARAMETER | HelpText is NULL

EFI_NOT_FOUND There is no help text available for Command.

32 Version 2.0

EF1_SHELL PROTOCOL.GetMapFrombDevicePath()

Summary

Gets the mapping that most closely matches the device path.

Prototype

typedef

CONST CHAR1l6 *

(EFIAPI *EFI_SHELL GET MAP FROM DEVICE PATH) (
IN OUT EFI DEVICE PATH PROTOCOL **DevicePath
)

Parameters

DevicePath

On entry, points to a device path pointer. On exit, updates the pointer to point to
the portion of the device path after the mapping.

Description

This function gets the mapping which corresponds to the device path *DevicePath. If
there is no exact match, then the mapping which most closely matches *DevicePath
is returned, and *DevicePath is updated to point to the remaining portion of the
device path. If there is an exact match, the mapping is returned and *DevicePath
points to the end-of-device-path node.

Returned Value

INULL Pointer to null-terminated mapping. The buffer is callee-
allocated and should be freed by the caller.

NULL No mapping was found.

34 Version 2.0

EFI_SHELL_PROTOCOL.GetPageBreak()

Summary

Gets the enable status of the page break output mode.
Prototype

typedef

BOOLEAN

(EFIAPI *EFI_SHELL GET PAGE BREAK) (

VOID
)i

Parameters
None

Description

User can use this function to determine current page break mode.

Status Codes Returned

TRUE The page break output mode is enabled
FALSE The page break output mode is disabled
Version 2.0

35

EFI_SHELL_PROTOCOL.IsRootShell()

Summary

Judges whether the active shell is the root shell.
Prototype

typedef

BOOLEAN

(EFIAPI *EFI_SHELL IS ROOT SHELL) (

VOID
)i

Parameters
None
Description
This function makes the user to know that whether the active Shell is the root shell.

Status Codes Returned

TRUE The active Shell is the root Shell.

FALSE The active Shell is NOT the root Shell.

36 Version 2.0

EFI_SHELL_PROTOCOL.OpenFileByName()

Summary

Opens a file or a directory by file name.

Prototype
typdef
EFI_STATUS
(EFIAPI *EFI_SHELL OPEN FILE BY NAME) (
IN CONST CHARL6 *FileName,
OUT EFI_FILE HANDLE *FileHandle,
IN UINT64 OpenMode
)
Parameters
FileName
Points to the null-terminated UCS-2 encoded file name.
FileHandle
On return, points to the file handle.
OpenMode

File open mode. Either EFI_FILE_MODE_READ or EF1_FILE_MODE_WRITE from
section 12.4 of the UEFI Specification.

Related Definitions
typedef VOID *EFI_FILE HANDLE;

Description

This function opens the specified file in the specified OpenMode and returns a file
handle.

If the file name begins with >v, then the file handle which is returned refers to the
shell environment variable with the specified name. If the shell environment variable
exists, is non-volatile and the OpenMode indicates EFI_FILE_MODE_WRITE, then
EFI_INVALID_PARAMETER is returned.

If the file name is =i, then the file handle which is returned refers to the standard
input. If the OpenMode indicates EFI_FILE_MODE_WRITE, then EFI_INVALID_PARAMETER
is returned.

If the file name is >0, then the file handle which is returned refers to the standard
output. If the OpenMode indicates EFI_FILE_MODE_READ, then EFI_INVALID_PARAMETER
is returned.

If the file name is >e, then the file handle which is returned refers to the standard
error. If the OpenMode indicates EFI_FILE_MODE_READ, then EFI1_INVALID_PARAMETER
is returned.

Version 2.0
37

If the file name is NUL, then the file handle that is returned refers to the standard NUL
file. If the OpenMode indicates EF1_FILE_MODE_READ, then EFI_INVALID_PARAMETER is
returned.

If return EFI_SUCCESS, the FileHandle is the opened file’s handle, else, the
FileHandle is NULL.

Status Codes Returned

EFI_SUCCESS The file was opened. FileHandle has the opened file's handle.

EFI1_INVALID_PARAMETER | One of the parameters has an invalid value. FileHandle is NULL.

EF1_UNSUPPORTED Could not open the file path. FileHandle is NULL.
EFI1_NOT_FOUND The specified file could not be found on the device or the file
system could not be found on the device. FileHandle is NULL.
EFI_NO_MEDIA The device has no medium. FileHandle is NULL.
EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no

longer supported. FileHandle is NULL.

EF1_DEVICE_ERROR The device reported an error or can't get the file path according
the FileName. FileHandle is NULL.

EFI_VOLUME_CORRUPTED The file system structures are corrupted. FileHandle is NULL.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for write
when the media is write-protected. FileHandle is NULL.

EFI_ACCESS_DENIED The service denied access to the file. FileHandle is NULL.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file. FileHandle
is NULL.

EFI_VOLUME_FULL The volume is full. FileHandle is NULL.

38 Version 2.0

EFI_SHELL_PROTOCOL.OpenFileList()

Summary

Opens the files that match the path specified.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL OPEN FILE LIST) (
IN CHAR16 *Path,
IN UINT64 OpenMode,
IN OUT EFI_SHELL FILE INFO **FilelList
)i
Parameters
Path
A pointer to the path string.
OpenMode
Specifies the mode used to open each file, EFI_FILE_MODE_READ or
EFI_FILE_MODE_WRITE.
FileList

Points to the start of a list of files opened.
Description

This function opens all of the files specified by Path. Wildcards are processed
according to the rules specified in 3.7.1. Each matching file has an
EFI_SHELL_FILE_INFO structure created in a linked list.

Related Definitions

typedef struct EFI LIST ENTRY {
struct EFI LIST ENTRY *Flink;
struct EFI LIST ENTRY *Blink;
} EFI_LIST ENTRY;

typedef struct {

EFI_LIST ENTRY Link;
EFI_STATUS Status;
CONST CHAR16 *Ful IName;
CONST CHAR16 *FileName
EFI_FILE_HANDLE Handle;
EFI_FILE INFO *Info;

} EFI_SHELL FILE_INFO;

Link
Points to the next and previous entries in the file list. If NULL, then no more files.

Status
The status returned when calling OpenFile() for the entry in the file list.

Version 2.0
39

FullName

Specifies the full name of the file, including the path.

Handle

The file handle of the file after it was opened.

Info

The file information for the opened file.

Status Codes Returned

EF1_SUCCESS

Create the file list successfully.

Others

Can’t create the file list.

40

Version 2.0

EFI_SHELL_ PROTOCOL.OpenRoot()

Summary
Opens the root directory of a device.

Prototype

typedef

EFI_STATUS

(EFIAPI EFI_SHELL OPEN_ROOT) (
IN EFI_DEVICE_PATH PROTOCOL *DevicePath
OUT EFI_FILE HANDLE *FileHandle
)i

Parameters

DevicePath

Points to the device path corresponding to the device where the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is installed.

FileHandle
On exit, points to the file handle corresponding to the root directory on the

device.
Description

This function opens the root directory of a device and returns a file handle to it.

Status Codes Returned

EF1_SUCCESS Root opened successfully.

could not be opened.

EFI1_NOT_FOUND EFI_SIMPLE_FILE_SYSTEM could not be found or the root directory

EFI1_VOLUME_CORRUPTED | The data structures in the volume were corrupted.

EFI1_DEVICE_ERROR The device had an error

Version 2.0

41

EF1_SHELL PROTOCOL.OpenRootByHandle()

Summary

Opens the root directory of a device on a handle

Prototype
typedef
EFI_STATUS
(EFIAPI EFI_SHELL OPEN ROOT BY HANDLE) (
IN EFI HANDLE DeviceHandle,
OUT EFI_FILE HANDLE *FileHandle
)i
Parameters
DeviceHandle
The handle of the device that contains the volume.
FileHandle
On exit, points to the file handle corresponding to the root directory on the
device.

Description
This function opens the root directory of a device and returns a file handle to it.

Status Codes Returned

EFI_SUCCESS Root opened successfully.

EF1_NOT_FOUND EFI_SIMPLE_FILE_SYSTEM could not be found or the root directory
could not be opened.

EFI_VOLUME_CORRUPTED | The data structures in the volume were corrupted.

EFI_DEVICE_ERROR The device had an error

42 Version 2.0

EFI_SHELL_PROTOCOL.ReadFile()

Summary

Reads data from the file.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL READ FILE) (
IN EFI_FILE HANDLE FileHandle,
IN OUT UINTN *ReadSize,
ouT VOID *Buffer
)
Parameters
FileHandle
The opened file handle for read
ReadSize
On input, the size of Buffer, in bytes. On output, the amount of data read.
Buffer

The buffer in which data is read.
Description
If FileHandle is not a directory, the function reads the requested number of bytes
from the file at the file’s current position and returns them in Buffer. If the read goes
beyond the end of the file, the read length is truncated to the end of the file. The file’s

current position is increased by the number of bytes returned.

If FileHandle is a directory, then an error is returned.

Status Codes Returned

EFI_SUCCESS Data was read.
EFI_NO_MEDIA The device has no media
EFI_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED | The file system structures are corrupted

EFI_BUFFER_TO_SMALL Buffer is too small. ReadSize contains required size

Version 2.0
43

EFI_SHELL_PROTOCOL.RemoveDuplInFileList()

Summary

Deletes the duplicate file names files in the given file list.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL REMOVE DUP IN FILE LIST) (
IN EFI_ SHELL FILE INFO **FileList
)
Parameters
FileList

A pointer to the first entry in the file list.
Description
This function deletes the reduplicate files in the given file list.

Status Codes Returned

EF1_SUCCESS Always success.

44 Version 2.0

EFI_SHELL_PROTOCOL.SetAlias()

Summary
Changes a shell command alias.

Prototype

typedef

EFI STATUS

(EFIAPI *EFI_SHELL SET ALIAS) (
IN CONST CHAR16 *Command,
IN CONST CHAR16 *Alias,

IN BOOLEAN Replace
)
Parameters
Command
Points to the null-terminated shell command or existing alias.
Alias
Points to the null-terminated alias for the shell command. If this is NULL, and
Command refers to an alias, that alias will be deleted.
Replace

If TRUE and the alias already exists, then the existing alias will be replaced. If
FALSE and the alias already exists, then the existing alias is unchanged and
EFI_ACCESS_DENIED is returned.

Description

This function creates an alias for a shell command.

Return Value

EF1_SUCCESS Alias created or deleted successfully.

EF1_ACCESS_DENIED | The alias is a built-in alias or already existed and Replace was set to
FALSE.

Version 2.0
45

EFI_SHELL_PROTOCOL.SetCurDir()

Summary
Changes the current directory on the specified device.

Prototype

typedef

EFI STATUS

(EFIAPI *EFI_SHELL SET CUR DIR) (
IN CONST CHAR16 *FileSystem OPTIONAL,
IN CONST CHAR16 *Dir
)

Parameters

FileSystem

A pointer to the file system’s mapped name. If NULL, then the current working
directory is changed.

