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Overview

• UEFI and PI specifications create a driver model for 
the firmware, but…

• What else do I do to get my platform working?
• I plug the drivers in, but it doesn’t boot…
• I plug the drivers in, but I’m not even sure they are 

being executed…
• I want to run my own utilities by I can’t figure out how…
• I plug the drivers in, but they can’t fit in my flash part
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How-To #1: Configure PI Drivers Using Platform Drivers
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How-To #1: Configure PI Drivers Using Platform Drivers
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Q: Why Not Just Skip The Platform Driver Step?

A: Because Setup Screens Don’t Always Match 
Configuration Settings Options 1:1!
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What Do Platform Drivers Do?

• The PEI platform driver must:
• Detect the boot mode. Prioritize the boot modes and 

install the EFI_PEI_MASTER_BOOT_MODE_PPI and, if 
necessary, the 
EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI.

• Create the CPU HOB 
• Handle ROM cache settings (prior to memory 

discovery) and default RAM cache settings (after 
memory discovery)

• Create resource HOBs for devices with fixed I/O and 
memory requirements 

• Flash, HPET, APIC, SIO, etc.
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What Do Platform Drivers Do?

• The PEI platform driver Usually:
• Configures GPIOs 
• Performs early chipset initialization missed by chipset 

drivers
• Set up required BARs for memory controller registers, 

ACPI power management registers and PCI Express 
memory-mapped I/O. 
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What Do Platform Drivers Do?

• The PEI platform driver may:
• Configure the clock generator
• Increase the size of the boot block 

• Programming flash-device-specific registers to lock the 
additional sections of the flash until (AT LEAST) the next 
platform reset or power-on.

• Create policy PPIs for other PEI drivers. 
• Policy PPIs are defined by the driver author, NOT the PI 

or UEFI specifications.
• Hard-coded values or read from UEFI variables
• Other PEI drivers include PPI GUID in dependency 

expression
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What Do Platform Drivers Do?

• The DXE platform drivers may:
• Create policy protocols for other DXE drivers. 

• Policy protocols are defined by the driver author, NOT the PI or UEFI 
specifications.

• Hard-coded values or converted from UEFI variables
• Other DXE drivers include protocol GUID in dependency expression

• Save settings needed for S3 resume
• What to save? Anything that’s not restored by the device’s driver.

• For multi-mode drivers (such as SATA controllers), this is often 
the mode settings.

• For host controllers (USB, PCIe) this is usually some host 
controller settings.

• For devices with no specific drivers (SIOs) this is usually the SIO 
configureation.

• Where to save? UEFI variables or DRAM (if initialized after the memory 
controller)
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How-To #2: Boot menu apps are disabled boot options

• Info about apps stored in UEFI global variables with 
the name Boot#### (####=hex number)

• #### must be listed in BootOrder global variable
• Format of the Boot### variable:

A
pp

Type

R
svd

H
idden
rsvd

R
econnect
Active

EFI 1.10+
For applications 
that are not boot 
options, set to 0 

(Inactive)

UEFI 2.1
1 = Application
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How-To #3: Report Status Via ReportStatusCode

• PI Specification Has ReportStatusCode PPI/Protocol
• Allows Different Plug-Ins for Progress/Error Reporting

• 8-bit Port 0x80, 16-bit Port 0x80, Serial Port, Debugger, etc.

ReportStatusProtocol->ReportStatusCode(
TypeSeverity,
ClassSubclassOperation,
Instance,
CallerId, 
AdditionalData
);
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ReportStatusCode: Type & Severity

SEVERITYRESERVEDTYPE

1 = Progress Code
2 = Error Code
3 = Debug Code

0 7 24 31

For Error Code:
0x40 = Minor
0x80 = Major
0x90 = Unrecovered
0xA0 = Uncontained
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ReportStatusCode: Class/Subclass/Operation
CLASSOPERATION SUB-CLASS

For Computing:
0x00 = Unspecified
0x01 = Host Processor
0x02 = Firmware Processor
0x03 = I/O Processor 
0x04 = Cache
0x05 = Memory
0x06 = Chipset

For Peripheral:
0x00 = Unspecified
0x01 = Keyboard
0x02 = Mouse
0x03 = Local Console
0x04 = Remote Console
0x05 = Serial Port
0x06 = Parallel Port
0x07 = Fixed Media
0x08 = Removable Media
0x09 = Audio Input
0x0A = Audio Output
0x0B = LCD Device
0x0C = Network

0 24 31

0x00 = Computing
0x01 = Peripheral
0x02 = I/O Bus
0x03 = Softare

16

For I/O Bus:
0x00 = Unspecified
0x01 = PCI
0x02 = USB
0x06 = LPC
0x07 = SCSI
0x08 = ATAPI
0x0B = SMBUS
0x0C = I2C

