
confidential

17 September 2007

What They Never Taught You In
UEFI 101

Tim Lewis, Chief BIOS Architect

© Phoenix Technologies Ltd.

Overview

• UEFI and PI specifications create a driver model for
the firmware, but…

• What else do I do to get my platform working?
• I plug the drivers in, but it doesn’t boot…
• I plug the drivers in, but I’m not even sure they are

being executed…
• I want to run my own utilities by I can’t figure out how…
• I plug the drivers in, but they can’t fit in my flash part

© Phoenix Technologies Ltd.

Memory
Controller

I/O Bridge

CPU text
DIMM

Driver for Driver for
each of the each of the

componentscomponents

But drivers But drivers
need to be need to be
configuredconfigured

SPD AddressSPD Address

IRQ RoutingIRQ Routing

Power Power
ControlControl

Presence Presence
DetectDetect

How to do it?How to do it?

How-To #1: Configure PI Drivers Using Platform Drivers

© Phoenix Technologies Ltd.

How-To #1: Configure PI Drivers Using Platform Drivers
Platform drivers
create platform
protocols based

on UEFI
variables or OEM

hard-coded
values

Platform drivers
create platform
protocols based

on UEFI
variables or OEM

hard-coded
values

UEFI variables
are set either at

build-time by
build tools or by a

platform setup
utility.

UEFI variables
are set either at

build-time by
build tools or by a

platform setup
utility.

Drivers set these
options based on

platform
protocols

(defined by
driver provider)

Drivers set these
options based on

platform
protocols

(defined by
driver provider)

Drivers have
runtime

configuration
settings

Drivers have
runtime

configuration
settings

Q: Why Not Just Skip The Platform Driver Step?

A: Because Setup Screens Don’t Always Match
Configuration Settings Options 1:1!

© Phoenix Technologies Ltd.

What Do Platform Drivers Do?

• The PEI platform driver must:
• Detect the boot mode. Prioritize the boot modes and

install the EFI_PEI_MASTER_BOOT_MODE_PPI and, if
necessary, the
EFI_PEI_BOOT_IN_RECOVERY_MODE_PPI.

• Create the CPU HOB
• Handle ROM cache settings (prior to memory

discovery) and default RAM cache settings (after
memory discovery)

• Create resource HOBs for devices with fixed I/O and
memory requirements

• Flash, HPET, APIC, SIO, etc.

© Phoenix Technologies Ltd.

What Do Platform Drivers Do?

• The PEI platform driver Usually:
• Configures GPIOs
• Performs early chipset initialization missed by chipset

drivers
• Set up required BARs for memory controller registers,

ACPI power management registers and PCI Express
memory-mapped I/O.

© Phoenix Technologies Ltd.

What Do Platform Drivers Do?

• The PEI platform driver may:
• Configure the clock generator
• Increase the size of the boot block

• Programming flash-device-specific registers to lock the
additional sections of the flash until (AT LEAST) the next
platform reset or power-on.

• Create policy PPIs for other PEI drivers.
• Policy PPIs are defined by the driver author, NOT the PI

or UEFI specifications.
• Hard-coded values or read from UEFI variables
• Other PEI drivers include PPI GUID in dependency

expression

© Phoenix Technologies Ltd.

What Do Platform Drivers Do?

• The DXE platform drivers may:
• Create policy protocols for other DXE drivers.

• Policy protocols are defined by the driver author, NOT the PI or UEFI
specifications.

• Hard-coded values or converted from UEFI variables
• Other DXE drivers include protocol GUID in dependency expression

• Save settings needed for S3 resume
• What to save? Anything that’s not restored by the device’s driver.

• For multi-mode drivers (such as SATA controllers), this is often
the mode settings.

• For host controllers (USB, PCIe) this is usually some host
controller settings.

• For devices with no specific drivers (SIOs) this is usually the SIO
configureation.

• Where to save? UEFI variables or DRAM (if initialized after the memory
controller)

© Phoenix Technologies Ltd.