Points to the null-terminated directory on the device specified by FileSystem.
Description

If the FileSystem is NULL, and the directory Dir does not contain a file system’s
mapped name, this function changes the current working directory. If FileSystem is
NULL and the directory Dir contains a mapped name, then the current file system and
the current directory on that file system are changed.

If FileSystem is not NULL, and Dir is NULL, then this changes the current working file
system.

If FileSystem is not NULL and Dir is not NULL, then this function changes the current
directory on the specified file system.

If the current working directory or the current working file system is changed then the

%cwd% environment variable will be updated. For more information, see “Current
Directory” , section3.5.

Status Codes Returned

#NULL The current directory.

NULL Current directory does not exist.

46 Version 2.0

EFI_SHELL_PROTOCOL.SetEnv()

Summary
Sets the environment variable.
Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SHELL SET ENV) (
IN CONST CHAR16 *Name,
IN CONST CHAR16 *Value,
IN BOOLEAN Volatile
)
Parameters
Name

Points to the null-terminated environment variable name.

Value
Points to the null-terminated environment variable value. If the value is an
empty string then the environment variable is deleted.

Volatile
Indicates whether the variable is non-volatile (FALSE) or volatile (TRUE).

Description

This function changes the current value of the specified environment variable. If the
environment variable exists and the Value is an empty string, then the environment
variable is deleted. If the environment variable exists and the Value is not an empty
string, then the value of the environment variable is changed. If the environment
variable does not exist and the Value is an empty string, there is no action. If the
environment variable does not exist and the Value is a non-empty string, then the
environment variable is created and assigned the specified value.

For a description of volatile and non-volatile environment variables, see3.6.1.

Status Codes Returned

EFI_SUCCESS The environment variable was successfully updated.

Version 2.0
47

EFI_SHELL_PROTOCOL.SetFileInfo()

Summary
Sets the file information to an opened file handle.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SHELL SET_ FILE_INFO) (
IN EFI_FILE_HANDLE FileHandle,
IN CONST EFI_FILE INFO *Filelnfo
)i

Parameters

FileHandle
A file handle

FileInfo
Points to new file information.

Description
This function changes file information.

Status Codes Returned

EFI1_SUCCESS The information was set.
EFI_NO_MEDIA The device has no medium.
EFI1_DEVICE_ERROR The device reported an error.
EFI1_VOLUME_CORRUPTED The file system structures are corrupted.
EFI_WRITE_PROTECTED The file or medium is write-protected.
EFI_ACCESS_DENIED The file was opened read-only.
EFI_VOLUME_FULL The volume is full.
EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of
EFI1_FILE_INFO.

48 Version 2.0

EFI_SHELL_PROTOCOL.SetFilePosition()

Summary
Sets a file’s current position

Prototype

typedef

EFI STATUS

(EFIAPI *EFI_SHELL SET FILE POSITION) (
IN EFI_FILE HANDLE FileHandle,
IN UINT64 Position
)

Parameters

FileHandle
The file handle on which requested position will be set.

Position
Byte position from the start of the file

Description

This function sets the current file position for the handle to the position supplied. With
the exception of seeking to position OXFFFFFFFFFFFFFFFF, only absolute positioning is
supported, and seeking past the end of the file is allowed (a subsequent write would
grow the file). Seeking to position OXFFFFFFFFFFFFFFFF causes the current position
to be set to the end of the file.

Status Codes Returned
EFI_SUCCESS Data was written.

EFI_UNSUPPORTED The seek request for nonzero is not valid on
open directories.

Version 2.0
49

EFI_SHELL_PROTOCOL.SetMap()

Summary

Changes a shell command alias.

Prototype

typedef
EFI STATUS

(EFIAPI *EFI_SHELL SET MAP) (
IN CONST EFI_DEVICE PATH PROTOCOL *DevicePath,

IN CONST CHAR16
)i

Parameters

DevicePath

*Mapping

Points to the device path. If this is NULL and Mapping points to a valid mapping,
then the mapping will be deleted.

Mapping

Points to the null-terminated mapping for the device path.

Description

This function creates a mapping for a device path.

Return Value

EFI_SUCCESS

Mapping created or deleted successfully.

EF1_NO_MAPPING

There is no handle that corresponds exactly to DevicePath. See the
boot service function LocateDevicePath().

EFI_ACCESS_DENIED

The mapping is a built-in alias.

50

Version 2.0

EFI_SHELL_PROTOCOL.WriteFile()

Summary

Writes data to the file.

Prototype
typedef
EFI_STATUS
(EFIAPI EFI_SHELL WRITE FILE) (
IN EFI_FILE HANDLE FileHandle,
IN OUT UINTN *BufferSize,
ouT VOID *Buffer
)
Parameters
FileHandle
The opened file handle for writing.
BufferSize
On input, size of Buffer.
Buffer

The buffer in which data to write.

Description

This function writes the specified number of bytes to the file at the current file position.
The current file position is advanced the actual number of bytes written, which is
returned in BufferSize. Partial writes only occur when there has been a data error
during the write attempt (such as “volume space full”). The file automatically grows to
hold the data, if required.

Direct writes to opened directories are not supported.

Status Codes Returned

EFI1_SUCCESS Data was written.

EFI1_UNSUPPORTED Writes to open directory are not supported
EFI_NO_MEDIA The device has no media
EFI1_DEVICE_ERROR The device reported an error

EFI_VOLUME_CORRUPTED | The file system structures are corrupted

EFI_WRITE_PROTECTED The device is write-protected

EFI_ACCESS_DENIED The file was open for read only
EFI_VOLUME_FULL The volume is full
Version 2.0

51

2.3 EF1_SHELL_PARAMETERS_PROTOCOL

EFI_SHELL_PARAMETERS_PROTOCOL

Summary

Shell application’s arguments.

GUID
#define EFI_SHELL PARAMETERS PROTOCOL GUID \
0x752£3136, Ox4el6, Ox4fdc, \
O0xa2, Ox2a, Oxe5, O0xf4, 0x68, 0x12, O0xf4, Oxca } };
Prototype
typedef struct EFI_SHELL PARAMETERS PROTOCOL {
CHAR16 **Argv;
UINTN Argc;
EFI_FILE HANDLE Stdln;
EFI_FILE HANDLE StdOut;
EFI_FILE HANDLE StdErr;
} EFI_SHELL PARAMETERS PROTOCOL;
Parameters

Argv
Points to an Argc-element array of points to null-terminated strings containing
the command-line parameters. The first entry in the array is always the full file
path of the executable. Any quotation marks that were used to preserve
whitespace have been removed.

Argc
The number of elements in the Argv array.

StdIn
The file handle for the standard input for this executable. This may be different
from the ConlnHandle in the EFI_SYSTEM_TABLE.

Stdout
The file handle for the standard output for this executable. This may be different
from the ConOutHandle in the EF1_SYSTEM_TABLE.

StdErr

The file handle for the standard error output for this executable. This may be
different from the StdErrHandle in the EFI1_SYSTEM_TABLE.

Description
An instance of this protocol is installed on each shell application’s image handle prior
to calling Startlmage(). It describes all of the command-line parameters passed on

the command line, as well as the standard file handles for standard input, output and
error output.

52 Version 2.0

54

Version 2.0

3.1

3 UEFI Shell Features

The UEFI Shell supports an interactive command-line interface, scripting, and a
standard set of commands.

All the commands can be invoked by entering the name of the command at the
command prompt. For external commands, they must reside in a file system. So, to
run them users need to have at least one mapped file system and put those external
commands under this file system.

The active drive may be changed by entering the mapped name followed by a ‘:” at
the command prompt.
Levels Of Support

This section describes the different standard levels of shell support. The different
standard levels are designed to provide different feature/size tradeoffs for different
uses. The levels mentioned here are referenced throughout this specification

Table 1 Support Levels

Level Name Execute()/ PATH? ALIAS? Interactive? Commands
Scripting/
startup.nsh

0 Minimal No No No No None

1 Scripting Yes Yes No No for, endfor,

goto, if, else,
endif, shift, exit

2 Basic Yes Yes Yes No attrib, cd, cp,
date*, time*,
del, load, Is,
map, mkdir,
mv, rm, reset,
set, timezone*

3 Interactive | Yes Yes Yes Yes alias, date,
echo, help,
pause, time,
touch, type,
ver, cls,
timezone

*Non-interactive forms only

Execute()/Scripting/startup.nsh support indicates whether the Execute() function
is supported by the EFI_SHELL_PROTOCOL, whether or not scripts are supported and
whether the default startup script startup.nsh is supported.

Version 2.0
55

3.2

PATH support determines whether the PATH environment variable will be used to
determine the location of executables.

ALIAS support determines whether the ALIAS environment variable will be used to
determine alternate names for shell commands.

Interactive determines whether or not an interactive session can be started.
For more information on scripting, see UEFI Shell Script (Chapter 4).

For more information on processing of the startup.nsh file, please see UEFI Shell
Initialization (section 3.3).

The shell must remain compliant with its advertised shellsupport command

profile. There can be cases where a shell implementation may not want to expose
certain commands to all users. If a shell implementation wants to make a particular
command inaccessible to a particular user, they must properly interpret the command
request and return an appropriate return code, such as SHELL_SECURITY_VIOLATION.

Invocation

The UEFI Shell is a UEFI application. The UEFI Shell takes command-line options that
are null-terminated UCS-2 encoded strings. The syntax is:

shell.efi [ShellOpt-options] [options] [file-name [file-name-options]]
The command-line options are separated by the space or tab character. The options
are processed left-to-right retrieved from the LoadOptions field of the
EFI1_LOADED_IMAGE_PROTOCOL.

The following table describes the standard command-line options.

Table 2 Standard Command Line Options

Option Description

file-name The name of a UEFI shell application or script to be executed after initialization
is complete. By default, if file-name is specified, then —nostartup is implied.
Scripts are not supported by level O.

file-name- The command-line options that are passed to file-name when it is invoked.

options

options Options (from table X below) which control the initialization behavior of the
shell.

ShellOpt- Options (from table X below) which control the initialization behavior of the

options shell. These options are read from the EFI global variable “ShellOpt” and are

processed before options or file-name.

Table 3: UEFI Shell Invocation Options

-nostartup The default startup script startup.nsh will not be executed.

-noconsoleout @ Console output from the shell applications will not be displayed. This has
no effect for UEFI Shells that do not support an interactive mode.

56 Version 2.0

3.3

-noconsolein Console input will not be accepted from the user. This has no effect for

UEFI Shells that do not support an interactive mode.

-delay[:n] Specifies the integer number of seconds the shell will delay prior to the

execution of startup.nsh. Ignored for shell level O or if —nostartup is
specified. If n is not specified, the default is 5 seconds. If O is specified,
then there will be no delay. If —nointerrupt is specified, then there will be
no delay.