For Software:
0x00 = Unspecified
0x01 = SEC
0x02 = PEI Core
0x03 = PEI Driver
0x04 = DXE Core
0x05 = DXE Boot Driver
0x06 = DXE Runtime Driver
0x07 = SMM Driver
0x08 = EFI Application
0x09 = OS Loader
0x0C = EBC Exception
0x0D = X86 Exception
0x0F = PEI Service
0x10 = UEFI  Boot Service
0x11 = UEFI Runtime Service
0x12 = DXE Service
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Translating ReportStatusCode To Port 80 (8-bit)

• Boards Still Have Port 80 LEDs
For Progress
• Class/Subclass Translated 

To Upper 5 Bits
• Progress/Error Code 

Translated To Lower 3 Bits

CLASS:                   Port80(7:3)
0001 = Host Processor         (0x00)
0002 = Firmware Processor     (0x01)
0003 = I/O Processor          (0x02)
0004 = Cache                  (0x03)
0005 = Memory                 (0x04)
0006 = Chipset                (0x05)
0101 = Keyboard               (0x06)
0102 = Mouse                  (0x07)
0105 = Serial Port            (0x08)
0106 = Parallel Port          (0x09)
0107 = Fixed Media            (0x0A)
0108 = Removable Media        (0x0B)
0109 = Audio Input            (0x0C)
010A = Audio Output           (0x0D)
010B = LCD                    (0x0E)
010C = Network                (0x0F)

0201 = PCI                        (0x10)
0202 = USB                        (0x11)
0205 = PC/CARD                    (0x12)
0206 = LPC                        (0x13)
0208 = ATA/ATAPI                  (0x14)
020B = SMBUS                      (0x15)
0301 = SEC                        (0x16)
0302 = PEI Core                   (0x17)
0303 = PEI Module                 (0x18)
0304 = DXE Core                   (0x19)
0305 = DXE Boot Service Driver    (0x1A)
0306 = DXE Runtime Service Driver (0x1B)
0307 = SMM                        (0x1C)
0308 = Application                (0x1D)
0309 = Boot Loader                (0x1E)
xxxx = Other                      (0x1F)

CLASSOPERATION SUB-CLASS

0 24 3116

POST CODE

2

0 2 7
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Translating ReportStatusCode To Port 80 (16-bit)

• Some boards have 4 LED digits
• [15:11] Class/Subclass Translated 

To Upper 5 Bits
• [10] Error Code(1)/Progress Code(0)
• [9] Subclass Specific(1), General(0)
• [8:0] Operation Lower 9 Bits

CLASS:                 Port80(15:11)
0001 = Host Processor         (0x00)
0002 = Firmware Processor     (0x01)
0003 = I/O Processor          (0x02)
0004 = Cache                  (0x03)
0005 = Memory                 (0x04)
0006 = Chipset                (0x05)
0101 = Keyboard               (0x06)
0102 = Mouse                  (0x07)
0105 = Serial Port            (0x08)
0106 = Parallel Port          (0x09)
0107 = Fixed Media            (0x0A)
0108 = Removable Media        (0x0B)
0109 = Audio Input            (0x0C)
010A = Audio Output           (0x0D)
010B = LCD                    (0x0E)
010C = Network                (0x0F)

0201 = PCI                        (0x10)
0202 = USB                        (0x11)
0205 = PC/CARD                    (0x12)
0206 = LPC                        (0x13)
0208 = ATA/ATAPI                  (0x14)
020B = SMBUS                      (0x15)
0301 = SEC                        (0x16)
0302 = PEI Core                   (0x17)
0303 = PEI Module                 (0x18)
0304 = DXE Core                   (0x19)
0305 = DXE Boot Service Driver    (0x1A)
0306 = DXE Runtime Service Driver (0x1B)
0307 = SMM                        (0x1C)
0308 = Application                (0x1D)
0309 = Boot Loader                (0x1E)
xxxx = Other                      (0x1F)

CLASSOPERATION SUB-CLASS

24 31160 6 12 13

POST CODE

16111060 9

0 = progress, 
1 = error
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ReportStatusCode: Operation Values

• The operation values depend on class/subclass. 
• Ex: Memory Controller:

• 0 = Reading configuration data (i.e. SPD) from memory 
devices.

• 1 = Detecting presence of memory devices.
• 2 = Determining optimum configuration (i.e. timing)
• 3 = Initial configuration of memory devices/controller
• 4 = Optimized settings for memory devices/controller
• 5 = Memory initialization (ECC, etc.)
• 6 = Memory test 

• OR with 0x20 (0x04 << 3) gives port 80 values of 
0x20-0x26 for the memory controller.