How-To #2: Boot menu apps are disabled boot options

• Info about apps stored in UEFI global variables with
the name Boot#### (####=hex number)

• #### must be listed in BootOrder global variable
• Format of the Boot### variable:

A
pp

Type

R
svd

H
idden
rsvd

R
econnect
Active

EFI 1.10+
For applications
that are not boot
options, set to 0

(Inactive)

UEFI 2.1
1 = Application

© Phoenix Technologies Ltd.

How-To #3: Report Status Via ReportStatusCode

• PI Specification Has ReportStatusCode PPI/Protocol
• Allows Different Plug-Ins for Progress/Error Reporting

• 8-bit Port 0x80, 16-bit Port 0x80, Serial Port, Debugger, etc.

ReportStatusProtocol->ReportStatusCode(
TypeSeverity,
ClassSubclassOperation,
Instance,
CallerId,
AdditionalData
);

© Phoenix Technologies Ltd.

ReportStatusCode: Type & Severity

SEVERITYRESERVEDTYPE

1 = Progress Code
2 = Error Code
3 = Debug Code

0 7 24 31

For Error Code:
0x40 = Minor
0x80 = Major
0x90 = Unrecovered
0xA0 = Uncontained

© Phoenix Technologies Ltd.

ReportStatusCode: Class/Subclass/Operation
CLASSOPERATION SUB-CLASS

For Computing:
0x00 = Unspecified
0x01 = Host Processor
0x02 = Firmware Processor
0x03 = I/O Processor
0x04 = Cache
0x05 = Memory
0x06 = Chipset

For Peripheral:
0x00 = Unspecified
0x01 = Keyboard
0x02 = Mouse
0x03 = Local Console
0x04 = Remote Console
0x05 = Serial Port
0x06 = Parallel Port
0x07 = Fixed Media
0x08 = Removable Media
0x09 = Audio Input
0x0A = Audio Output
0x0B = LCD Device
0x0C = Network

0 24 31

0x00 = Computing
0x01 = Peripheral
0x02 = I/O Bus
0x03 = Softare

16

For I/O Bus:
0x00 = Unspecified
0x01 = PCI
0x02 = USB
0x06 = LPC
0x07 = SCSI
0x08 = ATAPI
0x0B = SMBUS
0x0C = I2C

For Software:
0x00 = Unspecified
0x01 = SEC
0x02 = PEI Core
0x03 = PEI Driver
0x04 = DXE Core
0x05 = DXE Boot Driver
0x06 = DXE Runtime Driver
0x07 = SMM Driver
0x08 = EFI Application
0x09 = OS Loader
0x0C = EBC Exception
0x0D = X86 Exception
0x0F = PEI Service
0x10 = UEFI Boot Service
0x11 = UEFI Runtime Service
0x12 = DXE Service

© Phoenix Technologies Ltd.

Translating ReportStatusCode To Port 80 (8-bit)

• Boards Still Have Port 80 LEDs
For Progress
• Class/Subclass Translated

To Upper 5 Bits
• Progress/Error Code

Translated To Lower 3 Bits

CLASS: Port80(7:3)
0001 = Host Processor (0x00)
0002 = Firmware Processor (0x01)
0003 = I/O Processor (0x02)
0004 = Cache (0x03)
0005 = Memory (0x04)
0006 = Chipset (0x05)
0101 = Keyboard (0x06)
0102 = Mouse (0x07)
0105 = Serial Port (0x08)
0106 = Parallel Port (0x09)
0107 = Fixed Media (0x0A)
0108 = Removable Media (0x0B)
0109 = Audio Input (0x0C)
010A = Audio Output (0x0D)
010B = LCD (0x0E)
010C = Network (0x0F)

0201 = PCI (0x10)
0202 = USB (0x11)
0205 = PC/CARD (0x12)
0206 = LPC (0x13)
0208 = ATA/ATAPI (0x14)
020B = SMBUS (0x15)
0301 = SEC (0x16)
0302 = PEI Core (0x17)
0303 = PEI Module (0x18)
0304 = DXE Core (0x19)
0305 = DXE Boot Service Driver (0x1A)
0306 = DXE Runtime Service Driver (0x1B)
0307 = SMM (0x1C)
0308 = Application (0x1D)
0309 = Boot Loader (0x1E)
xxxx = Other (0x1F)

CLASSOPERATION SUB-CLASS

0 24 3116

POST CODE

2

0 2 7

© Phoenix Technologies Ltd.