-nointerrupt Execution interruption (as described in Execution Interrupt Support) is not

allowed. This has no effect for UEFI Shells that do not support an
interactive mode.

-nomap The default mappings will not be displayed.
-noversion The version information will not be displayed.
-startup The default startup script startup.nsh will be executed. Requires shell

support level 1 or higher. This overrides the default behavior when file-
name is specified.

Initialization

This section describes the steps taken during shell initialization. The following steps
are not exhaustive, but they are executed in order:

1. The command-line options of the shell itself are processed.

2. Default file system (FSx:) mapped names are created. The current directory
for each mapped name is set to the root.

3. The default alias settings are read from non-volatile storage. This is only
supported in shell level 2.

4. The default environment variable settings are read from non-volatile storage.

The profiles are read into the ‘profiles’ environment variable.

6. If the shell supports interactive mode and console output support is enabled,
then the console is cleared.

7. The platform watchdog will be cleared through the UEFI SetWatchdogTimer()
API to avoid inadvertent platform resets during long operations within
the UEFI Shell environment.

8. If the shell supports interactive mode and console output support is enabled
and version support (see —noversion) is enabled, then the equivalent
of ver will be executed.

9. If the shell supports interactive mode and console output support is enabled
and map support is enabled (see —nomap), then the equivalent of map
—terse will be executed.

10. If interactive mode is supported and execution interrupt is supported (see —
nointerrupt) then the shell will wait for the number of seconds
specified by the —delay option.

Version 2.0

57

« | - { Formatted: Bullets and Numbering]

‘ 11. If startup.nsh is supported and enabled (see —startup and —nostartup),
the script will be launched.

‘ 12. If a file name was specified among the command-line options, then the image
or script (if supported) is launched.

3.3.1Finding startup.nsh

When executing startup.nsh, the shell will search for it first in the directory where
the shell itself was launched. If it cannot find the startup.nsh file in that directory or
it was not launched from a file system, it will search the execution path defined by the
environment variable PATH.

3.3.2Supported Profiles

The UEFI Shell may have support for zero or more profiles, such as those described in
chapter 5 built in to its executable. Additional profiles are described in the file
‘profiles.txt’, located in the same directory as the UEFI Shell executable. The contents
of the file are carriage-return delimited (one profile name per line) and are read into
the UEFI shell environment variable ‘profiles’, where they are semicolon (‘;")
delimited. Profiles names that begin with ‘UEFI’ are reserved for use in this
specification.

3.4 Command-Line

The UEFI Shell implements a programming language that provides control over the
execution of individual commands. Command names and keywords in certain
commands are all case insensitive.

The UEFI Shell processes the command-line by

1. Substituting aliases. The UEFI Shell supports specifying aliases for UEFI Shell
commands (both internal and external). The substitution is performed
automatically on the first command-line parameter.

«--" { Formatted: Bullets and Numbering]

‘ 2. Substituting variables. The UEFI Shell finds the % character and substitutes
the value of an Environment Variable, Positional Parameter or Index
Parameter based on the characters found after the % character. See
Variables (section, 3.6) for more information.

‘ 3. Setting up input and output redirection. Using special characters on the
command-line, the UEFI Shell can get input from a file and send
output to a file. See Redirection (section 3.4.4) for more information.

‘ 4. Breaking up the command-line into arguments. The arguments are delimited
by non-quoted whitespace characters.

‘ 5. Launching the shell command or UEFI Shell script.

58 Version 2.0

3.4.1Special Characters

When the shell scans its input, it always treats certain characters (#, >, <, |, %, *, ?,
N, “, space, [,] and newline) specially. The usage of these characters is briefly
listed here:

Table 3 Special Characters in Shell

Character Description
newline Ends a command line.

space Ends an argument, if it is not in a quotation.

Starts a comment.

> Used for output redirection.

< Used for input redirection

| Used for pipe command support.
% Used to delimit a variable or an argument.
” Used to delimit a quotation.

n Prevents the next character from being interpreted as having special meaning.
Can be used inside quoted strings.

*2 L1 Wildcards to specify multiple similar file hames.

3.4.2Escape Characters

The escaping character ” is used to prevent interpreting the character that
immediately follows it as a special character.

3.4.3Quoting

The UEFI Shell uses quotation marks for argument grouping. Normally, the UEFI Shell
will interpret a one or more whitespace character as an argument delimiter. However,
if the whitespace character appears between double quotation marks, it will be
ignored for the purposes of argument delimiting. Empty strings are treated as valid
command line arguments. Substitution of environment variables and positional
parameters still occurs within quotation marks.

Double-quotation marks that surround arguments are stripped before they are passed
to the entry point of a shell application. For more information, see the Argv member
of the EF1_SHELL_PARAMETERS_PROTOCOL.

Double-quotation marks that surround arguments are not stripped in positional
parameters (see Positional Parameters, section 3.6.2) or on the copy of the command
line passed in the LoadOptions member of the EF1_LOADED_IMAGE_PROTOCOL passed
to shell applications.

To include a double-quotation mark inside of a quoted string, use ~”. To include a ™
character inside of a quoted string, use ™.

Version 2.0
59

For information about how the quotes are treated in each of the options, see “Shell
Commands”, chapter 5).

3.4.4Redirection

3.4.4.1

Output Redirection

Output of EFI Shell commands can be redirected to files. For example:

Command
Command
Command
Command
Command
Command
Command
Command
Command
Command

> ucs2 output file pathname

>a ascii_output file pathname
1> ucs-2 output file pathname
1>a ascii output file pathname
2> ucs-2 output file pathname
2>a ascii output file pathname
>> ucs-2_output file pathname
>>a ascii output file pathname
1>> ucs-2 output file pathname
1>>a ascii output file pathname

Table 4 shows the special character combinations that are used to denote output
redirection operations:

Table 4 Output Redirection Syntax

Character Description
Sequence

> Redirect standard output to a UCS-2 encode file.

>a Redirect standard output to an ASCII file.

1> Redirect standard output to a UCS-2 encoded file.

1>a Redirect standard output to an ASCII file.

2> Redirect standard error to a UCS-2 encoded file.

2>a Redirect standard error to an ASCII file.

>v Redirect standard output to an environment variable, encoded as
UCs-2.

1>v Redirect standard output to an environment variable, encoded as
uUcCs-2.

2>v Redirect standard error to an environment variable, encoded as UCS-
2

>> Redirect standard output appended to a UCS-2 encoded file.

>>a Redirect standard output appended to an ASCII file.

1>> Redirect standard output appended to a UCS-2 encoded file.

1>>a Redirect standard output appended to an ASCII file.

>>v Append standard output to an environment variable, encoded as
UCsz2.

1>>v Append standard output to an environment variable, encoded as

ucs2.

60

Version 2.0

3.4.4.2

3.4.4.3

2>>v Append standard error to an environment variable, encoded as UCS2.

The UEFI Shell will redirect standard output to a single file or variable and standard
error to a single file or variable. Redirecting both standard output and standard error
to different files or variables is allowed, but not to the same file or variable.
Redirecting standard output to more than one file or variable on the same command is
not supported. Similarly, redirecting to multiple files or variables is not supported for
standard error either.

When redirecting output to an environment variable, if a new environment variable
will be created, then it will be volatile. If the environment variable already exists and
is non-volatile, an error will be generated.

All output to UCS-2 encoded files will be prefixed with the Unicode Byte Ordering
Character (OXFFFE) if (a) there is at least one other character output and (b) that
character is not the Unicode Byte Ordering Character.

“NUL” is used as a special output file name. When “NUL” is used, the output will not be
written into a file. Instead, they are discarded silently.

Input Redirection

Contents from an existing file or variable can be used as standard input to a UEFI
shell command. Any commands coming from an ASCII file will be automatically be
converted to the equivalent UCS-2 encoding and passed to the UEFI shell command.

When redirecting input from an environment variable, the environment variable must
already exist. If it does not, an error will be generated. The shell will ensure that the
first character read from an input redirected environment variable will contain the
Unicode Byte Ordering Character (OXFFFE). If the first character in the input source is
not the Unicode Byte Ordering Character, the shell will insert this character in the
output from the input redirected variable. This is done to ensure that an input
redirected variable will be look like a UCS-2 encoded file.

Redirecting input from a non-volatile variable is permitted.

Table 5 Input Redirection Syntax

Character Sequence Description

< Redirect standard input from a Unicode file.

<a Redirect standard input from an ASCII file.

<V Redirect standard input from an environment variable.

Pipe Support

By using the | character, a data channel is formed that takes the standard Unicode
output of a file and feeds the data as standard input to another program.

The format for this support is as follows:

Version 2.0
61

3.5

3.6

UEFI_Shell Command [options] | UEFI_Shell Command
When piping from an environment variable, the environment variable must already

exist. If it does not, an error will be generated. Any Unicode Byte Ordering Characters
are ignored.

Table 6 Input Redirection Syntax

Character Sequence Description

| Pipe output of a command to another program in UCS-2 format.

la Pipe output of a command to another program in ASCII format.

When piping to an environment variable, if a new environment variable will be
created, then it will be volatile. If the environment variable already exists and is non-
volatile, an error will be generated.

All output to UCS-2 encoded files will be prefixed with the Unicode Byte Ordering
Character (OXFFFE) if (a) there is at least one other character output and (b) that
character is not the Unicode Byte Ordering Character.

Current Directory

For each file system, the UEFI Shell maintains a current directory, which is the default
directory used if a directory is not specified in a file path. The UEFI Shell maintains a
current working file system, which is the default file system used if one is not supplied
in a file path. The current directory in the current working file system is the current
working directory.

The current directory for any file system and current working file system can be
retrieved using the GetCurDir() function (see page 34). The current directory for any
file system and the current working file system can be changed using the SetCurDir()
function (see page 57).

The current directory for any file system and current working directory can retrieved
and changed using the cd shell command (see page 95).

The current working directory can be found in the standard %cwd% environment
variable.

Variables

This section describes the different types of variable substitution that happens on the
command-line for environment variables, positional parameters, index parameters
and aliases.

62 Version 2.0

3.6.1Environment Variables

Environment variables are variables that can hold the user specified contents and can
be used on the command line or in scripts. Each environment variable has a case-
sensitive name (a C-style identifier) and a string value. Environment variables can be
either volatile (they will lose their value on reset or power-off) or non-volatile (they
will maintain their value across reset or power-off).

Environment variables can be used on the command-line by using %variable-name%
where variable-name is the environment variable’s name. Variable substitution is not
recursive. Environment variables can also be retrieved by a UEFI Shell command by
using the GetEnv() (see page 39) function.

Environment variables can be displayed or changed using the set shell command.
They can also be changed by a UEFI Shell command using the SetEnv() function.