© Phoenix Technologies Ltd.

Debugger Output
POST CODE: 0x80
POST CODE: 0x82
POST CODE: 0x84
POST CODE: 0x88
Executing PEIM at FFFFDB8A

PEIM name: BasememoryTest
Entry point: 0xFFFFD220

Installing PPI at 0xFFFFD2E4
Flags: 0x80000010 (PPI + Terminate List)
GUID: B6EC423C-21D2-490D-85C6-DD5864EAA674
Entry pointer: 0xFFFFD2E0

POST CODE: 0x8A
POST CODE: 0x80
POST CODE: 0x82
POST CODE: 0x84
POST CODE: 0x88
Executing PEIM at FFFFDBC2

PEIM name: Variable1
Entry point: 0xFFFFC814

Installing PPI at 0xFFFFC940
Flags: 0x80000010 (PPI + Terminate List)
GUID: 3CDC90C6-13FB-4A75-9E79-59E9DD78B9FA
Entry pointer: 0xFFFFC938

POST CODE: 0x8A
POST CODE: 0x80

Test point, can 
be used as a 

break condition

Test point, can 
be used as a 

break condition

Useful message 
upon dispatching 
PEIM

Useful message 
upon dispatching 
PEIM

Useful message 
upon installing 
PPI

Useful message 
upon installing 
PPI
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Dumping Information From The Debugger
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Example: de:PEIDISP(“PPI”)

PPI #0 at 0x000DF99A -> 0xFFF053C8
Flags: 0x80000010 (PPI + Terminate List)
GUID: CA3B3A50-5698-4551-8B18-CEAEEF917D50
Entry pointer: 0xFFF053C0

PPI #1 at 0x000DF99E -> 0xFFF0552C
Flags: 0x80000010 (PPI + Terminate List)
GUID: 229832D3-7A30-4B36-B827-F40CB7D45436
Entry pointer: 0xFFF05528

PPI #2 at 0x000DF9A2 -> 0xFFF055E0
Flags: 0x80000010 (PPI + Terminate List)
GUID: 44010885-9F0B-4AA8-826F-B455958D1531
Entry pointer: 0xFFF055D8

PPI #3 at 0x000DF9A6 -> 0x000DE078
Flags: 0x80000010 (PPI + Terminate List)
GUID: D03EC65A-C31E-4ABD-909C-8BBAA5DD4233
Entry pointer: 0x000DE040

PPI #4 at 0x000DF9AA -> 0xFFFF6E58
Flags: 0x80000010 (PPI + Terminate List)
GUID: C9737920-C2AD-41C3-B133-0F9C251B6743
Entry pointer: 0xFFFF6E40

Total 5 PPI function(s)
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How-To #4: Saving Space

Driver Type 64-Bit DDK Compiler 64-Bit VS2005 SP1

Driver A Total Size: 11,616
Code: 8,416
Initialized Data: 2,592
Compressed: 6,395 (55%)

Total Size: 7,552
Code: 6,416
Initialized Data: 528
Compressed: 4,439 (58%)

Driver B Total Size: 6,336
Code: 4,224
Initialized Data: 1,472
Compressed: 3,861 (61%)

Total Size: 5,328
Code: 3,586
Initialized Data: 848
Compressed: 3,328 (62%)

Driver C: Total Size: 7,680
Code: 6,048
Initialized Data: 1,024
Compressed: 5,096 (66%)

Total Size: 6,096
Code: 5,040
Initialized Data: 448
Compressed: 4,121 (68%)

Driver D: Total Size: 4,608
Code: 2,368
Initialized Data: 1,568
Compressed: 2,738 (59%)

Total Size: 1,888
Code: 944
Initialized Data: 304
Compressed: 1,193 (63%)

35% 
Smaller

35% 
Smaller

27% 
Smaller

27% 
Smaller

21% 
Smaller

21% 
Smaller

59% 
Smaller

59% 
Smaller
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How-To #4: What Made The Difference?

• Code: Alignment of 16-bytes vs. 32-bits
• Code: Register usage

• Better register usage (esp. pointers to interfaces)
• Better instruction selection (e.g. AND x,0, not MOV x,0)

• Code: Link-Time Code Generation
• Eliminates common subroutines 
• Calling conventions for static routines optimized
• Constant folding for function parameters

• Data: Unintentional static data left in driver.
• Usually debug strings and file names (even in release)
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Summary

• How-To #1: Platform drivers customize other drivers 
for your platform.

• How-To #2: Use Boot Options to add your apps to 
the boot manager menu

• How-To #3: Use ReportStatusCode to track progress 
during POST

• How-To #4: Configure the right tools and the right 
flags to fit your drivers into the flash part.
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