Translating ReportStatusCode To Port 80 (16-bit)

• Some boards have 4 LED digits
• [15:11] Class/Subclass Translated

To Upper 5 Bits
• [10] Error Code(1)/Progress Code(0)
• [9] Subclass Specific(1), General(0)
• [8:0] Operation Lower 9 Bits

CLASS: Port80(15:11)
0001 = Host Processor (0x00)
0002 = Firmware Processor (0x01)
0003 = I/O Processor (0x02)
0004 = Cache (0x03)
0005 = Memory (0x04)
0006 = Chipset (0x05)
0101 = Keyboard (0x06)
0102 = Mouse (0x07)
0105 = Serial Port (0x08)
0106 = Parallel Port (0x09)
0107 = Fixed Media (0x0A)
0108 = Removable Media (0x0B)
0109 = Audio Input (0x0C)
010A = Audio Output (0x0D)
010B = LCD (0x0E)
010C = Network (0x0F)

0201 = PCI (0x10)
0202 = USB (0x11)
0205 = PC/CARD (0x12)
0206 = LPC (0x13)
0208 = ATA/ATAPI (0x14)
020B = SMBUS (0x15)
0301 = SEC (0x16)
0302 = PEI Core (0x17)
0303 = PEI Module (0x18)
0304 = DXE Core (0x19)
0305 = DXE Boot Service Driver (0x1A)
0306 = DXE Runtime Service Driver (0x1B)
0307 = SMM (0x1C)
0308 = Application (0x1D)
0309 = Boot Loader (0x1E)
xxxx = Other (0x1F)

CLASSOPERATION SUB-CLASS

24 31160 6 12 13

POST CODE

16111060 9

0 = progress,
1 = error

© Phoenix Technologies Ltd.

ReportStatusCode: Operation Values

• The operation values depend on class/subclass.
• Ex: Memory Controller:

• 0 = Reading configuration data (i.e. SPD) from memory
devices.

• 1 = Detecting presence of memory devices.
• 2 = Determining optimum configuration (i.e. timing)
• 3 = Initial configuration of memory devices/controller
• 4 = Optimized settings for memory devices/controller
• 5 = Memory initialization (ECC, etc.)
• 6 = Memory test

• OR with 0x20 (0x04 << 3) gives port 80 values of
0x20-0x26 for the memory controller.

© Phoenix Technologies Ltd.

Debugger Output
POST CODE: 0x80
POST CODE: 0x82
POST CODE: 0x84
POST CODE: 0x88
Executing PEIM at FFFFDB8A

PEIM name: BasememoryTest
Entry point: 0xFFFFD220

Installing PPI at 0xFFFFD2E4
Flags: 0x80000010 (PPI + Terminate List)
GUID: B6EC423C-21D2-490D-85C6-DD5864EAA674
Entry pointer: 0xFFFFD2E0

POST CODE: 0x8A
POST CODE: 0x80
POST CODE: 0x82
POST CODE: 0x84
POST CODE: 0x88
Executing PEIM at FFFFDBC2

PEIM name: Variable1
Entry point: 0xFFFFC814

Installing PPI at 0xFFFFC940
Flags: 0x80000010 (PPI + Terminate List)
GUID: 3CDC90C6-13FB-4A75-9E79-59E9DD78B9FA
Entry pointer: 0xFFFFC938

POST CODE: 0x8A
POST CODE: 0x80

Test point, can
be used as a

break condition

Test point, can
be used as a

break condition

Useful message
upon dispatching
PEIM

Useful message
upon dispatching
PEIM

Useful message
upon installing
PPI

Useful message
upon installing
PPI

© Phoenix Technologies Ltd.

Dumping Information From The Debugger

© Phoenix Technologies Ltd.