The following table lists the environment variables that have special meaning to the
UEFI Shell:

Version 2.0
63

Table 7 Environment Variables with Special Meaning to the UEFI Shell

Variable

cwd

Lasterror

path

profiles

shel Isupport

uefishellversion

V/NV

RO/RW

V/RO

V/RO

V/RW

NV/RO

V/RO

V/RO

Description

The current working directory, including the current
working file system. See “Current Directory” (page TBD)
for more information.

Last returned error from a UEFI Shell command or batch
script

The UEFI Shell has a default volatile environment variable
path, which contains the default path that UEFI Shell will
search if necessary. When user wants to launch an UEFI
application, UEFI Shell will first try to search the current
directory if it exists, and then search the path list
sequentially. If the application is found in one of the paths,
it will stop searching and execute that application. If the
application is not found in all the paths, UEFI Shell will
report the application is not found.

If the path variable is empty or it doesn’t exist, UEFI Shell
will treat current directory as the working directory. In
general, paths stored in path variable looks like:

path:
.;fs0:\efi\tools;fsO:\efi\boot;fsO:\;fs1:\efi\tools;fs1:\efi\boo
t;fs1:\

The UEFI Shell supports both absolute paths and relative
paths when launching commands. Users can set path to
any specified value, but this variable will be refreshed
immediately after the execution of command ‘map —r’ and
it's volatile so that the contents will be lost after reset or
power off. Typically users can append the paths to this
variable in this way:

set —v path %path%;fs0O:\test

The list of UEFI shell command profiles supported by the
shell. Each profile name may only contain alphanumeric
characters or the ‘_’ character. Profile names are semicolon
(“;") delimited.

Reflects the current support level enabled by the currently
running shell environment (see UEFI Shell Levels of
Support, section 3.1. The contents of the variable will
reflect the text-based numeric version in the form that
looks like:

3

This variable is produced by the shell itself and is intended
as read-only, any attempt to modify the contents will be
ignored.

Reflects the revision of the UEFI Shell specification that the
shell supports. The contents are formatted as text:

2.00

64

Version 2.0

uefiversion V/RO Reflects the revision of the UEFI specification that the
underlying firmware supports. The contents will look like
this:

2.10

3.6.2Positional Parameters

3.6.3Index

Positional parameters are the first ten arguments (%0-%9) passed from the command
line into a UEFI shell script. The first parameter after the UEFI Shell script name
becomes %1, the second %2, the third %3 , and so on. %0 is the full path name of the
script itself.

The shift (see page 162) command can be used delete the contents of %1 and shift
all of the other positional parameters down one place (%2 -> %1, %3 -> %2, %4 ->
%3, etc.) There is no way for a UEFI Shell script to access the 10™ or greater
argument without using shift.

When executing the UEFI Shell script, the %n is replaced by the corresponding
argument on the command-line that invoked the script. If a positional parameter is
referenced in the UEFI Shell script but that parameter was not present, then an empty
string is substituted.

Positional parameters do not have quotation marks removed from them. For more
information on how quotation marks are handled, see “Quoting”

Parameters

Index parameters are the variables created by the for command (see page 139)
when executing inside of a UEFI Shell script. Each index parameter is in the form of
%Xx, where X is a case-insensitive letter (%a-%z).

When executing the UEFI Shell script, the %x is replaced by the value specified by the
for command. If the specified index parameter has not been defined in the current
UEFI Shell script, the script execution will halt with an error.

3.6.4Aliases

An alias creates an additional name for an internal UEFI Shell command or a UEFI
Shell application. Aliases can be used to provide alternative commonly used names for
existing shell commands or even create shortcuts. An alias is a C-style identifier and
may refer to an internal command or else the directory and file name of a UEFI shell
application.

During command-line processing, if the 1% argument of a command is a defined alias,
the shell replaces the alias with its defined value. The alias substitution occurs after

Version 2.0
65

the variable substitution. So if %myvariable% is set to dir and dir is aliased to Is,
entering %myvariable% in command line will cause the Is command to be executed.
Alias substitution is not recursive.

There are several built-in aliases (sometimes referred to as synonyms) provided by
the UEFI Shell for the following commands:

Table 8 Built-in Aliases for the UEFI Shell

Original Built-In Description
Command Alias
Is dir List directory contents
rm del Delete a file
cp copy Copy a file.
mkdir md Create a directory
dmem mem Display memory
3.7 File Names

The UEFI Shell supports file names and paths with the following format:

fs-path = [Ffs-map-name] [fs-divider][fs-dirs][fs-name]
fs-map-name := identifier :

fs-divider = \]|7/

fs-dirs = fs-dir |

fs-dirs fs-dir

fs-dir := fs-name fs-divider
fs-name = fs-file-name .fs-file-ext
fs-file-name := one or more ASCII characters, excluding *?<>\/"®

Both short and long names are supported. The maximum valid length for a file path is
255 characters.

3.7.1Wildcard Expansion

The *, ? and [] characters can be used as wildcard characters in file name
command-line options certain UEFI shell commands that use the OpenFileList()
function. In addition, the UEFI Shell for and if script commands also expand
arguments containing wildcard characters to existing file names that matches the
pattern. A ~ before the wildcard cannot prevent the wildcard from being expanded.

66 Version 2.0

[1 can be either wildcard characters or literal file name characters, the UEFI Shell will
try to take them as wildcard characters first to match files, if there are files matched,
no further interpretation. Otherwise, they will be considered as literal characters in file
names.

Table 9 Wildcard Character Expansion

Character Sequence Description

* Matches zero or more characters in a file name.

? Matches exactly one character in a file name.

1 Matches one character in a file name with one of the characters in []

3.7.2Mappings

Mappings are C-style identifiers that act as an alias for a device path. These mappings
can be used interchangeably with the device path in the EF1_SHELL_PROTOCOL and on
the interactive shell’s command line. Default mappings (such as fsx) are created by
the UEFI Shell during initialization (see Initializaiton, section 3.3. Other mappings can
be created using the map shell command or the SetMap() function.

A mapping which translates to a device path of a device that has a file system
protocol installed on its handle is called a file system mapping.

3.7.3Consistent File System Mapping

3.8

The UEFI Shell provides consistent mapping for file system mappings. The consistent
mappings will not change after reboot or after ‘map —r’ if the hardware configuration
hasn’t changed. If two or more computers have the same hardware configurations,
the consistent mapping results on these computers should be exactly the same.
Hardware configuration changes are defined as the changes of controllers or physical
interfaces to which the devices are connected. If you are used to the fsx notation
style for mapping file systems, then the new consistent mapping convention might
look a little different. For example, the GUIDed file system may have a consistent
mapping , such as fOagonennapphibbndInmeaakamjeafdnb. The fsx style mappings
facilitates the use of mappings on the command line, but they don’t have the
consistent mapping characteristics.

Consistent mapping only applies to file system mappings, not other device mappings.

Scripts

The UEFI Shell has the capability of executing commands from a file (script). UEFI
Shell script files are named using the " .nsh" extension. Script files can be either UCS-
2 or ASCII format files. UEFI Shell script files are invoked by entering the filename at
the command prompt, with or without the filename extension. See “Scripts” (section
4) for more information.

Version 2.0
67

3.9

3.10

3.10.1

3.10.2

Nesting the Shell

The UEFI Shell supports nested shell execution. The UEFI Shell can run the shell from
within itself. The maximum nesting level is determined by how much memory the
system has. The command exit can be used to exit the current shell instance. If the
current shell is a child shell, it will return to the parent shell. Newly launched shell will
have a brand new execution environment except for environment variables and
aliases.

Interactive Features

Even though the shell design specification primarily discusses aspects of the shell that
can run without user interaction, there are some features described which can
augment the experience of users that are actively interacting with the console.

Key History Support

The UEFI Shell will save commands history that executed from the shell prompt. User
can press up-arrow key and down-arrow key to browse the previous commands.
Commands that were executed in script will not be saved in the key history.

Execution Interrupt Support

The UEFI Shell supports the capability of interrupting the execution of the shell
commands and scripts.

There are two kinds of the execution interrupt: script execution interrupt and internal
command execution interrupt.

Script Execution Interrupt.
The user can press CTRL-C to interrupt the execution of the script. The
interrupt can only happen between commands in a script. The script

supports the nesting of scripts. Once a script is interrupted, all its
predecessor scripts are also interrupted.

Shell Command Execution Interrupt.
The user can press the CTRL-C key sequence to interrupt the execution of
some time-consuming UEFI Shell commands (i.e. Is —r). The UEFI Shell
detects this key sequence and signals the ExecutionBreak member of the
EFI_SHELL_PROTOCOL. Individual UEFI Shell commands check the state of
ExecutionBreak as often as practical and return the SHELL_ABORTED error
code.

The UEFI Shell may not support asynchronous execution interrupt for commands or
applications.

68 Version 2.0

3.10.3

3.10.4

3.11

3.11.1

Output Streaming Control

The UEFI Shell supports the ability to pause and resume the streaming of characters
to the output device. The user can press the CTRL-S key sequence to pause and any
key to resume the output results produced by the current running commands or
applications. It is especially useful for the commands and applications that may
produce a great deal of the output results.

Scroll Back Buffer Support

The UEFI Shell supports the ability to scroll back and forward the output so that
consoles can have screen history. The user can press Page Up and Page Down to scroll
back and forward the screen history, and press any other key to quit scrolling.
However, the user cannot do this while the command, application or script is being
executed. The text output history will be at least 3 screens.

Shell Applications

UEFI Shell applications have the extension .efi and have the same entry point
(EFI_IMAGE_ENTRY_POINT) defined in section 4.1 of the UEFI specification. When the
entry point to a shell command is called, the image handle (ImageHandle) has both
the EFI_LOADED_IMAGE_PROTOCOL and the EFI_SHELL_PARAMETERS_PROTOCOL installed
on it.

In the EFI_LOADED_ IMAGE_PROTOCOL, the LoadOptions member points to the NULL-
terminated, expanded command line. The first part (which corresponds to Argv[0] in
the EFI_SHELL_PARAMETERS_PROTOCOL) is the file path of the executable after alias
substitution.

After this, delimited by a whitespace character, are listed each of the arguments, with
all environment variables expanded, and with quotation marks still present. This is
different from what appears in Argv[] in the EFI_SHELL_PARAMETERS_PROTOCOL.

The EFI_SHELL_PARAMETERS_PROTOOCOL has two members: Argv, which points to each
of the command-line arguments and Argc, which is the number of command-line
arguments. There is always at least one command-line argument: the path and file
name of the shell command. Any arguments are enumerated in Argv[1-n], with all
environment variables expanded and all quotation marks removed.

If ExecutionBreak was signaled during the execution of a UEFI Shell application, then
it will be cleared upon return to the shell.

Installation

During installation, UEFI Shell applications may choose to update certain global files
or settings, which are used for detecting installed UEFI Shell profiles or providing help
text for UEFI shell applications.

During installation, UEFI Shell applications may update the profiles environment
variable, which lists all of the command profiles supported by the current

Version 2.0
69

3.11.2

implementation of the shell. Some of these command profiles are standard (see “Shell
Command Profiles”, section 5.2) and others can be defined by implementers.

During installation, UEFI Shell applications may provide a help file (as described in
“Command-Line Help”, section 3.11.2) to support the standard help command.

During installation, UEFI Shell applications may update a help file for the help
category/categories to which the application belongs. This consists of creating a NAME
section for the <category>.man file and then copying the NAME section from the
command’s help file to the end of the DESCRIPTION section of the <command>_man file,
if not already present.

The shell application’s category (or categories) is listed in the CATEGORY section of
the shell application’s help (.man) file. Help categories are not described as part of
this specification.

Command-Line Help

The user can get UEFI Shell application command-line either using the help command
or else by typing in <command-name> -?. Both of these use the GetHelpText() (page
32) function to retrieve the help text.

The UEFI Shell gets help text for UEFI Shell applications by search the directory where
startup.nsh was located (highest priority) (if —nostartup was not specified) and then
the directories specified by the path environment variable for a file with the same
name as the UEFI Shell application, but with the _man extension. The format of these
files is described in Appendix B.

The UEFI Shell supports help categories, which have .man pages similar to those for
UEFI shell applications, except using the category name instead of the application
name.

70 Version 2.0

4.1

4.2

4 Scripts

UEFI Shell scripts allow user to simplify routine or repetitive tasks. A shell script
program is a UCS-2 or ASCII text file that contains one or more commands and has a
.nsh file name extension. When the file name is typed at the command prompt,
commands in the file are executed sequentially.

All shell commands can be executed in scripts. In addition, some script-only
commands are also provided to do basic flow control. Script-only means those
commands can be only executed in UEFI Shell Script files, and cannot be executed
from the shell prompt.

Up to ten positional arguments are supported for scripts. Positional argument
substitution is performed before the execution of each line in the script file. Positional
arguments are denoted by %n, where n is a digit between 0 and 9. By convention, %0
is the name of the script file currently being executed.

Script file execution can be nested; that is, script files may be executed from within
other script files. Recursion is allowed. Shell scripts run in their parent’s environment.

Output and input redirection are fully supported in scripts. Output redirection on a
command in a script file causes the output for that command to be redirected. Output
redirection on the invocation of a script causes the output for all commands executed
from that script to be redirected to the file, with the output of each command
appended to the end of the file.

By default, both the input and output for all commands executed from a script are
echoed to the console. Display of commands read from a script file can be suppressed
via the echo -off command (see echo). Also, additional ‘@’ before a command in a
script file can prevent the current command from being echoed.

If output for a command is redirected to a file, then that output is not displayed on
the console. Commands executed from a script will not be saved by the shell for key
history and these commands cannot be recalled by pressing Up-Arrow key.

Comments

Comments can be embedded in scripts. The # character on a line is used to denote
that all characters on the same line and to the right of the # are to be ignored by the
shell. Whether the echo state is on or off, comments are not echoed to the console.

Error Handling

By default, if an error is encountered during the execution of a command in a script,
the script will continue to execute. But if an error is encountered when executing the
script-only commands which affects the logic of the script, such as for, endfor, if,

Version 2.0
71

4.3

4.4

4.5

else, endif, and goto, the script will exit. If the error arousing script is a called by
another script, the caller script will continue to execute.

The lasterror shell variable allows scripts to test the results of the most recently
executed command using the if command. This variable is maintained by the shell,
is read-only, and cannot be modified by command set.

Script-only commands, as well as echo, which are used to control the logic of the
script, do not affect the value of variable lasterror. The lasterror environment
variable is not changed by comments.

Script Nesting

Scripts can be nested. A script can call one or more scripts. The embedded script will
be executed as a command. After the whole embedded script is executed completely,
the next command will be executed.

The UEFI Shell will automatically save and restore the running mode before and after
the execution of nested scripts so that the changes of running modes in nested scripts
will not affect the running mode of a parent script.

Output and Echoing

Output redirection is supported for scripts. Output redirection on a command in a
script file causes the output for that command to be redirected. Output redirection on
the invocation of a script causes the output for all commands executed from that
script to be redirected to the file, with the output of each command appended to the
end of the file. If a command in a script redirects its output to filel, while the output
is redirected to file2 on invocation of a whole script, the output of that command will
be redirected to filel, but the echo of the command itself (if echo state is on) will
appear in file2, as well as output of all other commands.

When a script is launched from the interactive shell, it inherits its echo state from
interactive shell or parent script. Changing echo state in the script does not affect the
echo state of the interactive shell. When a script calls another script, the called script
inherits the caller script’s current echo state. But if the called script changes the echo
state, after returning, the caller’s echo script changes, too.

Limitations

Following are some examples of known limitations with the UEFI scripts:

1. Cannot read and write the same file within a single command, for example,
fs0:>type test.nsh > test.nsh

goto cannot be used to jump into another loop.

«-- { Formatted: Bullets and Numbering]

Don’t use the same index variable in nested for statements.

Index values cannot be referred outside of the for statement that defines it.

72 Version 2.0

5 Shell Commands

5.1 Overview

This section describes the standard UEFI Shell commands.

The table below lists all standard UEFI Shell commands.

Version 2.0
73

Table 10 Commands from Default Build Shell

Command Description Required at
Shell Level or
Profile
alias Displays, creates, or deletes aliases in the UEFI Shell 3
environment
attrib Displays or changes the attributes of files or 2
directories.
bcfg Manipulate boot order and driver order Debugl, Installl
cd Displays or changes the current directory 2
cls Clears the standard output and optionally changes 3
the background color
comp Compares the contents of two files on a byte for byte Debugl
basis
connect Binds a driver to a specific device and starts the Driverl
driver.
cp Copies one or more source files or directories to a 2
destination.
date Displays and sets the current date for the system. 2/3
dblk Displays the contents of one or more blocks from a Debugl

block device.

del Deletes one or more files or directories. 2

devices Displays the list of devices managed by UEFI drivers. Driverl

devtree Displays the tree of devices compliant with the UEFI Driverl
Driver Model.

dh Displays the device handles in the UEFI environment. Driverl

dir Lists directory contents or file information. 2

disconnect Disconnects one or more drivers from the specified Driverl
devices.

dmem Displays the contents of system or device memory. Debugl

dmpstore Manages all UEFI NVRAM variables. Debugl

drivers Displays a list of information for drivers that follow Driverl
the EFI Driver Model in the EFI environment.

drvcfg Configures the driver using the UEFI Configuration Driverl
Access Protocol.

drvdiag Invokes the Driver Diagnostics Protocol. Driverl

echo Controls whether or not script commands are 3

displayed as they are read from the script file and
prints the given message to the display.

74 Version 2.0

Command Description Required at
Shell Level or
Profile
alias Displays, creates, or deletes aliases in the UEFI Shell 3
environment
attrib Displays or changes the attributes of files or 2
directories.
edit Full screen editor for ASCII or UCS-2 files. Debugl
eficompress Compress a file using EFI Compression Algorithm. Debugl
efidecompress Decompress a file using EFlI Decompression Debugl
Algorithm.
else Conditionally execute commands if a previous if 1
condition was false.
endfor End a loop stated with for in a script. 1
endif End a conditional block started with if. 1
exit Exits the UEFI Shell environment and returns control 1
to the parent that launched the UEFI Shell.
for Start a loop in a script 1
getmtc Return current monotonic count. 3
goto Go to a label in a script 1
guid Displays all registered EFI GUIDs. Debugl
help Displays the list of commands that are built into the 3
UEFI Shell.
hexedit Full screen hex editor for files, block devices, or Debugl
memory.
if Conditionally execute script statements. 1
ifconfig Displays or modifies the current IP configuration. Networkl
ipconfig Displays or modifies the current IP configuration. Networkl
load Loads a UEFI driver into memory. 2
loadpcirom Loads a PCI Option ROM from the specified file. Debugl
Is Lists a directory's contents or file information. 2
map Defines a mapping between a user-defined name and 2
a device handle.
mem Displays the contents of system or device memory. Debugl
memmap Displays the memory map maintained by the EFI Debugl
environment.
Version 2.0

75

Command Description Required at
Shell Level or
Profile

alias Displays, creates, or deletes aliases in the UEFI Shell 3
environment

attrib Displays or changes the attributes of files or 2
directories.

mkdir Creates one or more new directories. 2

mm Displays or modifies MEM/MMIO/10/PCI/PCIE address = Debugl
space.

mode Displays or changes the console output device mode. Debugl

mv Moves one or more files to a destination within a file 2
system.

openinfo Displays the protocols and agents associated with a Driverl
handle.

parse Parse data returned from standard formatted output 2

pause Pause script execution and wait for a keypress 3

pci Displays PCI device list or PCI function configuration Debugl
space.

ping Check response of an ip address. Networkl

reconnect Reconnects drivers to the specific device. Driverl

reset Resets the system. 2

rm Deletes one or more files or directories. 2

sermode Sets serial port attributes. Debugl

set Used to maintain the environment variables that are 2
available from the EFI environment.

setsize Set the size of a file Debug1l

setvar Change value of UEFI variable Debugl

shift Shift to the 2™ set of positional parameters 1

smbiosview Displays SMBIOS information. Debugl

time Displays or sets the current time for the system. 2/3

timezone Displays or sets time zone information. 2/3

touch Updates the time and date on a file to the current 3
time and date.

type Sends the contents of a file to the standard output 3
device.

76 Version 2.0

Command

alias

attrib

unload

ver

Description Required at
Shell Level or
Profile
Displays, creates, or deletes aliases in the UEFI Shell 3
environment
Displays or changes the attributes of files or 2
directories.
Unloads a driver image that was already loaded. Driverl
Displays the version information for this EFI 3
firmware.

5.1.1Explanation of Command Description Layout

The description of each command is composed of four sections: Summary, Usage,
Options, Description, Notes, Status Codes Returned and Examples.

Summary is a brief explanation of the function of the command. Usage describes how
the command is used. Options gives a complete description of each of the command-
lie options. Description describes the details of the command.

Examples give sample usage of the command. The output may differ from the output
listed in this section.

5.1.2Shell Command-Line Options

The following table describes the standard command-line options. No command
supports all options, but when needed, the following option parameters are used:

Table 11Standard Command Line Options

Option
-b, -break
-g, -quiet

-sfo

-t, -terse

-v, -verbose

Description

Pause after each page.
The command will suppress all output.

Standard Format Output. Instead of normal output, the shell command will
output using the standard format described Appendix D.

Terse Output. The shell command will restrict additional informative
content.

Verbose Output. The shell command will output additional informative
content.

Help. For more information on how command-line help is supported, see
section 3.11.2.

Command-line options that begin with the ‘_’ character are implementation-specific.