Example: de:PEIDISP(“PPI”)

PPI #0 at 0x000DF99A -> 0xFFF053C8
Flags: 0x80000010 (PPI + Terminate List)
GUID: CA3B3A50-5698-4551-8B18-CEAEEF917D50
Entry pointer: 0xFFF053C0

PPI #1 at 0x000DF99E -> 0xFFF0552C
Flags: 0x80000010 (PPI + Terminate List)
GUID: 229832D3-7A30-4B36-B827-F40CB7D45436
Entry pointer: 0xFFF05528

PPI #2 at 0x000DF9A2 -> 0xFFF055E0
Flags: 0x80000010 (PPI + Terminate List)
GUID: 44010885-9F0B-4AA8-826F-B455958D1531
Entry pointer: 0xFFF055D8

PPI #3 at 0x000DF9A6 -> 0x000DE078
Flags: 0x80000010 (PPI + Terminate List)
GUID: D03EC65A-C31E-4ABD-909C-8BBAA5DD4233
Entry pointer: 0x000DE040

PPI #4 at 0x000DF9AA -> 0xFFFF6E58
Flags: 0x80000010 (PPI + Terminate List)
GUID: C9737920-C2AD-41C3-B133-0F9C251B6743
Entry pointer: 0xFFFF6E40

Total 5 PPI function(s)

© Phoenix Technologies Ltd.

How-To #4: Saving Space

Driver Type 64-Bit DDK Compiler 64-Bit VS2005 SP1

Driver A Total Size: 11,616
Code: 8,416
Initialized Data: 2,592
Compressed: 6,395 (55%)

Total Size: 7,552
Code: 6,416
Initialized Data: 528
Compressed: 4,439 (58%)

Driver B Total Size: 6,336
Code: 4,224
Initialized Data: 1,472
Compressed: 3,861 (61%)

Total Size: 5,328
Code: 3,586
Initialized Data: 848
Compressed: 3,328 (62%)

Driver C: Total Size: 7,680
Code: 6,048
Initialized Data: 1,024
Compressed: 5,096 (66%)

Total Size: 6,096
Code: 5,040
Initialized Data: 448
Compressed: 4,121 (68%)

Driver D: Total Size: 4,608
Code: 2,368
Initialized Data: 1,568
Compressed: 2,738 (59%)

Total Size: 1,888
Code: 944
Initialized Data: 304
Compressed: 1,193 (63%)

35%
Smaller

35%
Smaller

27%
Smaller

27%
Smaller

21%
Smaller

21%
Smaller

59%
Smaller

59%
Smaller

© Phoenix Technologies Ltd.

How-To #4: What Made The Difference?

• Code: Alignment of 16-bytes vs. 32-bits
• Code: Register usage

• Better register usage (esp. pointers to interfaces)
• Better instruction selection (e.g. AND x,0, not MOV x,0)

• Code: Link-Time Code Generation
• Eliminates common subroutines
• Calling conventions for static routines optimized
• Constant folding for function parameters

• Data: Unintentional static data left in driver.
• Usually debug strings and file names (even in release)

© Phoenix Technologies Ltd.

Summary

• How-To #1: Platform drivers customize other drivers
for your platform.

• How-To #2: Use Boot Options to add your apps to
the boot manager menu

• How-To #3: Use ReportStatusCode to track progress
during POST

• How-To #4: Configure the right tools and the right
flags to fit your drivers into the flash part.

	What They Never Taught You In UEFI 101
	Overview
	How-To #1: Configure PI Drivers Using Platform Drivers
	How-To #1: Configure PI Drivers Using Platform Drivers
	What Do Platform Drivers Do?
	What Do Platform Drivers Do?
	What Do Platform Drivers Do?
	What Do Platform Drivers Do?
	How-To #2: Boot menu apps are disabled boot options
	How-To #3: Report Status Via ReportStatusCode
	ReportStatusCode: Type & Severity
	ReportStatusCode: Class/Subclass/Operation
	Translating ReportStatusCode To Port 80 (8-bit)
	Translating ReportStatusCode To Port 80 (16-bit)
	ReportStatusCode: Operation Values
	Debugger Output
	Dumping Information From The Debugger
	Example: de:PEIDISP(“PPI”)
	How-To #4: Saving Space
	How-To #4: What Made The Difference?
	Summary