Version 2.0

77

5.2

5.3

alias

Summary

Usage

Options

Shell Commmand Profiles

Shell command profiles are groups of shell commands that are identified by a profile
name. Profile names that begin with the ‘_’ character are reserved for individual
implementations. For information on how profiles are identified, see section 3.3.2
(Supported Profiles).

For more information on how profiles are updated when new commands are installed,
see section 3.11

There are four standard profiles:

Table 12Standard Profiles

Profile Name Description
Driverl Standard set of driver-related commands.
Debugl Standard set of debug commands.

Networkl Standard set of networking-related commands.
Installl Standard set of commands to aid installation.

Shell Commands

Displays, creates, or deletes aliases in the UEFI Shell environment.

alias [-d|-v] [alias-name] [command-namel

alias-name
Alias name

command-name
Original command’s name or original command’s file name/directory.
-d

Delete an alias. command-name should not be present.

Make the alias volatile.

78 Version 2.0

Description

This command displays, creates, or deletes aliases in the UEFI Shell environment. An
alias provides a new name for an existing UEFI Shell command or UEFI application.
Once the alias is created, it can be used to run the command or launch the UEFI
application.

There are some aliases that are predefined in the UEFI Shell environment. These
aliases provide the MS-DOS and UNIX equivalent names for the file manipulation
commands. See Built-In Aliases (section 3.6.4) for more details.

Aliases will be retained even after exiting the shell unless the —v option is specified. If
-v is specified then the alias will not be valid after leaving the shell.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_ INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or
its value was out of bounds.

SHELL_OUT_OF_ RESOURCES A request to set a variable in a non-volatile fashion could not
be completed. The resulting non-volatile request has been
converted into a volatile request.

SHELL_SECURITY_VIOLATION | This function was not performed due to a security violation

Examples

To display all aliases in the UEFI Shell environment:

Shell> alias
md : mkdir
rd : rm

To create an alias in the UEFI Shell environment:
Shell> alias myguid guid
Shell> alias
md : mkdir
rd : rm
myguid : guid

To delete an alias in the UEFI Shell environment:
Shell> alias -d myguid
Shell> alias
md : mkdir
rd : rm

To add a volatile alias in the current EFl environment, which has a star * at the line
head. This volatile alias will disappear at next boot.

Version 2.0
79

80

Shell> alias -v fs0 floppy
Shell> alias

md : mkdir
rd : rm
* £s0 floppy

Version 2.0

attrib

Summary

Displays or changes the attributes of files or directories.

Usage
attrib [+a|-a] [+s|-s] [+h|-h] [+r|-r] [File...] [directory...]

Options

+al-a

Set or clear the ‘archive’ attribute
+s|-s

Set or clear the ‘system’ attribute
+h|-h

Set or clear the ‘hidden’ attribute
+r]-r

Set or clear the ‘read-only’ attribute
file

File name (wild cards are permitted)
directory

Directory name (wildcards are permitted)

Description
This command displays and sets the attributes of files or directories. The following
four attribute types are supported in the UEFI file system:
e Archive [A]
e System [S]
e Hidden [H]
e Read only [R]
If a file (in general meaning) is a directory, then it is also shown to have the attribute
[D].

If any file in the file list that is specified in the command line does not exist, attrib
will continue processing the remaining files while reporting the error.

If no file or directory is specified, then all of the files in the current directory are
displayed.

If no attribute is specified, then the attributes of the files will be displayed.

Version 2.0
81

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_NOT_FOUND The requested file was not found.

SHELL_ INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its
value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_WRITE_PROTECTED The media that the action was to take place on is write-protected.

Examples

e To display the attributes of a directory:
£s0:\> attrib £s0:\
attrib:D £s0:\

e To display the attributes of all files and sub-directories in the current directory:
£s0:\> attrib *
attrib: AS fs0:\serial.efi
attrib:DA £s0:\testl
attrib: A HR fs0:\bios.inf
attrib: A £s0:\VerboseHelp. txt
attrib: AS £s0:\IsaBus.efi

e To add the system attribute to all files with extension '.efi':
£fs0:\> attrib +s *.efi

e To remove the read only attribute from all files with extension ".inf":
£s0:\> attrib -r *.inf
attrib: A H £s0:\bios.inf

82 Version 2.0

bcfg

Summary

Manages the boot and driver options that are stored in NVRAM.

Usage
bcfg driver|boot [dump [-v]] [add # file "desc"] [addp # file “desc”]
[addh # handle “desc”] [rm #] [mv # #] [-opt # [[filenamel|[”data”]] |
[KeyData <ScanCode UnicodeChar>*]]

Options

driver

Display/modify the driver option list
boot

Display/modify the boot option list

dump
Display the option list

-V
Display the option list with extra info including the optional data.

add
Add an option. The # is the number of options to add in hexadecimal. The file
name of the UEFI application/driver for the option. The quoted parameter is the
description of the option being added.

addh
Add an option that refers to the driver specified by handle. The # is the number
of options to add, in hexadecimal. The handle is the driver handle, in
hexadecimal. The device path for the option is retrieved from the handle. The
quoted parameter is the description of the option being added.

addp
Add an option that refers to a specific file. Only the portion of the device path
starting with the hard drive partition is placed in the option. The # is the number
of options to add, in hexadecimal. The quoted parameter is the description of the
option being added.

rm
Remove an option. The parameter lists the number of the options to remove in
hexadecimal.

mv

Move an option. The first numeric parameter is the number of the option to
move in hexadecimal. The second numeric parameter is the new number of the
option being moved.

-opt
Display/modify the optional data associated with a driver or boot option.
Followed either by the file name of thefile which contains the binary data to be

Version 2.0
83

associated with the driver or boot option optional data or else the quote-
delimited data which will be associated with the driver or boot option optional
data.

KeyData
The packed value associated with a hot-key. This is the equivalent of the
EFI_KEY_DATA value in the UEFI specification.

ScanCode
This is the UEFI-defined Scan code portion of the EFI_INPUT_KEY struction. This
value is directly associated with the preceding KeyData value and there may be 1
to 4 entries per the UEFI specification. When one instance of this parameter has
a non-zero value, the paired UnicodeChar value will have a zero-based value.

UnicodeChar
This is the Unicode value for the character associated with the preceding
KeyData value. There may be 1 to 4 entries per the UEFI specification. When
one instance of this parameter has a non-zero value, the paired ScanCode value
will have a zero-based value.

Description

Examples

Manages the boot and driver options stored in NVRAM. This command can display the
Boot#### or Driver#### environment variables by using the dump option. The
add option can be used to add a new Boot#### or Driver###+# environment
variable. The rm option can be used to delete a Boot#### or Driver####
environment variable, and finally, then mv option can be used to reorder the
Boot#### and Driver#### environment variables. The add, rm, and mv options
also update the BootOrder or DriverOrder environment variables as appropriate.

To display driver options:
Shell> becfg driver dump

To display boot options:
Shell> bcfg boot dump

To display verbosely of boot options:
Shell> bcfg boot dump -v

To add a driver option #5
Shell> bcfg driver add 5 mydriver.efi "My Driver"

To add a boot option #3
Shell> bcfg boot add 3 osloader.efi "My OS"

To remove boot option #3
Shell> bcfg boot rm 3

To move boot option #3 to boot option #7
Shell> bcfg boot mv 3 7

To assign a CTRL-B hot-key to boot option #3.

84 Version 2.0

Shell> bcfg boot -opt 3 0x40000200 0 0x42

Status Codes Returned

SHELL_SUCCESS

The action was completed as requested.

SHELL_NOT_FOUND

The requested option was not found.

SHELL__INVALID_PARAMETER

One of the passed in parameters was incorrectly formatted or its
value was out of bounds.

SHELL_UNSUPPORTED

The action as requested was unsupported.

SHELL_SECURITY_VIOLATION

This function was not performed due to a security violation

SHELL_OUT_OF RESOURCES

There was insufficient free space for the request to be completed.

Version 2.0

85

cd

Summary

Displays or changes the current directory.

Usage
cd [path]

Options

path

The relative or absolute directory path.

Description

This command changes the current working directory that is used by the UEFI Shell
environment. If a file system mapping is specified, then the current working directory
is changed for that device. Otherwise, the current working directory is changed for the

current device.

If path is not present, then the current working directory (including file system
mapping) is displayed to standard out.

The table below describes the conventions that are used to refer to the directory, its
parent, and the root directory in the UEFI Shell environment.

Table 13 Conventions for Directory Names

Convention

Description

Refers to the current directory.

Refers to the directory's parent.

\ Refers to the root of the current file system.

The current working directory is maintained in the environment variable %cwd%. See
“Current Directory” (section 3.5) for more information.

Status Codes Returned

SHELL_SUCCESS

The action was completed as requested.

SHELL_SECURITY_VIOLATION

This function was not performed due to a security violation

SHELL__INVALID_PARAMETER

One of the passed in parameters was incorrectly formatted
or its value was out of bounds.

86

Version 2.0

Examples

To change the current filesystem to the mapped fsO filesystem:
Shell> £s0:

To change the current directory to subdirectory 'efi':
£s0:\> cd efi

To change the current directory to the parent directory (fsO:\):
fs0:\efi\> cd ..

To change the current directory to 'fsO:\efi\tools':
£s0:\> cd efil\tools

To change the current directory to the root of the current fs (fsO):
fs0:\efi\tools\> cd \
£s0:\>

To change volumes with cd will not work! For example:
£fs0:\efi\tools\> cd £s1:\ !!!! will not work !!!!
must first type fsl: then cd to desired directory

To move between volumes and maintain the current path.
£s0:\> cd \efi\tools
fs0:\efi\tools\> £fsl:
fs1:\> cd tmp
fsl:\tmp> cp £s0:*.%*
copies all of files in £fs0:\efi\tools into fsl:\tmp directory

Version 2.0

87

cls

Summary

Clears the standard output and optionally changes the background color.

Usage
cls [color]

Options

color - New background color

NoudkWwNREO
1

Description

Black

Blue

Green

Cyan

Red
Magenta
Yellow
Light gray

This command clears the standard output device with an optional background color
attribute. If color is not specified, then the background color does not change.

Status Codes Returned

SHELL_SUCCESS

The action was completed as requested.

SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its

value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_NOT_FOUND

The requested file was not found.

Examples

To clear standard output without changing the background color:

£s0:\> cls

To clear standard output and change the background color to cyan:

£s0:\> cls 3

To clear standard output and change the background to the default color:

£s0:\> cls 0

88

Version 2.0

comp

Summary
Compares the contents of two files on a byte for byte basis.
Usage
comp [-b] filel fileZ2
Options
-b - Display one screen at a time
filel - First file name (directory name or wildcards not
permitted)
file2 - Second file name (directory name or wildcards not
permitted)

Description

This command compares the contents of two files in binary mode. It displays up to 10
differences between the two files. For each difference, up to 32 bytes from the
location where the difference starts is dumped. It will exit immediately if the lengths
of the compared files are different.

Status Codes Returned

SHELL_SUCCESS The function operated as expected.
SHELL_NOT_EQUAL The files were not identical.
SHELL_INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its

value was out of bounds.

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_NOT_FOUND The requested file was not found.

Examples

To compare two files with different lengths:
£s0:\> comp bios.inf legacy.inf
Compare fs0:\bios.inf to fs0:\legacy.inf
Difference #1: File sizes mismatch
[difference(s) encountered]

To compare two files with the same contents:
£s0:\> comp bios.inf rafter.inf
Compare fs0:\bios.inf to fs0:\rafter.inf
[no difference encountered]

To compare two files with the same length but different contents:

Version 2.0
89

90

£fs0:\> comp bios.inf bios2.inf

Compare fs0:\bios.inf to £s0:\bios2.inf

Difference

Filel: £sO:

00000000:

File2: fs0:

00000000
Difference

Filel: £sO:

0000000C:

File2: fs0:

0000000C:

[difference(s) encountered]

#1:
\bios.inf
5F
\bios2.inf
33

#2:
\bios.inf
00 00 00 0O
\bios2.inf
25 32 03 03

*3%

*%2. . %

Version 2.0

connect

Summary

Binds a driver to a specific device and starts the driver.

Usage
connect [[DeviceHandlel [DriverHandle]l | [-c] | [-rl]

Options

Recursively scan all handles and check to see if any loaded or embedded driver
can match the specified device. If so, the driver will be bound to the device.
Additionally, if more device handles are created during the binding, these
handles will also be checked to see if a matching driver can bind to these devices
as well. The process is repeated until no more drivers are able to connect to any
devices. However, without the option, the newly created device handles will not
be further bound to any drivers.

-Cc
Connect console devices found in the EFI global variables (see UEFI specification,
chapter 3)

DeviceHandle
Device handle (a hexadecimal number). If not specified, then all device handles
will be connected.

DriverHandle

Driver handle (a hexadecimal number). If not specified, then all matching drivers
will be bound to the specified device. If specified, then this driver will have the
highest priority.

Description

This command binds a driver to a specific device and starts the driver. If the -r flag is
used, then the connection is done recursively until no further connections between
devices and drivers are made. If the -c flag is used, then the connect command will
bind the proper drivers to the console devices that are described in the EFI
environment variables. The example below shows the typical output from the verbose
help for this command.

If only a single handle is specified and the handle has an
EF1_DRIVER_BINDING_PROTOCOL on it, then the handle is assumed to be a driver
handle. Otherwise, it is assumed to be a device handle.

If no parameters are specified, then the command will attempt to bind all proper
drivers to all devices without recursion. Each connection status will be displayed.

Version 2.0
91

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_ INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its
value was out of bounds.

Examples

e To connect all drivers to all devices recursively:
Shell> connect -r

e To display all connections:
Shell> connect

ConnectController (1) : Status = Success
ConnectController(2) : Status = Success
ConnectController(3) : Status = Success
ConnectController (3D) : Status = Success

e To connect drivers with 0x17 as highest priority to all the devices they can
manage:
Shell> connect 17

e To connect all possible drivers to device 0x19:
Shell> connect 19

e To connect drivers with O0x17 as highest priority to device 0x19 they can manage:
Shell> connect 19 17

e To connect console devices described in the UEFI Shell environment variables:
Shell> connect -c

92 Version 2.0

cp

Summary

Usage

Options

Copies one or more source files or directories to a destination.

cp [-r] [-ql] src [src...] [dst]

src
Source file/directory name (wildcards are permitted)
dst

Destination file/directory name (wildcards are not permitted). If not specified,
then the current working directory is assumed to be the destination. If there are
more than one directory specified, then the last is always assumed to be the
destination.

Recursive copy.

Quiet copy (no prompt)

Description

This command copies one or more source files or directories to a destination. If the
source is a directory, the -r flag must be specified. If -r is specified, then the source
directory will be recursively copied to the destination (which means that all
subdirectories will be copied). If a destination is not specified, then the current
working directory is assumed to be the destination.

If any target file (not directory) already exists, there will be a prompt asking the user
to confirm replacing the file. The following four choices are available:

e Yes: Replace the file.
e No: Do not replace the file.
e All: Replace the existing files in all subsequent cases.

e Cancel: Do not replace any existing files in all subsequent cases.
If there are multiple source files/directories, the destination must be a directory.
If an error occurs, then the copying process will stop immediately.

When executing in a script, the default is —q.

Version 2.0
93

When copying to another directory, the directory must already exist.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_ INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its
value was out of bounds.

SHELL_OUT_OF_RESOURCES There was insufficient space to save the requested file at the
destination.

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_WRITE_PROTECTED An attempt was made to create a file on media that was write-
protected.

Examples

Note:

1. ‘-r’ must be specified if src is a directory. If '-r' is
specified, then the source directory will be recursively
copied to the destination.
Src itself will be copied. ????

e To display the contents of current directory first of all:
£s0:\> 1ls
Directory of: £s0:\

06/18/01 01:02p <DIR> 512 efi
06/18/01 01:02p <DIR> 512 testl
06/18/01 01:02p <DIR> 512 test2
06/13/01 10:00a 28,739 IsaBus.efi
06/13/01 10:00a 32,838 1IsaSerial.efi
06/18/01 08:04p 29 temp.txt
06/18/01 08:05p <DIR> 512 test

3 File(s) 61,606 bytes

4 Dir(s)

e To copy a file in the same directory, but change the file name:
£fs0:\> cp temp.txt readme.txt
copying £s0:\temp.txt -> fs0:\readme.txt
- [okl]

e To copy multiple files to another directory:
£fs0:\> cp temp.txt isaBus.efi \test
copying fs0:\temp.txt -> fs0:\test\temp.txt
- [okl]
copying fs0:\isaBus.efi -> fs0:\test\IsaBus.efi
- [okl]

e To copy multiple directories recursively to another directory:

94 Version 2.0

£fs0:\> cp -r testl test2 boot \test
copying fs0:\testl -> fs0:\test\testl
copying fs0:\testl\testl.txt -> fs0:\test\testl\testl.txt

- [ok]

copying fs0:\test2
copying fs0:\test2\test2.txt -> fs0:\test\test2\test2.txt

- [okl]

-> fs0:\test\test2

copying £s0:\boot -> fs0:\test\boot
copying £s0:\boot\shell.efi -> fs0:\test\boot\shell.efi

- [okl]

£s0:\> 1ls \test

Directory of:

06/18/01
06/18/01
01/28/01
01/28/01
01/28/01
01/28/01
01/28/01

Shell>

Version 2.0

v N

01:01p
01:01lp
08:21p
08:21p
08:21p
08:23p
08:23p
File(s)
Dir(s)

£s0:\test

<DIR>
<DIR>
<DIR>
<DIR>
<DIR>

To see the results of the above operations:

512

0

512

512

512

29

28,739

28,828 bytes

testl
test2

boot

temp. txt
IsaBus.efi

95

date

Summary

Usage

Options

Displays and sets the current date for the system.

date [mm/dd/[yylyyl [-sfol

mm
Month of the date to be set (1-12)

dd
Day of the date to be set (1-31)

yy/yyyy
Year of the date to be set. If only two digits, then 9x = 199x, otherwise 20xx.

-sfo

Standard-format output. See "Related Definitions" below.

Description

This command displays and/or sets the current date for the system. If no parameters
are used, it shows the current date. If a valid month, day, and year are provided, then
the system's date will be updated. Detailed rules are listed below:

Except for numeric characters and /, all other characters in the argument are invalid.
The Shell will report an error if the number is in the wrong month/date/year range.

Space before or after the numeric character is not allowed. Inserting a space into the
number is invalid.

Repeated zeros are allowed before the number. For example:
Shell > date 0000008/000004/000097

Shell > date

08/04/2097

Shell >

The year range is greater than or equal to 1998. Two numeric characters indicate the
year. Numbers below 98 are regarded as 20xx, and numbers equal to or above 98 are
regarded as 19xx. 00 means 2000. For example:

96 Version 2.0

Shell > date 8/4/97
Shell > date
08/04/2097

Shell >

Shell > date 8/4/98
Shell > date
08/04/1998

Shell >

The range of valid years is from 1998-2099.

Standard-Format Output

The standard-format from the date command has a single table: Date, with the
following columns:

Table 14Date Command Table

Column Description
2 Day (from 1-31)
3 Month (from 1-12)
4 Year (from 1998-2099)

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.
SHELL_DEVICE_ERROR There was a hardware error preventing the completion of this
command

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_ INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its
value was out of bounds.

Examples

e To display the current date in the system:
£s0:\> date
06/18/2001

e To set the date with long year format:
£s0:\> date 01/01/2050
£s0:\> date
01/01/2050

e To set the date with short year format:
fs0:\> date 06/18/01
£s0:\> date
06/18/2001

Version 2.0
97

dblk

Summary

Usage

Options

Displays the contents of one or more blocks from a block device.

dblk device [lbal [blocks] I[-bl

device

Block device name

1ba
Index of the first block to be displayed (a hexadecimal number). The default is O.
blocks
Number of blocks to be displayed (a hexadecimal number). The default is 0. If
larger than 0x10, then only 0x10 are displayed.
-b

Display one screen at a time.

Description

Examples

This command displays the contents of one or more blocks from a block device. Iba
and blocks should be typed in hex value. If Iba is not specified, block #0 is
assumed. If blocks is not specified, then only 1 block will be displayed. The
maximum number of blocks that can be displayed at one time is 0x10.

If an MBR is found on the block, the partition information will be printed after all the
block contents have been displayed.

If the block is a FAT partition, some FAT parameters will be displayed (label, systemid,
oemid, sectorsize, clustersize, media etc) after all the blocks have been displayed.

e To display one block of blkO, beginning from block 0:
Shell>dblk blk0

e To display one block of fsO, beginning from block 0x2:
Shell>dblk £s0 2

e To display 0x5 blocks of fsO, beginning from block 0x12:
Shell>dblk £fs0 12 5

e To display 0x10 blocks of fsO, beginning from block 0x12:
Shell>dblk £s0 12 10

e The attempt to display more than 0x10 blocks will display only 0x10 blocks:

98 Version 2.0

Shell>dblk £s0 12 20

e To display one block of blk2, beginning from the first block (blk0):

Version 2.0

99

fsl:\tmpsl> dblk blk2 0 1

LBA 0000000000000000 Size 00000200 bytes

00000000: EB 3C 90
*.<.MSDOS5.0..... *

00000010: 02 00 02
it 2ece?...%

00000020: 8E 2F 03
./....),...NO NA

00000030: 4D 45 20
3.%
00000040: 8E D1 BC
*
00000050: 38 4E 24
8NS.$....<.r...:¥
00000060: 66 Al 1C
f...&f; . & . W.u...
00000070: 02 88 56
, .V....8.3..F...%
00000080: 66 16 03
f, . F..V..F....v.
00000090: 60 89 46
ALk
000000A0: C3 48 F7
* H...F..N.a.....*
000000BO: 00 72 39
. eeeee. *

FIS SR
000000D0: FB 7D B4
f P @t.Ht...*
000000EO: BB 07 00
000000F0: E1 CD 16
. ... & U.R......

00000100: 3B 00 72
p.r.[LVS...... F.

00000110: 3D 7D C7
=,.F.)....N..N..

00000120: 06 96 7D
S S

00000130: 66 03 46
*E F.f. ... L uF

00000140: 4A 4A 8A
JJ.F.2....F..V..

00000150: 4A 52 50
*JRP.Sj.j...F...3%

00000160: D2 F7 F6
LN B...V..... *

00000170: CO CC 02
i u..B*

00000180: 8B F4 8A
,..V$..aar.@u.B.

00000190: 5E OB 49
% Tu...A... fj..

000001A0: BO 4E 54
. .Re*

000001BO: 6D 6F 76
or ot*

000001Cc0: 68 65 72
media....Dis*

000001D0O: 6B 20 65
error...Press *

000001EO0: 61 6E 79
resta*

000001F0: 72 74 0D
fu <5 - ¢

100

4D

00

00

20

FO

7D

7C

02

46

FC

F3

26

4E

7D

CD

CD

E8

46

CB

1c

46

06

91

0A

56

75

4C

65

20

72

20

oA

53

00

80

20

7B

24

26

80

1c

89

01

38

74

8B

10

19

5B

F4

EA

66

0D

53

F7

cc

24

06

44

20

6D

72

6B

00

44

F8

01

20

8E

8B

66

C3

13

56

46

2D

09

FO

EB

26

8A

29

03

8B

32

6A

F6

B8

CD

F8

52

64

65

6F

65

00

4F

cc

29

46

D9

Ccl

3B

10

56

FE

FC

74

83

AC

EF

8B

56

7D

00

DO

E4

01

42

0l

13

C3

20

69

64

72

79

00

53-35

00-3F

2C-09

41-54

B8-00

99-E8

07-26

73-EB

1E-03

B8-20

11-4E

17-60

C7-20

98-40

A0-FD

55-1A

24-BE

8C-D9

00-20

66-C1

F7-E2

6A-10

87-CA

02-80

61-61

41-BB

20-20

73-6B

69-61

FF-0D

20-74

00-00

2E

00

1B

31

20

3C

8A

33

46

00

FE

Bl

3B

74

7D

52

0B

89

OF

EA

03

91

F7

7E

72

00

20

73

2E

0A

6F

00

BlkIo

30

FF

DO

36

8E

01

57

c9

0E

F7

61

0B

FB

oc

EB

BO

7C

4E

B6

10

46

8B

76

02

0B

00

20

20

FF

50

20

00

00

00

4E

20

co

72

FC

8A

13

E6

BF

BE

72

48

E6

01

8B

F2

c8

EB

FC

1A

0E

60

20

6F

0D

72

72

AC

3FO0CEE78

02

3F

4F

20

FC

1c

75

46

D1

8B

00

Al

E6

74

A0

BB

FC

89

66

5E

13

18

8A

75

75

66

0D

72

oA

65

65

CB

04

00

20

20

BD

83

06

10

8B

5E

00

7D

EB

13

FC

00

Cc7

4E

8B

OF

56

96

F2

04

01

6A

0A

20

44

73

73

D8

08

00

4E

33

00

EB

80

98

76

0B

E8

F3

DC

B4

7D

00

46

F6

46

B6

FE

92

8A

B4

42

00

52

6F

69

73

74

55

00

00

41

co

7C

3A

CA

F7

11

03

E6

A6

A0

0E

EB

E8

FO

Ccé6

F8

c8

EB

33

E8

42

03

EB

65

74

73

20

61

*“ . F..V..

*.r9&8-

*at2Nt...

* .NTLDR
*move disks
*her

*k

*any key to

Version 2.0

Fat 16 BPB FatLabel: 'NO NAME ' SystemId: 'FAT16 ' OemId:
'MSDOS5.0"
SectorSize 200 SectorsPerCluster 4 ReservedSectors 8 # Fats 2
Root Entries 200 Media F8 Sectors 32F8E SectorsPerFat CC
SectorsPerTrack 3F Heads 255

Version 2.0
101

del

Summary

Internal alias for the rm command.

102 Version 2.0

devices

Summary

Displays the list of devices managed by UEFI drivers.

Usage
devices [-b]l [-1 XXX]
Options
-b - Display one screen at a time
-1 XXX - Display devices using the specified ISO 639-2 language

Description

The command prints a list of devices that are being managed by drivers that follow
the UEFI Driver Model.

Examples

e To display all devices compliant with the EFI Driver Model

1> devices

Device Name

20 R - - -

3DD - - 3 -
3ED - - 3 -
64 B - - 1 6
65 B - - 1 6
66 B - - 1 1
67 B - - 1 1
68 B - - 1 4
69D - - 1 -
6ED - - 1 -
6F D - - 1 -
70D - - 1 -
71D - - 1 -
72D - - 1 -

Standard-Format Output

VenHw (58C518B1-76F3-11D4-BCEA-0080C73C8881)
Primary Console Input Device

Primary Console Output Device

"UGA Window 1

UGA Window 2"

EFI_WIN NT SERIAL PORT=COM1

COoM1

PC-ANSI Serial Console
EFI_WIN NT SERIAL PORT=COM2
EFI_WIN NT PHYSICAL DISKS=e:RW;262144;512
EFI_WIN NT CPU MODEL=Intel (R) Processor Model
EFI_WIN NT CPU_SPEED=3000

EFI_MEMORY SIZE=64

EFI_MEMORY SIZE=64

Table 15 Standard-Format Output for devices

Column Description
Number
2 The handle number of the EFI device
Version 2.0

103

3 The device type:
R — Root Controller
B — Bus Controller

D — Device Controller

4 A managing driver supports the Driver Configuration Protocol: Yes
(Y) or No (N)

5 A managing driver supports the Driver Diagnostics Protocol: Yes (Y)
or No (N)

6 The number of parent controllers for this device

7 The number of this type of devices.

8 The number of child controllers produced by this device

9 The name of the device from the Component Name Protocol

104 Version 2.0

devtree

Summary

Displays the tree of devices compliant with the UEFI Driver Model.
Usage

devtree [-b]l [-d] [-1 XXX] [DeviceHandlel
Options

DeviceHandle

Display device tree below a certain handle

-b

Display one screen at a time
-d

Display device tree using device paths
-1

Display device tree using the specified language

Description

This command prints a tree of devices that are being managed by drivers that follow
the UEFI Driver Model. By default, the devices are printed in device names that are
retrieved from the Component Name Protocol. If the option —d is specified, the device
paths will be printed instead.

Examples

e To display the tree of all devices compliant with the UEFI Driver Model:
Shell> devtree

e To display the tree of all devices below device 28 compliant with the UEFI Driver
Model:
Shell> devtree 28

e To display the tree of all devices compliant with the UEFI Driver Model one screen
at a time:
Shell> devtree -b

Version 2.0
105

dh

Summary

Displays the device handles in the UEFI environment.
Usage

dh [-1 <lang>] [handle | -p <prot_id>] [-d] [-v]
Options

handle

Specific handle to dump information about (a hexadecimal number). If not
present, then all information will be dumped.

-p
Dumps all handles of a protocol specified by the GUID.
-d
Dumps UEFI Driver Model-related information.
-1
Dumps information using the language codes, as described in Appendix M of the
UEFI specification.
-sfo

Displays information as described in “Standard-Format Output” below.

-v, -verbose

Dumps verbose information about a specific handle.

Description

This command displays the device handles in the EFI environment. If this command is
used with a specific handle number, the details of all the protocols that are associated
with that device handle are displayed. Otherwise, the -p option can be used to list the
device handles that contain a specific protocol.

If neither —p or handle is specified, then all handles will be displayed.

Status Codes Returned

SHELL_SUCCESS The action was completed as requested.

SHELL_SECURITY_VIOLATION This function was not performed due to a security violation

SHELL_ INVALID_PARAMETER One of the passed in parameters was incorrectly formatted or its
value was out of bounds.

106 Version 2.0

Examples

To display all handles and display one screen at a time:

Shell> dh -b

Handle dump
1: Image (DXE Core)
2: FwVol FwFileSys FwVolBlk DevPath(MemMap (11:1B50000-

1D4FFC8))

3: Image (Ebc)
4: DevPath(MemMap (11:1CA0000-1CB0000))
5: Image (WinNtThunk)
6: WinNtThunk DevPath(..76F3-11D4-BCEA-0080C73C8881))
7: Image (WinNtBusDriver) DriverBinding

To display the detailed information on handle 0x30:
Shell> dh 30
Handle 30 (01AF5308)
Isalo
ROM Size......: 00000000
ROM Location..: 00000000
ISA Resource List :
IO : 000003F8-000003FF Attr

: 00000000
INT : 00000004-00000000 Attr

00000000

dpath
PNP Device Path for PnP
HID A0341D0, UID 0x0
Hardware Device Path for PCI
PNP Device Path for PnP
HID 50141D0, UID O
AsStr: 'Acpi (PNPOA03,0)/Pci (1F|0)/Acpi (PNP0501,0)"

To display all handles with 'diskio’ protocol:
Shell> dh -p diskio
Handle dump by protocol 'Diskio’
15: DiskIo BlkIo DevPath(..i(3|1)/Ata(Secondary,Master))
16: DiskIo BlkIo DevPath(..,1)/PCI(0|0)/Scsi(Pun0,Lun0))
44: DiskIo BlkIo Fs DevPath(..ABD0-01C0-507B-9E5F8078F531))
ESP
45: DiskIo BlkIo Fs DevPath(..i(Pun0O,Lun0) /HD(Part4,SigG0))
ESP
17: DiskIo BlkIo DevPath(..PCI(3|1)/Ata(Primary,Master))

To display all handles with 'Image’ protocol and break when the screen is full:

Version 2.0
107

Shell> dh -p Image -b
Handle dump by protocol 'image'
1: Image (DXE Core)
5: Image (WinNtThunk)
7: Image (WinNtBusDriver) DriverBinding
8: Image (Metronome)
A: Image (IsaBus) DriverBinding
B: Image (WinNtConsole) DriverBinding

Standard-Format Output
When using the —sfo command-line option, the dh shell command will produce one of
two tables: HandlesInfo or Handlelnfo. The table columns are described in the
following table:

Table 16 dh Standard Formatted Output (HandlesInfo)

Column Description
Number

Driver Name. Name of driver producing the handle.
Controller Name. Name of controller producing the handle.
Handle Number. Integer handle number.

Device Path.Device path associated with the handle.

o o b~ W N

Protocol Identifiers. Semicolon-delimited list of protocol identifiers or
GUIDs.

108 Version 2.0

dir
Summary

An